

RELIABILITY REPORT
FOR
MAX1392ETB+

PLASTIC ENCAPSULATED DEVICES

November 24, 2008

# **MAXIM INTEGRATED PRODUCTS**

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

| Approved by                       |  |
|-----------------------------------|--|
| Ken Wendel                        |  |
| Quality Assurance                 |  |
| Director, Reliability Engineering |  |



#### Conclusion

The MAX1392ETB+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

#### **Table of Contents**

| IDevice Description         | VQuality Assurance Information |  |  |
|-----------------------------|--------------------------------|--|--|
| IIManufacturing Information | VIReliability Evaluation       |  |  |
| IIIPackaging Information    | IVDie Information              |  |  |
| Attachments                 |                                |  |  |

## I. Device Description

#### A. General

The MAX1392/MAX1395 micropower, serial-output, 10-bit, analog-to-digital converters (ADCs) operate with a single power supply from +1.5V to +3.6V. These ADCs feature automatic shutdown, fast wake-up, and a high-speed 3-wire interface. Power consumption is only 0.740mW (VDD = +1.5V) at the maximum conversion rate of 357ksps. AutoShutdown™ between conversions reduces power consumption at slower throughput rates. The MAX1392/MAX1395 require an external reference VREF that has a wide range from 0.6V to VDD. The MAX1392 provides one true-differential analog input that accepts signals ranging from 0 to VREF (unipolar mode) or ±VREF/2 (bipolar mode). The MAX1395 provides two single-ended inputs that accept signals ranging from 0 to VREF. Analog conversion results are available through a 5MHz, 3-wire SPI™-/QSPI™-/MICROWIRE™-/digital signal processor (DSP)-compatible serial interface. Excellent dynamic performance, low voltage, low power, ease of use, and small package sizes make these converters ideal for portable battery-powered data-acquisition applications, and for other applications that demand low power consumption and minimal space. The MAX1392/MAX1395 are available in a space-saving (3mm x 3mm) 10-pin TDFN package. The parts operate over the extended (-40°C to +85°C) and military (-55°C to +125°C) temperature ranges.



## II. Manufacturing Information

1.5V to 3.6V, 357ksps, 1-Channel True-Differential/2-Channel Single-Ended, A. Description/Function:

10-Bit, SAR ADCs

B. Process: S4

C. Number of Device Transistors:

D. Fabrication Location: Texas

E. Assembly Location: ISPL Philippines, UTL Thailand, Unisem Malaysia

F. Date of Initial Production: October 20, 2006

## III. Packaging Information

A. Package Type: 10-pin TDFN 3x3

B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin D. Die Attach: Conductive Epoxy E. Bondwire: Gold (1 mil dia.) F. Mold Material: Epoxy with silica filler #05-9000-1450 G. Assembly Diagram: H. Flammability Rating: Class UL94-V0 Level 1

I. Classification of Moisture Sensitivity per

JEDEC standard J-STD-020-C

54°C/W J. Single Layer Theta Ja: 8.5°C/W K. Single Layer Theta Jc: L. Multi Layer Theta Ja: 41°C/W M. Multi Layer Theta Jc: 8.5°C/W

#### IV. Die Information

A. Dimensions: 57 X 44 mils

B. Passivation: Si<sub>3</sub>N<sub>4</sub>/SiO<sub>2</sub> (Silicon nitride/ Silicon dioxide

Aluminum/Si (Si = 1%) C. Interconnect:

D. Backside Metallization: None

E. Minimum Metal Width: Metal1 = 0.5 / Metal2 = 0.6 / Metal3 = 0.6 microns (as drawn) Metal1 = 0.45 / Metal2 = 0.5 / Metal3 = 0.6 microns (as drawn) F. Minimum Metal Spacing:

G. Bondpad Dimensions: 5 mil. Sq. H. Isolation Dielectric: SiO<sub>2</sub> I. Die Separation Method: Wafer Saw



## V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm</li>D. Sampling Plan: Mil-Std-105D

## VI. Reliability Evaluation

## A. Accelerated Life Test

The results of the 135°C biased (static) life test are pending. Using these results, the Failure Rate (3) is calculated as follows:

$$\lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 95 \times 2}$$
 (Chi square value for MTTF upper limit)

where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 11.3 \times 10^{-9}$$
  
 $\lambda = 11.3 \text{ F.I.T. (60\% confidence level @ 25°C)}$ 

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the S4 Process results in a FIT Rate of 4.6 @ 25C and 79.2 @ 55C (0.8 eV, 60% UCL)

#### B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

## C. E.S.D. and Latch-Up Testing

The AC68 die type has been found to have all pins able to withstand a HBM transient pulse of +/-500 V per JEDEC JESD22-A114-D. Latch-Up testing has shown that this device withstands a current of +/-250 mA.



# **Table 1**Reliability Evaluation Test Results

# MAX1392ETB+

| TEST ITEM          | TEST CONDITION  | FAILURE<br>IDENTIFICATION | SAMPLE SIZE | NUMBER OF<br>FAILURES |  |
|--------------------|-----------------|---------------------------|-------------|-----------------------|--|
| Static Life Test ( | Note 1)         |                           |             |                       |  |
| ·                  | Ta = 135°C      | DC Parameters             | 95          | 0                     |  |
|                    | Biased          | & functionality           |             |                       |  |
|                    | Time = 192 hrs. |                           |             |                       |  |
| Moisture Testing   | (Note 2)        |                           |             |                       |  |
| 85/85              | Ta = 85°C       | DC Parameters             | 77          | 0                     |  |
|                    | RH = 85%        | & functionality           |             |                       |  |
|                    | Biased          |                           |             |                       |  |
|                    | Time = 1000hrs. |                           |             |                       |  |
| Mechanical Stres   | ss (Note 2)     |                           |             |                       |  |
| Temperature        | -65°C/150°C     | DC Parameters             | 77          | 0                     |  |
| Cycle              | 1000 Cycles     | & functionality           |             |                       |  |
| -                  | Method 1010     | ·                         |             |                       |  |

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data