maxim
integrated..

Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 4399

Keywords: DS5250, modulo timing

APPLICATION NOTE 4399

Modulo Exponentiation Timing with the DS5250
Microcontroller

May 14, 2009

Abstract: The DS5250 high-speed, secure microcontroller features a MAA (Modular Arithmetic Accelerator). This
application note explains the configuration of the MAA for exponentiation, discusses the trade offs in execution
time, and shows typical execution times.

Introduction

Modulo exponentiation is used in many cryptographic algorithms. Anyone implementing one of these algorithms
must know approximately how long the operation will take. This application note describes how modulo
exponentiation is done on the DS5250 high-speed, secure microcontroller. It lists typical times to run various
expressions, and describes the code flow to obtain the timings.

Basic MAA Operation

Modulo exponentiation is the function, (base&xponent) mod modulus. For example, (29 mod 10) is equal to (512
mod 10) which is equal to 2. The answer is always a humber between 0 and modulus-1.

The MAA (Modulo Arithmetic Accelerator) on the DS5250 always uses MAA register "a" for the base, MAA register
"e" for the exponent, and MAA register "m" for the modulus. The MAA register "b" is initialized to 1 before the
operation, and contains the result after the operation. The MAA Size registers (MAS1 and MASO at A2h and Alh)
tell the MAA the maximum number of bits in these registers. The m register must have the highest bit set to work.
The size register can have values from 2 to 4096.

The Modular Arithmetic Accelerator Control register (MACT at A3h) contains the bits used to control the operation
of the MAA. The Calculation Configuration bits (CLC1 and CLCO of the MACT register) determine which of four
operations is to be executed. The operations can be modulo multiply; modulo square; modulo square and multiply;
and the operation discussed here, modulo exponentiation.

Modulo exponentiation is calculated with repeated squares and multiplies. The square operation is done for every
bit in the exponent. The multiply operation only has to be done when the corresponding bit in the exponent is set.
Figure 1 gives the pseudo code for the modulo exponentiation operation. The Optimized Calculation Control bit
(OCALC of the MACT register) determines if a multiply operation is done for every bit. When the OCALC bit is
enabled, every time a 1 bit is found in the exponent, a multiply operation is done. When the OCALC bit is disabled,
a multiply is done for every bit, zero or 1, in the exponent, thus giving us similar time calculations for any specific
modulus size. All private key calculations should be done with OCALC=0 (disabled) along with running from the
ring (RNGSEL=1) to avoid timing attacks.

Page 1 of 5

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/17/c/Microcontrollers#c17
http://www.maximintegrated.com/DS5250

The MAA can run using the system clock, or it can be run from the ring. The MAA runs at half the system clock
speed when this option is selected. Thus, for a 22.1MHz crystal, the MAA will run at 10.05MHz. It will take the
same time to execute the same values when running from the system clock. When the MAA is run from the ring,
the execution time can vary depending on voltage, temperature, and the inherent speed of the ring which will vary
from part to part. The MAA runs at the full speed of the ring. In the typical data presented in Tables 1 and 2, the
ring is running near 22Mhz. Ring Oscillator Select (RNGSEL) of the MACT register controls which clock is used for
the modulo exponentiation operation.

Typical MAA Timings

The timings that have been collected are broken into two groups. The first group looks at large numbers in each of
the modulus, base and exponent. The second group looks at the timing when using a small exponent that only has
2 bits set, specifically, the value 10001h. This number is sometimes used as a public exponent in the RSA
algorithm. In each group, there are two halves. The first half has optimization enabled (OCALC=1) and the second
half has optimization disabled. Within each half, typical timing values are listed for different clock sources. These
timings are all displayed in millisecond (ms) units.

The typical timing values given in the table are the average of ten different calculations using random values in
each of the registers. The modulus is random up to the most significant digit, which is always a 1. In general, about
half the bits are set in each of the parameters.

The timing of each calculation was measured using Timer 0 as a divide-by-12 clock. When the 16-bit Timer 0 rolls
over, an interrupt occurs and a 1 is added to the six external count bytes. At the end of the calculation the timer is
stopped, and the external count bytes and the 16-bit timer count are displayed as a 64-bit number that gives the
length of the calculation. A 22.1MHz oscillator will have a 543ns resolution per timer tic. The resolution is 1.085us
at 11.0592MHz. Figure 2 has the pseudo code for timing a MAA calculation.

Page 2 of 5

Table 1. Modulo Exponentiation Times in Milliseconds
(a, e, and m are random values)

Optimization ON Optimization OFF
Clock Source Clock Source

Modulus Size 22 1MHz Osc|11.1MHz Osc 22 1MHz Osc|11.1MHz Osc

512

768

1024
1280
1536
1792
2048
2304
2560
2816
3072
3328
3584
3840
4096

12.38
74.98
225.44
507.39
958.41
1,611.08
2,520.53
3,729.76
5,251.26
7,159.86
9,434.47
12,152.62
15,360.16
19,138.10
23,445.08
28,327.98

26.28
155.43
468.50

1,050.53
1,967.81
3,321.94
5,176.46
7,573.35
10,773.81
14,557.57
19,216.24
24,807.55
31,377.07
38,988.81
47,678.86
57,649.65

51.44
312.06
943.04

2,079.01
3,922.17
6,623.29
10,311.88
15,199.66
21,372.70
29,079.79
38,474.44
49,631.36
62,436.28
78,039.69
95,490.03
115,295.25

16.33
98.18
296.10
664.20
1,248.33
2,112.68
3,295.64
4,863.27
6,852.96
9,328.25
12,334.35
15,930.13
20,147.92
25,073.03
30,691.85
37,128.98

34.79
208.79
626.89

1,397.87
2,629.90
4,421.99
6,889.75
10,143.31
14,276.87
19,392.38
25,636.24
33,070.91
41,818.90
51,951.35
63,689.30
76,965.83

69.55
416.91
1,252.23
2,793.32
5,258.52
8,833.31
13,771.52
20,249.51
28,532.62
38,761.51
51,189.86
66,018.62
83,544.01
103,848.07
127,205.55
153,828.69

Page 3 of 5

Table 2. Modulo Exponentiation Times in Milliseconds
(e = 10001h; a and m are random values)

Optimization ON
Clock Source

Modulus Size 22 1MHz Osc|11.1MHz Osc 22 1MHz Osc|11.1MHz Osc

Optimization OFF

Clock Source

0.65 1.35 2.70 15.87 32.62
512 1.87 3.88 7.72 98.02 200.88
768 3.71 7.66 15.29 294.26 611.73
1024 6.16 12.70 25.35 660.95 1,371.87
1280 9.20 18.97 37.89 1,248.98 2,587.99
1536 12.88 26.49 52.93 2,110.76 4,366.96
1792 17.16 35.27 70.55 3,297.84 6,815.56
2048 22.03 45.33 90.51 4,862.39 10,040.36
2304 27.55 56.60 113.06 6,856.06 14,148.38
2560 33.67 69.14 138.26 9,332.14 19,246.16
2816 40.41 82.91 165.70 12,342.92 25,440.42
3072 47.74 97.92 195.79 15,933.52 32,838.19
3328 55.70 114.25 228.36 20,158.79 41,545.91
3584 64.28 131.83 263.28 25,083.32 51,670.49
3840 73.45 150.57 300.69 30,747.58 63,318.76
4096 83.27 170.62 340.98 37,183.65 76,597.28
Modulo_exponentiationibase, exponent, modulus)
result = 1;
while {(exponent * 0) |
lowhit = exponent mod Z =— get low bit of exponent
if (lowhit == 1} { =— if low bhit of exponent is set
result = i{result*hase) mod modulus <=- multiply it
}]:-nase = thasze*base) mod modulus =—- soguare the base
exponent = eXponent [£ =— shift the exponent right
ieturn result;

Figure 1. Pseudo code for modular exponentiation.

65.15
401.50
1,222.39
2,741.38
5,171.69
8,726.72
13,619.78
20,064.18
28,273.26
38,460.11
50,838.52
65,621.43
83,022.64
103,254.99
126,532.11
153,067.16

Page 4 of 5

Initialize Timer 0 to be a divide-by-12 counter with interrupts on rollover.
Clear Timer 0 and the external count bytes.,

Set the size registers (MAS1 and MAS0) for the number of bits to be calculated,
Clear all of MAA RAM,

Fill Mans Register & with a random nurmber up to the number of bits specified.

exponent tests,

Fill Maa Register M with a random number up to the number of bits specified.

Set the bit in the MAA Reqister that corresponds to the size,

write a 1 to the least significant byte of MAA register B,

Configure the OCALZ, RNGSEL, and Calculation Configuration bits in the MACT register.
Start the MAA calculation,

Start Tirmer O, (On every Timmer O interrupt, increrment the external count bytes)

Wrait until the calculation is done.

Stop Timer 0.

Display the external count bytes and the walue of Timer 0 giving a &d-hbit value,

Fill Maa Register E with a random number up to the number of bits specified or the walue of 100016 for the small

Figure 2. Pseudo code for timing a modular exponentiation calculation.

Related Parts

DS5250 High-Speed Secure Microcontroller

More Information

For Technical Support: http://www.maximintegrated.com/support

For Samples: http://www.maximintegrated.com/samples

Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 4399: http://www.maximintegrated.com/an4399

APPLICATION NOTE 4399, AN4399, AN 4399, APP4399, Appnote4399, Appnote 4399
Copyright © by Maxim Integrated Products

Additional Legal Notices: http://www.maximintegrated.com/legal

Page 5 of 5

http://www.maximintegrated.com/datasheet/index.mvp/id/3932
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an4399
http://www.maximintegrated.com/legal

	maxim-ic.com
	Modulo Exponentiation Timing with the DS5250 Microcontroller - Application Note - Maxim

