

Engineer-to-Engineer Note EE-445

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

ADSP-SC59x SHARC+ Processor System Optimization Techniques
Contributed by Naga Snigdha Kondepati and Mitesh Moonat Rev 01 – December 6, 2022

Copyright 2022, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of
their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
The ADSP-SC59x SHARC+ processors (both ADSP-2159x/ADSP-SC591/SC592/SC594 and ADSP-
SC595/SC596/SC598 processor families) provide an optimized architecture that supports high-system
bandwidth and advanced peripherals. The EE445 note discusses key architectural features of the processor
that contributes to the overall system bandwidth and available bandwidth optimization techniques.

 Most of the theoretical content of this EE Note is the same as in ADSP-2156x SHARC+ Processor
System Optimization Techniques (EE-412)[1]. The EE445 note includes the figures, tables, and
data specific to the ADSP-SC59x family of processors. Throughout this EE Note, references to
ADSP-SC594 processors refer to ADSP-2159x/ADSP-SC591/SC592/SC594 processors, and the
ADSP-SC598 processors refer to ADSP-SC595/SC596/SC598 processors. In these EE Note
sections, the discussions refer to data measured on the ADSP-SC598 processor at 1 GHz CCLK
(core clock) and 900 MHz DCLK (ddr clock) as an example. However, the concepts discussed
also apply to the ADSP-SC594 processors at 1 GHz CCLK and 800 MHz DCLK. See the
Appendix on page 34 for the data corresponding to these modes of operation.

ADSP-SC59x Processor Architecture
This section describes the ADSP-SC59x processor’s key architectural features that play a crucial role in
system bandwidth and performance. For detailed information, refer to the ADSP-2159x/ADSP-
SC591/SC592/SC594 SHARC+ Processor Hardware Reference [3] or ADSP-SC595/SC596/SC598
SHARC+ Processor Hardware Reference [4].

The overall architecture of the ADSP-SC59x processors consists of three main system components:
system bus completers, system bus requesters, and system crossbars. Figure 1 through Figure 4 show how
these components are interconnected to form the complete system in the ADSP-2159x/
ADSP-SC591/SC592/SC594 and in the ADSP-SC595/SC596/SC598 processors.

System Bus Completers
As shown in Figure 1 (right) and Figure 3 (right), system bus completers include on-chip and off-chip
memory devices and controllers, such as L1 SRAM, L2 SRAM, the Dynamic Memory Controller (DMC)
for DDR3/DDR3L SDRAM devices, memory-mapped peripherals such as SPI FLASH, and the System
Memory Mapped Registers (MMRs). Each system bus completer has its own latency characteristics,
operating in each clock domain. For example, L1 SRAM runs at CCLK, L2 SRAM runs at SYSCLK, the
DMC interface runs at DCLK, and so forth.

http://www.analog.com/processors

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 2 of 45

Figure 1 ADSP-2159x/ADSP-SC591/SC592/SC594 System Cross Bar (SCB) Block Diagram

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 3 of 45

Figure 2 ADSP-2159x/ADSP-SC591/SC592/SC594 SCB Interconnections

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 4 of 45

Figure 3 ADSP-SC595/SC596/SC598 System Cross Bar (SCB) Block Diagram

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 5 of 45

Figure 4 ADSP-SC595/SC596/SC598 SCB Interconnections

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 6 of 45

System Bus Requesters
The system bus requesters are shown in Figure 1 (left) and Figure 3 (left). They include peripheral Direct
Memory Access (DMA) channels such as the Serial Port (SPORT) and Serial Peripheral Interface (SPI).
Also included are the Memory-to-Memory DMA channels (MDMA) and the core. Each peripheral runs at
a different clock speed and has individual bandwidth requirements. For example, high speed peripherals
such as the Link Port require higher bandwidth than slower peripherals such as the SPORT or UART.
System Crossbars
The System Crossbars (SCB) are the fundamental building blocks of the system bus interconnect. As
shown in Figure 2 and Figure 4, the SCB interconnect is built from multiple SCBs in a hierarchical model
connecting system bus requesters to system bus completers. They provide concurrent data transfer
between multiple bus requesters and multiple bus completers, providing flexibility and full-duplex
operation. The SCBs also provide a programmable arbitration model for bandwidth and latency
management. SCBs run on different clock domains (SCLK0, SYSCLK, SPI clock, and LP clock) that
introduce their own latencies to the system.

System Latencies, Throughput, and Optimization Techniques
The following sections describe aspects related to latencies and throughput of system bus requesters,
system bus completers, and the system cross bars. The sections also discuss optimization techniques to
reduce system latencies and improve throughput.

Understanding the System Requesters

DMA Parameters
Each DMA channel has two buses: one that connects to the SCB, which in turn is connected to the SCB
completer (for example, memories), and another bus that connects to either a peripheral or another DMA
channel. The SCB/memory bus width can vary among 8, 16, 32, or 64 bits and is defined by the
DMA_STAT.MBWID bit field. The peripheral bus width can vary among 8, 16, 32, 64, or 128 bits and is
defined by the DMA_STAT.PBWID bit field. For ADSP-SC59x processors, the memory and peripheral bus
widths for most of the DMA channels is 32 bits (4 bytes). However, for some channels, it is 64 bits
(8 bytes).
The DMA parameter DMA_CFG.PSIZE determines the width of the peripheral bus in use. It can be
configured to 1, 2, 4, or 8 bytes. However, it cannot be greater than the maximum possible bus width
defined by the DMA_STAT.PBWID bit field. This restriction exists because burst transactions are not
supported on the peripheral bus.
The DMA parameter DMA_CFG.MSIZE determines the actual size of the SCB bus in use. It also determines
the minimum number of bytes that are transferred from and to memory corresponding to a single DMA
request or grant. It can be configured to 1, 2, 4, 8, 16, or 32 bytes. When the MSIZE value is greater than
DMA_STAT.MBWID, the SCB performs burst transfers to transfer the data equal to the MSIZE value.

It is important to choose the appropriate MSIZE value, both from a functionality and a performance
perspective. When choosing the MSIZE value, consider the following factors:

• The start address of the work unit must align to the MSIZE value. Failing to do so generates a DMA
error interrupt.

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 7 of 45

• From a performance perspective, use the highest possible MSIZE value (32 bytes) for improved
average throughput. This results in a higher likelihood of uninterrupted sequential accesses to the
completer (memory), which is the most efficient for typical memory designs.

• From a performance perspective, the minimum MSIZE value is determined by the burst length
supported by the memory device in some cases. For example, for DDR3 accesses, the minimum
MSIZE value is limited by the DDR3 burst length (16 bytes). Any MSIZE value below this length
leads to a significant throughput loss. For details, refer to the L3/External Memory Throughput
section on page 21.

Memory to Memory DMA (MDMA)
The ADSP-SC59x processors support multiple MDMA streams (MDMA0/1/2/3/4/5/6/7) to transfer data
from one memory to another (L1/L2/L3/memory-mapped peripherals such as SPI FLASH). Different
MDMA streams can transfer the data at different bandwidths, as they run at different clock speeds and
support different data bus widths. Table 1 shows the MDMA streams and the corresponding maximum
theoretical bandwidth supported by the ADSP-SC59x processors. Table 2 and Table 3 show the memory
completers and their maximum theoretical bandwidth supported by the ADSP-SC59x processors.

Table 1 MDMA Streams and Maximum Theoretical Bandwidth

Maximum CCLK/SYSCLK/SCLKx Speed (MHz): 1000 / 500 / 125

Maximum
Bandwidth

(MB/s)
Bus Width

(bits)
Clock

Domain
MDMA

Destination
Channel

MDMA
Source

Channel
MDMA Type

MDMA
Stream

No.

2000 32

SYSCLK
500 MHz
Maximum

9 8 CRC0 0

2000 32 19 18 CRC1 1

2000 32 40 39
Enhanced Bandwidth or
Medium Speed MDMA
(MSMDMA)

2

4000 64 44 43 Maximum Bandwidth or High
Speed MDMA (HSMDMA) 3

2000 32 46 45 CRC2 4

2000 32 48 47 CRC3 5

2000 32 50 49
Enhanced Bandwidth or
Medium Speed MDMA
(MSMDMA1)

6

4000 64 52 51 Maximum Bandwidth or High
Speed MDMA (HSMDMA1) 7

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 8 of 45

Table 2 Memory Completers and Maximum Theoretical Bandwidth (SC594 Processors)

Maximum CCLK / SYSCLK /SCLKx / DCLK Frequency (MHz): 1000 / 500 / 125 / 800

Memory Type
(L1 / L2 / L3)

Clock Domain

Bus Width (Bits)

Data Rate

Clock Rate

Maximum
Theoretical

Bandwidth (MB/s)

L1 CCLK 32 1 4000

L2 SYSCLK 128 1 8000

L3 DCLK 16 2 3200

Table 3 Memory Completers and Maximum Theoretical Bandwidth (SC598 Processors)

Maximum CCLK / SYSCLK /SCLKx / DCLK Frequency (MHz): 1000 / 500 / 125 / 900

Memory Type
(L1 / L2 / L3)

Clock Domain

Bus Width (Bits)

Data Rate

Clock Rate

Maximum
Theoretical

Bandwidth (MB/s)
L1 CCLK 32 1 4000

L2 SYSCLK 128 1 8000

L3 DCLK 16 2 3600

The actual (measured) MDMA throughput is always less than or equal to the minimum of the maximum
theoretical throughput supported by the MDMA, source memory, or destination memory. For example,
the measured throughput of MDMA0 between L1 and L2 is less than or equal to 2000 MB/s, which is
limited by the maximum bandwidth of MDMA0. Similarly, the measured throughput of MDMA3 between
L1 and L3 is less than or equal to 3200 MB/s for the ADSP-SC594 processors and 3600 MB/s for the
ADSP-SC598 processors, which is limited by the maximum bandwidth of L3.
Figure 5 shows the actual throughput measured on the bench for various MDMA streams with different
combinations of source and destination memories. The measurements were taken with:

• MSIZE = 32 bytes

• DMA count = 16,384 bytes at CCLK = 1 GHz
• SYSCLK = 500 MHz
• DCLK = 900 MHz

The source code found in the Test1_MDMA_Throughput subfolder of the Zip file, supplied with the
application note[5], can be used to measure MDMA throughput.

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 9 of 45

Figure 5 MDMA Throughput on ADSP-SC598 Processor

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 10 of 45

Optimizing Non-32 Byte-Aligned MDMA Transfers
In many cases, the start address and count of a MDMA transfer may not be aligned to a 32-byte address
boundary. In such cases, the MSIZE value may need to be configured to less than 32 bytes. This
configuration can affect the MDMA performance. One option to get better throughput for such cases is to
split the single MDMA transfer into more than one transfer using a descriptor-based DMA. The first and
last (if needed) MDMA transfers can use MSIZE < 32 bytes for non-32 byte-aligned address and count
values. The second transfer can use MSIZE = 32 bytes for 32-byte-aligned address and count values.

The MDMA service available with CCES provides an additional API called adi_mdma_Copy1DAuto. It is
compatible with the standard 1D-transfer API adi_mdma_Copy1D that is used for single-shot 1D transfers.
In Table 4, the MDMA performance of adi_mdma_Copy1DAuto is approximately 1.25 to 2.16 times better
than adi_mdma_Copy1D for non 32-byte-aligned start addresses. The example source code found in the
Test2_MDMA_1DAuto subfolder of the Zip file with the EE445 note, can be used to measure MDMA
performance for both APIs using the ADSP-SC598 processor.

Table 4 adi__mdma_Copy1D vs. adi_mdma_Copy1DAuto Performance on ADSP-SC598 Processor

S.
No.

Source
Memory
Address

Destination
Memory
Address

DMA
Count

MSIZE
(Bytes)

Copy1D
MDMA
Cycles

Copy1DAuto
MDMA
Cycles

Additional
API

Overhead

Effective
Improvement

Factor

1 0x2C0001 0x300000 256 1 1800 1330 114 1.25

2 0x2C0000 0x300001 256 1 1810 1251 110 1.33

3 0x2C0001 0x300000 1024 1 5362 2866 92 1.81

4 0x2C0000 0x300001 1024 1 5352 2787 110 1.85

5 0x2C0001 0x300000 4096 1 19560 9010 92 2.15

6 0x2C0000 0x300001 4096 1 19570 8931 110 2.16

Bandwidth Limiting and Monitoring
MDMAs are equipped with a bandwidth limit and monitor mechanism. The bandwidth limit feature can
be used to reduce the number of DMA requests being sent by the corresponding requesters to the SCB.
The DMA_BWLCNT register can be programmed to configure the number of SYSCLK cycles between two
DMA requests. This configuration can be used to ensure that such DMA channels’ requests do not occur
more frequently than required. Programming a value of 0x0000 allows the DMA to request as often as
possible. A value of 0xFFFF represents a special case and causes all requests to stop. The maximum
throughput, in MB/s, is determined by the DMA_BWLCNT register and the MSIZE value and is calculated as
follows:

Bandwidth = min (SYSCLK frequency in MHz*DMA bus width in bytes,
SYSCLK frequency in MHz*MSIZE in bytes / DMA_BWLCNT)

The API adi_mdma_BWLimit can be used to program the DMA_BWLCNT register for a target bandwidth and
MSIZE value. The example source code found in the Test3_MDMA_BWLimit subfolder of the Zip file with
the EE445 Note shows how to use this API. Figure 6 shows a sample result of this code with the target
and measured bandwidth for different MDMA use cases.

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 11 of 45

Figure 6 MDMA Bandwidth Limit Results on ADSP-SC598 Processor

The bandwidth monitor feature can be used to check if such channels are starving for resources. The
DMA_BMCNT register can be programmed to the number of SYSCLK cycles within which the corresponding
DMA should finish. Each time the DMA_CFG register is written (MMR access only), a work unit ends, or an
autobuffer wraps, the DMA loads the value in the DMA_BWMCNT register into the DMA_BWMCNT_CUR register.
The DMA decrements DMA_BWMCNT_CUR every SYSCLK that a work unit is active. When the
DMA_BWMCNT_CUR value reaches 0x00000000 before the work unit finishes, the DMA_STAT.IRQERR bit is
set, and the DMA_STAT.ERRC bit is set to 0x6. The DMA_BWMCNT_CUR value remains at 0x00000000 until it
is reloaded when the work unit completes. Unlike other error sources, a bandwidth monitor error does not
stop work unit processing. Programming 0x00000000 disables bandwidth monitor functionality. This
feature can also be used to measure the actual throughput.

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 12 of 45

The API adi_mdma_BWMonitor can be used to program the DMA_BWMCNT register for a given target
bandwidth and MSIZE value. The example source code found in the Test4_MDMA_BWMonitor subfolder of
the Zip file with the EE445 Note, shows how to use this API. Figure 7 shows a sample result of this code
with a target bandwidth and bandwidth monitor expiration message for a given MDMA use case. The API
adi_mdma_BWMeasure uses the DMA_BMCNT and DMA_BWMCNT_CUR registers to measure the MDMA
bandwidth as shown in the example code MDMA_BWLimit.

Figure 7 MDMA Bandwidth Monitor Results on ADSP-SC598 Processor

Extended Memory DMA (EMDMA)
The ADSP-SC59x processors also support Extended Memory DMA (EMDMA). The EMDMA engine is
mainly used to transfer the data from one memory type to another in a non-sequential manner (such as
circular, delay line, and scatter/gather). For details regarding EMDMA, refer to the
ADSP-2159x/ADSP-SC591/SC592/SC594 SHARC+ Processor Hardware Reference [3] or
ADSP-SC595/SC596/SC598 SHARC+ Processor Hardware Reference [4]. The EMDMA on the
ADSP-SC59x processors has been enhanced to run at the SYSCLK speed instead of the SCLK speed.
This enhancement results in improved EMDMA throughput.

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 13 of 45

Figure 8 shows throughput measured on the bench for EMDMA0/EMDMA1 streams with different
combinations of source and destination memories for sequential transfers of 4096 32-bit words at
CCLK = 1 GHz, SYSCLK = 500 MHz, and DCLK = 900 MHz .
The source code found in the Test5_EMDMA_Throughput subfolder of the Zip file supplied with the
application note[5], can be used to measure EMDMA throughput.

Figure 8 Measured EMDMA Throughput on ADSP-SC598 Processors

Optimizing Non-Sequential EMDMA Transfers with MDMA
In some cases, the non-sequential transfer modes supported by EMDMA can be replaced by descriptor-
based MDMA for better performance.
The example source code found in the Test6_MDMA_Circular_Buffer subfolder of the Zip file with the
EE445 Note, illustrates how a MDMA descriptor-based mode can be used to emulate a circular buffer
memory-to-memory DMA transfer mode.

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 14 of 45

The example code compares the core cycles measured (Table 5) to write and read 4096 32-bit words to
and from the DDR3 memory in circular buffer mode. The example uses a starting address offset of
1024 words for these situations:

• EMDMA
• MDMA with MSIZE = 4 bytes (for 4-byte-aligned address and count)
• MDMA with MSIZE = 32 bytes (for 32-byte-aligned address and count)

Table 5 MDMA Emulated Circular Buffer vs. EMDMA on ADSP-SC598 Processor

Write/Read

Core Cycles

EMDMA
MDMA3

MSIZE = 4 bytes

MDMA3

MSIZE = 32 bytes

Write 36308 30137 6259

Read 47642 36312 11266

As shown in Table 5, the MDMA emulated circular buffer (MSIZE = 4 bytes) is faster than EMDMA. The
performance is further improved with MSIZE = 32 bytes when the addresses and counts are 32-byte
aligned.

Understanding the System Crossbars
As shown in Figure 2 on page 3 and Figure 4 on page 5, the SCB interconnect consists of a hierarchical
model connecting multiple SCB units. Figure 9 shows the block diagram for a single SCB unit. It connects
the System Bus Requesters (M) to the System Bus Completers (S) by using a Completer Interface (SI) and
Requester Interface (MI). On each SCB unit, each S is connected to a fixed MI. Similarly, each M is
connected to a fixed SI.

Figure 9 Single SCB Block Diagram

The completer interface of the crossbar (where requesters such as DDE are connected) perform these two
functions, arbitration and clock domain conversion.

Arbitration
The programmable Quality of Service (QoS) registers can be viewed as being associated with SCBx. For
example, the programmable QoS registers for SPORT0-3 and MDMA0 can be viewed as residing in
SCB1. Whenever a transaction is received at SPORT0 half A, the programmed QoS value is associated
with that transaction and is arbitrated with the rest of the requesters at SCB1.

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 15 of 45

Programming the SCB QOS Registers
Consider a scenario where:

• At SCB1, requesters 1, 2, and 3 have RQOS values of 6, 4, and 2, respectively.

• At SCB2, requesters 4, 5, and 6 have RQOS values of 12, 13, and 1, respectively.

Figure 10 Arbitration Among Various Requesters

As shown in Figure 10, in this case:

• Requester 1 wins the arbitration at SCB1, and Requester 5 wins the arbitration at SCB2.

• In a perfect competition at SCB0, however, requesters 4 and 5 had the highest overall RQOS
values. So, the requesters would have fought for arbitration directly at SCB0. Because of the mini-
SCBs, however, Requester 1, at a much lower RQOS value, wins against Requester 4 and makes it
all the way to SCB0.

Clock Domain Conversion
Table 6 and Table 7 shows the various clock domain crossings that are available on the ADSP-SC59x
processors. The clocking relationships are defined with respect to SYSCLK. The CLKO3 to SYSCLK,
CLKO4 to SYSCLK and CLKO8 to SYSCLK clock domains are programmable in the ADSP-SC594
processors. The CLKO2 to SYSCLK, CLKO3 to SYSCLK, CLKO4 to SYSCLK and CLKO8 to
SYSCLK clock domains are programmable in the ADSP-SC598 processors. These should be programmed
depending upon the clock ratios of the two clock domains for optimum performance.

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 16 of 45

Table 6 Clock Domain Crossing Options for ADSP-SC594 processors

 Clocking Relationships with respect to SYSCLK

Functional
Clocks

Possible
Targets

System
Fabric

MMRG
Fabric

DMC
Fabric

SHARC
Fabric

ARM
Fabric

SPIF
Fabric

SYSCLK

System Fabric
and
Infrastructure
Modules 1:1 1:1 *1 * * *

SCLK0 SCLK0 Clock
Domain Synch (m:1) Synch (m:1) * * * *

CLKO0 SHARC0 and
its Accelerators * * * Synch (m:1) * *

CLKO1 SHARC1 and
its Accelerators * * * Synch (m:1) * *

CLKO2 ARM * * * * Synch (m:1)

CLKO3 DMC * Prog Prog * * *

CLKO4 CAN * Prog * * * *

CLKO6 SPI
Synch (m:n)
(except
SPIF slave) Synch (m:n) * * * Synch (m:n)

CLKO8 LP Prog Prog * * * *

*1 * Either the interface is not present, or CDC is not required
Prog designates programmable
Synch (m:1) designates Synchronous (m:1)
Synch (m:n) designates Synchronous (m:n)

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 17 of 45

Table 7 Clock Domain Crossing Options for ADSP-SC598 processors

 Clocking Relationships with respect to SYSCLK

Functional
Clocks

Possible
Targets

System
Fabric

MMRG
Fabric

DMC
Fabric

SHARC
Fabric

ARM
Fabric

SPIF
Fabric

SYSCLK

System Fabric
and
Infrastructure
Modules 1:1 1:1 *1 * * *

SCLK0 SCLK0 Clock
Domain Synch (m:1) Synch (m:1) * * * *

CLKO0 SHARC0 and
its Accelerators * * * Synch (m:1) * *

CLKO1 SHARC1 and
its Accelerators * * * Synch (m:1) * *

CLKO2 ARM * * * * Prog

CLKO3 DMC * Prog Prog * * *

CLKO4 CAN * Prog * * * *

CLKO6 SPI
Synch (m:n)
(except
SPIF slave) Synch (m:n) * * * Synch (m:n)

CLKO8 LP Prog Prog * * * *

*1 * Either the interface is not present, or CDC is not required
Prog designates programmable
Synch (m:1) designates Synchronous (m:1)
Synch (m:n) designates Synchronous (m:n)

Programming Sync Mode in the IBx Registers
Programming the SYNC mode in the IBx registers improves the DMC MDMA throughput. For most of
the work unit size values the throughput is better when the CDC is programmed in SYNC mode as
compared to the ASYNC mode.

Understanding the System Completers

Memory Hierarchy
As shown in Table 2 on page 8 and Table 3 on page 8. ADSP-SC59x processors have a hierarchical
memory model (L1/L2/L3). The following sections discuss the access latencies and achievable throughput
associated with the different memory levels.

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 18 of 45

L1 Memory Throughput
L1 memory runs at CCLK and is the fastest accessible memory in the hierarchy. SHARC+ L1 memory is
accessible by both the core and DMA (system). For system (DMA) accesses, L1 memory supports two
ports: the S1 port and the S2 port. Two different banks of L1 memory can be accessed in parallel with
these ports. Like the ADSP-2156x processors, the system (DMA) accesses are hardwired to the
L1 memory of the SHARC+ processer using the S1 port. One exception is the High-Speed MDMA
(HSMDMA or MDMA3 and MDMA7), which are hardwired using the S2 port. From a programming
perspective, when accessing the L1 memory of the SHARC+ processer, use a multiprocessor memory
offset of 0x28000000 for all DMA accesses (including HSMDMA).
The maximum theoretical throughput of L1 memory (for system/DMA accesses) is 1000 * 4 = 4000 MB/s
for 1 GHz CCLK operation. As shown in Figure 5 on page 9, the maximum measured L1 throughput
using MDMA3 is approximately 3912 MB/s.

L2 Memory Throughput
L2 memory access times are longer than L1 memory because the maximum L2 clock frequency
(SYSCLK) is half the CCLK. The L2 memory controller contains five ports to connect to the system
crossbar. Port 0, port 1, and port 2 are 128-bit interfaces dedicated to core and MDMA3 traffic. Port 3 and
port 4 are 128-bit interfaces that connect through DMA. Each port has a read and a write channel.
To ensure complete bandwidth utilization and optimal performance of the L2 ports, the controllers are
allocated as shown in Table 8.

Table 8 L2 Port Requester Allocation

Requesters CL2_0 CL2_1 CL2_2 DL2_0 DL2_1
SHARC0 (Core1) ✔ ✔

SHARC1 (Core2) ✔ ✔

ARM (Core0) ✔ ✔

SHARC0 IPORT ✔

SHARC1 IPORT ✔

SHARC0_FIR_CH0 ✔

SHARC0_FIR_CH1 ✔

SHARC0_IIR_CH0 ✔ ✔

SHARC0_IIR_CH1 ✔ ✔

SHARC1_FIR_CH0 ✔

SHARC1_FIR_CH1 ✔

SHARC1_IIR_CH0 ✔ ✔

SHARC1_IIR_CH1 ✔ ✔

HSMDMA0 ✔

HSMDMA1 ✔

Peripherals ✔

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 19 of 45

Note the following about the L2 requestor ports:

• To reduce the probability of port conflict in a multicore system, the cores are connected on the
CL2_0 and CL2_1 port of L2. CL_0 has access only to the first 1 MB of L2 memory. CL2_1 has
access to second 1 MB of L2 memory.

• To avoid conflict during multicore boot, the booting of the Arm® core happens through the CL2_0
port and the booting of the SHARC cores happens through the CL2_1 port. The respective
bootROM addresses are routed accordingly.

For additional details, refer to the ADSP-2159x/ADSP-SC591/SC592/SC594 SHARC+ Processor
Hardware Reference [3] or ADSP- SC595/SC596/SC598 SHARC+ Processor Hardware Reference [4]

.
Consider the following important points regarding L2 memory throughput:

• Because L2 memory runs at the SYSCLK speed, it can provide a maximum theoretical throughput
of 500 MHz * 16 = 8000 MB/s in one direction (for HSMDMA accesses, it can reach 4000 MB/s).
Because separate read and write channels exist, the total throughput in both directions equals
16000 MB/s. To operate L2 SRAM memory at its optimum throughput, use both the core and
DMA ports and separate read and write channels in parallel. All of them should access different
banks of L2.

• All accesses to L2 memory are converted to 64-bit accesses (8-byte) by the L2 memory controller.
To achieve optimum throughput for DMA access to L2 memory, configure the DMA channel
MSIZE to 8 bytes or more.

• Unlike L3 (DMC) memory accesses, L2 memory throughput for sequential and non-sequential
accesses is the same.

• L2 SRAM is ECC-protected and organized into eight banks. A single 8- or 16-bit access, or a
non-32-bit address-aligned 8-bit or 16-bit burst access, to an ECC-enabled bank creates an
additional latency of two SYSCLK cycles. This latency is due to the ECC implementation. The
implementation is in terms of 32-bit accesses. Any write that is less than 32-bit to an ECC-enabled
SRAM bank is implemented as a read-followed-by-write and requires three cycles to complete
(two cycles for the read, one cycle for the write).

• When performing simultaneous core and DMA accesses to the same L2 memory bank, read and
write priority control registers can be used to increase DMA throughput. When both the core and
the DMA engine access the same bank, the best access rate that DMA can achieve is one 64-bit
access every three SYSCLK cycles during the conflict period. This throughput is achieved by
programming the read and write priority count bits (L2CTL_RPCR.RPC0 and L2CTL_WPCR.WPC0) to
zero, while programming the L2CTL_RPCR.RPC1 and L2CTL_WPCR.WPC1 bits to one.

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 20 of 45

Figure 11 shows the measured MDMA throughput at CCLK = 1 GHz and SYSCLK = 500 MHz for a case
where both source and destination buffers are in different L2 memory banks. As an example, for
MDMA3, the maximum throughput is very close to 3910 MB/sec in one direction (7820 MB/s in both
directions) for MSIZE = 32 bytes and drops significantly for smaller MSIZE values.

Figure 11 L2 MDMA Throughput for Different MSIZE and Work Unit Sizes on an ADSP-SC598 Processor

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 21 of 45

L3 Memory and External Memory Throughput
The ADSP-SC59x processors provide interfaces for connecting to DDR3/DDR3L memory devices. The
DMC interface operates at speeds of up to 900 MHz. For the 16bit DDR3 interface, the maximum
theoretical throughput that the DMC can deliver equals 3600 MB/s. However, the practical maximum
DMC throughput is less because of the latencies introduced by the internal system interconnects, as well
as the latencies derived from the DRAM technology itself (access patterns, page hit to page miss ratio, and
so forth).
Although most of the throughput optimization concepts are illustrated using MDMA as an example, the
same can be applied to other system requesters as well.
The MDMA3 stream (HSMDMA) can request DMC accesses faster than any other requesters (for
example, 4000 MB/s). The practical DMC throughput possible using MDMA depends upon factors such
as whether the accesses are sequential or non-sequential, the block size of the transfer, and DMA
parameters (for example, MSIZE).

Figure 12 and Figure 13 provide the DMC measured throughput at CCLK = 1 GHz and
DCLK = 900 MHz using MDMA0 (channels 8 and 9) and MDMA3 (channels 43 and44) streams for
various MSIZE values and buffer sizes.

Figure 12 DMC Measured Throughput for Sequential MDMA Reads on an ADSP-SC598 Processor

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 22 of 45

Figure 13 DMC Measured Throughput for Sequential MDMA Writes on an ADSP-SC598 Processor

The following important observations can be made for the ADSP-SC598 processor:

• The throughput trends are similar for reads and writes with regards to MSIZE and buffer size
values.

• The peak measured read throughput is 1630 MB/s for MDMA3 with MSIZE = 16 bytes. The peak
measured write throughput is 3220 MB/s for MDMA3 with MSIZE = 32 bytes.

• The throughput depends largely upon the DMA buffer size. For smaller buffer sizes, the
throughput is significantly lower. The throughput increases significantly with a larger buffer size.
For example, for MDMA3 with MSIZE = 32 bytes and a buffer size of 32 bytes, the read
throughput is 188 MB/s, whereas it reaches 1514 MB/s for a 16 KB buffer size. This difference is
affected by the overhead incurred when programming the DMA registers, as well as the system
latencies when sending the initial request from the DMA engine to the DMC controller.

 Try to rearrange the DMC accesses such that the DMA count is as large as possible. Better
sustained throughput is obtained for continuous transfers over time.

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 23 of 45

 To some extent, throughput also depends upon the MSIZE value of the source MDMA channel for
reads and destination MDMA channel for writes. For Figure 12 and Figure 13 , in most cases,
greater MSIZE values provide better results. Ideally, the MSIZE value should be at least equal to the
DDR memory burst length. For MDMA3 with a buffer size of 16384 bytes, the read throughput is
1514 MB/s for MSIZE = 32 bytes, while it reduces significantly to 460 MB/s for MSIZE = 4 bytes.
For MSIZE = 4 bytes, although all accesses are still sequential, the full DDR3 memory burst length
of 16 bytes (eight 16-bit words) is not used.

For sequential reads, it is easy to achieve optimum throughput, particularly for larger buffer sizes. The
DRAM memory page hit ratio is high, and the DMC controller does not need to close and open DDR
device rows frequently. However, in case of non-sequential accesses, throughput can drop slightly or
significantly depending upon the page hit-to-miss ratio.
Figure 14 provides a comparison of the DMC throughput numbers measured for sequential MDMA read
accesses for MSIZE = 16 bytes (equals DDR3 burst length) and ADDRMODE set to 0 (bank interleaving)
versus non-sequential accesses with a modifier of 2048 bytes (equals DDR3 page size, thus leading to a
worst-case scenario with maximum possible page misses). As shown, for a buffer size of 8192 bytes,
throughput drops significantly from 1675 to 312 MB/s.

Figure 14 DMC Throughput for Sequential vs. Non-Sequential Read Accesses on an ADSP-SC598 Processor

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 24 of 45

DDR memory devices support concurrent bank operations that provide the DMC controller the feature to
activate a row in another bank without pre-charging the row of a bank. This feature is extremely helpful in
cases where DDR access patterns incur page misses. By setting the DMC_CTL.ADDRMODE bit, throughput
can be improved by ensuring that such accesses fall into different banks. Figure 15 shows in gray color
how the DMC throughput increases from 312.86 MB/s to 520.33 MB/s by setting this bit for the non-
sequential access pattern shown in Figure 14.
The throughput can be further improved using the DMC_CTL.PREC bit, which forces the DMC to close the
row automatically as soon as a DDR read burst is complete with the help of the Read with Auto
Precharge command. This configuration allows the row of a bank to proactively pre-charge after it has
been accessed. It improves the throughput by saving the latency involved in pre-charging the row at the
time when the next row of the same bank must be activated.
The yellow line in Figure 15 shows the increase in throughput. Setting the DMC_CTL.PREC bit results in an
increase from 520 MB/s to 975 MB/s. The same result can be achieved by setting the
DMC_EFFCTL.PRECBANK[7-0] bits. This feature can be used on a per bank basis. However, note that
setting the DMC_CTL.PREC bit overrides the DMC_EFFCTL_PRECBANK[7-0] bits. Also, setting the
DMC_CTL.PREC bit results in pre-charging of the rows after every read burst, while setting the
DMC_EFFCTL_PRECBANK[7-0] bits pre-charge the row after the last burst corresponding to the respective
MSIZE settings. This configuration can provide an added throughput advantage for cases where MSIZE (for
example, 32 bytes) is greater than the DDR3 burst length (16 bytes).

Figure 15 Optimizing Throughput for Non-Sequential Accesses on an ADSP-SC598 Processor

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 25 of 45

For reads, the throughput can be further improved by using the additive latency feature. Figure 16 and
Figure 17 illustrate how this feature helps to avoid gaps in a burst of data when accessing different banks
for CAS Latency = 4 and Additive Latency= 3. Note that these figures were used to explain the concept
from the reference TN4702[7] which refers to DDR2. ADSP-SC59x processors support DDR3/DDR3L
devices only, but the same concept applies here.

Figure 16 Reads Without Additive Latency

Figure 17 Reads with Additive Latency

Programming the additive latency to tRCD-1 helps the DMC to send the Read with Autoprecharge
command right after the Activate command, before tRCD completes. This sequence enables the
controller to schedule the Activate and Read commands for other banks, eliminating gaps in the data
stream. Figure 15 on page 24 shows how the throughput improves from 975 MB/s to 1360 MB/s by
programming the additive latency (AL) in the DMC_EMR1 register to tRCD-1 (equals 8 or CL-1 in this case).

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 26 of 45

The DMC also provides elevating the priority of the accesses requested by a SCB Requester using the
DMC_PRIO and DMC_PRIOMSK registers. The example source code found in the Test10_DMC_SCB_PRIO
subfolder of the associated Zip file with the EE445 Note, describes how two MDMA DMC read channels
(8 and 18) run in parallel. Table 9 summarizes the measured throughout. As shown, programming the
DMC SCB priority for a MDMA channel results in an increased throughput of the higher priority MDMA
when compared with the other MDMA running in parallel.

Table 9 DMC Measured Throughput for Different DMC_PRIO Settings on ADSP-SC598 Processor

Test
Case Number

Priority Channel
(SCB ID)

MDMA0 (Ch. 8)
Throughput (MB/s)

MDMA1 (Ch. 18)
Throughput (MB/s)

1 None 892 908

2 MDMA0 (0x0031) 881 769

3 MDMA1 (0x0011) 752 888

The Postpone Autorefresh command can be used to ensure that auto-refreshes do not interfere with any
critical data transfers. Up to eight Autorefresh commands can be accumulated in the DMC. The exact
number of Autorefresh commands can be programmed using the NUM_REF bit in the DMC_EFFCTL
register.
After the first refresh command is accumulated, the DMC constantly looks for an opportunity to schedule
a refresh command. When the SCB read and write command buffers become empty (which implies no
outstanding accesses) for the programmed number of clock cycles (IDLE_CYCLES) in the DMC_EFFCTL
register, the accumulated number of refresh commands are sent sequentially to the DRAM memory.
After every refresh, the SCB command buffers are checked to ensure that they stay empty. However, if the
SCB command buffers are always full, once the programmed number of refresh commands accumulates
the refresh operation is elevated to urgent priority and one refresh command is sent immediately. After
this, the DMC continues to wait for an opportunity to send out refresh commands. If self-refresh is
enabled, all pending refresh commands are given out only after the DMC enters self-refresh mode.

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 27 of 45

System MMR Latencies
Table 10 shows the measured MMR latency in core cycles for different peripherals on the ADSP-SC598
processor. The measurement was taken with CCLK = 1 GHz, SYSCLK = 500 MHz, and
SCLK = 250 MHz. These numbers can be used to approximate the MMR access latency of the SHARC+
core for different peripherals.

Table 10 MMR Access Latency for ADSP-SC598 Processor Peripherals in CCLK cycles (approximate)

S. No. Register

Peripheral
Write Latency
(Core Cycles)

Read Latency
(Core Cycles)

1 FIR0_INIDX FIR 41 41
2 IIR0_INIDX IIR 41 41
3 CRC0_DCNT

CRC
56 56

4 CRC1_DCNT 56 56
5 EMDMA0_INDX1

EMDMA
56 56

6 EMDMA1_INDX1 56 56
7 MEC0_PERR_IMASK0 MEC 56 54

8 MISCREG_PLL2_CONTROL MISCREG 56 54

9 MLB0_MDAT0 MLB 56 54
10 TAPC_SDBGKEY0 TAPC 56 54
11 TSGENWR0_CNTCR TSGENWR 56 56
12 CDU0_CLKINSEL CDU 58 56
13 CGU0_OSCWDCTL CGU 58 56
14 CSTSGENWR0_CNTCR CSTSGENWR 58 58
15 DPM0_PER_DIS0 DPM 58 56
16 L2CTL0_RPCR0 L2CTL 58 56
17 RCU0_MSG RCU 58 56
18 SEC0_RAISE SEC 58 58
19 SMPU2_RADDR0 SMPU 58 56
20 SPU0_SECUREP10 SPU 58 58
21 SWU1_LA0

SWU
58 56

22 SWU2_LA0 58 56
23 TRU0_SSR0 TRU 58 58
24 PKTE0_SA_ADDR PKTE 60 60
25 PKA0_APTR PKA 64 64
26 PKIC0_ACK PKIC 64 64
27 TRNG0_OUTPUT0 TRNG0 64 64
28 DDRPFB0_CTL0

DDRPFB
68 68

29 DDRPFB0_CTL1 68 68

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 28 of 45

S. No. Register

Peripheral
Write Latency
(Core Cycles)

Read Latency
(Core Cycles)

30 DMC0_PRIO DMC 70 68
31 EMAC0_MAC_CFG

EMAC
86 96

32 EMAC1_MAC_IEN 86 96
33 OTPC0_PMC_MODE0 OTPC 86 88
34 PINT1_ASSIGN PINT1 86 88
35 PORTB_DATA_SET PORTB 86 88
36 UART0_CLK

UART
86 88

37 UART1_CLK 86 88
38 DMA1_XCNT DMA 88 88
39 EMAC1_MAC_CFG EMAC 88 96
40 EPPI0_CTL EPPI 88 88
41 SPI1_CLK SPI 88 96
42 SPORT0_DIV_A

SPORT
88 96

43 SPORT1_DIV_A 88 96
44 WDOG0_WIN WDOG 88 88
45 CNT0_CNTR CNT 90 88
46 EMAC0_MAC_IEN EMAC 90 96
47 PINT0_ASSIGN PINT0 90 88
48 PORTA_DATA_SET PORTA 90 88
49 SPI0_CLK SPI0 90 96
50 TIMER0_TMR0_WID TIMER 90 96
51 ASRC0_MUTE ASRC 92 96
52 DMA0_XCNT DMA 92 88
53 OSPI0_FCA OSPI 92 88
54 PADS0_PORTA_PDE PADS 92 88
55 USBC0_CFG_H

USBC
92 96

56 USBC0_OTG_CTL 92 96
57 WDOG1_WIN WDOG 92 88
58 HADC0_CHAN_MSK HADC 94 96
59 EMSI0_CTL1 EMSI 96 88
60 PDM1_CTL0 PDM 96 96
61 SPDIF1_TX_UBUFF_A0 SPDIF 96 96
62 TMU0_FLT_LIM_HI TMU 96 96
63 DAI0_IMSK_FE

DAI
98 96

64 DAI1_IMSK_FE 98 96
65 PCG0_PW1 PCG 98 96
66 PDM0_CTL0 PDM 98 96
67 SPDIF0_TX_UBUFF_A0 SPDIF 98 96

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 29 of 45

S. No. Register

Peripheral
Write Latency
(Core Cycles)

Read Latency
(Core Cycles)

68 ASRC1_MUTE ASRC 106 96
69 EMSI0_CMD EMSI 106 96
70 TWI0_CLKDIV

TWI
128 136

71 TWI1_CLKDIV 132 136
72 LP0_DIV

LP
148 160

73 LP1_DIV 148 160
74 SCB0_SP0A_READ_QOS SCB 495 496

The MMR latency numbers are measured with the “sync” instruction after the write. This ensures
that the write has taken affect. The SHARC+ core supports posted writes, which means that the
core does not necessarily wait until the actual write is complete. This helps in avoiding
unnecessary core stalls

The MMR access latencies can vary based on the following factors:

• Clock ratios–All MMR accesses are through SCB0, which is in the SYSCLK domain, while
peripherals are in the SCLK0/1, SYSCLK, and DCLK domains.

• Number of concurrent MMR access requests in the system–Although a single write incurs half
the system latency when compared to back-to-back writes, the latency observed on the core is
shorter. Similarly, the system latency incurred by a read followed by a write, or vice versa, is
different than a latency observed on the core.

• Memory type (L1/L2/L3) from where the code is executed.

System Bandwidth Optimization Procedure
Although the optimization techniques can vary from one application to another, the general procedure for
bandwidth optimization remains the same. Figure 18 provides a flow chart of typical steps used in a
system bandwidth optimization procedure for ADSP-SC59x processor-based applications.
A typical procedure for an SCB completer includes the following steps:

1. Identify the individual and total throughput requirements for all the requesters accessing the
corresponding SCB completer in the system. Consider the total throughput requirement as X.

2. Calculate the observed throughput the corresponding SCB completer(s) can supply under the
specific conditions. Refer to this calculated value as Y.

3. For X < Y, bandwidth requirements are met. However, for X > Y, one or more peripherals are
likely to hit reduced throughput or an underflow condition.

In this case, apply the bandwidth optimization techniques to:

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 30 of 45

o Increase the value of Y by applying the completer-specific optimization techniques (for
example, using the DMC efficiency controller features).

o Decrease the value of X:
 Reanalyze whether a peripheral needs to run that fast. If not, then slow down the

peripheral to reduce the bandwidth requested by the peripheral.
 Reanalyze whether an MDMA can be slowed down. The corresponding

DMAx_BWLCNT register can be used to limit the bandwidth of that DMA channel.

Application Example
Figure 18 shows a block diagram of the example application code found in the Test12_Multiple_DMAs
subfolder of the Zip file supplied with the EE445 Note.

Figure 18 Typical System Bandwidth Optimization Procedure

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 31 of 45

The procedures in Figure 18 generate the following throughput for the Figure 19 example application:
 CCLK = 1 GHz, DCLK = 900 MHz, SYSCLK = 500 MHz, and SCLK0 = 125 MHz.
 EPPI0(SCB3): 24-bit transmit, internal clock and frame sync mode at EPPICLK = 56.25 MHz.

Required throughput = 56.25 MHz * 3 = 168.75 MB/s.
 MDMA0 channel 8: required throughput = 500 MHz * 4 ≤ 2000 MB/s.
 MDMA1 channel 18: required throughput = 500 MHz * 4 ≤ 2000 MB/s.
 MDMA2 channel 39: required throughput = 500 MHz * 4 ≤ 2000 MB/s.
 MDMA3 channel 43: required throughput = 500 MHz * 8 ≤ 4000 MB/s.
 MDMA4 channel 45, required throughput = 500 MHz * 4 <= 2000 MB/s.
 MDMA5 channel 47, required throughput = 500 MHz * 4 <= 2000 MB/s.

Throughput requirements for MDMA channels depend on the corresponding DMAx_BWLCNT register values.
If not programmed, the MDMA channels request is for the bandwidth with full throttle.

Figure 19 Example Application–DMC Throughput Distribution Across SCBs on ADSP-SC598 Processor

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 32 of 45

As shown in Table 11 and Figure 19, the total required throughput from the DMC controller equals 14168.75 MB/s. Theoretically,
with DCLK = 900 MHz and a bus width of 64 bits, the maximum possible throughput is only 14400 MB/s. For this reason, there is a
possibility that one or more requesters may not get the required bandwidth. For requesters such as MDMA, this can result in decreased
throughput.

Table 11 Example Application - System Bandwidth Optimization Steps on ADSP-SC598 Processor

Required Measured Required Measured Required Measured Required Measured Required Measured Required Measured Required Measured
1 No optimization 168.75 188.73 2000 56.83 2000 56.83 2000 113.27 4000 223.46 2000 56.84 2000 56.83 14168.75 752.78 YES

2
Optimization at
the slave - T1 168.75 188.53 2000 111.07 2000 111.02 2000 221.45 4000 399.03 2000 111.04 2000 111.05 14168.75 1253.20 NO

3
Optimization at
the master - T2 168.75 188.53 200 190.19 100 98.99 200 196.69 300 292.92 150 148.85 100 99.09 1218.75 1215.25 NO

4
Optimization at
the master - T3 168.75 188.48 150 148.98 200 195.84 100 99.15 200 196.85 200 193.56 200 193.85 1218.75 1216.71 NO

5
Optimization at
the master - T4 168.75 188.63 100 99.25 75 74.69 300 295.15 400 387.93 100 99.25 75 74.70 1218.75 1219.61 NO

HSDMA SCB SCB8 Total
throughput

(X)

Measured
throughput

(Y)

PPI
Underflow

?
MDMA3 MDMA4 MDMA5

S. No. Condition

SCB3 SCB7 SCB9
PPI0 MDMA0 MDMA1 MDMA2

All units are expressed in MB/s.

Table 11 shows the expected and measured throughput for all DMA channels and the corresponding SCBs at various steps of
bandwidth optimization.

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 33 of 45

able ondition

All DMA channels run without applying any optimization techniques. To replicate the worst-case
scenario, the source buffers of all DMA channels are placed in a single DDR3 SDRAM bank. The first
row corresponding to the No optimization condition in Table 11 shows the measured throughput numbers
under this condition. As illustrated, the individual measured throughput of almost all channels is
significantly less than expected.
 Total expected throughput from the DMC (X) = 14168.75 MB/s
 Effective DMC throughput (Y) = 752.78 MB/s

The reality is that X is an order of magnitude greater than Y, showing a definite need for implementing the
corresponding bandwidth optimization techniques.

Table Condition 2
When there are frequent DDR3 SDRAM page misses within the same bank, throughput significantly
drops. Although DMA channel accesses are sequential, multiple channels trying to access the DMC
concurrently result in page misses. To work around this, move the source buffers for each DMA channel
to different DDR3 SDRAM banks. This configuration allows parallel accesses to multiple pages of
different banks, helping improve the calculated Y value. The Optimization at the slave–T1 row in Table 11
provides the measured throughput numbers under this condition. Both individual and overall throughput
numbers increase significantly. The maximum throughput delivered by the DMC (Y) increases to
1253.20 MB/sec. However, since X is still greater than Y, the measured throughput is still lower than
expected.

Table Conditions 3, 4 and 5
Now, not much can be done to significantly increase the calculated value of Y. Alternatively, optimization
techniques can be employed at the Requester end. Depending on the application requirements, the
bandwidth limit feature of the MDMAs can be used to reduce the overall bandwidth requirement and get a
predictable bandwidth at various MDMA channels. Optimization at the master–T2, Optimization at the
master–T3, and Optimization at the master–T4 rows in Table 11 show the measured throughput under two
such conditions with different bandwidth limit values for the various MDMA channels. As shown in
Table 11, the individual, overall, and expected throughput values are approximately the same.

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 34 of 45

System Optimization Techniques Checklist
This checklist summarizes the bandwidth optimization techniques discussed in this E445 Note, plus more:

• Analyze the overall bandwidth requirements and use the bandwidth limit feature for memory pipe
DMA channels to regulate the overall DMA traffic.

• Program the DMA channels’ MSIZE parameters to optimal values to maximize throughput and
avoid any potential underflow/overflow conditions.

• Split single MDMA (when required or possible) of a smaller MSIZE value into multiple descriptor-
based MDMA transfers to maximize the usage of larger MSIZE values for better performance.

• Use MDMA instead of EMDMA for sequential data transfers to improve performance. When
possible, emulate EMDMA non-sequential transfer modes with MDMA.

• Program SCB RQOS and WQOS registers to allocate priorities to requesters (system requirements).

• Program the clock domain crossing (IBx) registers depending upon the clock ratios across SCBs.

• Use optimization techniques at the SCB completer end, such as:
o Efficient usage of the DMC controller
o Usage of multiple L2/L1 sub-banks to avoid access conflicts
o Usage of instruction/data caches

• Maintain the optimum clock ratios across different clock domains.

• Use Trigger Routing Unit (TRU)–Because MMR latencies affect the interrupt service latency,
ADSP-SC59x processors provide the TRU for bandwidth optimization and system
synchronization. The TRU provides for synchronizing system events without processor core
intervention. It maps the trigger requesters to trigger completers (triggers receivers), offloading
processing from the core. For a detailed discussion on this topic, refer to application note Utilizing
the Trigger Routing Unit for System Level Synchronization (EE-360)[6]. The EE360 Note is written
for the ADSP-BF60x processor and the concepts also apply to the ADSP-SC59x processors.

Appendix
This appendix provides optimization data figures and tables for the ADSP-SC594 Processors:

• Figure 20–MDMA Throughput on ADSP-SC594
• Table 12–adi_mdma_Copy1D vs. adi_mdma_Copy1DAuto Performance on ADSP-SC594
• Figure 21–Measured EMDMA Throughput on ADSP-SC594
• Table 13–MDMA Emulated Circular Buffer vs. EMDMA on ADSP-SC594
• Figure 22–L2 MDMA Throughput for Different MSIZE and Work Unit Sizes on ADSP-SC594
• Figure 23–DMC Measured Throughput for Sequential MDMA Reads on ADSP-SC594
• Figure 24–DMC Measured Throughput for Sequential MDMA Writes on ADSP-SC594
• Figure 25–DMC Throughput for Sequential vs. Non-Sequential Read Accesses on ADSP-SC594
• Figure 26–Optimizing Throughput for Non-Sequential Accesses on ADSP-SC594
• Table 14–DMC Measured Throughput for Different DMC_PRIO Settings on ADSP-SC594
• Table 15–MMR Access Latency for ADSP-SC594 Processors in CCLK cycles (approximate)
• Figure 27–Example Application—DMC Throughput Distribution Across SCBs on ADSP-SC594
• Table 16–Example Application—System Bandwidth Optimization Steps on ADSP-SC594

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 35 of 45

Figure 20 MDMA Throughput on ADSP-SC594 Processor

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 36 of 45

Table 12 adi_mdma_Copy1D vs. adi_mdma_Copy1DAuto Performance on ADSP-SC594 Processor

S.

No.

Source
Memory
Address

Destination
Memory
Address

DMA
Count

MSIZE
(Bytes)

Copy1D
MDMA
Cycles

Copy1DAuto
MDMA
Cycles

Additional
API

Overhead

Effective
Improvement

Factor

1 0x2C0001 0x300000 256 1 1825 1317 111 1.28

2 0x2C0000 0x300001 256 1 1825 1241 99 1.36

3 0x2C0001 0x300000 1024 1 5377 2853 89 1.83

4 0x2C0000 0x300001 1024 1 5377 2777 99 1.87

5 0x2C0001 0x300000 4096 1 19585 8997 89 2.16

6 0x2C0000 0x300001 4096 1 19585 8921 99 2.17

Figure 21 Measured EMDMA Throughput on ADSP-SC594 Processor

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 37 of 45

Table 13 MDMA Emulated Circular Buffer vs. EMDMA on ADSP-SC594 Processor

Write/Read

Core Cycles

EMDMA
MDMA3

MSIZE = 4 bytes

MDMA3

MSIZE = 32 bytes

Write 35656 29329 6607

Read 46390 35693 11233

Figure 22 L2 MDMA Throughput for Different MSIZE and Work Unit Sizes on ADSP-SC594 Processor

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 38 of 45

Figure 23 DMC Measured Throughput for Sequential MDMA Reads on ADSP-SC594 Processor

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 39 of 45

Figure 24 DMC Measured Throughput for Sequential MDMA Writes on ADSP-SC594 Processor

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 40 of 45

Figure 25 DMC Throughput for Sequential vs. Non-Sequential Read Accesses on ADSP-SC594 Processor

Figure 26 Optimizing Throughput for Non-Sequential Accesses on ADSP-SC594 Processor

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 41 of 45

Table 14 DMC Measured Throughput for Different DMC_PRIO Settings on ADSP-SC594 Processor

Test Case Number Priority Channel
(SCB ID)

MDMA0 (Ch. 8) Throughput
(MB/s)

MDMA1 (Ch. 18) Throughput
(MB/s)

1 None 726 737

2 MDMA0 (0x0031) 859 725

3 MDMA1 (0x0011) 729 916

Table 15 MMR Access Latency for ADSP-SC594 Processors in CCLK cycles (approximate)

S. No.

Register

Peripheral

Write Latency
(Core Cycles)

Read Latency
(Core Cycles)

1 FIR0_INIDX FIR 41 41
2 IIR0_INIDX IIR 41 41
3 MLB0_MDAT0 MLB 55 54
4 MEC0_PERR_IMASK0 MEC 55 54
5 CRC0_DCNT

CRC
55 56

6 CRC1_DCNT 55 56
7 EMDMA0_INDX1

EMDMA
55 56

8 EMDMA1_INDX1 55 56
9 TAPC_SDBGKEY0 TAPC 55 54

10 MISCREG_CAN_SYSCTL MISCREG 55 54
11 SMPU2_RADDR0 SMPU 57 56
12 SWU1_LA0

SWU
57 56

13 SWU2_LA0 57 56
14 L2CTL0_RPCR0 L2CTL 57 56
15 SEC0_RAISE SEC 57 58
16 TRU0_SSR0 TRU 57 58
17 SPU0_SECUREP10 SPU 57 58
18 RCU0_MSG RCU 57 56
19 CGU0_OSCWDCTL CGU 57 56
20 CDU0_CLKINSEL CDU 57 56
21 DPM0_PER_DIS0 DPM 57 56
22 GICDST0_EN GICD 57 60
23 GICDST0_SPI_EN_SET0 GICD 57 60
24 GICCPU0_CTL GICCPU 57 58
25 GICCPU0_EOI GICCPU 57 58
26 PKTE0_SA_ADDR PKTE 59 60
27 TRNG0_OUTPUT0 TRNG 63 64
28 PKA0_APTR PKA 63 64

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 42 of 45

S. No.

Register

Peripheral

Write Latency
(Core Cycles)

Read Latency
(Core Cycles)

29 PKIC0_ACK PKIC 63 64
30 DMC0_PRIO DMC 71 70
31 PORTA_DATA_SET PORTA 85 88
32 PADS0_PORTA_PDE PADS 85 88
33 OTPC0_PMC_MODE0 OTPC 85 88
34 TIMER0_TMR0_WID TIMER0 85 96
35 OSPI0_FCA OSPI 85 88
36 EMAC1_MAC_IEN EMAC 85 88
37 SPORT1_DIV_A SPORT 87 96
38 UART0_CLK UART 87 88
39 EMAC0_MAC_IEN

EMAC 87 88
40 EMAC1_MAC_CFG 87 88
41 DMA1_XCNT DMA 89 88
42 SPORT0_DIV_A SPORT 89 96
43 UART1_CLK UART 89 88
44 PORTB_DATA_SET PORTB 89 88
45 PINT0_ASSIGN PINT 89 88
46 SPI0_CLK

SPI
89 96

47 SPI1_CLK 89 96
48 DMA0_XCNT DMA 91 88
49 PINT1_ASSIGN PINT 91 88
50 WDOG0_WIN

WDOG
91 88

51 WDOG1_WIN 91 88
52 CNT0_CNTR CNT 91 88
53 SPDIF0_TX_UBUFF_A0 SPDIF 91 96
54 DAI0_IMSK_FE DAI 91 96
55 EPPI0_CTL EPPI 91 88
56 EMAC0_MAC_CFG EMAC 91 88
57 TMU0_FLT_LIM_HI TMU 93 96
58 SPDIF1_TX_UBUFF_A0 SPDIF 93 96
59 DAI1_IMSK_FE DAI 93 96
60 ASRC0_MUTE ASRC 95 96
61 USBC0_CFG_H USBC 95 96
62 PDM0_CTL0

PDM 95 96
63 PDM1_CTL0 95 96
64 ARMPMU0_PMCCNTR

ARMPMU 95 94
65 ARMPMU0_PMCR 95 94
66 HADC0_CHAN_MSK HADC 97 96
67 PCG0_PW1 PCG 97 96
68 USBC0_OTG_CTL USBC 97 96
69 ASRC1_MUTE ASRC 99 96

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 43 of 45

S. No.

Register

Peripheral

Write Latency
(Core Cycles)

Read Latency
(Core Cycles)

70 TWI1_CLKDIV
TWI

125 136
71 TWI0_CLKDIV 131 136
72 LP0_DIV

LP
147 160

73 LP1_DIV 147 160
74 SCB0_SP0A_READ_QOS SCB 495 496

Figure 27 Example Application—DMC Throughput Distribution Across SCBs on ADSP-SC594 Processor

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 44 of 45

Table 16 Example Application—System Bandwidth Optimization Steps on ADSP-SC594 Processor

Required Measured Required Measured Required Measured Required Measured Required Measured Required Measured Required Measured
1 No optimization 168.75 188.83 2000 56.14 2000 56.14 2000 111.89 4000 220.62 2000 56.15 2000 56.14 14168.75 745.91 YES

2
Optimization at
the slave - T1 168.75 188.72 2000 69.06 2000 69.05 2000 137.61 4000 264.69 2000 69.06 2000 69.06 14168.75 867.25 YES

3
Optimization at
the master - T2 168.75 188.69 100 99.20 100 99.20 100 99.20 100 99.21 100 99.21 100 99.21 768.75 783.92 NO

4
Optimization at
the master - T3 168.75 188.78 75 74.68 75 74.67 100 99.23 200 197.16 75 74.67 75 74.67 768.75 783.86 NO

5
Optimization at
the master - T4 168.75 188.89 50 49.80 50 49.80 150 149.26 250 245.67 50 49.80 50 49.80 768.75 783.03 NO

HSDMA SCB SCB8 Total
throughput

(X)

Measured
throughput

(Y)

PPI
Underflow

?
MDMA3 MDMA4 MDMA5

S. No. Condition

SCB3 SCB7 SCB9
PPI0 MDMA0 MDMA1 MDMA2

ADSP-SC59x SHARC+ Processor System Optimization Techniques (EE445V01) Page 45 of 45

References
[1] ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412), Rev 2, September 2020, Analog Devices,

Inc.

[2] ADSP-SC5xx/215xx SHARC+ Processor System Optimization Techniques (EE-401), Rev 1, February 2018.Analog
Devices, Inc.

[3] ADSP-2159x/ADSP-SC591/SC592/SC594 SHARC+ Processor Hardware Reference, Rev 0.4, April 2022. Analog
Devices, Inc.

[4] ADSP- SC595/SC596/SC598 SHARC+ Processor Hardware Reference, Rev 0.1, May 2022. Analog Devices, Inc.

[5] ADSP-21591/21593/21594/ADSP-SC591/SC592/SC594 SHARC+ Dual-Core DSP with Arm Cortex-A5 Data Sheet. Rev
A, April 2022. Analog Devices, Inc.

[6] ADSP-SC595/SC596/SC598 SHARC+ Dual-Core DSP with Arm Cortex-A55 Data Sheet. Rev PrE, July 2022. Analog
Devices, Inc.

[7] TN-47-02: DDR2 Offers New Features/Functionality Introduction. Rev A, June 2006. Micron Technology, Inc.

[8] ADSP-SC59x SSDD API Reference Manual for SHARC+ Core, Version 2.0, CrossCore® Embedded Studio Help.

[9] Associated ZIP file for EE-445: ADSP-SC59x SHARC+ Processors System Optimization Techniques, December 2022.
Analog Devices, Inc.

Document History

Revision Description

Rev 1 – December 6, 2022
by Naga Snigdha Kondepati

Initial release.

	Introduction
	ADSP-SC59x Processor Architecture
	System Bus Completers
	System Bus Requesters
	System Crossbars

	System Latencies, Throughput, and Optimization Techniques
	Understanding the System Requesters
	DMA Parameters
	Memory to Memory DMA (MDMA)
	Extended Memory DMA (EMDMA)

	Understanding the System Crossbars
	Arbitration
	Clock Domain Conversion

	Understanding the System Completers
	Memory Hierarchy
	L1 Memory Throughput
	L2 Memory Throughput

	System MMR Latencies

	System Bandwidth Optimization Procedure
	Application Example
	Table Condition 1
	Table Condition 2
	Table Conditions 3, 4 and 5

	Appendix
	References
	Document History

