

Engineer-to-Engineer Note EE-396

Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Using the ADSP-CM41x MATH Unit for Clarke and Park Transforms
Contributed by Punarva Katte Rev 2 – April 2, 2018

Copyright 2018, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
The ADSP-CM41x family of mixed-signal control processors provides an on-chip MATH accelerator unit,
which can be used to offload most of the common transcendental functions such as ex, sin(x), cos(x).
atan2(y/x), etc., from the Cortex-M4F core. The accelerator is tightly coupled to the Cortex-M4F core and
is within the core clock domain. The unit is operated with a simple and flexible store-load mechanism by
storing operands to registers and reading results from other registers.

Clarke and Park transformations are matrices of transformation to convert the current/voltage system of any
ac-machine from one base to another. The Clarke transform converts a three-phase system into a two-phase
system in a stationary frame. The Park transform converts a two-phase system from a stationary frame to a
rotating frame. By changing the reference frame, it is possible to considerably simplify the complexity of
the mathematical machine model. These techniques are invaluable tools in the digital control of ac-
machines.

The purpose of this EE-note is to introduce users to the MATH accelerator unit and techniques that may be
used to reduce the computation time of mathematical calculations, such as the Clarke and Park transforms.

MATH Accelerator Unit
The MATH unit provides accelerated functions such as reciprocal, square root, trigonometric functions,
exponential functions, and their inverses. It also provides accelerated functions to convert between
rectangular and polar coordinates. Most operations by this tightly-coupled accelerator complete in a
deterministic number of core clock cycles, faster than the Cortex-M4F core could accomplish the same task.
Table 1 provides the cycles taken to execute each of the functions using the MATH unit. The two columns,
Full Domain and Normal Domain, correspond to different ranges of input to the function. Refer to the
ADSP-CM41x Hardware Reference Manual [1] for more details.

The MATH unit provides an easy-to-use function calculator for general programming operations. Its
operands, results, and functions adhere to the IEEE 754-2008 Single-Precision Floating-Point Arithmetic
Standard [2]. In general, results returned are accurate to within a standard relative error of 23.5 bits compared
to the infinitely precise mathematical result.

http://www.analog.com/processors

Using the ADSP-CM41x MATH Unit for Clarke and Park Transforms (EE-396) Page 2 of 7

Function Full Domain Normal Domain
adi_recipf(x) or 1/x 9 cycles 9 cycles
adi_sqrtf(x) or √x 9 cycles 9 cycles
adi_expf(x) or ex 9 cycles 9 cycles
adi_exp2f(x) or 2x 8 cycles 8 cycles
adi_log2f(x) 10 cycles 10 cycles
adi_lnf(x) 11 cycles 11 cycles
adi_sinf(x) x = [−∞, +∞]: 14 cycles x = (-8,+8): 9 cycles
adi_cosf(x) x = [−∞, +∞]: 14 cycles x = (-8,+8): 9 cycles
adi_tanf(x) x = [−∞, +∞]: 20 cycles x = (-8,+8): 13 cycles
adi_asinf(x) |x| ≤0.5: 11 cycles

0.5< |x| ≤0.75: 12 cycles
0.75< |x| ≤1: 15 cycles

adi_acosf(x) |x| ≤0.5: 12 cycles
0.5< |x| ≤0.75: 13 cycles
0.75< |x| ≤1: 14 cycles (and 15 cycles for negative x)

adi_atanf(x) |x| ≤0.00325: 8 cycles
|x| >0.00325: 20 cycles

adi_atan2f (x,y) x: [−∞, +∞]
y: [−∞, +∞]: 22 cycles

adi_hypotf(x,y) or √(x2 + y2) |x| ≤0.00325: 10 cycles
|x| >0.00325: 22 cycles

adi_rtopf(x,y) x: [−∞, +∞]
y: [−∞, +∞]: 33 cycles

adi_ptorf(r,a) r:[0,+∞]
a:(−∞, +∞): 20 cycles

r:[0,+∞]
a:(−8, +8): 15 cycles

Table 1. Core Clock Cycles taken by MATH Unit Operations

Note:
1. adi_tanf requires an additional 8 cycles if the input operand (after normalizing by 2π) falls in the range

�𝜋𝜋
4

, 3𝜋𝜋
4
� 𝑜𝑜𝑜𝑜 �− 3𝜋𝜋

4
, − 𝜋𝜋

4
�

2. Cycle counts do not include latencies associated with loading and storing from/to the MATH accelerator
registers. With code optimization, it is possible to achieve a MMR latency of:

a. 4-5 cycles, for single-operand functions
b. 6 cycles, for double-operand, single-output functions like adi_atan2f and adi_hypotf
c. 7 cycles, for double-operand, double-output functions like adi_rtopf and adi_ptorf

The MATH unit is operated using stores and loads for operands and results. All hardware synchronization
is handled automatically. Refer to the Math Programming Model in the ADSP-CM41x Mixed-Signal
Control Processor Hardware Reference Manual [1] for a guide to the optimal usage of the MATH
functions using C or assembly.

Using the ADSP-CM41x MATH Unit for Clarke and Park Transforms (EE-396) Page 3 of 7

FPMarkTM
Similar to Coremark, Dhrystone, Whetstone, etc., FPMark [3] is an EEMBC benchmark used to evaluate
embedded processors or processing units. Unlike other benchmarks, it is used to evaluate the floating-point
computation capability of a processor. The FPMark suite consists of algorithms like Fast Fourier Transform,
Horner’s Method, Linear Algebra, ArcTan, Neural Net, Black Scholes, Enhanced Livermore Loops, LU
Decomposition, and Ray Tracer.

Both the Cortex-M4F core and the ADSP-CM41x MATH unit can perform floating-point operations.
Hence, FPMark is a good benchmark to compare the performance between the two. Table 2 shows the
performance improvement (in %) when using the MATH unit as compared to the Cortex-M4F core, for
each algorithm.

FPMark Algorithm Performance
Improvement

ArcTan None
Black Scholes 24.68%
Horner’s Method None
Linear Algebra None
Enhanced Livermore Loops 15.44%
Neural Net 22.08%

Table 2. Performance Comparison between Cortex-M4F Core and ADSP-CM41x MATH Unit

Clarke and Park Transforms
A significant breakthrough in the analysis of three-phase ac machines was the development of the Reference
Frame Theory [4]. These techniques are invaluable for analysis, simulation and digital control (like current,
torque and flux) of AC machines. Over the years, many different reference frames have been proposed for
the analysis of ac machines, with the most commonly used being the Stationary Reference Frame and the
Rotor Reference Frame.

Clarke Transform (Three-Phase to Two-Phase)
Three-phase ac machines are conventionally modeled using phase variable notation, though it is possible to
transform the system to an equivalent two-phase representation. The transformation from three-phase to
two-phase quantities is written in matrix form as Equation 1:

�
𝑖𝑖𝛼𝛼(𝑡𝑡)
𝑖𝑖𝛽𝛽(𝑡𝑡)� =

2
3 �

1 cos (𝛾𝛾) cos (2𝛾𝛾)
0 sin (𝛾𝛾) sin (2𝛾𝛾)� �

𝑖𝑖𝐴𝐴(𝑡𝑡)
𝑖𝑖𝐵𝐵(𝑡𝑡)
𝑖𝑖𝐶𝐶(𝑡𝑡)

�

• γ is the separation between axes of the three-phase machine, which is conventionally 2𝜋𝜋
3

• iA, iB and iC are three-phase stator currents
• iα and iβ are two-phase stator currents

Using the ADSP-CM41x MATH Unit for Clarke and Park Transforms (EE-396) Page 4 of 7

Note that the transformation is equally valid for the voltages and flux linkages.

Substituting 𝛾𝛾 = 2𝜋𝜋
3

, this becomes Equation 2:

 𝑖𝑖𝛼𝛼 =

1
3

(2𝑖𝑖𝐴𝐴 − 𝑖𝑖𝐵𝐵 − 𝑖𝑖𝐶𝐶)

𝑖𝑖𝛽𝛽 =
1
√3

(𝑖𝑖𝐵𝐵 − 𝑖𝑖𝐶𝐶)

⎭
⎬

⎫

In a balanced three-phase ac-machine, 𝑖𝑖𝐴𝐴 + 𝑖𝑖𝐵𝐵 + 𝑖𝑖𝐶𝐶 = 0, which simplifies to Equation 3:

 𝑖𝑖𝛼𝛼 = 𝑖𝑖𝐴𝐴

𝑖𝑖𝛽𝛽 =
1
√3

(𝑖𝑖𝐴𝐴 + 2𝑖𝑖𝐵𝐵) �

Park/Inverse Park Transform (Vector Rotation)
In the analysis of electrical machines, it is generally necessary to adopt a common reference frame for both
the rotor and the stator. For this reason, a second transformation, known as a vector rotation, is formulated
that rotates space vector quantities through a known angle. The transformation can be written in matrix form
as Equation 4:

�
𝑖𝑖𝑑𝑑
𝑖𝑖𝑞𝑞
� = �

cos (𝜃𝜃) sin (𝜃𝜃)
−sin (𝜃𝜃) cos (𝜃𝜃)� �

𝑖𝑖𝛼𝛼
𝑖𝑖𝛽𝛽�

• θ is the angle of rotor from stator
• id and iq are direct and quadrature axis components of the rotated current space vector, respectively

This transformation is referred to as the Park Transformation.

Similarly, the transformation used to rotate from rotor frame to stator frame is the Inverse Park
Transformation, and the matrix form of this transform is shown in Equation 5:

�
𝑖𝑖𝛼𝛼
𝑖𝑖𝛽𝛽� = �

cos (𝜃𝜃) −sin (𝜃𝜃)
sin (𝜃𝜃) cos (𝜃𝜃) � �

𝑖𝑖𝑑𝑑
𝑖𝑖𝑞𝑞
�

The elimination of position dependency from the machine electrical variables is the main advantage of
vector rotation.

Figure 1 illustrates the Clarke and Park Transforms between different Reference Frames.

Using the ADSP-CM41x MATH Unit for Clarke and Park Transforms (EE-396) Page 5 of 7

Figure 1. Current Space Vectors Illustrating Clarke-Park Transforms

Transform Implementation on ADSP-CM41x Devices

Equation 2 (Clarke Transform), Equation 3 (Balanced Clarke Transform), Equation 4 (Park Transform), and
Equation 5 (Inverse Park Transform) are implemented on the ADSP-CM41x device using simple C code [6]
as a part of one of four implementations:

I. the math.h library, which runs on the Cortex-M4F core
II. the CMSIS library [5], which runs on the Cortex-M4F core

III. the MATH Unit Accelerator
IV. the MATH Unit Accelerator operations interleaved with Cortex-M4F core

All four are run with code in SRAM or flash memory, and the number of core cycles required are measured.
Table 3 shows the performance of each function averaged over 128 samples of input data with each setting.

Motor Control Kernels
Clarke

Transform
Clarke Transform

(Balanced) Park Transform Inverse Park
Transform

SRAM Flash SRAM Flash SRAM Flash SRAM Flash
Cortex-M4F (math.h)

Core cycles
21.078 21.078 13.055 13.055 200.547 238.484 201.547 238.484

Cortex-M4F (CMSIS)
Core cycles

NA NA 11.813 11.813 153.266 161.117 153.266 161.117

MATH
Accelerator

Core cycles NA NA NA NA
35.055 35.070 35.055 35.070

ns 146.061 146.126 146.061 146.126
MATH +

Cortex-M4F
Core cycles

NA NA NA NA
32.063 32.086 32.063 32.086

ns 133.594 133.691 133.594 133.691

Table 3. Performance of Motor Control Functions

 The results in Table 3 were obtained using a core clock of 240 MHz and a system
clock of 96 MHz with random values chosen for the input currents and theta.

3-phase Stator currents 2-phase Stator currents Rotor currents

iA

iB

iC

iα

iβ

iα

iβ
id iq

θ

Clarke
Transform

Inverse Park
Transform

Park
Transform

Using the ADSP-CM41x MATH Unit for Clarke and Park Transforms (EE-396) Page 6 of 7

Along with measuring the performance, the code also verifies the accuracy by comparing the output currents
with current implementation and standard implementation (with same set of inputs).

Techniques for Optimal Use of the MATH Unit
This section describes some optimization techniques for getting the best performance out of the MATH unit.

adi_math.h

When developing a C/C++-based project using the MATH unit functions, include the adi_math.h header
file that is included in the ADSP-CM419F EZ-KIT® Board Support Package. This file defines the MATH
unit operations as inline functions, and including it will directly replace the corresponding math.h library
functions so that the code need not be changed when moving across platforms. An example is shown in
Listing 1.

#define sinf(x) adi_sinf(x)

inline
float32_t adi_sinf (float32_t x) {pADI_MATH0->SINF = x; return pADI_MATH0->RES1;}

Listing 1. sinf() implementation in adi_math.h

With the appropriate compiler optimizations, the inline functions are disassembled to the most optimal
assembly instructions, as described in the Math Assembler Programming Model in the ADSP-CM41x
Mixed-Signal Control Processor Hardware Reference Manual [1].

Compiler Optimization

The IAR tools provide four levels of compiler optimization – none, low, medium, and high - and seven
different optimization techniques – common subexpression elimination, loop unrolling, function inlining,
code motion, type-based alias analysis, static clustering, and instruction scheduling. For efficient use of the
adi_math.h library, choose the high (with speed) optimization level and enable at least the common
subexpression elimination and function inlining optimization techniques.

Code Interleaving

The MATH unit does not require the Cortex-M4F core to remain idle while it performs calculations. To
optimize code for performance, it is useful to move unrelated code between the operand-store and the result-
load operations. In this manner, the effective time of a function call is eliminated (except for the MMR
read/write latency).

For instance, referring to park.h in the attached project files [6], the function park_xform_interl()
interleaves the computation of sin() and cos() on the Math Unit with other code (memory access, ALU
and MAC operations) on Cortex-M4F. In Table 3 we see that this reduces the computation of 128 Park
transforms (when running on SRAM) by 383 cycles (=128*(35.055-32.063)).
Refer to the Math Programming Model in the ADSP-CM41x Mixed-Signal Control Processor Hardware
Reference Manual [1] for more information on interleaving code with MATH unit operations.

Using the ADSP-CM41x MATH Unit for Clarke and Park Transforms (EE-396) Page 7 of 7

References
[1] ADSP-CM41x Mixed-Signal Control Processor with ARM Cortex-M4/ARM Cortex-M0 and 16-bit ADCs Hardware

Reference Manual. Rev 0.3, October 2017. Analog Devices, Inc.

[2] IEEE Standard for Floating-Point Arithmetic (IEEE Std 754-2008). August 29, 2008. IEEE Computer Society (Sponsored
by the Microprocessor Standards Committee).

[3] EEMBC® FPMarkTM: The Embedded Industry’s First Standardized Floating-Point Benchmark Suite. August, 2013. The
Embedded Microprocessor Benchmark Consortium.

[4] Clarke and Park Transform. In: Electric Power Quality. Power Systems. 2011. Chattopadhyay S., Mitra M., Sengupta S.
Springer, Dordrecht.

[5] CMSIS-DSP - Controller Functions (https://www.keil.com/pack/doc/CMSIS/DSP/html/group__groupController.html)

[6] Associated ZIP File for EE-396: EE396_v02. April 2018. Analog Devices, Inc.

Document History

Revision Description

Rev 2 – April 2, 2018

 by Punarva Katte

Added performance numbers for Clarke and Park transforms using:

• CMSIS library

• MATH Unit Accelerator operations interleaved with Cortex-M4F core

Attached code for performance measurement.

Rev 1 – January 3rd, 2017
by Punarva Katte

Initial Release

https://www.keil.com/pack/doc/CMSIS/DSP/html/group__groupController.html

	Introduction
	MATH Accelerator Unit
	FPMarkTM
	Clarke and Park Transforms
	Clarke Transform (Three-Phase to Two-Phase)
	Park/Inverse Park Transform (Vector Rotation)

	Transform Implementation on ADSP-CM41x Devices

	Techniques for Optimal Use of the MATH Unit
	adi_math.h
	Compiler Optimization
	Code Interleaving

	References
	Document History

