

MAX77963 Evaluation Kit

General Description

The MAX77963 evaluation kit (EV kit) is a fully assembled and tested surface-mount printed circuit board (PCB) that evaluates the MAX77963, a 3.2A USB Type-C[®] buckboost charger.

The MAX77963 EV kit includes the IC evaluation board with an integrated I²C-communication interface and USB micro-B cable. Windows[®] based graphical-user interface (GUI) software is available for use with the EV kit and can be downloaded from Analog Devices website at <u>www.analog.com/max77963evkit</u>. Windows 7 or newer Windows operating system is required to use the EV kit software.

Ordering Information appears at end of data sheet.

Features

- Evaluates the MAX77963 USB Type-C Buck-Boost Charger with Integrated FETs for 2S/3S Li-Ion Batteries
- Demonstrates 3.5V to 23V Input Operating Range
- Demonstrates Charging Up to 3.2A
- Demonstrates USB-OTG Functionality
- Demonstrates JEITA Compliance with On-Board
 Dummy Thermistors
- Demonstrates 8-Channel 12-Bit SAR ADC
- Demonstrates Spread Spectrum
- Fully Assembled and Tested
- I²C Serial Interface

USB Type-C is a registered trademark of USB Implementers Forum. Windows is a registered trademark and registered service mark of Microsoft Corporation.

319-100987; Rev 0; 3/23

© 2023 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2023 Analog Devices, Inc. All rights reserved.

EV Kit Photo

MAX77963 Evaluation Kit

MAX77963 EV Kit Files

FILE	DESCRIPTION
MAX77963GUISetu pX.X.X.exe	Installs EV kit files onto computer

MAX77963 EV Kit Component List

PART	QTY	DESCRIPTION
MAX77963EVKIT	1	MAX77963 evaluation kit
USB high-speed A-to-B cable	1	USB Micro-B cable

Quick Start

Follow this procedure to familiarize yourself with the EV kit. **Note:** In the following sections, software-related items are identified by bolding. Text in **bold** refers to items directly from the EV kit software. Text in **bold and underlined refers to items from the Windows operating system.**

Required Equipment

- MAX77963 EV kit
- Adjustable DC power supply
- Battery or simulated battery
 - o 2- or 3-cell Li-ion protected battery
 - Simulated battery or preloaded power supply
- Oscilloscope
- Two voltmeters
- Two ammeters
- Lab cables with appropriate current rating
- USB Micro-B cable
- PC with Windows 7 or newer operating system and USB port

Setup Overview

A typical bench setup for the MAX77963 EV kit is shown in *Figure 1*.

Procedure

The EV kit is fully assembled and tested. Follow the steps to install the EV kit software, make the required hardware connections, and start the operation of the kit. The EV kit software can be run without the hardware attached. Note that after communication is established, the IC must still be configured correctly for desired operation mode. Make sure the PC is connected to the internet throughout the process so that the USB driver can be automatically installed.

Note: Do not turn on the DC power supply until all connections are made.

- Visit <u>https://www.analog.com/max77963evkit</u> to download the latest version of the MAX77963 EV kit software. Save the software to a temporary folder and unpack the zip file.
- 2) Install the EV kit software on the computer by running the MAX77963GUISetupX.X.X.exe program inside the temporary folder. This copies the program files and creates an icon in the Windows <u>Start</u> menu. The software requires the .NET Framework 4.5 or later. If connected to the internet, Windows automatically updates the .NET Framework as needed.
- The EV kit software launches automatically after installation, and it can be launched by clicking on its icon in the Windows <u>Start</u> menu.
- Make jumper connections based on the Default Connection column in <u>Table 1</u>. Change it later when evaluating more features.
- 5) Use the USB cable provided with the EV kit to connect the EV kit to the PC's USB port.
- 6) Connect a 2- or 3-cell Li-ion battery or simulated battery to the connectors labeled BATTP and BATTN.
- 7) Connect a DC power supply to the connectors labeled CHGIN and GND.
- 8) Launch the MAX77963 GUI software.
- Select Device > Connect from the window options to connect to the EV kit.

MAX77963 Evaluation Kit

Figure 1. MAX77963 EV Kit Board Connections

Table 1. Jumper Connection Guide

JUMPER	PCB SILKSCREEN	DEFAULT CONNECTION	FEATURE
J2	SCL	1-2	 1-2: Connects SCL with the onboard MAXUSB (USB-to-I²C interface) to allow communication with the GUI software. 2-3: Disconnects SCL from the onboard MAXUSB.
J3	SDA	1-2	1-2: Connects SDA with the onboard MAXUSB to allow communication with the GUI software.2-3: Disconnects SDA from the onboard MAXUSB.
J4	INTB1	1-2	1-2: Connects INTB1 with the onboard MAXUSB to allow communication with the GUI software.2-3: Disconnects INTB1 from the onboard MAXUSB.
J5	INTB2	1-2	1-2: Connects INTB2 with the onboard MAXUSB to allow communication with the GUI software.2-3: Disconnects INTB2 from the onboard MAXUSB.
J6	DISQBAT	2-3	 1-2: Connects DISQBAT to PVL. QBAT FET is disabled. 2-3: Connects DISQBAT to GND. QBAT FET is controlled by the DISIBS bit and power-path state machine/internal logic control.
J7	STBY	2-3	1-2: Connects STBY to PVL. DC-DC is disabled. 2-3: Connects STBY to GND. DC-DC is controlled by STBY_EN bit and power-path state machine/internal logic control.
J8	OTGEN	2-3	1-2: Connects OTGEN to PVL. OTG function is enabled.2-3: Connects OTGEN to GND. OTG function enable is controlled by MODE[3:0] bitfield.
Jð	VSET	1-2	 1-2: Connects VSET to PVL. Default charge termination voltage is same as decode of reset value of CHG_CV_PRM[7:0]. 2-3: Connects VSET to R25. Default charge termination voltage is programmed by R25.

MAX77963 Evaluation Kit

J10	INLIM	1-2	 1-2: Connects INLIM to PVL. Default input current limit is same as decode of reset value of CHGIN_ILIM[6:0]. 2-3: Connects INLIM to R29. Default input current limit is programmed by R29.
J11	ITO	1-2	 1-2: Connects ITO to PVL. Default top-off charge current is same as decode of reset value of TO_ITH[2:0]. 2-3: Connects ITO to R33. Default top-off charge current is programmed by R33.
J12	ISET	1-2	 1-2: Connects ISET to PVL. Default fast-charge current is same as decode of reset value of CHGCC_MSB and CHGCC[7:0]. 2-3: Connects ISET to R34. Default fast-charge current is programmed by R34.
J13	ТНМ	2-3	1-2: Connects THM to potentiometer R39. Adjust the resistance of R39 to emulate the resistance change of a $10k\Omega$ thermistor at different temperatures. 2-3: Connects THM to a fixed $10k\Omega$ resistor. This emulates the resistance of a $10k\Omega$ thermistor at 25° C.
J14	ANA_IN	1-2	 1-2: Connects ADCIN to an external input EXT_IN through a resistor divider. Voltage dividing ratio is (R20 + R21) / R21 = 20.1. Voltage of EXT_IN should be no higher than 25V to avoid saturating voltage sensing at ADCIN. 2-3: Connects ADCIN to CHGIN through a resistor divider. Voltage dividing ratio is (R20 + R21) / R21 = 20.1. Voltage of CHGIN should be no higher than 25V to avoid saturating voltage sensing at ADCIN.
J15	CNFG	1-2	 1-2: Connects CNFG to PVL. Number of serially connected battery cells is configured as 2S. Switching frequency is configured as 600kHz. Inductance is selected as 2.2μH or 3.3μH. 2-3: Connects CNFG to R23. Number of serially connected battery cells, switching frequency, and inductance selection are programmed by R23.

Default options are in **bold**.

MAX77963 Evaluation Kit

Detailed Description of Software

The MAX77963 GUI software provides an easy-to-use interface to control the functional blocks of the IC.

Software Installation

Double-click the **MAX77963GUISetupX.X.X.exe** icon to begin the installation process. Follow the prompts to complete the installation. The evaluation software can be uninstalled in the <u>Add/Remove Programs</u> tool in the <u>Control Panel</u>. After the installation is complete, open the **Maxim Integrated/MAX77963** folder and run **MAX77963.exe** or select it from the program menu. <u>Figure 2</u> shows a splash screen containing information about the evaluation kit that appears while the program is loading.

Mout MAX77963	×
maxim integrate	ed.
MAX77963 Buck-Boost Charger EV Kit	
Version 1.0.2	
©Maxim Integrated Products, Inc. All rights reserved.	
Website: www.maximintegrated.com	
Support support.maximintegrated.com	
Disable Splash	

Figure 2. Splash Screen

Establish Communication

Power up the MAX77963 by connecting a 2- or 3-cell Li-ion battery or simulated battery at BATTP/BATTN. Open the GUI software and select **Device > Connect**. A window should pop up showing that a slave address 0x69 (7-bit address) has been found. If not, check the USB connection and power. Choose **Read and Close** and the status bar displays "Connected" to signify active communication. An example of a successful connection is shown in <u>Figure 3</u>.

MAX77963 Evaluation Kit

2	Write Read Once									Start Auto Read	Every	500 ± n
rger	Device Identification											
errupts / Status	Chip ID	0x55 = Chip Identificat	ion Code									Read
alls	Version	0x00 = Version										
figuration 4-7	Revision	0x00 = Revision										
figuration 8-11	TOP Intermunt							TOP Interrupt Mask				
figuration 12-13	ADC Conversion Done Interrupt	0 = Not Occurred	CONNE	ECTED I	DEVICE LIS	т	×	ADC Conversion Done Interrupt	1 = Masked			Read
	Thermal Shutdown Interrupt	0 = Not Occurred	MAX77	963				Thermal Shutdown Interrupt Mask	1 = Masked			Write
figurations	CHGINOVLO Interrupt	0 = Not Occurred	Chook	dawaa w		unohenoizo:		CHGINOVLO Interrupt Mask	1 = Masked			
v Dala	CHGINUVLO Interrupt	0 = Not Occurred	Enable	e Port	Interface	Infomation	Device Name	CHGINUVLO Interrupt Mask	1 = Masked			
ster map	SYSOVLO Interrupt	0 = Not Occurred		A	I2C	7-bit Address (0x69)	MAX77963	SYSOVLO Interrupt Mask	🗾 1 = Masked			
	SYSUVLO Interrupt	0 = Not Occurred	_					SYSUVLO Interrupt Mask	1 = Masked			
	TOP Status Indicator											
	ADC Conversion Done Status	0 = ADC Conversion is	r									Read
	Thermal Shutdown Status Indicator	1 = Device is Not in Th	e									
	CHGINOVLO Status Indicator	1 = CHGIN Voltage is E	Be		Connect		Close					
	CHGINUVLO Status Indicator	1 = CHGIN Voltage is A	b				0.000					
	SYSOVLO Status Indicator	1 = SYS Voltage is Bel	ow SYSO	VLO Th	rehold							
	SYSUVLO Status Indicator	1 = SYS Voltage is Abo	ve SYSU\	VLO Th	rehold							
	Reset											
	Software Reset	0x00 = No Reset									v	Read
	Hardware Reset	0x00 = No Reset									٣	Write

Figure 3. Communication Window

Main Display

Status bits and programmable functions of the charger can be accessed through the interface tabs in the left column of the window (*Figure 4*).

<u>OP</u> harger	Write Read Once Start Auto Read Every									
rrupts / Status	Ohio ID	0.55 - Ohis Identification Onde						Bead		
ails	Viewie	0x55 = Chip Identification Code						Reau		
nfiguration 0-3	Version	0x00 = Version								
figuration 4-7	Revision	000 = Revision								
nfiguration 8-11	TOP Interrrupt			TOP Interrrupt Mask						
figuration 12-13	ADC Conversion Done Interrupt	0 = Not Occurred	Read	ADC Conversion Done Interrupt	1 = Masked			Read		
	Thermal Shutdown Interrupt	0 = Not Occurred]	Thermal Shutdown Interrupt Mask	1 = Masked			Write		
figurations	CHGINOVLO Interrupt	0 = Not Occurred		CHGINOVLO Interrupt Mask	💶 1 = Masked					
o Dala	CHGINUVLO Interrupt	0 = Not Occurred		CHGINUVLO Interrupt Mask	1 = Masked					
ster map	SYSOVLO Interrupt	0 = Not Occurred		SYSOVLO Interrupt Mask	🚺 1 = Masked					
	SYSUVLO Interrupt	0 = Not Occurred		SYSUVLO Interrupt Mask	1 = Masked					
	ADC Conversion Done Status Thermal Shutdown Status Indicator CHGINOVLO Status Indicator	0 = ADC Conversion is not Done 1 = Device is Not in Thermal Shutdown 1 = CHGIN Voltage is Below CHGINOVLO Threhold						Read		
	CHGINUVLO Status Indicator	1 = CHGIN Voltage is Above CHGINUVLO Threhold								
	SYSOVEO Status Indicator	1 = SYS Voltage is Above SYSULU O Threhold								
	Software Reset	0x00 = No Reset					v	Read		

Figure 4. Top-Level Registers

MAX77963 Evaluation Kit

Register Write Access

Modification of the charger registers is locked by default to prevent arbitrary changes. Therefore, changes made to the charger registers in the locked state are not applied to the EV kit. To unlock register writing, select the **0x3 = Unlocked** option in the **Charger Settings Protection** dropdown menu from the **Charger Configurations 6** register in the **Configuration 4-7** tab, and then click **Write** (*Figure 5*). Read the register and the **Charger Settings Protection** setting should remain in the **0x3 = Unlocked** state to signify open register access.

From this point onwards, modifications written to any of the registers apply to the EV kit. For example, the **CHGIN Input Current Limit** can be changed in the **Charger Configurations 8** register by selecting the required value and clicking **Write** (*Figure 6*), but only after the registers have been unlocked.

	Write Read Once	Start Auto Read Every	500 ± r
er runte / Statue	Charger Configurations 4		
ils	Charge Termination Voltage	0x00 = 7.810V	Read
guration 0-3			Write
guration 4-7	Charger Configurations 5		
Juration 8-11	BATT to SYS Over-Current	0x04 = 4,500A	Read
juration 12-15	Trickle Charge Current Selection	0x00 = 100mA	Write
ourations	CHG_CV_PRM OFFSET Control	0x00 = No Offset	
Data	Charger Configurations 6		
r Map	Watchdog Timer Clear	0x00 + Not Cleared	Read
	Charger Settings Protection	0x03 = Unlocked	Write
	Minimum PFM Pattern Frequency	0x00 = 20kHz	
	Fast Charge Current Write	O = Disabled	
	Charger Configurations 7		
	Factory Ship Mode Enable	0 = Disabled	Read
	JEITA BAT Fast Charge Current	1 = CHGCC/2	Write
	JEITA BAT Termination Voltage	○ 0 = CHG_CV_PRM	
	Junction TEMP Thermal Regulation	0x06 = 115°C	
	JEITA Enable	0 = Disabled	

Figure 5. Charger Register Write Access

MAX77963 Evaluation Kit

🔘 MAX77963 Buck-Boost Ch	arger EV Kit		- 0	×
<u>File Device</u> Tools <u>H</u> el	p			
TOP	Write Read Once	Start Auto Read Every	500 ± ms	
Charger • Interrupts / Status • Details • Configuration 0-3	Charger Configurations 8 CHGIN Input Current Limit	[br29 = 1.000.0mx]	Read Write	
Configuration 4-7 <u>Configuration 8-11</u> Configuration 12-13 ADC Configurations	Charger Configurations 9 Zero-Cross Current Threshold OTG Mode Current Limit Input Current Limit Soft Start Period	0x06 = 150mA * 0x03 = 150mA * 0x02 = 1024µsec *	Read	
• ADC Data Register Map	Charger Configurations 10 Slope Compensation Half CHGIN Voltage Regulation CHGCC Offset Control		Read Write	
	Charger Configurations 11 Minimum System Regulation Slope Compensation Options	0x02 = 5.14V v 0x02 = 0x02 v v	Read	
		MA	XUSB is Connecte	ed 🚲

Figure 6. Change CHGIN Input Current Limit after Unlocking Charger Settings Protection

Detailed Description of Hardware

Battery Charger Test Setup

- 1) Connect a 2- or 3-cell Li-lon battery or simulated battery between BATTP and BATTN.
- 2) Adjust the voltage and current limits of the DC power supply to 5.0V and 3.0A. The output of the power supply is off.
- 3) Connect the power supply between CHGIN and GND on the EV kit board.
- 4) Open the EV kit GUI and connect to the EV kit.
- 5) In the **Configuration 4-7** tab, set **Charger Settings Protection** in the **Charger Configurations 6** register to **0x3 = Unlocked**. Click **Write** to send the command to the charger.
- 6) Program the appropriate charger settings for your system. In the **Configuration 8-11** tab, set **CHGIN Input Current Limit** in the **Charger Configurations 8** register. Click **Write** to send the command to the charger.
- 7) The 9-bit Fast Charge Current bitfield resides in two registers (CHGCC_MSB of the CHG_CNFG_08 register and CHGCC[7:0] of the CHG_CNFG_02 register). To guarantee an atomic operation, a write-enable bit CHGCC_WR_EN is provided in the CHG_CNFG_06 register. Writing 1 to this bit makes the value of the Fast Charge Current take effect. For changing the fast-charge current, perform the following steps (*Figure 7*):
 - a. The EV kit GUI has been optimized by concatenating CHGCC_MSB and CHGCC[7:0] in the same setting. In the Configuration 0-3 tab, set Fast Charge Current in the Charger Configurations 2 register. Click Write to send the command to the charger.
 - b. To apply the fast-charge current, enable Fast Charge Current Write Command in the Charger Configurations
 6 register under the Configuration 4-7 tab. Toggle the button to Enabled and click Write.
- 8) In the Charger Configuration 0 register of the Configuration 0-3 tab, set Smart Power Selector to 0x5 = Charger = On, OTG = Off, and DCDC = On, and click Write to enable charger mode.
- 9) Turn on the DC power supply's output to enable charging.
- 10) Use data log equipment to log the charge current and battery voltage profile while charging a 2- or 3-cell Li-ion battery.

MAX77963 Evaluation Kit

Charger Configurations 2		
Fast Charge Current	0x98 = 1,000.00mA	Read
Step a)		Write
Charger Configurations 6		
Watchdog Timer Clear	0x00 = Not Cleared v	Read
Charger Settings Protection	0x03 = Unlocked v	Write
Minimum PFM Pattern Frequency	0x00 = 20kHz	
Fast Charge Current Write	■ 1 = Enabled Step b)	

Figure 7. Write Fast-Charge Current

ADC Test Setup

- 1) Follow the steps above to connect equipment and the GUI to the EV kit. Configure the IC by using the **Charger** configuration tabs.
- 2) In the **Configurations** tab, select channel(s) of ADC for sampling and conversion in the **ADC Configuration 0** register. Click **Write** to send the command to the charger.
- Set single measurement or continuous measurement and other ADC configurations in the ADC Configuration 1 register. Click Write to send the command to the charger (*Figure 8*).
- In the ADC Data tab, click Read Once or Start Auto Read. Readback data of ADC channel(s) enabled is presented (*Figure 9*).

Figure 8. ADC Configurations

MAX77963 Evaluation Kit

MAX77963 Buck-Boost	Charger EV Kit						- 🗆 X
File Device Tools H	Help						
TOP	Write Read Once				Start Auto Read	Every	600 <u>*</u> ms
Charger	ADC Channel 1						
Interrupts / Status Details Configuration 0-3	VCHGIN Data Readback (mV)	0x01 = 6.105					Read
Configuration 4-7	ADC Channel 2						
Configuration 8-11 Configuration 12-13 ADC	VADCIN Data Readback (mV)	0x00 = 0.00000					Read
 Configurations 	ADC Channel 3						
<u>ADC Data</u> Register Map	VBATT Data Readback (mV)	0x7AC = 7,194.132		¢			Read
	ADC Channel 4						
	VSYS Data Readback (mV)	0x7B2 = 7,216.110		Q			Read
	ADC Channel 5						
	TDIE Data Readback (°C)	0xA67 = 19.67027	0				Read
	ADC Channel 6						
	VTHMWAVL Data Readback (%)	0x1FE = 49.804560					Read
	ADC Channel 7						
	ICHGIN Data Readback (mA)	0x09 = 14.2857					Read
	Current	0 = CHGIN to BYP					
	ADC Channel 8						
	IBATT Data Readback (mA)	0x01 = 1.221					Read
						MAXU	JSB is Connected

Figure 9. ADC Readback Data

Ordering Information

PART	ТҮРЕ
MAX77963EVKIT#	EV Kit

#Denotes RoHS-compliant.

MAX77963 Evaluation Kit

MAX77963 EV Kit Bill of Materials

REF_DES	QTY	MFG PART #	DESCRIPTION
ADCIN, ANA_IN, AVL, BATSP, BST1, BST2, BYPS, CHGINS, DISQBAT, EXT_IN, INOKB, INTB1, INTB2, LX1, LX2, OTGEN, PVL, SCL, SDA, STAT, STBY, THM, VSYSS	23	5000	RED TEST POINT
BATSN, PGND1S, PGND2S, PGNDS	4	5011	BLACK TEST POINT
BATTN, BATTP, BYP, CHGIN, GND, GND1-GND5, VSYS	11	9020 BUSS	WIRE, BUSS 20G PLATED SOLID COPPER
C1, C15, C18-C21, C23-C29	13	GRM155R71A104JA01	CAP+, 0.1µF,10%, 6.3V, X5R, 0402
C2, C3, C12, C13, C22	5	GRM155R61A475MEAA	CAP+, 4.7µF, 20%, 10V, X5R, 0402
C4	1	GRM188R6YA225KA12	CAP+, 2.2µF, 10%, 35V, X5R, 0603
C5	1	GRM155C81E105KE11	CAP+, 1µF, 10%, 25V, X6S, 0402
C6	1	GRM21BR61E106K	CAP+, 10µF, 10%, 25V, X5R, 0805
C7, C8	2	GRM155R71C224KA12	CAP+, 0.22µF, 10%, 16V, X7R, 0402
C9, C10	2	TMK325ABJ476MM	CAP+, 47µF, 20%, 25V, X5R, 1210
C11, C14	2	GRM1555C1H270JA01	CAP+, 27pF, 5%, 50V, C0G, 0402
C16, C17, C30-C32	5	C0402C105K8PAC	CAP+, 1µF, 10%, 10V, X5R, 0402
C36, C37	2	CGA5L1X7R1V106K160AC	CAP+, 10µF, 10%, 35V, X7R, 1206
DS1	1	LTST-C190CKT	LED+, SURFACE MOUNT, RED
DS2	1	LTST-C191TBKT	LED+, SURFACE MOUNT, BLUE
DS3	1	LTST-C190KFK	LED+, SURFACE MOUNT, ORANGE
J1	1	10118193-0001LF	RCPT+, MICRO B USB 2.0, 5 POS
J2-J15	14	TSW-103-07-T-S	HEADER+, 3POS, .100", SNGL
L1	1	XAL4030-332ME	INDUCTOR+, 3.3µH, 20%, 5.0A
L2-L4	3	BLM18AG601SN1	FERRITE BEAD, 600nH, 0.5A, 0603, 20%, 5.8A, 4.1x4.1MM
R1, R7, R14-R16, R18, R22, R24, R26, R32, R43, R44, R46, R47, R57	15	ERJ-2GE0R00	RES+, 0Ω, 0%, 0402
R2, R19, R31, R41, R45, R58	6	CRCW0402100KFK	RES+, 100KΩ, 1%, 0402
R4, R5	2	CRCW0402200KFK	RES+, 200KΩ, 1%, 0402
R6	1	CRCW04024R70FK	RES+, 4.7Ω, 1%, 0402
R8	1	CRCW040212K0FK	RES+, 12KΩ, 1%, 0402
R9, R13	2	CRCW040227R0FK	RES+, 27Ω, 1%, 0402
R10	1	CRCW04021M00FK	RES+, 1MΩ, 1%, 0402
R11	1	CRCW04021K00FK	RES+, 1KΩ, 1%, 0402

MAX77963 Evaluation Kit

R12, R54	2	CRCW040210K0FK	RES+, 10KΩ, 1%, 0402
R17	1	CRCW04024752FK	RES+, 47.5KΩ, 1%, 0402
R20	1	CRCW0603953KFK	RES+, 953KΩ, 1%, 0603
R21	1	ERJ-2RKF4992	RES+, 49.9KΩ, 1%, 0402
R23, R25, R29, R33, R34	5	3296W-1-254LF	RES+, POT, 250KΩ
R27, R28	2	CRCW04024K70FK	RES+, 4.7KΩ, 1%, 0402
R30	1	CRCW0402169KFK	RES+, 169KΩ, 1%, 0402
R35	1	CRCW0402470RFK	RES+, 470Ω, 1%, 0402
R36	1	RC0402JR-070RL	RES+, 0Ω, 5%, 0402
R38, R42	2	RC0402FR-072K2L	RES+, 2.2KΩ, 1%, 0402
R39	1	3296Y-1-503LF	RES+, POT, 50KΩ
R48, R59	2	ERJ-2GEJ132	RES+, 1.3KΩ, 5%, 0402
U1	1	MAX77963EWJ+	MAX77963EWJ+
U2	1	FT2232HL	FT2232HL
U4	1	MAX14611ETD+	MAX14611ETD+
U5, U6	2	MAX8512EXK+	MAX8512EXK+
Y1	1	7M-12.000MAAJ	7M-12.000MAAJ
D1, D2	2	OPEN	N/A
C33-C35, C40, C41	5	OPEN	N/A
R3, R40, R49, R51-R53	6	OPEN	N/A

MAX77963 EV Kit Schematic

MAX77963 Evaluation Kit

MAX77963 EV Kit Schematic (continued)

Analog Devices | 14

MAX77963 Evaluation Kit

MAX77963 EV Kit PCB Layout

MAX77963 EV Kit Component Placement Guide—Top Silkscreen

MAX77963 EV Kit PCB Layout—Top Layer

MAX77963 EV Kit PCB Layout—Layer 2

MAX77963 EV Kit PCB Layout—Layer 3

MAX77963 Evaluation Kit

MAX77963 EV Kit PCB Layout (continued)

MAX77963 EV Kit PCB Layout—Layer 4

MAX77963 EV Kit PCB Layout—Layer 5

MAX77963 EV Kit PCB Layout—Bottom Layer

MAX77963 EV Kit Component Placement Guide—Bottom Silkscreen

MAX77963 Evaluation Kit

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	3/23	Initial release	—

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.