

# 17 GHz to 32 GHz, 4-Way RF Splitter Combiner

#### **FEATURES**

- 4-way RF splitter combiner
- ▶ Frequency range: 17 GHz to 32 GHz
- ▶ Insertion loss (excess of 6.0 dB): -1.7 dB at 22 GHz to 27 GHz
- ▶ Return loss (S1): -17 dB at 22 GHz to 27 GHz
- ▶ Isolation: -17 dB at 22 GHz to 27 GHz
- 2.460 mm x 2.460 mm x 0.500 mm, wafer level, chip-scale package

#### **APPLICATIONS**

- General-purpose microwave signal distribution
- Phased-array satellite communication (satcom) systems
- Phased-array radar systems

#### **GENERAL DESCRIPTION**

The ADAR5000 is a 1-to-4 Wilkinson power splitter that is designed for space-sensitive microwave signal distribution applications. Excess insertion loss ranges from -1.5 dB to -2.5 dB from 17 GHz to 32 GHz. The four outputs are matched in both phase and amplitude, making the ADAR5000 ideal for signal distribution applications requiring low time skew between channels. The ADAR5000 can also be used as a combiner, combining input signals at the P1, P2, P3, and P4 ports to an output at the S1 port. The ADAR5000 is housed in a compact, 2.460 mm x 2.460 mm x 0.500 mm WLCSP, which makes it ideal for use in planar, phased-array antenna systems that require a tight pitch between elements.

The ADAR5000 is fabricated on a passive silicon process, and it is specified to operate from  $-40^{\circ}$ C to  $+85^{\circ}$ C.

#### FUNCTIONAL BLOCK DIAGRAM



Figure 1. Functional Block Diagram

Rev. 0

DOCUMENT FEEDBACK

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

## TABLE OF CONTENTS

| Features                              | 1 |
|---------------------------------------|---|
| Applications                          | 1 |
| General Description                   | 1 |
| Functional Block Diagram              | 1 |
| Specifications                        | 3 |
| Absolute Maximum Ratings              | 4 |
| Electrostatic Discharge (ESD) Ratings | 4 |
| ESD Caution                           | 4 |
|                                       |   |

## **REVISION HISTORY**

3/2023—Revision 0: Initial Version

| Pin Configuration and Function Descriptions | 5 |
|---------------------------------------------|---|
| Interface Schematics                        | 5 |
| Typical Performance Characteristics         | 6 |
| Theory of Operation                         | 8 |
| Outline Dimensions                          | 9 |
| Ordering Guide                              | 9 |
| Evaluation Boards                           | 9 |
|                                             |   |

## **SPECIFICATIONS**

Source and load impedance = 50  $\Omega,$  and  $T_A$  = 25°C, unless otherwise noted.

### Table 1. Specifications

| Parameter                         | Test Conditions/Comments                          | Min | Тур  | Max | Unit    |
|-----------------------------------|---------------------------------------------------|-----|------|-----|---------|
| OPERATING CONDITIONS              |                                                   |     |      |     |         |
| Frequency Range                   |                                                   | 17  |      | 32  | GHz     |
| INSERTION LOSS (Excess of 6.0 dB) |                                                   |     |      |     |         |
|                                   | 17 GHz to 22 GHz                                  |     | -1.5 |     | dB      |
|                                   | 22 GHz to 27 GHz                                  |     | -1.7 |     | dB      |
|                                   | 27 GHz to 32 GHz                                  |     | -2.5 |     | dB      |
| INSERT LOSS FLATNESS              | S1 to P1, P2, P3, and P4                          |     |      |     |         |
|                                   | 17 GHz to 22 GHz                                  |     | 0.3  |     | dB      |
|                                   | 22 GHz to 27 GHz                                  |     | 0.5  |     | dB      |
|                                   | 27 GHz to 32 GHz                                  |     | 0.75 |     | dB      |
| INSERTION LOSS MISMATCH           | P1 to P2, and P3 and P4                           |     |      |     |         |
|                                   | 17 GHz to 22 GHz                                  |     | 0.2  |     | dB      |
|                                   | 22 GHz to 27 GHz                                  |     | 0.3  |     | dB      |
|                                   | 27 GHz to 32 GHz                                  |     | 0.4  |     | dB      |
| INSERTION PHASE MISMATCH          | P1 to P2, and P3 and P4                           |     |      |     |         |
|                                   | 17 GHz to 22 GHz                                  |     | 9    |     | Degrees |
|                                   | 22 GHz to 27 GHz                                  |     | 10   |     | Degrees |
|                                   | 27 GHz to 32 GHz                                  |     | 12   |     | Degrees |
| RETURN LOSS                       | All other ports terminated                        |     |      |     |         |
| S1                                |                                                   |     |      |     |         |
|                                   | 17 GHz to 22 GHz                                  |     | -20  |     | dB      |
|                                   | 22 GHz to 27 GHz                                  |     | -17  |     | dB      |
|                                   | 27 GHz to 32 GHz                                  |     | -14  |     | dB      |
| P1, P2, P3, and P4                |                                                   |     |      |     |         |
|                                   | 17 GHz to 22 GHz                                  |     | -15  |     | dB      |
|                                   | 22 GHz to 27 GHz                                  |     | -18  |     | dB      |
|                                   | 27 GHz to 32 GHz                                  |     | -18  |     | dB      |
| ISOLATION                         | Between any two ports, all other ports terminated |     |      |     |         |
|                                   | 17 GHz to 22 GHz                                  |     | -18  |     | dB      |
|                                   | 22 GHz to 27 GHz                                  |     | -17  |     | dB      |
|                                   | 27 GHz to 32 GHz                                  |     | -18  |     | dB      |

### **ABSOLUTE MAXIMUM RATINGS**

#### Table 2. Absolute Maximum Ratings

| Parameter                       | Rating          |  |  |
|---------------------------------|-----------------|--|--|
| Maximum. Input Power (Any Port) | 24 dBm          |  |  |
| Maximum Total Power (S1 Port)   | 30 dBm          |  |  |
| Temperature                     |                 |  |  |
| Operating Range                 | -40°C to +85°C  |  |  |
| Storage Range                   | -40°C to +150°C |  |  |

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

#### ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

#### ESD Ratings for the ADAR5000

Table 3. ADAR5000, 20-Ball WLCSP

| ESD Model | Withstand Threshold (V) | Class |
|-----------|-------------------------|-------|
| НВМ       | 1000                    | 1C    |

#### **ESD CAUTION**



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

#### **PIN CONFIGURATION AND FUNCTION DESCRIPTIONS**





#### Table 4. Pin Function Descriptions

| Pin No.                                             | Mnemonic | Description                                                                                                                                                                                          |
|-----------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1, A2, A4, A5, B2, B4,<br>C1, C5, D2, D4, E1 to E5 | GND      | Ground. Connect to a low impedance ground plane on the printed circuit board (PCB).                                                                                                                  |
| A3                                                  | S1       | Sum and/or Split. The input port when the device is used as a splitter, and the output port when the devices is used as a combiner. S1 is AC-coupled in the signal path but has a DC path to ground. |
| B1                                                  | P4       | Port 4. The RF output when the device is used as a splitter, and the RF input when the device is used as a combiner. P4 has a DC path to ground.                                                     |
| B5                                                  | P1       | Port 1. The RF output when the device is used as a splitter, and the RF input when the device is used as a combiner. P1 has a DC path to ground.                                                     |
| D5                                                  | P2       | Port 2. The RF output when the device is used as a splitter, and the RF input when the device is used as a combiner. P2 has a DC path to ground.                                                     |
| D1                                                  | P3       | Port 3. The RF output when the device is used as a splitter, and the RF input when the device is used as a combiner. P3 has a DC path to ground.                                                     |

#### **INTERFACE SCHEMATICS**



Figure 3. S1 Interface Schematic



Figure 4. P1, P2, P3, and P4 Interface Schematic

#### **TYPICAL PERFORMANCE CHARACTERISTICS**







Figure 6. Insertion Loss Mismatch vs. Frequency, All Paths Normalized to P1



Figure 7. Insertion Phase Mismatch vs. Frequency, All Paths Normalized to P1



Figure 8. Insertion Loss P1 vs. Frequency over Temperature



Figure 9. S1 Input Return Loss vs. Frequency over Temperature



Figure 10. Output Return Loss vs. Frequency (P1, P2, P3, and P4)

#### **TYPICAL PERFORMANCE CHARACTERISTICS**



Figure 11. Output Return Loss P1 vs. Frequency over Temperature







Figure 13. Isolation P2 to P1 vs. Frequency over Temperature

#### **THEORY OF OPERATION**

The ADAR5000 is a 1-to-4 Wilkinson power splitter and combiner. While the S1 port is AC-coupled in the signal path, it has a DC path to ground.

The P1, P2, P3, and P4 ports also have DC paths to ground. As a result, if the DC bias level on any of the ports is not equal to zero, the ports must be externally AC-coupled.



Figure 14. ADAR5000 Simplified Block Diagram

# Data Sheet

#### **OUTLINE DIMENSIONS**



igure 15. 20-Ball Wafer Level Chip Scale Package [WLCSP] (CB-20-17) Dimensions shown in millimeters

Updated: February 17, 2023

#### **ORDERING GUIDE**

| Model <sup>1</sup> | Temperature Range | Package Description                            | Packing Quantity | Package Option |
|--------------------|-------------------|------------------------------------------------|------------------|----------------|
| ADAR5000ACBZ       | -40°C to +85°C    | 20-Ball Wafer Level Chip Scale Package [WLCSP] | Reel, 1          | CB-20-17       |
| ADAR5000ACBZ-R7    | -40°C to +85°C    | 20-Ball Wafer Level Chip Scale Package [WLCSP] | Reel, 1500       | CB-20-17       |

<sup>1</sup> Z = RoHS Compliant Part.

#### **EVALUATION BOARDS**

#### Table 5. Evaluation Boards

| Model <sup>1</sup> | Description      |
|--------------------|------------------|
| ADAR5000-EVALZ     | Evaluation Board |

<sup>1</sup> Z = RoHS Compliant Part.

