

MAX98366

15V Plug-and-Play Class-D Amplifier with Ultrasound Support

Product Highlights

The MAX98366 is an easy-to-use, low-cost, digital input Class-D amplifier that provides industry-leading, Class-AB audio performance with Class-D efficiency. The digital audio interface automatically recognizes different PCM and TDM clocking schemes, eliminating the need for I²C programming: Simply supply power, LRCLK, BCLK, and digital audio to generate sound. Furthermore, a novel pinout allows customers to use the cost-effective wafer-level package (WLP) without needing expensive in-pad vias. A wide 3V to 15V supply range allows the device to deliver 15W into an 8 Ω load.

The digital audio interface is highly flexible. The devices support I²S, left-justified, and 8-channel time division multiplexed (TDM) data formats. The digital audio interface accepts 8kHz, 16kHz, 32kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz, 176.4kHz, and 192kHz sample rates. The device supports ultrasound use cases and automatically provides a 38.8kHz and higher passband for digital audio input signals at sample rates higher than 48kHz (nominal). Data words can be 16-, 24-, or 32-bit in I²S and left-justified modes and 16- or 32-bit in TDM mode.

Digital audio interface input thresholds are ideal for interfacing to 1.2V and 1.8V logic. The devices can tolerate logic input voltages up to 5.5V.

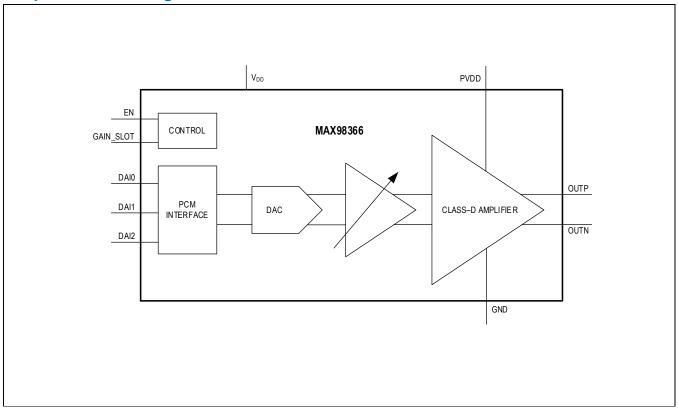
The MAX98366A and MAX98366B have fast 1ms turnon times while the MAX98366C and MAX98366D ramp the volume over 13ms during turn-on and turn-off.

The devices eliminate the need for the external MCLK signal typically used for PCM communication. This reduces EMI and possible board coupling issues in addition to reducing the size and pin count. The devices also feature a very high wideband jitter tolerance (12ns, typ) on BCLK and LRCLK to provide robust operation.

Active emissions-limiting, edge-rate limiting, and overshoot control circuitry greatly reduce EMI. A filterless spread-spectrum modulation scheme eliminates the need for output filtering found in traditional Class-D devices and reduces the component count of the solution.

The devices are specified over the -40°C to +85°C temperature range.

Benefits and Features


- Simple Plug-and-Play Design—No I²C Register Programming Required
- Wide Amplifier Supply Range (3V to 15V)
- Wideband Filters for f_S = 88.2kHz and Higher
- 15W Output Power into 8Ω at PVDD = 15V
- 19.3W Output Power into 6Ω at PVDD = 15V
- 30mW Quiescent Power
- 1.1ms Turn-On Time (for MAX98366A and MAX98366B)
- 92.7% Efficiency (7.0W into R_L = 8Ω, PVDD = 12V)
- 20μV_{RMS} Idle Output Noise (f_S ≤ 48kHz), 37μV_{RMS} Idle Output Noise (f_S > 50kHz)
- 112dB Dynamic Range (f_S ≤ 48kHz), 107dB Dynamic Range (f_S > 50kHz)
- -85dB THD+N at 1kHz
- No MCLK Required
- Sample Rates of 8kHz to 192kHz
- Supports Left, Right, or (Left/2 + Right/2) Output in I2S and Left-Justified Modes
- Sophisticated Edge Rate Control Enables Filterless Class-D Outputs
- Low 0.5µA Shutdown Current
- Class-D Switching Frequency Trimmed to 6% for Better EMI Planning
- Extensive Click-and-Pop Reduction Circuitry
- Robust Short-Circuit and Thermal Protection
- Available in Space-Saving Package: 12-Bump, WLP (1.21mm x 1.78mm, 0.4mm Pitch)

Applications

- Smart Speakers
- Wireless Speakers
- Smart IoT and Smart Home Devices
- Gaming Devices (Audio and Haptics)
- Laptops and Tablets
- Cameras

Ordering Information appears at end of data sheet.

Simplified Block Diagram

TABLE OF CONTENTS

Product Highlights	1
Benefits and Features	1
Applications	1
Simplified Block Diagram	2
Absolute Maximum Ratings	7
Package Information	7
Electrical Characteristics	7
Typical Operating Characteristics	13
Pin Configurations	22
Pin Descriptions	22
Detailed Description	23
EN and Shutdown Mode	23
Standby Mode	23
Digital Audio Interface (DAI) Configuration (Patented)	23
Valid Clock Frequencies	24
MCLK Elimination	25
BCLK Polarity	26
LRCLK Polarity in I ² S/Left-Justified Mode	26
I ² S and Left-Justified Mode	26
TDM Mode	29
Gain Selection	31
DC Blocking Filter	32
DAC Digital Filters	32
Class-D Amplifier	32
Class-D Output Short-Circuit Protection	32
Turn-On and Turn-Off Volume Ramping	32
Click-and-Pop Suppression	32
Ultra-Low EMI Filterless Output Stage	32
Applications Information	33
Ultrasound Performance	33
Filterless Class-D Operation	33
Layout and Grounding	33
WLP GAIN_SLOT Routing	34
Typical Applications Circuits	35
I ² S/Left-Justified Left-Channel Operation with 21.5dBV Output	35
I ² S/Left-Justified Left-Channel Operation with 18.5dBV Output	36

MAX98366

I ² S/Left-Justified Left-Channel Operation with 15.5dBV Output	36
I ² S/Left-Justified Right-Channel Operation with 21.5dBV Output	37
I ² S/Left-Justified Left/2 + Right/2 Operation with 18.5dBV Output	37
I ² S/Left-Justified Stereo Operation with 18.5dBV Output	38
TDM Operation (Gain Fixed at 21.5dB)	39
Ordering Information	40

LIST OF FIGURES

Figure 1. DAI Connections	24
Figure 2. MAX98366A and MAX98366C I ² S Protocol, 16-Bit Resolution	27
Figure 3. MAX98366A and MAX98366C I ² S Protocol, 32-Bit Resolution	27
Figure 4. MAX98366B and MAX98366D Left-Justified Protocol, 16-Bit Resolution	28
Figure 5. MAX98366B and MAX98366D Left-Justified Protocol, 32-Bit Resolution	28
Figure 6. I ² S Timing Diagram (MAX98366A and MAX98366C)	29
Figure 7. Left-Justified Timing Diagram (MAX98366B and MAX98366D)	
Figure 8. MAX98366A and MAX98366C TDM Protocol, 16-Bit Resolution	30
Figure 9. MAX98366A and MAX98366C TDM Protocol, 32-Bit Resolution	30
Figure 10. MAX98366B and MAX98366D TDM Protocol, 16-Bit Resolution	31
Figure 11. MAX98366B and MAX98366D TDM Protocol, 32-Bit Resolution	31
Figure 12. Solution Size	33
Figure 13. GAIN_SLOT Connected to V _{DD} (Output is 15.5dBV in I ² S and Left-Justified Modes)	34
Figure 14. GAIN_SLOT Unconnected (Output is 18.5dBV in I ² S and Left-Justified Modes)	34
Figure 15. GAIN SLOT Connected to GND (Output is 21.5dBV in I ² S and Left-Justified Modes)	35

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

MAX98366

LIST OF TABLES	
MAX98366 Versions	
DAI Configurations	24
Valid Resolutions and Frame Widths	
Valid BCLK Frequencies (kHz)	25
BCLK Polarity	

LRCLK Polarity in I²S/Left-Justified Mode......26 Table 6. Table 7. Table 8. Gain Selection for I²S/Left-Justified Mode......32 Table 9.

Analog Devices | 6 www.analog.com

Absolute Maximum Ratings

PVDD to GND	0.3V to +16V
$\ensuremath{\text{V}_{DD}}\xspace$, EN, DAI0, DAI1, and DAI2 to	GND0.3V to +6V
OUTP, OUTN to GND	0.3V to V _{PVDD} + 0.3V
GAIN_SLOT to GND	0.3V to V _{VDD} + 0.3V
Continuous current in or out of PVE 3.5A to +3.5A	D, GND, OUTP, or OUTN-
Continuous input current (all other p	pins)20mA to +20mA

Duration of OUTP or OUTN short circuit to GND or $V_{\mbox{\scriptsize DD}}$
Continuous
Duration of OUTP short to OUTNContinuous
Continuous power dissipation ($T_A = +70^{\circ}$ C) WLP (derate
13.73mW/°C above +70°C)1600mW Junction temperature+150°C
Operating temperature range
Storage temperature range65°C to +150°C
Soldering temperature (reflow)+260°C
200

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

Package Code	W121Q1Z+1	
Outline Number	<u>21-100714A</u>	
Land Pattern Number Refer to Application Note 1891		
Thermal Resistance, Four Layer Board:		
Junction-to-Ambient (θ_{JA})	48°C/W	
Junction-to-Case Thermal Resistance (θ _{JC})	N/A	

For the latest package outline information and land patterns (footprints), go to https://www.analog.com/en/resources/packaging-quality-symbols-footprints/package-index.html. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to https://www.analog.com/en/resources/technical-articles/thermal-characterization-of-ic-packages.html.

Electrical Characteristics

 $(V_{PVDD}$ = 12V, V_{VDD} = 1.8V, V_{GND} = 0V, Gain = +21.5dB, f_{BCLK} = 3.072MHz, f_{LRCLK} = 48kHz, Z_{SPK} = ∞ between OUTP and OUTN, AC Measurement Bandwidth = 20Hz to 20kHz, T_A = T_{MIN} to T_{MAX} , typical values are at T_A = +25 $^{\circ}$ C (Note 1))

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SYSTEM						
PVDD Supply Voltage Operating Range	V _{PVDD}	Guaranteed by PSRR test	3.0		15	V
PVDD Supply Voltage	V _{PVDD}	The device is functional but parametric performance is not guaranteed	2.3			V
V _{DD} Supply Voltage Range	V_{DD}	Guaranteed by PSRR test	1.71		5.5	V
PVDD Undervoltage	V _{UVLO}	V _{PVDD} rising	2.15		2.4	V
Lockout	VUVLO	V _{PVDD} falling	1.85		2.1	V
V _{DD} Undervoltage	V	V _{DD} rising	1.3		1.6	V
Lockout	V _{UVLO}	V _{DD} falling	1.2		1.5	7 V
Quiescent Power		T _A = +25°C		30		mW
PVDD Shutdown Current	I _{PVDD_} SHDN	EN = 0V, T _A = +25°C		0.52	2.8	μA

 $(V_{PVDD} = 12V, V_{VDD} = 1.8V, V_{GND} = 0V, Gain = +21.5dB, f_{BCLK} = 3.072MHz, f_{LRCLK} = 48kHz, Z_{SPK} = \infty$ between OUTP and OUTN, AC Measurement Bandwidth = 20Hz to 20kHz, $T_A = T_{MIN}$ to T_{MAX} , typical values are at $T_A = +25^{\circ}C$ (Note 1))

PARAMETER	SYMBOL		NDITIONS	MIN	TYP	MAX	UNITS	
V _{DD} Shutdown Current	I _{VDD_SHDN}	$EN = 0V, T_A = +2$	25°C		0.02	0.3	μA	
DVDD Standby Comment	I _{PVDD_STNDB}	0V	+25°C, all DAIn pins at		0.52	2.8		
PVDD Standby Current	Y	EN = 1.8V, T _A = +25°C, no toggling on DAIn pins			2.8	μA		
V _{DD} Standby Current	han orunny	, ,	+25°C, all DAIn pins at		1.8	10.7		
VDD Standby Guirent	IVDD_STNDBY	EN = 1.8V, T _A = DAIn pins	+25°C, no toggling on			80	μA	
		Time from shutdo gain audio out, M MAX98366B	own or standby to full- IAX98366A and			1.1		
Turn-On Time	t _{ON}	gain audio out, M	own or standby to full- IAX98366A and = 8kHz, f _S = 16kHz			2.7	ms	
		Time from shutdo gain audio out, M MAX98366D	own or standby to full- IAX98366C and			12.2		
Thermal Shutdown Temperature					154		°C	
Thermal Shutdown Recovery Hysteresis				20		°C		
CLASS-D AMPLIFIER								
Output Offset Voltage	V _{OS}	T _A = +25°C		-3.0	±0.3	+3.0	mV	
		per second, digita	weighted, 32 samples all silence used for input Ω + 33 μ H, Shutdown		-70		.5.,	
Click-and-Pop Level	K _{CP}	per second, digita	weighted, 32 samples al silence used for input Ω + 33 μ H, or 4 Ω + 33 μ H, Ω		-70		dBV	
		DC, digital silenc Z _{SPK} = ∞, V _{PVDI}	e used for input signal, _O = 3V to 15V	68	85			
			f_{RIPPLE} = 217Hz, digital silence used for input signal, Z_{SPK} = 8Ω + 33μH or 4Ω + 33μH		85			
PVDD Supply Rejection	YRIPP	V _{RIPPLE} = 200mV _{PP}	f_{RIPPLE} = 1kHz, digital silence used for input signal, Z_{SPK} = 8Ω + 33μH or 4Ω + 33μH		85		dB	
			f_{RIPPLE} = 10kHz, digital silence used for input signal, Z_{SPK} = 8Ω + 33μH or 4Ω + 33μH		76			

 $(V_{PVDD} = 12V, V_{VDD} = 1.8V, V_{GND} = 0V, Gain = +21.5dB, f_{BCLK} = 3.072MHz, f_{LRCLK} = 48kHz, Z_{SPK} = \infty$ between OUTP and OUTN, AC Measurement Bandwidth = 20Hz to 20kHz, $T_A = T_{MIN}$ to T_{MAX} , typical values are at $T_A = +25^{\circ}C$ (Note 1))

PARAMETER	SYMBOL		CONDITIONS			MAX	UNITS	
		DC, T_A = +25°C, digital silence used for input signal, $Z_{SPK} = \infty$, $V_{DD} = 1.71V$ to 5.5V		94	100			
	√ _{DD} Supply Rejection PSRR	5.50	f_{RIPPLE} = 217Hz, T_A = +25°C, digital silence used for input signal, Z_{SPK} = 8Ω + 33μH or 4Ω		100			
V _{DD} Supply Rejection		V _{RIPPLE} = 200mV _{PP}	$+33\mu$ H f _{RIPPLE} = 1kHz, T _A = +25°C, digital silence used for input signal, Z _{SPK} = 8Ω + 33μH or 4Ω + 33μH		100		dB	
		f_{RIPPLE} = 10kHz, T_A = +25°C, digital silence used for input signal, Z_{SPK} = 8 Ω + 33 μ H or 4 Ω + 33 μ H		95				
Power Supply		T _A = +25°C, f _{IN} = 1kHz, P _{OUT} = 400mW, Z _{SPK} =	PVDD f _{RIPPLE} = 217Hz, V _{RIPPLE} = 100mV _{PP}		-104		- dB	
Intermodulation		8Ω + 33μH or 4Ω + 33μH	V _{DD} f _{RIPPLE} = 217Hz, V _{RIPPLE} = 100mV _{PP}		-111		ub	
		V _{PVDD} = 11V, THD- + 33μH	$+N \le 10\%$, $Z_{SPK} = 4\Omega$		14.7			
		$V_{PVDD} = 12V, THD+N \le 10\%, Z_{SPK} = 8\Omega + 33\mu H$			10.3		=	
Output Power	P _{OUT}	$V_{PVDD} = 15V, 0dBF$	S input, $Z_{SPK} = 8\Omega +$		15		w	
Output Power	1 001	V_{PVDD} = 12V, THD- + 33 μ H	+N ≤ 1%, Z _{SPK} = 4Ω		14		VV	
			+N ≤ 1%, Z _{SPK} = 8Ω		8.2			
		V _{PVDD} = 15V, THD- + 33µH	+N ≤ 1%, Z _{SPK} = 8Ω		13			
Peak Output Power	Роит_рк	V _{PVDD} = 14V, Z _L = 3.7Ω + 33μH; 50Hz (2 period, peak signal)/1kHz (460 periods, low amplitude signal) alternating signal; crest factor = 12dB; test duration = 1min with THD+N < 1%			40		W	
			P_{OUT} = 1W, Z_{SPK} = 8Ω + 33μH		-85	-76		
Total Harmonic Distortion + Noise	THD+N	f = 1kHz, T _A = +25°C	P_{OUT} = 6W, Z_{SPK} = 8Ω + 33μH		-85		dB	
	P_{OUT} = 8W, Z_{SPK} = 4Ω + 33μH			-85				

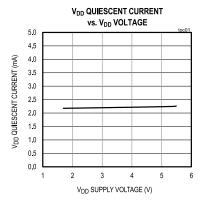
 $(V_{PVDD} = 12V, V_{VDD} = 1.8V, V_{GND} = 0V, Gain = +21.5dB, f_{BCLK} = 3.072MHz, f_{LRCLK} = 48kHz, Z_{SPK} = \infty$ between OUTP and OUTN, AC Measurement Bandwidth = 20Hz to 20kHz, $T_A = T_{MIN}$ to T_{MAX} , typical values are at $T_A = +25^{\circ}C$ (Note 1))

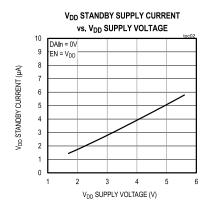
PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS
			$f_S = 96kHz, P_{OUT}$ = 1W, $Z_{SPK} = 8\Omega +$ $33\mu H$		-83		
Intermodulation	11.45	ITU-R, -9dBFS, 19k	Hz/20kHz, 1:1, Z _{SPK}				ı.
Distortion	IMD	= 8Ω + 33μH	J		-63		dB
		A-weighted, Z _{SPK} =	: 8Ω + 33μH, -60dB				
		1kHz output signal,	normalized to full-		112		
		scale (THD+N = 1%	b), 24- or 32-bit data				
Dynamic Range	DR	f _S ≥ 50kHz	A-weighted, Z_{SPK} = 8Ω + 33μH, -60dB 1kHz output signal, normalized to full-scale (THD+N = 1%), 24- or 32-bit		107		dB
		f _S ≤ 50kHz	A-weighted, 24- or 32-bit data		20		
Output Noise	e _{Nd}	f _S ≥ 50kHz	A-weighted, 24- or 32-bit data		37		μV _{RMS}
Output Noise in the Presence of Ultrasound Signal	e _{Nd}	3V _{RMS} , f _{IN} = 40kHz sinewave signal	A-weighted, 24- or 32-bit data, Z_{SPK} = $8\Omega + 33\mu H$, f_{S} = $96kHz$, TDM Mode		62		μV _{RMS}
Maximum Peak Output Voltage at 40kHz		f _S = 88.2kHz, 96kH	z, 176.4kHz, 192kHz		7		٧
		I ² S or left-justified mode with GAIN_SLOT = GND, or TDM mode (<i>Note 3</i>)		21.1	21.5	21.9	
Full-Scale Output	F _S	I ² S or left-justified n		18.1	18.5	18.9	dBV
Voltage		I ² S or left-justified mode with GAIN_SLOT = V_{DD} through 100kΩ		12.1	12.5	12.9	
		I ² S or left-justified n		9.1	9.5	9.9	
Output Current Limit	I _{LIM}			3.5			Α
Output Current Limit Auto-restart Time					27		ms
		$Z_{SPK} = 8\Omega + 33\mu H$	$P_{OUT} = 7W, f = 1kHz$		92.7		
Efficiency	η	$Z_{SPK} = 8\Omega + 33\mu H$	P _{OUT} = 1W, f = 1kHz		88.9		%
	•1		P _{OUT} = 1W, f = 1kHz		84.8		
				-0.2		+0.2	
Frequency Response		f _S = 96kHz, AC mea = 20Hz to 40kHz	f _S = 96kHz, AC measurement bandwidth = 20Hz to 40kHz			+0.6	dB
Class-D Switching Frequency	f _{SW}			282	300	318	kHz
Spread-Spectrum Bandwidth	f _{SSM}				±4		kHz
Output Stage On- Resistance	R _{ON}	PMOS + NMOS (fu +25°C	ll H-bridge), T _A =		0.33		Ω
	RL	PVDD >12V, full-sc	ale output		3.7		Ω

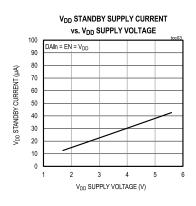
 $(V_{PVDD} = 12V, V_{VDD} = 1.8V, V_{GND} = 0V, Gain = +21.5dB, f_{BCLK} = 3.072MHz, f_{LRCLK} = 48kHz, Z_{SPK} = \infty$ between OUTP and OUTN, AC Measurement Bandwidth = 20Hz to 20kHz, $T_A = T_{MIN}$ to T_{MAX} , typical values are at $T_A = +25^{\circ}C$ (Note 1))

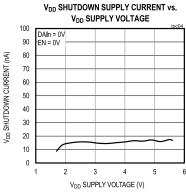
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Minimum Load Resistance		8.4V < PVDD < 12V, full-scale output		3.1		
Maximum Device-to- Device Phase Error		Output phase shift between multiple devices from 20Hz to 20kHz across all sample rates and DAI operating modes		1		deg
DAC DIGITAL FILTER (L	RCLK < 50kHz)					
Passband Cutoff	f _{PLP}	Ripple < δ P	0.455 x f _S			Hz
Passpand Culon		Droop < -3dB	0.459 x f _S			П
Passband Ripple	δ_{P}	f < f _{PLP} , referenced to signal level at 1kHz	-0.1		+0.1	dB
Stopband Cutoff	f _{SLP}	Attenuation > δ _S			0.49 x f _S	Hz
Stopband Attenuation	δ_{S}	f > f _{SLP}	75			dB
Group Delay		f = 1kHz		6.5		samples
DAC DIGITAL FILTER (L	RCLK > 50kHz)	(<u>Note 5</u>)				
	f _{PLP}	Ripple $< \delta_P$, $88.2kHz \le f_S \le 96kHz$	0.440 x f _S			
		Droop < -3dB, $88.2kHz \le f_S \le 96kHz$	0.45 x f _S			
Passband Cutoff f _F	f _{PLP}	Ripple < δ _P , 176.4kHz ≤ f _S ≤ 192kHz	0.227 x f _S			Hz
		Droop < -3dB cutoff, 176.4kHz \leq f _S \leq 192kHz	0.3 x f _S			
Passband Ripple	δ_{P}	f < f _{PLP} , referenced to the signal level at 1kHz	-0.3		+0.3	dB
Stopband Cutoff	f_{SLP}	Attenuation > δ_S			$0.49 x f_{S}$	Hz
Stopband Attenuation	δ_{S}	f > f _{SLP}	80			dB
		$f = 1kHz$, $88.2kHz \le f_S \le 96kHz$		7		
Max Group Delay		f = 1kHz, 176.4kHz ≤ f _S ≤ 192kHz		8.5		samples
DAC DIGITAL FILTERS	AND DIGITAL D	C BLOCKING FILTER	l			I.
DC Attenuation			80			dB
DC Blocking Filter -3dB	f _C	For f _S = 8kHz, 16kHz, 32kHz, 48kHz, 96kHz, and 192kHz		1.872		Hz
Cutoff Frequency	Ü	For f _S = 44.1kHz, 88.2kHz, and 176.4kHz		1.72		112
DIGITAL I/O						
LRCLK tolerance				2.5		%
		I2S/left-justified mode		16/24/32		
Resolution		TDM mode		16/32		Bits
BCLK Frequency Range	f _{BCLK}	BCLK frequency required for DAI Configuration and unmuting (<i>Note 2</i>)	0.2496	10,02	25.19	MHz
BCLK Duty Cycle	DC	3 (40		60	%
Maximum High- Frequency BCLK and LRCLK Jitter		f _S < 50kHz, Maximum allowable jitter before a -60dBFS, 20kHz input has a 1dB reduction in THD+N, RMS jitter > 40kHz		12		ns

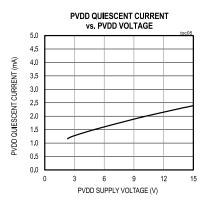
 $(V_{PVDD}$ = 12V, V_{VDD} = 1.8V, V_{GND} = 0V, Gain = +21.5dB, f_{BCLK} = 3.072MHz, f_{LRCLK} = 48kHz, Z_{SPK} = ∞ between OUTP and OUTN, AC Measurement Bandwidth = 20Hz to 20kHz, T_A = T_{MIN} to T_{MAX} , typical values are at T_A = +25 $^{\circ}$ C (Note 1))

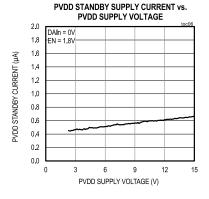

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
		f _S < 50kHz, Maximum allowable jitter					
Maximum Low-		before a -20dBFS, 20kHz input has a 1dB reduction in THD+N, RMS jitter ≤ 40kHz		0.5			
Frequency BCLK and LRCLK Jitter		f _S > 50kHz, Maximum allowable jitter before a 3V _{RMS} , 40kHz continuous input has a 1dB increase in audio-band noise floor, 10kHz ≤ RMS jitter ≤ 60kHz		0.1		ns	
Maximum High- Frequency BCLK and LRCLK Jitter		f _S > 50kHz, Maximum allowable jitter before a -60dBFS, 20kHz input has a 1dB reduction in THD+N, RMS jitter > 60kHz		12		ns	
	V	DAI0, DAI1, DAI2	0.84			.,	
Input High Voltage	V _{IH}	EN	0.84			V	
	.,	DAI0, DAI1, DAI2			0.54		
Input Low Voltage	V _{IL}	EN			0.2	V	
Input Hysteresis	V _{HYS}	DAI0, DAI1, DAI2 (<u>Note 4</u>)	50			mV	
		EN		25			
	I _{IH} , I _{IL}	V _{IN} = 0V, T _A = +25°C, DAI0, DAI1, DAI2	-1				
Input Leakage Current		V _{IN} = 5.5V, T _A = +25°C, DAI0, DAI1, DAI2			+4	μA	
Input Capacitance	C _{IN}			3		pF	
DIN to BCLK Setup Time	t _{SETUP}		4			ns	
LRCLK to BCLK Setup Time	t _{SYNCSET}		4			ns	
DIN to BCLK Hold Time	t _{HOLD}		4			ns	
LRCLK to BCLK Hold Time	^t SYNCHOLD		4			ns	
GAIN_SLOT COMPARA	TOR TRIP POIN	·					
		15.5dBV output setting in I ² S and left- justified modes, channel 1, 3, or 7 in TDM mode	0.9 x V _{DD}		V_{DD}		
		12.5dBV output setting in I ² S and left- justified modes	0.65 x V _{DD}		0.85 x V _{DD}		
GAIN_SLOT Comparator Trip Points	V _{GAIN_SLOT}	18.5dBV output setting in I ² S and left- justified modes, channel 2 or 6 in TDM mode	0.4 x V _{DD}		0.6 x V _{DD}	V	
		9.5dBV output setting in I ² S and left- justified modes	0.15 x V _{DD}		0.35 x V _{DD}		
		21.5dBV output setting in I ² S and left- justified modes, channel 0, 4, or 5 in TDM mode	0		0.1 x V _{DD}		

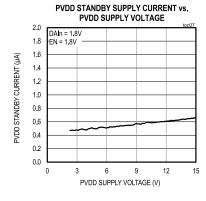

- **Note 1:** Limits are 100% tested at $T_A = +25$ °C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.
- Note 2: See the Digital Audio Interface (DAI) Configuration (Patented) and Valid Clock Frequencies sections for more information.
- Note 3: The PVDD level limits the achievable output swing due to clipping.
- **Note 4:** Minimum and/or maximum limit is guaranteed by design or by statistical analysis of device characterization data. The specification is not guaranteed by production testing.

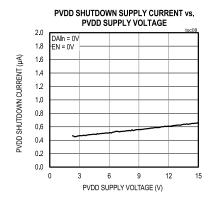

Note 5: Digital filter performance is invariant over temperature and is production tested at T_A = +25°C.

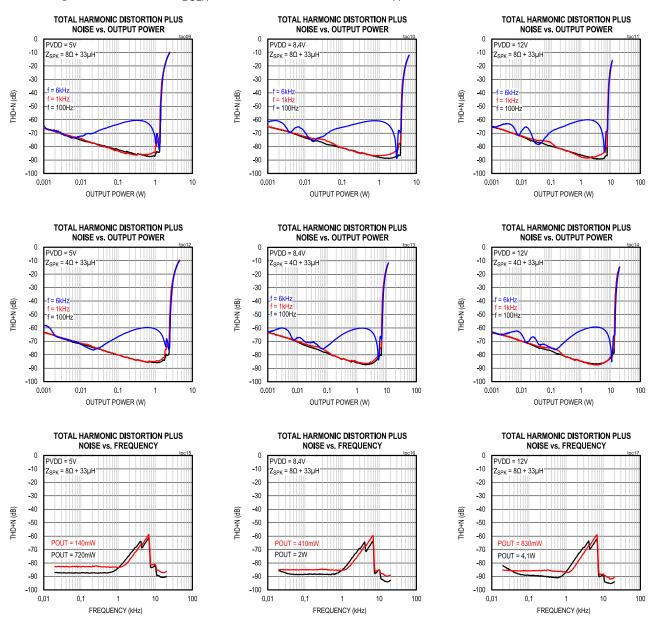

Typical Operating Characteristics

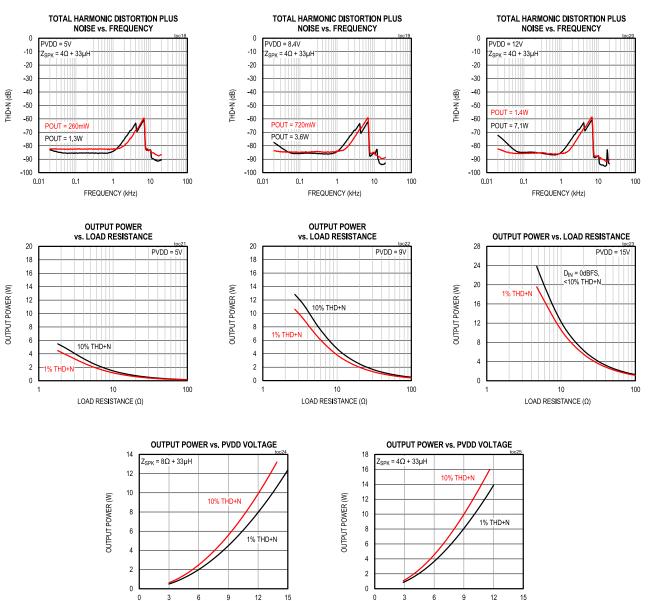

 $(V_{PVDD}$ = 12V, V_{DD} = 1.8V, V_{GND} = 0V; Gain = 21.5dB, Z_{SPK} = ∞ between OUTP and OUTN, AC Measurement Bandwidth = 20Hz to 20kHz, f_S = 48kHz, 24-bit data, f_{BCLK} = 3.072MHz. Typical values are at T_A = +25°C)





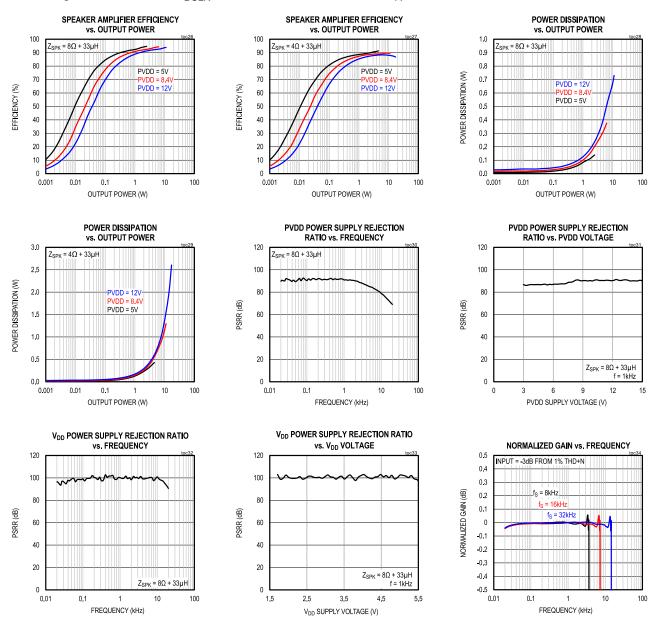




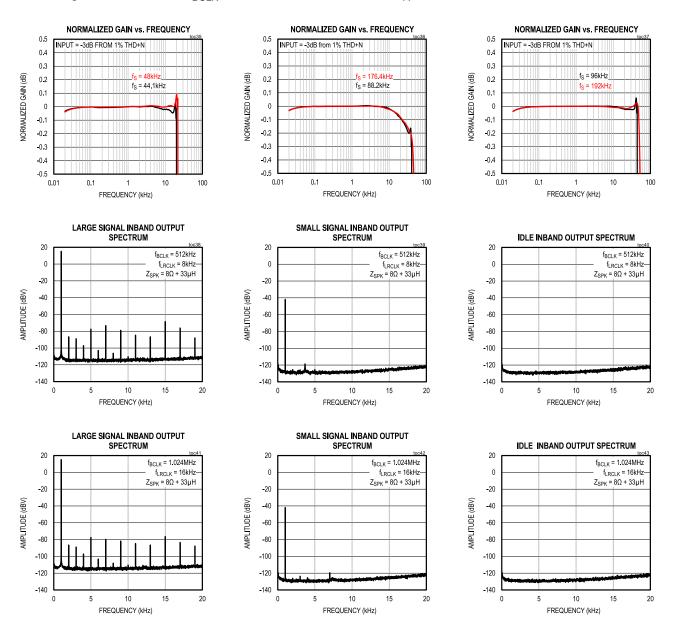


 $(V_{PVDD}$ = 12V, V_{DD} = 1.8V, V_{GND} = 0V; Gain = 21.5dB, Z_{SPK} = ∞ between OUTP and OUTN, AC Measurement Bandwidth = 20Hz to 20kHz, f_S = 48kHz, 24-bit data, f_{BCLK} = 3.072MHz. Typical values are at T_A = +25°C)

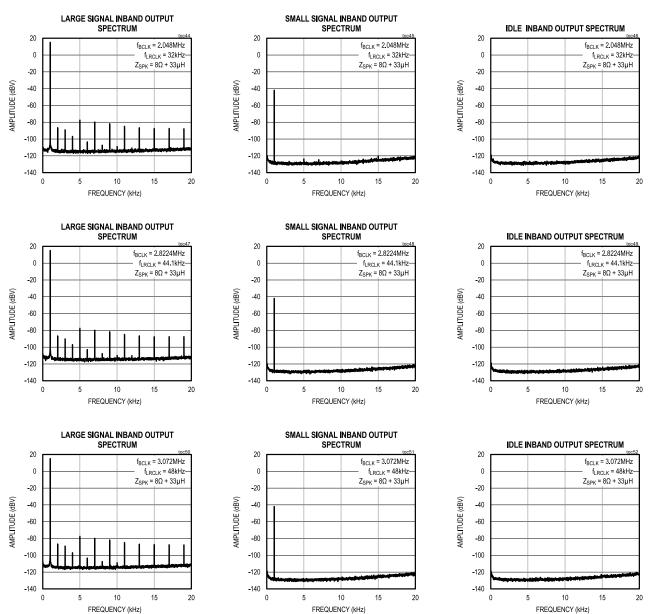
 $(V_{PVDD}$ = 12V, V_{DD} = 1.8V, V_{GND} = 0V; Gain = 21.5dB, Z_{SPK} = ∞ between OUTP and OUTN, AC Measurement Bandwidth = 20Hz to 20kHz, f_S = 48kHz, 24-bit data, f_{BCLK} = 3.072MHz. Typical values are at T_A = +25 $^{\circ}$ C)

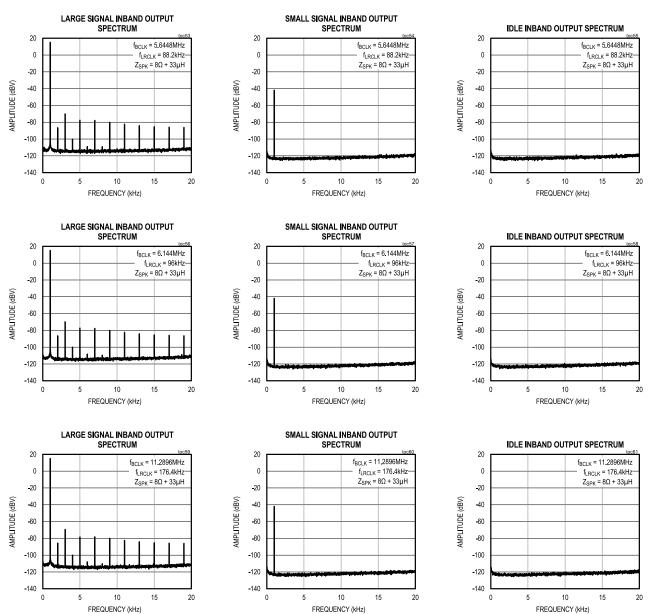


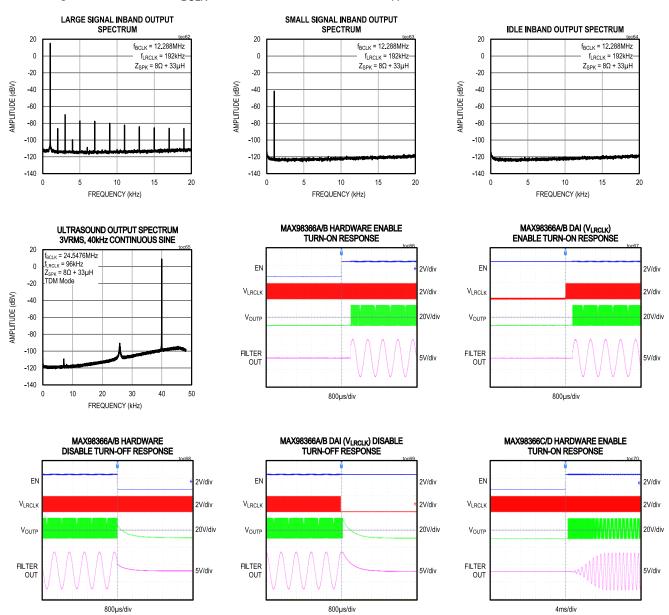
www.analog.com Analog Devices | 15

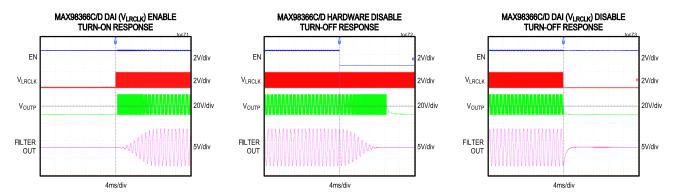

PVDD SUPPLY VOLTAGE (V)

PVDD SUPPLY VOLTAGE (V)

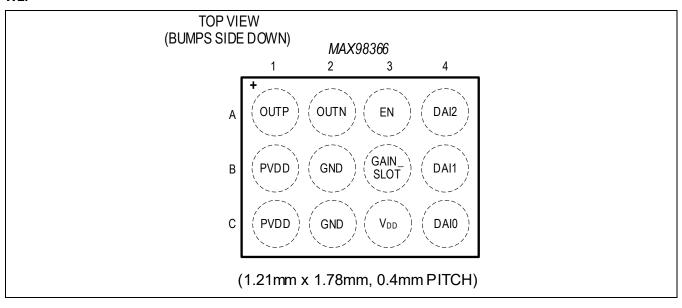

 $(V_{PVDD}$ = 12V, V_{DD} = 1.8V, V_{GND} = 0V; Gain = 21.5dB, Z_{SPK} = ∞ between OUTP and OUTN, AC Measurement Bandwidth = 20Hz to 20kHz, f_S = 48kHz, 24-bit data, f_{BCLK} = 3.072MHz. Typical values are at T_A = +25 $^{\circ}$ C)


 $(V_{PVDD}$ = 12V, V_{DD} = 1.8V, V_{GND} = 0V; Gain = 21.5dB, Z_{SPK} = ∞ between OUTP and OUTN, AC Measurement Bandwidth = 20Hz to 20kHz, f_S = 48kHz, 24-bit data, f_{BCLK} = 3.072MHz. Typical values are at T_A = +25 $^{\circ}$ C)


 $(V_{PVDD}$ = 12V, V_{DD} = 1.8V, V_{GND} = 0V; Gain = 21.5dB, Z_{SPK} = ∞ between OUTP and OUTN, AC Measurement Bandwidth = 20Hz to 20kHz, f_S = 48kHz, 24-bit data, f_{BCLK} = 3.072MHz. Typical values are at T_A = +25 $^{\circ}$ C)


 $(V_{PVDD}$ = 12V, V_{DD} = 1.8V, V_{GND} = 0V; Gain = 21.5dB, Z_{SPK} = ∞ between OUTP and OUTN, AC Measurement Bandwidth = 20Hz to 20kHz, f_S = 48kHz, 24-bit data, f_{BCLK} = 3.072MHz. Typical values are at T_A = +25 $^{\circ}$ C)

 $(V_{PVDD}$ = 12V, V_{DD} = 1.8V, V_{GND} = 0V; Gain = 21.5dB, Z_{SPK} = ∞ between OUTP and OUTN, AC Measurement Bandwidth = 20Hz to 20kHz, f_S = 48kHz, 24-bit data, f_{BCLK} = 3.072MHz. Typical values are at T_A = +25 $^{\circ}$ C)



 $(V_{PVDD}$ = 12V, V_{DD} = 1.8V, V_{GND} = 0V; Gain = 21.5dB, Z_{SPK} = ∞ between OUTP and OUTN, AC Measurement Bandwidth = 20Hz to 20kHz, f_S = 48kHz, 24-bit data, f_{BCLK} = 3.072MHz. Typical values are at T_A = +25°C)

Pin Configurations

WLP

Pin Descriptions

PIN	NAME	FUNCTION	REF SUPPLY	Туре
A1	OUTP	Positive Class-D Amplifier Output	PVDD	Analog Output
A2	OUTN	Negative Class-D Amplifier Output	PVDD	Analog Output
A3	EN	Hardware Enable Pin. Pull EN low, to place the device in Shutdown mode.		Digital Input
A4	DAI2	Digital Audio Interface Pin 2. Internally pulled down to GND through a $3M\Omega$ resistor.		Digital Input
B1, C1	PVDD	Amplifier Power Supply Input. Bypass to GND with a 1µF and 10µF capacitor placed as close as possible.		Supply
B2, C2	GND	Ground		Supply
В3	GAIN_SL OT	Gain and Channel Selection. Determines amplifier output voltage in I ² S and left-justified modes (<i>Gain Selection</i>). Used for channel selection along with DAI Configuration in TDM mode (<i>Table 8</i>). In TDM mode, the full-scale output voltage is fixed at 21.5dBV.	VDD	Digital Input
B4	DAI1	Digital Audio Interface Pin 1. Internally pulled down to GND through a $3M\Omega$ resistor.		Digital Input
C3	V _{DD}	Power Supply Input. Bypass to GND with a 1µF capacitor placed as close as possible.		Supply
C4	DAI0	Digital Audio Interface Pin 0. Internally pulled down to GND through a $3M\Omega$ resistor.		Digital Input

Detailed Description

The MAX98366A/B/C/D are digital PCM input Class-D power amplifiers. When the LRCLK duty cycle is 50%, the MAX98366A and MAX98366C accept standard I²S data while the MAX98366B and MAX98366D accept left-justified data. When LRCLK is a frame sync pulse (LRCLK is high for 3 BCLK periods or less), the device accepts 16- or 32-bit TDM data with eight channels. The digital audio interface eliminates the need for an external MCLK signal that is typically required for I²S data transmission.

The MAX98366A and MAX98366B have a fast 1ms turn-on time. The MAX98366C and MAX98366D ramp the audio volume over 13ms upon EN going high or low.

Table 1. MAX98366 Versions

	TURN-ON AND TURN- OFF VOLUME RAMP	TURN-ON TIME (ms)	DATA FORMAT WHEN LRCLK DUTY CYCLE IS 50%	DATA FORMAT WHEN LRCLK IS A SYNC PULSE
MAX98366A	Disabled	1	I ² S data valid on BCLK rising edge	TDM data valid on BCLK rising edge
MAX98366B	Disabled	1	Left-justified data valid on BCLK rising edge	TDM data valid on BCLK falling edge
MAX98366C	Enabled	13	I ² S data valid on BCLK rising edge	TDM data valid on BCLK rising edge
MAX98366D	Enabled	13	Left-justified data valid on BCLK rising edge	TDM data valid on BCLK falling edge

Gain and channel selection are configured by a combination of GAIN_SLOT pin settings and connecting digital audio source signals to different DAIn pins.

The MAX98366A/B/C/D features a low quiescent current, comprehensive click-and-pop suppression, and excellent RF immunity. The amplifier offers Class-AB audio performance with Class-D efficiency in a minimal board-space solution. The Class-D amplifier features spread-spectrum modulation with edge-rate and overshoot control circuitry that offers significant improvements in switch-mode amplifier radiated emissions. The amplifier features click-and-pop suppression that reduces audible transients during turn-on and turn-off. The amplifier includes thermal overload and short-circuit protection.

EN and Shutdown Mode

The device features a low power shutdown mode, drawing I_{SHDN} current. During shutdown, all internal blocks are turned off including setting the amplifier output stage to a Hi-Z state. Drive EN low to put the device into shutdown.

The device exits the shutdown mode when the EN pin is asserted high and transitions into UVLO mode.

Standby Mode

When the PVDD and V_{DD} supplies are above their respective UVLO thresholds and EN pin is high and there is no toggling on the DAIn pins, the device automatically enters Standby mode. In Standby mode, the Class-D amplifier is off and the outputs are in a Hi-Z state. Standby mode has reduced current consumption from normal operation (I_{STNDBY}), but not as low as full shutdown when the EN pin is low (I_{SHDN}). Standby mode can be used to reduce power consumption when no host GPIO is available to control the EN pin.

Note that volume is not ramped down when entering standby. For optimal click-and-pop performance on MAX98366A and MAX98366B, ramp down the digital audio amplitude on data presented to DIN before removing clocks. For optimal click-and-pop performance on MAX98366C and MAX98366D, either ramp down the digital audio amplitude on data presented to DIN before removing clocks or keep clocks valid for at least 13ms after pulling EN low to allow time for turn-off volume ramping.

While in standby, any toggling of the DAIn pins causes the part to exit Standby mode and enter DAI Configuration.

Digital Audio Interface (DAI) Configuration (Patented)

Different operating modes can be selected by connecting the digital audio bit clock (BCLK), the digital audio frame clock (LRCLK), and the digital audio data (DIN) to different DAIn pins.

The DAI detects BCLK by monitoring the switching frequencies at the DAIn pins. Detection starts when EN is toggled from low to high, when V_{DD} rises from UVLO to the operating range while EN is held high, and when exiting Standby mode by applying clocks. The DAIn pin with the highest frequency is selected as the BCLK input. Once the BCLK input pin is identified, the LRCLK and DIN pin locations are assumed, as shown in *Table 2*.

If the clocks are valid for four consecutive LRCLK periods, the DAI Configuration is latched and the amplifier turn-on sequence is allowed to proceed. Otherwise, if there is still toggling on the DAIn pins, the detection routine is restarted; if there is no toggling on the DAIn pins, the device enters Standby mode.

Once a DAI Configuration has been latched, it does not change unless EN is toggled, V_{DD} falls below V_{UVLO} , DAI Configuration restarts due to invalid clocks, or the DAIn pins stop toggling and the part goes into Standby mode. Shutdowns due to thermal protection or Class-D current limit do not trigger a new round of BCLK detection.

While the amplifier is on, clock validity is continually checked. If clocks become invalid, the Class-D amplifier is immediately turned off (no volume ramping) and the outputs go into a Hi-Z state. If there is still toggling on the DAIn pins, the detection routine is restarted; if there is no toggling on the DAIn pins, the device enters Standby mode.

DAI Configurations other than those shown in <u>Table 2</u> are not valid.

Table 2. DAI Configurations

DAI CONFIGURATION	BCLK CONNECTION	LRCLK CONNECTION	DIN CONNECTION
А	DAI0	DAI1	DAI2
В	DAI1	DAI2	DAI0
С	DAI2	DAI0	DAI1

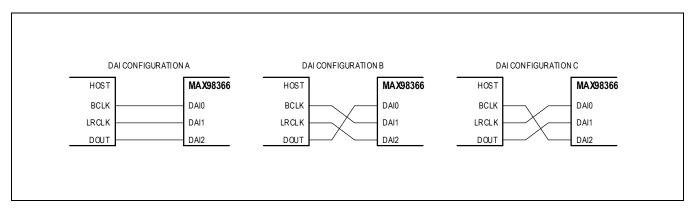


Figure 1. DAI Connections

Valid Clock Frequencies

When LRCLK has a 50% duty cycle, MAX98366A and MAX98366C are automatically configured for I²S mode, while MAX98366B and MAX98366D are automatically configured for left-justified mode. When a frame sync pulse is used for LRCLK (LRCLK is high for 3 BCLK periods or less), the device is automatically configured for TDM mode.

Valid sample rates are 8kHz,16kHz, 32kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz, 176.4kHz, and 192kHz. LRCLK clocks at 11.025kHz, 12kHz, 22.05kHz, and 24kHz are NOT supported.

In I²S/left-justified mode, valid resolutions are 16-, 24-, and 32-bits per channel. There are two channels per LRCLK period. Therefore, the valid numbers of BCLK periods per LRCLK period in I²S/left-justified mode are exactly 32 BCLK periods per LRCLK period, 48 BCLK periods per LRCLK period, and 64 BCLK periods per LRCLK period.

In TDM mode, valid resolutions are 16- and 32-bits per channel. The valid numbers of BCLK periods per LRCLK period in TDM mode are 125, 128, 250, and 256, so there are 8 channels per LRCLK period when the BCLK periods per LRCLK period is 128 or 256. When there are 125 or 250 BCLK periods per LRCLK period, there are 7 channels per LRCLK period.

An invalid number of BCLKs per LRCLK other than those shown in *Table 3* results in an unpredictable output waveform.

Table 3. Valid Resolutions and Frame Widths

SAMPLE RESOLUTION (BITS)	BCLK PERIODS PER LRCLK IN I2S/LEFT-JUSTIFIED MODE	BCLK PERIODS PER LRCLK IN TDM MODE
16	32	125, 128
24	48	NOT VALID
32	64	250, 256

Table 4. Valid BCLK Frequencies (kHz)

	I ² S/LE	FT-JUSTIFIED I	MODE	TDM MODE			
	32 BCLKs PER LRCLK	48 BCLKs PER LRCLK	64 BCLKs PER LRCLK	125 BCLKs PER LRCLK	128 BCLKs PER LRCLK	250 BLCKs PER LRCLK	256 BCLKs PER LRCLK
LRCLK = 8kHz	256	384	512	N/A	1024	N/A	2048
LRCLK = 16kHz	512	768	1024	N/A	2048	N/A	4096
LRCLK = 32kHz	1024	1536	2048	N/A	4096	N/A	8192
LRCLK = 44.1kHz	1411.2	2116.8	2822.4	N/A	5644.8	N/A	11289.6
LRCLK = 48kHz	1536	2304	3072	6000	6144	12000	12288
LRCLK = 88.2kHz	2822.4	4233.6	5644.8	N/A	11289.6	N/A	22579.2
LRCLK = 96kHz	3072	4608	6144	12000	12288	24000	24576
LRCLK = 176.4kHz	5644.8	8467.2	11289.6	22579.2	N/A	N/A	N/A
LRCLK = 192kHz	6144	9216	12288	24000	24576	N/A	N/A
LRCLK = 192kHz	6144	9216	12288	24000	24576	N/A	N/A

MCLK Elimination

The MAX98366 eliminates the need for the external MCLK signal typically used for PCM communication. This reduces EMI and possible board coupling issues in addition to reducing the size and pin count.

BCLK Jitter Tolerance

The MAX98366 features a high BCLK jitter tolerance while maintaining a high dynamic range (see the <u>Electrical Characteristics</u> table). For sample rates higher than 50kHz, the device automatically selects wideband interpolation digital filters to support ultrasound use cases and supports a jitter tolerance of up to 100ps (10kHz to 60kHz band) before the inband integrated noise in presence of ultrasound signal starts deteriorating. When no ultrasound signal is present the >40kHz spectrum jitter can be up to 12ns.

BCLK Polarity

In I²S and left-justified mode, incoming serial data is always clocked in on the rising edge of BCLK. In TDM mode, the MAX98366A and MAX98366C clock-in serial data on the rising edge of BCLK while the MAX98366B and MAX98366D clock-in serial data on the falling edge of BCLK (*Table 5*).

Table 5. BCLK Polarity

MODE	PART NUMBERS	BCLK POLARITY
I ² S	MAX98366A/C	Rising edge
Left-justified	MAX98366B/D	Rising edge
TDM	MAX98366A/C	Rising edge
TDM	MAX98366B/D	Falling edge

LRCLK Polarity in I²S/Left-Justified Mode

In I²S and left-justified mode, LRCLK specifies whether left-channel or right-channel data is currently being read by the digital audio interface. The MAX98366A and MAX98366C indicate the left-channel word when LRCLK is low, and the MAX98366B and MAX98366D indicate the left-channel word when LRCLK is high (*Table 6*).

Table 6. LRCLK Polarity in I²S/Left-Justified Mode

PART NUMBER	LRCLK POLARITY (LEFT CHANNEL)
MAX98366A/C	Low
MAX98366B/D	High

I²S and Left-Justified Mode

When the LRCLK duty cycle is 50%, the MAX98366A and MAX98366C follow standard I²S timing by allowing a delay of one BCLK cycle after the LRCLK transition before the beginning of a new data word (*Figure 2*, *Figure 3*, and *Figure 6*). The MAX98366B and MAX98366D follow the left-justified timing specification by aligning the LRCLK transitions with the beginning of a new data word (*Figure 5*, *Figure 4*, and *Figure 7*).

In I²S and left-justified modes, the audio channel that is sent to the amplifier output is chosen by the DAI Configuration (see <u>Table 2</u>). Use DAI Configuration A to select the left word of the stereo input data. Use DAI Configuration B to select the right word of the stereo input data. Use DAI Configuration C to select both the left and right words of the stereo input data (left/2 + right/2).

Table 7. Channel Selection in I²S and Left-Justified Modes

DAI CONFIGURATION	CHANNEL
A	Left
В	Right
C	Left/2 + Right/2

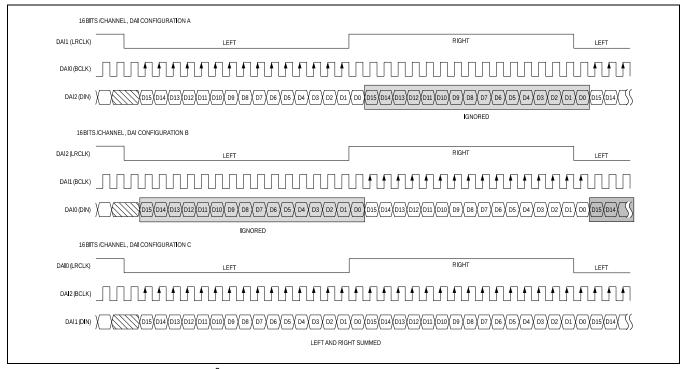


Figure 2. MAX98366A and MAX98366C I²S Protocol, 16-Bit Resolution

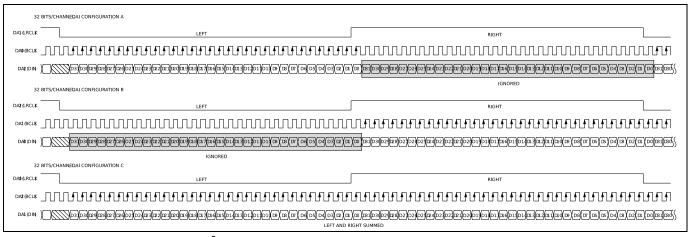


Figure 3. MAX98366A and MAX98366C I²S Protocol, 32-Bit Resolution

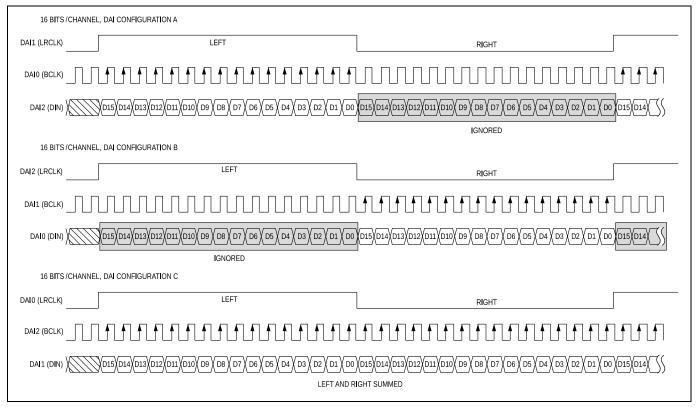


Figure 4. MAX98366B and MAX98366D Left-Justified Protocol, 16-Bit Resolution

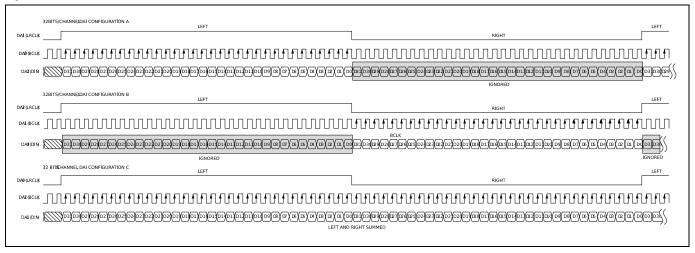


Figure 5. MAX98366B and MAX98366D Left-Justified Protocol, 32-Bit Resolution

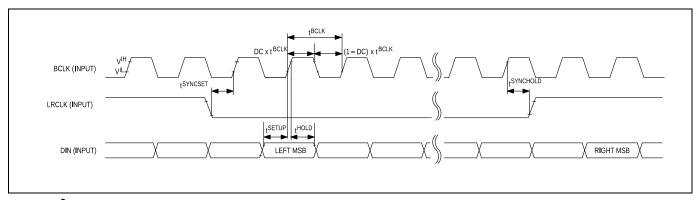


Figure 6. I²S Timing Diagram (MAX98366A and MAX98366C)

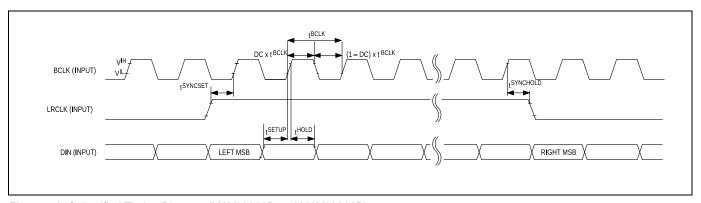


Figure 7. Left-Justified Timing Diagram (MAX98366B and MAX98366D)

TDM Mode

When a frame sync pulse is used for LRCLK (LRCLK is high for 3 BCLK periods or less), the device is automatically configured for TDM mode.

In TDM mode, the device accepts 7 or 8 channels of 16- or 32-bit formatted data. When there are 125 (16-bit mode) or 250 (32-bit mode) BCLK cycles per frame, the device accepts 7 channels. When BCLK cycles per frame is 128 (16-bit mode) or 256 (32-bit mode), the device accepts 8 channels of data.

DAI Configuration and GAIN SLOT are used to select which channel is sent to the amplifier (see <u>Table 8</u> and <u>Table 2</u>).

On the MAX98366A and MAX98366C, data is valid on the BCLK rising edge (see <u>Figure 8</u> and <u>Figure 9</u>). On the MAX98366B and MAX98366D, data is valid on the BCLK falling edge (see <u>Figure 10</u> and <u>Figure 11</u>).

Table 8. TDM Mode Channel Selection

CHANNEL SELECTION	DAI CONFIGURATION	GAIN_SLOT CONNECTION
0	A	GND
1	A	V_{DD}
2	A	Unconnected
3	В	V_{DD}
4	В	GND
5	С	GND
6	С	Unconnected
7	С	V_{DD}

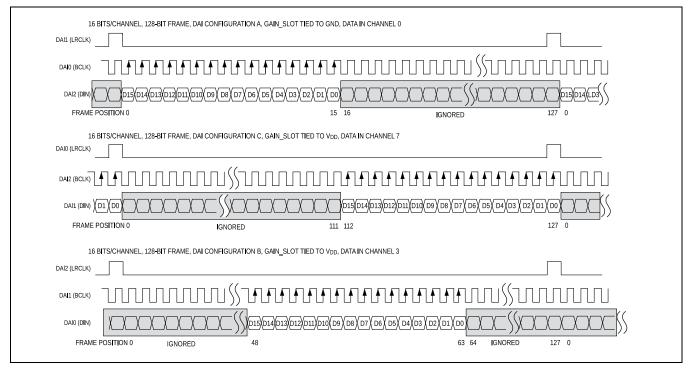


Figure 8. MAX98366A and MAX98366C TDM Protocol, 16-Bit Resolution

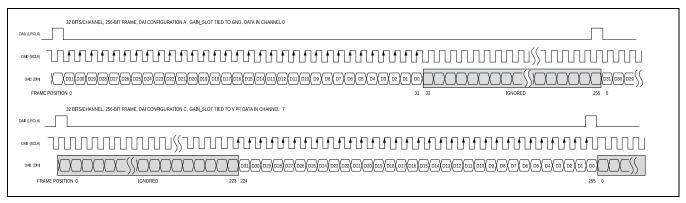


Figure 9. MAX98366A and MAX98366C TDM Protocol, 32-Bit Resolution

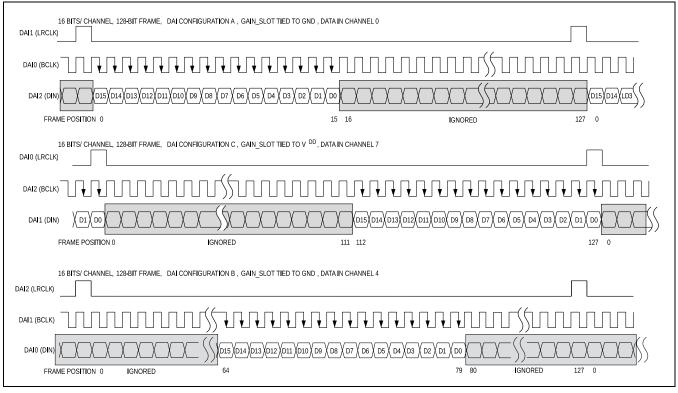


Figure 10. MAX98366B and MAX98366D TDM Protocol, 16-Bit Resolution

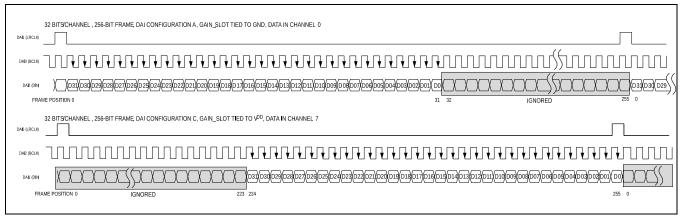


Figure 11. MAX98366B and MAX98366D TDM Protocol, 32-Bit Resolution

Gain Selection

In I²S and left-justified modes, use the information in <u>Table 9</u> to connect the GAIN_SLOT pin for the desired maximum output voltage level (dBV). In TDM mode, the gain is automatically set at a fixed output voltage level of 21.5dBV.

For f_S < 50kHz, all the GAIN_SLOT connections mentioned in <u>Table 9</u> corresponding to the five full-scale output voltage levels are available.

For $f_S > 50 kHz$, only the GAIN_SLOT connections corresponding to +18.5dBV and +21.5dBV full-scale output voltage levels are available. All other GAIN_SLOT connections default to +18.5dBV.

Table 9.	Gain Se	lection	for 12	S/I oft-	Justified	Mode
Table 3.	Gaill Se	IECLIOII	101 1-	O/LEIL-	Justilieu	MOGE

FULL-SCALE OUTPUT VOLTAGE LEVEL (dBV)	GAIN_SLOT CONNECTION
21.5	Connect to GND
18.5	Unconnected
15.5	Connect to V _{DD}
12.5	Connect to V _{DD} through 100kΩ ±5% resistor
9.5	Connect to GND through 100kΩ ±5% resistor

DC Blocking Filter

The digital audio interface includes a DC blocking filter with a -3dB cutoff at f_C (see the *Electrical Characteristics* table).

DAC Digital Filters

The DAC features a digital lowpass filter that is automatically configured based on the sample rate that is used. This filter eliminates the effect of aliasing and any other high-frequency noise that might otherwise be present. See the <u>DAC Digital</u> Filters section of the Electrical Characteristics table.

Class-D Amplifier

The filterless Class-D amplifier offers much higher efficiency than Class-AB amplifiers. The high efficiency of a Class-D amplifier is due to the switching operation of the output stage transistors. Any power loss associated with the Class-D output stage is mostly due to the I²R loss of the MOSFET on-resistance and quiescent current overhead.

Class-D Output Short-Circuit Protection

If the output current limit of the Class-D amplifier (I_{LIM}) is exceeded (see the <u>Electrical Characteristics</u> table), the outputs are disabled for approximately 27ms. At the end of the 27ms, the outputs are re-enabled. If the fault condition still exists, the outputs continue to disable and reenable until the fault condition is removed.

Turn-On and Turn-Off Volume Ramping

The MAX98366A and MAX98366B have a fast 1ms turn-on time. For optimal click-and-pop performance, ramp down the digital audio amplitude on data presented to DIN before shutting down, removing clocks, or removing power.

The MAX98366C and MAX98366D ramp the audio signal from mute to full-scale over 13ms after DAI Configuration. When turned off by pulling EN low, the gain is ramped down to mute over 14ms. Turn-off ramping only occurs if BCLK and LRCLK remain valid and V_{PVDD} and V_{DD} supplies remain within their operating ranges for at least 14ms after EN goes low. If either clock becomes invalid or if V_{PVDD} or V_{DD} falls below their respective UVLO thresholds, the audio stops immediately without ramping.

Click-and-Pop Suppression

The speaker amplifier features Analog Devices' comprehensive click-and-pop suppression. During turn-on, the click-and-pop suppression circuitry reduces audible transient sources internal to the device. When entering shutdown or standby, the differential speaker outputs simultaneously go to Hi-Z.

The comprehensive click-and-pop suppression of the MAX98366 is unaffected by power-up or power-down sequencing. Applying or removing the clocks before or after the transition of EN yields the same click-and-pop performance. However, note that for MAX98366C and MAX98366D clocks, V_{DD} must remain valid for 13ms after EN goes low to allow for volume ramping to complete for best click-and-pop performance.

Ultra-Low EMI Filterless Output Stage

Traditional Class-D amplifiers require the use of external LC filters or shielding to meet EN55022B electromagnetic interference (EMI) regulation standards. Analog Devices' active emissions-limiting, edge-rate control circuitry, and spread-spectrum modulation reduce EMI emissions while maintaining high efficiency.

Analog Devices' spread-spectrum modulation mode flattens wideband spectral components while proprietary techniques ensure that the cycle-to-cycle variation of the switching period does not degrade audio reproduction or efficiency. The device's spread-spectrum modulator randomly varies the switching frequency by f_{SSM} around the center frequency (f_{SW}). Above 10MHz, the wideband spectrum looks like noise for EMI purposes.

Applications Information

Ultrasound Performance

For ultrasound use cases, the device implements wideband digital filters for sample rates > 50kHz. Some of the use cases demand a low in-band (20Hz-20kHz) noise when ultrasound signal is played by the device. It is recommended to use TDM mode to achieve lowest in-band noise performance in presence of ultrasound.

Filterless Class-D Operation

Traditional Class-D amplifiers require an output filter to recover the audio signal from the amplifier's output. The filter adds cost, and size, and decreases efficiency and THD+N performance. The amplifier's filterless modulation scheme does not require an output filter. The device relies on the inherent inductance of the speaker coil and the natural filtering of both the speaker and the human ear to recover the audio component of the square wave output.

Because the switching frequency of the amplifier is well beyond the bandwidth of most speakers, voice coil movement due to the switching frequency is very small. Use a speaker with a series inductance > $10\mu H$. Typical 8Ω speakers exhibit series inductances in the $20\mu H$ to $100\mu H$ range.

Layout and Grounding

Proper layout and grounding are essential for optimum performance. Good grounding improves audio performance and prevents switching noise from coupling into the audio signal.

For best EMI and audio performance, the V_{PVDD} decoupling capacitor must be placed as close as possible to the MAX98366 to minimize the supply loop inductance.

Use wide, low-resistance output traces. As load impedance decreases, the current drawn from the device outputs increases. At higher currents, the resistance of the output traces decreases the power delivered to the load. For example, if 2W is delivered from the speaker output to a 4Ω load through $100m\Omega$ of total speaker trace, 1.95W is delivered to the speaker. If power is delivered through $10m\Omega$ of total speaker trace, 1.99W is delivered to the speaker. Wide output, supply, and ground traces also improve the power dissipation of the device.

Parasitic capacitance on the output traces causes higher quiescent current by V_{PVDD} x f_{SW} x $C_{PARASITIC}$. For example, at V_{PVDD} = 12V and total parasitic capacitance of 100pF (50pF on each output trace), the increase in quiescent current is 12V x 300kHz x 100pF = 360 μ A.

The device is inherently designed for excellent RF immunity. For best performance, add ground fills around all signal traces on top or bottom PCB planes.

In many applications, only three capacitors are required, which results in a small solution size of 7.84mm².

Figure 12. Solution Size

WLP GAIN_SLOT Routing

The intended use for the GAIN_SLOT pin is to either fix the desired gain in I²S and left-justified modes or to select the channel in TDM mode. GAIN_SLOT should not be changed during audio playback as it could result in audible clicks or pops.

Most modes are selectable without using a via or routing out the center bump of the WLP. This simplifies the layout and allows for inexpensive PCB fabrication.

In I²S and left-justified modes, 15.5dBV, 18.5dBV, and 21.5dBV gain settings do not require GAIN_SLOT to be routed out (see <u>Gain Selection</u>). In TDM mode, all channels can be selected without routing out GAIN_SLOT (see <u>Table 8</u>). This is possible because of the GAIN SLOT pin's placement with the V_{DD} and GND pins.

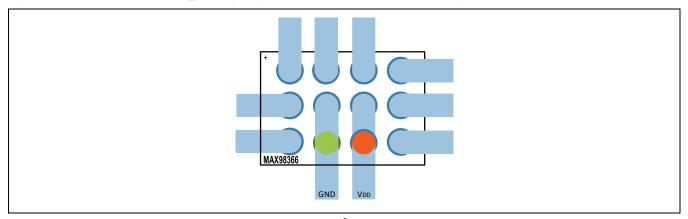


Figure 13. GAIN_SLOT Connected to V_{DD} (Output is 15.5dBV in I²S and Left-Justified Modes)

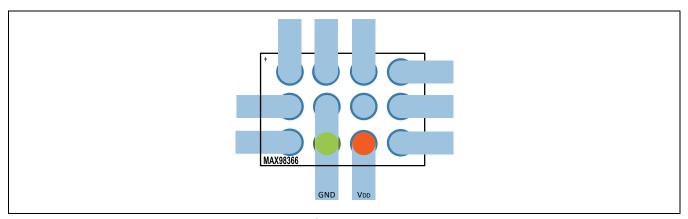


Figure 14. GAIN_SLOT Unconnected (Output is 18.5dBV in I²S and Left-Justified Modes)

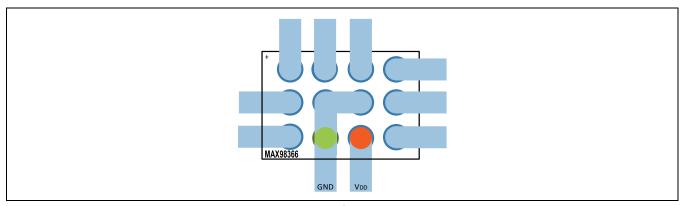
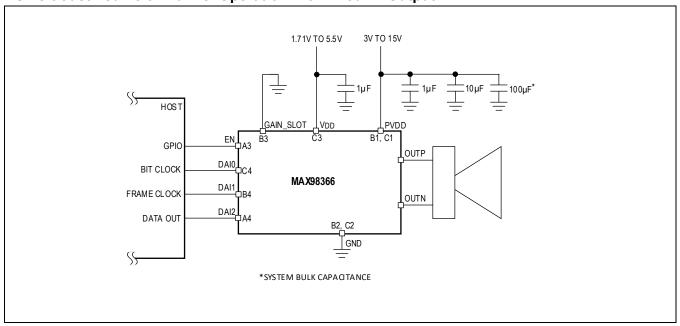
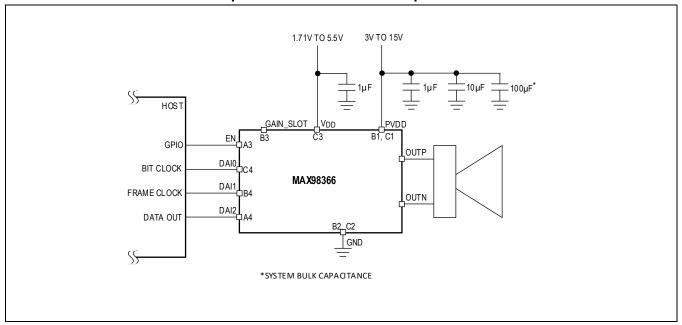


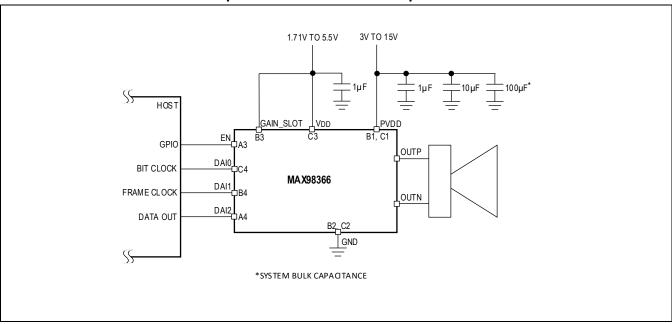
Figure 15. GAIN_SLOT Connected to GND (Output is 21.5dBV in I²S and Left-Justified Modes)

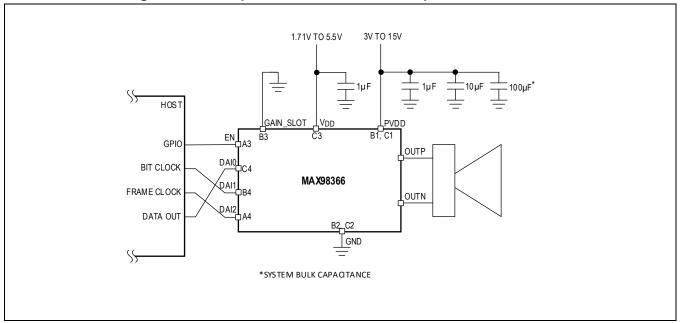

If using I²S or left-justified modes and a 12.5dBV or 9.5dBV gain setting is required, the GAIN_SLOT pin must be routed to a $100k\Omega$ resistor that is connected to either V_{DD} or GND (See the <u>Gain Selection</u> section). Some routing options are:

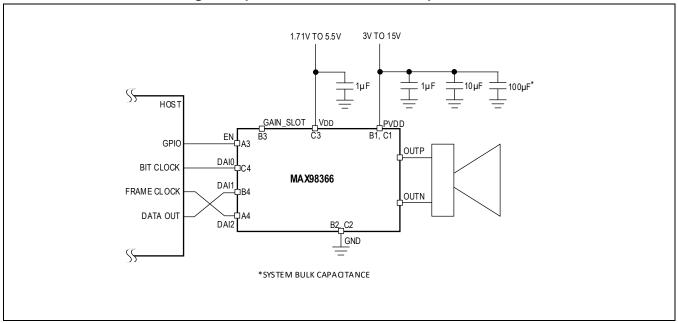
- Mechanically drilled via: cheaper if PCB volumes are low
- · Laser-drilled alternative: cheaper if PCB volumes are high
- Blind and buried vias with dog-boning
- Trace on the top layer: this must be a minimal pitch trace

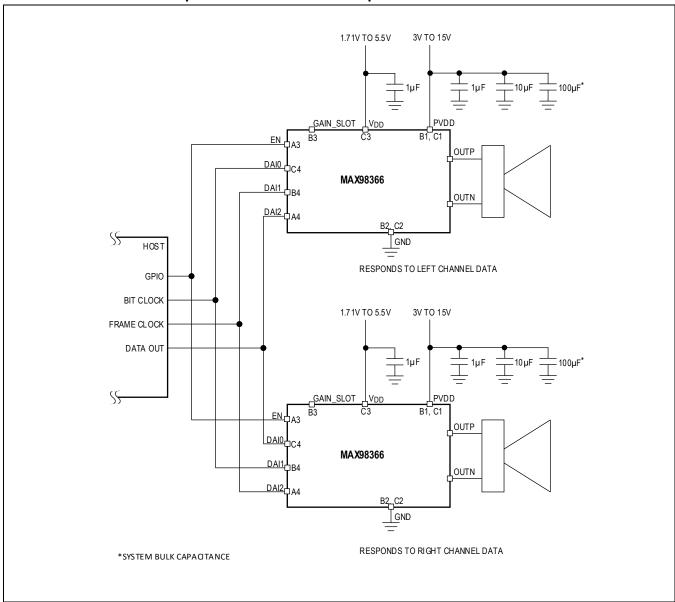

PCB fabrication technology is constantly evolving, so check with your PCB manufacturer to see what option can work best for your design.

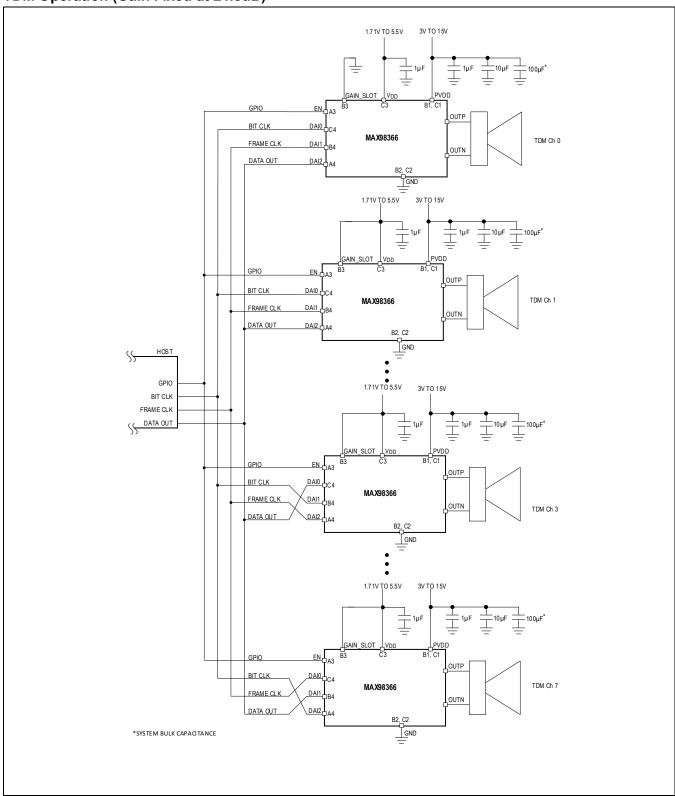
Typical Applications Circuits


I²S/Left-Justified Left-Channel Operation with 21.5dBV Output


I2S/Left-Justified Left-Channel Operation with 18.5dBV Output


I2S/Left-Justified Left-Channel Operation with 15.5dBV Output


I²S/Left-Justified Right-Channel Operation with 21.5dBV Output


I²S/Left-Justified Left/2 + Right/2 Operation with 18.5dBV Output

I2S/Left-Justified Stereo Operation with 18.5dBV Output

TDM Operation (Gain Fixed at 21.5dB)

Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE	TOP MARKING
MAX98366AEWC+	-40°C to +85°C	12 WLP	AEY
MAX98366AEWC+T	-40°C to +85°C	12 WLP	AEY
MAX98366BEWC+	-40°C to +85°C	12 WLP	AEZ
MAX98366BEWC+T	-40°C to +85°C	12 WLP	AEZ
MAX98366CEWC+	-40°C to +85°C	12 WLP	AFA
MAX98366CEWC+T	-40°C to +85°C	12 WLP	AFA
MAX98366DEWC+	-40°C to +85°C	12 WLP	AFB
MAX98366DEWC+T	-40°C to +85°C	12 WLP	AFB

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

MAX98366

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	4/24	Initial release	_
1	6/24	Updated Electrical Characteristics table	9