DC to 13 GHz Divide-by-4 ADH365S #### 1.0 SCOPE This specification documents the detail requirements for an internally defined equivalent flow per MIL-PRF-38535 Level V expect as modified herein The manufacturing flow described in the RF & MICROWAVE STANDARD SPACE LEVEL PRODUCTS PROGRAM is to be considered a part of this specification. This data specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at http://www.analog.com/hmc365g8 #### 2.0 Part Number The complete part number(s) of this specification follows: Specific Part Number Description ADH365R701G8 DC to 13 GHz Divide-by-4 ## 3.0 Case Outline The case outline is as follows: | Outline Letter | Descriptive Designator | <u>Ierminals</u> | Lead Finish | Package style | |----------------|------------------------|------------------|-------------|-------------------------------| | Χ | FR-8-2 | 8 Lead | Gold | Glass/Metal Hermetic SMT (G8) | Figure 1 – Functional Block Diagram | | | | Package: X | | | | | |-------------------|--------------------|-----------|--|------------------------|--|--|--| | Pin
Number | Terminal
Symbol | Pin Type | Pin Description | Interface Schematic | | | | | 1 | RFIN | RF Input | Positive RF differential Input <u>1</u> / | Vcc 05V
50Ω
RFIN | | | | | 2 | N/C | | No Connection | | | | | | 3 | RFIN | RF Input | Negative RF differential Input <u>2</u> / | Vcc ο
RFIN | | | | | 4 | GND | Power | RF/DC ground | GND | | | | | 5 | RFOUT | RF Output | Negative RF differential Output <u>3</u> / | Vcc 05V RFOUT | | | | | 6 | N/C | N/C | No Connection | | | | | | 7 | RFOUT | RF Output | Positive RF differential Output <u>4</u> / | Vcc 05V | | | | | 8 | Vcc | Power | Supply Voltage <u>5</u> / | | | | | | Package
Bottom | GND | Power | RF/DC ground <u>6</u> / | GND | | | | | Package
Lid | N/C | NIC | 2/ | _ | | | | Figure 2 – Terminal Connections - 1/ RF Input must be DC blocked. 2/ RF Input 180° out of phase with pin 1 for differential operation. Must be DC blocked. AC ground for single ended operation. 3/ Divided output 180° out of phase with pin 7. Must be DC blocked. 4/ RF Input must be DC blocked. Divided output. 5/ Supply voltage 4.75 V to 5.25 V 6/ Package bottom must be connected to RF/DC ground. 7/ No internal connection on lid. Lid may be connected to RF/DC ground. # 4.0 Specifications | 4.1. | Absolute Maximum Ratings 1/ | | |------|---|------------------------| | | Supply voltage (Vcc) | 5.5 Vdc | | | RF Input (Vcc = +5 V) | +13 dBm | | | Junction temperature maximum (T _J) | +135 °C | | | Continuous PDiss (T= 85 °C) | 820 mW | | | (derate 16.4mW/°C above 85 °C) | | | | Thermal resistance, junction-to-case (θ_{JC}) | 61 °C/W <u>2</u> / | | | Thermal resistance, junction-to-ambient (θ_{JA}) | 64 °C/W <u>2</u> / | | | Storage temperature range | -65 °C to +150 °C | | | ESD Sensitivity (HBM) | Class 1A, Passed 250V | | | | | | | | | | 4.2. | Recommended Operating Conditions | | | | Supply voltage (Vcc) | +4.75 V to +5.25 V | | | Ambient operating temperature range (T _A) | 40 °C to +85 °C | | | | | | 4.3. | Nominal Operating Performance Characteristics 3/ | | | | Input Sensitivity near DC Operation (Sine Wave input) | | | | 0.5 to 1 GHz | -15 dBm to +15 dBm | | | Output Transition Time (Fout = 882MHz, Pin= 0dBm) | 100 ps | | | Reverse Leakage (both RF outputs terminated) | 45 dB | | | SSB Phase Noise (100 kHz offset) | -151 dBc/Hz <u>4</u> / | # **Radiation Features** Maximum total dose available (dose rate = 50 – 300 rads (Si)/s).... 100k rads (Si) ^{1/} Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions outside of those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. ^{2/} Measurement taken under absolute worst case condition and represent data taken with thermal camera for highest power density location. See MIL-STD-1835 for average O_{JC} number. $[\]underline{3}$ / All typical specifications are at T_A = 25 °C, Vcc = 5 V, unless otherwise noted. $[\]frac{4}{\text{P}_{\text{IN}}} = 0 \text{ dBm}, F_{\text{IN}} = 6 \text{ GHz}$ TABLE I – ELECTRICAL PERFORMANCE CHARACTERISTICS | Parameter
See notes at end of table | Symbol | Conditions <u>1</u> /
Unless otherwise specified | | Sub-Group | Limits | | Units | |--|---------------------------------------|--|---------------------------|-----------|--------|-----|--------| | See notes at end of table | Jyllibol | | | Sub-Group | Min | Max | Offics | | RF CHARACTERISTICS | | | | | | | | | Input Frequency | F _{IN} | | | 4,5,6 | 1 | 13 | GHz | | input Frequency | ΓIN | | M,D,P,L,R | 4 | 1 | 13 | GHZ | | | | $F_{IN} = 1, 10 \text{ GHz}$
$P_{IN} = -15 \text{ dBm}, +10 \text{ dBm}$ | 1 450 | 5 | | | | | | | | M,D,P,L,R | 4 | 5 | | | | Output Power <u>4</u> / | P_{OUT} $P_{IN} = -1$ $F_{IN} = 13$ | $F_{IN} = 11 \text{ GHz}$
$P_{IN} = -10 \text{ dBm, } +5 \text{ dBm}$ | | 4,5,6 | 5 | | dBm | | • | | | M,D,P,L,R | 4 | 5 | | | | | | $F_{IN} = 13 \text{ GHz}$
$P_{IN} = -5 \text{ dBm}, 0 \text{ dBm}$ | | 4,5,6 | 5 | | | | | | M,D,P,L,R | | 4 | 5 | | | | SUPPLY CURRENT | | | | | | | | | | | Vcc = 5.0 V | | 1,2,3 | | 147 | | | Supply Current | 1 | No RF | M,D,P,L,R | 1 | | 147 | mA | | зирру Сипенс | | Vcc = 4.75 V, 5.25 V <u>2</u> / <u>3</u> /
No RF | / | 1,2,3 | | 147 | 11171 | | HARMONIC CONTENT | | | | | | | | | Feedthrough | FTHRU | $P_{IN} = 0 \text{ dBm, } F_{IN} = 6 \text{ G}$ | GHz <u>2</u> / <u>3</u> / | 4,5,6 | | -16 | | | 2nd harmonic | 2nd | $P_{IN} = 0 \text{ dBm}, F_{IN} = 6 \text{ GHz } \underline{2} / \underline{3} /$
$P_{IN} = 0 \text{ dBm}, F_{IN} = 6 \text{ GHz } \underline{2} / \underline{3} /$ | | 4,5,6 | | -18 | dBm | | 3 rd harmonic | 3rd | | | 4,5,6 | | -2 | | #### TABLE I Notes: ^{1/}Vcc = 5 V, TA nom = 25 °C, TA max = 85 °C, and TA min = -40 °C unless otherwise noted. ^{2/} Parameter is part of device initial characterization which is only repeated after design and process changes or with subsequent wafer lots. ^{3/} Parameter is not tested post irradiation. $[\]underline{4}$ / Apply for both pin 5 and pin 7. Output power is single-ended. **TABLE IIA – ELECTRICAL TEST REQUIREMENTS** | Test Requirements | Subgroups (in accordance with MIL-PRF-38535, Table III) | |---|---| | Interim Electrical Parameters | 1, 4 | | Final Electrical Parameters | 1, 4 <u>1</u> / <u>2</u> / | | Group A Test Requirements | 1, 2, 3, 4, 5, 6 | | Group C end-point electrical parameters | 1,4 <u>2</u> / | | Group D end-point electrical parameters | 1, 4 | | Group E end-point electrical parameters | 1,4 <u>3</u> / | Table IIA Notes: TABLE IIB – LIFE TEST/BURN-IN DELTA LIMITS $\underline{1}/\underline{2}/$ | Parameter | Test Conditions | Symbol | Delta | Units | |-------------------------|---|--------|-------|-------| | Supply Current | Vcc = 5.0 V | lee | ±10 | 0/ | | Supply Current | No RF | lcc | ±10 | % | | | Vcc = 5.0 V | | | | | | $F_{IN} = 1 \text{ GHz}, P_{IN} = -15 \text{ dBm}$ | | | | | | $F_{IN} = 1 \text{ GHz}, P_{IN} = +10 \text{ dBm}$ | | ±1 | dB | | | $F_{IN} = 10 \text{ GHz}, P_{IN} = -15 \text{ dBm}$ | | | | | Output Power <u>3</u> / | $F_{IN} = 10 \text{ GHz}, P_{IN} = +10 \text{ dBm}$ | Pout | | | | | $F_{IN} = 11 \text{ GHz}, P_{IN} = -10 \text{ dBm}$ | | | | | | $F_{IN} = 11 \text{ GHz}, P_{IN} = +5 \text{ dBm}$ | | | | | | $F_{IN} = 13 \text{ GHz}, P_{IN} = -5 \text{ dBm}$ | | | | | | $F_{IN} = 13 \text{ GHz, } P_{IN} = +0 \text{ dBm}$ | | | | TABLE IIB Notes: ^{1/} PDA applies to Table I subgroup 1 and Table IIB delta parameters. 2/ See Table IIB for delta parameters 3/ Parameters noted in Table I are not tested post irradiation. ^{1/ 240} hour burn in and 1000 hour life test (Group C) end point electrical parameters. 2/ Deltas are performed at $T_A = +25$ °C only. 3/ Apply for both pin 5 and pin 7. Output power is single-ended. ## 5.0 Burn-In, Life Test, and Radiation - 5.1. Burn-In Test Circuit, Life Test Circuit - 5.1.1.The test conditions and circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 test condition D of MIL –STD-883. - 5.1.2.HTRB is not applicable for this drawing. ## 5.2. Radiation Exposure Circuit 5.2.1. The radiation exposure circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing and acquiring activity upon request. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019, condition A. # 6.0 MIL-PRF-38535 QMLV Exceptions 6.1. Wafer Fabrication Foundry information is available upon request. 6.2. Group D Group D-5 Salt Atmosphere testing is not performed. ## 7.0 Application Notes Figure 3 - Application Circuit ASD0016578 Rev. B | Page 6 of 7 # 8.0 Package Outline Dimensions The G8 package and outline dimensions can be found at http://www.analog.com or upon request. ## **ORDERING GUIDE** | Model Temperature Range Package Desc | | Package Description | Package Option | |--------------------------------------|------------------|---------------------------------|----------------| | ADH365R701G8 | −40 °C to +85 °C | 8 Lead Glass/Metal Hermetic SMT | G8 (FR-8-2) | | | Revision History | | | | | | |-----|---|------------|--|--|--|--| | Rev | Rev Description of Change | | | | | | | Α | Initial Release | 7/8/2020 | | | | | | В | Revise Sections 1, 4.1 & 6.2 and Table I, IIA & IIB | 01/27/2021 |