Engineer-to-Engineer Note EE-443

ANALOG Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
DEVICES e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic
Memory Controller
Contributed by Deepak SH Rev 1 — September 19, 2022

Introduction

The ADSP-SC595/SC596/SC598 SHARC+® processor incorporates a Dynamic Memory Controller
(DMC), which provides a glueless interface between off-chip DDR3 memory devices and the rest of the
processor infrastructure. For further technical details on the DMC module, refer to the ADSP -
SC595/SC596/SC598 SHARC+ Processor Data Sheet ! and the ADSP-SC595/SC596/SC598 SHARC+
Processor Hardware Reference °1. This EE-note describes some of the important programming
guidelines that must be followed when interfacing the ADSP-SC595/SC596/SC598 SHARC+ processor
with a DDR memory device. The associated zip file®! includes code examples that can be used for basic
DMC initialization, DMC initialization using the DMC Registers List SC595 SC596 SC598.x1lsx
spreadsheet, and DMC re-initialization. The code examples include a subroutine that can be used to
validate the DMC interface for different types of accesses (for example, core, DMA, 8-/16-/32-/64-bit)
and data patterns (for example, all 0x0, all OxF, all 0x5, all OxA, incremental, random, and all bits

toggling).

Software Considerations —- DMC Programming Model
Figure 1 shows the DMC programming flow. DMC initialization consists of:
m Clock Generation Unit (CGU) Initialization

s DMC PHY Initialization

m DMC Controller Initialization

Copyright 2022, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

http://www.analog.com/processors

ANALOG
DEVICES

Place the DMC in Self Refresh

Set DMC_DDR_LAMEx_CTL.CE_RSTDLL bit

First time
Initialization after

power up/Reset?

Initialize CGU, CDU to change Dclk

CLear DMC_DDR_LANEx CTL.CB_RSTDLL bit

DDR content
need to be

Dclk change

Wait for 9000 Dclk cycles required?

preserved?

DMC in Self
Refresh mode? l

Bring DMC out of Self Refresh

Figure 1: DMC Programming Model Flow Chart

CGU Initialization

Verify that the DDR clock (DCLK) is configured to the required frequency. DCLK can come from
either CGUO (default) or CGU1 by programming the CDU. Route DCLK from CGUI1 for cases where
the required DCLK frequency is asynchronous to the CCLK and SYSCLK frequencies.

For example, assume a case where the required CCLK frequency is 1000 MHz, the SYSCLK frequency
is 500 MHz, and the DCLK frequency is 800 MHz. Achieving this frequency combination may not be
possible with a single CGU. To realize this configuration, generate CCLK and SYSCLK using CGUO
and DCLK using CGUI1. For details on how to program the CGU and Clock Distribution Unit (CDU),
refer to the ADSP-SC595/SC596/SC598 SHARC+ Processor Hardware Reference .

Once the DMC is initialized, ensure that the DCLK frequency has not changed.

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 2 of 15

ANALOG
DEVICES

DMC Initialization

After reset, configure the DCLK generated from CGUO to the default frequency. The CGU must be re-
initialized to configure the DCLK to the required new frequency. As shown in Figure 1, complete the
following steps to initializing the CGU for the first time after reset:

1. Set(=1) the DMC_DDR_LANEO CTL0.CB RSTDLL and
DMC DDR_LANE1 CTLO.CB RSTDLL bits.

2. Change the DMC clock frequency.

. Clear (=0) the DMC DDR_LANEO CTL0.CB_RSTDLL and
DMC_DDR_LANEI CTL0.CB_RSTDLL bits.

4. Wait 9000 DCLK cycles for the DLL to lock.

Typically, the CGU is first initialized in either preload code (when the application is

@ loaded through the emulator) or by init code (when the application is loaded by the boot
process, in the init block) The code may need to be modified to meet system
requirements. Refer to the Modifying Default Preload and Initialization Code for
Customized CGU/DMC Settings section for details.

On-the-Fly DMC Re-initialization

If the DCLK frequency is not being changed as part of the re-initialization process, no CGU re-
initialization is necessary.

If the DCLK frequency is being changed as part of the re-initialization process, but the DDR content
does not need to be preserved, use the same steps as described in DMC Initialization to re-initialize the
CGU.

However, if the DCLK frequency is being changed, and code or data already resident in DDR memory
must be preserved, follow these steps to re-initialize the CGU:

1. Ensure that the DMC is in the idle state by waiting for the DMC STAT.IDLE bit to be set (=1).

2. Place the DMC into self-refresh mode by setting (=1) the DMC_CTL.SRREQ bit.

3. Poll the DMC STAT.SRREQ bit to set (=1); wait for the self-refresh mode transition to complete.
4

. Set (=1) the DMC_DDR_LANEO CTL0.CB RSTDL and
DMC_DDR LANE1 CTL0.CB_RSTDLL bits.

Initialize the CGU and CDU to change the DCLK frequency.

6. Clear (=0) the DMC_DDR_LANEO CTL0.CB_RSTDLL and
DMC_DDR_LANEI CTL0.CB_RSTDLL bits.

7. Wait 9000 DCLK cycles for the DLL to lock.
8. Bring the DMC out of self-refresh mode by clearing (=0) the DMC_CTL.SRREQ bit.
9. Poll the DMC STAT.SRREQ bit to clear (=0); wait for the self-refresh exit to complete.

When re-initializing the DMC, the CGU/DMC initialization code should not be executed from the DDR
memory. Refer to the sc598 DMC Re initialization A55 Core0 project in the associated zip filel].

9]

I. Use attribute ((section(".12 cached code"))) to place the functions in internal memory

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 3 of 15

ANALOG

DEVICES
for the AS5 core. Use Pragma ("section(\"seg int code\")") to place the functions in internal
memory for the SHARC core

2. Use attribute ((section(".12 cached data"))) to place the data in internal memory for
the AS5 core. Use Pragma ("section(\"seg_int data\")") to place the data in internal
memory for SHARC core

3. Change the PWR service files as follows:
a. Place adi pwr ClockInit, adi pwr Init and adi pwr SelectCduClockSource functions in
internal memory.
b. Remove adi osal ExitCriticalRegion and adi osal EnterCriticalRegion function
calls in the adi pwr WriteDIVCTLLocal function

The first 16 bytes of DDR memory are overwritten by the controller during
initialization.

DMC PHY Initialization

Refer to Performing ZQ Calibration and Programming Duty Cycles sections in the ADSP-
SC595/SC596/SC598 SHARC+ Processor Hardware Reference '?). Ensure that the workaround to
anomaly 20000117 from the Silicon Anomaly List¥ is applied.

DMC Controller Initialization

Table 1 through Table 4 show the bit fields used to program the DMC. Refer to the Programming the
DMC Controller and Programming DQ Delay Trim sections in the ADSP-SC595/SC596/SC598 SHARC+
Processor Hardware Reference . The controller has a set of registers with bit fields that control:

m Hard-Wired Settings

m Mandatory Settings
m Optional Settings

Hard-Wired Settings
There are some bits which are hard-coded in the DDR controller that software cannot adjust. These are
shaded in ORANGE in the piMc Registers List SC595 SC596 SC598.x1sx spreadsheet.

Mandatory Settings

Many bits in the configuration, timing, and mode registers must be programmed based on the system to
ensure proper DMC operation in the application. These are shaded in GREEN in the
DMC Registers List SC595 SC596 SC598.x1sx spreadsheet. For details on how to program these bit
fields, refer to the ADSP-SC595/SC596/SC598 SHARC+ Processor Hardware Reference .

Optional Settings

There are some bit fields which are not required to be modified for standard DMC operation; however,
deeper knowledge of these bits saves power and improves throughput in certain application
configurations. For example, the pMC CTL.SRREQ bit can be used to operate the DMC in a low-power
(self-refresh) mode. The pMCc_cTL.PREC bit enables automatic precharge after each access. The
DMC_CTL.ADDRMODE bit improves throughput by switching between page and bank interleaving
addressing modes. Users are expected to understand the functionality of these bits clearly by going

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 4 of 15

ANALOG
DEVICES

through the ADSP-SC595/SC596/SC598 SHARC+ Processor Hardware Reference!! and the
corresponding memory device data sheet (especially for mode registers). These bits are shaded in
YELLOW in the pMC Registers List SC595 SC596 SC598.x1sx spreadsheet.

Bit field
Register Bit Field (C=Controller,| Value Comment
M=JEDEC)
/Always program to 1 for standard DMC operation.
DDR3EN IDDR3 mode enable |0-C
Mandatory IAlways program to 1 for standard DMC operation.
INIT I[nitialize DRAM 2-C
Start
SRREQ Self-Refresh Request[3-C Program 0 for standard DMC operation..
IProgram 0 for standard DMC operation.
PDREQ IPower Down 4-C
Request
) IProgram 0 for standard DMC operation.
PREC Precharge 6-C Optional
IProgram 0 for standard DMC operation..
RESET Reset SDRAM 7-C
IADDRMODE [Addressing Program 0 for standard DMC operation. s.
(Page/Bank) Mode [8-C
RDTOWR IRead-to-Write Cycle. e Wity IAlways program to 5 for standard DMC operation.
PPREF Program 0 for standard DMC operation..
DMC_CTL Postpone Refresh ~ [12-C
- Optional
DLLCAL IDLL Calibration Program 0 for standard DMC operation. .
Start e
RDECMDDAT [Enhanced Read
Command and Data (14-C IMandatory|Always program to 1 for standard DMC operation.
IBuffer Enable.
IReserved IReserved 23:15-C IMandatory |Always write these bits with zero.
ZQCS Z7Q Calibration Short[24-C Program 0 for standard DMC operation..
7ZQCL ZQ Calibration Long[25-C Program 0 for standard DMC operation. .
; - Optional
RL_DQS Read leveling during '
DQS Gating h6-C IProgram 0 for standard DMC operation. .
Training.
AL EN |Additive Latency Program 1 for Dclk frequency above 667 MHz
= IMandatory
IEnable n7-C
DDR 2133 IDDR3 2133 speed [28-C Program 1 for Dclk frequency above 933 MHz. This also
— . . IMandatory
bin operation enabled tras[5].
Reserved IReserved 31:29 IMandatory |Always write these bits with zero.

Table 1: DMC Control Register Bit Fields

ANALOG
DEVICES

Bit field
Register Bit Field (C=Controller,| Value Comment
M=JEDEC)

DMC_CFG

Table 2: DMC Configuration Register Bit Fields

Bit field
Register Bit Field (C=Controller,| Value Comment
M=JEDEC)

DMC_TRO

DMC_TR1

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 6 of 15

ANALOG
DEVICES

Table 3: DMC Timing Register Bit Fields

Bit field
Register Bit Field (C=Controller, Comment
M=JEDEC)

DMC_MRO

P Active Power Down [12-C, A12-M |Optional |Can be left unchanged for standard DMC
Mode operation.

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 7 of 15

ANALOG

DEVICES
DMC_MRI g 'Write Leveling 7-C, A7-M This bit shall be written with one
Reserved Reserved 8, 10-C, AS, These bits are reserved for future use (must be
A10 -M programmed to zero).

TDQS Termination Data [11-C, A11-M [Mandatory Should be zero, as it is not applicable for 16-bit

Strobe devices.
QOFF Output Buffer 12-C, A12-M Should be zero.

Enable
Reserved Reserved 15:13-C, Hard These bits are hard-wired to zero.

A15:A13-M Wired

Reserved Reserved 31:16-C
PASR Partial Array Self [2:0-C, A2:A0-M|Optional [This bit is unchanged for standard DMC

Refresh operation.
CWL CAS Write Latency [5:3-C, A5:A3-M Mandatory Obtain from memory device data sheet.
IASR Auto Self Refresh [6-C, A6-M

These bits are unchanged for standard DMC
DMC MRz SRT Self-Refresh 7-C, A7-M Optional |operation.
- TemperatureRange
Reserved Reserved 31-8-C These bits is hard-wired to zero.
Hard
Wired

Table 4: DMC DDR3 Mode Register Bit Fields

DMC Initialization Code

The zip file!® associated with this EE-note provides code examples that can be used to initialize
the CGU and DMC controller for any custom settings.

CGU Initialization
For custom

settings,

change

the

structures

ADI_PWR CGU PARAM LIST and

ADI PWR CDU PARAM LIST in the adi pwr SC59x config.c file accordingly. Also, change the
cclkdelk ratio ratio accordingly. For example, when CCLK = 1000 MHz and Dclk = 800 MHz, the
ratio is 1000/800 = 1.25.

DMC Initialization

The adi dmc.c and adi_dmc.h files can be used to initialize the DMC to the required settings.

For example, the main.c file in the ADSP-SC598 DMCconfigGenerator Corel project in the

associated zip filel! illustrates two ways to initialize the DMC for a DDR3 memory with DCLK

frequency of 800 MHz as per the JESD79-3F JEDEC specification!!.

m Initialize DMC_Basic — Enable this macro in the main.h file to initialize the DMC by configuring
the ADI pMC PARAM LIST structure. Figure 2 shows a snapshot from the main.c file of the
ADI DMC_PARAM LIST structure of code used to initialize the DMC with the Tnitialize DMC Basic
macro. All of the DDR parameters required to initialize DMC/DDR memory are computed based on
the JESD79-3F JEDEC specification'®. The Initialize DMC Basic approach can be used to
quickly test DDR across different frequencies, DriveStrength, and ODT settings. The complete list

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443)

Page 8 of 15

ANALOG
DEVICES

of DDR parameters used in this method can be printed on a console using the
adi printDMCconfig () API (enable the print DMC Configmacro). The DDR parameters printed
are in the format used in the adi dmc SC59x family x config.h file of the preload/Init code.

ADI_DMC_PARAM LIST Dmec_config;

Dmc_config.DDRSpeedBin = ADI DDRI MEM 1660; /* Choose the Speedhin based on the DDR clock frequency */
Dmc_config.DDRClockTimePeriod = 1.25f; /* Time peried or tck of DDR clock */
Dme_config.CoreClockTimePeriod = 1.00f; /* Time peried of Core clock */

Dmc_config.ProAddCmdDry = 1@@; /* Processor's DriveStrength of Address and command */
Dme_config.ProClkDgsDrv = 9@; /* Processor's DriveStrength of 0Q, DQ5S, DM and clock */
Dmc_config.Proddt = 75; /* Processor's ODT of DQ, DQS, DM */

Dmc_config.MemSize = ADI DDR3 MEM BGb; /* size of DDR memory */

Dmc_config.MemTemp = ADI DDR3 MEM NOMINAL TEMP; /* Operating temperature range of DDR memory */
Dmec_config.MemDrv = ADI_DDR3 DRV 48; /* DDR memory's DriveStength */

Dme_config.MemOdt = ADI DDR3 ODT 12@; /* DDR memory's ODT */

celkdelk ratio = (Dmc_config.DDRClockTimePericd/ Dmec_config.CoreClockTimePericd);

Figure 2: ADI_DMC_PARAM_LIST Snapshot

DDR parameters printed or used for configuring the DMC with the

Initialize DMC Basic method should work from a functional perspective. However,
check the parameter values with the specific memory device data sheet using the

DMC Registers List SC595 SC596 SC598.x1sx spreadsheet

@ Based on the JESD79-3F JEDEC specifications!®! given for a particular speed bin, the

m Initialize DMC_Advanced - Enable this macro in main.h file to initialize the DMC by
configuring the ADI DMC CONFIG structure. This structure is the same as the one used in the
adi_dmc SC59x family x config.h file of the preload/Init code. For custom DMC settings, the
ADI DMC CONFIG structure must be updated according to the system requirements as shown in Figure
3 and Figure 4. The ADI DMC CONFIG structure can be configured using the
DMC_Registers List SC595 SC596 SC598.x1sx spreadsheet in the associated zip file¥l by
entering various DMC-specific and DDR memory-specific parameters (from the device data sheet).
See Figure 5. Use the generated hex values for the ADI pDMC conrFIG structure from the
DMC Registers List SC595 SC596 SC598.x1sx spreadsheet as shown in Figure 6 to configure the
macros in main.h file as shown in Figure 3. This method of DMC initialization can be used to
customize the DDR initialization routine in the preload/initcode as per the DDR memory data sheet;
to gives the flexibility to fine tune any of the required DDR parameters.

#define CFGB_REG_DDR_DLLCTLCFG @x8cfesc22ul

#tdefine CFGE_REG_DMC_MR2MR3 axealsaea4ul
#tdefine CFGE_REG_DMC_CTL_VALUE ex@seesasgsul
#define CFGB _REG_DMC_MRMRL Axed7eeecBul

#define CFG@_REG_DMC_TR@_VALUE @x4271chébul
#define CFG@ REG_DMC_TR1 VALUE @x61181868ul
#define CFG@_REG_DMC_TR2 VALUE @x@@458628ul
#define CFG@ REG DMC_ZQCTL @ @x@@785A64ul
#define CFG@_REG_DMC_ZQCTL 1 @xB@8easeeul
#define CFG@ REG DMC_ZQCTL 2 @x70000000ul

Figure 3: main.h file Snapshot

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 9 of 15

cclkdclk ratic = 1.25;

W

8 '* Set DMC Lane Reset

a9 adi_dmc_lane_reset(true);
166
181 /* Initialize CGU and CDU *,
182 if((uint32_t)adi_pwr_cfge_init() !=
103 {
184 return ADI DMC_FAILURE;
105 }
186
187 * Clear DMC Lane Reset
183 adi_dmc_lane_reset(false);
189

=

static ADI_DMC_CONFIG config =

{
CFG@_REG_DDR_DLLCTLCFG,
CFG@_REG_DMC_MR2ZMR3,
CFG@_REG_DMC_CTL_VALUE,
CFGA_REG_DMC_MRMR1,
CFG@_REG_DMC_TR@ VALUE,
CFG@_REG_DMC_TR1_VALUE,
CFGA_REG_DMC_TR2 VALUE,
CFG@_REG_DMC_ZQCTL @,
CFG@_REG_DMC_ZQCTL_1,
CFGA_REG_DMC_ZQCTL 2

[l ol
[l I = v

Ld ka

s

/* Initialize DMC PHY registers */
adi_dmc_phy calibration(&config);

~ oW

F
L I e I S N I S I I I R R

Figure 4: main.c file Snapshot

// add macros here in a header file and that

/* ulDDR_DLLCTLCFG
/* ulDDR_EMR2EM
/* ulDDR_CTL
/* ulDDR_MR
/* ulDDR_TR®
/* ulDDR_TR1
/* ulDDR_TR2
/* ulDDR_ZQCTL®
/* ulDDR_ZQCTL1
* WlDDR_ZQCTL2

ANALOG
DEVICES

can be used here

R3

128 /* Initialize DMC Controller */

129 if(adi_dmc_ctrl init(&config) != ADI DMC SUCCESS)
138 {

131 return ADI_DMC_ FAILURE;

132 ¥

Parameter Value Unit
DCLK 800 MHz

SDRAM Size 8192 MB

tRCD 13.75 ns

tWTR 6 tCK

tRP 13.75 ns

tRAS 35 ns

tRC 48.75 ns

tMRD 4 tCK

tREFI 7.8 us

tRFC 350 ns

tRRD 6 tCK

tFAW 40 ns

tRTP 6 tCK

tWR 15 ns

P 5 tCK

tCKE 4 tCK

CAS Read Latency (CL) 11 tCK

Burst Length 8 tCK
Driver Impedance (Memory) RZQ/6({40) Ohms
On Die Termination (Memory) RZQ/2(120) Ohms
Driver Impedance (Processor- 100 Ohms
Driver Impedance (Processor- 90 Ohms
On Die Termination (Processor) 75 Ohms

Additive Latency (AL) AL Disabled tCK

CAS Write Latency (CWL) 8 tCK

Figure 5: DMC_Registers_List SC595 SC596 SC598.xIsx Snapshot

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443)

Page 10 of 15

ANALOG

DEVICES
ADI_DMC_CONFIG Structure |32 bit Hex value
ulDDR_DLLCTLCFG CF00722
ulDDR_EMR2EMR3 180004
ulDDR_CTL 8000A05
ulDDR_MREMR1 D7000C0
ulDDR_TRO 4271CB6B
ulDDR_TR1 61181860
ulDDR_TR2 450620
ulDDR_ZQCTLO 785A64
ulDDR_ZQCTLL 0
ulDDR_ZQCTL2 70000000

Figure 6: DMC_Registers_List SC595 SC596 SC598.xIsx Snapshot

Validating the DMC Interface

Once the DMC is initialized, it is important to validate it.
s All DMC registers must be initialized to the correct values

m Resolve any basic issues with the DMC hardware interface

m The DMC must be correctly initialized by the software. The register values from the register browser
can be compared with the register values in the DMC Registers List SC595 SC596 SC598.x1sx
spreadsheet.

The Memory Sweep Test () function can be used to check whether all the cores and DMA
(MDMADO) accesses to the DMC are working for different data word sizes (8-/16-/32-/64-bit and
32-byte DMA) and for different data patterns (0x0, OxF, 0x5, 0xA, incremental, random, and all
bits toggling). The main.c file in the ADSP-5C598 DMCconfigGenerator corel project uses
these functions to validate the DMC interface. The memory sweep size used in this code is
0x800000 (8 MB); it can be changed to validate the full DMC memory range (for example, 2 Gb
=256 MB).

Creating Preload and Initialization Code with Customized CGU and DMC Settings

Preload and initialization code are two concepts that are related to configuring the CGU and DMC
prior to the application code running. For a stand-alone application, while performing an active
debug via the emulator preload code is used and for controlling the boot stream initialization code
is used.

Preload Code

When performing active debug on a target platform, an emulator is used. To make working with
the board as transparent as possible for the user, the CrossCore® Embedded Studio (CCES) tools
automate initialization of the CGU/DMC hardware. Applications can be built and loaded to off-
chip memory for use in a debug session on the targeted board. Debugging uses Preload Code. The
preload code projects can be found at Analog Devices\CrossCore Embedded Studio
2.11.0\SHARC\ldr\init_code\SC59x_Init’ in the CCES installation directory.

CCES uses the pre-built executable file (See Figure 7) to initialize the CGU and DMC before
loading the actual application using the emulator.

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 11 of 15

ANALOG

Program Options Silicon revision
w i Device 0 [Core 1]
J Ch\Analog Devices\CrossCore Embedded Studio 2.11.005HARC\Idr ezkitSC598W _preload_corel.dxe Rezet, Run after load any

Figure 7: Preload Code for EV-SC598-SOM

Initialization Code

Unlike preload code, initialization code is actually a part of the application. It is separate from the
application. The DXE output is pre-pended to the DXE file of application when CCES assembles
the loader stream (LDR) that the processor parses during the boot process. This separate DXE is
called the Initialization Block in the LDR file. The DXE is booted first into on-chip memory, and
subsequently executed before any attempts are made to resolve anything to the external DDR
space. It is the ideal place for configuring the CGU and DMC in advance of trying to boot to DDR
memory. The Init code projects can be found at Analog Devices\CrossCore Embedded Studio
2.11.0\SHARC\ldr\init_code\SC59x_Init in the CCES installation directory. The DXE output
corresponding to the Init code project can be used as the default initialization code when generating
an LDR file by pointing to the DXE in the Loader Options page of the Project Properties. See

Figure 8.
% Tool Settings @ Processor Settings # Build Steps Build Artifact W Binary Parsers @ Error Parsers

% CrossCore SHARC Assembler Initialization file (-init)
® CrossCore SHARC C/C++ Compiler
® CrossCore SHARC Linker
v & CrossCore SHARC Loader
2 General

[l Use alternative start address or symbol

% |nitialization
& Executable Files
2 Additional Options

Figure 8: Initialization Code Selection in the Loader Options

Typically, for applications requiring a one-time CGU and DMC initialization after reset, the
preload (whenloading the application via emulator) or initialization code (when booting the
application standalone) is sufficient. However, it is important to understand how to use and modify
the default preload and initialization code for customized CGU/DMC settings.

Modifying Default Preload and Initialization Code for Customized CGU/DMC Settings
The CGU and DMC settings in the default preload and initialization source code can be modified for the
following conditions:

m When using non-default CGU settings

m When using a custom board with a different memory device than the one available on the evaluation
board

For example, use the following steps to modify the default preload code sc5948 preload Core0
project for the ADSP-SC598 processor.

1. Edittheadi pwr sC598 family 1GHz config.h fileto change the CGU and CDU configurations.
2. Editthe adi pwr SC59x config.h file to configure the cclkdclk ratio value.

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 12 of 15

ANALOG
DEVICES

3. Editthe adi dmc SC598 family 800MHz config.h file as shown in Figure 10 using the output
printed on console (shown in Figure 9) and the adi printbMCconfig () API present in the ADsP-
SC598 DMCconfigGenerator corel project. Or, initialize the ADT DMC CONFIG structure in the
adi_dmc SC59x_config.c file (shown in Figure 11) using the
DMC Registers List SC595 SC596 5C598.x1sx (shown in Figure 3 and Figure 6) spreadsheet.
See the the associated zip filel’! for the spreadsheet, and code examples. Refer to the DMC
Initialization section for details.

& Console 2 |'_ Problems O Executables

Output
CFGB_BIT_DMC_CTL_DDR3EN 10l
CFGB_BIT_DMC_CTL_RDTOWR 5ul
CFGB_REG_DMC_CTL_VALUE ({CFGB_BIT_DMC_CTL_DDR3EN<<BITP_DMC_CTL_DDR3EN)|BITM_DMC_CTL_INIT|(CFG®_BIT_DMC_CTL_RDTOWR<<BITP_DMC_CTL RDTOWR) |BITM_DMC_CTL_AL_EN)
#define CFG@_BIT DMC_CFG_SDRSIZE (ENUM_DMC_CFG_SDRSIZEBG)
#define CFGB_REG_DMC_CFG_VALUE \
(ENUM_DMC_CFG_IFWIDI1G | /* Interface Width - always 16-bit */ \
ENUM_DMC_CFG_SDRWIDIE | /* SDRAM Width - always 16-bit */ \
CFGO_BIT_DMC_CFG_SDRSIZE | /* SDRAM Size =/ \
ENUM_DMC_CFG_EXTBANKL) /* External Banks - always 1 bank */
ADI_DMC_PARAM DLLCOUNT 248ul
CFG@_REG_DMC_DATACYC 12ul

Figure 9: adi_printDMCconfig() APl Snapshot

@ adi_dmc_SC598 _family_800MHz_config.h &2

#include <sys/platform.h>

WoR

" DMC@ setup for the EV-5C598-50M :
- uses a single 4Gb IS46TR16512BL-125KBLA2 DDR3 chip configured here for
888 MHz DCLK.

Bl ol o

/*! Constant value, should not be altered*/
#define CFGE_BIT DMC_CTL_RDTOWR 5ul

I

2
6
8
9e / DMC_CTL /
8
2
3

= #define CFGB_REG_DMC_CTL_VALUE (BITM_DMC_CTL_DDR3EN |\

BITM_DMC_CTL_INIT |\

(CFG@_BIT DMC_CTL_RDTOWR<<BITP_DMC_CTL_RDTOWR) |\
BITM_DMC_CTL_RDECMDDAT |\

BITM_DMC_CTL_AL_EN)

3
49 MC_CFG
5@ /*! DDR3 memory size selected */

51 #if CONFIG_DMC@ == ISSI_8Gb_DDR3_888MHZI

52 #define CFGB_BIT DMC_CFG_SDRSIZE (ENUM_DMC_CFG_SDRSIZESG)

53 #elif CONFIG_DMC® == ISSI_4Gb_DDR3_8BGOMHZ

54 #define CFG@ BIT DMC_CFG_SDRSIZE (ENUM_DMC_CFG_SDRSIZE4G)

55 #else

56 #error unexpected

57 #endif

58

59 /*! walue for the DMC_CFG (DMC Configuration) register. */

6@= #idefine CFGB_REG_DMC_CFG_VALUE \

61 (ENUM_DMC_CFG_IFWIDIG | /* Interface Width - always 16-bit */ \

62 ENUM_DMC_CFG_SDRWID16 | /* SDRAM Width - always 16-bit */ \

&3 CFG@_BIT DMC_CFG_SDRSIZE | /* SDRAM Size */ \

64 ENUM_DMC_CFG_EXTBANKL) /* External Banks - al 1 bank */

65 / DMC_DLLCTL /

Figure 10: adi_dmc_SC598 family 800MHz_config.h Snapshot

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 13 of 15

Bl

Figure 11: adi_dmc_SC59x_config.c Initializing ADI_DMC_CONFIG Structure Snapshot

2] adi_dmec_SC5%%_config.c i3

{

445 uint32_t adi_dmc_cfgl init(void)

uint32_t status = Bu;

static ADI_DMC_CONFIG config =

i
CFG@_ REG_DDR_DLLCTLCFG,
CFG@_REG_DMC_MR2MR3,
CFG@_REG_DMC_CTL_VALUE,
CFG@_REG_DMC_MRMRL,
CFG@_REG_DMC_TR® VALUE,
CFGR@_REG_DMC_TR1_WALUE,
CFGR_REG_DMC_TR2_WALUE,
exea785A64ul, /* Bx73 (Data/DRS ODT)

Bx5a (98chms Data/DQS/DM/CLK Drive Strength)

8x64 (18Bohms Address/Command Drive Strength) */

Bul,
Bx 7000606601

Is

/* Initialize DMC PHY registers */
adi_dmc_phy calibration(&config);

J* Initialize DMC Controller */
if(adi_dmc_ctrl_init(&config) != ADI_DMC SUCCESS)
i

/* Assign error status return wvalue */

status = 1uj;

}

return status;

ANALOG
DEVICES

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443)

Page 14 of 15

References

ANALOG
DEVICES

[1] ADSP-SC595/SC596/SC598: SHARC+ Dual-Core DSP with Arm Cortex-A55 Preliminary Data Sheet (Rev. PrE).

Analog Devices, Inc.

[2] ADSP-SC595/SC596/SC598 SHARC+ Processor Hardware Reference. May 2022, Analog Devices, Inc.

[3] Associated ZIP File (EE-443V01.zip) forADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory
Controller (EE-443). September 2022. Analog Devices, Inc.

[4] Silicon Anomaly List of the SHARC+®ADSP-SC595/ SC596/SC598 product(s), August 2022, Analog Devices, Inc.
[5]1 JESD79-3F, July 2012. JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

Document History

Revision

Description

Rev 1 —September, 2022
by Deepak SH

Initial Release.

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 15 of 15

	Introduction
	Software Considerations – DMC Programming Model
	CGU Initialization
	DMC Initialization
	On-the-Fly DMC Re-initialization
	DMC PHY Initialization
	DMC Controller Initialization
	Hard-Wired Settings
	Mandatory Settings
	Optional Settings

	DMC Initialization Code
	CGU Initialization
	DMC Initialization

	Validating the DMC Interface
	Creating Preload and Initialization Code with Customized CGU and DMC Settings
	Preload Code
	Initialization Code
	Modifying Default Preload and Initialization Code for Customized CGU/DMC Settings

	References
	Document History

