
Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 3770

Keywords: MAXQ,Programming,Table,Constant,Harvard

APPLICATION NOTE 3770

Table Operations for the MAXQ Architecture
By: Ben Smith
Apr 19, 2006

Abstract: The MAXQ microcontroller is a Harvard machine. One should not, however, assume that
MAXQ microcontrollers suffer from a common limitation of many Harvard machines that prohibits access
to constants stored in code space. On the contrary, tools built into every MAXQ device make such table
lookups easy. This application note describes how to perform efficient table operations in the MAXQ
microcontroller.

Introduction
The MAXQ architecture describes a powerful, single-cycle RISC microcontroller based on the classic
Harvard machine. A Harvard machine differs from the more commonly seen Von Neumann machine in
an important design element: the Harvard machine's instructions and data are carried on separate
busses. Because there is no contention for a single data bus, MAXQ instructions can execute in only a
single cycle. The same operations would require multiple cycles on a traditional Von Neumann
architecture.

The rigid separation between data and code in Harvard machines, however, presents its own set of
challenges . Storing data tables in code space, a technique common in Von Neumann machines, is
problematic for classical Harvard machines. Since only one operation can occur in a single cycle on a
given bus, the CPU core cannot fetch an instruction on the code memory bus and fetch a memory
operand from a data table in code space in the same cycle.

As a Harvard machine, one might assume that MAXQ microcontrollers also prohibit storage of data
elements in code space. But because of ROM tools built into every MAXQ device, such table lookups
are actually easy.

Table Lookup in Code Space
Reading a value from a MAXQ table in code space appears to be simple. However, programmers
unfamiliar with the MAXQ architecture can become frustrated on their first attempt to do so.

IncorrectTableLookup:
 move dp[0], #w:StartOfTable
 move acc, @dp[0]
 .
 .
 .
 ret
.
.

Page 1 of 7

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/17/c/Microcontrollers#c17
http://www.maximintegrated.com/products/microcontrollers/maxq/

.
StartOfTable:
 dc16 01234h
 dc16 05678h
 dc16 098abh
 dc16 0cdefh

This above code will assemble perfectly, but after the second instruction the accumulator will almost
certainly not contain 0x1234. The reason is simple. Unlike a Von Neumann machine in which there is
only a single memory space and an instruction will take as many cycles as needed to complete, the
MAXQ's move <reg>, @dp[0] instruction implicitly accesses data space and completes in a single
cycle with an instruction fetch from code space and a read from data space. The value loaded into the
accumulator is whatever value was in data space at the same offset as StartOfTable in code space.

At first this problem seems intractable. After all, accesses to code space require a certain amount of
time; the CPU core cannot squeeze two memory accesses into one clock cycle, even if the architecture
permitted it. In the MAXQ architecture, however, small details about how the microcontroller maps
physical memory blocks into the various memory spaces—and a few routines in the utility ROM—solve
the problem.

First, in the MAXQ architecture the mapping of physical memory blocks into code and data spaces is not
fixed, but changes depending on what physical memory block is being accessed. In general,
programmers writing code to run in the flash memory space of most MAXQ microcontrollers will link their
software to start at location 0 in code space. They will assume that RAM starts at location 0 in data
space, and so it does.

But the MAXQ microcontroller has another piece of physical memory as well, the utility ROM. The utility
ROM resides at location 0x8000 in code space in all MAXQ microcontrollers. User code can call routines
in the 0x8000 page of the utility ROM to perform certain functions. Furthermore, as long as execution is
being performed in the utility ROM, user code memory is remapped to a new location in data space.

When executing out of utility ROM, data RAM continues to be accessible at location 0x0000 in data
space, but code memory is remapped to location 0x8000 in data space. Since code flash now appears in
data space, the code running from the utility ROM can access information stored in user code as if it
were data. Utility ROM functions are provided that simply read a value indirectly through the pointer
registers and return.

Consequently, the routine given above would change somewhat:

BetterTableLookup:
 move dp[0], #w:StartOfTable + 08000h
 call UtilityROMGetDP0
 .
 .
 .
 ret
.
.
.
StartOfTable:
 dc16 01234h
 dc16 05678h
 dc16 098abh
 dc16 0cdefh

In this example, the address to be read is adjusted to reflect the location to which flash is mapped during
utility ROM execution, and is then loaded into DP[0]. Rather than trying to read the data directly, a call is
made to the utility ROM routine. Of course, instead of one cycle used in the direct data read, this

Page 2 of 7

operation takes four cycles: two cycles for a long call, one cycle to perform the read, and one cycle for
the return operation.

A greater problem with this code example is that it will not assemble! The label UtilityROMGetDP0 is
not defined, and for a good reason: the utility routines are not in the same place from one MAXQ
microcontroller to another. The utility routines are, in fact, not guaranteed to remain in the same place
from one version of a particular MAXQ device to another!

To resolve this issue, every MAXQ microcontroller's utility ROM contains an address table for the utility
functions, and a pointer to the table at a well-known location: 0x800D. Specifically, the utility ROM
contains the following code:

 org 0800Dh
 dw UtilityFunctionTable
.
.
.
UtilityFunctionTable:
.
.
.
 dw GetDP0
 dw GetDP0Inc
 dw GetDP0Dec
 dw GetDP1
 dw GetDP1Inc
 dw GetDP1Dec
 dw GetBP
 dw GetBPInc
 dw GetBPDec

Note first, that the utility function table consists of addresses, not instructions. That is, the application
programmer must retrieve the address and call it, not simply jump into the table. Second, note that the
first memory reference function may not be the first entry in the table. Since each MAXQ microcontroller
can contain different types and amounts of memory and different peripherals, each device will likely
contain a different list of functions, at different relative offsets within the table.

Each of the three pointer registers has three associated functions, for a total of nine table lookup
functions. The first function for each pointer register simply retrieves the value at the given address,
while the latter two use the post-increment and post-decrement forms of the indirect load, respectively.
In each case, the retrieved data is loaded into the GR register.

Now, our code looks like this:

CorrectTableLookup:
 move dp[0], #0800Dh ; Point to pointer to function table
 move acc, @dp[0] ; acc now has pointer to ftable
 add #3 ; For 2000, GetDP0
 move dp[0], acc ; Load ptr + offset to dp0
 move a[1], @dp[0] ; Get address of GetDP0 into A1
 move dp[0], #StartOfTable + 08000h
 call a[1] ; This will call GetDP0, finally!
 .
 .
 .
 ret
.
.
.
StartOfTable:
 dc16 01234h
 dc16 05678h

Page 3 of 7

 dc16 098abh
 dc16 0cdefh

Notice that once the address of the GetDP0 routine has been found, it can be stored away and reused.
The first five instructions above only need to be performed once; after that, each table fetch takes only
three cycles: the call, the read (executing from utility ROM), and the return (also running from utility
ROM.)

Copying Tables from Flash to RAM
A method for moving an entire table from flash to RAM can now be constructed from the table read
functions. If the destination address is given in BP, for example, one method would be:

SlowTableMove:
 move dp[0], #0800Dh ; Point to pointer to function table
 move acc, @dp[0] ; acc now has pointer to ftable
 add #4 ; For 2000, GetDP0Inc
 move dp[0], acc ; Load ptr + offset to dp0
 move a[1], @dp[0] ; Get address of GetDP0 into A1
 move dp[0], #StartOfTable + 08000h
 move bp, #RAMDest ; Set this label to desired dest
 move offs, #0ffh ; Pre-decremented offset
 move lc[0], #4 ; Move four words
TableMoveLoop:
 move dp[0], dp[0] ; Set source pointer
 call a[1] ; This will call GetDP0inc
 move @bp[++offs], gr ; Store retrieved word to dest
 djnz lc[0], TableMoveLoop
 .
 .
 .
 ret
.
.
.
StartOfTable:
 dc16 01234h
 dc16 05678h
 dc16 098abh
 dc16 0cdefh

As before, the first five instructions need only be executed once. After that, the table move can be
performed as many times as needed, and the GetDP0inc subroutine address will remain in A1. The
table move will require six cycles per iteration, plus setup overhead.

The move dp[0], dp[0] instruction is required due to a quirk in the MAXQ architecture. As there is
only a single address bus associated with data space, it must be set up at least one cycle ahead of any
read performed on data space. In the table movement loop, a read is performed at the address given by
DP[0], and then the write address is placed on the bus. But without the move dp[0], dp[0]
instruction, the write address would still be on the bus when it is the time to read the next location in the
table. By inserting this apparently null instruction, the source operand address bus is refreshed in
anticipation of the next read event.

There is, however, a better way to accomplish this task. The utility ROM includes a copyBuffer routine
that performs this same function, but in fewer cycles. The copyBuffer routine is listed immediately
below the table lookup routines in the utility ROM.

FasterTableMove:
 move dp[0], #0800Dh ; Point to pointer to function table
 move acc, @dp[0] ; acc now has pointer to ftable
 add #12 ; For 2000, copyBuffer

Page 4 of 7

 move dp[0], acc ; Load ptr + offset to dp0
 move a[1], @dp[0] ; Get address of GetDP0 into A1
 move dp[0], #StartOfTable + 08000h
 move bp, #RAMDest ; Set this label to desired dest
 move offs, #0 ; No need to pre-decrement offset
 move lc[0], #4 ; Move four words
 call a[1] ; This will call copyBuffer
 .
 .
 .
 ret
.
.
.
StartOfTable:
 dc16 01234h
 dc16 05678h
 dc16 098abh
 dc16 0cdefh

This copyBuffer routine reduces the cycle count per iteration to three, saving approximately half the
time over the previous method. When the copyBuffer routine returns, LC[0] will be zero, and the OFFS
register will point to the next location after the last destination location written. Because OFFS is an 8-bit
register, tables up to 256 words can be copied in this way.

An Example: String Output
A common task in many microcontroller-based projects is to output one of a number of canned
messages to a console. Often, each message is given a number and a common routine must convert
the number to the text of the message.

A commonly-used technique for this task is to zero-terminate each message string, . and provide a table
that converts message numbers into the addresses at which each individual string resides. This
technique is reliable and quick, but it means that two data structures must be established: the table of
addresses and the strings themselves. A second technique simply places the zero-terminated strings into
one large, contiguous memory space and searches linearly. While economical, this method is time-
consuming at execution time because every character up to the intended string must be searched before
the output begins.

A useful compromise uses length-delimiting instead of zero-delimiting. In this technique, the length of
each string is given first, followed by the actual bytes of the message. In this way, unused messages can
be quickly skipped, and the table itself is no longer than in the zero-delimited case. The only limitation to
this compromise technique is that each string in the table is restricted to no more than 255 characters.

;
; Output String
;
; Enter with ACC=an index value (one based) indicating which
; string to output.
;
; On exit, LC0=0, DPC=0, ACC, A1, A2, DP0 used.
;
output_string:
 move lc[0], acc ;Set LC0 to index of string
move dpc, #4 ;Set DP0 to word mode
move dp[0], #800dh ;Point to table of pointers
move acc, @dp[0] ;Get address of table
add #3 ;Offset to GETDP0 routine
move dp[0], acc ;Load pointer to table
move a[1], @dp[0]++ ;Get GETDP0

Page 5 of 7

move a[2], @dp[0] ;Get GETDP0INC
move dpc, #0 ;Set DP0 to byte mode
move dp[0], #string_table + 8000h

str_search_loop:
call a[1] ;Get a string length
djnz lc[0], next_str ;If not this string, go to next
move lc[0], gr ;Otherwise, put len in LC0
move acc, @dp[0]++ ;...and point past length

out_loop:
call a[2] ;Get a char and bump pointer
call char_out ;Output the character
djnz lc[0], out_loop ;If more characters, loop
ret ;Otherwise, we're done.

next_str:
move acc, gr ;GR contains len of this string
add dp[0] ;Add current ptr to current len...
move dp[0], acc ;...to create a new pointer
jump str_search_loop ;Jump back and test index again

;
; Each entry in the string table begins with the string length
; followed by the string characters.
;
string_table:
dc8 string1 - string_table
dc8 "This is the first string."
string1:
dc8 string2 - string1
dc8 "This is a second example of a string"
string2:
dc8 string3 - string2
dc8 "A third string."
string3:
dc8 string4 - string3
dc8 "Finally, a fourth string in the array!!!"
string4:

Related Parts

MAXQ2000 Low-Power LCD Microcontroller Free Samples

MAXQ2010 16-Bit Mixed-Signal Microcontroller with LCD Interface Free Samples

MAXQ3210 Microcontroller with Internal Voltage Regulator,
Piezoelectric Horn Driver, and Comparator

MAXQ3212 Microcontroller with Analog Comparator and LED Driver

MAXQ7665 16-Bit RISC Microcontroller-Based Smart Data-
Acquisition Systems

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Page 6 of 7

http://www.maximintegrated.com/datasheet/index.mvp/id/4466
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAXQ2000
http://www.maximintegrated.com/datasheet/index.mvp/id/5937
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAXQ2010
http://www.maximintegrated.com/datasheet/index.mvp/id/4830
http://www.maximintegrated.com/datasheet/index.mvp/id/4831
http://www.maximintegrated.com/datasheet/index.mvp/id/5007
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact

Application Note 3770: http://www.maximintegrated.com/an3770
APPLICATION NOTE 3770, AN3770, AN 3770, APP3770, Appnote3770, Appnote 3770
Copyright © by Maxim Integrated Products
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 7 of 7

http://www.maximintegrated.com/an3770
http://www.maximintegrated.com/legal

	maxim-ic.com
	Table Operations for the MAXQ Architecture - Application Note - Maxim

