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Introduction 
The ADSP-CM41x family of mixed-signal control processors provides an on-chip MATH accelerator unit, 
which can be used to offload most of the common transcendental functions such as ex, sin(x), cos(x). 
atan2(y/x), etc., from the Cortex-M4F core. The accelerator is tightly coupled to the Cortex-M4F core and 
is within the core clock domain. The unit is operated with a simple and flexible store-load mechanism by 
storing operands to registers and reading results from other registers. 

Clarke and Park transformations are matrices of transformation to convert the current/voltage system of any 
ac-machine from one base to another. The Clarke transform converts a three-phase system into a two-phase 
system in a stationary frame. The Park transform converts a two-phase system from a stationary frame to a 
rotating frame. By changing the reference frame, it is possible to considerably simplify the complexity of 
the mathematical machine model. These techniques are invaluable tools in the digital control of ac-
machines. 

The purpose of this EE-note is to introduce users to the MATH accelerator unit and techniques that may be 
used to reduce the computation time of mathematical calculations, such as the Clarke and Park transforms. 

MATH Accelerator Unit 
The MATH unit provides accelerated functions such as reciprocal, square root, trigonometric functions, 
exponential functions, and their inverses. It also provides accelerated functions to convert between 
rectangular and polar coordinates. Most operations by this tightly-coupled accelerator complete in a 
deterministic number of core clock cycles, faster than the Cortex-M4F core could accomplish the same task. 
Table 1 provides the cycles taken to execute each of the functions using the MATH unit. The two columns, 
Full Domain and Normal Domain, correspond to different ranges of input to the function. Refer to the 
ADSP-CM41x Hardware Reference Manual [1] for more details. 

The MATH unit provides an easy-to-use function calculator for general programming operations. Its 
operands, results, and functions adhere to the IEEE 754-2008 Single-Precision Floating-Point Arithmetic 
Standard [2]. In general, results returned are accurate to within a standard relative error of 23.5 bits compared 
to the infinitely precise mathematical result. 
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Function Full Domain  Normal Domain 
adi_recipf(x) or 1/x 9 cycles 9 cycles 
adi_sqrtf(x) or √x 9 cycles 9 cycles 
adi_expf(x) or ex 9 cycles 9 cycles 
adi_exp2f(x) or 2x 8 cycles 8 cycles 
adi_log2f(x) 10 cycles 10 cycles 
adi_lnf(x) 11 cycles 11 cycles 
adi_sinf(x) x = [−∞, +∞]: 14 cycles x = (-8,+8): 9 cycles 
adi_cosf(x) x = [−∞, +∞]: 14 cycles x = (-8,+8): 9 cycles 
adi_tanf(x) x = [−∞, +∞]: 20 cycles x = (-8,+8): 13 cycles 
adi_asinf(x) |x| ≤0.5: 11 cycles 

0.5< |x| ≤0.75: 12 cycles 
0.75< |x| ≤1: 15 cycles 

adi_acosf(x) |x| ≤0.5: 12 cycles 
0.5< |x| ≤0.75: 13 cycles 
0.75< |x| ≤1: 14 cycles (and 15 cycles for negative x) 

adi_atanf(x) |x| ≤0.00325: 8 cycles 
|x| >0.00325: 20 cycles 

adi_atan2f (x,y) x: [−∞, +∞] 
y: [−∞, +∞]: 22 cycles 

adi_hypotf(x,y) or √(x2 + y2) |x| ≤0.00325: 10 cycles 
|x| >0.00325: 22 cycles 

adi_rtopf(x,y) x: [−∞, +∞] 
y: [−∞, +∞]: 33 cycles 

adi_ptorf(r,a) r:[0,+∞] 
a:(−∞, +∞): 20 cycles 

r:[0,+∞] 
a:(−8, +8): 15 cycles 

Table 1. Core Clock Cycles taken by MATH Unit Operations 

Note: 
1. adi_tanf requires an additional 8 cycles if the input operand (after normalizing by 2π) falls in the range 
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2. Cycle counts do not include latencies associated with loading and storing from/to the MATH accelerator 
registers. With code optimization, it is possible to achieve a MMR latency of: 

a. 4-5 cycles, for single-operand functions 
b. 6 cycles, for double-operand, single-output functions like adi_atan2f and adi_hypotf 
c. 7 cycles, for double-operand, double-output functions like adi_rtopf and adi_ptorf 

The MATH unit is operated using stores and loads for operands and results. All hardware synchronization 
is handled automatically. Refer to the Math Programming Model in the ADSP-CM41x Mixed-Signal 
Control Processor Hardware Reference Manual [1] for a guide to the optimal usage of the MATH 
functions using C or assembly. 
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FPMarkTM 
Similar to Coremark, Dhrystone, Whetstone, etc., FPMark [3] is an EEMBC benchmark used to evaluate 
embedded processors or processing units. Unlike other benchmarks, it is used to evaluate the floating-point 
computation capability of a processor. The FPMark suite consists of algorithms like Fast Fourier Transform, 
Horner’s Method, Linear Algebra, ArcTan, Neural Net, Black Scholes, Enhanced Livermore Loops, LU 
Decomposition, and Ray Tracer. 

Both the Cortex-M4F core and the ADSP-CM41x MATH unit can perform floating-point operations. 
Hence, FPMark is a good benchmark to compare the performance between the two. Table 2 shows the 
performance improvement (in %) when using the MATH unit as compared to the Cortex-M4F core, for 
each algorithm. 
 

FPMark Algorithm Performance 
Improvement 

ArcTan None 
Black Scholes 24.68% 
Horner’s Method None 
Linear Algebra None 
Enhanced Livermore Loops 15.44% 
Neural Net 22.08% 

Table 2. Performance Comparison between Cortex-M4F Core and ADSP-CM41x MATH Unit 

Clarke and Park Transforms 
A significant breakthrough in the analysis of three-phase ac machines was the development of the Reference 
Frame Theory [4]. These techniques are invaluable for analysis, simulation and digital control (like current, 
torque and flux) of AC machines. Over the years, many different reference frames have been proposed for 
the analysis of ac machines, with the most commonly used being the Stationary Reference Frame and the 
Rotor Reference Frame. 

Clarke Transform (Three-Phase to Two-Phase) 
Three-phase ac machines are conventionally modeled using phase variable notation, though it is possible to 
transform the system to an equivalent two-phase representation. The transformation from three-phase to 
two-phase quantities is written in matrix form as Equation 1: 

�
𝑖𝑖𝛼𝛼(𝑡𝑡)
𝑖𝑖𝛽𝛽(𝑡𝑡)� =

2
3 �

1 cos (𝛾𝛾) cos (2𝛾𝛾)
0 sin (𝛾𝛾) sin (2𝛾𝛾)� �

𝑖𝑖𝐴𝐴(𝑡𝑡)
𝑖𝑖𝐵𝐵(𝑡𝑡)
𝑖𝑖𝐶𝐶(𝑡𝑡)

� 

• γ is the separation between axes of the three-phase machine, which is conventionally 2𝜋𝜋
3

 

• iA, iB and iC are three-phase stator currents 
• iα and iβ are two-phase stator currents 
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Note that the transformation is equally valid for the voltages and flux linkages. 

Substituting 𝛾𝛾 = 2𝜋𝜋
3

, this becomes Equation 2: 

    
 𝑖𝑖𝛼𝛼 =

1
3

(2𝑖𝑖𝐴𝐴 − 𝑖𝑖𝐵𝐵 − 𝑖𝑖𝐶𝐶)

𝑖𝑖𝛽𝛽 =
1
√3

(𝑖𝑖𝐵𝐵 − 𝑖𝑖𝐶𝐶)
         

⎭
⎬

⎫
 

In a balanced three-phase ac-machine, 𝑖𝑖𝐴𝐴 + 𝑖𝑖𝐵𝐵 + 𝑖𝑖𝐶𝐶 = 0, which simplifies to Equation 3: 

         
 𝑖𝑖𝛼𝛼 = 𝑖𝑖𝐴𝐴

𝑖𝑖𝛽𝛽 =
1
√3

(𝑖𝑖𝐴𝐴 + 2𝑖𝑖𝐵𝐵)         � 

Park/Inverse Park Transform (Vector Rotation) 
In the analysis of electrical machines, it is generally necessary to adopt a common reference frame for both 
the rotor and the stator. For this reason, a second transformation, known as a vector rotation, is formulated 
that rotates space vector quantities through a known angle. The transformation can be written in matrix form 
as Equation 4: 

�
𝑖𝑖𝑑𝑑
𝑖𝑖𝑞𝑞
� = �

cos (𝜃𝜃) sin (𝜃𝜃)
−sin (𝜃𝜃) cos (𝜃𝜃)� �

𝑖𝑖𝛼𝛼
𝑖𝑖𝛽𝛽� 

• θ is the angle of rotor from stator 
• id and iq are direct and quadrature axis components of the rotated current space vector, respectively 

This transformation is referred to as the Park Transformation. 

Similarly, the transformation used to rotate from rotor frame to stator frame is the Inverse Park 
Transformation, and the matrix form of this transform is shown in Equation 5: 

�
𝑖𝑖𝛼𝛼
𝑖𝑖𝛽𝛽� = �

cos (𝜃𝜃) −sin (𝜃𝜃)
sin (𝜃𝜃) cos (𝜃𝜃) � �

𝑖𝑖𝑑𝑑
𝑖𝑖𝑞𝑞
� 

The elimination of position dependency from the machine electrical variables is the main advantage of 
vector rotation.  

Figure 1 illustrates the Clarke and Park Transforms between different Reference Frames. 
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Figure 1. Current Space Vectors Illustrating Clarke-Park Transforms 

Transform Implementation on ADSP-CM41x Devices 

Equation 2 (Clarke Transform), Equation 3 (Balanced Clarke Transform), Equation 4 (Park Transform), and 
Equation 5 (Inverse Park Transform) are implemented on the ADSP-CM41x device using simple C code [6] 
as a part of one of four implementations: 

I. the math.h library, which runs on the Cortex-M4F core 
II. the CMSIS library [5], which runs on the Cortex-M4F core 

III. the MATH Unit Accelerator 
IV. the MATH Unit Accelerator operations interleaved with Cortex-M4F core 

All four are run with code in SRAM or flash memory, and the number of core cycles required are measured. 
Table 3 shows the performance of each function averaged over 128 samples of input data with each setting. 

 

Motor Control Kernels 
Clarke 

Transform 
Clarke Transform 

(Balanced) Park Transform Inverse Park 
Transform 

SRAM Flash SRAM Flash SRAM Flash SRAM Flash 
Cortex-M4F (math.h) 

Core cycles 
21.078 21.078 13.055 13.055 200.547 238.484 201.547 238.484 

Cortex-M4F (CMSIS) 
Core cycles 

NA NA 11.813 11.813 153.266 161.117 153.266 161.117 

MATH 
Accelerator 

Core cycles NA NA NA NA 
35.055 35.070 35.055 35.070 

ns 146.061 146.126 146.061 146.126 
MATH + 

Cortex-M4F 
Core cycles 

NA NA NA NA 
32.063 32.086 32.063 32.086 

ns 133.594 133.691 133.594 133.691 
 

Table 3. Performance of Motor Control Functions 

 The results in Table 3 were obtained using a core clock of 240 MHz and a system 
clock of 96 MHz with random values chosen for the input currents and theta. 

3-phase Stator currents 2-phase Stator currents Rotor currents 

iA 

iB 

iC 

iα 

iβ 

iα 

iβ 
id iq 

θ 

Clarke 
Transform 

Inverse Park 
Transform 

Park 
Transform 
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Along with measuring the performance, the code also verifies the accuracy by comparing the output currents 
with current implementation and standard implementation (with same set of inputs). 

Techniques for Optimal Use of the MATH Unit 
This section describes some optimization techniques for getting the best performance out of the MATH unit. 

adi_math.h 

When developing a C/C++-based project using the MATH unit functions, include the adi_math.h header 
file that is included in the ADSP-CM419F EZ-KIT® Board Support Package. This file defines the MATH 
unit operations as inline functions, and including it will directly replace the corresponding math.h library 
functions so that the code need not be changed when moving across platforms. An example is shown in 
Listing 1. 

#define sinf(x)     adi_sinf(x) 
 
inline 
float32_t adi_sinf (float32_t x ) {pADI_MATH0->SINF = x; return pADI_MATH0->RES1;} 

Listing 1. sinf() implementation in adi_math.h 

With the appropriate compiler optimizations, the inline functions are disassembled to the most optimal 
assembly instructions, as described in the Math Assembler Programming Model in the ADSP-CM41x 
Mixed-Signal Control Processor Hardware Reference Manual  [1]. 

Compiler Optimization 

The IAR tools provide four levels of compiler optimization – none, low, medium, and high - and seven 
different optimization techniques – common subexpression elimination, loop unrolling, function inlining, 
code motion, type-based alias analysis, static clustering, and instruction scheduling. For efficient use of the 
adi_math.h library, choose the high (with speed) optimization level and enable at least the common 
subexpression elimination and function inlining optimization techniques. 

Code Interleaving 

The MATH unit does not require the Cortex-M4F core to remain idle while it performs calculations. To 
optimize code for performance, it is useful to move unrelated code between the operand-store and the result-
load operations. In this manner, the effective time of a function call is eliminated (except for the MMR 
read/write latency).  

For instance, referring to park.h  in the attached project files [6], the function park_xform_interl() 
interleaves the computation of sin() and cos() on the Math Unit with other code (memory access, ALU 
and MAC operations) on Cortex-M4F. In Table 3 we see that this reduces the computation of 128 Park 
transforms (when running on SRAM) by 383 cycles (=128*(35.055-32.063)). 
Refer to the Math Programming Model in the ADSP-CM41x Mixed-Signal Control Processor Hardware 
Reference Manual  [1] for more information on interleaving code with MATH unit operations. 
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