

Engineer-to-Engineer Note EE-412

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

ADSP-2156x SHARC+ Processor System Optimization Techniques
Contributed by Mitesh Moonat Rev 2 – September 10, 2020

Copyright 2020, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of
their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
The ADSP-2156x SHARC+ processor family provides an optimized architecture that supports high
system bandwidth and advanced peripherals. This application note discusses the key architectural features
of the processor that contribute to the overall system bandwidth, as well as various available bandwidth
optimization techniques.

 Most of the theoretical content of this application note is the same as in ADSP-SC5xx/215xx
SHARC+ Processor System Optimization Techniques (EE-401)[1]. This application note includes
the figures, tables, and data specific to the ADSP-2156x family of processors.

ADSP-2156x Processor Architecture
This section describes the ADSP-2156x processor’s key architectural features that play a crucial role in
system bandwidth and performance. For detailed information, refer to the ADSP-2156x SHARC+
Processor Hardware Reference [2].

The overall architecture of the ADSP-2156x processors consists of three main system components: system
bus slaves, system bus masters, and system crossbars. Figure 1 and Figure 2 show how these components
are interconnected to form the complete system.

System Bus Slaves
As shown in Figure 1 (top), system bus slaves include on-chip and off-chip memory devices/controllers,
such as L1 SRAM, L2 SRAM, the Dynamic Memory Controller (DMC) for DDR3/DDR3L SDRAM
devices, memory-mapped peripherals such as SPI FLASH, and the System Memory Mapped Registers
(MMRs). Each system bus slave has its own latency characteristics, operating in a given clock domain.
For example, L1 SRAM runs at CCLK, L2 SRAM runs at SYSCLK, the DMC interface runs at DCLK,
and so on.

http://www.analog.com/processors

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 2 of 27

Figure 1: ADSP-2156x System Cross Bar (SCB) Block Diagram

Figure 2: ADSP-2156x SCB Masters Groups

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 3 of 27

System Bus Masters
The system bus masters are shown at the bottom of Figure 1. They include peripheral Direct Memory
Access (DMA) channels such as the Serial Port (SPORT) and Serial Peripheral Interface (SPI). Also
included are the Memory-to-Memory DMA channels (MDMA) and the core. Note that each peripheral
runs at a different clock speed, and thus has individual bandwidth requirements. For example, high speed
peripherals such as the Link Port require higher bandwidth than slower peripherals such as the SPORT or
UART.
System Crossbars
The System Crossbars (SCB) are the fundamental building blocks of the system bus interconnect. As
shown in Figure 2, the SCB interconnect is built from multiple SCBs in a hierarchical model connecting
system bus masters to system bus slaves. They allow concurrent data transfer between multiple bus
masters and multiple bus slaves, providing flexibility and full-duplex operation. The SCBs also provide a
programmable arbitration model for bandwidth and latency management. SCBs run on different clock
domains (SCLK0, SYSCLK, SPI clock, and LP clock) that introduce their own latencies to the system.

System Latencies, Throughput, and Optimization Techniques
The following sections describe various aspects related to latencies and throughput of system bus masters,
system bus slaves, and the system cross bars. Various optimization techniques to reduce system latencies
and improve throughput are also discussed.

Understanding the System Masters

DMA Parameters
Each DMA channel has two buses: one that connects to the SCB, which in turn is connected to the SCB
slave (for example, memories), and another bus that connects to either a peripheral or another DMA
channel. The SCB/memory bus width can vary among 8, 16, 32, or 64 bits and is defined by the
DMA_STAT.MBWID bit field. The peripheral bus width can vary among 8, 16, 32, 64, or 128 bits and is
defined by the DMA_STAT.PBWID bit field. For ADSP-2156x processors, the memory and peripheral bus
widths for most of the DMA channels is 32 bits (4 bytes). However, for some channels, it is 64 bits (8
bytes).
The DMA parameter DMA_CFG.PSIZE determines the width of the peripheral bus in use. It can be
configured to 1, 2, 4, or 8 bytes. However, it cannot be greater than the maximum possible bus width
defined by the DMA_STAT.PBWID bit field. This restriction exists because burst transactions are not
supported on the peripheral bus.
The DMA parameter DMA_CFG.MSIZE determines the actual size of the SCB bus in use. It also determines
the minimum number of bytes that are transferred from/to memory corresponding to a single DMA
request/grant. It can be configured to 1, 2, 4, 8, 16, or 32 bytes. If the MSIZE value is greater than
DMA_STAT.MBWID, the SCB performs burst transfers to transfer the data equal to the MSIZE value.

It is important to understand how to choose the appropriate MSIZE value, both from a functionality and a
performance perspective. When choosing the MSIZE value, consider the following points:

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 4 of 27

 The start address of the work unit must align to the MSIZE value. Failing to do so generates a DMA
error interrupt.

 From a performance perspective, use the highest possible MSIZE value (32 bytes) for better average
throughput. This results in a higher likelihood of uninterrupted sequential accesses to the slave
(memory), which is the most efficient for typical memory designs.

 From a performance perspective, the minimum MSIZE value is determined by the burst length
supported by the memory device in some cases. For example, for DDR3 accesses, the minimum
MSIZE value is limited by the DDR3 burst length (16 bytes). Any MSIZE value below this length
leads to a significant throughput loss. For details, refer to the L3/External Memory Throughput
section.

Memory to Memory DMA (MDMA)
The ADSP-2156x processors support multiple MDMA streams (MDMA0/1/2/3) to transfer data from one
memory to another (L1/L2/L3/memory-mapped peripherals such as SPI FLASH). Different MDMA
streams can transfer the data at different bandwidths, as they run at different clock speeds and support
different data bus widths. Table 1 shows the various MDMA streams and the corresponding maximum
theoretical bandwidth supported by the ADSP-2156x processors. Table 2 shows the various memory
slaves and the corresponding maximum theoretical bandwidth supported by the ADSP-2156x processors.

Maximum
Bandwidth

(MB/s)

Bus
Width
(bits)

Clock
Domain

MDMA
Destination

Channel

MDMA
Source

Channel

Maximum
CCLK/SYSCLK/SCLKx

Speed (MHz)

MDMA
Type

MDMA
Stream

No.

2000 32

SYSCLK

9 8

1000/500/125

Enhanced
Bandwidth
or Medium
Speed
MDMA
(MSMDMA)

0

2000 32 19 18

Enhanced
Bandwidth
or Medium
Speed
MDMA
(MSMDMA)

1

2000 32 40 39

Enhanced
Bandwidth
or Medium
Speed
MDMA
(MSMDMA)

2

4000 64 44 43

Maximum
Bandwidth
or High
Speed
MDMA
(HSMDMA)

3

Table 1: MDMA Streams and Maximum Theoretical Bandwidth

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 5 of 27

Maximum
Theoretical
Bandwidth

(MB/s)

Data
Rate/Clock

Rate

Bus
Width
(Bits)

Clock
Domain

Maximum
CCLK/SYSCLK/SCLKx/DCLK

Frequency

(MHz)

Memory
Type

(L1/L2/L3)

4000 1 32 CCLK

1000500/125/667

L1

4000 1 64 SYSCLK L2

2668 2 16 DCLK L3

Table 2: Memory Slaves and Maximum Theoretical Bandwidth

The actual (measured) MDMA throughput is always less than or equal to the minimum of the maximum
theoretical throughput supported by one of the three: MDMA, source memory, or destination memory. For
example, the measured throughput of MDMA0 between L1 and L2 will be less than or equal to 2000
MB/s, which is limited by the maximum bandwidth of MDMA0. Similarly, the measured throughput of
MDMA3 between L1 and L3 will be less than or equal to 2688 MB/s, which is limited by the maximum
bandwidth of L3.
Figure 3 shows the actual throughput measured on the bench for various MDMA streams with different
combinations of source and destination memories. The measurements were taken with:
 MSIZE = 32 bytes

 DMA count = 16384 bytes at CCLK = 1 GHz
 SYSCLK = 500 MHz
 DCLK = 667 MHz
The code MDMA_Throughput supplied with the application note[5] can be used to measure MDMA
throughput.

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 6 of 27

Figure 3: MDMA Throughput on ADSP-2156x Processor

Optimizing Non-32-Byte-Aligned MDMA Transfers
In many cases, the start address and count of a MDMA transfer may not be aligned to a 32-byte address
boundary. In such cases, the MSIZE value may need to be configured to less than 32 bytes. This
configuration can affect the MDMA performance. One option to get better throughput for such cases is to
split the single MDMA transfer into more than one transfer using a descriptor-based DMA. The first and
last (if needed) MDMA transfers can use MSIZE < 32 bytes for non-32-byte-aligned address and count
values. The second transfer can use MSIZE = 32 bytes for 32-byte-aligned address and count values.

The MDMA service available with CCES provides an additional API called adi_mdma_Copy1DAuto. It is
compatible with the standard 1D-transfer API adi_mdma_Copy1D that is used for single-shot 1D transfers.
As shown in Table 3, the MDMA performance of adi_mdma_Copy1DAuto is around 1.4 to 2.6 times better
than adi_mdma_Copy1D for non-32-byte-aligned start addresses. The example code MDMA_1DAuto can be
used to measure MDMA performance for both APIs for a given use case.

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 7 of 27

S.
No.

Source
Memory
Address

Destination
Memory
Address

DMA
Count

MSIZE
(Bytes)

Copy1D
MDMA
Cycles

Copy1DAuto
MDMA
Cycles

Additional
API

Overhead

Effective
Improvement

Factor

1 0x2C0001 0x300000 256 1 1962 1276 152 1.37

2 0x2C0000 0x300001 256 1 1962 1169 148 1.49

3 0x2C0001 0x300000 1024 1 6182 2811 138 2.10

4 0x2C0000 0x300001 1024 1 6182 2704 144 2.17

5 0x2C0001 0x300000 4096 1 23082 8956 138 2.54

6 0x2C0000 0x300001 4096 1 23082 8849 144 2.57

Table 3: adi_mdma_Copy1D vs. adi_mdma_Copy1DAuto Performance

Bandwidth Limiting and Monitoring
MDMAs are equipped with a bandwidth limit and monitor mechanism. The bandwidth limit feature can
be used to reduce the number of DMA requests being sent by the corresponding masters to the SCB.
The DMA_BWLCNT register can be programmed to configure the number of SYSCLK cycles between two
DMA requests. This configuration can be used to ensure that such DMA channels’ requests do not occur
more frequently than required. Programming a value of 0x0000 allows the DMA to request as often as
possible. A value of 0xFFFF represents a special case and causes all requests to stop. The maximum
throughput, in MB/s, is determined by the DMA_BWLCNT register and the MSIZE value and is calculated as
follows:
Bandwidth = min (SYSCLK frequency in MHz*DMA bus width in bytes, SYSCLK frequency in MHz*MSIZE in bytes
/ DMA_BWLCNT)

The API adi_mdma_BWLimit can be used to program the DMA_BWLCNT register for a given target
bandwidth and MSIZE value. The example code MDMA_BWLimit shows how to use this API. Figure 4
shows a sample result of this code with the target and measured bandwidth for different MDMA use cases.

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 8 of 27

Figure 4: MDMA Bandwidth Limit Results

Furthermore, the bandwidth monitor feature can be used to check if such channels are starving for
resources. The DMA_BMCNT register can be programmed to the number of SYSCLK cycles within which the
corresponding DMA should finish. Each time the DMA_CFG register is written to (MMR access only), a
work unit ends, or an autobuffer wraps, the DMA loads the value in the DMA_BWMCNT register into the
DMA_BWMCNT_CUR register. The DMA decrements DMA_BWMCNT_CUR every SYSCLK that a work unit is
active. If the DMA_BWMCNT_CUR value reaches 0x00000000 before the work unit finishes, the
DMA_STAT.IRQERR bit is set, and the DMA_STAT.ERRC bit is set to 0x6. The DMA_BWMCNT_CUR value
remains at 0x00000000 until it is reloaded when the work unit completes. Unlike other error sources, a
bandwidth monitor error does not stop work unit processing. Programming 0x00000000 disables
bandwidth monitor functionality. This feature can also be used to measure the actual throughput.
The API adi_mdma_BWMonitor can be used to program the DMA_BWMCNT register for a given target
bandwidth and MSIZE value. The example code MDMA_BWMonitor shows how to use this API. Figure 5
shows a sample result of this code with a target bandwidth and bandwidth monitor expiration message for
a given MDMA use case. The API adi_mdma_BWMeasure uses the DMA_BMCNT and DMA_BWMCNT_CUR
registers to measure the MDMA bandwidth as shown in the example code MDMA_BWLimit.

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 9 of 27

Figure 5: MDMA Bandwidth Monitor Results

Extended Memory DMA (EMDMA)
The ADSP-2156x processors also support Extended Memory DMA (EMDMA). The EMDMA engine is
mainly used to transfer the data from one memory type to another in a non-sequential manner (such as
circular, delay line, and scatter/gather). For details regarding EMDMA, refer to the ADSP-2156x SHARC+
Processor Hardware Reference [2]. The EMDMA on the ADSP-2156x processors has been enhanced to
run at the SYSCLK speed instead of the SCLK speed. This enhancement results in improved EMDMA
throughput. Figure 6 shows throughput measured on the bench for EMDMA0/EMDMA1 streams with a
different combination of source and destination memories for sequential transfers of 4096 32-bit words at
CCLK = 1 GHz, SYSCLK = 500 MHz, and DCLK = 667 MHz.

Figure 6: Measured EMDMA Throughput on ADSP-2156x Processors

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 10 of 27

Optimizing Non-Sequential EMDMA Transfers with MDMA
In some cases, the non-sequential transfer modes supported by EMDMA can be replaced by descriptor-
based MDMA for better performance.
The example code MDMA_Circular_Buffer illustrates how a MDMA descriptor-based mode can be used
to emulate a circular buffer memory-to-memory DMA transfer mode. The example code compares the
core cycles measured (see Table 4) to write and read 4096 32-bit words to and from the DDR3 memory in
circular buffer mode. The example uses a starting address offset of 1024 words for the following cases:

 EMDMA
 MDMA with MSIZE = 4 bytes (for 4-byte-aligned address and count)

 MDMA with MSIZE = 32 bytes (for 32-byte-aligned address and count)

Write/Read

Core Cycles

EMDMA
MDMA3

MSIZE = 4 bytes

MDMA3

MSIZE = 32 bytes

Write 38638 30327 7681

Read 49580 36281 10908

Table 4: MDMA Emulated Circular Buffer vs. EMDMA

As shown in Table 4, the MDMA emulated circular buffer (MSIZE = 4 bytes) is faster than EMDMA. The
performance is further improved with MSIZE = 32 bytes when the addresses and counts are 32-byte-
aligned.

Understanding the System Crossbars
As shown in Figure 2, the SCB interconnect consists of a hierarchical model connecting multiple SCB
units. Figure 7 shows the block diagram for a single SCB unit. It connects the System Bus Masters (M) to
the System Bus Slaves (S) by using a Slave Interface (SI) and Master Interface (MI). On each SCB unit,
each S is connected to a fixed MI. Similarly, each M is connected to a fixed SI.

Figure 7: Single SCB Block Diagram

The slave interface of the crossbar (where masters such as DDE are connected) perform two functions,
arbitration and clock domain conversion.

Arbitration
The programmable Quality of Service (QoS) registers can be viewed as being associated with SCBx. For
example, the programmable QoS registers for SPORT0-3 and MDMA0 can be viewed as residing in

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 11 of 27

SCB1. Whenever a transaction is received at SPORT0 half A, the programmed QoS value is associated
with that transaction and is arbitrated with the rest of the masters at SCB1.

Programming the SCB QOS Registers
Consider a scenario where:
 At SCB1, masters 1, 2, and 3 have RQOS values of 6, 4, and 2, respectively.
 At SCB2, masters 4, 5, and 6 have RQOS values of 12, 13, and 1, respectively.

Figure 8: Arbitration Among Various Masters

As shown in Figure 8, in this case:
 Master 1 wins the arbitration at SCB1, and master 5 wins the arbitration at SCB2.
 In a perfect competition at SCB0, however, masters 4 and 5 had the highest overall RQOS values.

So, the masters would have fought for arbitration directly at SCB0. Because of the mini-SCBs,
however, master 1, at a much lower RQOS value, wins against master 4 and makes it all the way to
SCB0.

Clock Domain Conversion
There are multiple Clock Domain Crossings (CDC) in the ADSP-2156x processor fabric:

 CCLK: SYSCLK is fixed to SYNC n:1
 SCLK0: SYSCLK is fixed to 1:n
 LPCLK: SYSCLK is fixed to m:n
 SPI CLK: SYSCLK is fixed to m:n

The SYSCLK to DCLK clock domain crossing is programmable, and it should be programmed depending
upon the clock ratios of the two clock domains for optimum performance.

Programming Sync Mode in the IBx Registers
To illustrate the effect of the sync mode programming in the IBx registers, DDR3 read throughput was
measured with an MDMA3 stream with MSIZE = 32 bytes at CCLK = 1 GHz, SYSCLK = 500 MHz,
DCLK = 500 MHz (both SYNC 1:1 and ASYNC modes). Figure 9 shows throughput measured for the

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 12 of 27

two for different work unit size values. As can be seen, the throughput is better (for most of the work unit
size values) when the CDC is programmed in SYNC mode with DCLK = 500 MHz as compared to the
ASYNC mode.

Figure 9: DMC MDMA Throughput with and Without IBx Sync Mode Programming

Understanding the System Slaves

Memory Hierarchy
As shown in Table 2, ADSP-SC5xx processors have a hierarchical memory model (L1/L2/L3). The
following sections discuss the access latencies and achievable throughput associated with the different
memory levels.

L1 Memory Throughput
L1 memory runs at CCLK and is the fastest accessible memory in the hierarchy. SHARC+ L1 memory is
accessible by both the core and DMA (system). For system (DMA) accesses, L1 memory supports two
ports: the S1 port and the S2 port. Two different banks of L1 memory can be accessed in parallel with
these ports. Like the ADSP-SC57x processors, the system (DMA) accesses are hardwired to the L1
memory of the SHARC+ processer using the S1 port. One exception is the High-Speed MDMA

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 13 of 27

(HSMDMA), which is hardwired using the S2 port. From a programming perspective, when accessing the
L1 memory of the SHARC+ processer, use a multiprocessor memory offset of 0x28000000 for all DMA
accesses (including HSMDMA).
The maximum theoretical throughput of L1 memory (for system/DMA accesses) is 1000 * 4 = 4000 MB/s
for 1 GHz CCLK operation. As shown in Figure 3, the maximum measured L1 throughput using MDMA3
is ~3910 MB/s.

L2 Memory Throughput
L2 memory access times are longer than L1 because the maximum L2 clock frequency (SYSCLK) is half
the CCLK. The L2 memory controller contains two ports to connect to the system crossbar. Port 0 is a 64-
bit interface dedicated to core traffic, while port 1 is a 32-bit interface that connects to the DMA engine
(64-bit DMA bus is supported for HSMDMA accesses). Each port has a read and a write channel. For
details, refer to the ADSP-2156x SHARC+ Processor Hardware Reference[2].
Consider the following important points regarding L2 memory throughput:

• Since L2 memory runs at the SYSCLK speed, it can provide a maximum theoretical throughput of
500 MHz * 4 = 2000 MB/s in one direction (for HSMDMA accesses, it can go up to 4000 MB/s).
Since there are separate read and write channels, the total throughput in both directions equals
8000 MB/s. To operate L2 SRAM memory at its optimum throughput, use both the core and DMA
ports and separate read and write channels in parallel. All of them should access different banks of
L2.

• All accesses to L2 memory are converted to 64-bit accesses (8-byte) by the L2 memory controller.
To achieve optimum throughput for DMA access to L2 memory, configure the DMA channel
MSIZE to 8 bytes or higher.

• Unlike L3 (DMC) memory accesses, L2 memory throughput for sequential and non-sequential
accesses is the same.

• L2 SRAM is ECC-protected and organized into eight banks. A single 8- or 16-bit access, or a non-
32-bit-address-aligned 8-bit or 16-bit burst access, to an ECC-enabled bank creates an additional
latency of two SYSCLK cycles. This latency is due to the ECC implementation. The
implementation is in terms of 32-bit accesses. Any write that is less than 32-bit to an ECC-enabled
SRAM bank is implemented as a read-followed-by-write and requires three cycles to complete
(two cycles for the read, one cycle for the write).

• When performing simultaneous core and DMA accesses to the same L2 memory bank, read and
write priority control registers can be used to increase DMA throughput. If both the core and the
DMA engine access the same bank, the best access rate that DMA can achieve is one 64-bit access
every three SYSCLK cycles during the conflict period. This throughput is achieved by
programming the read and write priority count bits (L2CTL_RPCR.RPC0 and L2CTL_WPCR.WPC0) to
0, while programming the L2CTL_RPCR.RPC1 and L2CTL_WPCR.WPC1 bits to 1.

Figure 10 shows the measured MDMA throughput at CCLK = 1 GHz and SYSCLK = 500 MHz for a case
where both source and destination buffers are in different L2 memory banks. As an example, for
MDMA3, the maximum throughput is very close to 3905 MB/sec in one direction (7810 MB/s in both
directions) for MSIZE = 32 bytes and drops significantly for smaller MSIZE values.

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 14 of 27

Figure 10: L2 MDMA Throughput for Different MSIZE and Work Unit Sizes

L3/External Memory Throughput
The ADSP-2156x processors provide interfaces for connecting to DDR3/DDR3L memory devices. The
DMC interface operates at speeds of up to 667 MHz. For the 16-bit DDR3 interface, the maximum
theoretical throughput that the DMC can deliver equals 2668 MB/s. However, the practical maximum
DMC throughput is less because of the latencies introduced by the internal system interconnects, as well
as the latencies derived from the DRAM technology itself (access patterns, page hit to page miss ratio, and
so forth).
Although most of the throughput optimization concepts are illustrated using MDMA as an example, the
same can be applied to other system masters as well.
The MDMA3 stream (HSMDMA) can request DMC accesses faster than any other masters (for example,
4000 MB/s). The practical DMC throughput possible using MDMA depends upon factors such as whether
the accesses are sequential or non-sequential, the block size of the transfer, and DMA parameters (for
example, MSIZE).

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 15 of 27

Figure 11: DMC Measured Throughput for Sequential MDMA Reads

Figure 12: DMC Measured Throughput for Sequential MDMA Writes

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 16 of 27

Figure 11 and Figure 12 provide the DMC measured throughput at CCLK = 1 GHz and
DCLK = 533 MHz using MDMA0 (channels 8/9) and MDMA3 (channels 43/44) streams for various
MSIZE values and buffer sizes.

The following important observations can be made:
 The throughput trends are similar for reads and writes with regards to MSIZE and buffer size

values.
 The peak measured read throughput is 1633 MB/s for MDMA3 with MSIZE = 16 bytes. The peak

measured write throughput is 2373 MB/s for MDMA3 with MSIZE = 32 bytes.

 The throughput depends largely upon the DMA buffer size. For smaller buffer sizes, the
throughput is significantly lower. The throughput increases significantly with a larger buffer size.
For example, for MDMA3 with MSIZE = 32 bytes and a buffer size of 32 bytes, the read
throughput is 200 MB/s, whereas it reaches 1585 MB/s for a 16 KB buffer size. This difference is
due to the overhead incurred when programming the DMA registers, as well as the system
latencies when sending the initial request from the DMA engine to the DMC controller.

 Try to rearrange the DMC accesses such that the DMA count is as large as possible. Better
sustained throughput is obtained for continuous transfers over time.

 To some extent, throughput also depends upon the MSIZE value of the source MDMA channel for
reads and destination MDMA channel for writes. As shown in Figure 11 and Figure 12, in most
cases, greater MSIZE values provide better results. Ideally, the MSIZE value should be at least equal
to the DDR memory burst length. For MDMA3 with a buffer size of 16384 bytes, the read
throughput is 1585 MB/s for MSIZE = 32 bytes, while it reduces significantly to 559 MB/s for
MSIZE = 4 bytes. For MSIZE = 4 bytes, although all accesses are still sequential, the full DDR3
memory burst length of 16 bytes (eight 16-bit words) is not used.

For sequential reads, it is easy to achieve optimum throughput, particularly for larger buffer sizes. The
DRAM memory page hit ratio is high, and the DMC controller does not need to close and open DDR
device rows frequently. However, in case of non-sequential accesses, throughput can drop slightly or
significantly depending upon the page hit-to-miss ratio.
Figure 13 provides a comparison of the DMC throughput numbers measured for sequential MDMA read
accesses for MSIZE = 16 bytes (equals DDR3 burst length) and ADDRMODE set to 0 (bank interleaving)
versus non-sequential accesses with a modifier of 2048 bytes (equals DDR3 page size, thus leading to a
worst-case scenario with maximum possible page misses). As shown, for a buffer size of 8192 bytes,
throughput drops significantly from 1479 to 309 MB/s.

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 17 of 27

Figure 13: DMC Throughput for Sequential vs. Non-Sequential Read Accesses

DDR memory devices support concurrent bank operations that allow the DMC controller to activate a row
in another bank without pre-charging the row of a bank. This feature is extremely helpful in cases where
DDR access patterns incur page misses. By setting the DMC_CTL.ADDRMODE bit, throughput can be
improved by ensuring that such accesses fall into different banks. For instance, Figure 14 shows in orange
how the DMC throughput increases from 309.16 MB/s to 539.87 MB/s by setting this bit for the non-
sequential access pattern shown in Figure 13.
The throughput can be further improved using the DMC_CTL.PREC bit, which forces the DMC to close the
row automatically as soon as a DDR read burst is complete with the help of the Read with Auto
Precharge command. This configuration allows the row of a bank to proactively precharge after it has
been accessed. It improves the throughput by saving the latency involved in precharging the row at the
time when the next row of the same bank must be activated.
The gray line in Figure 14 show the increase in throughput. Setting the DMC_CTL.PREC bit results in an
increase from 540 MB/s to 999 MB/s. The same result can be achieved by setting the
DMC_EFFCTL.PRECBANK[7-0] bits. This feature can be used on a per bank basis. However, note that
setting the DMC_CTL.PREC bit overrides the DMC_EFFCTL_PRECBANK[7-0] bits. Also, setting the
DMC_CTL.PREC bit results in precharging of the rows after every read burst, while setting the
DMC_EFFCTL_PRECBANK[7-0] bits pre-charge the row after the last burst corresponding to the respective
MSIZE settings. This configuration can provide an added throughput advantage for cases where MSIZE (for
example, 32 bytes) is greater than the DDR3 burst length (16 bytes).

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 18 of 27

Figure 14: Optimizing Throughput for Non-Sequential Accesses

For reads, the throughput can be further improved by using the additive latency feature. Figure 15 and
Figure 16 illustrates how this feature helps to avoid gaps in a burst of data when accessing different banks
for CAS Latency = 4 and Additive Latency = 3. Note that these figures were used to explain the concept
from the reference TN4702[7] which refers to DDR2. The ADSP-2156x processors support DDR3/DDR3L
devices only, but the same concept applies here as well.

Figure 15: Reads Without Additive Latency

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 19 of 27

Figure 16: Reads with Additive Latency

Programming the additive latency to tRCD-1 allows the DMC to send the Read with Autoprecharge
command right after the Activate command, before tRCD completes. This sequence enables the
controller to schedule the Activate and Read commands for other banks, eliminating gaps in the data
stream. Figure 14 shows how the throughput improves from 999 MB/s to 1392 MB/s by programming the
additive latency (AL) in the DMC_EMR1 register to tRCD-1 (equals 8 or CL-1 in this case).

The DMC also allows elevating the priority of the accesses requested by a SCB master using the
DMC_PRIO and DMC_PRIOMSK registers. The associated .ZIP file provides example code DMC_SCB_PRIO in
which two MDMA DMC read channels (8 and 18) run in parallel. Table 6 summarizes the measured
throughout. As shown, programming the DMC SCB priority for a MDMA channel results in an increased
throughput of the higher priority MDMA when compared with the other MDMA running in parallel.

Test Case Number Priority Channel
(SCB ID)

MDMA0 (Ch. 8) Throughput
(MB/s)

MDMA1 (Ch. 18) Throughput
(MB/s)

1 None 737 749

2 MDMA0 (0x008) 843 704

3 MDMA1 (0x208) 600 729

Table 5. DMC Measured Throughput for Different DMC_PRIO Settings

The Postpone Autorefresh command can be used to ensure that auto-refreshes do not interfere with any
critical data transfers. Up to eight Autorefresh commands can be accumulated in the DMC. The exact
number of Autorefresh commands can be programmed using the NUM_REF bit in the DMC_EFFCTL
register.
After the first refresh command is accumulated, the DMC constantly looks for an opportunity to schedule
a refresh command. When the SCB read and write command buffers become empty (which implies that
no access is outstanding) for the programmed number of clock cycles (IDLE_CYCLES) in the DMC_EFFCTL
register, the accumulated number of refresh commands are sent sequentially to the DRAM memory.
After every refresh, the SCB command buffers are checked to ensure that they stay empty. However, if the
SCB command buffers are always full, once the programmed number of refresh commands accumulates
the refresh operation is elevated to urgent priority and one refresh command is sent immediately. After

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 20 of 27

this, the DMC continues to wait for an opportunity to send out refresh commands. If self-refresh is
enabled, all pending refresh commands are given out only after the DMC enters self-refresh mode.

System MMR Latencies
Table 6 shows the measured MMR latency in core cycles for different peripherals on the ADSP-2156x
processor. The measurement was taken with CCLK = 1 GHz, SYSCLK = 500 MHz, and
SCLK = 250 MHz. These numbers can be used to approximate the MMR access latency of the SHARC+
core for different peripherals.

S. No. Register Peripheral Write Latency
(Core Cycles)

Read Latency
(Core Cycles)

1 FIR0_INIDX FIR 28 27

2 IIR0_INIDX IIR 28 27

3 MLB0_MDAT0 MLB 44 41

4 MEC0_PERR_IMASK0 MEC 44 41

5 CRC0_DCNT
CRC

44 43

6 CRC1_DCNT 44 43

7 EMDMA0_INDX1
EMDMA

44 43

8 EMDMA1_INDX1 44 43

9 TAPC_SDBGKEY0 TAPC 44 41

10 SMPU2_RADDR0 SMPU 46 43

11 SWU1_LA0 SWU 46 43

12 SWU2_LA0 46 43

13 L2CTL0_RPCR L2CTL 46 43

14 SEC0_RAISE SEC 46 45

15 TRU0_SSR0 TRU 46 45

16 SPU0_SECUREP10 SPU 46 45

17 RCU0_MSG RCU 46 43

18 CGU0_OSCWDCTL CGU 46 43

19 CDU0_CLKINSEL CDU 46 43

20 DPM0_PER_DIS0 DPM 46 43

21 PKTE0_SA_ADDR PKTE 48 47

22 TRNG0_OUTPUT0 TRNG0 52 51

23 PKA0_APTR PKA 52 51

24 PKIC0_ACK PKIC 52 51

25 DMC0_PRIO DMC 60 57

26 UART0_CLK UART 74 73

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 21 of 27

27 PORTA_DATA_SET PORTA 74 73

28 WDOG1_WIN WDOG 74 73

29 DMA1_XCNT DMA 76 73

30 SPORT0_DIV_A SPORT 76 81

31 PORTB_DATA_SET PORTB 76 73

32 PINT0_ASSIGN PINT 76 73

33 PINT1_ASSIGN 76 73

34 TIMER0_TMR0_WID TIMER 76 81

35 DMA0_XCNT DMA 78 73

36 PADS0_PORTA_PDE PADS 78 73

37 WDOG0_WIN WDOG 78 73

38 OSPI0_FCA OPSI 78 73

39 SPI1_CLK SPI 78 81

40 SPORT1_DIV_A SPORT 80 81

41 UART1_CLK UART 80 73

42 CNT0_CNTR CNT 80 73

43 OTPC0_PMC_MODE0 OTPC 80 73

44 DAI0_IMSK_FE DAI0 80 81

45 SPI0_CLK SPI0 82 81

46 ASRC1_MUTE ASRC 82 81

47 TMU0_FLT_LIM_HI TMU 84 81

48 PCG0_PW1 PCG 84 81

49 DAI1_IMSK_FE DAI 84 81

50 SPDIF0_TX_UBUFF_A0 SPDIF
86 81

51 SPDIF1_TX_UBUFF_A0 86 81

52 HADC0_CHAN_MSK HADC 88 81

53 ASRC0_MUTE ASRC 90 81

54 TWI1_CLKDIV TWI 114 121

55 LP0_DIV LP 117 121

56 TWI0_CLKDIV TWI 118 121

57 LP1_DIV LP 120 121

58 SCB0_SP0A_READ_QOS SCB 780 777

Table 6: MMR Access Latency for ADSP-2156x Processors in CCLK cycles (approximate)

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 22 of 27


The MMR latency numbers are measured with the “sync” instruction after the write. This ensures
that the write has taken affect. The SHARC+ core supports posted writes, which means that the
core does not necessarily wait until the actual write is complete. This helps in avoiding
unnecessary core stalls.

The MMR access latencies can vary based on the following factors:

 Clock ratios: All MMR accesses are through SCB0, which is in the SYSCLK domain, while

peripherals are in the SCLK0/1, SYSCLK, and DCLK domains.

 Number of concurrent MMR access requests in the system: Although a single write incurs half
the system latency when compared to back-to-back writes, the latency observed on the core will be
shorter. Similarly, the system latency incurred by a read followed by a write, or vice versa, will be
different than a latency observed on the core.

 Memory type (L1/L2/L3) from where the code is executed.

System Bandwidth Optimization Procedure
Although the optimization techniques can vary from one application to another, the general procedure
involved in the overall system bandwidth optimization remains the same. Figure 17 provides a flow chart
of a typical system bandwidth optimization procedure for ADSP-2156x processor-based applications.
A typical procedure for an SCB slave includes the following steps:
 Identify the individual and total throughput requirements for all the masters accessing the

corresponding SCB slave in the system. Consider the total throughput requirement as X.
 Calculate the observed throughput the corresponding SCB slave(s) are able to supply under the

specific conditions. Refer to this as Y.
 For X < Y, bandwidth requirements are met. However, for X > Y, one or more peripherals are

likely to hit reduced throughput or an underflow condition. In this case, apply the bandwidth
optimization techniques to either:

o Increase the value of Y by applying the slave-specific optimization techniques (for
example, using the DMC efficiency controller features).

o Decrease the value of X by:
 Reanalyzing whether a peripheral really needs to run that fast. If not, then slow

down the peripheral to reduce the bandwidth requested by the peripheral.
 Reanalyzing whether an MDMA can be slowed down. The corresponding

DMAx_BWLCNT register can be used to limit the bandwidth of that DMA channel.

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 23 of 27

Figure 17: Typical System Bandwidth Optimization Procedure

Application Example
Figure 18 shows a block diagram of the example application code Multiple_DMAs supplied with this EE-
Note. The example code has the following conditions:
 CCLK = 1 GHz, DCLK = 667 MHz, SYSCLK = 500 MHz, and SCLK0 = 125 MHz.
 MDMA0 channel 8: required throughput = 500 MHz * 4 ≤ 2000 MB/s.
 MDMA1 channel 18: required throughput = 500 MHz * 4 ≤ 2000 MB/s.
 MDMA2 channel 39: required throughput = 500 MHz * 4 ≤ 2000 MB/s.
 MDMA3 channel 43: required throughput = 500 MHz * 8 ≤ 4000 MB/s.

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 24 of 27

Throughput requirements for MDMA channels depend on the corresponding DMAx_BWLCNT register values.
If not programmed, the MDMA channels request for the bandwidth with full throttle.

Figure 18: Example Application - DMC Throughput Distribution Across SCBs

As shown in Figure 18, the total required throughput from the DMC controller equals 10000 MB/s.
Theoretically, with DCLK = 667 MHz and a bus width of 16 bits, the maximum possible throughput is only
2668 MB/s. For this reason, there is a possibility that one or more masters may not get the required
bandwidth. For masters such as MDMA, this can result in decreased throughput.

Required Measured Required Measured Required Measured Required Measured

1 No optimization 2000 213.8 2000 213.8 2000 213.8 4000 213.7 10000 855.1

2
Optimization at

the slave - T1
2000 329.7 2000 329.3 2000 329.2 4000 329.6 10000 1317.8

3
Optimization at
the master - T2

200 196.8 200 196.6 300 288.1 400 359.1 1100 1040.6

4
Optimization at
the master - T3

100 99.2 100 99.2 400 379.5 500 465.2 1100 1043.1

Total
throughput

Requirement
X

Measured
throughput

Y'

MDMA0 MDMA1
SCB11

MDMA2S.No. Condition

SCB9 SCB10 MDMA3

All units are expressed in MB/s.

Table 7: Example Application - System Bandwidth Optimization Steps

Table 7 shows the expected and measured throughput for all DMA channels and the corresponding SCBs
at various steps of bandwidth optimization.

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 25 of 27

Step 1
In this step, all DMA channels run without applying any optimization techniques. To replicate the worst-
case scenario, the source buffers of all DMA channels are placed in a single DDR3 SDRAM bank. The
row corresponding to “No optimization” in Table 7 shows the measured throughput numbers under this
condition. As illustrated, the individual measured throughput of almost all channels is significantly less
than expected.
 Total expected throughput from the DMC (X) = 10000 MB/s
 Effective DMC throughput (Y) = 855.1 MB/s

Clearly, X is greater than Y, showing a definite need for implementing the corresponding bandwidth
optimization techniques.

Step 2
When there are frequent DDR3 SDRAM page misses within the same bank, throughput significantly
drops. Although DMA channel accesses are sequential, multiple channels try to access the DMC
concurrently, resulting in page misses. To work around this, move the source buffers for each DMA
channel to different DDR3 SDRAM banks. This configuration allows parallel accesses to multiple pages
of different banks, helping improve Y. “Optimization at the slave - T1” in Table 7 provides the measured
throughput numbers under this condition. Both individual and overall throughput numbers increase
significantly. The maximum throughput delivered by the DMC (Y) increases to 1317.8 MB/sec. However,
since X is still greater than Y, the measured throughput is still lower than expected.

Steps 3 and 4
There is not much more room to significantly increase the value of Y. Alternatively, optimization
techniques can be employed at the master end. Depending on the application requirements, the bandwidth
limit feature of the MDMAs can be used to reduce the overall bandwidth requirement and get a
predictable bandwidth at various MDMA channels. “Optimization at the master - T2” and “Optimization
at the master – T3” in Table 7 show the measured throughput under two such conditions with different
bandwidth limit values for the various MDMA channels. As shown, both the individual and the overall
and the expected throughput are very close to each other.

System Optimization Techniques – Checklist
This section summarizes the optimization techniques discussed in this application note, while also listing a
few additional tips for bandwidth optimization.
 Analyze the overall bandwidth requirements and use the bandwidth limit feature for memory pipe

DMA channels to regulate the overall DMA traffic.
 Program the DMA channels’ MSIZE parameters to optimal values to maximize throughput and

avoid any potential underflow/overflow conditions.
 If required/possible, split single MDMA of a smaller MSIZE value into multiple descriptor-based

MDMA transfers to maximize the usage of a larger MSIZE values for better performance.

 Use MDMA instead of EMDMA for sequential data transfers to improve performance. If possible,
emulate EMDMA non-sequential transfer modes with MDMA.

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 26 of 27

 Program the SCB RQOS and WQOS registers to allocate priorities to various masters as per system
requirements.

 Program the clock domain crossing (IBx) registers depending upon the clock ratios across SCBs.

 Use optimization techniques at the SCB slave end, such as:
o Efficient usage of the DMC controller
o Usage of multiple L2/L1 sub-banks to avoid access conflicts
o Usage of instruction/data caches

 Maintain the optimum clock ratios across different clock domains
 Since MMR latencies affect the interrupt service latency, ADSP-2156x processors offer the

Trigger Routing Unit (TRU) for bandwidth optimization and system synchronization. The TRU
allows for synchronizing system events without processor core intervention. It maps the trigger
masters (trigger generators) to trigger slaves (triggers receivers), thereby offloading processing
from the core. For a detailed discussion on this topic, refer to application note Utilizing the Trigger
Routing Unit for System Level Synchronization (EE-360)[6]. Although the note is written for the
ADSP-BF60x processor, the concepts can be used for ADSP-2156x processors as well.

ADSP-2156x SHARC+ Processor System Optimization Techniques (EE-412) Page 27 of 27

References
[1] ADSP-SC5xx/215xx SHARC+ Processor System Optimization Techniques (EE-401), Rev 1, February, 2018.Analog

Devices, Inc.

[2] ADSP-2156x SHARC+ Processor Hardware Reference, Rev 0.3, March 2020. Analog Devices, Inc.

[3] ADSP-21562/21563/21565/21566/21567/21569 SHARC+ Single core High Performance DSP Data Sheet. Rev 0, March
2020. Analog Devices, Inc.

[4] ADSP-2156x SSDD API Reference Manual for SHARC+ Core, Version 2.0, CrossCore® Embedded Studio Help.

[5] Associated ZIP file for EE-412: ADSP-2156x SHARC+ Processors System Optimization Techniques, August 2020.
Analog Devices, Inc.

[6] Utilizing the Trigger Routing Unit for System Level Synchronization (EE-360), Rev 1, October, 2013.Analog Devices, Inc.

[7] TN-47-02: DDR2 Offers New Features/Functionality Introduction. Rev A, June 2006. Micron Technology, Inc.

Document History

Revision Description

Rev 2 – September 3, 2020
by Mitesh Moonat

Revised DCLK frequency from 533 MHz to 667 MHz.

Rev 1 – October 30, 2019
by Mitesh Moonat

Initial release.

	Introduction
	ADSP-2156x Processor Architecture
	System Bus Slaves
	System Bus Masters
	System Crossbars

	System Latencies, Throughput, and Optimization Techniques
	Understanding the System Masters
	DMA Parameters
	Memory to Memory DMA (MDMA)
	Optimizing Non-32-Byte-Aligned MDMA Transfers
	Bandwidth Limiting and Monitoring

	Extended Memory DMA (EMDMA)
	Optimizing Non-Sequential EMDMA Transfers with MDMA

	Understanding the System Crossbars
	Arbitration
	Programming the SCB QOS Registers

	Clock Domain Conversion
	Programming Sync Mode in the IBx Registers

	Understanding the System Slaves
	Memory Hierarchy
	L1 Memory Throughput
	L2 Memory Throughput
	L3/External Memory Throughput

	System MMR Latencies

	System Bandwidth Optimization Procedure
	Application Example
	Step 1
	Step 2
	Steps 3 and 4

	System Optimization Techniques – Checklist
	References
	Document History

