MAX22208 Click here to ask an associate for production status of specific part numbers. ## 65V, 3.8A Quad Half H-Bridge Drivers with Integrated Current Sense #### **General Description** The MAX22208 provides four individually controllable 65V, $3.8A_{MAX}$ half H-bridge drivers. It can be used to drive four solenoids, two brushed DC motors, one single stepper motor, or a combination of different loads. The power FETs have very low impedance, resulting in high driving efficiency and low heat dissipation. The typical total R_{ON} (high side plus low side) is 0.3Ω (typ). Each half bridge can be individually pulse-width modulation (PWM)-controlled with two logic inputs (DIN, EN). The MAX22208 integrates non-dissipative current sensing, which eliminates the bulky external power resistors normally required for this function, resulting in a dramatic space and power saving compared with mainstream applications based on the external sense resistor. A current proportional to the internally-sensed load current is output to the external current-monitor pins (ISEN_). By connecting an external resistor to these pins, a voltage proportional to the motor current is generated. The voltage drop across the external resistors can be input into the controller ADC whenever the control algorithm requires the current/torque information. The maximum output current per half H-bridge is I_{MAX} = 3.8A and is limited by the overcurrent protection (OCP) circuit. This current can be driven for very short transients and aims to effectively drive small capacitive loads. The maximum RMS current per H-bridge is $I_{RMS} = 2A$. Since this current is limited by thermal considerations, the actual maximum RMS current depends on the thermal characteristic of the application (PCB ground planes, heatsinks, forced air ventilation, etc.). The MAX22208 features overcurrent protection (OCP), thermal shutdown (TSD), and undervoltage lockout (UV-LO). An active-low, open-drain FAULT pin is activated every time a fault condition is detected. During TSD and UVLO, the driver outputs are three-stated until normal operating conditions are restored. The MAX22208 is available in a small, 5mm x 7mm, 38-pin TQFN and 4.4mm x 9.7mm, 38-pin TSSOP package. ## **Applications** - Brushed DC Motor Driver - Stepper Motor Driver - Solenoid Driver - Latched Valves #### **Benefits and Features** - Four Independent Half H-Bridge Drivers - 65V Maximum Operating Voltage - 0.3Ω (typ) R_{ON} (High Side + Low Side) at T_A = +25°C - Fully Independent Half-Bridge Control - Current Rating per H-Bridge (T_A = +25°C): - I_{MAX} = 3.8A (Impulse Current for Driving Capacitive Loads) - I_{RMS} = 2A - Integrated Current Sensing (ICS) Eliminates External Bulky Resistors and Improves Efficiency - Current-Sense Output Monitor - Fault Indicator Pin (FAULT) - Overcurrent Protection for Each Individual Channel (OCP) - Undervoltage Lockout (UVLO) - Thermal Shutdown T_{SD} = +155°C - 5mm x 7mm, 38-Pin TQFN and 4.4mm x 9.7mm, 38-Pin TSSOP Packages Ordering Information appears at end of data sheet. 19-101619; Rev 0; 8/23 ## **Simplified Block Diagram** ## **TABLE OF CONTENTS** | General Description | | |--|----| | Applications | | | Benefits and Features | | | Simplified Block Diagram | | | Absolute Maximum Ratings | | | Package Information | | | 38-Pin TSSOP (9.7mm x 4.4mm) | | | 38-Pin TQFN (5mm x 7mm) | | | Electrical Characteristics | | | Typical Operating Characteristics | | | Pin Configurations | | | TQFN Pin Configuration | | | TSSOP Pin Configuration | | | Pin Description | | | Functional Diagrams | | | Detailed Description | | | Sleep Mode (SLEEP Pin) | | | PWM Control | | | Current-Sense Output (ISEN_)—Current Monitor | | | Fault Protection | | | Overcurrent Protection (OCP) | | | Thermal Shutdown | | | Undervoltage-Lockout Protection (UVLO) | | | Applications Information | | | Typical Application Circuits | | | Application Diagram | | | Ordering Information | | | Pavision History | 10 | | | LIST OF FIGURES | |----------|---| | MAX22208 | 65V, 3.8A Quad Half H-Bridge Drivers with
Integrated Current Sense | | | | Analog Devices | 4 www.analog.com | Integrated Cur | | |----------------|------------| | | rent Sense | MAX22208 65V, 3.8A Quad Half H-Bridge Drivers with ## **Absolute Maximum Ratings** | V _M to GND | 3V to +70V ISEN_ to GN | D0.3V to min (+2.2V, V _{DD} + 0.3V) | |--|--------------------------------------|--| | V _{DD} to GND0.3V to min (+2.2V,) | $V_{M} + 0.3V)$ DIN_to GNE | 0.3V to 6V | | PGND to GND0.3 | | 0.3V to 6V | | OUT0.3 to (| | ND0.3V to min (+70V, V_M + 0.3V) | | V _{CP} to GND(V _M - 0.3V) to min (+74V | ', V _M + 6V) Operating Te | mperature Range40°C to +125°C | | C _{P2} to GND(V _M - 0.3V) to (V | CP + 0.3V) Junction Ten | nperature+150°C | | <u>C_{P1} to GND</u> 0.3V to (| | perature Range65°C to +150°C | | FAULT to GND | 0.3V to 6V Soldering Te | mperature (reflow)+260°C | Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **Package Information** #### 38-Pin TSSOP (9.7mm x 4.4mm) | Package Code | U38E+3C | |--|----------------| | Outline Number | <u>21-0714</u> | | Land Pattern Number | <u>90-0435</u> | | Thermal Resistance, Four-Layer Board: | | | Junction to Ambient (θ _{JA}) | 45°C/W | | Junction to Case (θ _{JC}) | 1°C/W | #### 38-Pin TQFN (5mm x 7mm) | Package Code | T3857-1C | | |---|----------------|--| | Outline Number | <u>21-0172</u> | | | Land Pattern Number | <u>90-0076</u> | | | Thermal Resistance, Single-Layer Board: | | | | Junction to Ambient (θ _{JA}) | 38°C/W | | | Junction to Case (θ_{JC}) | 1°C/W | | | Thermal Resistance, Four-Layer Board: | | | | Junction to Ambient (θ _{JA}) | 28°C/W | | | Junction to Case (θ _{JC}) | 1°C/W | | For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. #### **Electrical Characteristics** $(V_M$ = from +4.5V to +65V, limits are 100% tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design and characterization, typical values are at V_M = 36V and T_A = +25°C.) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |-----------------------------------|-----------------|-------------------|-----|-----|-----|-------| | POWER SUPPLY | | | | | | | | Supply Voltage Range | V _M | | 4.5 | | 65 | V | | Sleep-Mode Current
Consumption | I _{VM} | SLEEP = logic low | | | 20 | μA | ## **Electrical Characteristics (continued)** $(V_M$ = from +4.5V to +65V, limits are 100% tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design and characterization, typical values are at V_M = 36V and T_A = +25°C.) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |--|-------------------------|--|------|---------------|------|-------| | Quiescent Current
Consumption | I _{VM} | SLEEP = logic high | | | 5 | mA | | 1.8V Regulator Output
Voltage | V _{VDD} | V _M = +4.5V, I _{LOAD} = 20mA | | 1.8 | | V | | V _{DD} Current Limit | I _{VDD(LIM)} | V _{DD} shorted to GND | 18 | | | mA | | Charge-Pump Voltage | V _{CP} | | | $V_{M} + 2.7$ | | V | | LOGIC LEVEL INPUTS/C | UTPUTS | | | | | | | Input Voltage
Level—High | V _{IH} | | 1.2 | | | V | | Input Voltage
Level—Low | V _{IL} | | | | 0.65 | V | | Input Hysteresis | V _{HYS} | | | 110 | | mV | | Pull-Down Current | I _{PD} | Logic supply $(V_L) = +3.3V$ | 16 | 34 | 60 | μA | | Open-Drain Output
Logic-Low Voltage | V _{OL} | I _{LOAD} = 5mA | | | 0.4 | V | | Open-Drain Output
Logic-High Leakage
Current | Іон | V _{PIN} = +3.3V | -1 | | +1 | μA | | SLEEP Voltage Level
High | V _{IH} (SLEEP) | | 0.9 | | | V | | SLEEP Voltage Level
Low | V _{IL(SLEEP)} | | | | 0.6 | V | | SLEEP Pull-Down Input
Resistance | R _{PD(SLEEP)} | | 0.8 | 1.5 | | ΜΩ | | OUTPUT SPECIFICATIO | NS | | | | | | | Output On-Resistance
Low-Side | R _{ON(LS)} | | | 150 | 270 | mΩ | | Output On-Resistance
High-Side | R _{ON(HS)} | | | 150 | 300 | mΩ | | Output Leakage | I _{LEAK} | Driver off | -12 | | +12 | μA | | Dead Time | t _{DEAD} | | | 100 | | ns | | Output Slew Rate | SR | | | 300 | | V/µs | | PROTECTION CIRCUITS | | | | | | | | Overcurrent Protection Threshold | I _{OCP} | | 3.8 | | | А | | Overcurrent Protection Blanking Time | tocp | | | 2.2 | 3.5 | μs | | Autoretry OCP Time | t _{RETRY} | | | 3 | | ms | | UVLO Threshold on V _M | V _{UVLO} | V _M rising | 3.75 | 4 | 4.25 | V | | UVLO Threshold on V _M
Hysteresis | Vuvlohys | | | 0.12 | | V | | Thermal-Protection Threshold Temperature | T _{SD} | Temperature rising until FAULT pin goes low | | +155 | | °C | ## **Electrical Characteristics (continued)** $(V_M$ = from +4.5V to +65V, limits are 100% tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design and characterization, typical values are at V_M = 36V and T_A = +25°C.) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |---|----------------------|---|-----|------|-----|-------| | Thermal-Protection Temperature Hysteresis | T _{SD_HYST} | Temperature falling until FAULT pin goes high | | 20 | | °C | | CURRENT-SENSE MONI | TOR | | | | | | | ISEN_ Voltage Range | V _{ISEN} | Voltage range at ISEN_ pin | 0 | | 1.1 | V | | Current-Monitor Scaling Factor | KISEN | See the I _{SEN} output-current equation in the <u>Current-Sense Output (ISEN_)</u> <u>—Current Monitor</u> section | | 7500 | | A/A | | Settling Time | t _S | I _{FS} = I _{MAX} | | 0.5 | | μs | | FUNCTIONAL TIMING | | | | | | | | Sleep Time | tSLEEP | SLEEP = logic 1 to logic 0 for OUT_ to become three-state | | 40 | | μs | | Wake-Up Time from
Sleep | twake | SLEEP = logic 0 to logic 1 to resume normal operation | | | 2.7 | ms | | Enable Time | t _{EN} | Time from EN_ pin rising edge to driver on | | | 0.6 | μs | | Disable Time | t _{DIS} | Time from EN_ pin falling edge to driver off | | | 1.4 | μs | ## **Typical Operating Characteristics** $(V_M = +4.5V \text{ to } +60V; T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ ## **Pin Configurations** #### **TQFN Pin Configuration** #### **TSSOP Pin Configuration** # 65V, 3.8A Quad Half H-Bridge Drivers with Integrated Current Sense ## **Pin Description** | PIN | | | F. FUNCTION | | |---------------------------|-----------------------|------------------------------------|--|----------------------| | TQFN | TSSOP | NAME | FUNCTION | TYPE | | 16, 22, 23,
28, 29 | 19, 25, 26,
31, 32 | V _M | Supply Voltage Input. Connect at least 1µF surface-mounted device plus 10µF electrolytic bypass capacitors to GND. Higher values can be considered depending on application requirements. | Supply | | 15 | 18 | V _{CP} | Charge-Pump Output. Connect a 5V, $1\mu F$ capacitor between V_{CP} and V_{M} as close as possible to the device. | Output | | 13 | 16 | C _{P1} | Charge-Pump Flying Capacitor Pin 1. Connect a V_M -rated 22nF capacitor between C_{P1} and C_{P2} as close as possible to the device. | Output | | 14 | 17 | C _{P2} | Charge-Pump Flying Capacitor Pin 2. Connect a V_M -rated 22nF capacitor between C_{P1} and C_{P2} as close as possible to the device. | Output | | 1 | 4 | V _{DD} | 1.8V Linear Regulator Output. Bypass V _{DD} to GND with a 5V, 2.2µF capacitor connected close to the device. | Analog
Output | | 17 | 20 | SLEEP | Active-Low Sleep Pin | Logic Input | | 21, 24, 27, 30 | 24, 27, 30, 33 | OUT1 to
OUT4,
respectively | Driver Outputs | Output | | 12 | 15 | FAULT | Active-Low, Open-Drain, Output Fault Indicator. \overline{FAULT} goes low to indicate that one or more of the protection mechanisms has been activated. Connect a $2k\Omega$ pull-up resistor from \overline{FAULT} to the microcontroller supply voltage. | Open-Drain
Output | | 33, 34, 35, 36 | 36, 37, 38, 1 | ISEN1 to
ISEN4,
respectively | Current-Sense Output Monitor. Connect a resistor to GND to monitor the voltage generated with an external ADC (see the <u>Current-Sense Output (CSO)—Current Monitor</u> section). | Output | | 2, 4, 6, 8 | 5, 7, 9, 11 | EN1 to EN4, respectively | Enable Pin. Assert high to enable output drivers. | Logic Input | | 3, 5, 7, 9 | 6, 8, 10, 12 | DIN1 to DIN4, respectively | CMOS PWM Inputs | Logic Input | | 10, 11, 18,
37, 38 | 2, 3, 13, 14,
21 | GND | Analog Ground. Connect to ground plane. | GND | | 19, 20, 25,
26, 31, 32 | 23, 28, 29, 34 | PGND | Power GND. Connect to ground plane. | GND | | _ | 22, 35 | N.C. | No Connection | _ | | EP | EP | EP | Exposed Pad. Connect to GND. | GND | ## **Functional Diagrams** #### **Detailed Description** The MAX22208 provides four individually controllable 65V, 3.8A_{MAX} half H-Bridge drivers. It can be used to drive four solenoids, two bushed DC motors, a single stepper motor, or a combination of different loads. The power FETs have very low impedance resulting in high driving efficiency and low heat generation. The typical total R_{ON} (high side + low side) is 0.3Ω (typ). Each half-bridge can be PWM controlled by two logic inputs (DIN_ and EN_). The MAX22208 integrates non-dissipative current sensing which eliminates the bulky external power-sense resistors to reduce space and save power. The internally sensed current is scaled and output to the external current monitor pins (ISEN_), which generate a voltage proportional to the load current when a resistor is connected from the ISEN_ pins to GND. This voltage can be monitored by a microcontroller ADC to get load current and torque information. The maximum transient output current for each half bridge is $I_{MAX} = 3.8A$ and is limited by overcurrent protection (OCP). This current can be tolerated for short intervals and is aimed to drive small capacitive loads. The maximum RMS current per H-Bridge is $I_{RMS} = 2A$ and is limited by the thermal characteristics of the application such as package and die temperature, PCB ground planes and routing, heatsinks, forced air ventilation, etc. #### Sleep Mode (SLEEP Pin) The SLEEP pin can be driven low to place the device into the lowest power consumption mode possible, with all outputs three-stated, the internal circuits biased off, and the charge pump disabled. A pull-down resistor should be connected between SLEEP and GND to ensure the part is disabled whenever this pin is not actively driven. Driving the SLEEP pin high wakes up the device and returns it to normal mode. two two connected pin high wakes up the device and returns it to normal mode. #### **PWM Control** When a half bridge is enabled (EN_ = logic high), the average output voltage is controlled by the corresponding DIN_logic input. PWM techniques can be used to control the output duty cycle and hence to implement motor speed or solenoid current control. Setting the EN_ pins at logic low forces the corresponding OUT_ driver pins to enter a high-impedance mode. The EN_ input pins should not be used for PWM control. Each half-bridge (OUT) is controlled by two logic inputs (DIN , EN). Table 1 shows the control truth table. Table 1. MAX22208 Truth Table | EN_ | DIN_ | OUT_ | DESCRIPTION | |-----|------|----------------|----------------------------| | 0 | X | High-Impedance | Half H-bridge is disabled. | | 1 | 0 | Low | Low-side FET is driven. | | 1 | 1 | High | High-side FET is driven. | #### Current-Sense Output (ISEN_)—Current Monitor A current proportional to the internally-sensed motor current for each OUT_ is output to the ISEN_ pins for each individual half H-bridge. The integrated current sense is unipolar and the current is sensed on the low-side (LS) FET only. Therefore, the current information is meaningful when the LS FET is on and operates in forward mode. Under this condition, the ISEN output-current equation applies: $$I_{\text{ISEN}}(A) = \frac{I_{\text{OUT}}(A)}{K_{\text{ISEN}}}$$ Where K_{ISEN} represents the current scaling factor between the output current and its replica at the ISEN_ pins. K_{ISEN} is typically 7.5KA/A. For example, if the instantaneous output current is 2A, the current sourced at ISEN is 266 μ A. When the LS FET is on in reverse mode, or when the high-side FET is on, the ISEN_ current monitor outputs a zero current. Connecting an external signal resistor, RISEN, between each ISEN_ and GND generates a voltage proportional to the ## 65V, 3.8A Quad Half H-Bridge Drivers with Integrated Current Sense motor current. The voltage drop across R_{ISEN} can be input into an ADC of an external controller in applications in which the motor control algorithm requires the current/torque information. The R_{ISEN} value should be chosen so that the peak voltage meets the ADC full-scale requirement and does not exceed V_{ISEN} (max). The following equation shows the design formula to calculate R_{ISEN} once the ADC full-scale voltage (V_{FS}) and the maximum operating current (I_{MAX}) are known: $$R_{\text{ISEN}}(\Omega) = K_{\text{ISEN}} \times \frac{V_{\text{FS}}(V)}{I_{\text{MAX}}(A)}$$ For example, if the ADC operates up to 1V FS and the maximum operating output current is 2A, then R_{ISEN} is 7500 x $1V/2A = 3.75K\Omega$. The R_{ISEN} value also sets the output impedance of the current-sense output circuit. Normally, the input impedance of the ADC is much higher than R_{ISEN}, enabling a direct connection to the ISEN_ pins without signal attenuation, but if a low-input-impedance ADC is used, a pre-amplifier (buffer) is required. #### **Fault Protection** #### **Overcurrent Protection (OCP)** OCP protects the device against OUT_ short circuits to the rails (supply voltage and ground) or excessive load currents. The OCP threshold is set at 3.8A minimum. If the output current is greater than the OCP threshold for longer than the deglitch time (OCP blanking time), an OCP event is detected, the half H-bridge is set to high-impedance mode, and the FAULT output is driven low to indicate to external circuitry that a fault condition has been detected. The half H-bridge is kept in high-impedance mode for 3ms (typ) before autoretry is initiated when the OUT_ H-bridge is re-enabled according to its current state as defined by EN_ and DIN_. If the overcurrent event or short circuit is still present, this cycle repeats. Otherwise, normal operation resumes. The external circuitry monitoring FAULT should take action to avoid prolonged operation under the overcurrent mode as a prolonged OCP autoretry could affect the device reliability. #### **Thermal Shutdown** If the die temperature exceeds T_{SD} = +155°C (typ), all output pins (OUT1–OUT4) are three-stated and the \overline{FAULT} pin is driven low. The \overline{FAULT} pin remains low and the outputs are placed in three-state mode until the die temperature falls by the hysteresis amount of 20°C (typ), after which the \overline{FAULT} pin is driven high and the outputs are re-enabled. #### **Undervoltage-Lockout Protection (UVLO)** When the V_M supply voltage is below the UVLO threshold, all OUT_ outputs are three-stated and the \overline{FAULT} pin is driven low. The OUT_ outputs automatically return to their current state (defined by EN_ and DIN_) when the V_M supply voltage exceeds the UVLO threshold (max) and \overline{FAULT} is driven high. # 65V, 3.8A Quad Half H-Bridge Drivers with Integrated Current Sense ## **Applications Information** Careful PCB layout is critical to achieve low switching losses and clean, stable operation. Use a multilayer board whenever possible for better noise immunity and power dissipation. Follow these guidelines for good PCB layout: - 1. Place supply and charge-pump bypass capacitors close to the IC. - 2. Ensure a good connection from the exposed pad to the GND plane by using vias and ground pours to help to provide an adequate current path and heat dissipation. - 3. Keep the power traces and load connections short and wide. This practice is essential for high efficiency. Use thick copper PCBs (2oz or 1oz vs. 0.5oz) to enhance full-load efficiency and thermal dissipation. - 4. Use precision resistors (1% or better) for better accuracy. Figure 1. MAX22208 Recommended Layout ## **Typical Application Circuits** ### **Application Diagram** ## **Ordering Information** | PART NUMBER | TEMPERATURE RANGE | PIN-PACKAGE | |-----------------|-------------------|--------------| | MAX22208ATU+ | -40°C to +125°C | 38 TQFN-EP* | | MAX22208ATU+T | -40°C to +125°C | 38 TQFN-EP* | | MAX22208AUU+T** | -40°C to +125°C | 38 TSSOP-EP* | ⁺Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel. ^{*}EP = Exposed pad. ^{**}Future product—contact factory for availability. ## 65V, 3.8A Quad Half H-Bridge Drivers with **Integrated Current Sense** ## **Revision History** | REVISION
NUMBER | REVISION DATE | DESCRIPTION | PAGES
CHANGED | |--------------------|---------------|-----------------|------------------| | 0 | 8/23 | Initial release | _ |