

Engineer-to-Engineer Note EE-408

Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Using ADSP-2156x High Performance FIR/IIR Accelerators
Contributed by Sanket Nayak and Mitesh Moonat Rev 2 – August 14, 2019

Copyright 2019, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
ADSP-2156x processors incorporate high-performance hardware accelerators dedicated to performing two
widely-used signal processing operations: FIR (Finite Impulse Response) and IIR (Infinite Impulse
response), hereby referred to as FIRA and IIRA, respectively. As illustrated in Figure 1, these accelerators
can be run in tandem with the core to perform dedicated fixed-function computations (FIR and IIR),
thereby increasing the overall processing capability of the processor.

Figure 1: Processing Capability with and without FIR/IIR Accelerators

This application note provides a brief overview of the functional and performance improvements achieved
with the ADSP-2156x FIR/IIR accelerators (hereby referred to as accelerators) when compared with their
predecessors. The note discusses the following topics related to:

• Accelerator performance for different configurations and contributing factors

• Accelerator CrossCore® Embedded Studio (CCES) drivers, their usage, examples and driver
benchmark details

• Different Accelerator usage models for optimum performance in various application scenarios

For more details about the accelerator architecture and programming model, refer to the ADSP-2156x
SHARC+ Processor Hardware Reference [2].

http://www.analog.com/processors

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 2 of 22

ADSP-2156x Accelerator Enhancements
Accelerator enhancements include performance and functional improvements.

Performance Improvements

 The computation speed is increased to the core clock (CCLK) frequency, as compared with the SCLK
frequency, which was a maximum of CCLK/4 on the ADSP-SC57x processors. This performance was
made possible by replacing the MAC unit of the accelerator with the one compatible with the
SHARC+ core.

 Data and MMR latency is reduced with a closer integration of the SHARC+ core and accelerator. The
accelerator master ports can directly access SHARC L1 memory with reduced latency without going
through the system fabric. The core can also access the accelerator MMR registers with reduced
latency.

Functional Improvements

The ADSP-2156x processor has some additional features included with the accelerator. These features are
available in a new mode of operation known as the Auto Configuration Mode (ACM). The legacy mode of
operation is intact, and the accelerator can be switched to ACM using the CTL1.ACM bit. The following
additional features are available in ACM:

Channel Specific Parameter Selection
ACM allows some Global Control (CTL1) register fields to be made channel-specific (e.g, to be loaded as
part of the TCB in the Secondary Global Control register (SGCTL)). These fields include Output Rounding
Mode (RND), Fixed Point Select (FXD) and Two’s Complement Format (TC) in the FIRA and Output
Rounding Mode (RND), Forty-bit (FORTYBIT), Save State Enable (SS), and Save State Completion Interrupt
Deselect (SSESEL) bits in the IIRA. In legacy mode, these bits globally configure all channels.

No Channel Number Limitation
In legacy mode, the number of channels to be processed by the accelerator is programmed in the CTL1.NCH
bit field. This limits the number of FIR/IIR channels that can be processed in one iteration. In ACM, the
Accelerator processes the channels/TCBs until it sees a channel/TCB with its Chain Pointer (CHNPTR)
value as zero. Hence, there is no theoretical limit on the number of channels that the accelerator can
process in ACM.

Halt Feature
In ACM, when the accelerator is processing a set of TCBs, the core can halt the accelerator TCB
processing at any stage using the CTL1.HALT bit and dynamically insert new TCBs for processing by the
accelerator. The advantage of this mechanism is that if a request for processing of a set of TCBs arrives
when the accelerator is already processing another set of TCBs, the core can dynamically halt the
accelerator, insert the new TCB list, and resume the processing. In the absence of this feature, the core
must maintain the newly requested TCB list in software, wait for completion of the processing of the
already existing TCB list, and then restart the accelerator for processing the new TCB list.

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 3 of 22

Selective Interrupt Generation
In legacy mode, an interrupt can be generated either after processing the entire TCB list or after the
processing of each TCB using the CTL1.CCINTR bit. In ACM, interrupt generation is customizable per
channel using the CTL2.IMASK bit which is loaded as part of TCB.

Trigger Generation and Trigger Wait
In ACM, each channel can be configured to generate a trigger after its completion using the CTL2.TMASK
bit. This trigger can be used as a master trigger and can be routed to a trigger slave using the Trigger
Routing Unit (TRU). Each channel can be configured to wait for a master trigger after loading the TCB
using the CTL2.TWAIT bit. In legacy mode, trigger support is not available.

Accelerator Performance
The accelerator’s processing cycles consist of two components: DMA cycles and Compute (MAC) cycles.

DMA Cycles

The contribution of DMA cycles in the total processing cycles depends on the following factors.

Filter Parameters
The DMA cycles consist of two operations:

 Initial preload of the coefficients and delay line (FIRA) or state variables (IIRA) - for IIRA, the
coefficient load and state variable load can optionally be skipped in legacy mode to save these cycles.
The amount of data to be transferred for this operation depends on the Tap Length (FIRA) or the
Number of Biquads (IIRA).

 Fetch/Store of the Input/Output buffers - the amount of data to be transferred for this operation
depends on the Window Size. However, these operations take place in parallel to compute operation
and therefore do not add any overhead for larger tap length or number of biquads. For smaller tap
length and biquad values, these cycles may dominate the compute cycles. The crossover point (N) in
terms of tap length (FIRA) and biquads (IIRA) depends on the memory access latency. The value of N
increases as buffers are moved from L1 to L2 memory and then to L3 memory.

Buffer Placement
The DMA cycles also depend on whether the input, output, and coefficient buffers are placed in L1/L2/L3
memory, as each memory type has different access latencies.

Compute (MAC) Cycles

Unlike in previous SHARC processors, the MAC units used on the ADSP-2156x accelerators are
compatible with the SHARC+ core MAC unit. Therefore, the multiplication operation takes place in two
stages. This design implies that at least N+1 number of cycles are required to perform N MAC operations.
For the FIRA, the tap length size is generally significantly higher; therefore, the theoretical number of
cycles per sample per tap is close to 0.25 (1/4). For the IIRA, processing each biquad requires 6 cycles (for
5 MAC operations).

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 4 of 22

In an ideal scenario, to make maximum utilization of the computing power of the accelerator, the percent
contribution of the compute/MAC cycles, called the Compute Efficiency (CE), must be 100%. CE can be
measured by the following expression:

CE = (M/N)*100

Where,

M = Theoretical Cycles per Tap (FIRA = 0.25) or per biquad (IIRA=6)

N = Measured Cycles per Tap (FIRA) or per biquad (IIRA)

Measured FIR/IIR Performance

This section provides FIR/IIR performance measurements for the ADSP-2156x accelerators for different
filter parameters. For comparison, the measured performance for the following cases with varying core
clock (CCLK) and accelerator clock (ACLK) frequencies is also provided:

1. ADSP-2156x FIRA/IIRA @ maximum ACLK (=CCLK) = 1 GHz

2. ADSP-SC57x FIRA/IIRA @ maximum ACLK(=SCLK0) = 125 MHz and @ maximum CCLK =
500 MHz

3. ADSP-214xx FIRA/IIRA @ maximum ACLK(=PCLK=CCLK/2) = 225 MHz and @ maximum
CCLK = 450 MHz

4. ADSP-2156x (SHARC+) core @ maximum CCLK = 1 GHz

Although the ADSP-SC58x accelerator performance numbers are not provided here, the
performance is similar to ADSP-SC57x except for a slight performance loss due to the absence
of DMA burst mode.

The numbers are provided both in core cycles and in absolute time (µs) units. All the buffers are placed in
L1 memory for these measurements. Core FIR/IIR cycles are measured with the help of the optimized
library functions available with CCES.

Additional measurement and analysis are provided to discuss how the various factors affect the MAC
Utilization Efficiency (MUE) of the accelerator.

FIR Performance
This section contains the following information:

 Measured performance of the ADSP-2156x FIRA for different filter parameters and comparison with
other cases

 Measured FIRA Compute Efficiency (CE) and contributing factors

 Effect of buffer placement (L1/L2/L3) on FIRA performance

Comparison with ADSP-SC57x Accelerator, ADSP-2156x Core, and ADSP-214xx Accelerator
Figure 2 and Figure 3 show the measured FIR performance in core cycles and time units (µs), respectively,
for the five cases. Figure 4 shows the performance factor of the ADSP-2156x FIR accelerator as compared
to the other cases for different window size values and tap length of 512.

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 5 of 22

The performance numbers shown in Figure 2 correspond to the selected number of combinations of
window size and tap length. For any other combinations, the following example code provided with this
application note[4] can be used to measure the FIR performance on the evaluation boards for the four cases:

1. ADSP_2156x_FIRA_Performance

2. ADSP_SC57x_FIRA_Performance

3. ADSP_214xx_FIRA_Performance

4. ADSP_2156x_FIR_Core_Performance

Figure 2: FIR Performance in Core Cycles Across Window Size and Tap Length

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 6 of 22

Figure 3: FIR Performance in Time (µs) Across Window Size and Tap Length

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 7 of 22

Figure 4: ADSP-2156x FIR Performance Improvement Factor for 512 Taps Considering Time

The following observations relate to the FIR performance numbers shown in Figure 4:

 The ADSP-2156x FIRA performance is around 8x the ADSP-SC57x FIRA. This increase is
because the ADSP-2156x FIRA runs at CCLK (1 GHz), whereas the ADSP-SC57x FIRA runs at
SCLK, which is a maximum of CCLK/4 (125 MHz).

 The ADSP-2156x FIRA performance is around 4.44x the ADSP-214xx FIRA performance. This
increase is because the ADSP-2156x FIRA runs at CCLK (1 GHz), whereas the ADSP-214xx FIRA
runs at PCLK, which is a maximum of CCLK/2 (225 MHz).

 The ADSP-2156x FIRA performance is around 2x the ADSP-2156x SHARC+ core’s execution of
FIR code. This is because the ADSP-2156x FIRA has four MAC units, whereas the SHARC+ core
featured on ADSP-2156x processors has two MAC units. An exception to this conclusion applies to
smaller block sizes, where the DMA overhead dominates the compute cycles. The block size crossover
point (in number of samples) where the ADSP-2156x FIRA performs better than the SHARC+ core is
around 24.

Compute Efficiency (CE)
Figure 5 shows how the CE percentage for the FIRA varies with window size and tap length. As shown in
the plot, the CE is very close to 100% for larger window size values. It significantly reduces for very small
window size values. For a constant window size, the CE percentage does not change much for different
tap length values.

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 8 of 22

Figure 5: FIRA Compute Efficiency (CE) for Different Filter Parameters

Buffer Placement
Figure 6 shows how the core cycles change with increased tap length when the input/output/coefficient
buffers are placed in L1/L2/L3 memory for a window size of 1024. It also shows a plot of the performance
factor when the buffers are in L1 memory versus in L2/L3 memory.

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 9 of 22

Figure 6: ADSP-2156x FIRA Performance Comparison for Buffers in L1/L2/L3 Memory

The following important observations can be noted from the plots:

 As the tap length is increased for a constant window size, the core cycles remain constant until a
certain point (N) and then increase proportionally. For lower tap length values, the input/output DMA
cycles dominate the compute cycles.

 As the memory access latency increases from L1 to L2 memory and then further to L3 memory, the
value of N increases, and the performance factor trends towards 1.0. Placing buffers in L2 and L3
memory instead of L1 memory might be expensive for tap lengths less than N and comparable for tap
lengths greater than or equal to N.

IIR Performance
This section contains the following information:

 Measured performance of the ADSP-2156x IIRA for different filter parameters and comparison with
other cases

 Measured IIRA Compute Efficiency (CE) and contributing factors

 Effect of buffer placement (L1/L2/L3) on IIRA performance

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 10 of 22

Comparison with ADSP-SC57x Accelerator, ADSP-2156x Core, and ADSP-214xx Accelerator
Figure 7 and Figure 8 show the measured IIR performance in core cycles and time units (µs), respectively,
for all the cases. Figure 9 shows the performance factor of the ADSP-2156x IIRA as compared to the other
cases for different window size values and 6 biquads.

Figure 7: IIR Performance in Core Cycles Across Window Size and Biquad Values

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 11 of 22

Figure 8: IIR Performance in Time (µs) Across Window Size and Biquad Values

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 12 of 22

Figure 9: ADSP-2156x IIR Performance Improvement Factor for 6 Biquads Considering Time

The performance numbers shown in Figure 9 correspond to a selected number of combinations of window
size and number of biquad sections. For other combinations, the following example code provided with
this application note [4] can be used to measure the IIR performance on the evaluation boards for the four
cases:

1. ADSP_2156x_IIRA_Performance

2. ADSP_SC57x_IIRA_Performance

3. ADSP_214xx_IIRA_Performance

4. ADSP_2156x_IIR_Core_Performance

The following observations relate to the IIR performance numbers shown in Figure 9 :

 The ADSP-2156x IIRA performance is around 6.7x the ADSP-SC57x IIRA performance. The
ADSP-2156x IIRA runs at CCLK (1 GHz), whereas the ADSP-SC57x IIRA runs at SCLK, which is a
maximum of CCLK/4 (125 MHz). The reduction in the improvement factor from 8x to 6.7x, as
compared with the same comparison for the FIRA, is because the ADSP-2156x IIRA compute unit
takes 6 cycles per biquad, whereas the ADSP-SC57x IIRA takes 5 cycles per biquad.

 The ADSP-2156x IIRA performance is around 3.7x the ADSP-214xx IIRA performance. The
ADSP-2156x IIRA runs at CCLK (1 GHz), whereas the ADSP-214xx IIRA runs at PCLK, which is a
maximum of CCLK/2 (225 MHz). The reduction in the improvement factor from 4.44x to 3.7x, as
compared with the same comparison for the FIRA, is because the ADSP-2156x IIRA compute unit
takes 6 cycles per biquad, whereas the ADSP-214xx IIRA takes 5 cycles per biquad.

 The ADSP-2156x IIRA performance is around 0.42x the ADSP-2156x SHARC+ core’s execution
of IIR code. The ADSP-2156x IIRA has one MAC unit, whereas the SHARC+ core featured on

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 13 of 22

ADSP-2156x processors has two MAC units. Additionally, the IIRA compute unit takes 6 cycles per
biquad, whereas the SHARC+ core takes 2.5 cycles.

Compute Efficiency (CE)
Figure 10 shows how the CE percentage for IIR varies with window size and number of biquads. As can
be seen in the plot, the CE is very close to 100% for larger window size values, and it significantly reduces
for small window size values. For a constant window size, the CE percentage does not vary much with
number of biquads, except when the biquad count is 1 or 2, as the input/output DMA cycles dominate the
compute cycles when this is the case.

Buffer Placement
Figure 11 shows how the core cycles change when the input/output/coefficient buffers are placed in
L1/L2/L3 memory with a window size equal to 1024 and the number of biquads is increased. It also shows
a plot of the performance factor when the buffers are in L1 memory as compared to when they are in
L2/L3 memory.

The following important observations can be noted from the plots:

• As the number of biquads is increased, the core cycles remain constant until point (N), at which point
the core cycles start increasing proportionally. This change happens because the input/output DMA
cycles dominate the compute cycles when the biquad count is low.

• As the memory access latency increases from L1 to L2 memory and then further to L3 memory, the
value of N increases, and the performance factor trends towards 1.0. Placing buffers in L2 and L3
memory instead of L1 memory might be expensive for biquad values less than N and comparable for
biquad values greater than or equal to N.

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 14 of 22

Figure 10: IIRA Compute Efficiency (CE) for Different Filter Parameters

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 15 of 22

Figure 11: ADSP-2156x FIRA Performance Comparison for Buffers in L1/L2/L3 Memory

Programming the Accelerators
The ADSP-2156x accelerators can be programmed using the device drivers available with the CCES
installation package.

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 16 of 22

Figure 12: ADSP-2156x Accelerator Device Driver Structure

The programming model is the same for both the FIR and IIR accelerators. As shown in Figure 12, the
accelerator drivers follow a queueing programming model. Abstractions of task and queue are used in the
model. A task contains a set of channels which, when given to the accelerator, are processed sequentially.
A queue is a set of tasks maintained on a first-in-first-processed basis which the accelerator processes in
sequentially. Applications can create tasks for the accelerator using
the adi_fir(/iir)_CreateTask() and queue the same when required using
the adi_fir(/iir)_QueueTask(). The driver maintains a processing queue of the tasks given/queued by
the application for the accelerator and sequentially schedules the same to the accelerator. The applications
can register a user-defined callback using adi_fir(/iir)_RegisterCallback(). The driver uses the
callback to notify the application on completion of the tasks/channels in a task. The driver also maintains
the status of all the tasks the application has queued. The application can also query the status of the task
as required using the adi_fir(/iir)_GetFir(/Iir)TaskStatus().Once the task which was queued is
completed by the accelerator, the task is removed from the processing queue. The driver maintains the
information of all the tasks which are completed/created. Hence, the application can reuse the tasks which
were created by simply queuing it again using adi_fir(/iir)_QueueTask().

The accelerator can be configured to operate in legacy mode or ACM using static configuration. In legacy
mode, the driver maintains a software queue (linked list) of the tasks queued by the application and
sequentially schedules the same to the accelerator. In ACM, the driver utilizes the halt feature in hardware
to implement a hardware queuing mechanism. There are additional channel-customizable features
available in ACM like interrupts/triggers and more. Refer to ADI_FIR(/IIR)_CHANNEL_INFO in the
ADSP-2156x SSDD API Reference Manual for SHARC+ Core[3] in the CCES help for more details. The
programming model of the driver is the same for both legacy and ACM operation.

The FIR_Multi_Channel_Processing and IIR_Multi_Channel_Processing code examples provided
with this application note[4] (also available with the ADSP-21569 EZ-Kit Board Support Package) can be
used as a reference to understand how to use the ADSP-2156x accelerator device drivers.

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 17 of 22

Table 1 summarizes the accelerator driver benchmarks measured on the ADSP-21569 EZ-Kit evaluation
board. The ADSP_2156x_FIRA_Driver_Benchmark and ADSP_2156x_IIRA_Driver_Benchmark code
examples supplied with this application note[4] were used to obtain these measurements. Note that these
numbers were measured with all buffers in L1 memory.

Operation Description Measured Core Cycles

FIRA IIRA

Legacy ACM Legacy ACM

CreateTask() Constant Overhead 76 148 114 120

Per Channel Overhead 306 320 302 327

QueueTask() Pushing a task to the empty queue 300 371 299 371

Pushing a task to the non-empty queue 195 329 188 321

Interrupt Overhead
(Round trip cycles
including SEC interrupt
dispatcher latency)

For a single task in queue 429 423 430 426

For more than one task in queue 503 595 523 571

Table 1: ADSP-2156x Accelerator Driver Benchmarks

Additional overhead for cache flushing/invalidation can occur when the buffers are placed in
L2/L3 memories.

Accelerator Usage Models
This section describes the various models to use the accelerator optimally for different application
scenarios. The ideal and most optimum solution is to offload all the FIR/IIR tasks from the core to the
accelerators and allow the core to do something else in parallel; however, this solution may not be feasible
for all the scenarios, particularly when the core needs to use the output from the accelerator for further
processing and has no other independent tasks to finish in parallel. For these cases, this note discusses the
accelerator usage models shown in Figure 13.

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 18 of 22

Figure 13: Accelerator Usage Models

Direct Replacement

This model is the most straightforward and easy-to-use. The core FIR/IIR processing is directly replaced
by the accelerator, and the core simply waits for the accelerator to finish the job. This model is useful only
when the FIRA is used because it is faster than the core.

Split Task

In this model, the overall FIR/IIR processing job is divided between the core and the accelerator. This
model is especially useful when there are multiple channels available to be processed in parallel. Based on
a rough timing estimation, the total number of channels can be divided between the core and the
accelerator in such a way that both finish at approximately the same time. In such cases, this approach is
better than the direct replacement approach. The split task model uses the idle time of the core to finish the
overall FIR/IIR processing job faster than the accelerator processing the complete job alone.

Data Pipelining

In this model, data flow between the core and accelerator can be pipelined in such a way that both can
work in parallel on different data frames. As shown in Figure 13, the core processes the Nth frame and
then initiates the accelerator’s processing of this frame. The core then continues in parallel to further
process the N-1th frame output produced by the accelerator in the previous frame. This sequence allows
the complete offloading of the FIR/IIR processing task to the accelerator at the cost of additional output
latency. The pipeline stages and, consequently, the output latency can increase depending upon the number
of such FIR/IIR processing stages in the complete processing chain.

Table 2 compares the usage models.

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 19 of 22

Approach Description Performance
Advantage Constraints

Direct
Replacement

Core processing is replaced by accelerator, core
waits until the accelerator completes the job.

+ Suitable only for FIRA, as it is
faster than the core.

Split Task FIR/IIR processing of multiple channels is split
between the core and the accelerator.

++ Can’t be used for single-channel
processing.

Data
Pipelining

Data between the core and accelerator is pipelined
to allow the core and accelerator to run in parallel

+++ Costs additional latency of at least
one frame.

Table 2: Accelerator Usage Model Comparison

Real-Time Implementation of an Example FIR/IIR Use Case

Figure 14 shows an example real-time use case for FIR/IIR processing of 12-channel audio data.

 Each channel passes through a 512-tap FIR filter followed by a five-band IIR equalizer.

 For simplification, the FIR filter is an all-pass filter (the b0 coefficient is one, and all other coefficients
are zero).

Figure 14: FIR/IIR Real-Time Use Case

 Each IIR band is an 8th order IIR filter implemented with four cascaded biquad stages. The IIR band
details are as shown in Table 3. The output of each band is multiplied with the respective gain (from
0.0 min to 1.0 max) and added together to generate the final output. The IIRGains flag can be set or
cleared dynamically using the CCES memory browser to respectively bypass or enable processing.

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 20 of 22

Band No. Lower Cutoff in Hz Higher Cutoff in Hz Filter Type

1 - 250 Low Pass

2 250 500 Band Pass

3 500 2000 Band Pass

4 2000 4000 Band Pass

5 4000 - High Pass

Table 3: IIR Bands Details

 The block size is 256 samples per channel.

 The example code uses only two-channel audio input and output on the ADSP-21569 EZ-Kit
evaluation board. The input data for the remaining 10 channels is “zero”. Since only the performance
is being measured, this limitation does not affect the results.

 All buffers are placed in internal (L1) memory.

 The BypassProcessing flag can be set or cleared dynamically using the CCES memory browser to
respectively bypass or enable processing.

 The cycles_array array can be observed in the expressions window to see the periodic cycle count
snapshot trace. This information can be used to calculate MIPS details.

The Direct_Replacement, Pipelined, and Split_Task example code supplied with the application
note [4] implements this case in real-time on the ADSP-21569 EZ-Kit evaluation board for the different
usage models. The core and accelerator performance numbers are measured for the core only case and for
each accelerator usage model along with the resultant core MIPS savings for each model. Figure 15 shows
the breakup of the cycle/MIPS measurements for both the core and the accelerator with the cycle snapshots
taken at different instances of the overall processing time. It also shows the total MIPS consumed and total
free MIPS for both the core and the accelerator.

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 21 of 22

Figure 15: Cycles/MIPS Breakup for Different Accelerator Usage Models

Table 4 summarizes the MIPS usage and free MIPS for both the core and the accelerator for the Core Only
case and for different accelerator usage models along the core MIPS saving numbers. From a performance
perspective, the Data Pipelining model is the best, resulting in saving approximately 186 core MIPS,
followed by the Split Task model (saving 77 core MIPS) and then the Direct Replacement model (saving
30 core MIPS). These results align with the previous discussion about the accelerator usage models.

Usage Model
MIPS Usage Free MIPS

Core MIPS Saving
Core ACC Core ACC

Core Only 192.07 0.00 807.93 1000.00 -

Direct Replacement 161.84 156.31 838.16 843.69 30.23

Split Task 115.11 110.06 884.89 889.94 76.96

Data Pipelining 5.6 156.27 994.40 843.73 186.47

Table 4: MIPS Summary for Different Accelerator Usage Models

Using ADSP-2156x High Performance FIR/IIR Accelerators (EE-408) Page 22 of 22

References
[1] ADSP-21562/21563/21565/21566/21567/21569 Data Sheet. Rev PrD, January 2019. Analog Devices, Inc.

[2] ADSP-2156x SHARC+ Processor Hardware Reference, Rev 0.1, October 2018. Analog Devices, Inc.

[3] ADSP-2156x SSDD API Reference Manual for SHARC+ Core, Version 2.0, CrossCore® Embedded Studio Help.

[4] Associated ZIP file for EE-408: Using ADSP-2156x High Performance FIR/IIR Accelerators, August 2019. Analog
Devices, Inc.

Document History

Revision Description

Rev 1 – June 10, 2019
by Sanket Nayak and Mitesh Moonat

Initial Release

Rev 2 – August 14, 2019
by Sanket Nayak and Mitesh Moonat

Minor edits in the document and in the real time FIR/IIR
example code. Removed preliminary ADSP-214xx core
benchmark data (to be included in future revision).

	Introduction
	ADSP-2156x Accelerator Enhancements
	Performance Improvements
	Functional Improvements
	Channel Specific Parameter Selection
	No Channel Number Limitation
	Halt Feature
	Selective Interrupt Generation
	Trigger Generation and Trigger Wait

	Accelerator Performance
	DMA Cycles
	Filter Parameters
	Buffer Placement

	Compute (MAC) Cycles
	Measured FIR/IIR Performance
	FIR Performance
	Comparison with ADSP-SC57x Accelerator, ADSP-2156x Core, and ADSP-214xx Accelerator
	Compute Efficiency (CE)
	Buffer Placement

	IIR Performance
	Comparison with ADSP-SC57x Accelerator, ADSP-2156x Core, and ADSP-214xx Accelerator
	Compute Efficiency (CE)
	Buffer Placement

	Programming the Accelerators
	Accelerator Usage Models
	Direct Replacement
	Split Task
	Data Pipelining
	Real-Time Implementation of an Example FIR/IIR Use Case

	References
	Document History

