ANALOG
DEVICES

AD916x API Specification
Rev 1.0

AD916x API Specification Rev 1.0

TABLE OF CONTENTS

TIIETOAUCTION 1.ttt ettt stttk bbb bbb a e bbbt s bbb et b ettt bbbt b et bt sesaes 5
PUIPOSE .. bbb bbbttt bbbt nan 5
SCOPE .ttt RS S AR AR RS SReReReRsRRReeReseReseaeseaessa e s e 5
DISCLAIMER ...ttt ettt ettt st st sttt e b e s et e b e s et e b e st e b e st b e b eat et e b eat et e b e st e b e s e st e s e s et e s e s et ebe s et ebe st st ebeseetebenantesenertesenarten 5

SOEWATE ATCRILECTUTE «..vuceeieeieieiicireieie ettt e bbbt bbbttt)
FOLACT STIUCLUTEvuveieeieceicticeeieie ettt et sttt et saeseens 7

APT INTETTACE «.uvuvrevnieieeineieiretsees ettt ettt tse e e bbbt se e bbb s bbb s et e b bt s et bbb e bbbt b et s bbbt bt s ssesres 8
OVEIVIBW ...ttt ettt et e ettt h bttt ettt e e e s s bR s bRttt ettt e s s s s s s s se st st st ae sttt et sa s st enenenenencn 8
Y6 L o VOO U OO U OO OTPUTT 8
API_COMIIG Nt s R e e e et 9
QI IR ettt ettt ettt ettt et et a e et et e s et et ese st et e s et et e R et et ese et es e s et esese et es e st s ese st s eseat et ese st et ese s et esen s et eseateseseasesenesern 9
HAL Function Pointer DataTyPes........cccciiimimiiiiiiii s ssssssssss s s ssssssasens 11
W _OPIL_L ettt s e et nae 11
W CLOSE_t cunrtieiietctieeetcete ettt ettt ettt et be et s st et ese b et e s st et es et et es st e b ea s et ebeat et eseat et eR e Rt e s eR e Rt e R e R et et eR e et e R e R st e s eR st e R eR s s e b eR st er e Rt et e b easetereasetene s ereneans 12
FSPI_XIET T 1uvuevreueiuineineieietsetetie sttt ebe sttt seb s b e R bR bbb bR Rttt bbbt 13
F AR @IL_PIN_CEIL T ettt 14
*TESEE_PIN_CEIL Teuiiieeiiciicieiciectre sttt .15
FARIAY_US_ ettt .16
LSS VA 0T oL |13 o SO 17

ErTOr HANAING.....couieieiiiiii bbb s 18
EITOT COAES ..uiviniiaieinieiie ettt ettt sttt st s s sttt e et e et bbbt a et ae bbbt bbbttt st a st eas 18

Interrupt HandIIng19
INtEITUPt BVENTS c..cuiiiiiiiii e 19

ADIIEX APT LIDIAIY ..ottt ss s 20

ADOI16X API Reference HAndIec.oueueieuriierieiricieiciereie ettt bbbttt bbb 21
AA9LEX_NANALE T euieiiiiieer et bbb st 21

AD916x API Definitions, Data Structures and ENUIMETAtIONS.c..c.eceveueieuneureeniieieieieisetsessesessese et sessesesse et sessessssessesessessesssssssesaesssnees 23
AALEX_CHIP_I0 Eeuiuieieiieiieieieieircir ettt bttt ettt 23
ad916x_tx_enable_Pin_IMOME_T......ccoweecuereireireeeeieieieseieieeesse et sese e sea st sae e sesnens 24
E X Ll e A=) o A OO 25
Ad916X _jesd_INK_STAt ..ot 26
ad916X _jeSd_SYSTef IMOAE_t....uvuiiueeieeicieeicieeiiecie ettt 27
Ad916X_jesA_cfZ T flg tu...oo et 28
ad916X_jesd_serdes Pllflg ...t 29
JESA_PIDS_PALEITL T ..eeeiieererceeiiirieieictreeeea et eseesenae sttt neane 30
ad916x_prbs_test_t 31

AA9LOX_ APIS oottt bbb bbb R bbb bbbttt 32
F e Ll e oV L OO 32
AADTOX AOINIt. ettt e et e e et e st et e s esseste st esess et entesess et esteseasestsseasessentesteseasentesteseesenteseeseesenteseeseasentesteseasentensesessenseneesessesensenessensenean 33
ad916x_reset .34

Page 2 of 84

ad916x_get_chip_id

ad916x_set_events

ad916x_get_interrupt_status...
ad916x_isr

ad916X_dac_set_CIK_fTEQUENICYuvuiumreieiincieieeieee ettt
ad916X_dac_get_CIK_fTEQUEIICYucvuiumeeieeiciiieiceieic st

ad916x_dac_set_full_scale_current

ad916x_jesd_config_datapath

ad916x_jesd_get_cfg_param

ad916x_jesd_set_sysref_mode
ad916x_jesd_get_sysref_mode
ad916x_jesd_get_sysref_status

ad916x_jesd_get_dynamic_link_latency
ad916x_jesd_set_dynamic_link_latency

ad916x_jesd_set_lane_xbar.....
ad916x_jesd_get_lane_xbar.....

ad916x_jesd_invert_lane

ad916x_jesd_enable_SCIAmDIETc.cocueuriueieicicicireceeeee e aees

ad916x_jesd_get_cfg_status

ad916x_jesd_enable_datapath
ad916x_jesd_enable_link.........

ad916x_jesd_get_pll_status
ad916x_jesd_get_link_status...

ad916x_transmit_enable_pin

ad916x_transmit_enable

ad9l6x_clk_cfg_dutycycle

ad916x_clk_adjust_phase
ad9l16x_clk_set_cross_ctrl

ad916x_fir85_Set_enable

ad916x_fir85_get_enable

ad9l6x_filt_bw90_enable
ad916x_invsinc_enable
ad916x_nco_set_ftw......oc.......
ad916x_nco_get_ftw......cceeeuc.
ad916x_nco_set_phase_offset

ad916x_nco_get_phase_offset
ad916x_nco_set_enable............
ad916x_nco_get_enable............
ad916x_dc_test_set_mode

ad916x_dc_test_get mode.......

ad916x_nco_set

ad916x_Nnco_get.....ccveurerreuennc.

Page 3 of 84

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

AD916x API Specification Rev 1.0

AA916X_11C0_TESEL..ueeiiireeeeeieirieeieieieeeee ettt
ad916X_register_ WIite.......couevcicinciniiiiriiiciccccicciiieinas
ad916x_register_read.......coevcrcuneinerrereeerenenenreieseeienenennes
Ad916X_get TeVISIONeucueeeeerecrrcreicrereeeerereneseseseeaenaenaennes

APPENAIX Aot

Pseudo Code Example for ad916x_ handle

Revision HiStory ...t

Page 4 of 84

77
78
79
80
81
81

.. 84

INTRODUCTION

PURPOSE

This document serves as a programmer’s reference for using and utilizing various aspects of the ADI High Speed Converters DAC
Application Program Interface (API) library for the AD9161/2 family of DACs. It describes the general structure of the ad916x_ API
library, provides a detail list of the API functions and its associated data structures, macros, and definitions.

SCOPE
Currently the AD916x API library supports the following devices.

Table 1 DAC API Libraries

Device Name Device Description Device Release Status | APIRelease Status

AD9161 11-bit 12 GSPS, RF Digital to Analog Converter Released Rev 1.0.0

AD9162 16-bit 12 GSPS RF Digital to Analog Converter Released Rev 1.0.0

AD9163 16-Bit, 12 GSPS, RF DAC and Digital Up converter Released Rev 1.0.0
DISCLAIMER

The software and any related information and/or advice is provided on and “AS IS” basis, without representations, guarantees or
warranties of any kind, express or implied, oral or written, including without limitation warranties of merchantability fitness for a
particular purpose, title and non-infringement. Please refer to the Software License Agreement applied to the source code for full details.

Page 5 of 84

AD916x API Specification Rev 1.0

SOFTWARE ARCHITECTURE

The ad916x_ API library is a collection of APIs that provide a consistent interface to a variety of ADI High Speed Converter DAC devices.
The APIs are designed so that there is a consistent interface to the devices.

The library is a software layer that sits between the application and the DAC hardware. The library is intended to serve two purposes:

1- Provide the application with a set of APIs that can be used to configure RX hardware without the need for low-level register access.
This makes the application portable across different revisions of the hardware and even across different hardware modules.

2- Provide basic services to aid the application in controlling the DAC module, such as interrupt service routine, DAC high-level control
and status information.

The driver does not, in any shape or form, alter the configuration or state of DAC module on its own. It is the responsibility of the
application to configure the part according to the required mode of operation, poll for status, etc... The library acts only as an abstraction
layer between the application and the hardware.

As an example, the application is responsible for the following:
- Configuring the JESD Interface
- Configuring the NCO

The application should access the DAC device only through the DAC libaries exported APIS. It is not recommended for the application to
access the DAC hardware device directly using direct SPI access. If the application chooses to directly access the DAC hardware this
should be done in a very limited scope, such as for debug purposes and it should be understood that this practice may affect the reliability
of the API functions.

21qnd

SIE

Figure 1 Simple Overview of the DAC API Architecture

Page 6 of 84

FOLDER STRUCTURE

The collective files of the DAC API library are structure as depicted in Figure 2. Each branch is explained in the following sections. The
library is supplied in source format. All source files are in standard ANSI C to simply porting to any platform.

Jinclude API Interface include files

—— AD916x.h
—— api_def.h
—— api_config.h
api_errors.h

JAD916x AD916x API Implementation

/common API Common Utility Functions
/doc APl Documentation

/Applications

/dac_example API integration example application

Figure 2 ad916x_ Source Code Folder Structure

/API

The ad916x_ API root folder contains all the source code and documentation for the ad916x_ API.
/APl/include

This folder contains all the API public interface files. These are the header files required by the client application.
/APl/ad916x_

This folder includes the main API implementation code for the AD916X DAC APIs and any private header files uses by the API. ADI
maintains this code as intellectual property and all changes are at their sole discretion.

/APl/common

This folder contains ADI helper functions common to all APIs, these functions are internal private functions not designed for use by
client application.

/APl/doc
This folder contains the doxygen documentation for the ad916x_ APIs.
/Application/

This folder contains simple source code examples of how to use the DAC API. The applications target the ad916x_ evaluation board
platform. Customers can use this example code as a guide to develop their own application based on their requirements.

Page 7 of 84

AD916x API Specification Rev 1.0

API INTERFACE

OVERVIEW

The header files listed in include folder, /API/include, describe public interface of the DAC API the client application. It consists of a
number of header files listed in Table 2. Each API libarary will have a header file that lists its supported APIs that the client application
may use to interface with the ADI device. For example, the ad916x_.h header file lists all the APIs that are available to control and
configure the AD916x DAC devices. The other header files are used for definitions and configurations that may be used by the client
application. The features of which will be described in subsequent sections.

Table 2 DAC API Interface

Device Name Description To be included in Client Application
ad916x_.h Lists AD916X DAC API Library exposed to client application | Yes
API_config.h Defines the various configuration options for the DAC No
Module

APl defh Defines any macros/enumerations or structures or No

- definitions common to and used by all DAC API Libraries
APl errorh Defines the DAC APl interface errors and error handlers Yes

- ’ common to and used by all DAC API Libraries

AD916X.H

Thead916x_ API library has a main interface header file AD916x.h header file that defines the software interface to the AD916x DACs. It
consists of a list of API functions and a number of structures and enumerations to describe the configurations and settings that are
configurable on that particular device. In addition, it defines the DAC device handle ad916x_handle_t .This is a data structure that acts a
software reference to a particular instance to of the DAC device. This handle maintains a reference to HAL functions and the

configuration status of the chip.

This reference shall be instantiated in the client application and initialized by the application with client specific data.

API Handle

A summary of the user configurable components of this handle structure are listed in Table 3. Refer to the ad916x_handle_t section and
the HAL Function Pointer DataTypes section for full a description and more details on configuration.

The platform specific members of the structure must be configured by the client application prior to calling any API with the handle,
refer to the DAC Hardware Initialization section for more details.

Table 3 Components of the DAC APl handle

Structure Description User Read/Write Access Required by API
Member
Void Pointer to a user defined data Read/Write Optional
user_data structure. Shall be passed to all HAL
functions.
sdo Device SPI Interface configuration for DAC Read/Write Yes
hardware
dac_freq_hz DAC Clock Frequency configuration Read/Write Yes
Pointer to SPI data transfer function for Read/Write Yes
dev_xfer
DAC hardware
delay_us Pointer to delay function for DAC hardware | Read/Write Yes
hw open Pointer to platform initialization function Read/Write Optional
-op for DAC hardware
Pointer to the platform shutdown function Read/Write Optional
hw_close
for DAC hardware
Pointer to a client event handler function Read/Write Optional
event_handler .
for DAC device.
tx en bin ctrl Pointer to client application control Read/Write Optional
—€n_pin_ function of DAC device TX_ENABLE pin
reset bin ctrl Pointer to client application control Read/Write Optional
—pPin_ function of DAC device RESETB pin

Page 8 of 84

API_CONFIG.H

The API configuration header file, api_config.h, located in the /barium_api/include folder defines the compilation and build
configuration options for the DAC APL

The client application in general is not required to include or modify this file.

ADI_DEF.H

The ad916x_ API is designed to be platform agnostic. However, it requires access to some platform functionality, such as SPI read/write
and delay functions that the client application must implement and make available to the ad916x_ API. These functions are collectively
referred to as the platform Hardware Abstraction Layer (HAL).

The HAL functions are defined by the API definition interface header file, adi_def.h. The implementation of these functions is platform
dependent and shall be implemented by the client application as per the client application platform specific requirements. The client
application shall point the ad916x_ API to the required platform functions on instantiation of the ad916x_ API handle. The following is a
description of HAL components.

The ad916x_ API handle, ad916x_handle_t , has a function pointer member for each of the HAL functions and they are listed in Table 4.
The client application shall assign each pointer the address of the target platform’s HAL function implementation prior to calling any
DAC APL

Table 4 Short Description of HAL Functions

Function Pointer | Purpose Requirement
Name

*spi_xfer_t Implement a SPI transaction Required
*hw_open_t Open and initialize all resources and peripherals required for DAC Device Optional
*hw_close_t Shutdown and close any resources opened by hw_open_t Optional
*delay_us_t Perform a wait/thread sleep in units of microseconds Required
*tx_en_pin_ctrl_t | Set DAC device TX_ENABLE pin high or low. Optional
*reset_pin_ctrl_t Set DAC device RESETB pin high or low. Optional
*event_handler_t | Event notification handler Optional

DAC Hardware Initialization

The client application is responsible for ensuring that all required hardware resources and peripherals required by but external to the
DAC are correctly configured. The DAC API handle ad916x_handle_t defines two pointer function members to which the client
application may optionally provide HAL functions to initialize these resources, *hw_open_t and *hw_close_t. If the client application
provides valid functions via these function pointers, the DAC initialization APIs ad916x_init and ad916x_deinit shall call *hw_open_t
and *hw_close_t respectively to handle the initialization and shutdown of required hardware resources. If the client application chooses
not use this feature, the ad916x_ API assumes that SPI and all the external resources for the ad916x_ Device are available.

The ad916x_ API libraries require limited access to hardware interfaces on the target platform. These are depicted in Figure 3.

Platform

Processor DAC

Sdi=———=IF

Figure 3 Hardware Controls Required By DAC APl HAL

Page 9 of 84

AD916x API Specification Rev 1.0

SPI Access

Access to the SPI controller that communicates with the AD916x DAC devices is required for correct operation of the API. The API
requires access to a SPI function that can send SPI commands. This function *spi_xfer_t is defined in detail in the next section. The
AD916x DAC SPI requires 15 bit addressing with 8-bit data bytes and supports 3-wire or 4-wire interface. The AD916x DAC must be
configured as such to match the platform implementation. This is done during initialization via the ad916x_init API. Please refer to the
target ADI device datasheet for full details of the SPI Interface protocol

Platform
Processor

e M [

— AD916x DAC

E—
GPIo

Figure 4 Option Hardware Controls Used by theDAC APl HAL
RESETB Pin Access

Optionally access to the function that controls the AD916x DAC RESETB pin can be included in the HAL layer. This function if provided
allows the API to implement a hardware reset rather than a software reset.

The HAL function *reset_pin_ctrl_t is defined in detail in the next section. Please refer to the target ADI device datasheet for full details
on the RESETB pin hardware connections.

TX_ENABLE PIN Access

Optionally access to the function that controls the AD916x DAC TX_ENABLE pin can be included in the HAL layer. This function if
provided allows the client to call control the TX_ENABLE pin via the ad916x_transmit_enable API. If it is not provided the transmit
enable feature in API shall be limited to using the SPI control.

The HAL function * tx_en_pin_ctrl_t is defined in detail in the next section. Please refer to the target ADI device datasheet for full details
on the TX_ENABLE pin hardware connections.

System Software Functions

Delay Function

For best performance, it is recommended to provide the API access to the client application’s delay function. The delay function can be a wait or
sleep function depending on the client application. This function allow the API to wait the recommended microsecond between initialization
steps.

The HAL function * delay_us_t is defined in detail in the next section.

Event Notification

Optionally access to an API event handler function may be included in the HAL layer. This function shall be used to pass interrupt event data to
the client application. This function shall be called by the ad916x_isr API only to notify all interrupt events detected and any additional data
available regarding that event. The HAL function *event_handler_t is defined in detail in the next section.

Page 10 of 84

HAL FUNCTION POINTER DATATYPES
*HW_OPEN_T
Description

Function pointer definition to a client application function that implements platform hardware initialization for the AD916X
Device

This function may initialize external hardware resources required by the AD916X Device and API for correct functionality as
per the target platform. For example initialization of SPI, GPIO resources, clocks etc.

This function if provided shall be called during the DAC module initialization via API ad916x_init. The API will then assume
that all require external hardware resources required by the DAC are configured and it is safe to interact with the DAC device.

Synopsis

typedef void(*hw_open_t)(void *userdata);
Preconditions

Unknown- Platform Implementation.
Post conditions

It is expected that all external hardware and software resources required by the DAC API are now initialized appropriately and
accessible by the DAC APL

Dependencies

Unknown- Platform Implementation

Parameters
userdata A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to open the hardware for the ADI Device.
Return value

0 shall indicate success.

Any other positive integer value may represent an error code to be returned to the application.

Notes

This function is not required to integrate the API. It is an optional feature that may be used by the client application.

Page 11 of 84

AD916x API Specification Rev 1.0

*HW_CLOSE_T
Description
Function pointer to function that implements platform hardware de-initialization for the AD916X Device

This function shall close or shutdown external hardware resources required by the AD916X Device and API for correct
functionality as per the target platform. For example initialization of SPI, GPIO resources, clocks etc.

It should close and free any resources assigned in the hw_open_t function. This function if provided shall be called during the
DAC module de-initialization via API ad916x_init. The API will then assume that all require external hardware resources
required by the DAC are no longer available and it is not safe to interact with the DAC device.

Synopsis
typedef void(*hw_close_t)(void *user_data);
Preconditions

It is expected that there are no pre conditions to this function. All initialization required shall be performed prior to or during
(via *hw_open_t) ad916x_init.

Post conditions
It is expected that there are no post conditions to this function.
Dependencies

Unknown- Platform Implementation

Parameters
user_data A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to close the hardware for the ADI Device.
Return value

0 shall indicate success.
Any other positive integer value may represent a error code to be returned to the application.
Notes

This function is not required to integrate the APL It is an optional feature that may be used by the client application.

Page 12 of 84

*SPI_XFER_T

Description

Function to implement a SPI transaction to the DAC device.

This function shall perform send a read/write SPI command to targeted ADI DAC device. The SPI implementation shall
support 15-bit addressing and 8-bit data bytes. This function shall control the SPI interface including the appropriate chip select
to correctly send and retrieve data to the targeted ADI DAC device over SPI.

The implementation may support 3-wire or 4-wire mode. The DAC API must be configured to support the platform
implementation this is done during the DAC initialization API ad916x_init.

Once a DAC device is initialized via the ad916x_init AP]I, it is expected that the API may call this function at any time.

Synopsis
typedef int(*spi_xfer_t)(void *user_data, uint8_t *indata, uint8_t *outdata, int size_bytes);

Preconditions

It is expected that there are no pre conditions to this function. All initialization required shall be performed prior to or during
(via *hw_open_t) ad916x_init. Once a DAC device is initialized via the ad916x_init AP], it is expected that the API may call
this function at any time.

Post conditions

It is expected that there are no post conditions to this function.

Dependencies

Unknown- Platform Implementation

Parameters

user_data A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to implement the SPI for the ADI Device. For example, chip select may be passed to the function via this
parameter.

indata pointer to a uint8_t array with the data to be sent on the SPI
outdata pointer to a unit8_t array to which the data from the SPI device will be written

size_bytes an integer value indicating the size in bytes of both indata and outdata arrays.

Return value

Zero shall indicate success.

Any other positive integer value may represent an error code to be returned to the application.
Notes

Indata and outdata arrays shall be the same size.

Page 13 of 84

AD916x API Specification Rev 1.0

*TX_EN_PIN_CTRL_T
Description

Function to implement set the TX_ENABLE pin of the DAC device high or low.

Once a DAC device is initialized via the ad916x_init AP]I, it is expected that the API may call this function at any time.
Synopsis

typedef int(*tx_en_pin_ctrl_t)(void *user_data, uint8_t enable);

Preconditions

It is expected that there are no pre conditions to this function. All initialization required shall be performed prior to or during
(via *hw_open_t) ad916x_init. Once a DAC device is initialized via the ad916x_init API, it is expected that the API may call

this function at any time.
Post conditions

It is expected that there are no post conditions to this function.
Dependencies

Unknown- Platform Implementation

Parameters

user_data A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to implement the SPI for the ADI Device. For example, chip select may be passed to the function via this

parameter.
enable A uint8_t value indicating the desired enable/disable setting for the TX_ENABLE pin.
A value of 1 indicates TX_ENABLE pin is set HIGH.
A value of 0 indicates TX_ENABLE pin is set LOW.
Return value

Zero shall indicate success.

Any other positive integer value may represent a error code to be returned to the application.

Notes
This function is not required to integrate the APL It is an optional feature that may be used by the client application should the
user which to control the pin via the API. The relevant API function is ad916x_transmit_enable .

Page 14 of 84

*RESET_PIN_CTRL_T
Description

Function to implement set the RESETB pin of the DAC device high or low.
Synopsis

typedef int(*reset_pin_ctrl_t)(void *user_data, uint8_t enable);

Preconditions

It is expected that there are no pre conditions to this function. All initialization required shall be performed prior to or during
(via *hw_open_t) ad916x_init. Once a DAC device is initialized via the ad916x_init API, it is expected that the API may call

this function at any time.
Post conditions

It is expected that there are no post conditions to this function.
dependencies

Unknown- Platform implementation

Parameters

user_data A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to implement the SPI for the ADI Device. For example, chip select may be passed to the function via this

parameter.
enable A uint8_t value indicating the desired enable/disable setting for the TX_ENABLE pin.
A value of 1 indicates RESETB pin is set HIGH.
A value of 0 indicates RESETB pin is set LOW.
Return value

0 shall indicate success.

Any other positive integer value may represent a error code to be returned to the application.

Notes
This function is not required to integrate the API. It is an optional feature that may be used by the client application should the
user which to control the pin via the API. The relevant API function is ad916x_transmit_enable .

Page 15 of 84

AD916x API Specification Rev 1.0

*DELAY_US_T
Description
Function to implement a delay for specified number of microseconds.

Any timer hardware initialization required for the platform dependent implementation of this function must be performed
prior to providing to calling any DAC APIs.

Once a DAC device is initialized via the ad916x_init AP]I, it is expected that the API may call this function at any time.
Synopsis

typedef int(*delay_us_t)(int us);
Preconditions

It is expected that there are no pre conditions to this function. All initialization required shall be performed prior to or during
(via *hw_open_t) ad916x_init. Once a DAC device is initialized via the ad916x_init API, it is expected that the API may call
this function at any time.

Post conditions
It is expected that there are no post conditions to this function.
Dependencies

Unknown- Platform implementation

Parameters

user_data A void pointer to a client defined structure containing any parameters/settings that may be required by the
function to implement the delay for the ADI Device.

intus time to delay/sleep in microseconds
Return value

Zero shall indicate success.

Any other positive integer value may represent a error code to be returned to the application.

Notes
This is required for optimal performance.

Performs a blocking or sleep delay for the specified time in microseconds.

Page 16 of 84

*EVENT_HANDLER_T
Description

A Client application implementation of the API event notification handler. This function is called by the ad916x_isr API to
send notification of events to the application.

Event notification shall depend on which interrupts have been enable via the ad916x_set_events API. Full details of the
available events are listed in the Interrupt Handling section and the target DAC device datasheet.

Synopsis
typedef int(*event_handler_t)(uint16_t event, uint8_t ref, void* data);
Preconditions

It is expected that there are no pre conditions to this function. All initialization required shall be performed prior to or during
(via *hw_open_t) ad916x_init. Once a DAC device is initialized via the ad916x_init AP]I, it is expected that the API may call
this function at any time.

Post conditions
It is expected that there are no post conditions to this function.
Dependencies

Unknown- Platform implementation

Parameters

uintl6_t event A uintl6_t value representing the event that has been detected. Event types are enumerated by
ad916x_event_t. Addition information is detailed in the Interrupt Events section.

uint8_t ref A uint8_t value that represents the event reference data if required. For example, for link events, the reference
data shall be the Lane number on which the event occurred. Addition information is detailed in the
Interrupt Events section.

void* data A pointer to any additional event data that may be relevant. Currently the none of the ad916x_ API Events
provide any event data. Addition information is detailed in the Interrupt Events section.

Return value
0 shall indicate success.

Any other positive integer value may represent a error code to be returned to the application.

Notes
This is required for optimal performance.

Performs a blocking or sleep delay for the specified time in microseconds.

Page 17 of 84

AD916x API Specification Rev 1.0

ERROR HANDLING

ERROR CODES

Each API return value represents a DAC API error code. The possible error codes for ADI device APIs are defined by a number of macros
listed in api_errors.h. Table 5 lists the possible error codes and their meanings returned by the ad916x_ APIs.

If a HAL function, called by during the execution of an API, returns a non-zero value the API shall return that error code.

Table 6 lists the possible errors returned by API due to a HAL function.

Table 5 API Error Code Macro definitions.

ERROR CODE Description

API_ERROR_OK APl completed successfully

API_ERROR_SPI_SDO API could not complete success fully due to SPI_SDO configuration in APl Handle
API_ERROR_INVALID_HANDLE_PTR | API could not complete success fully due to invalid pointer to APl Handle
API_ERROR_INVALID_XFER_PTR API could not complete success fully due to invalid pointer to SPI transfer function
API_ERROR_INVALID_DELAYUS_PTR | API could not complete success fully due to invalid pointer to Delay function function
API_ERROR_INVALID_PARAM API could not complete successfully due to invalid APl parameter
API_ERROR_FTW_LOAD_ACK API could not complete successfully due to Frequency Turning Word No-ACK
API_ERROR_NCO_NOT_ENABLED API could not complete successfully due to NCO not currently Enabled
API_ERROR_INIT_SEQ_FAIL API could not complete successfully due to NVRAM load error.

Table 6 API HAL function Error Code Macro definitions.

ERROR CODE Description

API_ERROR_SPI_XFER SPI HAL function return an error during the implementation of this API
API_ERROR_US_DELAY DELAY HAL function return an error during the implementation of this API
API_ERROR_TX_EN_PIN_CTRL TX_ENABLE pin ctrl HAL function return an error during the implementation of this API
API_ERROR_RESET_PIN_CTRL RESET pin ctrl HAL function return an error during the implementation of this API
API_ERROR_EVENT_HNDL EVENT Handle HAL function return an error during the implementation of this API
API_ERROR_HW_OPEN HW Open HAL function returned an error during the implementation of this API
APl_ERROR_HW_CLOSE HW Close HAL function returned an error during the implementation of this API

Page 18 of 84

INTERRUPT HANDLING

The ad916x_ API provides basic support for the ad916x_ Interrupt feature. It provides an API, ad916x_set_events, to enable and disable
the desired interrupts to trigger and an API, ad916x_get_interrupt_status, to check if an interrupt has been triggered and the interrupt
source.

In addition, it provides a simple ISR API, ad916x_isr, that will check for and clear any interrupts trigger and provide event notification to
the client application. In order to use the ISR API the client application must provide the user with a notification handler function,
*event_handler_t. The prototype of this function is defined in t adi_defh

INTERRUPT EVENTS

Table 7 summarized the list of events that the API interrupt feature supports. Events are categorized as device events, which can only occur
per device or JESD link events that can occur at per link per lane level. For JESD link the ISR ad916x_isr, shall report via the ref
parameter the lane number on which the event.

Table 7 APl Event Summary.

EVENT TYPE Reference | DATA DESCRIPTION

EVENT_SYSREF _JITTER Device Event None None SYSREF JITTER Threshold Event
EVENT_DATA_RDY Device Event None None DATA Ready Event
EVENT_JESD_LANE_FIFO_ERR Device Event None None JESD LANE FIFO Underflow/overflow Event
EVENT_JESD_PRBS_IMG_ERR Device Event None None PRBS Q Error Event
EVENT_JESD_PRBS_REAL_ERR Device Event None None PRBS | Error Event
EVENT_JESD_ILAS_ERR Device Event None None ILAS Configuration Mismatch Event
EVENT_JESD_BAD_DISPARITY_ERR | JESD Link Event Lane No None Bad Disparity Error Event
EVENT_JESD_NOT_IN_TBL_ERR JESD Link Event Lane No None Not-In-Table Error Event
EVENT_JESD_K_ERR JESD Link Event Lane No None Unexpected K Error Event
EVENT_JESD_ILD_ERR JESD Link Event Lane No None Inter-lane De-Skew Event
EVENT_JESD_ILS_ERR JESD Link Event Lane No None Good Checksum Event
EVENT_JESD_CKSUM_ERR JESD Link Event Lane No None Frame Synchronization Event
EVENT_JESD_CGS_ERR JESD Link Event Lane No None Code Group Synchronization Event

Page 19 of 84

AD916x API Specification Rev 1.0

AD916X API LIBRARY

Page 20 of 84

AD916X AP1 REFERENCE HANDLE

AD916X_HANDLE_T
Description

DAC Device reference handle data structure that acts a sw reference to a particular instance to of the DAC device. This reference
maintains a reference to HAL functions and the status of the chip.

Synopsis
#include ad916x.h
typedef struct {
void *user_data;
spi_sdo_config_t sdo;
uint64_t dac_freq_hz;
spi_xfer_t dev_xfer;
delay_us_t delay_us;
event_handler_t event_handler;
tx_en_pin_ctrl_t tx_en_pin_ctrl;
reset_pin_ctrl_t reset_pin_ctrl;
hw_open_t hw_open;
hw_close_t hw_close;
}ad916x_handle_t;
Members
void *user_data;

A void pointer that acts a container structure for client application data to be provided to the HAL functions.The client
application must define this structure as per its platform requirements. This pointer shall be passed as the parameter to
the *hw_open_t and *hw_close_t function calls to pass any client application specific data. The DAC API shall not
access this data directly. The client application must initialize this member appropriately prior to call ing any DAC API
function.

spi_sdo_config_t sdo;
This member hold the desired SPI interface configuration, 3-wire or 4-wire, for the AD916x DAC in the client system.

spi_sdo_config_t enumerates this configuration and is defined in api_def.h. This member should be correctly
configured prior to calling ad9164_init in order to ensure SPI access to the AD916x DAC.

uint64_t dac_freq_hz;
This member holds the frequency of the DAC CLK provided to the AD9164 DAC in the target system.

It is important to configure this variable correctly prior to configuring the AD9164 with operational modes such as
NCO, JESD and data path as this value is used as reference for internal

This value should be access via the ad9164_dac_set_clk_frequency API and the ad9164 dac_get_clk_frequency.

spi_xfer_t dev_xfer;

A function pointer to the client application defined SPI HAL function refer to *spi_xfer_t section for a detailed
definition of this function. The client application must initialize this member appropriately prior to calling any DAC
API function.

delay_us_t delay_us;

Page 21 of 84

AD916x API Specification Rev 1.0

A function pointer to the client application defined microsecond delay. HAL function refer to * delay_us_t section for
a detailed definition of this function. The client application must initialize this member appropriately prior to calling
any DAC API function.

event_handler_t event_handler;
A function pointer to the client application’s implementation of the event notification handler.

HAL function refer to *event_handler_t section for a detailed definition of this function.

tx_en_pin_ctrl_t tx_en_pin_ctrl;

A function pointer to the client application’s implementation of TX_ENABLE pin control function, refer to *
tx_en_pin_ctrl_t section for a detailed definition of this function.

reset_pin_ctrl_t reset_pin_ctrl;

A function pointer to the client application’s implementation of RESETB pin control function, refer to
*reset_pin_ctrl_t section for a detailed definition of this function.

hw_open_t hw_open;

A function pointer to the client application HAL resources initialization function refer to *hw_open_t section for a
detailed definition of this function. The client application must initialize this member appropriately prior to calling
any DAC API function.

hw_close_t hw_close;

A function pointer to the client application HAL resources de-initialization function refer to *hw_close_t section for a
detailed definition of this function. The client application must initialize this member appropriately prior to calling
any DAC API function.

Page 22 of 84

AD916X AP1 DEFINITIONS, DATA STRUCTURES AND ENUMERATIONS

This section describes all the structures and enumerations defined by the DAC API interface.

AD916X_CHIP_ID_T
Description
A structure detailing the ad916x_ Device Identification Data. Please refere to the specific DAC Data sheet for expected values.
Synopsis
#include ad916x.h
typedef struct {
uint8_t chip_type;
uintl6_t prod_id;
uint8_t prod_grade;
uint8_t dev_revision;

}ad916x_chip_id_t;

Fields
uint8_t chip_type Chip Type
uintl6_t prod_id Product ID code
uint8_t prod_grade Product Grade
uint8_t dev_revision Silicon Revision.
Notes

Product ID and product grade are only available after initialization.

Page 23 of 84

AD916x API Specification Rev 1.0

AD916X_TX_ENABLE_PIN_MODE_T
Description
An enumeration of the configuration options for the TX_ENABLE pin functionality.
Synopsis
#include ad916x.h
typedef enum {
NONE,
RESET _NCO,
ZERO_DATA_DAC,
ZERO_DATA_IN_PATH,
CURRENT_CONTROLL
}ad916x_tx_enable_pin_mode_t;

Fields
NONE No functionality is assigned to the TX_ENABLE pin
RESET_NCO NCO is reset based on status of TX_ENABLE pin
ZERO_DATA_DAC Data to DAC is zeroed based on status of TX_ENABLE pin
ZERO_DATA_IN_PATH Data in datapath is zeroed based on status of TX_ENABLE pin.
CURRENT_CONTROL Full scale current control is influenced by TX_ENABLE pin.
Notes

Page 24 of 84

AD916X_EVENT_T

Description

Synopsis

Fields

Notes

An enumeration of the available interrupt events

#include ad916x.h

typedef enum {
EVENT_SYSREF JITTER,
EVENT_DATA_RDY,
EVENT_JESD_LANE_FIFO_ERR,
EVENT_JESD_PRBS_IMG_ERR,
EVENT _JESD_PRBS_REAL_ERR,
EVENT_JESD_BAD_DISPARITY_ERR,
EVENT _JESD_NOT_IN_TBL_ERR,
EVENT JESD_K_ERR,
EVENT _JESD_ILD_ERR,
EVENT _JESD_ILS_ERR,
EVENT_JESD_CKSUM_ERR,
EVENT _JESD_FS_ERR,
EVENT _JESD_CGS_ERR,
EVENT _JESD_ILAS_ERR,
NOF_EVENTS

} ad916x event_t;

EVENT _SYSREF_JITTER
EVENT_DATA_RDY
EVENT_JESD_LANE_FIFO_ERR,
EVENT_JESD_PRBS_IMG_ERR,
EVENT_JESD_PRBS_REAL_ERR,
EVENT_JESD_BAD_DISPARITY_ERR,
EVENT JESD_NOT_IN_TBL_ERR,
EVENT JESD_K_ERR,
EVENT_JESD_ILD_ERR,
EVENT_JESD_ILS_ERR,
EVENT_JESD_CKSUM_ERR,
EVENT_JESD_FS_ERR,
EVENT_JESD_CGS_ERR,

EVENT JESD_ILAS ERR,
NOF_EVENTS

Page 25 of 84

AD916x API Specification Rev 1.0

AD916X _JESD_LINK_STAT_T
Description

A structure of the JESD Interface link Status
Synopsis

#include ad916x.h

typedef struct {
uint8_t code _grp_sync_stat;
uint8_t frame_sync_stat;
uint8_t good_checksum_stat;
uint8_t init_lane_sync_stat;

}ad916x_jesd_link_stat_t;

Members
uint8_t code _grp_sync_stat;

A uint8_t bit wise representation of Code Group Sync Status for all JESD Lanes. Where bit 0 represents CGS status for
Lane 0 and bit 1 represents CGS status for Lane 1 etc. A value of 1 indicates CGS status is complete, a value of 0
indicates CGS failed.

uint8_t frame_sync_stat;

A uint8_t bit wise representation of Frame Sync Status for all JESD Lanes. Where bit 0 represents Frame Sync status for
Lane 0 and bit 1 represents Frame Sync status for Lane 1 etc. A value of 1 indicates Frame Synchronization status is
complete, a value of 0 indicates Frame Synchronization failed.

uint8_t good_checksum_stat;

A uint8_t bit wise representation of Good Checksum Status for all JESD Lanes. Where bit 0 represents Checksum
status for Lane 0 and bit 1 represents checksum status for Lane 1 etc. A value of 1 indicates valid checksum status, a
value of 0 indicates checksumfailed.

uint8_t init_lane_sync_stat;

A uint8_t bit wise representation of Initial Lane Synchronization Status for all JESD Lanes. Where bit 0 represents Lane
Synchronization status for Lane 0 and bit 1 represents Lane Synchronization status for Lane 1 etc. A value of 1
indicates Lane Synchronization completed, a value of 0 Lane Synchronization failed.

Notes

Page 26 of 84

AD916X _JESD_SYSREF_MODE_T

Description

Synopsis

An enumeration of the JESD SYSREF modes.

#include ad916x.h

typedef enum {
SYSREF NONE,
SYSREF_ONESHOT,
SYSREF_CONT
SYSREF MON,
SYSREF_MODE_INVLD
}ad916x_jesd_sysref mode_t;

Members
SYSREF_NONE No SYSREF synchronization.
SYSREF_ONESHOT One shot SYSREF Mode
SYSREF_CONT Continous SYSREF Synchronization mode.
SYSREF_MON SYSREF Monitor Mode

Notes

SYSREF_MODE_INVLD Invalid or unknown SYSREF Mode.

Page 27 of 84

AD916x API Specification Rev 1.0

AD916X_JESD_CFG_ERR_FLG_T
Description
An enumeration of JESD configuration error flags.
Synopsis
#include ad916x.h
typedef enum
{
INTPL_FACTOR_INVLD = 0x1,
SUBCLASS_V_INVLD = 0x2,
K_INVLD = 0x4,
LMFS_INPOL_INVLD = 0x8,
LMFC_DELAY_INVLD = 0x10,
SYSREF_JTTR_WIN_INVLD =0x20
}ad916x_jesd_cfg err_flg t;

Members
INTPL_FACTOR_INVLD Invalid interpolation factor set.
SUBCLASS_V_INVLD Illegal Subclass V set
K_INVLD Illegal K set.
LMFS_INPOL_INVLD Unsupported LMFS combination set for selected Interpolation factor
LMFC_DELAY_INVLD Illegal LMFC delay set
SYSREF_JTTR_WIN_INVLD Illegal SYSREEF Jitter window set.
Notes

Page 28 of 84

AD916X_JESD_SERDES_PLL FLG_T
Description
An enumeration of the SERDES PLL Status flags.
Synopsis
#include ad916x.h
typedef enum
{
PLL_LOCK_STAT = 0x1,
PLL_CAL_STAT = 0x8,
PLL_UPP_CAL_THRES =0x10,
PLL_LWR_CAL_THRES =0x20
}ad916x_jesd_serdes_pll_flg t;

Members
PLL_LOCK_STAT SERDES PLL lock Status Flag. When set the PLL is locked.
PLL_CAL_STAT SERDES PLL Calibration Status Flag. When set the PLL is calibrated.

PLL_UPP_CAL_THRES SERDES PLL Upper Calibration Threshold flag. When set the PLL calibration upper threshold was
crossed. Re-calibration required.

PLL_LWR_CAL_THRES SERDES PLL lower Calibration Threshold flag. When set the PLL calibration lower threshold was
crossed. Re-calibration required.

Notes

Page 29 of 84

AD916x API Specification Rev 1.0

JESD_PRBS_PATTERN_T
Description
An enumeration of all available PRBS patterns.
Synopsis
#include api_def.h
typedef enum
{
PRBS_NONE,
PRBS7,
PRBS15,
PRBS31,
PRBS_MAX
}jesd_prbs_pattern_t;
Members
PRBS_NONE No PRBS patterned enabled. PRBS off.
PRBS7 PRBS7 pattern
PRBS15 PRBS15 pattern
PRBS31 PRBS31 pattern
PRBS_MAX Number of member in this enum. Number of PRBS pattern options.
Notes

Page 30 of 84

AD916X_PRBS_TEST_T
Description
A structure of the parameters that describe the results of a PRBS test on the JESD interface.
Synopsis
#include ad916x.h
typedef struct
{
uint32_t phy_prbs_err_cnt;
uint8_t phy_prbs_pass;
uint8_t phy_src_err_cnt;
}ad916x_prbs_test_t;

Members

uint32_t phy_prbs_err_cnt
A uint32 value describing the number of PRBS errors detected on the link.
uint8_t phy_prbs_pass

A uint8 value inidicating the sucess or failure of the test. A 0 indicates a failure 1 indicates a pass.Any other value is
invalid.

uint8_t phy_src_err_cnt

A uint8 value describing the source error count.

Notes

Page 31 of 84

AD916x API Specification Rev 1.0

AD916X_ APIS

AD916X_INIT

Description
API to initialize the ad916x_ API Module.

This API must be called first before any other API calls. It performs internal API initialization of the ad916x_ API and the
ad916x_ Device.

If ad916x_ API handle member hw_open is not NULL the function to which it points shall be called to initialize AD916x DAC
external resources. For example GPIO, SPI etc.

This function shall complete any universal initialization configuration of the AD916x DAC such as SPI.
Synopsis

#include ad916x.h

ADI_API int ad916x_init(ad916x_handle_t *h);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
Preconditions

If hw_open function pointer is set to NULL. DAC external hardware resources must be initialized.
Postconditions
On successful completion, DAC Module shall be in initialized state, ready for configuration.

Note although the API is now initialized, it is recommended to call the ad916x_init API immediately after call int ad916x_init
API to ensure all SPI register setting are restore to default and ADI recommendations.

Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

h->hw_open DAC API handle optionally may be set to valid hardware initialization function for client application. Refere to
*hw_open_t.

Return value

Any other positive integer value may represent an error code to be returned to the application, refer to Error Codes section for
full details. . Possible return values for this API error codes are as follows.

API_ERROR_OK

API_ERROR_INVALID_XFER_PTR

API_ERROR_INVALID_PARAM

API_ERROR_HW_OPEN_FAILED
Notes

Page 32 of 84

AD916X_DEINIT

Description
Shutdown the ad916x_ API Module
This API must be called last. No other API should be called after a call to this API.

It performs internal API initialization of the memory and API states and ensure targeted DAC is in good state for power-down.
If DAC API handle member *hw_close_t is not NULL the function to which it points shall be called to de-initialize DAC
external resources. This function may be used to de-initialize and release and hardware resources required by the API and
ad916x_ Device, for example GPIO SPI etc.

Synopsis
#include ad916x.h

ADI_API int ad916x_deinit(ad916x_handle_t *h);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.

Post conditions

On successful completion, DAC Module shall be in shutdown state. DAC module shall need to be re-initialized via ad916x_init
by client before any further use.

Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

h->hw_close DAC API handle optionally may be set to valid hardware initialization function for client application. Refer to
*hw_close_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_HANDLE_PTR

Notes

Page 33 of 84

AD916x API Specification Rev 1.0

AD916X_RESET

Description

Performs a full reset of AD916x DAC, resetting all SPI registers to their default values, restoring the desired SPI configuration
and ADI recommended initialization sequence.

This API can trigger a software reset via a SPI control or trigger a hardware reset by toggling the RESETB hardware pin. In order
to trigger a hardware reset the API must be provided with a client defined HAL function, *reset_pin_ctrl_t, that provides the
API with control over the RESETB pin on the client application.

The type of reset triggered by the API is determined by the hw_reset parameter.

Synopsis
#include ad916x.h
ADI_API int ad916x_reset(ad916x_handle_t *h, uint8_t hw_reset);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t hw_reset A uint8_t value to indicate the type of reset to be triggered.
A value of 1 indicates a hardware reset is to be triggered.
A value of 0 indicates a soft reset is to be triggered.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions
The DAC shall be fully reset followed with reconfiguration of SPI interface and ADI recommended initialization sequence.
Dependencies
h->dev_xfer.
DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.
h->reset_pin_ctrl_t.

If hw reset is desired as indicated by the API parameter hw_reset the DAC API handle must be initialized to valid
function that controls the RESETB for the client application. Refer to *reset_pin_ctrl_t.

Return value

Any positive integer value may represent a error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_SPI_SDO
API_ERROR_INVALID_XFER_PTR

Notes

Page 34 of 84

AD916X_GET_CHIP_ID

Description
API to retrieve ADI chip identification, product type and revision data.
Synopsis
#include ad916x.h
ADI_API int ad916x_get_chip_id(ad916x_handle_t *h, ad916x_chip_id_t *chip_id);
Parameters

ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

ad916x_chip_id_t *chip_id Pointer to a variable of type ad916x_chip_id_t to which the Device Identification data shall be
stored.

Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent a error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 35 of 84

AD916x API Specification Rev 1.0

AD916X_SET_EVENTS

Description

An API to set the events that trigger the interrupt signal on the ad916x_ Device. Available interrupt events are listed by the
ad916x_event_t enumeration. Interrupt events may enabled or disabled using this API.

Synopsis
#include ad916x.h

ADI_API int ad916x_set_events(ad916x_handle_t *h,
ad916x_event _t *event_list, uint8_t list_size, uint8_t en)

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
event_list Pointer to an array of type ad916x_event_t that represents a list of events to be enable or
disabled based or the en parameter.
list_size An 8-bit value representing the size of the array to which event_list parameter points, the
number or events to be enabled/disabled.
en A enable/disable variable to indicate whether the events listed by event_list array shall be
enabled or disabled. A value of 0 disables the interrupt events. A value of 1 enables the
interrupt events.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

Following a call to this API the configuration of the interrupt signal shall trigger when any of the enabled events are detected by
the ad916x_ device.

Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 36 of 84

AD916X_GET_INTERRUPT_STATUS

Description

An API to get the interrupt controller status to indicate if interrupts have triggered and are pending based on SPI register status.
Synopsis

#include ad916x.h

ADI_API int ad916x_get_interrupt_status(ad916x_handle_t *h, uint8_t *int_pending, uint8_t *int_status);
Parameters

ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

int_pending Pointer to an uint8_t variable where the interrupt status shall be stored. A value of 1 indicates
at least one interrupt event has occurred. A value of 0 indicates not interrupt events have
occurred.

int_status Pointer to a 3-deep uint8_t array to which the current status of the interrupt status registers s

shall be stored. May be set to NULL if this data is not required.

Preconditions

The ad916x_ device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. AD9164 API handle must be initialized to valid SPI transfer function for the client application. Refer to
*spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Note this API does not clear any interrupts detected.

Page 37 of 84

AD916x API Specification Rev 1.0

AD916X_ISR

Description

An API that checks for and handle triggered interrupts, checks the status and can notify the API user of the events and any
relevant status. In order to for the API user to be notified of events by this API the AD9164 Handle must be initialized with a
valid an event notification. Refer to *event_handler_t for more details. If an event handler function is not provided the API will
simply clear any interrupts detected without notifying the application.

Synopsis
#include ad916x.h

ADI_API int ad916x_isr(ad916x_handle_t *h)

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.

Post conditions

None
Dependencies
h->dev_xfer DAC API handle shall be initialized to valid SPI transfer function for the client application. Refer to
*spi_xfer_t.
h->event_handler DAC API handle may be initialized to a valid event notification function for the client application
handler. Refer to *event_handler_t section for more details.
Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 38 of 84

AD916X_DAC_SET_CLK_FREQUENCY

Description
Set the API software reference for the value of the hardware DAC clock supplied to the DAC device.
The correct value must be supplied for correct operation of the DAC features.
Synopsis
#include ad916x.h
ADI_API int ad916x_dac_set_clk_frequency(ad916x_handle_t *h, uint64_t dac_clk_freq_hz);
Parameters

ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

uint64_t dac_clk_freq_hz DAC clock frequency in Hz. Valid range is 850MHz to 6GHz.

Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 39 of 84

AD916x API Specification Rev 1.0

AD916X_DAC_GET_CLK_FREQUENCY

Description
Set the API software reference for the value of the hardware DAC clock supplied to the DAC device.
The correct value must be supplied for correct operation of the DAC features.
Synopsis
#include ad916x.h
ADI_API int ad916x_dac_get_clk_frequency(ad916x_handle_t *h, uint64_t *dac_clk_freq_hz);
Parameters

ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

uint64_t *dac_clk_freq_hz Pointer to a uint64_t variable where the current DAC clock frequency value setting whall be stored.
The frequency value shall be provided in Hx. The valid range is 850MHz to 6GHz

Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 40 of 84

AD916X_DAC_SET_FULL_SCALE_CURRENT

Description

Adjust the DAC'’s full-scale current output value; this can be adjusted over a range 8mA to 40mA.
Synopsis

#include ad916x.h

ADI_API int ad916x_dac_set_full_scale_current(ad916x_handle_t *h, uint8_t current);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t current Desired full scale output current in mA. Valid range 8 to 40.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 41 of 84

AD916x API Specification Rev 1.0

AD916X_JESD_CONFIG_DATAPATH
Description
Configure the JESD DAC mode as per the desired JESD interface parameters and datapath and the interpolation rate.

The configuration is dependent on the DAC clock frequency, so it is expected that the DAC clock frequency be correctly
configured prior to calling this API.This can be done by calling the ad916x_dac_set_clk_frequency API

The JESD lane rate for the configuration is calculated and returned via the lane_rate_mbps parameter.

The API shall check the parameter values and return an error if the desired JESD interface is not supported for the desired DAC
mode. Refer to the DAC datasheet for full details on the JESD configurations and DAC modes supported.

Synopsis
#include ad916x.h
ADI_API int ad916x_jesd_config_datapath(ad916x_handle_t *h, jesd_param_t jesd_param,
uint8_t interpolation, uint64_t *lane_rate_mbps);
Parameters

ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

jesd_param_t jesd_param, A variable of jesd_param_t describing the desire JESD link parameters. Refer to Error! Reference
source not found.

description for full details on the JESD Parameters and the DAC datasheet for supported JESD
modes.

uint8_t interpolation A uint8_t value representing the desired DAC interpolation mode. Valid interpolation modes are
1,2,3,4,6,8,12,16

uint64_t *lane_rate_mbps A uint64_t pointer to which the calculated JESD lane rate based on the desired DAC and JESD
interface parameters shall be returned. Set to NULL if the value of the JESD lane rate not required.

Preconditions
The DAC device shall be success fully initialized via a call to the ad916x_init API prior to using this function.

For correct operation of this function the DAC Clock frequency shall be configured correctly either during initialization or
prior to calling this function, using the ad916x_dac_set_clk_frequency API,

Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

h->dac_freq_hz DAC Clock value must be initialized to the correct value as per the hardware setting for correct operation of
this API. Refer to ad9164_handle_t for more details on dac_freq_hz

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 42 of 84

AD916X_JESD_GET_CFG_PARAM

Description

API to return the all the current JESD Parameters.
Synopsis

#include ad916x.h

ADI_API int ad916x_jesd_get_cfg_param(ad916x_handle_t *h, jesd_param_t *jesd_param);
Parameters

ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

jesd_param_t *jesd_param Pointer to a structure of type jesd_param_t to which the all the JESD parameters currently
configured shall be stored.

Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 43 of 84

AD916x API Specification Rev 1.0

AD916X_JESD_SET_SYSREF_MODE

Description

Configure the SYSREF synchronization mode for the JESD Interface

Synopsis
#include ad916x.h

ADI_API int ad916x_jesd_set_sysref mode(ad916x_handle_t *h, jesd_sysref_mode_t mode, uint8_t jitter_window)

Parameters

ad916x_handle_t *h

jesd_sysref_mode_t mode

uint8_t jitter_window

Preconditions

Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

The format for the SYSREF synchronization signal for the JESD Interface to the ad916x_ Device.
Valid modes are enumerated by ad916x _jesd_sysref mode_t

SYSREF_NONE No SYSREF synchronization.
SYSREF_ONESHOT One shot SYSREF Mode

SYSREF_CONT Continous SYSREF Synchronization mode.
SYSREF_MON SYSREF Monitor Mode

a uint8_t variable to which the SYSREF’ jitter window tolerance value shall be stored.
Valid values and their respective tolerance in
DAC clock cycles are as follows:

0 =>+/- 0.5 DAC Clock Cycles

4 =>+/- 4 DAC Clock Cycles

8 => +/- 8 DAC Clock Cycles

12 => +/- 16 DAC Clock Cycles

12 => +/- 16 DAC Clock Cycles

20 => +/- 20 DAC Clock Cycles

24 => +/- 24 DAC Clock Cycles

28 => +/- 28 DAC Clock Cycles

Valid only in Monitor Mode. This parameter ignored in all other modes.

The DAC device shall be success fully initialized via a call to the ad916x_init API prior to using this function.

Post conditions
None

Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. Possible return values for this API error codes are as follows.

API_ERROR_OK

API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 44 of 84

AD916X_JESD_GET_SYSREF_MODE

Description

Configure the SYSREF synchronization mode for the JESD Interface
Synopsis

#include ad916x.h

ADI_API int ad916x_jesd_get_sysref mode(ad916x_handle_t *h, jesd_sysref_mode_t *mode, uint8_t *jitter_window)
Parameters

ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

jesd_sysref_mode_t *mode Pointer to which the current SYSREF synchronization signal configuration for the JESD Interface
shall be stored. Valid modes are enumerated by ad916x _jesd_sysref _mode_t

SYSREF_NONE No SYSREF synchronization.
SYSREF_ONESHOT One shot SYSREF Mode
SYSREF_CONT Continuos SYSREF Synchronization mode.
SYSREF_MON SYSREF Monitor Mode (Not fully supported yet)
uint8_t jitter_window Pointer to a uint8_t variable to which the the SYSREF jitter window tolerance value shall be stored.

Valid values and their respective tolerance in
DAC clock cycles are as follows:
0 =>+/- 0.5 DAC Clock Cycles
4 =>+/- 4 DAC Clock Cycles
8 => +/- 8 DAC Clock Cycles
12 => +/- 16 DAC Clock Cycles
12 => +/- 16 DAC Clock Cycles
20 => +/- 20 DAC Clock Cycles
24 => +/- 24 DAC Clock Cycles
28 => +/- 28 DAC Clock Cycles
Valid only in Monitor Mode. This parameter ignored in all other modes.
Preconditions
The DAC device shall be success fully initialized via a call to the ad916x_init API prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.
Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 45 of 84

AD916x API Specification Rev 1.0

AD916X_JESD_GET_SYSREF_STATUS

Description
Read back SYSREF and LMFC synchronization status data.
API to return the current synchronization data for the SYSREF synchronization signal and LMFC synchronization.
This data can be used to determine dynamic link latency settings in SYSREF Monitor Mode.
Synopsis
#include ad916x.h
ADI_API int ad916x_jesd_get_sysref_status(ad916x_handle_t *h,

uint8_t *sysref_count, uint16_t *sysref_phase, uint16_t *sync_lmfc_stat);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t *sysref_count Pointer to the variable where the detected SYSREF signal count shall be stored.

Set to NULL if read back data is not required.

uint16_t *sysref_phase Pointer to the variable where the phase used to sample the SYSREF signals shall be stored.
Set to NULL if read back data is not required.

uintl6_t *sync_lmfc_stat Pointer to the variable where the LMFC status shall be stored. This value may be used to determine
synchronization status. This value may be used to determine synchronization status. A value of 0 to
4 indicates valid synchronization.

Set to NULL if this read back data is not required.
Preconditions
The DAC device shall be success fully initialized via a call to the ad916x_init API prior to using this function.
Post conditions
None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 46 of 84

AD916X_JESD_GET_DYNAMIC_LINK_LATENCY

Description

API to read back the Dynamic Link Latency.
Synopsis

#include ad916x.h

ADI_API int ad916x_jesd_get_dynamic_link_latency(ad916x_handle_t *h, uint8_t *latency);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t *latency Pointer to the variable where the dynamic link latency in units of pclks shall be stored.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 47 of 84

AD916x API Specification Rev 1.0

AD916X_JESD_SET_DYNAMIC_LINK_LATENCY

Description
API to adjust the LMFC Delay and LMFC variance.
Synopsis
#include ad916x.h
ADI_API int ad916x_jesd_set_lmfc_delay(ad916x_handle_t *h, uint8_t delay, uint8_t var);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t delay A 5-Dbit value to set the desired global LMFC delay in units of Frame Clock Cycles.
uint8_t delay A 5-bit value to set the desired variable LMFC delay.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 48 of 84

AD916X_JESD_SET_LANE_XBAR

Description

Configure the JESD DAC mode as per the desired JESD interface parameters and datapath, the DAC clk frequency and the
interpolation rate.

The JESD lane rate for the configuration is calculated and returned via the lane_rate_ MBPS parameter.

The API shall check the parameter values and return an error if the desired JESD interface is not supported for the desired DAC
mode. Refer to the DAC datasheet for full details on the JESD configurations and DAC modes supported.

Synopsis
#include ad916x.h
ADI_API int ad916x_jesd_set_lane_xbar(ad916x_handle_t *h, uint8_t physical_lane, uint8_t logical_lane)

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t physical_lane uint8_t value representing the Physical Lane to be routed to the SERDES logical lane indicated by
the logical_lane parameter. Valid values are 0 to 7.
uint8_t logical_lane uint8_t value representing the SERDES logical lane for the physical lane indicated by the parameter
physical_lane. Valid values are 0 to 7.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function. This API shall
be called to configure the Lane mapping prior to enabling the JESD link.

Post conditions
None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 49 of 84

AD916x API Specification Rev 1.0

AD916X_JESD_GET_LANE_XBAR

Description

API to get the current JESD lane crossbar configuration for the data-link layer. Returns an 8 deep array of values representing
the list logical lanes assigned to each physical lane.

Synopsis
#include ad916x.h
ADI APl int ad916x_jesd_get_lane_xbar(ad916x_handle_t *h, uint8_t *phy_log_map);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t *phy_log _map Pointer to an 8-deep array of values representing the list logical lanes assigned to each
physical lane. The index of the array represents the physical lane (0 to 7) and the value at that
index the logical lane (0 to 7) assigned to that physical lane.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 50 of 84

AD916X_JESD_INVERT_LANE

Description
Invert or un-invert logical lanes.
Each logical lane can be inverted which can be used to ease routing of SERDIN signals.
Synopsis
#include ad916x.h
ADI_API int ad916x_jesd_invert_lane(ad916x_handle_t *h, uint8_t logical_lane, uint8_t invert)

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t logical_lane uint8_t value representing the SERDES logical lane for the physical lane indicated by the parameter
physical_lane. Valid values are 0 to 7.
uint8_t invert A uint8_t value to indicate the desired invert status for the logical lane listed by logical_lane
parameter. A value of 1 inverts the logical lane. A value of 0 inverts the logical lane.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function. This API shall
be called to configure the Lane mapping prior to enabling the JESD link.

Post conditions
None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 51 of 84

AD916x API Specification Rev 1.0

AD916X_JESD_ENABLE_SCRAMBLER

Description
Enable or disable the descrambler for the JESD Receiver.
Synopsis
#include ad916x.h
ADI_API int ad916x_jesd_enable_scrambler(ad916x_handle_t *h, uint8_t en);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t en Enable control for the JESD Scrambler. Set to 1 to enable the de-scrambler on the JESD Receiver;
set to 0 to disable.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function. The JESD link
should be not be enabled when calling this function.

Post conditions
None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 52 of 84

AD916X_JESD_GET_CFG_STATUS

Description

API to return the JESD Configuration Error Flag Status. There are six error flag to indicate errors in the current JESD
configuration. ad916x_jesd_cfg_err_flg t enumerates the error flags.

Synopsis
#include ad916x.h
ADI_API int ad916x_jesd_get_cfg_status(ad916x_handle_t *h, uint8_t *jesd_cfg_stat);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
Uint8_t jesd_cfg_stat JESD configuration error status. Each bit in status byte represents a error flag as listed below and are
enumerated by ad916x_jesd_cfg_err_flg t.
INTPL_FACTOR_INVLD Invalid interpolation factor set.
SUBCLASS_V_INVLD Illegal Subclass V set
K_INVLD Illegal K set.
LMFS_INPOL_INVLD Unsupported LMFS combination set for selected
Interpolation factor
LMFC_DELAY_INVLD Illegal LMFC delay set
SYSREF_JTTR_WIN_INVLD Illegal Sysref Jitter window set.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 53 of 84

AD916x API Specification Rev 1.0

AD916X_JESD_ENABLE_DATAPATH

Description
Enable the JESD Interface
Power up and enable the DAC’s JESD Interface.
Synopsis
#include ad916x.h
ADI_API int ad916x_jesd_enable_datapath(ad916x_handle_t *h, uint8_t lanes_msk, uint8_t run_cal, uint8_t en);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t lanes_msk, A uint8 bit wise value representing the lanes to be enabled on the JESD Interface. Where bit 0
represents lane 0, bit 1 represents lane 1 etc. Set to one to enable the respective JESD Lane, set to 0
to disable the respective JESD Lane.
uint8_t run_cal Parameter to indicate if JESD physical lane calibration should be run prior to enabling interface. Set
to 1 to run calibration, set to 0 to disable calibration.
uint8_t en Enable control for the JESD interface. Set to 1 to power up and enable JESD interface. Set to 0 to
disable JESD interface.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API prior to using this function.
JESD interface should be successfully configured via ad916x_jesd_config_datapath prior to calling this API.

Post conditions
Following a call to this API the SERDES PLL should be lock. The PLL lock status can be checked by calling the
ad916x_jesd_get_pll_status APL
If the SERDES PLL is locked, the ad916x_ JESD Rx is ready for JESD Link bring up with a JESD TX. Refer to
ad916x_jesd_enable_link.

Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 54 of 84

AD916X_JESD_ENABLE_LINK

Description
Enable the JESD Interface
Power up and enable the DAC’s JESD Interface.
Synopsis
#include ad916x.h
ADI_API int ad916x_jesd_enable_link(ad916x_handle_t *h, uint8_t en);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t en Enable control for the JESD Link Bringup. Set to 1 to enable SERDES Link bringup. Set to 0 to
disable SERDES link.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
JESD interface should be successfully enabled via ad916x_jesd_enable_datapath prior to calling this API.

For successful link bring up the SERDES PLL shall be in a locked state prior to calling this API. This can be verified usint the
ad916x_jesd_get_pll_status APL

In addition the system JESD Tx shall be configured appropriately for successful link bring up.

Postconditions
Following a call to this API the JESD interface bring up shall be instigated. Link Status may be verified by a call to
ad916x_jesd_get_link_status.

Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 55 of 84

AD916x API Specification Rev 1.0

AD916X_JESD_GET_PLL_STATUS

Description
Get SERDES PLL Status.
Read and return the status data for the SERDES PLL
Synopsis
#include ad916x.h
ADI_API int ad916x_jesd_get_pll_status(ad916x_handle_t *h, uint8 t *pll_status);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t *pll_status Pointer to a unit8 variable to which the PLL status shall be written.
Bit [0] represents the PLL lock status.
Bit [3] represents the PLL calibration status.
Bit [4] represents the PLL upper calibration Threshold error status.
Bit [5] represents the PLL lower calibration Threshold error status.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.

Post conditions
None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 56 of 84

AD916X_JESD_GET_LINK_STATUS

Description
Get JESD Link Status.

Read back JESD Status for all lanes. Status reported includes Code Group Synchronization (CGS) status, Frame Synchronization
status, checksum status and Initial Lane Synchronization (ILAS) status for the active JESD link. Refer to ad916x
_jesd_link_stat_t for more details.

Synopsis

#include ad916x.h

ADI_API int ad916x_jesd_get_link_status(ad916x_handle_t *h, jesd_link_stat_t *link_status);
Parameters

ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

jesd_link_stat_t *link_status Pointer to a variable of type ad916x_jesd_link_stat_t that shall be set with the current JESD link
status data.

Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.

Post conditions

Follow a call to this API the SERDES PLL should be lock. The PLL lock status can be checked by calling the

Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 57 of 84

AD916x API Specification Rev 1.0

AD916X_TRANSMIT_ENABLE_PIN

Description
Configure TX_ENABLE pin functionality

TX_ENABLE pin can be configured so influence the data for tx-disable mode different points in the data path. Such as zero-ing
data at the input to the data path, instigate NCO reset or zero-data an input to the DAC.

Synopsis
#include ad916x.h

ADI_API int ad916x_transmit_enable_pin(ad916x_handle_t *h, tx_enable_pin_mode_t tx_en_func);

Parameters

ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

tx_enable_pin_mode_t tx_en_func Desired TX_ENABLE pin functionality. Defined by the enumeration

NONE No functionality is assigned to the TX_ENABLE pin
RESET_NCO NCO is reset based on status of TX_ENABLE pin
ZERO_DATA_DAC Data to DAC is zeroed based on status of TX_ENABLE pin

ZERO_DATA_IN_PATH Data in datapath is zeroed based on status of TX_ENABLE pin.
CURRENT_CONTROL Full-scale current control is influenced by TX_ENABLE pin.

Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 58 of 84

AD916X_TRANSMIT_ENABLE

Description

An API to control the transmission out from the DAC device. The transmission out from the device can be control by software
via a SPI register control or the TX_ENABLE pin on the DAC device. How the output transmission is controlled is determined
by the TX_ENABLE configuration. The user can configures this using ad916x_transmit_enable_pin API.

If TX_ENABLE pin is configured to ZERO_DATA_DAC or ZERO_DATA_IN_PATH modes and the API is provided with HAL
function * tx_en_pin_ctrl_t, the API shall use the hardware pin control to control the transmit output stream. Otherwise the
API will control the transmit output stream via software controls.

Synopsis
#include ad916x.h
ADI_API int ad916x_transmit_enable(ad916x_handle_t *h, const ad916x_transmit_mode_t mode);

Parameters
ad916x_handle_t *h

Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

ad916x_transmit_mode_t mode

Configure the DAC output transmission as per the desired functionality.

TX_ ENABLE Transmit functionality. Transmit all DAC data.
TX_ZERO_DATA_DAC Zero data at DAC from transmission stream.
TX_ZERO_DATA_IN_PATH Zero data at input to datapath.

Preconditions
The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions
None
Dependencies
h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application.
Refer to *spi_xfer_t.

h->* tx_en_pin_ctrl_t DAC API handle must be initialized to valid HAL function to control the TX_ENABLE pin for the
client application for Hardware control of the DAC

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 59 of 84

AD916x API Specification Rev 1.0

AD916X_CLK_CFG_DUTYCYCLE

Description

Enable and configure Clock Duty Cycle Adjustment for the DAC clock applied to the CLK inputs.

Synopsis
#include ad916x.h
ADI_API int ad916x_clk_cfg_dutycycle(ad916x_handle_t *h, uint8_t en, uint8_t offset);
Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t en Enable offset adjustment where the offset is determined by the parameter offset. Set to 1 to apply
offset to the clock. Set to 0 disable offset adjustment.
uint8_t offset Duty cycle offset parameter, should be set to a 5-bit two's complement value to indicate a positive
or negative skew. A larger value will result in a larger clock duty skew.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent a error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 60 of 84

AD916X_CLK_ADJUST_PHASE

Description

API to apply a phase adjustment of DAC Clock at the CLK+ input or at the CLK- input.

Synopsis
#include ad916x.h
ADI_APlint ad916x_clk_adjust_phase(ad916x_handle_t *h, uint8 _t pol, uint8_t phase);
Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t pol Clock input polarity to which the phase adjustment is to be applied.
Set to 1 to apply phase adjustment to CLK- input.
Set to 0 to apply pahse adjustment to CLK+ input.
uint8_t phase Desired number of pahse adjustment steps. Valid reange for number of phase adjustments steps is 0
to 31. Each step adds a capacitance of 20ff.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 61 of 84

AD916x API Specification Rev 1.0

AD916X_CLK_SET_CROSS_CTRL

Description

API to configure and enable or disable the clock cross control feature.
Synopsis

#include ad916x.h

ADI_API int ad916x_clk_set_cross_ctrl(ad916x_handle_t *h, uint8_t en, uint8_t crosspoint);
Parameters

ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

uint8_t en Cross Control Enable. Set to 1 to enable Clock Cross Control; set to 0 to disable Clock Cross.
Control.
uint8_t crosspoint A 3 bit value representing the Clock cross control cross point.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 62 of 84

AD916X_FIR85_SET_ENABLE

Description

Enable FIR-85 filter for 2-NRZ mode operation.
Synopsis

#include ad916x.h

ADI_API int ad916x_fir85_set_enable(ad916x_handle_t *h, const int en);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
int en Enable FIR-85 filter
1 => Enable FIR-85 filter
0 => Disable FIR-85 filter
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 63 of 84

AD916x API Specification Rev 1.0

AD916X_FIR85_GET_ENABLE

Description

Get FIR-85, filter for 2-NRZ mode operation, current enable status.
Synopsis

#include ad916x.h

ADI_API int ad916x_fir85_get_enable(ad916x_handle_t *h, int *en);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
int *en Pointer to a variable to which the FIR-85 filter enable status shall be stored.
1 => Enable FIR-85 filter
0 => Disable FIR-85 filter
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions
None

Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 64 of 84

AD916X_FILT_BW90_ENABLE

Description
Set Interpolation Filter Bandwidth Mode to 90% BW.

By default the interpolation filter in the data path are in a low power 80% bandwidth mode. By enabling the high bandwidth
filter = mode, the interpolation filter bandwidth will be set to 90% BW.

Synopsis
#include ad916x.h

ADI_API int ad916x_fir85_bw90_enable(ad916x_handle_t *h, cons tint en);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
inten Enable high bandwidth mode, 90%, for interpolation filters.
1 => Set interpolation filters to 90% Bandwidth.
0 => Set interpolation filters to 80% Bandwidth.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 65 of 84

AD916x API Specification Rev 1.0

AD916X_INVSINC_ENABLE

Description

Enable inverse sin ¢ (sinc™?) filter.
Synopsis

#include ad916x.h

ADI_API int ad916x_invsinc_enable(ad916x_handle_t *h, const int en);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
int en Enable the inverse sin c filter. Set to 1 to enable filter; set to 0 to disable filter.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 66 of 84

AD916X_NCO_SET_FTW

Description

This API is used to configure the NCO with a Frequency Tuning Word, Modulus and Delta parameters.
Synopsis

#include ad916x.h

ADI_API int ad916x_nco_set_ftw(ad916x_handle_t *h, const unsigned int nco_nr, const uint64_t ftw,

const uint64_t acc_modulus, const uint64_t acc_delta);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
int nco_nr Always set to 0.
int64_t ftw Frequency tuning word value.
This shall be a 48-Bit value.
int64_t acc_modulus Desired modulus.
uintl6_t acc_delta Desired delta value.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_FTW_LOAD_ACK
API_ERROR_INVALID_PARAM

Notes

Page 67 of 84

AD916x API Specification Rev 1.0

AD916X_NCO_GET_FTW

Description

This API is used to get the NCO parameter Frequency Tuning Word, Modulus and Delta for the NCO.
Synopsis

#include ad916x.h

ADI_API int ad916x_nco_get_ftw(ad916x_handle_t *h, const unsigned int nco_nr, uint64_t *ftw,

uint64_t *acc_modulus, uint64_t *acc_delta);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
int nco_nr Always 0
int64_t *ftw Pointer to a variable where the frequency tuning word value will be stored
This shall be a 48-Bit value.
int64_t *acc_modulus Pointer to a variable where the modulus value will be stored
uintlé_t *acc_delta Pointer to a variable where the delta value will be stored.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_PARAM

Notes

Page 68 of 84

AD916X_NCO_SET_PHASE_OFFSET

Description
Set the NCO Phase offset.
Synopsis
#include ad916x.h
ADI_API int ad916x_nco_set_phase_offset(ad916x_handle_t *h, const uint16_t po);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to
API Handle section for more details.
const uintl6_t po The phase offset value.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent a error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
Notes

Page 69 of 84

AD916x API Specification Rev 1.0

AD916X_NCO_GET_PHASE_OFFSET

Description
Get the NCO Phase offset.
Synopsis
#include ad916x.h
ADI_API int ad916x_nco_get_phase_offset(ad916x_handle_t *h, const uint16_t *po);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to
API Handle section for more details.
const uintl6_t *po Pointer to uint16_t variable where the current phase offset will be stored.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent a error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_PARAM

Notes

Page 70 of 84

AD916X_NCO_SET_ENABLE

Description
Set the enable status (Enable or Disable) of the main NCO and modulus.
Synopsis
#include ad916x.h
ADI_API int ad916x_nco_set_enable(ad916x_handle_t *h, const int modulus_en, const int nco_en);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
int modulus_en Enable dual modulus NCO.

1 => Enable dual Modulus mode.
0 => Disable dual Modulus mode. NCO Integer Mode
int nco_en Enable NCO.
1 = Enable NCO
0 = Disable NCO
Preconditions
The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
For correct NCO operation, it is expected that the NCO be correctly configured prior to calling this function.
Post conditions
None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 71 of 84

AD916x API Specification Rev 1.0

AD916X_NCO_GET_ENABLE

Description

Get the enable status (Enable or Disable) of the main NCO and modulus.

Synopsis
#include ad916x.h

ADI_API int ad916x_noc_get_enable(ad916x_handle_t *h, int *modulus_en, int *nco_en);

Parameters

ad916x_handle_t *h

int *modulus_en

int *nco_en

Preconditions

Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

Pointer to int variable where the enable dual modulus mode status will be stored.
Possible returned values are

1 => Enable dual Modulus mode.

0 => Disable dual Modulus mode. NCO Integer Mode

Pointer to int variable where the enable NCO status will be stored.

Possible returned values are

1 => Enable NCO

0 = >Disable NCO

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.

Post conditions
None

Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK

API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 72 of 84

AD916X_DC_TEST_SET_MODE

Description

Set the DC test mode test-data and enable test mode
Synopsis

#include ad916x.h

ADI_API int ad916x_dc_test_set_mode(ad916x_handle_t *h, const uintl6_t test_data, const int en);
Parameters

ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to

API Handle section for more details.
const uintl6_t test_data DC test data value.

const int en DC test mode enable. A value of zero disables DC Test mode. Any other value enables DC Test
mode.

en ==0 => Disable DC Test mode
en>0 =>Enable DC Test mode
Preconditions
The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Postconditions
None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_PARAM

Notes

Page 73 of 84

AD916x API Specification Rev 1.0

AD916X_DC_TEST_GET_MODE

Description
Set the DC test mode test-data and enable test mode
Synopsis
#include ad916x.h
ADI APl int ad916x_dc_test_get _mode(ad916x_handle_t *h, uint16_t *test_data, int *en);
Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to
API Handle section for more details.
const uintl6_t *test_data Pointer to uint16_t variable where the current DC test data value will be stored.
const int *en Pointer to an integer variable where the current DC test mode enable status will be stored.
en ==0 => Disable DC Test mode
en >0 =>Enable DC Test mode
Preconditions
The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions
None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_PARAM

Notes

Page 74 of 84

AD916X_NCO_SET

Description

API to configure NCO operation to set and adjust the output frequency. The NCO is set based on the carrier frequency. For the

AD9162 only there is an option to enable NCO in DC Test mode. This is a test mode where NCO operates without data from
JESD interface.

Synopsis
#include ad916x.h
ADI_API int ad916x_nco_set(ad916x_handle_t *h, const unsigned int nco_nr,

const int64_t carrier_freq_hz, const uintl6_t amplitude, int dc_test_en);
Parameters

ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to
API Handle section for more details.

const unsigned int nco_nr, Always set to 0.

const int64_t carrier_freq, Desired carrier frequency

const uintl6_t amplitude, Desired amplitude for DC Test Mode. AD9162 Only.

int dc_test_en Enable Test mode. AD9162 Only. Set to 0 for all other ad916x_ devices.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None

Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

h->dac_freq_hz DAC Clock value must be initialized to the correct value as per the hardware setting for correct operation of
this APL.

Refer to dac_clk_hz.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details.. Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_PARAM

Notes

Page 75 of 84

AD916x API Specification Rev 1.0

AD916X_NCO_GET

Description

Get NCO parameters currently configured.

Synopsis
#include ad916x.h
ADI_API int ad916x_nco_get(ad916x_handle_t *h, const unsigned int nco_nr, const int64_t *carrier_freq,
const uintl6_t amplitude, int *dc_test_en);
Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to
API Handle section for more details.
const unsigned int nco_nr A value to indicate desire NCO. Valid range 0 to 31.

const int64_t carrier_freq Pointer to a variable where the currently configured carrier frequency for the target NCO is
stored.

const uint16_t amplitude Pointer to a variable where the currently configured DAC amplitude. AD9162 Only. Returns 0 for
all other ad916x_ devices.

int dc_test_en Pointer to a variable where the DC-Test mode status is stored. AD9162 Only. Returns 0 for all other
ad916x_ devices.

Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_HANDLE_PTR
API_ERROR_INVALID_PARAM

Notes

Page 76 of 84

AD916X_NCO_RESET

Description

Instigates reset of NCO via a SPI register control.
Synopsis

#include ad916x.h

ADI_API int ad916x_nco_reset(ad916x_handle_t *h);

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 77 of 84

AD916x API Specification Rev 1.0

AD916X_REGISTER_WRITE

Description
Performs SPI register write access to DAC
Synopsis
#include ad916x.h
ADI_API int ad916x_register_write (ad916x_handle_t *h, const uint16_t address, const uint8_t data);

Parameters

ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

const uint16_t address, A 15-bit value representing a SPI register location on the target DAC device. Refer to ad916x_ data
sheet for valid values.

uint8_t *data A pointer to an 8-bit variable to which the register value read over SPI shall be stored.

Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.

Post conditions
None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 78 of 84

AD916X_REGISTER_READ

Description

DAC Device reference handle data structure that acts a sw reference to a particular instance to of the DAC device. This reference
maintains a reference to HAL functions and the status of the chip.

Synopsis
#include ad916x.h
ADI_API int ad916x_register_read(ad916x_handle_t *h, const uint16_t address, uint8_t *data);

Parameters

ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.

const uintl6_t address, A 15-bit value representing a SPI register location on the target DAC device. Refer to ad916x_ data
sheet for valid values.

uint8_t *data A pointer to an 8-bit variable to which the register value read over SPI shall be stored.
Preconditions

The DAC device shall be success fully initialized via a call to the ad916x_init API. Prior to using this function.
Post conditions

None
Dependencies

h->dev_xfer. DAC API handle must be initialized to valid SPI transfer function for the client application. Refer to *spi_xfer_t.

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_XFER_PTR
API_ERROR_INVALID_PARAM

Notes

Page 79 of 84

AD916x API Specification Rev 1.0

AD916X_GET_REVISION

Description
Issue a soft reset via SPI Register control.
Performs a full reset of AD916X, resetting all SPI registers to their default values.
Synopsis
#include ad916x.h
ADI_API int ad916x_get_revision(ad916x_handle_t *h, uint8_t *rev_major, uint8_t *rev_minor, uint8_t *rev_rc)

Parameters
ad916x_handle_t *h Pointer to the client application DAC API handle for the target DAC device. Refer to API Handle
section for more details.
uint8_t *rev_major Pointer to a 8 bit variable to which the Major Revision number shall be stored
uint8_t *rev_minor, Pointer to a 8 bit variable to which the Minor Revision number shall be stored
uint8_t *rev_rc Pointer to a 8 bit variable to which the Release Candidate Id shall be stored
Preconditions
None

Post conditions
None
Dependencies

None

Return value

Any positive integer value may represent an error code to be returned to the application, refer to Error Codes section for full
details. . Possible return values for this API error codes are as follows.

API_ERROR_OK
API_ERROR_INVALID_PARAM
Notes

Page 80 of 84

APPENDIX A

PSEUDO CODE EXAMPLE FOR AD916X_ HANDLE

The pseudo code example A, shows the ad916x_ handle being configured with the minimum client application. The pseudo code example
B shows the ad916x_ handle being configured with all the optional configurations.

For further details, refer to the HAL Function Pointer DataTypes section and the ad916x_handle_t section for full a description of the
HAL functions and more details on configuration.

/*

* \brief pseudo Code example client code to initialiseAD916x
*

*/

/*Include Client HAL implementation code*/

#include "app_hal.h"

/*Include AD916x APl interface Headers*/
#tinclude "AD916x.h"

#include "api_errors.h"

#include "api_def.h"

ad9164_handle_t app_dac_h = {

NULL, /* Client App HAL does not require any specific data*/

SPI_SDO, /* Client App HAL SPI uses 4 Wire SPI config */

2000000000, /* Application DAC Clk Frequency */

&app_hal_ad916x_spi_xfer, /* Client App HAL SPI function for AD9164*/
&app_hal_ad916x_delay_us, /* Client App HAL Delay Function */

NULL, /* Client App does not use API Event Handler */

0, /* Client App does need API to control TX_ENABLE */

0, /* Client App does need API to control RESETB */

0, /* Client App does want API to initialize external HW required by DAC */
0 /* Client App does want API to initialize external HW required by DAC */

I%

/*AD916x Dac Initialisation by Client Application*/
int app_dac_init()

{
int dacError = API_ERROR_OK;
ad916x_handle_t *ad916x_h = app_dac_h;
/*Initialise DAC Module*/
dacError = ad916x_init(ad916x_h);
if (dacError != API_ERROR_OK) {
return -1;
}
dacError = ad916x_get_chip_id(ad916x_h, &dac_chip_id);
if (dacError != API_ERROR_OK) {
return -1;
}
dacError = ad916x_get_revision(ad916x_h,&revision[0],&revision[1],&revision[2]);
if (dacError !=API_ERROR_OK) {
return APP_ERR_DAC_FAIL;
}
printf("* 3k 3k 3k %k 3k %k 3k 5k %k 3k 5k 3k 5k %k %k 3k %k %k %k %k %k >k %k 5k 3k 5k %k %k kk kk kk **********\r\n“).
printf("AD916x DAC Chip ID: %d \r\n", dac_chip_id.chip_type);
printf("AD916x DAC Product ID: %x \r\n", dac_chip_id.prod_id);
printf("AD916x DAC Product Grade: %d \r\n", dac_chip_id.prod_grade);
printf("AD916x DAC Product Revision: %d \r\n", dac_chip_id.dev_revision);
printf("AD916x Revision: %d. %d.%d \r\n", revision[0], revision[1], revision[2]);
printf("******* 3k 3k 3k ok %k 3k %k 3k 3k sk 3k sk sk %k %k ok ok 5k ok %k 3k 3k sk ok sk ok sk k kk ok k ok *****\r\n").
return 0;
}

Figure 5 Example A, Psuedo Code ad916x_ Handle initialization with Minum Configuration

Page 81 of 84

AD916x API Specification Rev 1.0

#include “app_spi.h”
#tinclude “app_gpio.h”
#include "app_sleep.h”

/*Client Application function to Implement SPI Transfer for AD9164*/
int app_hal_ad916x_spi_xfer(void *user_data, uint8_t *wbuf, uint8_t *rbuf, int len)
{

/*Pseudo Code example of implementing SPi transfer funtion*/

uintl6_t address;

uint8_t value;

uint8_t dac_chip_select;

struct app_hal_data_t *dac_user_data;

/*Optional: get any client defined data from user_data*/
/*For example could be used to retrieve chip select*/
dac_user_data = (struct app_hal_data_t *) user_data;
dac_chip_select = dac_user_data->dac_chip_select_ref;

/*AD916x DAC SPI transactions are always 3 bytes*/
if (size_bytes != 3)
{
/* 2 bytes for adderss and 1 byte data */
return 2;

}

address = wbuf[0];
address <<= 8;
address |= wbuf[1];
value = wbuf[2];

if ((address & 0x8000) == 0)

{
/* Write */
app_hal_spi_write(dac_chip_select, address, value);
rbuf[2] = OxFF;

else

/* Read */
/* Clear the read bit as we read from local array */
address &= ~0x8000;

app_hal_spi_write(dac_chip_select, address, &value);
rbuf[2] = value;
}

return 0;

}

int app_hal_ad916x_delay_us(unsigned int time_us)

{
/*Code to sleep or wait*/
app_hal_sleep(time_us);
return 0;

Figure 6 Psuedo Code example for Required HAL functions

Page 82 of 84

/*

*\brief pseudo Code example client code to initialiseAD916x
*

*/

/*Include Client HAL implementation code*/

#include "app_hal.h"

/*Include AD916x API interface Headers*/
#include "AD916x.h"

#include "api_errors.h"

#include "api_def.h"

ad9164_handle_t app_dac_h ={

&app_hal_user_data, /* Client App HAL does not require any specific data*/

SPI_SDO, /* Client App HAL SPI uses 4 Wire SPI config */

2000000000, /* Application DAC Clk Frequency */

&app_hal_ad916x_spi_xfer, /* Client App HAL SPI function for AD9164*/
&app_hal_ad916x_delay_us, /* Client App HAL Delay Function */

&app_ad916x_event_handler, /* Client App does not use API Event Handler */
&app_hal_ad916x_set_tx_enable_pin, /* Client App HAL function to control TX_ENABLE */
&app_hal_ad916x_set_resetb_pin, /* Client App does need API to control RESETB */

&app_init_dac_hw, /* Client App does want API to initialize external HW required by DAC */
&app_shutdown_dac_hw /* Client App does want API to initialize external HW required by DAC */

%

/*AD916x Dac Initialisation by Client Application*/
int app_dac_init()

int dacError = API_ERROR_OK;
ad916x_handle_t *ad916x_h = app_dac_h;

/*Initialise DAC Module*/

dacError = ad916x_init(ad916x_h);

if (dacError != API_ERROR_OK) {
return -1;

}

dacError = ad916x_get_chip_id(ad916x_h, &dac_chip_id);
if (dacError != API_ERROR_OK) {
return -1;

}

dacError = ad916x_get_revision(ad916x_h,&revision[0],&revision[1],&revision[2]);
if (dacError !=API_ERROR_OK) {

return APP_ERR_DAC_FAIL;
}

printf("***\r\n");

printf("AD916x DAC Chip ID: %d \r\n", dac_chip_id.chip_type);

printf("AD916x DAC Product ID: %d \r\n", dac_chip_id.prod_id);
printf("AD916x DAC Product Grade: %d \r\n", dac_chip_id.prod_grade);
printf("AD916x DAC Product Revision: %d \r\n", dac_chip_id.dev_revision);
printf("AD916x Revision: %d. %d.%d \r\n", revision[0], revision[1], revision[2]);

printf("***\r\n");

return 0;

Figure 7 Example B, Psuedo Code ad916x_ Handle initialization with Minum Configuration

Page 83 of 84

AD916x API Specification Rev 1.0

REVISION HISTORY
11/07/2016—Rev 1.0
Initial Release with Rev 1.0.0 APIccooevvvvveveririrernene Universal

Page 84 of 84

	Introduction
	Purpose
	Scope
	DISCLAIMER

	Software Architecture
	Folder Structure
	/API
	/API/include
	/API/ad916x_
	/API/common
	/API/doc
	/Application/

	API Interface
	Overview
	ad916x.h
	API Handle

	api_config.h
	adi_def.h
	DAC Hardware Initialization
	SPI Access
	RESETB Pin Access
	TX_ENABLE PIN Access
	System Software Functions
	Delay Function
	Event Notification

	HAL Function Pointer DataTypes
	*hw_open_t
	*hw_close_t
	*spi_xfer_t
	* tx_en_pin_ctrl_t
	*reset_pin_ctrl_t
	* delay_us_t
	*event_handler_t

	Error Handling
	Error Codes

	Interrupt Handling
	Interrupt Events

	AD916x API Library
	AD916x API Reference Handle
	ad916x_handle_t

	AD916x API Definitions, Data Structures and Enumerations
	ad916x_chip_id_t
	ad916x_tx_enable_pin_mode_t
	ad916x_event_t
	ad916x _jesd_link_stat_t
	ad916x _jesd_sysref_mode_t
	ad916x_jesd_cfg_err_flg_t
	ad916x_jesd_serdes_pll_flg_t
	jesd_prbs_pattern_t
	ad916x_prbs_test_t

	ad916x_ APIs
	ad916x_init
	ad916x_deinit
	ad916x_reset
	ad916x_get_chip_id
	ad916x_set_events
	ad916x_get_interrupt_status
	ad916x_isr
	ad916x_dac_set_clk_frequency
	ad916x_dac_get_clk_frequency
	ad916x_dac_set_full_scale_current
	ad916x_jesd_config_datapath
	ad916x_jesd_get_cfg_param
	ad916x_jesd_set_sysref_mode
	ad916x_jesd_get_sysref_mode
	ad916x_jesd_get_sysref_status
	ad916x_jesd_get_dynamic_link_latency
	ad916x_jesd_set_dynamic_link_latency
	ad916x_jesd_set_lane_xbar
	ad916x_jesd_get_lane_xbar
	ad916x_jesd_invert_lane
	ad916x_jesd_enable_scrambler
	ad916x_jesd_get_cfg_status
	ad916x_jesd_enable_datapath
	ad916x_jesd_enable_link
	ad916x_jesd_get_pll_status
	ad916x_jesd_get_link_status
	ad916x_transmit_enable_pin
	ad916x_transmit_enable
	ad916x_clk_cfg_dutycycle
	ad916x_clk_adjust_phase
	ad916x_clk_set_cross_ctrl
	ad916x_fir85_Set_enable
	ad916x_fir85_get_enable
	ad916x_filt_bw90_enable
	ad916x_invsinc_enable
	ad916x_nco_set_ftw
	ad916x_nco_get_ftw
	ad916x_nco_set_phase_offset
	ad916x_nco_get_phase_offset
	ad916x_nco_set_enable
	ad916x_nco_get_enable
	ad916x_dc_test_set_mode
	ad916x_dc_test_get_mode
	ad916x_nco_set
	ad916x_nco_get
	ad916x_nco_reset
	ad916x_register_write
	ad916x_register_read
	ad916x_get_revision

	Appendix A
	Pseudo Code Example for ad916x_ handle

	Revision History

