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There has been a shift in data center and telecom power system design. 
Key applications manufacturers are replacing complex, expensive isolated 
48 V/54 V step-down converters with more efficient, nonisolated, high 
density step-down regulators (Figure 1). Isolation is not necessary in the 
regulators’ bus converter since the upstream 48 V or 54 V input is already 
isolated from hazardous ac mains. 

For a high input/output voltage application (48 V to 12 V), a conventional 
buck converter is not an ideal solution because component size tends to 
be larger. That is, a buck converter must run at a low switching frequency 
(for example, 100 kHz to 200 kHz) to achieve high efficiency at high 
input/output voltage. The power density of a buck converter is limited 
by the size of passive components, especially the bulky inductor. The 
inductor size can be reduced by increasing the switching frequency, but 
this reduces converter efficiency because of switching-related losses and 
leads to unacceptable thermal stress. 

Switched capacitor converters (charge pumps) significantly improve 
efficiency and reduce solution size over conventional inductor-based buck 
converters. In a charge pump, instead of an inductor, a flying capacitor 
is used to store and transfer the energy from input to output. The energy 
density of capacitors is much higher than inductors—improving power 
density by a factor of 10 over a buck regulator. However, charge pumps 
are fractional converters—they do not regulate the output voltage—and 
are not scalable for high current applications. 

An LTC7821-based hybrid converter has the benefits of both conventional 
buck converters and charge pumps: output voltage regulation, scalability, 
high efficiency, and high density. A hybrid converter regulates its output 
voltage with closed-loop control just like a buck converter. With peak 
current-mode control, it is easy to scale the hybrid converter up for higher 
current levels (for example, a single-phase design for 48 V to 12 V/25 A to a 
4-phase design for 48 V to 12 V/100 A). 

Figure 1. A traditional telecom board power system architecture with an isolated bus converter. The isolated bus converter is not necessary in systems where 48 V is already 
isolated from the ac mains. Replacing the isolated converter with a nonisolated hybrid converter significantly reduces complexity, cost, and board space requirements.
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Figure 2. Size comparison of a nonisolated buck converter and equivalent 48 V to 12 V/20 A hybrid converter.

Figure 3. A 48 V to 12 V/25 A hybrid converter using the LTC7821.
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All switches in a hybrid converter see half of the input voltage in steady 
state operation, enabling the use of low voltage rating MOSFETs to achieve 
good efficiency. The switching-related losses in a hybrid converter are lower 
than a conventional buck converter, enabling high frequency switching. 

In a typical 48 V to 12 V/25 A application, efficiency above 97% at full load 
is attainable with the LTC7821 switching at 500 kHz. To achieve similar 
efficiency using a traditional buck controller, the LTC7821 would have to 
operate at a third of the frequency, which results in a much larger solution 
size. Higher switching frequencies allow the use of smaller inductances, 
which yield faster transient response and smaller solution size (Figure 2).

The LTC7821 is a peak current-mode hybrid converter controller with the 
features required for a complete solution of a nonisolated, high efficiency, 
high density step-down converter for an intermediate bus converter in 
data centers and telecom systems. The LTC7821’s key features include:

 X Wide VIN range: 10 V to 72 V (80 V abs max)

 X Phase-lockable fixed frequency: 200 kHz to 1.5 MHz

 X Integrated quad ~5 V N-channel MOSFET drivers

 X RSENSE or DCR current sensing

 X Programmable CCM, DCM, or Burst Mode® operation

 X CLKOUT pin for multiphase operation

 X Short-circuit protection

 X EXTVCC input for improved efficiency

 X Monotonic output voltage start-up 

 X 32-lead (5 mm × 5 mm) QFN package

48 V to 12 V at 25 A Hybrid Converter Featuring 
640 W/IN3 Power Density
Figure 3 shows a 300 W hybrid converter using the LTC7821, switching 
at 400 kHz. The input voltage range is 40 V to 60 V and the output is 12 V 
at loads up to 25 A. Twelve 10 µF (1210 size) ceramic capacitors are used 
for each flying capacitor, CFLY and CMID. The relatively small size 2 µH 
inductor (SER2011-202ML, 0.75 in × 0.73 in) can be used because of the 
high switching frequency and the fact that the inductor only sees half of 
VIN at the switching node (small volt-second). The approximate solution 
size is 1.45 in × 0.77 in, as shown in Figure 4, resulting in a power density 
of about 640 W/in3. 

Hybrid Converter (Smaller, Faster)
 0.76 in × 0.37 in × 0.42 in inductor
 0.118 in3 volume, body only (77% savings)
 1× 80 V FET (Q1)
 3× 40 V FETs (Q2, Q3, Q4)
 fSW: 500 kHz to ~1 MHz
 Same CIN as buck converter

Buck Converter
 1.1 in × 0.78 in × ≥0.6 in inductor
 0.514 in3 volume, body only
 2× 80 V top FETs
 2× 80 V bottom FETs
 fSW: 125 kHz to ~200 kHz
 Same CIN as hybrid converter
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Figure 4. Possible layout for a complete bus converter uses the top and bottom 
sides of the board, requiring only 2.7 cm2 of the topside of the board.
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Figure 5. Efficiency at 48 V input, 12 V output, and 400 kHz fSW.

As the bottom three switches always see half the input voltage, 40 V rated 
FETs are used. An 80 V rating FET is used for the very top switch because it 
sees the input voltage at the beginning of the precharge of CFLY and CMID 
during startup (no switching). During steady state operation, all four 
switches see half of the input voltage. Therefore, the switching losses in a 
hybrid converter are much smaller compared to a buck converter in which 
all switches see the full input voltage. Figure 5 shows the efficiency of the 
design. The peak efficiency is 97.6% and the full load efficiency is 97.2%. 
With high efficiency (low power loss), the thermal performance is very 
good, as shown in the Figure 6 thermograph. The hot spot is 92°C at an 
ambient temperature of 23°C with no forced airflow.

The LTC7821 implements a unique CFLY and CMID prebalancing technique, 
which prevents input inrush current during startup. During initial power-
up, the voltage across the flying capacitor CFLY and CMID are measured.  
If either of these voltages are not at VIN ∕2, the TIMER capacitor is allowed 
to charge up. When the TIMER capacitor voltage reaches 0.5 V, internal 
current sources are turned on to bring the CFLY voltage to VIN ∕ 2. After the 
CFLY voltage has reached VIN ∕2, CMID is charged to VIN ∕2. The TRACK/SS pin 
is pulled low during this duration and all external MOSFETs are shut off.  
If the voltages across CFLY and CMID reach VIN ∕2 before the TIMER capaci-
tor voltage reaches 1.2 V, TRACK/SS is released, and a normal soft start 
begins. Figure 7 shows this prebalancing period and Figure 8 shows the 
VOUT soft start at 48 V input, 12 V output at 25 A.

Figure 6. Thermograph of the hybrid converter solution in Figure 2.
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Figure 8. LTC7821 startup at 48 V input, 12 V output at 25 A (no high inrush current).
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Figure 9. Connection of key signals of LTC7821 for a 2-phase design.
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Figure 10. A 4-phase, 1.2 kW hybrid converter using four LTC7821s.
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1.2 kW Multiphase Hybrid Converter 
The easy scalability of the LTC7821 makes it a good fit for high current 
applications, such as those found in telecom and data centers. Figure 9 
shows the key signal connections for a 2-phase hybrid converter using 
multiple LTC7821s. The PLLIN pin of one LTC7821 and the CLKOUT pin of  
another LTC7821 are tied together to synchronize the PWM signals. 

For a design with more than two phases, the PLLIN pin and CLKOUT pin 
are connected in a daisy chain. Since the clock output on the CLKOUT 
pin is 180° out of phase with respect to the main clock of LTC7821, even 
numbered phases are in phase with each other, while those with odd 
numbers are antiphase to the evens.

A 4-phase, 1.2 kW hybrid converter is shown in Figure 10. The power 
stage of each phase is identical to the single-phase design in Figure 3. 
The input voltage range is 40 V to 60 V and the output is 12 V at load up to 
100 A. The peak efficiency is 97.5% and the full load efficiency is 97.1% 
as shown in Figure 11. The thermal performance is shown in Figure 12. 
The hot spot is 81°C at an ambient temperature of 23°C with 200 LFM 
forced airflow. Inductor DCR sensing is used in this design. As shown in 
Figure 13, current sharing is well balanced among the four phases.
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Figure 11. Efficiency for a 4-phase, 1.2 kW design.

Figure 12. Thermograph of the multiphase converter shown in Figure 9.
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Figure 13. Current sharing for the multiphase converter shown in Figure 9.

Conclusion
The LTC7821 is a peak current-mode hybrid converter controller that 
enables an innovative, simplified approach to intermediate bus converter 
implementation in data centers and telecom systems. All switches in a 
hybrid converter see half of the input voltage, significantly reducing the 
switching related losses in high input/output voltage applications. Because 
of this, a hybrid converter can run at 2× to 3× higher switching frequency 
than a buck converter without compromising efficiency. A hybrid converter 
can be easily scaled for higher current applications. Lower overall cost 
and easy scalability differentiate hybrid converters from traditional isolated 
bus converters.
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