

RELIABILITY REPORT

FOR

MAX11129ATI+

PLASTIC ENCAPSULATED DEVICES

March 20, 2012

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Sokhom Chum
Quality Assurance
Reliability Engineer

Conclusion

The MAX11129ATI+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	IVDie Information
IIManufacturing Information	VQuality Assurance Information
IIIPackaging Information	VIReliability Evaluation
Attachments	

I. Device Description

A. General

The MAX11129-MAX11132 are 12-/10-bit with external reference and industry-leading 1.5MHz, full linear bandwidth, high speed, low-power, serial output successive approximation register (SAR) analog-to-digital converters (ADCs). The MAX11129-MAX11132 include both internal and external clock modes. These devices feature scan mode in both internal and external clock modes. The internal clock mode features internal averaging to increase SNR. The external clock mode features the SampleSet™ technology, a user-programmable analog input channel sequencer. The SampleSet approach provides greater sequencing flexibility for multichannel applications while alleviating significant microcontroller or DSP (controlling unit) communication overhead. The internal clock mode features an integrated FIFO allowing data to be sampled at high speeds and then held for readout at any time or at a lower clock rate. Internal averaging is also supported in this mode improving SNR for noisy input signals. The devices feature analog input channels that can be configured to be single-ended inputs, fully differential pairs, or pseudo-differential inputs with respect to one common input. The MAX11129-MAX11132 operate from a 2.35V to 3.6V supply and consume only 15.2mW at 3Msps. The MAX11129-MAX11132 include AutoShutdown(tm), fast wake-up, and a high-speed 3-wire serial interface. The devices feature full power-down mode for optimal power management. The 48MHz, 3-wire serial interface directly connects to SPI, QSPI(tm), and MICROWIRE(tm) devices without external logic. Excellent dynamic performance, low voltage, low power, ease of use, and small package size make these converters ideal for portable battery-powered data-acquisition applications, and for other applications that demand low power consumption and small space. The MAX11129-MAX11132 are available in 28-pin, 5mm x 5mm, TQFN packages and operate over the -40°C to +125°C temperature range.

II. Manufacturing Information

A. Description/Function: 3Msps, Low-Power, Serial 12-/10-Bit, 8-/16-Channel ADCs

B. Process: TS18C. Number of Device Transistors: 158486D. Fabrication Location: Taiwan

E. Assembly Location: Taiwan, ChinaF. Date of Initial Production: November 28, 2011

III. Packaging Information

A. Package Type: 28L TQFN 5x5

B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive
E. Bondwire: Au (1 mil dia.)
F. Mold Material: Epoxy with silica

F. Mold Material: Epoxy with silica filler
 G. Assembly Diagram: #05-9000-4373 / A
 H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 47°C/W
K. Single Layer Theta Jc: 2°C/W
L. Multi Layer Theta Ja: 29°C/W
M. Multi Layer Theta Jc: 2°C/W

IV. Die Information

A. Dimensions: 65X87 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None
E. Minimum Metal Width: 0.18µm
F. Minimum Metal Spacing: 0.18µm

G. Bondpad Dimensions:

H. Isolation Dielectric: SiO₂I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Richard Aburano (Manager, Reliability Engineering)

Don Lipps (Manager, Reliability Engineering)

Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the biased (static) life test are shown in Table 1. Using these results, the Failure Rate (1) is calculated as follows:

$$_{\lambda}$$
 = ___1 = ___1.83 ____ (Chi square value for MTTF upper limit)
MTTF = ___1.83 ____ (Chi square value for MTTF upper limit)
192 x 4340 x 80 x 2
(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)
 $_{\lambda}$ = 13.7 x 10⁻⁹
 $_{\lambda}$ = 13.7 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the TS18 Process results in a FIT Rate of 0.24 @ 25C and 4.14 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot QY5ZBQ001E D/C 1126)

The AC86 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-100mA and overvoltage per JEDEC JESD78.

Table 1Reliability Evaluation Test Results

MAX11129ATI+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test (No	ote 1) Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality	80	0	SY5ZBQ001C, D/C 1125

Note 1: Life Test Data may represent plastic DIP qualification lots.