
Engineer-to-Engineer Note EE-443

Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic
Memory Controller
Contributed by Deepak SH Rev 1 – September 19, 2022

Copyright 2022, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
The ADSP-SC595/SC596/SC598 SHARC+® processor incorporates a Dynamic Memory Controller
(DMC), which provides a glueless interface between off-chip DDR3 memory devices and the rest of the
processor infrastructure. For further technical details on the DMC module, refer to the ADSP -
SC595/SC596/SC598 SHARC+ Processor Data Sheet [1] and the ADSP-SC595/SC596/SC598 SHARC+
Processor Hardware Reference [2]. This EE-note describes some of the important programming
guidelines that must be followed when interfacing the ADSP-SC595/SC596/SC598 SHARC+ processor
with a DDR memory device. The associated zip file[3] includes code examples that can be used for basic
DMC initialization, DMC initialization using the DMC_Registers_List_SC595_SC596_SC598.xlsx
spreadsheet, and DMC re-initialization. The code examples include a subroutine that can be used to
validate the DMC interface for different types of accesses (for example, core, DMA, 8-/16-/32-/64-bit)
and data patterns (for example, all 0x0, all 0xF, all 0x5, all 0xA, incremental, random, and all bits
toggling).

Software Considerations – DMC Programming Model
Figure 1 shows the DMC programming flow. DMC initialization consists of:
 Clock Generation Unit (CGU) Initialization
 DMC PHY Initialization
 DMC Controller Initialization

http://www.analog.com/processors

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 2 of 15

Figure 1: DMC Programming Model Flow Chart

CGU Initialization
Verify that the DDR clock (DCLK) is configured to the required frequency. DCLK can come from
either CGU0 (default) or CGU1 by programming the CDU. Route DCLK from CGU1 for cases where
the required DCLK frequency is asynchronous to the CCLK and SYSCLK frequencies.
For example, assume a case where the required CCLK frequency is 1000 MHz, the SYSCLK frequency
is 500 MHz, and the DCLK frequency is 800 MHz. Achieving this frequency combination may not be
possible with a single CGU. To realize this configuration, generate CCLK and SYSCLK using CGU0
and DCLK using CGU1. For details on how to program the CGU and Clock Distribution Unit (CDU),
refer to the ADSP-SC595/SC596/SC598 SHARC+ Processor Hardware Reference [2].
Once the DMC is initialized, ensure that the DCLK frequency has not changed.

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 3 of 15

DMC Initialization
After reset, configure the DCLK generated from CGU0 to the default frequency. The CGU must be re-
initialized to configure the DCLK to the required new frequency. As shown in Figure 1, complete the
following steps to initializing the CGU for the first time after reset:
1. Set (=1) the DMC_DDR_LANE0_CTL0.CB_RSTDLL and

DMC_DDR_LANE1_CTL0.CB_RSTDLL bits.
2. Change the DMC clock frequency.
3. Clear (=0) the DMC_DDR_LANE0_CTL0.CB_RSTDLL and

DMC_DDR_LANE1_CTL0.CB_RSTDLL bits.
4. Wait 9000 DCLK cycles for the DLL to lock.

 Typically, the CGU is first initialized in either preload code (when the application is
loaded through the emulator) or by init code (when the application is loaded by the boot
process, in the init block) The code may need to be modified to meet system
requirements. Refer to the Modifying Default Preload and Initialization Code for
Customized CGU/DMC Settings section for details.

On-the-Fly DMC Re-initialization
If the DCLK frequency is not being changed as part of the re-initialization process, no CGU re-
initialization is necessary.
If the DCLK frequency is being changed as part of the re-initialization process, but the DDR content
does not need to be preserved, use the same steps as described in DMC Initialization to re-initialize the
CGU.
However, if the DCLK frequency is being changed, and code or data already resident in DDR memory
must be preserved, follow these steps to re-initialize the CGU:
1. Ensure that the DMC is in the idle state by waiting for the DMC_STAT.IDLE bit to be set (=1).
2. Place the DMC into self-refresh mode by setting (=1) the DMC_CTL.SRREQ bit.
3. Poll the DMC_STAT.SRREQ bit to set (=1); wait for the self-refresh mode transition to complete.
4. Set (=1) the DMC_DDR_LANE0_CTL0.CB_RSTDL and

DMC_DDR_LANE1_CTL0.CB_RSTDLL bits.
5. Initialize the CGU and CDU to change the DCLK frequency.
6. Clear (=0) the DMC_DDR_LANE0_CTL0.CB_RSTDLL and

DMC_DDR_LANE1_CTL0.CB_RSTDLL bits.
7. Wait 9000 DCLK cycles for the DLL to lock.
8. Bring the DMC out of self-refresh mode by clearing (=0) the DMC_CTL.SRREQ bit.
9. Poll the DMC_STAT.SRREQ bit to clear (=0); wait for the self-refresh exit to complete.
When re-initializing the DMC, the CGU/DMC initialization code should not be executed from the DDR
memory. Refer to the SC598_DMC_Re_initialization_A55_Core0 project in the associated zip file[3].

1. Use __attribute__((section(".l2_cached_code"))) to place the functions in internal memory

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 4 of 15

for the A55 core. Use _Pragma("section(\"seg_int_code\")") to place the functions in internal
memory for the SHARC core

2. Use __attribute__((section(".l2_cached_data"))) to place the data in internal memory for
the A55 core. Use _Pragma("section(\"seg_int_data\")") to place the data in internal
memory for SHARC core

3. Change the PWR service files as follows:
a. Place adi_pwr_ClockInit, adi_pwr_Init and adi_pwr_SelectCduClockSource functions in

internal memory.
b. Remove adi_osal_ExitCriticalRegion and adi_osal_EnterCriticalRegion function

calls in the adi_pwr_WriteDIVCTLLocal function

 The first 16 bytes of DDR memory are overwritten by the controller during
initialization.

DMC PHY Initialization
Refer to Performing ZQ Calibration and Programming Duty Cycles sections in the ADSP-
SC595/SC596/SC598 SHARC+ Processor Hardware Reference [2]. Ensure that the workaround to
anomaly 20000117 from the Silicon Anomaly List[4] is applied.

DMC Controller Initialization
Table 1 through Table 4 show the bit fields used to program the DMC. Refer to the Programming the
DMC Controller and Programming DQ Delay Trim sections in the ADSP-SC595/SC596/SC598 SHARC+
Processor Hardware Reference [2]. The controller has a set of registers with bit fields that control:
 Hard-Wired Settings
 Mandatory Settings
 Optional Settings

Hard-Wired Settings
There are some bits which are hard-coded in the DDR controller that software cannot adjust. These are
shaded in ORANGE in the DMC_Registers_List_SC595_SC596_SC598.xlsx spreadsheet.

Mandatory Settings
Many bits in the configuration, timing, and mode registers must be programmed based on the system to
ensure proper DMC operation in the application. These are shaded in GREEN in the
DMC_Registers_List_SC595_SC596_SC598.xlsx spreadsheet. For details on how to program these bit
fields, refer to the ADSP-SC595/SC596/SC598 SHARC+ Processor Hardware Reference [2].

Optional Settings
There are some bit fields which are not required to be modified for standard DMC operation; however,
deeper knowledge of these bits saves power and improves throughput in certain application
configurations. For example, the DMC_CTL.SRREQ bit can be used to operate the DMC in a low-power
(self-refresh) mode. The DMC_CTL.PREC bit enables automatic precharge after each access. The
DMC_CTL.ADDRMODE bit improves throughput by switching between page and bank interleaving
addressing modes. Users are expected to understand the functionality of these bits clearly by going

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 5 of 15

through the ADSP-SC595/SC596/SC598 SHARC+ Processor Hardware Reference [2] and the
corresponding memory device data sheet (especially for mode registers). These bits are shaded in
YELLOW in the DMC_Registers_List_SC595_SC596_SC598.xlsx spreadsheet.

Table 1: DMC Control Register Bit Fields

Register

Bit Field

Bit field
(C=Controller,

M=JEDEC)

Value

Comment

DMC_CTL

DDR3EN

DDR3 mode enable

0-C

Mandatory

Always program to 1 for standard DMC operation.

INIT

Initialize DRAM
Start

2-C

Always program to 1 for standard DMC operation.

SRREQ Self-Refresh Request 3-C

Optional

Program 0 for standard DMC operation..

PDREQ

Power Down
Request

4-C
Program 0 for standard DMC operation.

PREC

Precharge

6-C

Program 0 for standard DMC operation.

RESET

Reset SDRAM

7-C

Program 0 for standard DMC operation..

ADDRMODE Addressing
(Page/Bank) Mode

8-C

Program 0 for standard DMC operation. s.

RDTOWR Read-to-Write Cycle.
11:9-C Mandatory Always program to 5 for standard DMC operation.

PPREF
Postpone Refresh

12-C

Optional

Program 0 for standard DMC operation..

DLLCAL DLL Calibration
Start

13-C

Program 0 for standard DMC operation. .

RDECMDDAT Enhanced Read
Command and Data
Buffer Enable.

14-C Mandatory

Always program to 1 for standard DMC operation.

Reserved Reserved 23:15-C Mandatory Always write these bits with zero.

ZQCS ZQ Calibration Short 24-C

Optional

Program 0 for standard DMC operation..

ZQCL ZQ Calibration Long 25-C Program 0 for standard DMC operation. .

RL_DQS Read leveling during
DQS Gating
Training.

26-C

Program 0 for standard DMC operation. .

AL_EN Additive Latency
Enable

27-C

Mandatory
Program 1 for Dclk frequency above 667 MHz

DDR_2133 DDR3_2133 speed
bin operation

28-C Mandatory Program 1 for Dclk frequency above 933 MHz. This also
enabled tras[5].

Reserved Reserved 31:29 Mandatory Always write these bits with zero.

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 6 of 15

Table 2: DMC Configuration Register Bit Fields

Register

Bit Field

Bit field
(C=Controller,

M=JEDEC)

Value

Comment

DMC_TR0

TRCD

RAS# to CAS#
delay time

3:0-C

Mandatory

Obtain from memory device data sheet.

TWTR

Write-to-Read
delay

7:4-C

TRP

Precharge-to-
Active time

11:8-C

TRAS

Active-to-
Precharge time

17:12-C

Reserved Reserved 19:18-C Always write these bits with zero.

TRC

Active-to-Active
time

25:20-C

Obtain from memory device data sheet.

Reserved Reserved 27:26-C Always write these bits with zero.

TMRD

Mode register
set- to-active

31:28-C

Obtain from memory device data sheet.

DMC_TR1

TREF Refresh Interval 13:0-C

Reserved Reserved 15:14-C Always write these bits with zero.

TRFC

Refresh-to-
Active
command delay

24:16-C

Obtain from memory device data sheet.

Reserved Reserved 27-25-C Always write these bits with zero.

TRRD

Active-to-Active
time

30-28-C

Obtain from memory device data sheet.

Reserved Reserved 31 Always write this bit with zero.

TFAW

Four Activate
Window

4:0-C

Obtain from memory device data sheet. tFAW is not
applicable for LPDDR mode and should be kept zero.

Register

Bit Field

Bit field
(C=Controller,

M=JEDEC)

Value

Comment

DMC_CFG

IFWID

Interface Width

3:0-C

Mandatory

Always program to 2 (16-bit). All other values are
reserved.

SDRWID

SDRAM Width

7:4-C

Always program to 2 (16-bit). All other values are
reserved.

SDRSIZE SDRAM Size 11:8-C Obtain from memory device data sheet.

EXTBANK

External Banks

15:12-C

Always program to zero (16-bit). All other values are
reserved.

Reserved Reserved 31:16-C Always write these bits with zero.

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 7 of 15

DMC_TR2

TFAW5 Extended
Timing Four-
Active Window
bit 5

5-C

Reserved Reserved 7:6-C Always write these bits with zero.

TRTP

Internal Read to
Precharge time

11:8-C

Obtain from memory device data sheet. tRTP is not
applicable for LPDDR mode and should be kept zero.

TWR
(LPDDR only)

Write recovery
time

15:12-C

Obtain from memory device data sheet.

TXP

Exit power down
to next valid
command

19:16-C

tCKE

CKE min pulse
width

23:20-C

Reserved Reserved 31:24-C Always write these bits with zero.

Table 3: DMC Timing Register Bit Fields

Register

Bit Field

Bit field
(C=Controller,

M=JEDEC)

Value

Comment

DMC_MR0

BL Burst Length 1:0-C, A1:A0-M

Mandatory

Only BL=8 is supported for DDR3. Always
program these bits with
zero.

CL CAS Latency 6:4,2-C, A6:A4,
A2- M

Program these bits with the required CAS latency.

Reserved Reserved 3-C, A3-M Always write this bit with zero.

Reserved Reserved 7-C, A7-M Always write this bit with zero.

DLLRST DLL Reset 8-C, A8-M Set this bit for DDR3 mode.

WRRECOV Write recovery 11:9-C, A11:A9-
M

Program these bits with tWR value from the
memory device data sheet.

PD Active Power Down
Mode

12-C, A12-M Optional Can be left unchanged for standard DMC
operation.

Reserved Reserved 15:13-C,
A15:A13-M

Hard
Wired

These bits are hard-wired to zero.

Reserved Reserved 31:16-C

DLLEN DLL Enable 0-C, A0-M

Keep this bit set to zero.

DIC0, DIC1 Output Driver
Impedance Control

5,1-C, A5,A1-M Select the driver impedance using these bits from
the memory side.

RTT0, RTT1,
RTT2

On Die Termination
(ODT)

9,6,2-C,
A9,A6,A2-M

Select ODT value using these bits from the
memory side.

AL Additive Latency 4,3-C, A4,A3-M Can be cleared for basic DMC initialization. Refer
to the memory device data sheet for more details.

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 8 of 15

Table 4: DMC DDR3 Mode Register Bit Fields

DMC Initialization Code
The zip file[3] associated with this EE-note provides code examples that can be used to initialize
the CGU and DMC controller for any custom settings.

CGU Initialization
For custom clock settings, change the structures ADI_PWR_CGU_PARAM_LIST and
ADI_PWR_CDU_PARAM_LIST in the adi_pwr_SC59x_config.c file accordingly. Also, change the
cclkdclk_ratio ratio accordingly. For example, when CCLK = 1000 MHz and Dclk = 800 MHz, the
ratio is 1000/800 = 1.25.

DMC Initialization
The adi_dmc.c and adi_dmc.h files can be used to initialize the DMC to the required settings.
For example, the main.c file in the ADSP-SC598_DMCconfigGenerator_Core1 project in the
associated zip file[3] illustrates two ways to initialize the DMC for a DDR3 memory with DCLK
frequency of 800 MHz as per the JESD79-3F JEDEC specification[5].
 Initialize_DMC_Basic – Enable this macro in the main.h file to initialize the DMC by configuring

the ADI_DMC_PARAM_LIST structure. Figure 2 shows a snapshot from the main.c file of the
ADI_DMC_PARAM_LIST structure of code used to initialize the DMC with the Initialize_DMC_Basic
macro. All of the DDR parameters required to initialize DMC/DDR memory are computed based on
the JESD79-3F JEDEC specification[5]. The Initialize_DMC_Basic approach can be used to
quickly test DDR across different frequencies, DriveStrength, and ODT settings. The complete list

DMC_MR1 WL Write Leveling 7-C, A7-M

Mandatory

 This bit shall be written with one

Reserved Reserved 8, 10-C, A8,
A10 –M

These bits are reserved for future use (must be
programmed to zero).

TDQS Termination Data
Strobe

11-C, A11-M Should be zero, as it is not applicable for 16-bit
devices.

QOFF Output Buffer
Enable

12-C, A12-M Should be zero.

Reserved Reserved 15:13-C,
A15:A13-M

Hard
Wired

These bits are hard-wired to zero.

Reserved Reserved 31:16-C

DMC_MR2

PASR Partial Array Self
Refresh

2:0-C, A2:A0-M Optional This bit is unchanged for standard DMC
operation.

CWL CAS Write Latency 5:3-C, A5:A3-M Mandatory Obtain from memory device data sheet.

ASR Auto Self Refresh 6-C, A6-M

Optional

These bits are unchanged for standard DMC
operation. SRT Self-Refresh

Temperature Range
7-C, A7-M

Reserved Reserved 31-8-C
Hard
Wired

These bits is hard-wired to zero.

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 9 of 15

of DDR parameters used in this method can be printed on a console using the
adi_printDMCconfig() API (enable the Print_DMC_Config macro). The DDR parameters printed
are in the format used in the adi_dmc_SC59x_family_x_config.h file of the preload/Init code.

Figure 2: ADI_DMC_PARAM_LIST Snapshot

 Based on the JESD79-3F JEDEC specifications[5] given for a particular speed bin, the
DDR parameters printed or used for configuring the DMC with the
Initialize_DMC_Basic method should work from a functional perspective. However,
check the parameter values with the specific memory device data sheet using the
DMC_Registers_List_SC595_SC596_SC598.xlsx spreadsheet

 Initialize_DMC_Advanced - Enable this macro in main.h file to initialize the DMC by

configuring the ADI_DMC_CONFIG structure. This structure is the same as the one used in the
adi_dmc_SC59x_family_x_config.h file of the preload/Init code. For custom DMC settings, the
ADI_DMC_CONFIG structure must be updated according to the system requirements as shown in Figure
3 and Figure 4. The ADI_DMC_CONFIG structure can be configured using the
DMC_Registers_List_SC595_SC596_SC598.xlsx spreadsheet in the associated zip file[3] by
entering various DMC-specific and DDR memory-specific parameters (from the device data sheet).
See Figure 5. Use the generated hex values for the ADI_DMC_CONFIG structure from the
DMC_Registers_List_SC595_SC596_SC598.xlsx spreadsheet as shown in Figure 6 to configure the
macros in main.h file as shown in Figure 3. This method of DMC initialization can be used to
customize the DDR initialization routine in the preload/initcode as per the DDR memory data sheet;
to gives the flexibility to fine tune any of the required DDR parameters.

Figure 3: main.h file Snapshot

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 10 of 15

Figure 4: main.c file Snapshot

Figure 5: DMC_Registers_List_SC595_SC596_SC598.xlsx Snapshot

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 11 of 15

Figure 6: DMC_Registers_List_SC595_SC596_SC598.xlsx Snapshot

Validating the DMC Interface
Once the DMC is initialized, it is important to validate it.
 All DMC registers must be initialized to the correct values
 Resolve any basic issues with the DMC hardware interface
 The DMC must be correctly initialized by the software. The register values from the register browser

can be compared with the register values in the DMC_Registers_List_SC595_SC596_SC598.xlsx
spreadsheet.

The Memory_Sweep_Test() function can be used to check whether all the cores and DMA
(MDMA0) accesses to the DMC are working for different data word sizes (8-/16-/32-/64-bit and
32-byte DMA) and for different data patterns (0x0, 0xF, 0x5, 0xA, incremental, random, and all
bits toggling). The main.c file in the ADSP-SC598_DMCconfigGenerator_core1 project uses
these functions to validate the DMC interface. The memory sweep size used in this code is
0x800000 (8 MB); it can be changed to validate the full DMC memory range (for example, 2 Gb
= 256 MB).

Creating Preload and Initialization Code with Customized CGU and DMC Settings

Preload and initialization code are two concepts that are related to configuring the CGU and DMC
prior to the application code running. For a stand-alone application, while performing an active
debug via the emulator preload code is used and for controlling the boot stream initialization code
is used.

Preload Code
When performing active debug on a target platform, an emulator is used. To make working with
the board as transparent as possible for the user, the CrossCore® Embedded Studio (CCES) tools
automate initialization of the CGU/DMC hardware. Applications can be built and loaded to off-
chip memory for use in a debug session on the targeted board. Debugging uses Preload Code. The
preload code projects can be found at Analog Devices\CrossCore Embedded Studio
2.11.0\SHARC\ldr\init_code\SC59x_Init’ in the CCES installation directory.
CCES uses the pre-built executable file (See Figure 7) to initialize the CGU and DMC before
loading the actual application using the emulator.

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 12 of 15

Figure 7: Preload Code for EV-SC598-SOM

Initialization Code
Unlike preload code, initialization code is actually a part of the application. It is separate from the
application. The DXE output is pre-pended to the DXE file of application when CCES assembles
the loader stream (LDR) that the processor parses during the boot process. This separate DXE is
called the Initialization Block in the LDR file. The DXE is booted first into on-chip memory, and
subsequently executed before any attempts are made to resolve anything to the external DDR
space. It is the ideal place for configuring the CGU and DMC in advance of trying to boot to DDR
memory. The Init code projects can be found at Analog Devices\CrossCore Embedded Studio
2.11.0\SHARC\ldr\init_code\SC59x_Init in the CCES installation directory. The DXE output
corresponding to the Init code project can be used as the default initialization code when generating
an LDR file by pointing to the DXE in the Loader Options page of the Project Properties. See
Figure 8.

Figure 8: Initialization Code Selection in the Loader Options

Typically, for applications requiring a one-time CGU and DMC initialization after reset, the
preload (when loading the application via emulator) or initialization code (when booting the
application standalone) is sufficient. However, it is important to understand how to use and modify
the default preload and initialization code for customized CGU/DMC settings.

Modifying Default Preload and Initialization Code for Customized CGU/DMC Settings
The CGU and DMC settings in the default preload and initialization source code can be modified for the
following conditions:
 When using non-default CGU settings
 When using a custom board with a different memory device than the one available on the evaluation

board
For example, use the following steps to modify the default preload code sc5948_preload_Core0
project for the ADSP-SC598 processor.
1. Edit the adi_pwr_SC598_family_1GHz_config.h file to change the CGU and CDU configurations.
2. Edit the adi_pwr_SC59x_config.h file to configure the cclkdclk_ratio value.

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 13 of 15

3. Edit the adi_dmc_SC598_family_800MHz_config.h file as shown in Figure 10 using the output
printed on console (shown in Figure 9) and the adi_printDMCconfig() API present in the ADSP-
SC598_DMCconfigGenerator_core1 project. Or, initialize the ADI_DMC_CONFIG structure in the
adi_dmc_SC59x_config.c file (shown in Figure 11) using the
DMC_Registers_List_SC595_SC596_SC598.xlsx (shown in Figure 3 and Figure 6) spreadsheet.
See the the associated zip file[3] for the spreadsheet, and code examples. Refer to the DMC
Initialization section for details.

Figure 9: adi_printDMCconfig() API Snapshot

Figure 10: adi_dmc_SC598_family_800MHz_config.h Snapshot

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 14 of 15

Figure 11: adi_dmc_SC59x_config.c Initializing ADI_DMC_CONFIG Structure Snapshot

ADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory Controller (EE-443) Page 15 of 15

References
[1] ADSP-SC595/SC596/SC598: SHARC+ Dual-Core DSP with Arm Cortex-A55 Preliminary Data Sheet (Rev. PrE).

Analog Devices, Inc.

[2] ADSP-SC595/SC596/SC598 SHARC+ Processor Hardware Reference. May 2022, Analog Devices, Inc.

[3] Associated ZIP File (EE-443V01.zip) forADSP-SC595/SC596/SC598 Programming Guidelines for Dynamic Memory
Controller (EE-443). September 2022. Analog Devices, Inc.

[4] Silicon Anomaly List of the SHARC+®ADSP-SC595/ SC596/SC598 product(s), August 2022, Analog Devices, Inc.

[5] JESD79-3F, July 2012. JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

Document History

Revision Description

Rev 1 –September, 2022

by Deepak SH

Initial Release.

	Introduction
	Software Considerations – DMC Programming Model
	CGU Initialization
	DMC Initialization
	On-the-Fly DMC Re-initialization
	DMC PHY Initialization
	DMC Controller Initialization
	Hard-Wired Settings
	Mandatory Settings
	Optional Settings

	DMC Initialization Code
	CGU Initialization
	DMC Initialization

	Validating the DMC Interface
	Creating Preload and Initialization Code with Customized CGU and DMC Settings
	Preload Code
	Initialization Code
	Modifying Default Preload and Initialization Code for Customized CGU/DMC Settings

	References
	Document History

