

RELIABILITY REPORT FOR MAX11629EEE+

PLASTIC ENCAPSULATED DEVICES

August 6, 2013

MAXIM INTEGRATED

160 RIO ROBLES SAN JOSE, CA 95134

Approved by
Sokhom Chum
Quality Assurance
Reliability Engineer

Conclusion

The MAX11629EEE+ successfully meets the quality and reliability standards required of all Maxim Integrated products. In addition, Maxim Integrated's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim Integrated's quality and reliability standards.

Table of Contents

- I.Device Description
- II.Manufacturing Information
- IV.Die Information
- N V.Quality Assurance Information
- III.Packaging Information
- VI.Reliability Evaluation

.....Attachments

I. Device Description

A. General

The MAX11626-MAX11629/MAX11632/MAX11633 are serial 12-bit analog-to-digital converters (ADCs) with an internal reference. These devices feature on-chip FIFO, scan mode, internal clock mode, internal averaging, and AutoShutdown(tm). The maximum sampling rate is 300ksps using an external clock. The MAX11632/MAX11633 have 16 input channels; the MAX11628/MAX11629 have 8 input channels; and the MAX11626/MAX11627 have 4 input channels. These six devices operate from either a +3V supply or a +5V supply, and contain a 10MHz SPI-/QSPI(tm)-/MICROWIRE®-compatible serial port. The MAX11626-MAX11629 are available in 16-pin QSOP packages. The MAX11632/MAX11633 are available in 24-pin QSOP packages. All six devices are specified over the extended -40°C to +85°C temperature range.

II. Manufacturing Information

12-Bit, 300ksps ADCs with FIFO and Internal Reference A. Description/Function: B. Process: C6Y 31874

Japan

- C. Number of Device Transistors:
- D. Fabrication Location:
- E. Assembly Location: Philippines or Thailand
- F. Date of Initial Production: August 20, 2010

III. Packaging Information

A. Package Type:	16-pin QSOP	
B. Lead Frame:	Copper	
C. Lead Finish:	100% matte Tin	
D. Die Attach:	Conductive	
E. Bondwire:	Au (0.8 mil dia.)	
F. Mold Material:	Epoxy with silica filler	
G. Assembly Diagram:	#05-9000-4058	
H. Flammability Rating:	Class UL94-V0	
 Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C 	Level 1	
J. Single Layer Theta Ja:	120°C/W	
K. Single Layer Theta Jc:	37°C/W	
L. Multi Layer Theta Ja:	105°C/W	
M. Multi Layer Theta Jc:	37°C/W	

IV. Die Information

A. Dimensions:	90 X 130 mils
B. Passivation:	Si_3N_4/SiO_2 (Silicon nitride/ Silicon dioxide)
C. Interconnect:	Al with Ti/TiN Barrier
D. Backside Metallization:	None
E. Minimum Metal Width:	0.6 microns (as drawn)
F. Minimum Metal Spacing:	0.6 microns (as drawn)
G. Bondpad Dimensions:	
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts:	Richard Aburano (Manager, Reliability Engineering) Don Lipps (Manager, Reliability Engineering) Bryan Preeshl (Vice President of QA)
B. Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate:	< 50 ppm
D. Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{1.83}_{192 \text{ x} 4340 \text{ x} 48 \text{ x} 2} \text{ (Chi square value for MTTF upper limit)}$$

$$\lambda = 22.9 \text{ x} 10^{-9}$$

𝔅 = 22.9 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim Integrated's reliability monitor program. Maxim Integrated performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maximintegrated.com/qa/reliability/monitor. Cumulative monitor data for the C6Y Process results in a FIT Rate of 0.04 @ 25C and 0.73 @ 55C (0.8 eV, 60% UCL).

B. E.S.D. and Latch-Up Testing (lot EF4ZAQ001I, D/C 1012)

The AC88 die type has been found to have all pins able to withstand a HBM transient pulse of +/-1000V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-100mA and overvoltage per JEDEC JESD78.

Table 1 Reliability Evaluation Test Results

MAX11629EEE+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test	(Note 1)				
	Ta = 135°C	DC Parameters	48	0	EF4ZAQ001B, D/C 1001
	Biased	& functionality			
	Time = 192 hrs.				

Note 1: Life Test Data may represent plastic DIP qualification lots.