

Engineer-to-Engineer Note EE-377

Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough

Contributed by Eric Gregori Rev 2 – October 9, 2015

Copyright 2015, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or
application of customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All
trademarks and logos are property of their respective holders. Information furnished by Analog Devices Applications and Development Tools
Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices regarding the technical accuracy
and topicality of the content provided in all Analog Devices’ Engineer-to-Engineer Notes.

Introduction

The ADSP-SC58x processor (Figure 1) contains two SHARC+ cores (with 640KB of L1 SRAM each), an

ARM Cortex-A5 processor, and 256KB of L2 SRAM. A system crossbar and 100-channel DMA controller

provide simultaneous access to multiple memory spaces. This EE-note covers two methods for moving data

between cores, commonly called Inter-Core Communications (ICC), and is centered about a dual-SHARC

audio talkthrough example (in the associated zip file[1]). The example takes audio from an ADC into one

SHARC+ core, passes it to the second SHARC+ core (using an ICC), and finally sends it out to a DAC.

Though the example is a simple audio pass through application, hooks are in place for customers to add

their own audio processing algorithms.

Figure 1. ADSP-SC58x Block Diagram

http://www.analog.com/processors

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 2 of 20

Dual-SHARC Audio Talkthrough Overview

The ADSP-SC58x dual-SHARC audio talkthrough (Figure 2) takes in four channels of analog audio and

digitizes it. The digitized audio is passed serially through two SHARC cores, and the result is converted

back to the analog domain and output as four channels of analog audio. Each SHARC runs its own audio

algorithm, and the result of the audio algorithm running on SHARC #1 (Fs1) is passed to SHARC #2.

Buffering allows the Fs1 algorithm executing on SHARC #1 to run concurrently with the Fs2 algorithm on

SHARC #2, resulting in parallel execution with respect to time.

Figure 2. Dual-SHARC Audio Talkthrough Block Diagram

The dual-SHARC audio talkthrough is an example of how to use ICC between the SHARC cores. The

ADSP-SC58x processor supports two forms of ICC, Multi-Core Communications API (MCAPI) and

Memory DMA (MDMA). This example demonstrates both ICC methods, as MCAPI is used during

initialization to configure MDMA, and MDMA is used during runtime to maximize performance.

In this example, the ARM core is only used to initialize various ADSP-SC58x peripherals. Out of reset, the

ARM core executes first while the SHARC+ cores are held in reset. After the ARM core initializes various

peripherals, it releases the SHARC+ cores from reset. MCAPI is then used to synchronize the two SHARC+

cores after they come out of reset.

Figure 3 shows the path of an audio frame through the ADSP-SC58x processor. A frame containing 16

samples of four-channel, 32-bit audio data (256 bytes) is transferred via peripheral DMA (PDMA) from the

SPORT module to buffer A or B, both located in the SHARC #1 L1 SRAM (S1L1), at which point SHARC

#1 runs the Fs1 algorithm on the frame and stores the result in buffer C (also in S1L1). SHARC #1 then

starts the MDMA transfer from buffer C to buffer D, which is located in SHARC #2 L1 SRAM (S2L1).

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 3 of 20

When the transfer completes, the MDMA done interrupt is triggered on SHARC #2, and the Fs2 algorithm

is then executed by SHARC #2 as part of the interrupt handler.

Figure 3. Dual-SHARC Audio Talkthrough Pipeline

The SPORT allocated to SHARC #2 is synchronized with the SPORT allocated to SHARC #1 during

initialization. After the MDMA completion interrupt occurs, SHARC #2 has almost one whole frame worth

of time before its SPORT callback function expects another frame.

Inter-Core Communications (ICC)

ICC is used to transfer data between cores. As shown in Figure 4, the ADSP-SC58x processor contains two

SHARC+ cores, each with 640KB of L1 SRAM and a shared 256KB L2 SRAM. Each SHARC+ L1 SRAM

is mapped twice in the system’s linear address space - one region is private to that SHARC+ core, and the

other is accessible from any core (multiprocessor space). Transfers to or from the SHARC+ L1 SRAM use

the multiprocessor address space. The ARM core can also copy data to either SHARC+ L1 SRAM using

the multiprocessor space.

The ADSP-SC58x tools supports two ICC libraries for transferring data between cores, MCAPI and

MDMA. MCAPI is an industry standard, and the ADSP-SC58x port of MCAPI uses core operations for

transferring data, which consumes CPU cycles. MDMA is a hardware block in the ADSP-SC58x

architecture that can transfer data between cores in the background without CPU intervention. The ADSP-

SC58x processor has a high-performance MDMA channel designed to transfer data at up to 1500MB/s

between SHARC+ L1 SRAM spaces. This high-speed MDMA channel is the fastest and most efficient

method of transferring data between the two SHARC+ L1 SRAM spaces.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 4 of 20

Figure 4. Moving Data in the ADSP-SC58x Processor

The dual-SHARC audio talkthrough example uses MCAPI to synchronize and share information between

cores during initialization. At runtime, MDMA is used to transfer audio frames from SHARC #1 to SHARC

#2 for maximum performance and efficiency.

Multicore Communications API (MCAPI)

The Multicore Communications Applications Interface (MCAPI) protocol is a message-passing API that

provides for communication and synchronization between processing cores in embedded systems. In the

ADSP-SC58x processor, MCAPI can be used to transfer data between all three cores (e.g., S1L1 to S2L1,

L2 SRAM to S1L1 or S2L1, S1L1 or S2L1 to L2 SRAM, etc.).

As shown in Figure 5, MCAPI uses domains, nodes, and endpoints for communications. A domain is a

collection of nodes. Each core is a node, and all three nodes comprise a single domain (the ADSP-SC58x

processor itself). Each node can have multiple endpoints, which can be thought of as the ends of a pipe.

Two endpoints are required to pass data through the pipe.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 5 of 20

Figure 5. MCAPI Overview

The ADSP-SC58x implementation of MCAPI uses core operations to transport data. Core operations use

CPU cycles to copy data between buffers, making it less efficient than DMA. When MCAPI transfers data

from one core to the next, a Trigger Routing Unit (TRU) signal is sent to indicate to the receiving core that

the data is available.

The MCAPI API is easy to use, supporting both polling and blocking function calls. MCAPI does not

support callbacks. Once an endpoint is generated on both sides of the pipe, data can be transferred in both

directions.

The dual-SHARC talkthrough example uses MCAPI during initialization to transfer information and

provide synchronization in setting up the MDMA connection between the SHARC cores. It is not used

during runtime in this example, though future examples will use MCAPI during runtime to exchange control

signals and data between the ARM and SHARC cores. This is an interrupt-driven example, as the main()

code (background thread) for all three cores is simply a while loop awaiting interrupts. Using blocking

MCAPI calls in the background thread would have no effect on the cycles available for the filters.

MCAPI messages, shown in Figure 5, provide a flexible method to transmit data between endpoints without

first establishing a connection. The buffers on both the sender and receiver sides must be provided by the

user application. MCAPI messages may be sent with different priorities on a per-message basis.

Using MCAPI to Synchronize MDMA Initialization

MCAPI messages are used to share data and perform synchronization during initialization of the dual-

SHARC audio talkthrough example. To send a message using MCAPI, two endpoints must be created - one

by the source core and one by the destination core. Figure 6 shows the source code from for creating the

MCAPI endpoints. After the source core creates its endpoint using mcapi_endpoint_create(), it waits for

the destination core to create its endpoint by calling the mcapi_endpoint_get() function. After both

endpoints are created, communication can occur between cores.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 6 of 20

Figure 6. Master/Source MDMA Initialization/Synchronization – Opening a MCAPI Connection

Figure 7 shows the code for transmitting the Sid from the master/source core to the slave/destination core.

After the two endpoints are established, the source core can send the Sid to the destination core. After the

source core sends the Sid to the destination core, it waits for the destination core to install the interrupt

handler. This waiting occurs in the mcapi_msg_recv() function, which blocks until the destination core

installs the interrupt handler and sends the destination buffer address. Upon receiving the destination buffer

address, the source core continues execution.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 7 of 20

Figure 7. Master/Source MDMA Initialization/Synchronization – TX Sid to Slave, RX Buffer Address from Slave

The source code for the slave/destination side is shown in Figure 8. The slave creates an endpoint which

becomes the other side of the MCAPI pipe. With an endpoint created on both sides (master and slave), a

communication pipe is created. Using this pipe, the master sends the Sid, which is received by the

mcapi_msg_recv() call. After receiving the Sid, the destination core can insert the interrupt handler.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 8 of 20

Figure 8. Slave/Destination MDMA Initialization/Synchronization – Receiving Sid and Installing the Interrupt Handler

Figure 9 shows the code on the slave/destination core for acknowledging the insertion of the interrupt

handler and sending the buffer address to the master/source core. After the destination core inserts the

interrupt handler, it sends its audio buffer address to the source core. The source core will use this address

when initiating the MDMA transfer. This transaction also informs the source core that the interrupt handler

is installed and it is OK to start initiating transfers.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 9 of 20

Figure 9. Slave/Destination MDMA Initialization/Synchronization – Sending the Audio Buffer Address to the Master

Memory DMA (MDMA)

Memory DMA (MDMA) is a hardware block dedicated to moving data around the various memory elements

on the ADSP-SC58x processor. There are four MDMA streams - two low-speed (450MB/s), a medium-

speed (900MB/s), and a high-speed (1500MB/s) - which can be used to transfer data from S1L1 to S2L1 in

the background with no CPU intervention, as shown in Figure 10.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 10 of 20

Figure 10. MDMA Supports 4 Streams up to 1500 MB/s

After the MDMA channel is configured, sending a data buffer from S1L1 is done using a simple MDMA

library call. After the transfer is complete, a MDMA completion interrupt occurs on the SHARC #2 core,

effectively combining the transfer and buffer ready signaling into a single hardware module. The result is

the least amount of CPU cycles possible used to move the data between cores.

Figure 11 describes how to setup and use MDMA to transfer data between SHARC cores. During

initialization, the source core (SHARC #1) opens the DMA stream using a device driver call. The source

core sends the stream identifier (Sid) to the destination core, which then uses the Sid to install an interrupt

handler. The destination core sends the address of its buffer back to the source core, which will then use this

address when initiating future transfers.

At runtime, a transfer from the source buffer (S1L1) to the destination buffer (S2L1) is initiated by the

source core. When the transfer is complete, the DMA engine sends a signal to the destination core (SHARC

#2), which causes the SHARC #2 core to execute the MDMA complete callback function.

Two pieces of information must be shared between cores to initialize a MDMA transfer. The Sid is a

constant, and the destination buffer address is a pointer to the destination of the MDMA transfer (an address

within the destination core’s L1 SRAM space). If the stream ID is hardcoded in the source core firmware,

the Sid could be hardcoded in the destination core firmware.

Normally, a global buffer address is not constant at build time. The linker can decide to move any global

variable anywhere in an address region defined by the Linker Description File (LDF). Forcing the

destination buffer into a constant place in memory can be done by creating a region in the LDF. If the buffer

is set to the beginning of this custom region, the destination buffer address will be constant. If the destination

buffer address is constant, the destination buffer address can be hardcoded in the source core firmware.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 11 of 20

Figure 11. Using MDMA to Transfer Audio Buffers Between SHARC+ Cores

Although constant data does not need to be shared between cores to initialize MDMA, the MDMA

configuration process does require synchronizations between cores, which requires a semaphore (using the

TRU or a global variable). This example uses MCAPI for synchronization. The example does not use a

constant destination buffer address, so MCAPI is also used to transfer the destination buffer address from

the destination core to the source core.

MDMA Driver

The MDMA driver is documented in the CrossCore® Embedded Studio (CCES) On-line Help system, and

information on any API function is easily retrieved by performing a search by function name. Figure 12

shows the MDMA initialization portion of the example. The MDMA driver is initialized using the

adi_mdma_Open() function, which has arguments for stream ID, pointers to workspace RAM, and pointers

for a source and destination handle. The handles are then used for all future transactions with the driver.

By default, the MDMA driver enables a transfer completion interrupt on the same core (transfer source) that

opened the MDMA driver (called adi_mdma_Open()). For this application, the completion interrupt needs

to occur on the other core (destination core). The adi_mdma_EnableChannelInterrupt() driver function

call disables the transfer complete interrupt on the source core. In order to change the completion interrupt

from the source to the destination, the Sid needs to be set to the destination core. The

adi_mdma_GetChannelSID() function gets the Sid, and the adi_sec_SetCoreID() function is then used

to tell the driver to send the MDMA completion interrupt to the destination core.

The adi_mdma_EnableChannelInterrupt() function call enables an interrupt on the source core side

when the MDMA transfer is complete, and the adi_dma_UpdateCallback() function tells the driver which

function to call when the MDMA interrupt hits.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 12 of 20

Figure 12. MDMA Source Driver

After the source core opens the MDMA driver and gets the Sid, the Sid is sent to the destination core. The

destination code is shown in Figure 13. The destination core uses the Sid from the source core to install an

interrupt handler. The adi_int_InstallHandler() function installs a callback associated with the Sid into

the interrupt driver for the destination core. When the MDMA completes, the interrupt is executed on the

destination core.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 13 of 20

Figure 13. MDMA Destination Driver

As shown in Figure 14, the MDMA driver must be synchronized between cores during initialization, which

is accomplished in the dual-SHARC talkthrough using MCAPI. The destination core cannot install an

interrupt handler until it receives the Sid from the source core, and the source core cannot start sending data

until the destination core has installed the interrupt handler.

The source core opens the MDMA driver on a specific stream and sends the Sid to the destination core,

which blocks until the Sid is received. After receiving the Sid, the destination core can install its interrupt

handler.

As the source core cannot start sending data to the destination core until the destination core has installed

the interrupt handler, it blocks after opening the MDMA driver until it receives a signal from the destination

core indicating the interrupt handler is installed. In this example, MCAPI sends the destination address from

the destination core to the source core. The source core then uses the destination address to MDMA audio

frames to the destination buffer.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 14 of 20

Figure 14. Sequence for Setting up the MDMA Driver

Loading and Running the Example

The dual-SHARC talkthrough example has code in all three cores. At reset, the ARM core initializes the

board and the SPU while holding the SHARC cores in reset. After the ARM core completes the initialization,

the SHARC cores are released from reset, and both SHARC cores start executing at approximately the same

time. Figure 15 shows the talkthrough project modules spread across the three cores. The main() function

for the source core (SHARC #1) is located in MultiCoreTalkThruSharcSharc_Core1.c. The main() function

for the destination core (SHARC #2) is located in MultiCoreTalkThruSharcSharc_Core2.c.

The Adau1979Interface.c module is the ADC driver containing all the functions required to interface to the

ADAU1979 codec, and it executes on the SHARC #1 source core. The Adau1962Interface.c module is the

DAC driver containing all the functions required to interface to the ADAU1962 codec, which executes on

the SHARC #2 destination core.

Instantiating the MDMA interface is done on the source side using the SHARC_linkMasterInterface.c

module and on the destination side using the SHARC_linkSlaveinterface.c module. These modules perform

the data exchange and synchronization used to initialize the MDMA transfer.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 15 of 20

Figure 6. Dual SHARC Talk-through Project and Modules

Finally, the InputSeriesFilter.c module contains the source core audio filter (currently just a pass through).

Similarly, the OutputSeriesFilter.c module contains the destination core audio filter (also currently just a

pass through). The user just needs to insert their audio processing code into these modules!

To run the example, unzip the example workspace, open CCES, and switch to the example workspace. Once

open, build the project by clicking on the hammer icon, as shown in Figure 16 (indicated as step 1). Then

click on the debug icon (green bug), as indicated in Figure 16 step 2.

Figure 7. Loading and Running the Example (Steps 1 and 2)

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 16 of 20

This puts the IDE in the debugger perspective. Click the multi-core resume icon (as shown in Figure 17,

indicated as step 3). This will cause the ARM core to execute its initialization code, which releases the

SHARC cores from reset. The SHARC cores will run until they hit the breakpoints automatically inserted

at the beginning of their respective main() routines, but the ARM core is still running.

Figure 8. Loading and Running the Example (Step 3)

In order to start the SHARC cores, we need to halt the ARM core to reactivate the multicore resume button.

Click on the multi-core pause icon, as shown in Figure 18 (indicated as step 4). At this point, all three cores

are halted. The ARM has done its initialization and is paused in a while(1) loop. The SHARC cores are

both paused at the start of main().

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 17 of 20

Figure 9. Loading and Running the Example (Step 4)

At this point we want to resume all three cores at the same time. Click the multi-core resume icon, as shown

in Figure 19 (indicated as step 5).

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 18 of 20

Figure 10. Loading and Running the Example (Step 5)

After all three cores are resumed, the console window will show the two SHARC cores communicating with

each other via MCAPI (as shown in Figure 20), transferring the Sid and audio buffer destination address.

After the MDMA ICC is fully configured, the ADC is enabled. After an audio frame is received from the

ADC, it is sent to the destination core using MDMA. The MDMA completion interrupt on the destination

core causes the DAC to be enabled. The result is synchronization between ADC and DAC.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 19 of 20

Figure 11. Example Output in Console Window

Conclusion

The ADSP-SC58x processor is a multicore SoC with an ARM Cortex-A5 core and two SHARC+ cores.

While MCAPI is very easy to use with a rich API, it uses core accesses to move data from one SRAM to

the next, requiring CPU cycles that could otherwise be used by application code. MDMA requires a separate

synchronization mechanism during configuration (making it more difficult to setup) and some compile-time

decisions about how to share Sid and destination buffer address during initialization. The advantage,

however, is that MDMA does not require CPU cycles to transfer data (data transfer is done by hardware in

the background) and a hardware-generated interrupt occurs on the destination core to indicate the buffer is

ready for processing. MDMA uses significantly less CPU cycles to transfer data from a source to destination.

References

[1] Associated ZIP File (EE377v01.zip) for ADSP-SC58x MCAPI and MDMA Dual SHARC Talkthrough Example (EE-377).

June 2015. Analog Devices, Inc.

[2] SHARC+ Core Dual Processor with ARM Cortex-A5 Data Sheet. Rev PrC, May 2015. Analog Devices, Inc.

[3] ADSP-SC58x Processor Hardware Reference. Preliminary Revision 0.2, June 2015. Analog Devices, Inc.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 20 of 20

Document History

Revision Description

Rev 2 – October 9, 2015

by Eric Gregori

Corrected Throughput

Rev 1 – June 11, 2015

by Eric Gregori

Initial Release

	Introduction
	Dual-SHARC Audio Talkthrough Overview
	Inter-Core Communications (ICC)
	Multicore Communications API (MCAPI)
	Using MCAPI to Synchronize MDMA Initialization

	Memory DMA (MDMA)
	MDMA Driver

	Loading and Running the Example
	Conclusion
	References
	Document History

