

PRODUCT RELIABILITY REPORT FOR

DS1080L, Rev B1

Maxim Integrated

14460 Maxim Dr. Dallas, TX 75244

Approved by:

Don Lipps Manager, Reliability Engineering

Conclusion:

The following qualification successfully meets the quality and reliability standards required of all Maxim Integrated products:

In addition, Maxim Integrated's continuous reliability monitor program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards. The current status of the reliability monitor program can be viewed at http://www.maximintegrated.com/qa/reliability/monitor.

Device Description:

A description of this device can be found in the product data sheet. You can find the product data sheet at http://www.maximintegrated.com/search/parts.mvp.

Reliability Derating:

The Arrhenius model will be used to determine the acceleration factor for failure mechanisms that are temperature accelerated.

```
AfT = exp((Ea/k)*(1/Tu - 1/Ts)) = tu/ts
AfT = Acceleration factor due to Temperature
tu = Time at use temperature (e.g. 55°C)
ts = Time at stress temperature (e.g. 125°C)
k = Boltzmann's Constant (8.617 x 10-5 eV/°K)
Tu = Temperature at Use (°K)
Ts = Temperature at Stress (°K)
Ea = Activation Energy (e.g. 0.7 ev)
```

The activation energy of the failure mechanism is derived from either internal studies or industry accepted standards, or activation energy of 0.7ev will be used whenever actual failure mechanisms or their activation energies are unknown. All deratings will be done from the stress ambient temperature to the use ambient temperature.

An exponential model will be used to determine the acceleration factor for failure mechanisms, which are voltage accelerated.

```
AfV = exp(B*(Vs - Vu))

AfV = Acceleration factor due to Voltage

Vs = Stress Voltage (e.g. 7.0 volts)

Vu = Maximum Operating Voltage (e.g. 5.5 volts)

B = Constant related to failure mechanism type (e.g. 1.0, 2.4, 2.7, etc.)
```

The Constant, B, related to the failure mechanism is derived from either internal studies or industry accepted standards, or a B of 1.0 will be used whenever actual failure mechanisms or their B are unknown. All deratings will be done from the stress voltage to the maximum operating voltage. Failure rate data from the operating life test is reported using a Chi-Squared statistical model at the 60% or 90% confidence level (Cf).

The failure rate, Fr, is related to the acceleration during life test by:

```
Fr = X/(ts * AfV * AfT * N * 2)
X = Chi-Sq statistical upper limit
N = Life test sample size
```

Failure Rates are reported in FITs (Failures in Time) or MTTF (Mean Time To Failure). The FIT rate is related to MTTF by:

MTTF = 1/Fr

NOTE: MTTF is frequently used interchangeably with MTBF.

The calculated failure rate for this device/process is:

FAILURE RATE: MTTF (YRS): 5347 FITS: 21.3

DEVICE HOURS: 42917876 FAILS: 0

Only data from Operating Life or similar stresses are used for this calculation.

The parameters used to calculate this failure rate are as follows:

Cf: 60% Ea: 0.7 B: 0 Tu: 25 °C Vu: 3.6 Volts

The reliability data follows. At the start of this data is the device information. The next section is the detailed reliability data for each stress. The reliability data section includes the latest data available and may contain some generic data. **Bold** Product Number denotes specific product data.

Device Information:

Process: Maxim SA Fab S4S, Silicon Gate 0.4um CBiCMOS Technology

Passivation: SiN/SiO2
Die Size: 62 x 64
Number of Transistors: 11991

Interconnect: Aluminum / 0.5% Copper

Gate Oxide Thickness: 70Å

ESD CDM									
DESCRIPTION	DATE CODE/PRODUCT/LOT			CONDITION	REA	READPOIN		QTY FAILS	
ESD SENSITIVITY	1236	MAX31180	ZJ383915AC	JESD22-C101 CDM 250 VOLTS	3	PUL'S	5	0	
ESD SENSITIVITY	1236	MAX31180	ZJ383915AC	JESD22-C101 CDM 500 VOLTS	3	PUL'S	5	0	
ESD SENSITIVITY	1236	MAX31180	ZJ383915AC	JESD22-C101 CDM 750 VOLTS	3	PUL'S	5	0	
					Total	:		0	

ESD HBM									
DESCRIPTION	DATE	CODE/PRODUCT	/LOT	CONDITION	REAL	DPOIN	QTY	FAILS	FA#
ESD SENSITIVITY	1236	MAX31180	ZJ383915AC	JESD22-A114 HBM 500 VOLTS	1	PUL'S	5	0	
ESD SENSITIVITY	1236	MAX31180	ZJ383915AC	JESD22-A114 HBM 1000 VOLTS	1	PUL'S	5	0	
ESD SENSITIVITY	1236	MAX31180	ZJ383915AC	JESD22-A114 HBM 1500 VOLTS	1	PUL'S	5	0	
ESD SENSITIVITY	1236	MAX31180	ZJ383915AC	JESD22-A114 HBM 2000 VOLTS	1	PUL'S	5	0	
ESD SENSITIVITY	1236	MAX31180	ZJ383915AC	JESD22-A114 HBM 2500 VOLTS	1	PUL'S	5	0	
					Total	:		0	

LATCH-UP				
DESCRIPTION	DATE CODE/PRODUCT/LOT CONDITION	READPOIN	QTY FAILS	FA#
LATCH-UP	1236 MAX31180 ZJ383915AC JESD78A, I-TEST 125C	1127131 3111	6 0	
LATCULID	100mA		6 0	
LATCH-UP	1236 MAX31180 ZJ383915AC JESD78A, I-TEST 125C 250mA		6 0	
LATCH-UP	1236 MAX31180 ZJ383915AC JESD78, V-SUPPLY TEST 125C		6 0	
		Total:	0	
OPERATING LIFE				
DESCRIPTION	DATE CODE/PRODUCT/LOT CONDITION	READPOIN	QTY FAILS	FA#
HIGH TEMP OP LIFE	1111 MAX31855 ZM163058B 125C, 3.6 VOLTS	192 HRS	77 0	
HIGH TEMP OP LIFE	1227 MAX31725 ZX377362BB 125C, 3.7V (PSA)	192 HRS	80 0	
HIGH TEMP OP LIFE	1236 MAX31180 ZJ383915AC 125C, 3.6 VOLTS	192 HRS	80 0	
		Total:	0	
FAILURE RATE:	MTTF (YRS): 5347 FITS:	21.3		
	DEVICE HOURS: 42917876 FAILS:	0		

Cumulative monitor data for the S4 Process results in a FIT Rate of 0.13 @ 25C and 2.31 @ 55C (0.8 eV, 60% UCL). DS1080L is built with the identical die of MAX31180.