Oiee Engineer To Engineer Note

EE-116

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

SHARC SHORT WORD
DMA

Last Modified: 8/1/00

Introduction

The DMA Controller of the Analog Devices
SHARC® family processors does not
automatically dma 16 bit data from an external
memory to the SHARC’s internal memory,
however 16 bit data transfers can still easily be
accomplished. The following Engineer to
Engineer Note describes the method used to
move 16 bit data into the SHARC’s internal
memory and includes a sample code.

The external port and serial port DMA channels
have a packing capability allowing 16 bit data to
be packed to 32 bits. The 32 bit packed words
can be transferred to internal memory using
standard dma. Once the data is safely in internal
memory it can be accessed as short word
memory. Figure 1 illustrates how short words
are organized in normal word space. The least
significant short word address is generated by
arithmetically shifting the normal word address
to the left 1 bit. Arithmetically shifting the
normal word address to the left 1 bit and then
setting bit 0 to 1 generates the most significant
short word address. For example, if the normal
word address for a memory location were
0xCO000 the short word address would be
0x18000 for the least significant word and
0x18001 for the most significant word.

All of this information can be found in the
ADSP-2106x SHARC User’s Manual or the

ADSP-21065L SHARC User’s Manual. For
better understanding please see the chapters on
DMA and Memory in your User’s Manual.

32-bit Normal Words
—/;

MSW LSW

ADDR 2 | ADDR 5 | ADDR 4
ADDR 1| ADDR 3 | ADDR 2
ADDR 0 | ADDR 1| ADDR 0

16-bit 16-bit
Short Short
Words  Words

16
< DATA;1.16

Figure 1. Short word addresses

Copyright 2000, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or

for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information

furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices
regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes.



Listingl: dma.asm

/*

DMA.ASM ADSP-21065L EPORT 16/32 bit packing
GGL, Analog Devices, Inc. ~ 7/19/00

This code is a simple example of getting 16 bit floating point data from SDRAM packing it to 32 bits
and using dma to get it into internal memory. Once in internal memory, the data is accessed as short
word and operated on and sent back to internal memory.

*/
#define N 4
#include "def210651.h"

.section/DM  seg dmda;
.VAR dest[N];
/* This is your destination buffer in internal memory which resides in normal word space */

.section/DM seg_sdram;
.VAR source[2*N]=0x1111, 0x2222, 0x3333, 0x4444, 0xAAAA, 0xBBBB, 0xCCCC, 0xDDDD;
/* This is the sample 16 bit data from an external sdram */

.section/pm  seg_rth;

/* This is the interrupt vector table */
Reserved 1: rti; nop; nop; nop;

Chip Reset: idle; jump start; nop; nop;
Reserved 2: rti; nop; nop; nop;

stack ov: rti; nop; nop; nop;
timerhi: rti; nop; nop; nop;
Vector: rti; nop; nop; nop;
IRQ2: rti; nop; nop; nop;

IRQ1: rti; nop; nop; nop;
IRQO: rti; nop; nop; nop;
Reserved 3: rti; nop; nop; nop;

sportOr: rti; nop; nop; nop;
sportlr: rti; nop; nop; nop;
sportOt: rti; nop; nop; nop;
sportlt: rti; nop; nop; nop;

Reserved 4: rti; nop; nop; nop;
Reserved 5: rti; nop; nop; nop;
EPO: nop; nop; rti; nop;

EE-116 Page 2

Technical Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: fip.analog.com, WEB: www.analog.com/dsp




EP1: rti; nop; nop; nop;

.section/pm  seg_pmco;

/* start of main routine */
start:
ustat1=937; /*refresh rate*/
dm(SDRDIV)=ustatl;
ustat]=dm(IOCTL); /*mask in SDRAM settings*/
bit set ustat] SDPSS|SDBN2|SDBS3|SDTRP3|SDTRASS5|SDCL2|SDPGS256/|SDDCK1;
dm(IOCTL)=ustat1; /*initialize sdram™*/

/* enable interrupts here */
bit set MODE1 IRPTEN; /* enable global interrupts here */
bit set IMASK EPOI; /* enable eport interrupts here */

/* must set up II IM and C register in memory bufffer ; then enable the channel with DEN in DMAC */
/* dma channel 8 is external port buffer 0 */

10=0; dm(DMACO0)=r0; /*clear DMA register®/

r0 = 1; dm(IMEPO) = 10; /* set DMA internal memory DMA modifier to 1*/

dm(EMEP0)=10; /* set DMA external memory DMA
modifier to 1%/

10 = N; dm(CEPO) = 10; /*set internal count to N */

r0=2*N; dm(ECEP0)=r0; /*set external DMA count to 2N */

r0=dest; dm(IIEP0) = 10; /* Write internal index pointer for dest */

rO=source; dm(EIEP0)=r0; /*Write External DMA buffer Index pointer for source */

r0=0x0241; dm(DMACO0)=r0; /* enable DMA channel, master mode, 16/32bit
packing */
waitl: idle;

/* when this dma completes you will have the 16 bit words that were stored in SDRAM
packed to 32 bit words in external memory */

/* the ISR only has an RTI in it, so after the dma is complete
the program flow will continue in the next instruction */

/* find the first address of the data buffer and convert it to short word */
rO=dest;

EE-116 Page 3

Technical Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: fip.analog.com, WEB: www.analog.com/dsp




rl=ashift r0 by 1; /* arithmetically shifting a normal word address to the left produces the short word
address of the LSW */

/* initialize dags to the short word buffer */

b0=r1;

mO0=1;

10=2*N;

/* operate on the short word data and return to short word space */

r0=dm(i0,m0); fO=funpack r0; /* read the short word floating point data to a register and then unpack it
*/

r1=dm(i0,m0); f1=funpack rl;

2=f0*f1; r2=fpack 2; /* multiply {0 and f1 and then pack it back into a 16 bit floating point word
*/

dm(i0,m0)=r2;/* send the 16 bit result out to memory */

r3=dm(i0,m0);/* read 16 bit fixed point value */
r4=dm(i0,mO0);

r5=r3+r4; /* fixed point add */
dm(i0,mO0)=r5;/* send 16 bit result out to memory */
wait2: jump wait2;

Listing 2: ADSP21065L.1df

ARCHITECTURE(ADSP-21065L)

/!

// ADSP-21065L Memory Map:

/!

/I Internal memory 0x0000 0000 to 0x0007 ffff

/!

/l 0x0000 0000 to 0x0000 00ff IOP Regs

/l 0x0000 0100 to 0x0000 01ff TOP Regs of Processor ID 001

/l 0x0000 0200 to 0x0000 02ff TOP Regs of Processor ID 002

/! 0x0000 0300 to 0x0000 07ff Reserved

/l Block 0 0x0000 8000 to 0x0000 9fff Normal Word (32/48) Addresses
/l (0x0000 8000 to 0x0000 97ff) 48-bit words

/! (0x0000 8000 to 0x0000 9fff) 32-bit words

/l 0x0000 A000 to 0x0000 Bfff Reserved
EE-116 Page 4

Technical Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: fip.analog.com, WEB: www.analog.com/dsp




1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Block 1 0x0000 C000 to 0x0000 Dfff Normal Word (32/48) Addresses
(0x0000 C000 to 0x0000 Cfff) 48-bit words
(0x0000 C000 to 0x0000 Dfff) 32-bit words
0x0000 E000 to 0x0000 ffff Reserved
Block 0 0x0001 0000 to 0x0001 3fff Short Word (16) Addresses
0x0001 4000 to 0x0001 7fff Reserved
Block 1 0x0001 8000 to 0x0001 Bfff Short Word (16) Addresses
0x0001 C000 to 0x0001 ffff Reserved

External memory 0x0002 0000 to 0x03ff ffff

External Bank 0 0x0002 0000 to 0x0Off ffff
External Bank 1 0x0100 0000 to 0x01ff ffff
External Bank 2 0x0200 0000 to 0x02ff ffff
External Bank 3 0x0300 0000 to 0x03ff ffff

// This architecture file allocates:

Internal 256 words of run-time header in memory block 0
16 words of initialization code in memory block 0
3.73K words of C code space in memory block 0
2K words of C PM data space in memory block 0
4K words of C DM data space in memory block 1
1.25K words of C heap space in memory block 1
2.75K words of C stack space in memory block 1

SEARCH_DIR( $ADI_DSP\21K\lib )

// The 1ib060.d1b must come before libc.dlb because libc.dlb has some 21020
// specific code and data
$LIBRARIES = 1ib060.d1b, libc.dlb, libio32.dlb;

// Libraries from the command line are included in COMMAND_ LINE OBJECTS.
$OBJECTS = $SCOMMAND _LINE OBJECTS;

MEMORY

{

seg rth { TYPE(PM RAM) START(0x00008000) END(0x000080ff) WIDTH(48) }
seg_init { TYPE(PM RAM) START(0x00008100) END(0x0000810f) WIDTH(48) }
seg_pmco { TYPE(PM RAM) START(0x00008110) END(0x00008fff) WIDTH(48) }
seg_ pmda { TYPE(PM RAM) START(0x00009800) END(0x00009fff) WIDTH(32) }

seg_dmda { TYPE(DM RAM) START(0x0000C000) END(0x0000C£ff) WIDTH(32) }
seg_heap { TYPE(DM RAM) START(0x0000D000) END(0x0000D4ff) WIDTH(32) }
seg_stak { TYPE(DM RAM) START(0x0000D500) END(0x0000Dfff) WIDTH(32) }

EE-116 Page 5

Technical Notes on using Analog Devices' DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: fip.analog.com, WEB: www.analog.com/dsp




seg_sdram { TYPE(DM RAM) START(0x3000000) END(0x030ffeff) WIDTH(32) }

PROCESSOR p0

{
LINK_AGAINST( SCOMMAND LINE LINK AGAINST)

OUTPUT( $SCOMMAND LINE OUTPUT FILE )

SECTIONS
{

/I text output section
seg rth

{
INPUT SECTIONS( SOBJECTS(seg_rth) SLIBRARIES(seg rth))
} >seg rth

seg init

{
INPUT _SECTIONS( $OBJECTS(seg_init) SLIBRARIES(seg_init))

} >seg_init

seg_pmco

{
INPUT_SECTIONS( $SOBJECTS(seg_pmco) SLIBRARIES(seg pmco))

} >seg_pmco

seg pmda

{
INPUT_SECTIONS( $OBJECTS(seg_pmda) SLIBRARIES(seg pmda))

} >seg pmda

seg_dmda

{
INPUT_SECTIONS( $OBJECTS(seg_dmda) SLIBRARIES(seg_dmda))
} >seg dmda

seg_sdram /*SHT NOBITS if you do not want to initialize SRAM area in executable*/

{
INPUT _SECTIONS( $OBJECTS(seg_sdram))

} > seg_sdram

EE-116 Page 6

Technical Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: fip.analog.com, WEB: www.analog.com/dsp




stackseg

{
// allocate a stack for the application
1df stack space = .;
1df stack length = MEMORY _ SIZEOF(seg stak);
} > seg stak
heap
{
// allocate a heap for the application
1df heap space = .;
1df heap length = MEMORY _SIZEOF(seg_heap);
1df heap end =1df heap space + 1df heap length - 1;
} > seg_heap
j
j
EE-116 Page 7

Technical Notes on using Analog Devices' DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: fip.analog.com, WEB: www.analog.com/dsp




