

RH5596S-CSL

Commercial Space Product

100 MHz to 40 GHz Linear-in-dB RMS Power Detector with 35 dB Dynamic Range

FEATURES

- ▶ Ultrawide matched input frequency range: 100 MHz to 40 GHz
- ▶ 35 dB linear dynamic range (<±1 dB error)</p>
- ▶ 29 mV/dB logarithmic slope
- ±1 dB flat response from 200 MHz to 30 GHz
- Accurate RMS power measurement of high crest factors (up to 12 dB) modulated waveforms
- ▶ Low-power shutdown mode
- ▶ Low-supply current: 30 mA at 3.3 V (typical)
- ▶ 8-Lead LFCSP (05-08-1957)
- ► -40°C to +125°C rated with guaranteed log slope and log intercept

COMMERCIAL SPACE FEATURES

- Supports aerospace applications
- ▶ Wafer diffusion lot traceability
- ▶ Radiation monitors
 - No single event latchup (SEL) occurs at effective linear energy transfer (LET): ≤ 80 MeV-cm²/mg
 - ► Total ionizing dose (TID)
- Outgassing characterization

APPLICATIONS

- ▶ Low and medium Earth orbit (LEO/MEO) space payloads
- Avionics
- ▶ Point to point microwave links
- Instrumentation and measurement equipment
- Military radios
- Long-term evolution (LTE), Wi-Fi, WiMAX wireless networks
- RMS power measurement
- Receive and transmit gain control
- RF power amplifier (PA) transmit power control

GENERAL DESCRIPTION

The RH5596S-CSL is a high accuracy RMS power detector that provides a very wide RF input bandwidth, from 100 MHz up to 40 GHz. The wide bandwidth makes the device suitable for a wide range of RF and microwave applications, such as point to point microwave links, instrumentation, and power control applications.

The DC output voltage of the detector is an accurate representation of the average signal power applied to the RF input. The response is linear in dB with 29 mV/dB logarithmic slope over a 35 dB dynamic range with typically better than ± 1 dB accuracy over the full operating temperature range and RF frequency range, from 200 MHz to 30 GHz. In addition, the device response of the RH5596S-CSL has ± 1 dB flatness within the frequency range of 200 MHz to 30 GHz. The detector is particularly suited for measurement of waveforms with a crest factor (CF) as high as 12 dB and waveforms that exhibit a significant variation of the CF during measurement.

To achieve higher accuracy and lower output ripple, the averaging bandwidth can be externally adjusted by a capacitor connected between the FLTR pin and OUT pin.

The enable interface switches the RH5596S-CSL between an active measurement mode and a low-power shutdown mode.

Additional application and technical information can be found in the Commercial Space Products Program brochure and the LTC5596 data sheet.

TABLE OF CONTENTS

Features1	Outgas Testing
Commercial Space Features1	
Applications1	Electrostatic Discharge (ESD) Ratings
General Description1	3 \ , ,
Specifications3	Pin Configuration and Function Descriptions 10
Radiation Test and Limit Specifications8	Typical Performance Characteristics11
Absolute Maximum Ratings9	Outline Dimensions
Thermal Resistance9	Ordering Guide12

REVISION HISTORY

7/2023—Revision 0: Initial Version

analog.com Rev. 0 | 2 of 12

SPECIFICATIONS

 T_A = 25°C, V_{CC} = 3.3 V, EN = 3.3 V, unless otherwise noted. Continuous wave, 50 Ω source at RF_{IN}, RF frequency (f_{RF}) = 2140 MHz, unless otherwise noted.

Table 1. Electrical Characteristics

Parameter	Test Conditions/Comments ¹	Temperature ²	Min	Тур	Max	Unit
RF INPUT						
Input Frequency Range				0.1 to 40		GHz
Input Impedance				52 50		Ω fF
DETECTOR RESPONSE (RF _{IN} TO OUT)						
RF Input Power Range, T _A = 25°C	f _{RF} = 50 MHz			-33.2 to +6.3		dBm
±1 dB Log Linearity Error ^{3, 4}	f _{RF} = 100 MHz			-37.1 to +5.8		dBm
	f _{RF} = 500 MHz			-40.8 to +3.3		dBm
	f _{RF} = 2.14 GHz			-39.1 to +4.2		dBm
	f _{RF} = 5.8 GHz			-39.7 to +3.7		dBm
	f _{RF} = 7.6 GHz			-38.9 to +4.3		dBm
	f _{RF} = 10 GHz			-39.0 to +4.2		dBm
	f _{RF} = 12 GHz			-38.5 to +4.5		dBm
	f _{RF} = 15 GHz			-37.5 to +5.5		dBm
	f _{RF} = 18 GHz			-38.4 to +4.6		dBm
	f _{RF} = 24 GHz			-39.3 to +0.2		dBm
	f _{RF} = 26 GHz			-37.8 to +5.0		dBm
	f _{RF} = 28 GHz			-40.1 to −0.6		dBm
	f _{RF} = 30 GHz			-39.8 to +3.1		dBm
	f _{RF} = 35 GHz			-37.3 to +3.1		dBm
	f _{RF} = 38 GHz			-34.2 to +3.6		dBm
	f _{RF} = 40 GHz			-32.6 to +2.9		dBm
	f _{RF} = 43.5 GHz			-28.2 to +4.6		dBm
RF Input Power Range Over	f _{RF} = 50 MHz	Full		-33.2 to +4.6		dBm
Operating Temperature Range	f _{RF} = 100 MHz	Full		-37.1 to +5.0		dBm
±1 dB Log Linearity Error ^{3, 4}	f _{RF} = 500 MHz	Full		-37.4 to -1.2		dBm
11 ab 20g Embanty Emb	f _{RF} = 2.14 GHz	Full		-39.1 to -0.2		dBm
	f _{RF} = 5.8 GHz	Full		-39.6 to -0.7		dBm
	f _{RF} = 7.6 GHz	Full		-38.7 to -0.2		dBm
	f _{RF} = 10 GHz	Full		-38.8 to -0.5		dBm
	f _{RF} = 12 GHz	Full		-36.0 to +0.3		dBm
	f _{RF} = 15 GHz	Full		-37.3 to +1.4		dBm
	f _{RF} = 18 GHz	Full		-38.2 to -0.1		dBm
	f _{RF} = 24 GHz	Full		-39.3 to -1.2		dBm
	f _{RF} = 26 GHz	Full		-37.3 to -0.1		dBm
	f _{RF} = 28 GHz	Full		-40.0 to -2.5		dBm
	1	Full		-40.0 to -2.5 -39.8 to -2.1		dBm
14 F dD Log Linearity From	f _{RF} = 30 GHz			-39.6 to -2.1 -37.7 to +1.3		
±1.5 dB Log Linearity Error	f _{RF} = 35 GHz	Full				dBm
	f _{RF} = 38 GHz	Full		-34.4 to +2.3		dBm
	f _{RF} = 40 GHz	Full		-33.1 to +1.7		dBm
Linear Dimensia Densia T	f _{RF} = 43.5 GHz	Full		-28.3 to +3.1		dBm
Linear Dynamic Range, T _A = 25°C ⁴	f _{RF} = 50 MHz			39.5		dB
	f _{RF} = 100 MHz			42.9		dB
	f _{RF} = 500 MHz			44.1		dB
	f _{RF} = 2.14 GHz			43.3		dB
	$f_{RF} = 5.8 \text{ GHz}$			43.3		dB
	f _{RF} = 7.6 GHz			43.2		dB

analog.com Rev. 0 | 3 of 12

SPECIFICATIONS

Table 1. Electrical Characteristics (Continued)

arameter	Test Conditions/Comments ¹	Temperature ²	Min	Тур	Max	Unit
	f _{RF} = 10 GHz			43.1		dB
	f _{RF} = 12 GHz			43.1		dB
	f _{RF} = 15 GHz			43.0		dB
	f _{RF} = 18 GHz			43.0		dB
	f _{RF} = 24 GHz			39.5		dB
	f _{RF} = 26 GHz			42.8		dB
	f _{RF} = 28 GHz			39.5		dB
	f _{RF} = 30 GHz			43.0		dB
	f _{RF} = 35 GHz			40.4		dB
	f _{RF} = 38 GHz			37.7		dB
	f _{RF} = 40 GHz			35.6		dB
	f _{RF} = 43.5 GHz			32.8		dB
Linear Dynamic Range Over	f _{RF} = 50 MHz	Full		37.8		dB
Operating Temperature Range ⁴	f _{RF} = 100 MHz	Full		42.1		dB
operating reimperature riange	f _{RF} = 500 MHz	Full		36.2		dB
	f _{RF} = 2.14 GHz	Full		38.9		dB
	f _{RF} = 5.8 GHz	Full		38.8		dB
	f _{RF} = 7.6 GHz	Full		38.5		dB
	f _{RF} = 10 GHz	Full		38.3		dB
		Full		36.3		
	f _{RF} = 12 GHz					dB
	f _{RF} = 15 GHz	Full		38.7		dB
	f _{RF} = 18 GHz	Full		38.1		dB
	f _{RF} = 24 GHz	Full		38.1		dB
	f _{RF} = 26 GHz	Full		37.2		dB
	f _{RF} = 28 GHz	Full		37.6		dB
	$f_{RF} = 30 \text{ GHz}$	Full		37.7		dB
±1.5 dB Log Linearity Error	$f_{RF} = 35 \text{ GHz}$	Full		39.0		dB
	f _{RF} = 38 GHz	Full		36.7		dB
	f _{RF} = 40 GHz	Full		34.7		dB
	f _{RF} = 43.5 GHz	Full		31.4		dB
Logarithmic Slope, T _A = 25°C ⁵	f _{RF} = 50 MHz			28.2		mV/dE
	f _{RF} = 100 MHz			28.9		mV/dl
	f _{RF} = 500 MHz			28.2		mV/dl
	f _{RF} = 2.14 GHz			29.3		mV/dE
	f _{RF} = 5.8 GHz			28.7		mV/dl
	f _{RF} = 7.6 GHz			28.8		mV/dE
	f _{RF} = 8 GHz			28.6		mV/dl
	f _{RF} = 10 GHz			28.8		mV/dl
	f _{RF} = 12 GHz			28.9		mV/dl
	f _{RF} = 15 GHz			29.0		mV/dl
	f _{RF} = 18 GHz			28.9		mV/dl
	f _{RF} = 20 GHz			28.8		mV/dl
	f _{RF} = 24 GHz			28.9		mV/dl
	f _{RF} = 26 GHz			29.1		mV/dE
	f _{RF} = 28 GHz			29.1		mV/dl
	f _{RF} = 30 GHz			28.9		mV/dl
	f _{RF} = 35 GHz			29.0		mV/dl
	f _{RF} = 38 GHz			29.2		mV/dE
	f _{RF} = 40 GHz			29.2 29.5		mV/dE

analog.com Rev. 0 | 4 of 12

SPECIFICATIONS

Table 1. Electrical Characteristics (Continued)

arameter	Test Conditions/Comments ¹	Temperature ²	Min	Тур	Max	Unit
	f _{RF} = 43.5 GHz			29.7		mV/dB
Logarithmic Slope	f _{RF} = 50 MHz	Full		27.6 to 28.6		mV/dB
Operating Temperature Range ⁵	f _{RF} = 100 MHz	Full		28.2 to 29.4		mV/dB
	f _{RF} = 500 MHz	Full		27.4 to 28.9		mV/dB
	f _{RF} = 2.14 GHz	Full		28.0 to 29.5		mV/dB
	f _{RF} = 5.8 GHz	Full		28.0 to 29.4		mV/dB
	f _{RF} = 7.6 GHz	Full		28.1 to 29.5		mV/dB
	f _{RF} = 8 GHz	Full		28.5 to 28.6		mV/dB
	f _{RF} = 10 GHz	Full		28.1 to 29.5		mV/dB
	f _{RF} = 12 GHz	Full		28.2 to 29.5		mV/dB
	f _{RF} = 15 GHz	Full		28.3 to 29.4		mV/dB
	f _{RF} = 18 GHz	Full		28.2 to 29.6		mV/dB
	f _{RF} = 20 GHz	Full		28.6 to 28.8		mV/dB
	f _{RF} = 24 GHz	Full		28.3 to 29.5		mV/dB
	f _{RF} = 26 GHz	Full		28.4 to 29.6		mV/dB
	f _{RF} = 28 GHz	Full		28.4 to 29.6		mV/dB
	f _{RF} = 30 GHz	Full		28.3 to 29.5		mV/dB
	f _{RF} = 35 GHz	Full		28.4 to 29.3		mV/dB
	f _{RF} = 38 GHz	Full		28.6 to 29.4		mV/dB
	$f_{RF} = 40 \text{ GHz}$	Full		28.8 to 29.7		mV/dB
	$f_{RF} = 43.5 \text{ GHz}$	Full		29.2 to 29.7		mV/dB
Logarithmic Intercept, T _A = 25°C ⁶	f _{RF} = 50 MHz	Full		-33.1		dBm
Logantinnic intercept, 1 _A = 25 C						
	f _{RF} = 100 MHz			-36.2		dBm
	f _{RF} = 500 MHz			-39.9		dBm
	f _{RF} = 2.14 GHz			-39.0		dBm
	f _{RF} = 5.8 GHz			-38.7		dBm
	$f_{RF} = 7.6 \text{ GHz}$			-37.9		dBm
	f _{RF} = 8 GHz			-39.0		dBm
	f _{RF} = 10 GHz			-38.0		dBm
	f _{RF} = 12 GHz			-37.6		dBm
	f _{RF} = 15 GHz			-36.5		dBm
	f _{RF} = 18 GHz			-37.4		dBm
	f _{RF} = 20 GHz			- 37.1		dBm
	f _{RF} = 24 GHz			-38.4		dBm
	f _{RF} = 26 GHz			-36.8		dBm
	f _{RF} = 28 GHz			- 37.1		dBm
	f _{RF} = 30 GHz			-38.9		dBm
	f _{RF} = 35 GHz			-36.3		dBm
	f _{RF} = 38 GHz			-33.2		dBm
	f _{RF} = 40 GHz			-31.7		dBm
	f _{RF} = 43.5 GHz			-27.2		dBm
Logarithmic Intercept Over	f _{RF} = 50 MHz	Full		-32.6 to -31.5		dBm
Operating Temperature Range ⁶	f _{RF} = 100 MHz	Full		-36.5 to -35.5		dBm
. • •	f _{RF} = 500 MHz	Full		-40.4 to -38.9		dBm
	f _{RF} = 2.14 GHz	Full		-39.7 to -37.2		dBm
	f _{RF} = 5.8 GHz	Full		-39.2 to -37.7		dBm
	f _{RF} = 7.6 GHz	Full		-38.5 to -36.9		dBm
	f _{RF} = 8 GHz	Full		-39.1 to -38.8		dBm
	f _{RF} = 10 GHz	Full		-38.6 to -37.0		dBm

analog.com Rev. 0 | 5 of 12

SPECIFICATIONS

Table 1. Electrical Characteristics (Continued)

Parameter	Test Conditions/Comments ¹	Temperature ²	Min	Тур	Max	Unit
	f _{RF} = 12 GHz	Full		-38.1 to -36.6		dBm
	f _{RF} = 15 GHz	Full		-37.0 to -35.7		dBm
	f _{RF} = 18 GHz	Full		-38.1 to -36.6		dBm
	f _{RF} = 20 GHz	Full		-37.3 to -36.8		dBm
	f _{RF} = 24 GHz	Full		-38.8 to -37.5		dBm
	f _{RF} = 26 GHz	Full		-37.5 to -36.1		dBm
	f _{RF} = 28 GHz	Full		-37.7 to -36.2		dBm
	f _{RF} = 30 GHz	Full		-39.4 to -38.3		dBm
	f _{RF} = 35 GHz	Full		-37.1 to -35.2		dBm
	f _{RF} = 38 GHz	Full		-34.1 to -32.0		dBm
	f _{RF} = 40 GHz	Full		-32.8 to -30.6		dBm
	f _{RF} = 43.5 GHz	Full		-28.3 to -26.2		dBm
Linear Dynamic Range for Various Modulation	Code-division multiple access	. 4		-39.7 to +1.7		dB
Formats ^{2, 7}	(CDMA), 9 channels, forward			00.1 10 11.1		45
	CDMA, 32 channels, forward			-39.6 to +1.7		dB
	CDMA, 64 channels, forward			-39.5 to +1.7		dB
	CDMA, 3 carriers			-40.4 to +3.0		dB
	CDMA, 4 carriers			-40.3 to +2.7		dB
	Wideband code-division multiple			-39.9 to +1.8		dB
	access (W-CDMA), 1 channel, up			00.0 10 11.0		45
	W-CDMA, 1 channel, down			-39.9 to +1.7		dB
	W-CDMA, 2 carriers			-40.0 to +1.9		dB
	W-CDMA, 3 carriers			-40.4 to +2.0		dB
	W-CDMA, 4 carriers			-40.3 to +1.7		dB
	additive white Gaussian noise (AWGN), 5 MHz bandwidth			-40.2 to +2.6		dB
	AWGN, 10 MHz bandwidth			-40.2 to +3.1		dB
	AWGN, 15 MHz bandwidth			-40.1 to +3.1		dB
Propagation Delay ⁸	Input power (P _{IN}) from –55 dBm to			1.2		μs
	0 dBm			1.2		μδ
OUT INTERFACE						
Output DC Voltage	No RF signal present, EN = 1.1 V			1.0	5.0	mV
	P _{IN} = 10 dBm, EN = 1.1 V		1.150	1.2	1.250	V
Output-Voltage Droop	25 mA sourcing		-35	+6	+20	mV
	25 mA sinking			30		mV
Integrated Output Noise	1 kHz to 6.5 kHz, P _{IN} = 0 dBm			22		μV rms
Rise Time ⁹	50 Ω load at OUT			2.9		μs
Fall Time ¹⁰	50 Ω load at OUT			8.1		μs
ENABLE (EN) LOW = OFF, HIGH = ON						
EN Input High Voltage (On)		Full	1.1			V
EN Input Low Voltage (Off)		Full			0.6	V
EN Pin Input Current				50	500	nA
Turn-On Time ¹¹	50 Ω load at OUT			8		μs
Turn-Off Time ¹²	50 Ω load at OUT			45		ns
	1 MΩ 11 pF load at OUT			100		μs
POWER SUPPLY	H 1					<u>'</u>
Supply Voltage		Full	2.7	3.3	3.6	V
Active Supply Current	EN = 3.3 V		25	30	35	mA

analog.com Rev. 0 | 6 of 12

SPECIFICATIONS

Table 1. Electrical Characteristics (Continued)

Parameter	Test Conditions/Comments ¹	Temperature ²	Min	Тур	Max	Unit
Shutdown Supply Current	EN = 0 V			50	500	nA

¹ f_{RF} = 5.8 GHz to 40 GHz range are guaranteed by bench characterization.

- ⁴ Range for which the log linearity error is within ±1 dB.
- ⁵ Slope of the best fit straight line obtained by linear regression.
- Extrapolated input power level (straight line obtained by linear regression) where the voltage at OUT equals 0 V.
- Power range for which log linearity error is within ±1 dB, relative to best fit straight line for continuous wave data.³
- 8 Delay from 50% change in RF_{IN} to 50% change in output voltage.
- Time required to change voltage at OUT pin from 10% to 90% of final value. P_{IN} stepped from -55 dBm to 0 dBm.
- 10 Time required to change voltage at OUT pin from 90% to 10% of initial value. P_{IN} stepped from 0 dBm to -55 dBm.
- 11 Time required to change voltage at OUT pin to 90% of final value. P_{IN} = 0 dBm.
- 12 Time required to change voltage at OUT pin to 10% of initial value. P_{IN} = 0 dBm. For higher load impedance, the turn-off time is larger because the OUT interface is high-impedance in shutdown mode.

analog.com Rev. 0 | 7 of 12

The RH5596S-CSL is guaranteed functional over the case temperature range -40°C to +125°C. All limits at -40°C and +125°C are guaranteed by 100% production testing.

³ Log linearity error is the input-referred power measurement error relative to the best fit straight line (V_{OUT} vs. P_{IN} in dBm) obtained by linear regression at T_A = 25°C. The input power range used for the linear regression is from –32 dBm to +5 dBm for 50 MHz, from –37 dBm to –5 dBm for 100 MHz through 35 GHz, from –34 dBm to –5 dBm for 38 GHz, from –32 dBm to –5 dBm for 40 GHz, and from –28 dBm to –5 dBm for 43.5 GHz. An offset of 0.5 dB is added to the log intercept for frequencies from 50 MHz to 38 GHz, and 0.25 dB is added for 40 GHz and 43.5 GHz to center the errors over the full temperature range. See also the LTC5596 data sheet for an explanation of measurement error metrics.

SPECIFICATIONS

RADIATION TEST AND LIMIT SPECIFICATIONS

 T_A = 25°C, V_{CC} = 3.3 V, and EN = 3.3 V. Continuous wave, 50 Ω source at RF_{IN}, f_{RF} = 2140 MHz, unless otherwise noted. Total ionizing dose (TID) testing is characterized to 30 krads.

Table 2. Radiation Test and Limit Specifications

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
LOGARITHMIC SLOPE, T _A = 25°C ¹	f _{RF} = 100 MHz		28.9		mV/dB
	f _{RF} = 2.14 GHz		29.3		mV/dB
	f _{RF} = 8 GHz		28.6		mV/dB
	f _{RF} = 18 GHz		28.9		mV/dB
	f _{RF} = 20 GHz		28.8		mV/dB
LOGARITHMIC INTERCEPT, T _A = 25°C ²	f _{RF} = 100 MHz		-36.2		dBm
	f _{RF} = 2.14 GHz		-39		dBm
	f _{RF} = 8 GHz		-39		dBm
	f _{RF} = 18 GHz		-37.4		dBm
	f _{RF} = 20 GHz		-37.1		dBm
OUT INTERFACE					
Output DC Voltage	No RF signal present, EN = 1.1 V		1.0	5.0	mV
	P _{IN} = 10 dBm, EN = 1.1 V	1.150	1.2	1.250	V
ENABLE (EN) LOW = OFF, HIGH = ON					
EN Pin Input Current			50	500	nA
POWER SUPPLY					
Active Supply Current	EN = 3.3 V	25	30	35	mA
Shutdown Supply Current	EN = 0 V		50	500	nA

¹ Slope of the best fit straight line obtained by linear regression.

analog.com Rev. 0 | 8 of 12

 $^{^{2}}$ Extrapolated input power level (straight line obtained by linear regression) where the voltage at OUT equals 0 V.

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter ¹	Rating
Supply Voltage (V _{CC})	3.8 V
Input Signal Power (RF _{IN}), Average	15 dBm
Input Signal Power (RF _{IN}), Peak ²	20 dBm
DC Voltage at RF _{IN}	-0.3 V to +1 V
DC Voltage at FLTR	-0.3 V to +0.4 V
DC Voltage at EN	-0.3 V to +3.8 V
T_{JMAX}	150°C
Operating Temperature Range	-40°C to 125°C
Storage Temperature Range	-65°C to 150°C

The voltage on all pins must not exceed 3.8 V, V_{CC} + 0.3 V, or be less than -0.3 V. Otherwise, damage to the ESD diodes may occur.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to the printed circuit board (PCB) design and operating environment. Careful attention to the PCB thermal design is required.

 θ_{JC} is the junction to case thermal resistance.

Table 4. Thermal Resistance

Package Type	θ_{JC}	Unit
05-08-1957	25	°C/W

OUTGAS TESTING

The criteria used for the acceptance and rejection of materials must be determined by the user and based upon specific component and system requirements. Historically, a total mass loss (TML) of 1.00% and collected volatile condensable material (CVCM) of 0.10% have been used as screening levels for rejection of spacecraft materials.

Table 5. Outgas Testing

Specification (Tested per ASTM E595-15)	Value	Unit
Total Mass Lost	0.06	%
Collected Volatile Condensable Material	0.01	%
Water Vapor Recovered	0.02	%

RADIATION FEATURES

Table 6. Radiation Features

Specifications	Value	Unit
Maximum Total Dose Available (Dose Rate = 50 rad(Si)/sec to 300 rad(Si)/sec) ¹	30	krad(Si)
No Single Event Latch-Up (SEL) Occurs at Effective Linear Energy Transfer (LET) ²	≤80	MeV- cm ² /mg

Guaranteed by device and process characterization. Contact Analog Devices, Inc., for data available up to 30 krads.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in and ESD-protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

Charged device model (CDM) per ANSI/ESDA/JEDEC JS-002.

ESD Rating for the RH5596S-CSL

Table 7. RH5596S-CSL, 8-Lead Lead Frame Chip Scale Package (LFCSP)

ESD Model	Withstand Threshold (V)	Class
HBM	3500	2
CDM	2000	C3

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

analog.com Rev. 0 | 9 of 12

Not production tested. Guaranteed by design and correlation to production tested parameters.

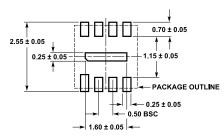
Limits are characterized at initial qualification and after any design or process changes that may affect the SEL characteristics but are not production lot tested, unless specified by the customer through the purchase order or contract. For more information on single event effect (SEE) test results, contact Analog Devices for further data beyond published report on the Analog Devices website.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

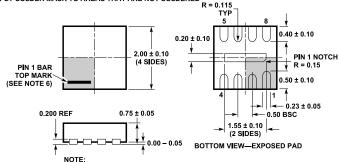
Figure 1. Pin Configuration

Table 8. Pin Function Descriptions

Pin No.	Mnemonic	Description			
1	V _{CC}	Power Supply Pin. Typical current consumption is 30 mA at room temperature. The V _{CC} pin must be externally bypassed with a 1 capacitor.			
2	OUT	Detector Output. The DC voltage at the OUT pin varies linearly with the RF input power level in dBm. The detector output is able to drive 50Ω load. To avoid permanent damage, do not short to V_{CC} or GND. In shutdown mode (EN = low), the detector output pin becomes hig impedance, to avoid discharge of capacitors in an external ripple filter.			
3	FLTR	Filter. An optional capacitor connected between the FLTR pin and the OUT pin (Pin 2) reduces the detector ripple averaging bandwidth, and increases the rise and fall times of the detector. To avoid permanent damage to the circuit, the DC voltage at the FLTR pin must not exceed 0.4 V.			
4, 5, 7	GND	Circuit Ground. All ground pins are internally connected. Pin 5 and Pin 7 must be used as RF return ground and connected to the transmission line interfacing to the RF _{IN} pin (Pin 6).			
6	RF _{IN}	RF Input. The RF _{IN} pin is internally DC-coupled to GND through a 50Ω termination resistor. To avoid damage to the internal circuit, the DC voltage applied to the RF _{IN} pin must not exceed 1 V. The ground signal ground arrangement of Pin 5 through Pin 7 support termination of Pin 6 by a high-frequency transmission line, such as a grounded coplanar waveguide (GCPW). No external decoupling capacitor is necessary as long as the DC voltage on Pin 6 is kept below 1 V.			
8	EN	Chip Enable. A voltage greater than 1.1 V applied to the EN pin brings the device into normal operating mode. A voltage less than 0.6 V brings the device into a low-power shutdown mode. Do not float the EN pin.			
	EPAD	Exposed Pad. The exposed pad must be soldered to the PCB ground.			


analog.com Rev. 0 | 10 of 12

TYPICAL PERFORMANCE CHARACTERISTICS


See the LTC5596 data sheet for the full set of typical performance characteristics plots.

analog.com Rev. 0 | 11 of 12

OUTLINE DIMENSIONS

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

- NOTE:

 1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE

 2. DRAWING NOT TO SCALE

 3. ALL DIMENSIONS ARE IN MILLIMETERS

 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH, MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE

 5. EXPOSED PAD SHALL BE SOLDER PLATED

 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

Figure 2. 8-Lead Plastic LFCSP (2 mm × 2 mm) (05-08-1957)

Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Packing Quantity	Package Option
RH5596HDC#PBF-CSL	-40°C to +125°C	8-Lead Lead Frame Chip Scale Package (LFCSP)	Reel, 500	05-08-1957

¹ RH5596HDC#PBF-CSL is a RoHS compliant part.

