													REVIS	IONS								
				LTR DESCRIPT					ON		DATE APPROV			OVED								
																			٦ź			
																			ZĂ	12	1	
																			18	14	3	
																				<u>.</u>	94	
Prepared	in acc	ordan	ce with	ASM	1E Y1	4.24												Ve	ndor it	em dra	awing	
REV																						
PAGE																						
REV																						
PAGE	18																					
REV STA	TUS		REV																			
OF PAGE	ES	ſ	PAG	Ε		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
PMIC N/A	4					FICEF													RITIM			
RI		RIC		FICE	ζ.						hti	COL		3US,	OHIC mil/l	2 43 and	218-3 andM	3990 Iaritii	ne			
Original d	Original date of drawing CHE			CHE	CKEI	ר פע						ТІТ						unu				
	Y-MM-		ig			PITH	ADIA								ит і			0.1/	2.1 A		N	
2	21-11-1	17				ED BY						DR	OPO	JT AI	DJUS	STAB	LE L		R RE			R,
				JAI	VIES F	ч. ES(HME	ĭĽK				MO	NOLI	THIC	SILI	CON						
				SIZ		COD	E IDE					DWO	G NO.						•			
				4	•			162	236						V	/62	122	260	2			
				REV								PAG	E 1	OF	18							

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

1. SCOPE

1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance 40 V, 2.1 A, low dropout adjustable linear regulator microcircuit, with an operating temperature range of -55°C to +125°C.

1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

V62/2260 Drawing number		Device type (See 1.2.1)	X Case outline (See 1.2.2)	Lead finish (See 1.2.3)
1.2.1 Device type(s).				
Dev	ice type	Generic		Circuit function
	01	LT3086-EP		40 V, 2.1 A low dropout adjustable linear regulator
1.2.2 <u>Case outline(s)</u> . T	he case outline(s) are	as specified herein.		
Outline letter	Number of pin	is JEDEC	PUB 95	Package style

		<u>3EDECT 0D 93</u>	I ackage style
Х	16	See figure 1	Plastic thin shrink small outline package (TSSOP)

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator	<u>Material</u>
A B C D E F	Hot solder dip Tin-lead plate Gold plate Palladium Gold flash palladium Tin-lead alloy (BGA/CGA)
Z	Other

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/22602	
COLUMBUS, OHIO	A	16236		
		REV	PAGE 2	

1.3 Absolute maximum ratings. 1/

IN pin voltage OUT pin voltage Input to output differential voltage SET pin voltage SHUTDOWN (SHDN) pin voltage CDC pin (internally clamped, current into pin)	±36 V ±45 V <u>2</u> / 36 V ±45 V
IMON pin voltage	7 V
ILIM pin voltage TRACK pin voltage TEMP pin voltage PWRGN pin voltage	Internally clamped at 1.25 V 0 V, 5 V 36 V
RPWRGD pin voltage Output short circuit duration	
Operating junction temperature range (TJ) Storage temperature range (TSTG) Lead temperature (soldering, 10 seconds)	65°C to +150°C
Thermal resistance, junction to case (θJC)	10°C/W
Thermal resistance, junction to ambient (θ JA)	25°C/W

1.4 Recommended operating conditions.

VIN	. 1.55 V to 40 V
Vout	. +32 V
Operating junction temperature range (T _J)	-55°C to +125°C

- <u>1</u>/ Stresses beyond those listed under "absolute maximum rating" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- 2/ Absolute maximum input-to-output differential voltage is not achievable with all combinations of rated IN pin and OUT pin voltages. With the IN pin at 45 V, the OUT pin may not be pulled below 0 V. The total IN to OUT differential voltage must not exceed ±45 V.
- <u>3</u>/ The device is tested and specified under pulse load conditions such that T_J ≅ T_A. The device is 100% tested over the -55°C to 125°C operating junction temperature range. High junction temperatures degrade operating lifetimes. Operating lifetime is derated at junction temperatures greater than 125°C.
- <u>4</u>/ Maximum junction temperature limits operating conditions. The regulated output voltage specification does not apply for all possible combinations of input voltage and output current. Limit the output currentrange if operating at large input-to-output voltage differentials. Limit the input-to-output voltage differential if operating at maximum output current. Current limit foldback limits the maximum output current as a function of input-to-output voltage. See Current Limit versus VIN VOUT in the manufacturer's datasheet.
- <u>5</u>/ The integrated circuit (IC) includes overtemperature protection circuitry that protects the device during momentary overload conditions. Junction temperature exceeds 125°C when the over temperature circuitry is active unless thermallimit is externally set by loading the TEMP pin. Continuous operation above the specified maximum junction temperature may impair device reliability.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/22602
		REV	PAGE 3

2. APPLICABLE DOCUMENTS

JEDEC Solid State Technology Association

JEDEC PUB 95 - Registered and Standard Outlines for Semiconductor Devices

(Copies of these documents are available online at https://www.jedec.org.)

3. REQUIREMENTS

3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:

- A. Manufacturer's name, CAGE code, or logo
- B. Pin 1 identifier
- C. ESDS identification (optional)

3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.

3.4 <u>Design, construction, and physical dimension</u>. The design, construction, and physical dimensions are as specified herein.

3.5 Diagrams.

3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.

3.5.2 <u>Terminal connections</u>. The terminal connections shall be as shown in figure 2.

3.5.3 Block diagram. The block diagram shall be as shown in figure 3.

DLA LAND AND MARITIME	SIZE CODE IDENT NO.		DWG NO.		
COLUMBUS, OHIO	A 16236		V62/22602		
		REV	PAGE 4		

Test	Symbol	Conditions	Temperature, TA	Device type	Lir	nits	Unit
					Min	Max	
Minimum input <u>2</u> / voltage		Iload = 2.1 A, ΔVout = -1 %	-55°C to +125°C	01		1.55	V
-					1.4 t	ypical	
Reference voltage	VSET	1.55 V < VIN < 40 V,	TJ < +125°C	01	396	404	mV
<u>3/ 4</u> /		1 mA < ILOAD < 2.1 A			400 t	ypical	
Reference current	ISET	1.55 V < VIN < 40 V,	-55°C to +125°C	01	49.5	50.5	μA
		1 mA < ILOAD < 2.1 A			50 ty	/pical	
Line regulation	VSET	VIN = 1.55 V to 40 V, ILOAD = 1 mA	TJ < +125°C	01		0.8	mV
			-55°C to +125°C		0.1 t	ypical	
	ISET	VIN = 1.55 V to 40 V, ILOAD = 1 mA	TJ < +125°C		-0.12		μA
					-0.03	typical	
Load regulation <u>5/ 6</u> /	VSET	ILOAD = 1 mA to 2.1 A,	TJ < +125°C	01		1	mV
		VIN = VOUT + 0.55 V			0.25	typical	
	ISET	ILOAD = 1 mA to 2.1 A,				0.08	μA
		VIN = VOUT + 0.55 V			0.02	typical	
Minimum load <u>7</u> / current			-55°C to +125°C	01		1	mA
Dropout voltage <u>6</u> / <u>8</u> /		ILOAD = 1 mA	+25°C	01		65	mV
VIN = VOUT(NOMINAL)					10 ty	/pical	
			-55°C to +125°C			100	
		ILOAD = 100 mA	+25°C			135	1
					100 t	ypical]
			-55°C to +125°C			160	
		ILOAD = 500 mA	+25°C	25°C		195	1
					150 t	ypical	
			-55°C to +125°C			235	

TABLE I. <u>Electrical performance characteristics</u>. <u>1</u>/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/22602
		REV	PAGE 5

Test	Symbol	Conditions	Temperature, TA	Device type	Lin	nits	Unit
					Min	Max	
Dropout voltage <u>6</u> / <u>8</u> /		ILOAD = 1.5 A	+25°C	01		335	mV
VIN = VOUT(NOMINAL)					260 t	ypical	
			-55°C to +125°C			425	
		ILOAD = 2.1 A	+25°C			415	
					330 t	ypical	
			-55°C to +125°C			540	
GND pin current <u>6/ 9</u> /		ILOAD = 0 μA	-55°C to +125°C	01		2.4	mA
VIN = VOUT(NOMINAL) +					1.2 ty	/pical	
0.55 V		ILOAD = 1 mA	_			2.6	
	1.3 typic	/pical]				
		ILOAD = 100 mA				3.6	
					1.8 ty	/pical	
		ILOAD = 500 mA				9	
					4.5 ty	/pical	
		ILOAD = 1.5 A	_			46	
					23 ty	pical	
		ILOAD = 2.1 A				88	
					44 ty	pical	
Quiescent current in shutdown		VIN = 40 V, V <u>SHDN</u> = 0 V	+25°C	01		1	μA
Shudown					0.1 ty	/pical	
Output voltage noise		CSET = 0.01 F, COUT = 10 μF, ILOAD = 2.1 A, VOUT = 5 V, BW = 10 Hz to 100 kHz	+25°C	01	40 ty	vpical	μVRMS

TABLE I. <u>Electrical performance characteristics</u> – Continued. <u>1</u>/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/22602
		REV	PAGE 6

Test	Symbol	Conditions	Temperature, TA	Device type	Lin	nits	Unit
					Min	Max	
Shutdown threshold		VOUT = off to on	+25°C	01	1.12	1.32	V
					1.22 t	ypical	
		VOUT = on to off			0.85		
					1.03 t	ypical	
SHDN pin current <u>10</u> /		$V\overline{SHDN} = 0 V$	-55°C to +125°C	01		1	μA
1.55 < VIN < 40 V		V SHDN = 40 V				35	
					15 ty	pical	
TEMP voltage <u>11</u> /			TJ = +25°C	01	0.25 t	ypical	V
			TJ = +125°C	25°C		ypical	
TEMP error <u>11</u> /		ITEMP = 0	$0^{\circ}C < T_J < 125^{\circ}C$	01	-0.09	0.09	V
		ITEMP = 0 μA to 80 μA			-0.1		
ITEMP thermal limit			25°C < TJ < 125°C	01	95	105	μΑ
current threshold				100 typical		ypical	
IMON output <u>12</u> /		ILOAD = 20 mA, RMON = 1 kΩ	-55°C to +125°C	01	5	75	μA
current					20 ty	pical	
VIN = VOUT(NOMINAL) +		Iload = 500 mA, RMON = 330 Ω			440	560	
0.55 V					500 t	ypical	
		Iload = 1 A, Rmon = 330 Ω			0.95	1.05	mA
					1.00 t	ypical	
		ILOAD = 1.5 A, RMON = 330 Ω			1.43	1.57	
					1.50 t	ypical	
		ILOAD = 2.1 A, RMON = 330 Ω			2.02	2.18	
					2.10 t	ypical	

TABLE I. <u>Electrical performance characteristics</u> – Continued. <u>1</u>/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/22602
		REV	PAGE 7

Test	Symbol	Conditions	Temperature, TA	Device type	Lir	nits	Unit
					Min	Max	
Output current <u>13</u> / sharing error		R _{MON} = 330 Ω,	TJ = +25°C	01	-10	10	%
-		IOUT(MASTER) = 2.1 A			0 ty	pical	
TRACK pin pull up current		VTRACK = 750 mV	-55°C to +125°C	01	7	25	μA
					15 ty	/pical	
RPWRGD reference voltage	nce 1.55 V < VIN < 40 V -55°C to +125°C		01	390	410	mV	
voltage					400 t	ypical	
RPWRGD reference current		1.55 V < VIN < 40 V	-55°C to +125°C	01	48.75	51.25	μA
current					50 typical		
RPWRGD reference voltage hysteresis		1.55 V < VIN < 40 V	+25°C	01	2.4 typical		mV
RPWRGD reference current hysteresis		1.55 V < VIN < 40 V	+25°C	01	300 t	ypical	nA
PWRGD VOL		IPWRGD = 200 A (fault condition)	-55°C to +125°C	01		200	mV
					55 ty	/pical	-
PWRGD internal time		VOL to VOH (rising edge)	-55°C to +125°C	01	8	25	μs
delay					17 typical		-
PWRGD pin leakage current		VPWGRD = 32 V, VRPWGRD = 500 mV	-55°C to +125°C	01		1	μΑ
CDC reference voltage		1.55 V < VIN < 40 V, IMON = 0 V	-55°C to +125°C	01	390	410	mV
					400 typical		
CDC/VIMON voltage gain			-55°C to +125°C	01	0.320	0.343	V/V
					0.333	typical	1
Ripple rejection		VIN = 1.9 V(AVG), VOUT = 1 V,	-55°C to +125°C	01	65		dB
VRIPPLE = 0.5 VPP, fRIPPLE = 120 Hz, ILOA		VRIPPLE = 0.5 VPP, fRIPPLE = 120 Hz, ILOAD = 2.1 A			80 ty	/pical	

TABLE I. Electrical performance characteristics - Continued. 1/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/22602
		REV	PAGE 8

Test	Symbol	Conditions	Temperature, TA	Device type	Lin	nits	Unit
					Min	Max	
Internal current limit		VIN = 1.55 V	-55°C to +125°C	01	2.2	2.9	А
					2.4 ty	ypical	
		VIN = VOUT(NOMINAL) + 0.55 V, ΔVOUT = -5% <u>6</u> / <u>14</u> /			2.2		
ILIM threshold voltage		1.55 V < VIN < 40 V	-55°C to +125°C	01	775	825	mV
					800 t	ypical	
Input reverse leakage current		VIN = -40 V, VOUT = 0	-55°C to +125°C	01		2	mA
Reverse output <u>15</u> / current		VOUT = 32 V, VIN = 0,	+25°C	01		10	μΑ
		VSHDN = 0			1 ty	pical	

TABLE I.	Electrical	performance	characteristics	- Continued.	1/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/22602
		REV	PAGE 9

TABLE I. Electrical performance characteristics - Continued. 1/

- 1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.
- 2/ The device is tested and specified for these conditions with the SET pin connected to the OUT pin, VOUT = 0.4 V.
- 3/ The device is tested and specified under pulse load conditions such that TJ ≅ TA. The device is 100% tested over the -55°C to +125°C operating junction temperature range. High junction temperatures degrade operating lifetimes. Operating lifetime is derated at junction temperatures greater than +125°C.
- <u>4</u>/ Maximum junction temperature limits operating conditions. The regulated output voltage specification does not apply for all possible combinations of input voltage and output current. Limit the output current range if operating at large input to output voltage differentials. Limit the input to output voltage differential if operating at maximum output current. Current limit foldback limits the maximum output current as a function of input to output voltage. See Current Limit versus VIN VOUT in the manufacturer's datasheet.
- 5/ Load regulation is Kelvin-sensed at the package.
- 6/ To satisfy minimum input voltage requirements, the device is tested and specified for these conditions with a 32 kΩ resistor between OUT and SET for a 2 V output voltage
- 7/ The device requires a minimum load current to ensure proper regulation and stability.
- 8/ Dropout voltage is the minimum input to output voltage differential needed to maintain regulation at a specified output current. In dropout, the output voltage equals: (VIN – VDROPOUT). For low output voltages and certain load conditions, minimum input voltage requirements limit dropout voltage. See the Minimum Input Voltage curve in the manufacturer's datasheet.
- 9/ GND pin current is tested with VIN = VOUT(NOMINAL) + 0.55 V and PWRGD pin floating. GND pin current increases in dropout. See GND pin current curves in the Typical Performance Characteristics section and the manufacturer's data sheet.
- <u>10</u>/ \overline{SHDN} pin current flows into the \overline{SHDN} pin.
- 11/ The TEMP output voltage represents the average die temperature next to the power transistor while the center of the transistor can be significantly hotter during high power conditions. Due to power dissipation and temperature gradients across the die, the TEMP output voltage measurement does not guarantee that absolute maximum junction temperature is not exceeded.
- 12/ The device is tested and specified for these conditions with the IMON and ILIM pins tied together.
- <u>13</u>/ Output current sharing error is the difference in output currents of a slave relative to its master when two device regulators are paralleled. The device is tested as a slave with VTRACK = 0.693 V, RMON = 330 Ω and VSET = 0.4 V, conditions when an ideal master is outputting A. The specification limits account for the slave output tracking error from 2.1 A and the worst-case error that can be contributed by a master: the maximum deviation of VSET from 0.4 V and IMON from 2.1 mA.
- 14/ The integrated circuit (IC) includes overtemperature protection circuitry that protects the device during momentary overload conditions. Junction temperature exceeds +125°C when the over temperature circuitry is active unless thermal limit is externally set by loading the TEMP pin. Continuous operation above the specified maximum junction temperature may impair device reliability.
- 15/ Reverse-output current is tested with the IN pin grounded and the OUT pin forced to a voltage. The current flows into the OUT pin and out of the GND pin.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/22602
		REV	PAGE 10

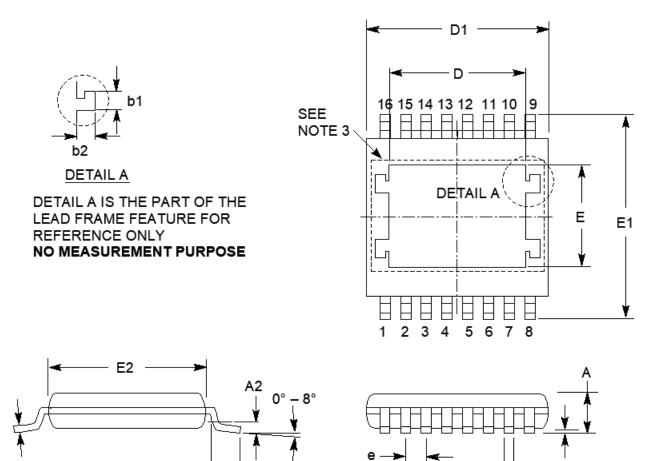


FIGURE 1. Case outline.

с

L

е

A1

b —

-

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/22602
		REV	PAGE 11

Case X

Case X - continued

		Dime	nsions	
Symbol	Inc	hes	Millime	eters
	Minimum	Maximum	Minimum	Maximum
A		.0433		1.10
A1	.002	.006	0.05	0.15
A2	.010	REF	0.25 I	REF
b	.0077	.0118	0.195	0.30
b1	.022	REF	0.56 REF	
b2	.021	REF	0.53 REF	
с	.0035	.0079	0.09	0.20
D		.141		3.58
D1	.193	.201	4.90	5.10
E		.116		2.94
E1	.252	BSC	6.40 E	BSC
E2	.169	.177	4.30	4.50
е	.0256 BSC		0.65 I	BSC
L	.020	.030	0.50	0.75

NOTES:

- 1.
- 2.
- Controlling dimensions are millimeter, inch dimensions are given for reference only. Recommended minimum printed circuit board (PCB) metal size for exposed pad attachment. Bottom exposed paddle may have metal protrusion in this area. This region must be free of any exposed 3. traces or vias on PCB layout.
- 4. D1 and E1 dimensions do not include mold flash. Mold flash shall not exceed 0.150 mm (.006 inch) per side.

FIGURE 1. Case outline - Continued.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/22602
		REV	PAGE 12

Device type	01		
Case outline	х		
Terminal number	Terminal symbol		
1	GND		
2	IMON / ILIM		
3	CDC		
4	PPWRGD		
5	SET		
6	OUT		
7	OUT		
8	GND		
9	GND		
10	IN		
11	IN		
12	SHDN		
13	TEMP		
14	TRACK		
15	PWRGD		
16	GND		
17	Exposed pad		

FIGURE 2. Terminal connections.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/22602
		REV	PAGE 13

Terminal symbol	Description
GND	Ground. The exposed pad of the TSSOP package is an electrical connection to GND. To ensure proper electrical and thermal performance, tie the exposed pad or tab directly to the remaining GND pins of the relevant package and the PCB ground. GND pin current is typically 1.2 mA at zero load and increases to about 44 mA at full load.
IMON / ILIM	 IMON is the Output monitor. This pin sources a current equal to 1/1000 of output load current. Connecting a resistor from IMON to GND programs a load current dependent voltage for monitoring by an ADC. If IMON connects to ILIM, current limit is externally programmable. ILIM is the External current limit programming. This pin externally programs current limit if connected to IMON and a resistor to GND. Current limit activates if the voltage at ILIM equals 0.8 V. Current limit equals: 1000 • (0.8 V / RMON). An internal clamp typically limits the ILIM voltage to 1 V. If external current limit is set to less than 1 A, connect a series 1 kΩ-10 nF
	network in parallel with the R _{MON} resistor for stability. Internal current limit foldback overrides externally programmed current limit if VIN – VOUT differential voltage is excessive. If external current limit programming is not used, then ground this pin.
CDC	Cable drop compensation. Connecting a single resistor (RCDC) between the CDC and SET pins provides programmable cable drop compensation that cancels output voltage errors caused by resistive connections to the load. A resistor (RMON) from IMON to GND is also required to enable Cable Drop Compensation. Choose RMON first based on required current limit. $R_{MON} = 0.8 V \cdot 1000/I_{LIM}$ Calculate the value of RCDC with this formula: $R_{CDC} = (R_{MON} \cdot R_{SET}) / (3000 \cdot R_{WIRE})$ where RWIRE is the total cable or wire resistance to and from the load. From a practical application standpoint, manufacturer recommends limiting cable drop compensation to 20% of V _{OUT} for applications needing good regulation. The limiting factor is variations in wire temperature as copper wire resistance changes about 19% for a 50°C temperature change. If output regulation requirements are loose (for example, when using a secondary regulator), cable drop compensation of up to 50% may be used.
Ppwrgd	Power good threshold voltage programming. This pin is the input to the power good comparator. Connecting a resistor between OUT and RPWRGD programs an adjustable power good threshold voltage. The threshold voltage is 0.4 V on the RPWRGD pin, and a 50 μ A current source is connected from RPWRGD to GND. If the voltage at RPWRGD is less than 0.4 V, the PWRGD flag asserts and pulls low. If the voltage at RPWRGD is greater than 0.4 V, the PWRGD flag de-asserts and becomes high impedance. For most applications, PWRGD is pulled high with a pull-up resistor. Calculate the value of RPWRGD with this formula: RPWRGD = (X • VOUT(NOMINAL) - 0.4 V) / 50 μ A where X is normally in the 85% to 95% range. A 17 μ s deglitching filter suppresses false tripping of the PWRGD flag at the rising edge of PWRGD with instant reset. Hysteresis at the RPWRGD pin is typically 0.6% on the 0.4 V threshold and the 50 μ A current source.

FIGURE 2. <u>Terminal connections</u>. – continued.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/22602
		REV	PAGE 14

Terminal	
Terminal symbol	Description
SET	Output voltage programming. This pin is the error amplifier's inverting terminal. It regulates to 0.4 V and a 50 μ A current source is connected from SET to GND. Connecting a single resistor from OUT to SET programs output voltage. Calculate the value of the required resistor from the formula: RSET = (VOUT – 0.4 V) / 50 μ A. Connecting a capacitor in parallel with RSET provides output voltage soft start capability, improves transient response and decreases output voltage noise. The device error amplifier design is configured so that the regulator always operates in unity-gain.
OUT	Output. These pin(s) supply power to the load. Connect all OUT pins together on the package for proper operation. Stability requirements demand a minimum 10 μ F ceramic output capacitor with an ESR less than 100 m Ω to prevent oscillations. Large load transients require larger output capacitance to limit peak voltage transients. Permissible output voltage range is 0.4 V to 32 V. The device requires a 1 mA minimum load current to ensure proper regulation and stability.
IN	Input. These pin(s) supply power to the device. Connect all IN pins together for proper operation. The device requires a local IN bypass capacitor if it is located more than a few inches from the main input filter capacitor. In general, battery output impedance rises with frequency, so adding a bypass capacitor in battery powered circuits is advisable. A 10 μ F minimum input capacitor generally suffices. The IN pin(s) withstand a reverse voltage of 45 V. The device limits current flow and no negative voltage appears at OUT. The device protects itself and the load against batteries that are plugged in backwards
SHDN	Shutdown/UVLO. Pulling the \overline{SHDN} pin typically below 1 V puts the device into a low power state and turns the output off. Quiescent current in shut- down is typically less than 1 μ A. The \overline{SHDN} pin turn-on threshold is typically 1.22 V. This pin may either be used as a shutdown function or as an undervoltage lockout function. If using this pin as an undervoltage lockout function, use a resistor divider between IN and GND with the tap point tied to \overline{SHDN} . If using the pin as a shutdown function, drive the pin with either logic or an open-collector/drain with a pull-up resistor. The resistor supplies the pull-up current to the open-collector/drain logic, normally several microamperes, and the \overline{SHDN} pin current, typically less than 10 μ A at 6 V. If unused, connect the SHDN pin to IN.

FIGURE 2. <u>Terminal connections</u>. – continued.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/22602
		REV	PAGE 15

—	
Terminal symbol	Description
TEMP	Die junction temperature. This pin outputs a voltage indicating the device average die junction temperature. At 25°C, this pin typically outputs 250 mV. The TEMP pin slope equals 10 mV/°C so that at 125°C, this pin typically outputs 1.25 V. This pin does not read temperatures less than 0°C. The TEMP pin is not meant to be an accurate temperature sensor, but is useful for debug, monitoring and calculating thermal resistance of the package mounted to the PCB. The TEMP pin also incorporates the ability to program a thermal limit temperature lower than the internal typical thermal shutdown temperature of 165°C. Tying a resistor from TEMP to GND programs the thermal limit temperature with a 100 μ A trip point. Calculate the value of the resistor from the formula: RTEMP = (TSHDN • (10 mV/°C)) / 100 μ A. where TSHDN is the desired die thermal limit temperature. There are several degrees of hysteresis in the thermal shutdown that cycles the regulator output on and off. Limit the capacitance on the TEMP pin to less than 100 pF. To prevent saturation in the TEMP output device, ensure that VIN is higher than VTEMP by 250 mV.
TRACK	Track pin for paralleling. The TRACK pin allows multiple device to be paralleled in a master/ slave(s) configuration for higher output current applications. This also allows heat to be spread out on the PCB. This circuit technique does not require ballast resistors and does not degrade load regulation. Tying the TRACK pin of the slave device(s) to the IMON/ILIM pins of the master device enables this function. If the TRACK function is unused, TRACK is in a default clamped high state. A TRACK pin voltage below 1.2 V on slave device (s) shuts off the internal 50 µA reference current at SET such that only the 50 µA reference current of the master device is active. All SET pins must be tied together in a master/ slave configuration.
PWRGD	Power good flag. The PWRGD pin is an open-collector logic pin connected to the output of the power good comparator. PWRGD asserts low if the RPWRGD pin is less than 400 mV. The maximum low output level of 200 mV over temperature is defined for 200 µA of sink current. If RPWRGD is greater than 400 mV, the PWRGD pin de-asserts and becomes high impedance. The PWRGD pin may be pulled to 36 V without damaging any internal circuitry regardless of the input voltage.

FIGURE 2. <u>Terminal connections</u>. – continued.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/22602
		REV	PAGE 16

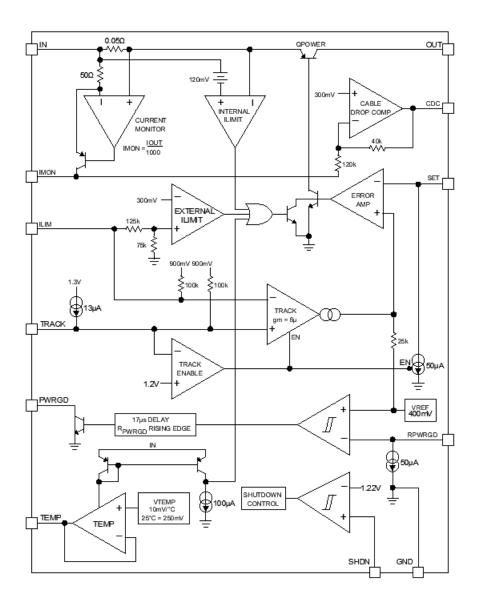


FIGURE 3. Block diagram.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/22602
		REV	PAGE 17

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.

6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.

6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at <u>https://landandmaritimeapps.dla.mil/programs/smcr/</u>.

Vendor item drawing administrative control number <u>1</u> /	Device manufacturer CAGE code	Mode of transportation and quantity	Top side marking	Vendor part number
V62/22602-01XE	24355	Tube, 95 units	3086FE-EP	LT3086FE#Z-EP
		Reel, 2,500 units	3086FE-EP	LT3086FE#TRZ-EP

 The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code

24355

Source of supply

Analog Devices Route 1 Industrial Park P.O. Box 9106 Norwood, MA 02062 Point of contact: 20 Alpha Road Chelmsford, MA 01824-4123

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/22602
COLUMBUS, OHIO	A	16236	
		REV	PAGE 18