
Engineer-to-Engineer Note EE-442

Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

ADSP-2159x/SC59x Programming Guidelines for Dynamic Memory
Controller
Contributed by Deepak SH 1 – September 19, 2022

Copyright 2022, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of
their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
The ADSP-2159x/SC59x SHARC+® processor incorporates a Dynamic Memory Controller (DMC),
which provides a glueless interface between off-chip DDR3 memory devices and the rest of the processor
infrastructure. For further technical details on the DMC module, refer to the ADSP-21594/ADSP-
SC591/SC592/SC594: SHARC+ Dual-Core DSP with Arm Cortex-A5 Data Sheet[1], ADSP-
21591/21593/21594/ADSP-SC591/SC592/SC594: SHARC+ Dual-Core DSP with Arm Cortex-A5 Data
Sheet[2], and the ADSP-2159x/ADSP-SC591/592/594 SHARC+ Processor Hardware Reference[3]. This
EE-note discusses some of the important programming guidelines that must be followed when interfacing
ADSP-2159x/SC59x SHARC+® processor with a DDR memory device. The associated zip file[4] includes
code examples that can be used for basic DMC initialization, DMC initialization using
DMC_Registers_List_2159x_SC59x.xlsx spreadsheet and DMC re-initialization. The code examples
include a subroutine which can be used to validate the DMC interface for different types of accesses (for
example, core, DMA, 8-/16-/32-/64-bit) and data patterns (for example, all 0x0, all 0xF, all 0x5, all 0xA,
incremental, random, and all bits toggling).

Software Considerations – DMC Programming Model
Figure 1 shows the DMC programming flow. DMC initialization consists of:
 Clock Generation Unit (CGU) Initialization
 DMC PHY Initialization
 DMC Controller Initialization

http://www.analog.com/processors

ADSP-2159x/SC59x Programming Guidelines for Dynamic Memory Controller (EE-442) Page 2 of 16

Figure 1: DMC Programming Model Flow Chart

CGU Initialization
Verify that the DDR clock (DCLK) is configured to the required frequency. On ADSP-2159x/SC59x
SHARC+® Processor, DCLK clocks DMC0 however, DCLK can come from either CGU0 (default) or
CGU1 by programming the CDU. Route DCLK from CGU1 when the required DCLK frequency is
asynchronous to the CCLK and SYSCLK frequencies.
For example, assume a case where the required CCLK frequency is 1000 MHz, the SYSCLK frequency is
500 MHz, and the DCLK frequency is 800 MHz. Achieving this frequency combination may not be
possible with a single CGU. To realize this configuration, generate CCLK and SYSCLK using CGU0 and

ADSP-2159x/SC59x Programming Guidelines for Dynamic Memory Controller (EE-442) Page 3 of 16

DCLK using CGU1. For details on how to program the CGU and Clock Distribution Unit (CDU), refer to
the Hardware Reference[3]
Once the DMC is initialized, ensure that the DCLK frequency has not changed.

DMC Initialization
After reset, configure the DCLK generated from CGU0 could be set to the default frequency. The CGU
must be re-initialized to configure the DCLK to the required new frequency. As shown in Figure 1,
complete the following steps to initializing the CGU for the first time after reset:
1. Set (=1) the DMC_DDR_LANE0_CTL0.CB_RSTDLL and

DMC_DDR_LANE1_CTL0.CB_RSTDLL bits.
2. Change the DMC clock frequency.
3. Clear (=0) the DMC_DDR_LANE0_CTL0.CB_RSTDLL and

DMC_DDR_LANE1_CTL0.CB_RSTDLL bits.
4. Wait 9000 DCLK cycles for the DLL to lock.

 Typically, the CGU is first initialized in either preload code (when the application is
loaded through the emulator) or by init code (when the application is loaded by the
boot process, in the init block) The code may need to be modified to meet system
requirements. Refer to the Modifying Default Preload and Initialization Code for
Customized CGU/DMC Settings section for details.

On-the-Fly DMC Re-initialization
If the DCLK frequency is not being changed as part of the re-initialization process, no CGU re-
initialization is necessary.
If the DCLK frequency is being changed as part of the re-initialization process, but the DDR content
does not need to be preserved, use the same steps as described in DMC Initialization to re-initialize the
CGU.
However, if the DCLK frequency is being changed and code or data already resident in DDR memory
must be preserved, follow these steps when re-initializing the CGU:
1. Ensure that the DMC is in the idle state by waiting for the DMC_STAT.IDLE bit to be set (=1).
2. Place the DMC into self-refresh mode by setting (=1) the DMC_CTL.SRREQ bit.
3. Poll the DMC_STAT.SRREQ bit to set (=1); wait for the self-refresh mode transition to complete.
4. Set (=1) the DMC_DDR_LANE0_CTL0.CB_RSTDL and

DMC_DDR_LANE1_CTL0.CB_RSTDLL bits.
5. Initialize the CGU and CDU to change the DCLK frequency.
6. Clear (=0) the DMC_DDR_LANE0_CTL0.CB_RSTDLL and

DMC_DDR_LANE1_CTL0.CB_RSTDLL bits.
7. Wait 9000 DCLK cycles for the DLL to lock.
8. Bring the DMC out of self-refresh mode by clearing (=0) the DMC_CTL.SRREQ bit.

ADSP-2159x/SC59x Programming Guidelines for Dynamic Memory Controller (EE-442) Page 4 of 16

9. Poll the DMC_STAT.SRREQ bit to clear (=0); wait for the self-refresh exit to complete.
When re-initializing the DMC, the CGU/DMC initialization code should not be executed from the
DDR memory. Refer to the SC594_DMC_Re_Initialization_A5_Core0 project in the associated zip
file[4]
1. Use __attribute__((section(".l2_cached_code"))) to place the functions in internal memory

for the A5 core. Use _Pragma("section(\"seg_int_code\")") to place the functions in internal
memory for the SHARC core.

2. Use __attribute__((section(".l2_cached_data"))) to place the data in internal memory for
the A5 core. Use _Pragma("section(\"seg_int_data\")") to place the data in internal memory
for SHARC core.

3. Change the PWR service files as follows:
a. Place adi_pwr_ClockInit, adi_pwr_Init and adi_pwr_SelectCduClockSource functions in

internal memory.
b. Remove adi_osal_ExitCriticalRegion and adi_osal_EnterCriticalRegion function

calls in the adi_pwr_WriteDIVCTLLocal function.
a. Place adi_pwr_ClockInit, adi_pwr_Init and adi_pwr_SelectCduClockSource

functions in internal memory.
b. Remove adi_osal_ExitCriticalRegion and adi_osal_EnterCriticalRegion

function calls in the adi_pwr_WriteDIVCTLLocal function.

 The first 16 bytes of DDR memory are overwritten by controller during
initialization.

DMC PHY Initialization
Refer to the Performing ZQ Calibration and Programming Duty Cycles section in the Hardware
Reference [2]. Ensure that the workaround to anomaly 20000117 from the Silicon Anomaly List[5] is
applied.

DMC Controller Initialization
Table 1 through Table 4 show the bit fields used to program the DMC. Refer to the Programming the
DMC Controller and Programming DQ Delay Trim sections in the Hardware Reference[3]. The
controller has a set of registers with bit fields that control:
 Hard-Wired Settings
 Mandatory Settings
 Optional Settings

Hard-Wired Settings
There are a few bits which are hard-coded in the DDR controller that software cannot adjust. These are
shaded in ORANGE in the DMC_Registers_List_2159x_SC59x.xlsx spreadsheet operation in the
application. These are shaded in GREEN in the DMC_Registers_List_2159x_SC59x.xlsx
spreadsheet. For more details on how to program these bit fields, refer to the Hardware Reference[3].

ADSP-2159x/SC59x Programming Guidelines for Dynamic Memory Controller (EE-442) Page 5 of 16

Optional Settings
There are a few bit fields which are not required to be modified for standard DMC operation; however,
deeper knowledge of these bits saves power and improves throughput in certain application
configurations. For example, the DMC_CTL.SRREQ bit can be used to operate the DMC in a low-power
(self-refresh) mode. The DMC_CTL.PREC bit enables automatic precharge after each access, and the
DMC_CTL.ADDRMODE bit improves throughput by switching between page and bank interleaving
addressing modes. Users are expected to understand the functionality of these bits clearly by going
through the Hardware Reference[3] and the corresponding memory device data sheet (especially for
mode registers). These bits are shaded in YELLOW in the DMC_Registers_List_2159x_SC59x.xlsx
spreadsheet.

Register

Bit Field

Bit field
(C=Controller,

M=JEDEC)

Value

Comment

DMC_CTL

DDR3EN

DDR3 mode enable

0-C

Mandatory

Always program to 1 for standard DMC
operation.

INIT

Initialize DRAM
Start

2-C

Always program to 1 for standard DMC
operation.

SRREQ Self-Refresh
Request

3-C

Optional

Program 0 for standard DMC operation.

PDREQ

Power Down
Request

4-C

Program 0 for standard DMC operation.

PREC

Precharge

6-C

Program 0 for standard DMC operation.

RESET

Reset SDRAM

7-C

Program 0 for standard DMC operation.

ADDRMODE Addressing
(Page/Bank) Mode

8-C

Program 0 for standard DMC operation.

RDTOWR Read-to-Write
Cycle.

11:9-C Mandatory Always program to 5 for standard DMC

operation.

PPREF
Postpone Refresh

12-C

Optional

Program 0 for standard DMC operation.

DLLCAL DLL Calibration
Start

13-C

Program 0 for standard DMC operation.

Reserved Reserved 23:14-C Mandatory Always write these bits with zero.

ZQCS ZQ Calibration
Short

24-C

Optional

Program 0 for standard DMC operation.

ZQCL ZQ Calibration
Long

25-C Program 0 for standard DMC operation.

RL_DQS Read leveling
during DQS

26-C

Program 0 for standard DMC operation.

ADSP-2159x/SC59x Programming Guidelines for Dynamic Memory Controller (EE-442) Page 6 of 16

Table 1: DMC Control Register Bit Fields

Table 2: DMC Configuration Register Bit Fields

Register

Bit

Field

Bit field
(C=Controller,

M=JEDEC)

Value

Comment

DMC_TR0

TRCD

RAS# to CAS#
delay time

3:0-C

Obtain from memory device data sheet.

TWTR

Write-to-Read
delay

7:4-C

TRP

Precharge-to-
Active time

11:8-C

TRAS

Active-to-
Precharge time

16:12-C

Reserved Reserved 19:17-C Always write these bits with zero.

TRC

Active-to-
Active time

25:20-C

Obtain from memory device data sheet.

Reserved Reserved 27:26-C Always write these bits with zero.

TMRD

Mode register
set- to-active

31:28-C

Obtain from memory device data sheet.

 TREF Refresh 13:0-C

Gating Training.

AL_EN Additive Latency
Enable

27-C

Mandatory
Program 1 for Dclk frequency above 667 MHz

Reserved Reserved 31:28 Mandatory Always write these bits with zero.

Register

Bit Field

Bit field
(C=Controller,
M=JEDEC)

Value

Comment

DMC_CFG

IFWID

Interface Width

3:0-C

Mandatory

Always program to 2 (16-bit). All other values are
reserved.

SDRWID

SDRAM Width

7:4-C

Always program to 2 (16-bit). All other values are
reserved.

SDRSIZE SDRAM Size 11:8-C Obtain from memory device data sheet.

EXTBANK

External Banks

15:12-C

Always program to zero (16-bit). All other values
are reserved.

Reserved Reserved 31:16-C Always write these bits with zero.

ADSP-2159x/SC59x Programming Guidelines for Dynamic Memory Controller (EE-442) Page 7 of 16

DMC_TR1

Interval

Mandatory

Reserved Reserved 15:14-C Always write these bits with zero.

TRFC

Refresh-to-
Active
command
delay

24:16-C

Obtain from memory device data sheet.

Reserved Reserved 27-25-C Always write these bits with zero.

TRRD

Active-to-
Active time

30-28-C

Obtain from memory device data sheet.

Reserved Reserved 31 Always write this bit with zero.

DMC_TR2

TFAW

Four Activate
Window

4:0-C

Obtain from memory device data sheet. tFAW is
not applicable for LPDDR mode and should be
kept zero.

TFAW5 Extended
Timing Four-
Active
Window bit 5

5-C

Reserved Reserved 7:6-C Always write these bits with zero.

TRTP

Internal Read
to Precharge
time

11:8-C

Obtain from memory device data sheet. tRTP is
not applicable for LPDDR mode and should be
kept zero.

TWR
(LPDDR
only)

Write recovery
time

15:12-C

Obtain from memory device data sheet.

TXP

Exit power
down to next
valid command

19:16-C

tCKE

CKE min pulse
width

23:20-C

Reserved Reserved 31:24-C Always write these bits with zero.

Table 3: DMC Timing Register Bit Fields

ADSP-2159x/SC59x Programming Guidelines for Dynamic Memory Controller (EE-442) Page 8 of 16

Register

Bit

Field

Bit field
(C=Controller,

M=JEDEC)

Value

Comment

DMC_MR0

BL Burst Length 1:0-C, A1:A0-M

Mandatory

Only BL=8 is supported for DDR3. Always
program these bits with
zero.

CL CAS Latency 6:4,2-C, A6:A4,
A2- M

Program these bits with the required CAS latency.

Reserved Reserved 3-C, A3-M Always write this bit with zero.

Reserved Reserved 7-C, A7-M Always write this bit with zero.

DLLRST DLL Reset 8-C, A8-M Set this bit for DDR3 mode.

WRRECOV Write recovery 11:9-C, A11:A9-
M

Program these bits with tWR value from the
memory device data sheet. Refer to the hardware
reference manual[3] for more details.

PD Active Power Down
Mode

12-C, A12-M Optional Can be left unchanged for standard DMC
operation. Refer to the hardware reference
manual[3] for more details on these bits.

Reserved Reserved 15:13-C,
A15:A13-M

Hard
Wired

These bits are hard-wired to zero.

Reserved Reserved 31:16-C

DMC_MR1

DLLEN DLL Enable 0-C, A0-M

Mandatory

Keep this bit set to zero.

DIC0, DIC1 Output Driver
Impedance Control

5,1-C, A5,A1-M Select the driver impedance using these bits from
the memory side.

RTT0, RTT1,
RTT2

On Die Termination
(ODT)

9,6,2-C,
A9,A6,A2-M

Select ODT value using these bits from the
memory side.

AL Additive Latency 4,3-C, A4,A3-M Can be cleared for basic DMC initialization.
Refer to the memory device data sheet for more
details.

WL Write Leveling 7-C, A7-M This bit shall be written with one

Reserved Reserved 8, 10-C, A8,
A10 –M

These bits are reserved for future use (must be
programmed to zero).

TDQS Termination Data
Strobe

11-C, A11-M Should be zero, as it is not applicable for 16-bit
devices.

QOFF Output Buffer
Enable

12-C, A12-M Should be zero.

Reserved Reserved 15:13-C,
A15:A13-M

Hard
Wired

These bits are hard-wired to zero.

Reserved Reserved 31:16-C

 PASR Partial Array Self

Refresh
2:0-C, A2:A0-M Optional This bit is unchanged for standard DMC

operation. Refer to the hardware reference

ADSP-2159x/SC59x Programming Guidelines for Dynamic Memory Controller (EE-442) Page 9 of 16

Table 4: DMC DDR3 Mode Register Bit Fields

DMC Initialization Code
The associated zip file[4] provides code examples which can be used to initialize the CGU and DMC
controller for any custom settings.

CGU Initialization
For custom clock settings, the structures ADI_PWR_CGU_PARAM_LIST and ADI_PWR_CDU_PARAM_LIST
in the adi_pwr_SC59x_config.c file can be changed accordingly. Also, cclkdclk_ratio ratio shall
be changed accordingly, for example when Cclk is 1000 MHz and Dclk is 800 MHz the ratio will be
1000/800 = 1.25.

DMC Initialization
The adi_dmc.c and adi_dmc.h files can be used to initialize the DMC to the required settings.
For example, the main.c file in the ADSP-SC594_DMCconfigGenerator_core1 project in the
associated zip file[4], illustrates two ways to initialize the DMC for a DDR3 memory with DCLK
frequency of 800 MHz as per JESD79_3F JEDEC specification[6].

 Initialize_DMC_Basic – Enable this macro in the main.h file to initialize the DMC by

configuring the ADI_DMC_PARAM_LIST structure. Figure 2 shows a snapshot from the main.c file of
the ADI_DMC_PARAM_LIST structure of code used to initialize the DMC with the
Initialize_DMC_Basic macro. All of the DDR parameters required to initialize DMC/DDR
memory are computed based on the JESD79-3F JEDEC specification[6]. The
Initialize_DMC_Basic approach can be used to quickly test DDR across different frequencies,
DriveStrength, and ODT settings. The complete list of DDR parameters used in this method can be
printed on a console using the adi_printDMCconfig() API (enable the Print_DMC_Config
macro). The DDR parameters printed are in the format used in the
adi_dmc_SC59x_family_x_config.h file of the preload/Init code.

DMC_MR2

manual[3] for more details.

CWL CAS Write Latency 5:3-C, A5:A3-M Mandatory Obtain from memory device data sheet.

ASR Auto Self Refresh 6-C, A6-M

Optional

These bits are unchanged for standard DMC
operation. Refer to the hardware reference
manual[3] for more details.

SRT Self-Refresh
Temperature Range

7-C, A7-M

Reserved Reserved 31-8-C
Hard
Wired

These bits is hard-wired to zero.

ADSP-2159x/SC59x Programming Guidelines for Dynamic Memory Controller (EE-442) Page 10 of 16

Figure 2: ADI_DMC_PARAM_LIST Snapshot

 Based on JESD79-3F JEDEC specifications[6] given for a particular speed bin, the
DDR parameters printed or used for configuring the DMC with the
Initialize_DMC_Basic method should work from a functional perspective. However,
check the parameter values with the specific memory device data sheet using the
DMC_Registers_List_2159x_SC59x.xlsx spreadsheet spreadsheet.

 Initialize_DMC_Advanced - Enable this macro in main.h file to initialize the DMC by
configuring the ADI_DMC_CONFIG structure. This structure is the same as the one used in the
adi_dmc_SC59x_family_x_config.h file of the preload/Init code. For custom DMC settings, the
ADI_DMC_CONFIG structure must be updated according to the system requirements as shown in
Figure 3 and Figure 4. The ADI_DMC_CONFIG structure can be configured using the
DMC_Registers_List_2159x_SC59x.xlsx spreadsheet in the associated zip file[4] by entering
various DMC-specific and DDR memory-specific parameters (from the device data sheet). See
Figure 5. Use the generated hex values for the ADI_DMC_CONFIG structure from the
DMC_Registers_List_2159x_SC59x.xlsx spreadsheet as shown in Figure 6 to configure the
macros in main.h file as shown in Figure 3. This method of DMC initialization can be used to
customize the DDR initialization routine in the preload/initcode as per the DDR memory data sheet;
to gives the flexibility to fine tune any of the required DDR parameters.

Figure 3: main.h file Snapshot

ADSP-2159x/SC59x Programming Guidelines for Dynamic Memory Controller (EE-442) Page 11 of 16

Figure 4: main.c file Snapshot

Figure 5: DMC_Registers_List_2159x_SC59x.xlsx Snapshot

ADSP-2159x/SC59x Programming Guidelines for Dynamic Memory Controller (EE-442) Page 12 of 16

Figure 6: DMC_Registers_List_2159x_SC59x.xlsx Snapshot

Validating the DMC Interface
Once the DMC is initialized, it is important to validate it. It is recommended to check if all the
DMC registers have been initialized to the correct values, if there are any basic issues with the
DMC hardware interface, and if the DMC has indeed been correctly initialized by the software.
The register values from the register browser can be compared with the register values in
DMC_Registers_List_2159x_SC59x.xlsx spreadsheet.

The Memory_Sweep_Test() function can be used to check if all the cores and DMA (MDMA0)
accesses to the DMC are working for different data word sizes (8-/16-/32-/64-bit and 32-byte
DMA) and for different data patterns (0x0, 0xF, 0x5, 0xA, incremental, random, and all bits
toggling). The main.c file in the ADSP-21593/ADSP-SC594_DMCconfigGenerator_Core1
project uses these functions to validate the DMC interface. The memory sweep size used in this
code is 0x800000 (8 MB), which can be changed to validate the full DMC memory range (for
example, 2 Gb = 256 MB).

Creating Preload and Initialization Code with Customized CGU and DMC Settings
Preload and initialization code are two concepts that are related to configuring the CGU and DMC prior
to the application code running, depending on whether performing active debug via the emulator or
controlling the boot stream for a stand-alone application.

Preload Code
When performing active debug on a target platform, an emulator is used. To make working with
the board as transparent as possible for the user, the CrossCore® Embedded Studio (CCES) tools
automate initialization of the CGU/DMC hardware such that applications can be built and loaded
to off-chip memory for use in a debug session on the targeted board. This is done via Preload
Code, the preload code projects can be found at this path ‘Analog Devices\CrossCore Embedded
Studio 2.11.0\SHARC\ldr\init_code\SC59x_Init’ in the CCES installation directory
CCES uses the pre-built executable file (See Figure 7) to initialize the CGU and DMC before
loading the actual application using the emulator.

Figure 7: Preload Code for EV-21593-SOM

ADSP-2159x/SC59x Programming Guidelines for Dynamic Memory Controller (EE-442) Page 13 of 16

Initialization Code
Unlike preload code, initialization code is actually a part of the application. It is separate from
the application. The DXE output is pre-pended to the DXE file of application when CCES
assembles the loader stream (LDR) that the processor parses during the boot process. This
separate DXE is called the Initialization Block in the LDR file. The DXE is booted first into on-
chip memory, and subsequently executed before any attempts are made to resolve anything to the
external DDR space. It is the ideal place for configuring the CGU and DMC in advance of trying
to boot to DDR memory. The Init code projects can be found at Analog Devices\CrossCore
Embedded Studio 2.11.0\SHARC\ldr\init_code\SC59x_Init in the CCES installation directory.
The DXE output corresponding to the Init code project can be used as the default initialization
code when generating an LDR file by pointing to the DXE in the Loader Options page of the
Project Properties. See Figure 8.

Figure 8: Initialization Code Selection in the Loader Options

Typically, for applications requiring a one-time CGU and DMC initialization after reset, the
preload (when loading the application via emulator) or initialization code (when booting the
application standalone) should be sufficient. Thus, it is important to understand how to use and
modify the default preload and initialization code for customized CGU/DMC settings.

Modifying Default Preload and Initialization Code for Customized CGU/DMC Settings
The CGU and DMC settings in the default preload and initialization source code may need to be
modified for the following conditions:
 When using non-default CGU settings
 When using a custom board with a different memory device than the one available on the

evaluation board
For example, use the following steps to modify the default preload code sc594w_preload_Core0
project for the ADSP-SC594 processor.
1. Edit the adi_pwr_SC594_family_1GHz_config.h file to change the CGU and CDU

configurations.
2. Edit the adi_pwr_SC59x_config.h file to configure the cclkdclk_ratio value.
3. Edit the adi_dmc_SC594_family_800MHz_config.h file as shown in Figure 10 using the output

printed on console (shown in Figure 9) and the adi_printDMCconfig() API present in the ADSP-
SC594_DMCconfigGenerator_core1 project. Or, initialize the ADI_DMC_CONFIG structure in the
adi_dmc_SC59x_config.c file (shown inFigure 11) using the

ADSP-2159x/SC59x Programming Guidelines for Dynamic Memory Controller (EE-442) Page 14 of 16

DMC_Registers_List_2159x_SC59x.xlsx spreadsheet (shown in Figure 3 and Figure 6). See the
associated zip file[4] for the spreadsheet, and code examples. Refer to the DMC Initialization section
for details.

Figure 9: adi_printDMCconfig() API Snapshot

Figure 10: adi_dmc_SC594_family_800MHz_config.h Snapshot

ADSP-2159x/SC59x Programming Guidelines for Dynamic Memory Controller (EE-442) Page 15 of 16

Figure 11: adi_dmc_SC59x_config.c Initializing ADI_DMC_CONFIG Structure Snapshot

ADSP-2159x/SC59x Programming Guidelines for Dynamic Memory Controller (EE-442) Page 16 of 16

References
[1] ADSP-21594/ADSP-SC591/SC592/SC594: SHARC+ Dual-Core DSP with Arm Cortex-A5 Data Sheet (Rev. A), April

2022. Analog Devices, Inc.

[2] ADSP-21591/21593/21594/ADSP-SC591/SC592/SC594: SHARC+ Dual-Core DSP with Arm Cortex-A5 Data Sheet
(Rev. A), April 2022. Analog Devices, Inc.

[3] ADSP-2159x/ADSP-SC591/592/594 SHARC+ Processor Hardware Reference (Rev 0.4), April 2022. Analog Devices,
Inc.

[4] Associated zip File (EE442v01.zip) forADSP-2159x/SC59x Programming Guidelines for Dynamic Memory Controller
(EE-442). September 2022. Analog Devices, Inc.

[5] Silicon Anomaly List of the SHARC+®ADSP-21591/21593/21594/ADSP-SC591/ SC592/SC594 product(s), July 2022,
Analog Devices, Inc.

[6] JESD79-3F, July 2012. JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

Document History

Revision Description

Rev 1 – June 29, 2022
by Deepak SH

Initial Release.

	Introduction
	Software Considerations – DMC Programming Model
	CGU Initialization
	DMC Initialization
	On-the-Fly DMC Re-initialization
	DMC PHY Initialization
	DMC Controller Initialization
	Hard-Wired Settings
	Optional Settings

	DMC Initialization Code
	CGU Initialization
	DMC Initialization

	Validating the DMC Interface
	Creating Preload and Initialization Code with Customized CGU and DMC Settings
	Preload Code
	Initialization Code
	Modifying Default Preload and Initialization Code for Customized CGU/DMC Settings

	References
	Document History

