
Engineer-To-Engineer's Note EE-33
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Copyright 1999, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products
or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders.
Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog
Devices regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes.

a

Programming The ADSP-21xx
Timer In C

 Last modified 01.25.99

The contents of this Tech-note are intended to
complement documentation that is already
available on the topic of C programming on the
ADSP-21xx family DSPs, in the form of EE Notes
14, 31, and 32.

The programmable timer on the ADSP-21xx is a
very important and widely used feature of the DSP.
The timer can generate periodic interrupts based on
multiples of the processor’s clock. For detailed
information on the timer, please refer Chapter 6 of
the ADSP-2100 Family User’s manual.

The timer can be programmed in either assembly
language, or in C. In order to simplify the
procedure for C language programmers, one of the
standard C header files provided by Analog Devices,
misc.h, defines C-callable function prototypes
timer_set, timer_on, and timer_off, that can be
used to setup, start, and stop the timer,
respectively.

Interrupt Handling Within C

The procedure of timer interrupt handling happens
as follows. The idea can be extended to other
interrupts.

The occurrence of the timer interrupt (if the
interrupt is not masked) causes the DSP to vector
off to address 0x0028 in internal Program Memory,
which is the timer location in the interrupt vector
table (listing 3). The code at this memory location in
turn causes a jump to the timer interrupt
dispatcher, ___lib_tmri_ctrl. The timer
interrupt dispatcher (the source for which can be
found in

\Program Files\Analog Devices\ VisualDSP\
21xx\lib\Src\dis_tmr.dsp and \Program Files\
Analog Devices\VisualDSP\ 21xx\lib\ Src\
int_ctrl.h) saves a number of registers and sets
some status bits before calling the user function
(myfunction in the attached example). The
registers and contexts are restored at the end,
before program flow returns to the main program.
It is important to remember that an interrupt call
within C incurs an overhead of approximately 50
cycles on entry and 50 cycles on return.

More information on the operation of the timer_set
and timer_on functions are provided in the ADSP-
2100 Family C Runtime Library Manual. The
sources for these functions are provided in
\Program Files\Analog Devices\
VisualDSP\21xx\lib\Src\tmr_ctrl.dsp.

The Example Itself

The example shows the procedure to set up the
timer to blink the LED on the ADSP-2181 EZ-KIT
LITE at a rate of approximately 0.5 second
(assuming a 33.33 MHz CLKOUT). It was built
using the latest release 6.1 of the ADSP-21xx
software, and downloaded to the EZ-KIT LITE via
the ADDS-218x EZ-ICE.

EN-33 Page 2
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com

/* MAIN.C */
/* Example to illustrate the use of C-callable timer functions.
 RC, 1/22/99 */

#include <signal.h> /* Header file that contains signal handling
 and function prototypes information */
#include <misc.h> /* Contains the timer functions, such as
 timer_set() and timer_on() */
#include "cdef2181.h" /* header file to define memory-mapped registers */

void myfunction(); /* prototyping the used functions */

void main(void)
{

timer_set(16384,16384,255); /* configure the timer */

interrupt(SIGTIMER,myfunction);

timer_on(); /* enable timer */

while(1) {
 asm("idle;"); /* wait for an interrupt */
 }

} /* end of main */

void myfunction()
{
 asm("toggle fl1;");
}

listing 1. main.c

EN-33 Page 3
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com

$ARCH
$ADSP2181
$MMAP0
$0000 3FFF paxINT_PM t
$0000 3FDF dadINT_DM t
$

listing 2. arch.ach

.MODULE/ABS=0 ADSP2181_Runtime_Header;

.ENTRY ___lib_prog_term;

.EXTERNAL ___lib_setup_everything;

.EXTERNAL main_;

.EXTERNAL ___lib_int2_ctrl, ___lib_sp0x_ctrl, ___lib_sp0r_ctrl;

.EXTERNAL ___lib_int1_ctrl, ___lib_int0_ctrl, ___lib_tmri_ctrl;

.EXTERNAL ___lib_intl1_ctrl, ___lib_intl0_ctrl, ___lib_inte_ctrl,___lib_bdma_ctrl;

.EXTERNAL ___lib_pwdi_ctrl;

__Reset_vector: CALL ___lib_setup_everything;
CALL main_; {Begin C program}

___lib_prog_term: JUMP ___lib_prog_term;
NOP;

__Interrupt2: JUMP ___lib_int2_ctrl;NOP;NOP;NOP;
__InterruptL1: JUMP ___lib_intl1_ctrl;NOP;NOP;NOP;
__InterruptL0: JUMP ___lib_intl0_ctrl;NOP;NOP;NOP;
__Sport0_trans: JUMP ___lib_sp0x_ctrl;NOP;NOP;NOP;
__Sport0_recv: JUMP ___lib_sp0r_ctrl;NOP;NOP;NOP;
__InterruptE: JUMP ___lib_inte_ctrl;NOP;NOP;NOP;
__BDMA_interrupt: JUMP ___lib_bdma_ctrl;NOP;NOP;NOP;
__Interrupt1: JUMP ___lib_int1_ctrl;NOP;NOP;NOP;
__Interrupt0: JUMP ___lib_int0_ctrl;NOP;NOP;NOP;
__Timer_interrupt: JUMP ___lib_tmri_ctrl;NOP;NOP;NOP;
__Powerdown_interrupt: JUMP ___lib_pwdi_ctrl;NOP;NOP;NOP;
.ENDMOD;

listing 3. 2181_hdr.dsp

g21 main.c -a arch -runhdr 2181_hdr.dsp -g -save-temps -o main

listing 4. run.bat

