
aaaa Engineer To Engineer Note EE-143
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or for any
infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information furnished by
Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices regarding the technical
accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes.

Understanding DMA on the
ADSP-TS101
Last modified: 25/10/01

Contributed By: A.C.

The following Engineer-to-Engineer note will
discuss various forms of Direct Memory Accesses
on the TigerSHARC family of processors.
Assembly code examples are provided with this
note and explained.

The ADSP-TS101 is the first member of the
TigerSHARC® DSP family - ADI's new family of
ultra high-performance DSPs optimized for
telecommunications infrastructure as well as 16-bit
fixed point and 32-bit floating point general
purpose applications. The ADSP-TS101 features a
static superscalar architecture that combines RISC,
VLIW and standard DSP functionality.

Introduction
Direct Memory Access is a mechanism for
transferring data without the core being involved.
The TigerSHARC on-chip DMA controller allows
these transactions of data to take place as a
background task freeing up the processor core for
signal processing operations.
The TigerSHARC includes 14 DMA channels.
Four channels are dedicated to external memory
devices, eight to the link ports and two to the Auto
DMA registers. These channels are shown in
figure 1 in order of priority. The DMA controller
is capable of performing several types of data
transfers.

• Internal memory ! External memory and
memory-mapped peripherals

• Internal memory ! Internal memory of
other TigerSHARCs residing on the cluster
bus

• Internal memory ! Host processor

• Internal memory ! Link port IO

• External memory ! External peripherals

• External memory ! Link port IO

• Link port IO ! Internal memory

• Link port IO ! External memory

• Link port IO ! Link port IO

Most of the types listed above are demonstrated in
the examples described in this document.

 Highest priority

Lowest priority

Figure 1: DMA channels on TigerSHARC

Auto DMA Registers
Channel 13
Channel 12

Receiving Links
Channel 11 (Link 3)
Channel 10 (Link 2)
Channel 9 (Link 1)
Channel 8 (Link 0)

Transmitting Links
Channel 7 (Link 3)
Channel 6 (Link 2)
Channel 5 (Link 1)
Channel 4 (Link 0)

External Ports (EPs)
Channel 3 (DMAR3)
Channel 2 (DMAR2)
Channel 1 (DMAR1)
Channel 0 (DMAR0)

EE-143 Page 2
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

The afore mentioned data transfer types can be
broken down into the following main categories:

• Internal memory "! Cluster bus. This
transfer can be done in both directions and
requires the programming of two Transfer
Control Blocks, otherwise referred as a
TCB. One is a transmitting TCB and the
other a receiving TCB.

• Auto DMA register ! Internal memory.

This requires one receiver TCB.

• Internal/external memory ! Link ports.
Requires one transmitter TCB.

• Link ports ! Internal/external memory.

Requires one receiver TCB.

• Link port ! Link port.
Requires one receiver TCB.

The Transfer Control Block is a quad word (128-
bit) that contains the vital information required to
perform a DMA. In the case of a transmitter TCB
the four words contain the address of the source
data, the number of words to be transferred, the
address increment and the control bits.

In the case of a receiver TCB these four words
contain destination address, the number of words
to be received, the address increment and the
control bits.

The TCB register is a 128-bit register, consisting
of four 32-bit registers as shown in figure 2.

The DI register is the 32-bit index register for the
DMA. This contains the source or destination of
the data to be transmitted or received and can point
to internal, external memory or the link ports.

The DX register contains a 16-bit count value and
a 16-bit modify value. The count value is stored in
the upper 16 bits (16-31) and the modify in the
lower (0-15). If a two-dimensional DMA is
enabled then this register contains the modify and
count values for the X dimension only. The value
of X count must always be the number of normal
(32-bit) words to be transferred. Likewise, the
modify value is the number of normal words to
modify the count by. For example if we wanted to
transmit four quad words (16-normal words), then
the count value would be 0x10 and the modify
value 0x4 if the operand length in the DP register
is set to Quad word. If the operand length was set
to Long word then the modify value would be 0x2.
These values of course are application specific
however and would result in the entire data being
transferred in order, by altering the modify values
data can be transferred in any order required.

The DY register is used in conjunction with the
DX. This register contains the 16-bit modify and
16-bit count values for the DMA in the Y
dimension. If two-dimensional DMA is not
selected then this register is not used and the
contents are irrelevant.

The DP register contains all the control
information for the DMA. This register is split into
two main fields. The first contains all the control
information and the second the chaining
information. The breakdown of this register is
shown in figure 3. DI Register

DX Register
DY Register
DP Register

0 31
32 63
64 95
96 127

Figure 2: DMA TCB Register

EE-143 Page 3
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

PR

TY

2D
D

M
A

LEN IN
T

D
R

Q

C
H

E
N

CHTG MS
CHPT

Quad Word Address

 31-29 28 27 26-25 24 23 22 21-17 16-15 14-0

DMA Control Chaining Pointer

CHPT Chain Pointer:
Bits [14:0] Bits 16:2 of next TCB address.

Bits 1:0 of address are zero due to quad alignment.

MS Memory Select for chain pointer:
Bits[16:15] 00…Memory Block 0
 01…Memory Block 1

10…Memory Block 2
11…Reserved

CHTG Chaining destination channel:
Bits[21:17] Specify device type:
 00000…Channel 0 Source TCB

00001…Channel 0 Destination TCB
00010…Channel 1 Source TCB
00011…Channel 1 Destination TCB
00100…Channel 2 Source TCB
00101…Channel 2 Destination TCB
00110…Channel 3 Source TCB
00111…Channel 3 Destination TCB
01000…Channel 4 Link 0 Source TCB
01001…Channel 5 Link 1 Source TCB
01010…Channel 6 Link 2 Source TCB
01011…Channel 7 Link 3 Source TCB
10000…Channel 8 Link 0 Dest TCB
10001…Channel 9 Link 1 Dest TCB
10010…Channel 10 Link 2 Dest TCB
10011…Channel 11 Link 3 Dest TCB
10110...Channel 12 IFIFO DMA0 Dest TCB
10111…Channel 13 IFIFO DMA1 Dest TCB

CHEN Chaining Enabled:
Bit[22] 0…No Chaining
 1…DMA loads chaining targets channel TCB

 registers from internal memory

DRQ DMA Request Enable:
Bit[23] 0…Once DMA channel is enabled, entire block
 is transferred
 1…DMA issies transactions only upon request

INT Interrupt Enable:
Bit [24] 0…DMA interrupt is disabled

1…DMA interrupts the core after transferring
whole block

LEN Operand Length:
Bits[26:25] 00…Reserved
 01…Normal word

10…Long word
11…Quad word

2DDMA Two-dimensional DMA:
Bits[27] 0…One-dimensional DMA
 1…Two-dimensional DMA

PR Determines Priority:
Bit[28] 0…DMA request priority is normal

1…DMA request priority is high

TY Specify the device type:
Bit[31:29] 000…DMA Disabled
 001…IO Link ports
 010…Internal Memory
 011…Reserved
 100…External Memory
 101…External IO Device (fly-by)
 110…Boot EPROM
 111…Reserved

Figure 3: TCB DP Register

EE-143 Page 4
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

The cluster bus (EP) TCBs are loaded by writing
to the DCSx registers for the source TCB and the
DCDx registers for the destination TCBs, where x
can be any value ranging from 0 to 3. To load the
TCBs for the link ports or the AutoDMA registers,
the DCx registers are written to where x can be
any value from 4 to 13 depending on whether you
are writing to link port receive, transmit or
AutoDMA channels as shown in figure 1
previously.

DMA Demonstrations
There are five demonstrations described in the
following pages. These are:

• SDRAM

• Link port

• 2 Dimensional

• Chaining

• Ext_mem_to_link

These examples have been provided in both C and
assembly language and are for use on
VisualDSP++ Release 2.0 for the TigerSHARC
processor. The Link port, Chaining and
Ext_mem_to_link examples are multiprocessor
projects created for use in a TigerSHARC
Multiprocessor system along with either an Apex-
ICE or Summit-ICE JTAG Emulator.
Although the simulator environment does not
support multiprocessing at the time that this
document was published, it is possible to simulate
each executable created from the multiprocessor
project individually by setting up the DMA File
I/O Configuration window. This enables the user
to set up source and destination files for all DMA

channels allowing simulation of link port and
external port transfers.
All the other examples are single processor
examples and can also be used successfully on
hardware or simulated.

In all the examples N is defined at the top of the
program. This is the number of normal words that
are contained within the file tx_data.dat. This file
contains the data that is used to be transmitted in
all the DMA transfers. The code in the examples
has been written in a way that the value N can be
altered without having to alter the count value in
the TCB. All examples use an operand length
relating to quad word transfers. If the operand
length is altered then the modify value must be
altered to reflect this.

By default, all DMA channel interrupts are
enabled in the IMASK register. In all the assembly
language programs, these interrupts have been
disabled and only the interrupts for the channels
being used within that example are enabled. All
programs except for Chaining generate interrupts
after every DMA block transfer. The interrupt
service routine is _dma_int in the assembly
examples and simply consists of a nop and rti
command. It is important to have the nop (in these
examples) before the rti as the RETI register is
updated only when the first instruction of the
interrupt service routine reaches the Ex2 stage of
the pipeline. This means that the first instruction
cannot be an instruction that uses its value such as
RTI or RETI. Within the C examples the interrupt
service routine is named dmax_int, where x is the
number for the DMA channel that caused the
interrupt. These interrupt service routines cause a
sentence to be printed to the output window stating
that the dma has completed. The Chaining
example differes from the rest slightly as all dma
transfers have their interrupts disabled except the
last dma transfer in the chain.

EE-143 Page 5
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

The following sections describe all the code
examples that compliment this EE Note. The areas
of the IO processor shown in figure 4 that are
utilised are described for each transfer that takes
place.

 Figure 4: IO Processor

External_mem
This example shows the DMA transfer from
internal memory of the TigerSHARC processor to
external SDRAM and back again. A simplified
diagram showing the layout and connections of the
SDRAM to the TigerSHARC processor DSP0 on
the MBUB is shown in figure 5.

In the example, DMA channel 0 is used to transmit
data to SDRAM and channel 1 is used to transfer
the data back from SDRAM to internal memory.
The data to be transmitted, from the tx_data.dat
file, is stored in the internal memory under the
variable name data_tx. The data transferred to the
SDRAM is stored as the variable sdram_data,
and the data transferred from the SDRAM to
internal memory is stored as the variable data_rx.

MSSD

RAS

CAS

LDQM

HDQM

SDWE

SDCKE

SDA10

 S
D

R
A

M
 C

O
N

T
R

O
L

 ADDR 31-0 DATA 64-0

DSP 0

CS

RAS

ADDR 0-12
CAS

DQM

SDRAM

DATA 0-31
WE

CKE

A10

CS

RAS

ADDR 0-12
CAS

DQM

SDRAM

DATA 0-31
WE

CKE

A10

Address

Data

Control

Figure 5: System diagram for SDRAM example

As this transfer of data falls into the internal
memory to cluster bus category, two TCBs must
be written to for each transfer. The source TCB for
the first transfer (DMA channel 0) is loaded as
follows:

 XR0 = data_tx;; " DI Register
 XR1 = 0x00400004;; " DX Register
 XR2 = 0x00000000;; " DY Register
 XR3 = 0x47000000;; " DP Register
 DCS0 = XR3:0;;

The destination TCB is loaded with the following
values:

 XR8 = sdram_data;;
 XR9 = 0x00400004;;
 XR10 = 0x00000000;;
 XR11 = 0x87000000;;
 DCD0 = XR11:8;;

The values in registers XR2 and XR10 are
irrelevant due the fact that 2-dimensional DMA is
not selected. As soon as both the source and

IFIFO

OFIFO
OBUF

Bus Interface
Unit

DMA Controller

Link Ports
Controller

INTERNAL
BUSES

Data

Address

Control

Link Ports

Status Reg

128-bit DATA

32-bit ADDR

MD0

MD1

MD2

I/O Processor

DMAR

Rx
TCB

Control Reg

Tx
TCB

EE-143 Page 6
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

destination TCBs are loaded with values (with a
non-zero TY field) the DMA transfer starts. The
processor then remains in the idle state due to the
idle command following the write to the DCD0
TCB until the DMA is completed at which point
an interrupt occurs and the _dma_ int vector
interrupt routine is then run. The transfer of the
data back to internal memory from the SDRAM is
executed with minor alterations to the afore
mentioned commands. The source TCB is loaded
with the contents of registers XR11:8 and the
destination TCB is written with the values of
registers XR3:0 where XR0 was altered from
data_tx to data_rx.

XR0 = data_rx;;
DCS1 = XR11:8;;
DCD1 = XR3:0;;

Notice how DMA channel 1 is used for the
transfer by replacing DCS0 and DCD0 with DCS1
and DCD1 respectively. Again the processor
remains in the idle state until the DMA has
completed and an interrupt is generated.

The external write transaction is initiated by the
internal master, either the DMA or the core, in the
case of DMA transfers the internal master is the
DMA. This happens as soon as both the source
and destination TCBs are written to. The
transaction is initiated on one of the three internal
buses. The transaction is then strobed by the
OFIFO and in turn driven onto the external bus.
The address for the transaction is passed from the
DMA controller to the OFIFO and out onto the
external port address bus. The data for the
transaction is strobed from the internal bus into the
OBUF and out onto the external data bus.

In the case of the read transaction, the read is once
again initiated by the internal master, the DMA, as
soon as both TCBs are written to. The data read on
the external transaction is strobed by the IFIFO

and then written to its target which was defined by
the original internal transaction.

Link_port
The link port example is a multiprocessor example
which consists of a single project with two
assembler or source files. One file for the
transmitting processor (DSP0 in this example) and
one for the receiving processor (DSP1 in this
example). The data to be transmitted is stored in
Link_data_tx, this data is transferred to the
receiving processor via link port 1. The receiving
processor receives the data in through link port 0
and stores the received data to internal memory in
the variable link_data_rx. The data is then
transferred back from the receiving processor,
through link port 0 and received through link port
1 on the transmitter processor. The received data is
then stored in the variable link_data_rx.

A simplified diagram of the system setup is shown
below in figure 6 and the link port architecture of
the TigerSHARC in figure 7.

Link
Port 3

LxCLKIN

LxCLKOUT

LxDAT

Link
Port 0

LxCLKIN

LxCLKOUT

LxDAT

Link
Port 1

LxCLKIN

LxCLKOUT

LxDAT

Link
Port 2

LxCLKIN

LxCLKOUT

LxDAT

DSP 1

Link
Port 3

LxCLKIN

LxCLKOUT

LxDAT

Link
Port 0

LxCLKIN

LxCLKOUT

LxDAT

Link
Port 1

LxCLKIN

LxCLKOUT

LxDAT

Link
Port 2

LxCLKIN

LxCLKOUT

LxDAT

DSP 0
8

Figure 6: Link Port Layout in example

In this example as the cluster bus is not being used
only one TCB has to be written to for each DMA.

As the transmitter is transmitting and receiving
through link port 1, DMA channels 5 and 9 are
used. On the receiving DSP which receives and
then transmits through link port 0, DMA channels
4 and 8 are used.

EE-143 Page 7
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Tx –
Transmitter Buffer

R x –
Receiver Buffer

Transmitter Shift Register
Receiver Shift Register

Link Port

Internal Bus

Figure 7: Link Port Architecture

When the link port DMA TCB is written to
enabling the DMA channel, if the transmit buffer
is empty (for transmit channel) or if the receive
buffer is full (for receive channel), a DMA request
is immediately issued.

The link port only issues a DMA request to the
transmit DMA channel, when both the link port
TCB is written to (enabling the DMA channel) and
the Tx register is empty. Data is written to the Tx
register and then to the shift register, when it is
empty, and then transmitted. All the registers of
figure 7 are 128-bit registers so after the quad
word is copied to the shift register after being
placed into the Tx register, new data is written to
the Tx register. The link transmitter tries to
transmit all data that is written to the transmit shift
register. The receiver enables data movement in
only when the receive shift register is empty, at
which point the received data is shifted into the
receive shift register. After the entire quad-word is
received, the receiver waits until the Rx register is
free and copies the data from the shift register to
the Rx register. Once the shift register is free it can
receive data again.

2_dimensional_dma
The two dimensional DMA example is very
similar to previously described external_mem
example, the main difference being that the DMA
from internal memory to external memory and
back again is achieved with the use of the DX and
DY registers within the source and destination
TCBs. The count number of words in the DX and
DY registers is set to 8 resulting in 8x8 normal
words being transferred. The same DMA channels
are used as described in external_mem example.

The example can be altered to transfer an 8x8
matrix of words to any other size by modifying the
XCOUNT and YCOUNT values defined at the top
of the code.

Figure 8: X and Y count/modify for 8x8 matrix

Figure 9: X and Y count/modify for 16x4 matrix

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 58 60 61 62 63

XCOUNT
Y

C
O

U
N

T
XCOUNT = 0x8
YCOUNT = 0x8

X modify = 0x4 to transfer
the 2 quad words per row

Y modify = difference
between address of last
element in a row (4) and
the first element in the
following row (8)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 58 60 61 62 63

XCOUNT

Y
C

O
U

N
T

XCOUNT = 0x10 YCOUNT = 0x4

X modify = 0x4 to transfer the 4 quad words per row

Y modify = difference between address of last element in a row (12)
and the first element in the following row (16)

EE-143 Page 8
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

DMA_chaining
The DMA_chaining example is a multiprocessor
example. There is one project with two assembler
or source codes which create two executables,
similar to that of the link_port example, a
Chained_tx and a Chained_rx. The Chained_tx
example performs a chained DMA consisting of
four transfers. The first transfer is data from
internal memory to external SDRAM using DMA
channel 0. The second DMA transfers the first half
of the data just received in SDRAM back to
internal memory using DMA channel 1. The third
DMA transfers the second half of the data that was
written to SDRAM directly to link port 1 of DSP0
(Chained_tx) for transmission to the receiving
processor using DMA channel 5. The fourth DMA
uses link port 1 receive DMA channel 9 to receive
data transmitted by DSP1 (Chained_rx) and store
it in internal memory.

The receiving processor, DSP1 is loaded with the
Chained_rx program which consists of a DMA
transfer from link port 0 to internal memory and
then from internal memory back to link port 0,
using DMA channels 4 and 8 respectively. This
processor does not utilise the chaining method.

With DMA chaining, the DCS and DCD TCBs
only need to be written to once. Once the DMA
has completed, the DMA controller automatically
loads the TCB values for the next DMA from
internal memory into the TCB registers.

Chaining is enabled by setting the chain enable bit
(bit 22) in the TCB DP register and the chain
pointer to a valid address.

The CHPT field within the DP register can be
loaded at any time during the DMA sequence. This
allows a DMA channel to have chaining disabled
until some event occurs that loads the chain
pointer field (CHPT) with a target address, sets the
chaining enable bit (CHEN) and difines the
chaining destination channel (CHTG).

In the example two chains are set up. This is due
to the the fact that some of the DMA transfers to
occur require the use of the external port DMA
channels. External port DMA channels require the
setting of of both a source and destination TCB.
The two chains can be seen in figure 10.

DI
DX
DY
DP CHPT

DI
DX
DY
DP CHPT

DI
DX
DY
DP CHPT

DI
DX
DY
DP CHPT

TCB_int_source TCB_ext_source TCB_link_tx TCB_link_rx

DI
DX
DY
DP CHPT

DI
DX
DY
DP CHPT

TCB_ext_dest TCB_int_dest

Figure 10: DMA chaining

The TCB for DMA channel 0 (DCS0) is initialized
with the quad word stored in the variable array
TCB_int_source. The destination TCB for DMA
channel 0 (DCD0) is initialized with the quad
word stored in the variable array TCB_ext_dest.
As soon as the DCD0 TCB is written to the DMA
chaining is kicked off. This first DMA transfers
the data from internal memory to external
SDRAM as in the example Ext_mem. Once this
transfer is completed the quad word stored in
TCB_ext_source is written into DCS1 and the the
quad word stored in TCB_int_dest is written into
DCD1. The writing to both these source and
destination TCBs starts the second DMA transfer
consisting of the transfer of the first half of the
data that was written to the SDRAM in the first
transfer being written back to the internal memory
of the processor and stored in data_rx. Once this
transfer is completed the second chain is
terminated as the transfers to follow use the link
ports and this only requires the initialization of a
single TCB and not a source and destination TCB.
The third transfer to take place (TCB_link_tx),
transfers the second half of the data stored in the
external memory directly to link port 1 of DSP0
for transfer to DSP1. Once DSP1 receives all the

EE-143 Page 9
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

data then DSP0 loads the final TCB
(TCB_link_rx) and receives the data back and
stores it in the second half of data_rx making up
the original 64 word block that was originally
transmitted.

MSSD

RAS

CAS

LDQM

HDQM

SDWE

SDCKE

SDA10

 S
D

R
A

M
 C

O
N

T
R

O
L

 ADDR 31-0 DATA 64-0

DSP 0

CS

RAS

ADDR 0-12
CAS

DQM

SDRAM

DATA 0-31
WE

CKE

A10

CS

RAS

ADDR 0-12
CAS

DQM

SDRAM

DATA 0-31
WE

CKE

A10

Address

Data

Control

Link
Port 0

LxCLKIN

LxCLKOUT

LxDAT

8

DSP 1

Link
Port 1

LxCLKIN

LxCLKOUT

LxDAT

Figure 11: System diagram for Chaining
example

A point to note in the DMA chaining examples is
that there is a slight difference in the declaration of
the TCBs in the assembly example and the C
example. In the assembly example, when the
project is built, the variables are placed into
memory in the order that they appear in the code
example. This differs slightly to the C example
where a separate memory section was defined
within the linker description file to store the TCB
data. This is necessary as the addresses of the next
TCB to be loaded must be known. By defining an
individual section in memory for the TCB you
have better control of where the variable arrays are
stored and are assured that no other variable is
placed between the TCBs making their location in
memory less predictable.

It is possible to insert a high priority DMA or
chain into an active DMA chain. To achieve this
the current channel transactions must first of all be
suspended by setting the corresponding pause bit
in the DCNT register.

Bit 0-7 of the DCNT register are for DMA
channels 0-7. Bits 10-13 for DMA channels 8-11
and bits 16-17 for DMA channels 12 and 13
respectively. The bits in the DCNT register is set
by writing to the DCNST alias register. The value
written to this register is Ored with DCNT, and the
result loaded into DCNT.

Once the current DMA transfer has been halted a
new chain is inserted by the TigerSHARC core by
writing the CHEN, CHTG and CHPT bits in the
DP register of the TCB. Writing to an active TCB
register will cause a HW ERROR interrupt. Once
the TCB is updated the pause bit in the DCNT
register must be reset and the data transfer
continues from where it left off. The pause bit is
reset by writing to the DCNTCL alias register. The
value written to this register is ANDed with
DCNT, and the result loaded into DCNT.

Ext_mem_to_link
Again this example is a multiprocessor example.
This example shows how to declare and use shared
external memory. This requires the modifying of
the linker description file to accommodate for
shared memory and multiple processor memory
layout. Two executables are generated when the
project is built, External_mem_to_link_tx.dxe and
External_mem_to_link_rx.dxe. The
External_mem_to_link_tx program consists of 3
DMA transfers. The first is from internal memory
to shared external SDRAM using DMA channel 0,
the second is from the SDRAM directly to link
port 1 for transmission using DMA channel 5
hence not using any internal memory to store the
data first as in previous examples. The final DMA
for this processor is the receiving of data through
link port 1 which is transferred to internal memory
with the use of DMA channel 9.

The External_mem_to_link_rx program receives
data through link port 0 and transfers it directly to
the shared external SDRAM using DMA channel

EE-143 Page 10
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

8. With the use of DMA channel 5, the data just
placed into SDRAM is then transferred directly
back to link port 0 to be transmitted back to the
other processor which receives it through link port
1 as previously described.

MSSD

RAS

CAS

LDQM

HDQM

SDWE

SDCKE

SDA10

 S
D

R
A

M
 C

O
N

T
R

O
L

 ADDR 31-0 DATA 64-0

CS

RAS

ADDR 0-12
CAS

DQM (L)

SDRAM

DATA 0-31
WE

CKE

A10

CS

RAS

ADDR 0-12
CAS

DQM (H)

SDRAM

DATA 0-31
WE

CKE

A10

Address

Data

C
ontrol

Link
Port 1

LxDAT

LxCLKIN

LxCLKOUT

8

MSSD

RAS

CAS

LDQM

HDQM

SDWE

SDCKE

SDA10

 S
D

R
A

M
 C

O
N

TR
O

L

 ADDR 31-0 DATA 64-0

Link
Port 0

LxCLKIN

LxCLKOUT

LxDAT

BM

BR 0-7

BUSLOCK

DPA

CPA

ID 2-0

ID 2-0

BR 0-7

BUSLOCK

DPA

CPA

BM

C
on

tr
ol

0 0 1

0 0 0

DSP 1

DSP 0

Figure 12: System diagram for Ext_mem_to_link
example

External_mem_to_link_tx.dxe is loaded into DSP0
and External_mem_to_link_rx.dxe is loaded into
DSP1 for use on the MBUB. In the shared external
memory, the data written to by DSP0 is stored in
sdram_data and the data written by DSP1 is stored
in link_data_rx2. If the shared memory is not
defined then although both the external memory
variables are viewable to both processors DSP0
places sdram_data at memory location 0x4000000
and link_data_rx2 at 0x4000040. On the other
hand DSP1 places link_data_rx2 at 0x4000000
and sdram_data at 0x4000040. Thus when DSP1

writes data to the SDRAM it overwrites what
DSP1 placed in SDRAM.

Note: The C examples perform identical DMA
transfers as the assembly coded examples. All
variables are identical. The only difference
between the two lots of code being the interrupt
service routines. In the C examples there is an
interrupt service routine for every interrupt and
during this isr, a line is printed to the output
window stating that the dma transfer has
completed.

References
TigerSHARC DSP Hardware Specification
Part # ADSP-TS101, Analog Devices Inc.

TigerSHARC DSP Instruction Set Specification
Part # ADSP-TS101, Analog Devices Inc.

VisualDSP++ 2.0 Linker & Utilities Manual for
TigerSHARC DSPs, Analog Devices Inc.

VisualDSP++ 2.0 Users Guide for TigerSHARC
DSPs, Analog Devices Inc.

