

RELIABILITY REPORT

FOR

MAX1246BCEE+

PLASTIC ENCAPSULATED DEVICES

September 27, 2010

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by				
Don Lipps				
Quality Assurance				
Manager, Reliability Engineering				

Conclusion

The MAX1246BCEE+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information
IIManufacturing Information	VIReliability Evaluation
IIIPackaging Information	IVDie Information
Attachments	

I. Device Description

A. General

The MAX1246/MAX1247 12-bit data-acquisition systems combine a 4-channel multiplexer, high-bandwidth track/hold, and serial interface with high conversion speed and low power consumption. The MAX1246 operates from a single +2.7V to +3.6V supply; the MAX1247 operates from a single +2.7V to +5.25V supply. Both devices' analog inputs are software configurable for unipolar/bipolar and single-ended/differential operation. The 4-wire serial interface connects directly to SPI™/QSPI™ and MICROWIRE™ devices without external logic. A serial strobe output allows direct connection to TMS320-family digital signal processors. The MAX1246/MAX1247 use either the internal clock or an external serial-interface clock to perform successive-approximation analog-to-digital conversions. The MAX1246 has an internal 2.5V reference, while the MAX1247 requires an external reference. Both parts have a reference-buffer amplifier with a ±1.5% voltage-adjustment range. These devices provide a hard-wired SHDN-bar pin and a software-selectable power-down, and can be programmed to automatically shut down at the end of a conversion. Accessing the serial interface automatically powers up the MAX1246/MAX1247, and the quick turn-on time allows them to be shut down between all conversions. This technique can cut supply current to under 60µA at reduced sampling rates. The MAX1246/MAX1247 are available in a 16-pin DIP and a small QSOP that occupies the same board area as an 8-pin SO. For 8-channel versions of these devices, see the MAX146/MAX147 data sheet.

II. Manufacturing Information

A. Description/Function: +2.7V, Low-Power, 4-Channel, Serial 12-Bit ADCs in QSOP-16

B. Process: B12

C. Number of Device Transistors:

D. Fabrication Location: Oregon, California or Texas
 E. Assembly Location: Malaysia, Philippines, Thailand

F. Date of Initial Production: April 26, 1997

III. Packaging Information

A. Package Type: 16-pin QSOP
B. Lead Frame: Copper

C. Lead Finish:

D. Die Attach:
Conductive

E. Bondwire:
Au (1.3 mil dia.)

F. Mold Material:
Epoxy with silica filler

G. Assembly Diagram:
#05-2101-0012

H. Flammability Rating:
Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 120°C/W
K. Single Layer Theta Jc: 37°C/W
L. Multi Layer Theta Ja: 105°C/W
M. Multi Layer Theta Jc: 37°C/W

IV. Die Information

A. Dimensions: 85 X 106 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 1.2 microns (as drawn)F. Minimum Metal Spacing: 1.2 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO₂
I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Don Lipps (Manager, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (\(\lambda \)) is calculated as follows:

$$\lambda = 1 = 1.83$$
 (Chi square value for MTTF upper limit) MTTF $192 \times 4340 \times 160 \times 2$

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 6.9 \times 10^{-9}$$

 $\lambda = 6.9 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim"s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the B12 Process results in a FIT Rate of 0.06 @ 25C and 1.06 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot NIZEDB005E, D/C 9818)

The AC18-4 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2000V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250V.

Table 1Reliability Evaluation Test Results

MAX1246BCEE+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test (N	ote 1) Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality	80 80	0	BIZEAA023D, DC 9715 BIZEAV017D, DC 9713

Note 1: Life Test Data may represent plastic DIP qualification lots.