Engineer-to-Engineer Note EE-377

ANALOG Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
DEVICES e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough

Contributed by Eric Gregori Rev 2 — October 9, 2015

Introduction

The ADSP-SC58x processor (Figure 1) contains two SHARC+ cores (with 640KB of L1 SRAM each), an
ARM Cortex-A5 processor, and 256KB of L2 SRAM. A system crossbar and 100-channel DMA controller
provide simultaneous access to multiple memory spaces. This EE-note covers two methods for moving data
between cores, commonly called Inter-Core Communications (ICC), and is centered about a dual-SHARC
audio talkthrough example (in the associated zip file™). The example takes audio from an ADC into one
SHARC+ core, passes it to the second SHARC+ core (using an ICC), and finally sends it out to a DAC.
Though the example is a simple audio pass through application, hooks are in place for customers to add
their own audio processing algorithms.

SYSTEM CONTROL PERIPHERALS
ARMP® Cortex-A5 SHARC+ SHARC+ —
SECURITY & PROTECTION - — | Precision Clock | DAL
[System Protection (5PU) | 450MHz FI45?:MHZPt i ?SOMHZ e Generators SRU
oating- Floating-Pt
[FaultManagement | NEON™ ARM DSP SHRG DSPg SH\RC 8:l\SR_(: Sg(i%T K=
FPU 1 pairs -
| ARM® TrustZone Security | ;’ﬁ
[Dual CRC (w/ MemDMA) | Lt cache | SPDIF Rx/Tx |
32kB L1 I-cache 2,
[Watchdogs] 32kB L1 D-cache | SRS | =
L1 SRAM (Parity) L1 SRAM (Parity)
[OTP | | 2x Link ports |
5Mbits (640KB) 5Mbits (640KB)
| Thermal Sensor | L2 Cache SRAM/cache SRAM/cache Quad-SPI %
256KB (w/direct execution) Dual-5P1 m
[s EPROtGCRAI\: FII-ICM(ISEC) | | IXUARTs |
ys Event Controller i t I i i i t t
| Trigger Routing (TRU) | P | 1x ePPI (w/ video I/0 support) |
’ System Crossbar and DMA Subsystem e Kt
« Multiple busses supporting simultaneous access H | 3x ePWM |
CLOCKS, RESET & PWR to multiple memory spaces.. Up to 100 DMA channels PR G
[Clock Gen (CGU) | A | 8x Timers + 1x Counter | P
RTC I I I i i I """ I !
| | SYSTEM | ADC Control Module (ACM) | 0
[ResetcControl(RCU) | L3 MEMORY INTERFACES SUSTER >
L2 MEMORY ACEECERAUIZH | Async Memory (16-bit) |
[Power Mgmt (DPM) |
DSP FUNCTIONS 2x CAN2.0
2Mbits (256KB) (FFT/iFFT, Filter) | |
DEBUG UNIT L2 SRAM (ECC) | DL |
[ARME coresight | DDR3 DDR3 / /e =
T DDR2 DDR2 SINCA Filters
Watchpoints(SWU) ||| | | .56rn | | tomee 1| (---=-===-====1 2x Ethernet MAC
| | LPDDR LPDDR ' ! Gigabit & 10,100 (w/ [EEE-1588/AVE)
! 4Mbits (512KB) | -
! L2R0 : LI [2xusBotGHS (w/muitipt) |
8-ch 12-bit 1Msps ADC i i YP K>
= — || =TT~~~ ~=~==- | MLB 3/6-pin {Auto only) |
™~ ™~
[r1e {r1s | PCIe2.0 (1lane) (Non-Auto) | K>
Data Data

Figure 1. ADSP-SC58x Block Diagram

Copyright 2015, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or
application of customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All
trademarks and logos are property of their respective holders. Information furnished by Analog Devices Applications and Development Tools
Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices regarding the technical accuracy
and topicality of the content provided in all Analog Devices’ Engineer-to-Engineer Notes.

http://www.analog.com/processors

ANALOG
DEVICES

Dual-SHARC Audio Talkthrough Overview

The ADSP-SC58x dual-SHARC audio talkthrough (Figure 2) takes in four channels of analog audio and
digitizes it. The digitized audio is passed serially through two SHARC cores, and the result is converted
back to the analog domain and output as four channels of analog audio. Each SHARC runs its own audio
algorithm, and the result of the audio algorithm running on SHARC #1 (Fsl) is passed to SHARC #2.
Buffering allows the Fs1 algorithm executing on SHARC #1 to run concurrently with the Fs2 algorithm on
SHARC #2, resulting in parallel execution with respect to time.

DA SHARC#1 L1

4 audio — PDMA1 — 'Y
channels ADAUL979 RX 4 AlB

mdma C
start

MCAPI MDMA
4

used during
injtialization

mdma
interrupt D

4audio 7111 1962A PDMA2 FlE
channels TX 4

SHARC#H#2 L1

w <4 X O v w

ARM

Figure 2. Dual-SHARC Audio Talkthrough Block Diagram

The dual-SHARC audio talkthrough is an example of how to use ICC between the SHARC cores. The
ADSP-SC58x processor supports two forms of ICC, Multi-Core Communications APl (MCAPI) and
Memory DMA (MDMA). This example demonstrates both ICC methods, as MCAPI is used during
initialization to configure MDMA, and MDMA is used during runtime to maximize performance.

In this example, the ARM core is only used to initialize various ADSP-SC58x peripherals. Out of reset, the
ARM core executes first while the SHARC+ cores are held in reset. After the ARM core initializes various
peripherals, it releases the SHARC+ cores from reset. MCAPI is then used to synchronize the two SHARC+
cores after they come out of reset.

Figure 3 shows the path of an audio frame through the ADSP-SC58x processor. A frame containing 16
samples of four-channel, 32-bit audio data (256 bytes) is transferred via peripheral DMA (PDMA) from the
SPORT module to buffer A or B, both located in the SHARC #1 L1 SRAM (S1L1), at which point SHARC
#1 runs the Fsl algorithm on the frame and stores the result in buffer C (also in S1L1). SHARC #1 then
starts the MDMA transfer from buffer C to buffer D, which is located in SHARC #2 L1 SRAM (S2L1).

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 2 of 20

ANALOG
DEVICES

When the transfer completes, the MDMA done interrupt is triggered on SHARC #2, and the Fs2 algorithm
is then executed by SHARC #2 as part of the interrupt handler.

TO Tframe1 Tframe2 Tframe3 Tframe4 Tframe5
% SPORTto A | SPORT to B | SPORTto A | SPORTto B | SPORT to A)Ej\ugercs
> arye i,n
3 AtoFs1 2| BtoFst [Z| AtoFst 3| BtoFs1 [3]| sterc
- toc [E] toC [E| toC [E| toC [E| "
SHARCT starts MDMA
%) 3| DtoFs2 |32| DtoFs2 3| DtoFs2 3 || Buffers
< 2| toE [B] toF || toE | 2EF
g SHARC2 gets MDMA SHARC2
N complete interrupt E to SPORT | F to SPORT L
MDMA
copies SHARC 1 runs Fs1 SHARC 2 runs Fs2
bufer® in SPORT callback. in MDMA complete

buferD Starts MDMA after filter. interrupt.
Figure 3. Dual-SHARC Audio Talkthrough Pipeline

The SPORT allocated to SHARC #2 is synchronized with the SPORT allocated to SHARC #1 during
initialization. After the MDMA completion interrupt occurs, SHARC #2 has almost one whole frame worth
of time before its SPORT callback function expects another frame.

Inter-Core Communications (ICC)

ICC is used to transfer data between cores. As shown in Figure 4, the ADSP-SC58x processor contains two
SHARC+ cores, each with 640KB of L1 SRAM and a shared 256KB L2 SRAM. Each SHARC+ L1 SRAM
IS mapped twice in the system’s linear address space - one region is private to that SHARC+ core, and the
other is accessible from any core (multiprocessor space). Transfers to or from the SHARC+ L1 SRAM use
the multiprocessor address space. The ARM core can also copy data to either SHARC+ L1 SRAM using
the multiprocessor space.

The ADSP-SC58x tools supports two ICC libraries for transferring data between cores, MCAPI and
MDMA. MCAPI is an industry standard, and the ADSP-SC58x port of MCAPI uses core operations for
transferring data, which consumes CPU cycles. MDMA is a hardware block in the ADSP-SC58x
architecture that can transfer data between cores in the background without CPU intervention. The ADSP-
SC58x processor has a high-performance MDMA channel designed to transfer data at up to 1500MB/s
between SHARC+ L1 SRAM spaces. This high-speed MDMA channel is the fastest and most efficient
method of transferring data between the two SHARC+ L1 SRAM spaces.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 3 of 20

ANALOG

ox FFFF FFFF -
DMC1 (1GB)
0x CO00 0000
ARM® Cortex-AS SHARC+ SHARC+ R oo (168)
sowacs 00 SPiz FLASH (s12MB)
450MHz 450MHz 450MHz romemer prpp—"
Floating-Pt Floating-Pt
NEON™ ARM Dspg CEILE, m e SMIC BANK 3 (54MB)
Dsp ox 40000000
FPU —— SHIC BANK 2 (BaME)
o 23000000
e] - T SHIC BANK 1 (84MB)
32KB L1 I-cache audio buffer audio buffer SMC BANK 0 ecl)
O 4000 0000
32kB L1 D-cache SYSTEM MMR SPACE
L1 SRAM (Parity) L1 SRAM (Parity) ox 000 0008 ——
x 28FA 0000
5Mbits (640KB) 5Mbits (640KB) > SHARC: L MEWORY N
L2 Cache SRAM/cache SRAM/cache ox 28440008 ""L"“:;Z:SE:”ME‘
256KB —-——._________‘_-__—‘_’w'zaum SHARC1 LI MEMORY N
0w 2624 000D MULTIPROCESSOR SPACE rED
RESERVED ADDRESS
ox 2028 FFFF pp——
0% 2028 0000
O 2020 TFFF FESERVED
stem Crossbarand DMA Subsystem L2B0CT ROM 2 (s 25M)
ultiple busses supporting simultaneous access o a0a0 0000 —
multiple memory spaces.. Up to 100 DMA channels Ox 2018 FFFF
L2 ROM 1 (2Mb)
0% 2018 0000
x 2010 TFFF FESEED
L2 BOOT ROM 1 (0.25Mb)
(SHARGC Cores)
O 2010 0000
SPORT SPORT o 008 FFFE RESERVED
L2 SRAM (2Mb)
e oo RESERVED
H HP.- e 2000 TFFE L2 BOGT ROM o (0.25Mb)
MCAPI used during init — e N | .
| 0x 0009 FFFF
L1 BLOCK 3 SRAM (1Mb)
RESERVED oo o
. . » RESERVED ox 0031 FFFF 5,
PDMA used during runtime g T T
P4 oos 0000 (83
T8 RESERVED @3
| ox 002E FFFF =
é L1 BLOCK 1 SRAM (1.5Mb) g r!‘w
O 1000 | 0x 002C 0000 “
H : ARM L2 CONFIG RECS (4KB) RESERVED
MDMA used during runtime e | o
0% 0000 TFFF 4
R ARM BOOT (32KB) 2 IR . i :]

Figure 4. Moving Data in the ADSP-SC58x Processor

The dual-SHARC audio talkthrough example uses MCAPI to synchronize and share information between
cores during initialization. At runtime, MDMA is used to transfer audio frames from SHARC #1 to SHARC
#2 for maximum performance and efficiency.

Multicore Communications APl (MCAPI)
The Multicore Communications Applications Interface (MCAPI) protocol is a message-passing API that
provides for communication and synchronization between processing cores in embedded systems. In the
ADSP-SC58x processor, MCAPI can be used to transfer data between all three cores (e.g., S1L1 to S2L1,
L2 SRAM to S1L1 or S2L1, S1L1 or S2L1 to L2 SRAM, etc.).

As shown in Figure 5, MCAPI uses domains, nodes, and endpoints for communications. A domain is a
collection of nodes. Each core is a node, and all three nodes comprise a single domain (the ADSP-SC58x
processor itself). Each node can have multiple endpoints, which can be thought of as the ends of a pipe.
Two endpoints are required to pass data through the pipe.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377)

Page 4 of 20

ANALOG
DEVICES

SHARC 1
L1 SRAM (Parity)

MCAPI Domain 1 Messages: Connectionless SIORAM] cache”
- More flexible, less configuration
- Blocking and non-blocking
- Prioritized messages

e Node Connectionless Has More Flexibility
endpoint <1,1,1>
attributes | | port 1 MCAPI| Node 2
Connectionless
Message to <1,2,1> endpoint <1,2,1>

endpoint <1,1,2>

N N N K | port 1 || attributes

attributes port 2

SHARC 2
L1 SRAM (Parity)

5Mbits (640KB)
SRAM/cache

Figure 5. MCAPI Overview

The ADSP-SC58x implementation of MCAPI uses core operations to transport data. Core operations use
CPU cycles to copy data between buffers, making it less efficient than DMA. When MCAPI transfers data
from one core to the next, a Trigger Routing Unit (TRU) signal is sent to indicate to the receiving core that
the data is available.

The MCAPI API is easy to use, supporting both polling and blocking function calls. MCAPI does not
support callbacks. Once an endpoint is generated on both sides of the pipe, data can be transferred in both
directions.

The dual-SHARC talkthrough example uses MCAPI during initialization to transfer information and
provide synchronization in setting up the MDMA connection between the SHARC cores. It is not used
during runtime in this example, though future examples will use MCAPI during runtime to exchange control
signals and data between the ARM and SHARC cores. This is an interrupt-driven example, as the main ()
code (background thread) for all three cores is simply a while loop awaiting interrupts. Using blocking
MCAPI calls in the background thread would have no effect on the cycles available for the filters.

MCAPI messages, shown in Figure 5, provide a flexible method to transmit data between endpoints without
first establishing a connection. The buffers on both the sender and receiver sides must be provided by the
user application. MCAPI messages may be sent with different priorities on a per-message basis.

Using MCAPI to Synchronize MDMA Initialization

MCAPI messages are used to share data and perform synchronization during initialization of the dual-
SHARC audio talkthrough example. To send a message using MCAPI, two endpoints must be created - one
by the source core and one by the destination core. Figure 6 shows the source code from for creating the
MCAPI endpoints. After the source core creates its endpoint using mcapi endpoint create (), it waits for
the destination core to create its endpoint by calling the mcapi endpoint get () function. After both
endpoints are created, communication can occur between cores.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 5 of 20

ANALOG

DEVICES
,;‘/***
/f Open MCAPI connectlon to slave
ff***************************’********’**’********’****************************
DEBUGMSG {stdout, “Corel: Creating MCAPI master endpointhn®);
master_ep = mcapi_endpoint_create(l, &mcapi_status); ff Create master MCAPI endpoint
if (MCAPT SUCCESS |= mcapi_status)
{

#ifdef MCAFI VERBOSE

mcapi_display_status(mcapi_status, status buff, sizeof{status buff));

DEBUGMSG{ stdout, “[ERR] mcapi_endpoint_create ¥s %s M#d\n", status_buff, _ FILE , _ LINE_ J;
#endif

return (SHARC LINK _MCAPI ERROR);

3

DEBUGMSG(stdout, "Corel: Wailting for MCAPI slave endpoint creationin® 3,
slave_ep = mcapi_endpoint_get(DOMATN, WODE CORE 1, 1, MCAPI TIMEQUT IMFIMITE, &mcapi status);
if (MCAPT SUCCESS |= mcapi_status) £/ Get MCAPI slave endpoint

{
#ifdef MCAPI WERBOSE
mcapi_display_status(mcapi status, status buff, sizeof({status_buff));
DEBUGMSG{ stdout, “[ERR] mcapi_endpoint_pget %= ¥s %d\n", status_buff, _ FILE__, _ LIMNE_ 3};
#Hendif
return (SHARC_LINK_MCAPI_ERROR);

}
DEBUGMSG {stdout, “Corel: MCAPI slave endpoint capturedin® };

Figure 6. Master/Source MDMA Initialization/Synchronization — Opening a MCAPI Connection

Figure 7 shows the code for transmitting the Sid from the master/source core to the slave/destination core.
After the two endpoints are established, the source core can send the Sid to the destination core. After the
source core sends the Sid to the destination core, it waits for the destination core to install the interrupt
handler. This waiting occurs in the mcapi_msg recv () function, which blocks until the destination core
installs the interrupt handler and sends the destination buffer address. Upon receiving the destination buffer
address, the source core continues execution.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 6 of 20

ANALOG
DEVICES

//******X**X*****************

/4 Send SID to slave
//******X*************************X**
DEBUGMSG(stdout, "Corel: Sending Sid to slavein™ J;
mcapi_msg_send(master_ep, slave_ep, &nSid, sizeof{nSid), 9, &mcapi_status);
if (MCAPI SUCCESS = mcapi_status) /f Send Sid to slave owver MCAPI
{
#ifdef MCAPI_VERBOSE
mcapi_display_status{mcapl_status, status_buff, sizeof(status_buff));
DEBUGMSG(stdout, "[ERR] mcapi_msg_send 1 ¥z %= %di\n", status_buff, _ FILE , _ LIME);
#Hendif
return (SHARC_LIMK_MCAPI_ERROR)Y;

}

//******X**X*****************

/f Wait for buffer address from slave
//***
DEBUGMSG (stdout, "Corel: Waiting for destination address from slawveyn"™);
mcapi_msg_recv(master_ep, &DestAddress, sizeof({DesthAddress), &RcvBytes, &mcapi_status);
if (MCAPI_SUCCESS = mcapi_status) // Block here until we receive the buffer address from slave
{
#ifdef MCAPT_WERBOSE
mcapi_display_status{mcapi_status, status_buff, sizeof(status_buff));
DEBUGMSG(stdout, "[ERR] mcapi_msg_recw %s %s ¥di\n", status_buff, _ FILE_ , _ LINE_);

Hendif
return (SHARC_LIMK_MCAPT_ERRCR);
}
if({ RewBytes l= 4) return(SHARC_LINK_MCAPI_ERROR); // Error if we did not receive the address

//******X*************************X**********************X*****************
/f SHARC_ link connection established

//******X*************************X**********************X*****************

DEBUGMSG(stdout, "Corel: SHARKlink connection established 0x%08X\n", DestAddress J;
*DMASlaveDestinationAddress = DestAddress; /f Return DMA destination address

return SHARC_LINK_SUCCESS;

Figure 7. Master/Source MDMA Initialization/Synchronization — TX Sid to Slave, RX Buffer Address from Slave

The source code for the slave/destination side is shown in Figure 8. The slave creates an endpoint which
becomes the other side of the MCAPI pipe. With an endpoint created on both sides (master and slave), a
communication pipe is created. Using this pipe, the master sends the Sid, which is received by the
mcapi_msg_recv () call. After receiving the Sid, the destination core can insert the interrupt handler.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 7 of 20

ANALOG
DEVICES

//***

/{ Open MCAPI connection to master
//***

DEBUGMSG(stdout, "Core2: Creating MCAPI slawve endpointin®™);

slave_ep = mcapi_endpoint_create(l, &mcapi status); f{ Create MCAPI slave endpoint
if (MCAPTI SUCCESS |= mcapi_status)
{

#ifdef MCAPI_WERBOSE

mcapi_display_status{mcapi_status, status _buff, sizeof(status buff));

DEBUGMSG{stdout, "[ERR] mcapi_endpoint create %s %z ¥d\n", status buff, FILE , LINE_3;
#Hendif

return (SHARC_LINK_MCAPI_ERRCR);

}
DEBUGMSG{=tdout, "Core2: MCAPI zlave endpoint creatediyn® 3,

//***

/f Walt for Sid from master
//***

mcapi_msg_recv(slave_ep, &n5id, sizeof{n%id), &RcvBytes, &mcapi_status);
if (MCAPTI_SUCCESS = mcapi_status) /f Block until we receive the Sid from master

{
#ifdef MCAPI_VWERBOSE
mcapi_display_status{mcapi_status, status_buff, sizeof(status_buff});
DEBUGMSG(stdout, "[ERR] mcapi_msg_recwv_i %s %s ¥din", status_buff, _ FILE__, _ LINE_ 3;
#Hendif
return (SHARC LTNK MCAPT ERRCR);

1
DEBUGMSGY stdout, "Core2: Recelived @x%08X Sid from masteryn", nSid);

//***

Jf insert interrupt handler based on Sid

//***

adi_int_InstallHandler (nSid, pfHandler, NULL, true);
DEBUGMSGY stdout, "Core2: MDMA interrupt handler installediyn™);

Figure 8. Slave/Destination MDMA Initialization/Synchronization — Receiving Sid and Installing the Interrupt Handler

Figure 9 shows the code on the slave/destination core for acknowledging the insertion of the interrupt
handler and sending the buffer address to the master/source core. After the destination core inserts the
interrupt handler, it sends its audio buffer address to the source core. The source core will use this address
when initiating the MDMA transfer. This transaction also informs the source core that the interrupt handler
is installed and it is OK to start initiating transfers.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 8 of 20

ANALOG
DEVICES

[JEEEE R R R R R R R R R R R R R R R R

// sends DMA destination buffer address to Master
//***
DesthAddress = {(uint32 t)DMASlaveDestinationAddress;
DEBUGMSG(stdout, "CoreZ: Sending buffer destination address 0x¥#08X to masteryn", DestAddress);
master_ep = mcapi_endpoint_get(DOMAIN, MODE_CORE @, 1, MCAPI_TIMEQUT IMFIMITE,
&mcapi_status); £/ Get master endpoint
if (MCAPI SUCCESS = mcapi status)
{
#ifdef MCAPI_WERBOSE
mcapi_display_status{mcapi_status, status_buff, sizeof(status_buff));
DEBUGMSG(stdout, "[ERR] mcapi_endpoint_get ¥s s %din", status_buff, _ FILE_ , _ LINE_};

#endif
return (SHARC_LINK_MCAPI_ERROR);
1
mcapi_msg_send(zlave _ep, master ep, &DestAddress, sizeof(Desthddressz), @, &mcapl status);
if (MCAPI SUCCESS = mcapi status) £/ Send DMA transfer destination address to master
{

#ifdef MCAPT_WERBOSE

mcapi_display status{mcapi_status, status_buff, sizeof(status buff));

DEBUGMSG(stdout, "[ERR] mcapi _msg send %s s %d\n", status buff, _ FILE , LINE J;
#endif

}

DEBUGMSG(=tdout, "CoreZ: SHARC link connection establishedyn™);

return {SHARC_LINK_SUCCESS);

Figure 9. Slave/Destination MDMA Initialization/Synchronization — Sending the Audio Buffer Address to the Master

Memory DMA (MDMA)

Memory DMA (MDMA) is a hardware block dedicated to moving data around the various memory elements
on the ADSP-SC58x processor. There are four MDMA streams - two low-speed (450MB/s), a medium-
speed (900MB/s), and a high-speed (1500MB/s) - which can be used to transfer data from S1L1 to S2L1 in
the background with no CPU intervention, as shown in Figure 10.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 9 of 20

ANALOG
DEVICES

Channel | FIFO Speed Performance
(SID) Depth S1L1 to S2L1

0 128,64 450MB/s
1 18,19 128,64 Low 450MB/s
2 39,40 128,64 Medium 900MB/s
FIFO
3 43,44 128,64 High 1500MB/s

Destination
DMA

Figure 10. MDMA Supports 4 Streams up to 1500 MB/s

After the MDMA channel is configured, sending a data buffer from S1L1 is done using a simple MDMA
library call. After the transfer is complete, a MDMA completion interrupt occurs on the SHARC #2 core,
effectively combining the transfer and buffer ready signaling into a single hardware module. The result is
the least amount of CPU cycles possible used to move the data between cores.

Figure 11 describes how to setup and use MDMA to transfer data between SHARC cores. During
initialization, the source core (SHARC #1) opens the DMA stream using a device driver call. The source
core sends the stream identifier (Sid) to the destination core, which then uses the Sid to install an interrupt
handler. The destination core sends the address of its buffer back to the source core, which will then use this
address when initiating future transfers.

At runtime, a transfer from the source buffer (S1L1) to the destination buffer (S2L1) is initiated by the
source core. When the transfer is complete, the DMA engine sends a signal to the destination core (SHARC
#2), which causes the SHARC #2 core to execute the MDMA complete callback function.

Two pieces of information must be shared between cores to initialize a MDMA transfer. The Sid is a
constant, and the destination buffer address is a pointer to the destination of the MDMA transfer (an address
within the destination core’s L1 SRAM space). If the stream ID is hardcoded in the source core firmware,
the Sid could be hardcoded in the destination core firmware.

Normally, a global buffer address is not constant at build time. The linker can decide to move any global
variable anywhere in an address region defined by the Linker Description File (LDF). Forcing the
destination buffer into a constant place in memory can be done by creating a region in the LDF. If the buffer
is set to the beginning of this custom region, the destination buffer address will be constant. If the destination
buffer address is constant, the destination buffer address can be hardcoded in the source core firmware.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 10 of 20

ANALOG

DEVICES
MDMA transfer Signal sent to core
........................ complete signal y 2 based on Sid
SHARC1 (source core) MCAPI used fo send Sid i Init

stream

Destination buffer address Destination buffer address
Figure 11. Using MDMA to Transfer Audio Buffers Between SHARC+ Cores

Although constant data does not need to be shared between cores to initialize MDMA, the MDMA
configuration process does require synchronizations between cores, which requires a semaphore (using the
TRU or a global variable). This example uses MCAPI for synchronization. The example does not use a
constant destination buffer address, so MCAPI is also used to transfer the destination buffer address from
the destination core to the source core.

MDMA Driver

The MDMA driver is documented in the CrossCore® Embedded Studio (CCES) On-line Help system, and
information on any API function is easily retrieved by performing a search by function name. Figure 12
shows the MDMA initialization portion of the example. The MDMA driver is initialized using the
adi mdma Open () function, which has arguments for stream ID, pointers to workspace RAM, and pointers
for a source and destination handle. The handles are then used for all future transactions with the driver.

By default, the MDMA driver enables a transfer completion interrupt on the same core (transfer source) that
opened the MDMA driver (called adi mdma open ()). For this application, the completion interrupt needs
to occur on the other core (destination core). The adi mdma EnableChannelInterrupt () driver function
call disables the transfer complete interrupt on the source core. In order to change the completion interrupt
from the source to the destination, the Sid needs to be set to the destination core. The
adi mdma GetChannelsiD () function gets the Sid, and the adi sec setcore1n() function is then used
to tell the driver to send the MDMA completion interrupt to the destination core.

The adi mdma EnableChannelInterrupt () function call enables an interrupt on the source core side
when the MDMA transfer is complete, and the adi dma UpdateCallback () function tells the driver which
function to call when the MDMA interrupt hits.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 11 of 20

ANALOG
DEVICES

£/
// Open MDMA channel
£/
DEBUGMSG(stdout, "Corel: Opening MODMA channelyn™ };
eResult = adi_mdma_Open (MEMCOPY_STREAM 1D,
&MemDmaStreamMem[@],
&hMemDmaStream,
&hSrebDmaChannel ,
&hDestDmaChannel,
NULL,
NULLY;

if (sResult = ADI_DMA SUCCESS)

{

DEBUGMSG(stdout, "Failed to open MDMA stream, Error Code: @x¥08X\n", eResult);

return SHARC_LINK_ERRCR;
1
7/
// Configure MDMA channel
17
adi_mdma_FnableChannelInterrupt{hDestDmaChannel ,false,falze}; /{ Disable the MDMA destination transfer complete interrupt
adi_mdma_GetChannelSID (hDestDmaChannel ,&nSid}; // Get the channel SID for the MDMA destination complete interrupt
adi_sec_SetCorelD(nSid, ADI_SEC CORE_1); /7 Set interrupt to occur on Core 2 {unfortunate snumeration name in driver)
adi_mdma_FnableChannelInterrupt{hSrcbmaChannel, true,trus}; /{ Enable the MOMA source transfer complete interrupt

DEBUGMSG(stdout,"\n Destination Channel interrupt SID: \t208X\n ",nSid);

eResult = adi_dma_UpdateCallback (hSrcDmaChannel, MemDmaCallback, hMemOmaStream); // Register source transfer complete interrupt
/% IF (Failure) */
if (eResult != ADI_DMA SUCCESS)

DEBUGMSG("Failed to set DMA callback, Error Code: @x%#88X\n", eResult);
return SHARC_LINK_ERROR;
1

Figure 12. MDMA Source Driver

After the source core opens the MDMA driver and gets the Sid, the Sid is sent to the destination core. The
destination code is shown in Figure 13. The destination core uses the Sid from the source core to install an
interrupt handler. The adi_int InstallHandler () function installs a callback associated with the Sid into
the interrupt driver for the destination core. When the MDMA completes, the interrupt is executed on the
destination core.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 12 of 20

ANALOG
DEVICES

//#*t*#****#**3*#**‘##**#*#3*#*##*#i*##*?#*?*t*#**##t***%**t*#*###*#*#*#$$*

// Interrupt handler for MDMA transfer complete on slave Sharc

//#¢¥t$$$t¢$t#*titttt##*###tt#tttt#tt#*t###t**ttt**tt#t#¥t$t#$tt¥$######tt#

static void DataTransferFromMasterComplete(uint32_t SID, void *pCBParam)

{
// Fix for stutter
if((__builtin_emuclk() - PreviousCycleTime) > 2000)
{
PreviousCycleTime = __ builtin_emuclk();
TIMESTAMP
++RXBuffersReceived;
if(pSportOutputBuffer = 0)
OQutputSeriesFilter(&BufferFromCorel[0], pSportOutputBuffer, AUDIO BUFFER_SIZE);
}
}

[RFFREERAKKK KA KA AAKARA KKK KKK KRR ARAR KK AR KA KK KA KK AK AR KRR AKA KA KA AR KKK KA KKK

// insert interrupt handler based on Sid
//******#*#t##*****##***##t***#****##****####*###******#***#*****#*t*****##
adi_int_InstallHandler (nSid, pfHandler, NULL, true);

DEBUGMSG(stdout, "Core2: MDMA interrupt handler installed\n");

Figure 13. MDMA Destination Driver

As shown in Figure 14, the MDMA driver must be synchronized between cores during initialization, which
is accomplished in the dual-SHARC talkthrough using MCAPI. The destination core cannot install an
interrupt handler until it receives the Sid from the source core, and the source core cannot start sending data
until the destination core has installed the interrupt handler.

The source core opens the MDMA driver on a specific stream and sends the Sid to the destination core,
which blocks until the Sid is received. After receiving the Sid, the destination core can install its interrupt
handler.

As the source core cannot start sending data to the destination core until the destination core has installed
the interrupt handler, it blocks after opening the MDMA driver until it receives a signal from the destination
core indicating the interrupt handler is installed. In this example, MCAPI sends the destination address from
the destination core to the source core. The source core then uses the destination address to MDMA audio
frames to the destination buffer.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 13 of 20

ANALOG

DEVICES

Source core Destination core
1) Open DMA driver (stream ID)
2) Get Sid 3) Waitfor Sid from source core

Use MCAPI to send Sid to destination core [\ Waitfor source core to init driver

[/ before installing interrupt handler
Waitfor destination core to install 4) Use Sid to install interrupt handler
int t handl
nterrpt handier < Use MCAPI to send destination audio buffer address to source core
5) Store destination audio buffer
address for runtime use

Source core Destination core

For each audio frame start a mdma MDMA transfer from \ Interrupt executes after MDMA
transfer from source audio buffer to Source L1 to destination L1 completion. Destination buffer
destination audio buffer. contains data from source core.

Figure 14. Sequence for Setting up the MDMA Driver

Loading and Running the Example

The dual-SHARC talkthrough example has code in all three cores. At reset, the ARM core initializes the
board and the SPU while holding the SHARC cores in reset. After the ARM core completes the initialization,
the SHARC cores are released from reset, and both SHARC cores start executing at approximately the same
time. Figure 15 shows the talkthrough project modules spread across the three cores. The main () function
for the source core (SHARC #1) is located in MultiCoreTalkThruSharcSharc_Corel.c. The main () function
for the destination core (SHARC #2) is located in MultiCoreTalkThruSharcSharc_Core2.c.

The Adaul979Interface.c module is the ADC driver containing all the functions required to interface to the
ADAU1979 codec, and it executes on the SHARC #1 source core. The Adaul962Interface.c module is the
DAC driver containing all the functions required to interface to the ADAU1962 codec, which executes on
the SHARC #2 destination core.

Instantiating the MDMA interface is done on the source side using the SHARC_linkMasterInterface.c
module and on the destination side using the SHARC _linkSlaveinterface.c module. These modules perform
the data exchange and synchronization used to initialize the MDMA transfer.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 14 of 20

ARM

4 5 MultiCoreTalkThruSharcSharc_Core0
#" Binaries
¥ Includes
4 (B src
- L9 MultiCoreTalkThruSharcSharc_Core0.c

in MultiCoreTalkThruSharcSharc_Core0.h
le SoftConfig_SC589.c

2 system

(= Debug

B system.sve

4 1 MultiCoreTalkThruSharcSharc_Corel
¥ Binaries
» 1 Includes
a B src
- [9 Adaul97%nterface.c
Lo InputSeriesFilter.c
16 MultiCoreTalkThruSharcSharc_Corel.c
[A MultiCoreTalkThruSharcSharc_Corelh
[R SHARC linkInterface.h
. 48 SHARC_linkMasterInterface.c
2 system
(= Debug
B system.sve

Figure 6. Dual SHARC Talk-through Project and Modules

ANALOG
DEVICES

4 (% MultiCoreTalkThruSharcSharc_Core2
¥ Binaries
Y Includes
4 (8 grec
g Adaul962interface.c
» 18 MultiCoreTalkThruSharcSharc_Core2.c
Ih MultiCoreTalkThruSharcSharc_Core2h
[¢) OutputSeriesFilter.c
+ [0 SHARC_linkInterface h
1&) SHARC_linkSlavelnterface.c
2 system
= Debug
T system.svc

Finally, the InputSeriesFilter.c module contains the source core audio filter (currently just a pass through).
Similarly, the OutputSeriesFilter.c module contains the destination core audio filter (also currently just a
pass through). The user just needs to insert their audio processing code into these modules!

To run the example, unzip the example workspace, open CCES, and switch to the example workspace. Once
open, build the project by clicking on the hammer icon, as shown in Figure 16 (indicated as step 1). Then

click on the debug icon (green bug),

as indicated in Figure 16 step 2.

" C/C++ - MultiCoreTalkThruSharcSharc_Corel/src/SHARC_linkh

face.c - CrossCore Ei

Studio

File Edit Source Refadlor Navigate Sgagch Project Run Window Help
& Qe ® &~

v =n

2

L Project Explorer &2
4 & MultiCoreTalkThruShariSharc_Core0
Binaries 1

il Includes
4 &3 src
g MultiCoreTalkThruSharcSharc_Core0.c
8 MultiCoreTalkThruSharcSharc_CoreQ.h
1§ SoftConfig_SC589.c
& system
& Debug
G system.svc
4 % MultiCoreTalkThruSharcSharc_Corel
" Binaries
Includes
4 B src
[9 Adau197%Interface.c

d InputSeriesFilter.c

L&) SHARC linkMasterinterface.c &

vt oY

< SHARC linkSlavelnterface.c

< MultiCoreTalkThruSharcSharc_

P —

e ———

(uint32_t *DMASlaveDestinationAddress)

SR ——

AR

19 MultiCoreTalkThruSharcSharc_Corelc uint32_t nsid;
8 MultiCoreTalkThruSharcSharc_Corelh F /7 MCAPT endpoints
- // MCAPT endpoints
& SHARC linkintertace.h mcapi_endpoint_t master_ep; // SHARClink
49 SHARC linkMasterinterface.c mcapi_endpoint_t slave_ep; // SHARClink slave
& gystem uint32_t RevBytes;
& Debug uint32_t DestAddress;
T system.sve ANT NMA RESIN T aRacilt — ANT PMA SHCCESS: 1 TMA_ natien
4 (% MultiCoreT alkThruSharcShare_Core2
£ Binaries 1 Problems ¥ Tasks | B Console & . [Properties| 4" Search
& Includes CDT Build Console [MultiCoreTalkThruSharcShare_Core2]
4 58 src

'Finished building: ../src/SHARC_linkSlaveInterface.c'

[& Adau1962Interface.c v
1€ MultiCoreTalkThruSharcSharc_Core2.c
(8 MultiCoreTalkThruSharcSharc_CoreZh
ld QutputSeriesFilter.c
I8 SHARC |inknterface.h
18 SHARC_linkSlavelnterface.c

@ system

& Debug

=

‘Building target: MultiCoreTalkThruSharcSharc_Core2.dxe’
'Invoking: CrossCore SHARC Linker'

'Finished building target: MultiCoreTalkThruSharcSharc_Core2.dxe'

16:96:55 Build Finished (toock 26s.802ms)

(]« 1l
crctom e

Figure 7. Loading and Running the Example (Steps 1 and 2)

[F=5 FoN ==
:2) * Debug

=D

Quick Access

L9 MultiCoreTalkThruSharcSharc_ L MultiCoreTalkThruSharcShare_

" -

s are initiated

dpoint (other

cc2lk.exe -proc ADSP-SC589 -si-revision 8.8 -TC:/Users/EGREGORI/Desktop/Projects/GriffinTalkThru/MultiCoreTalkThruSharcSharc/MultiCoreTalkThru!

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377)

Page 15 of 20

ANALOG
DEVICES

This puts the IDE in the debugger perspective. Click the multi-core resume icon (as shown in Figure 17,
indicated as step 3). This will cause the ARM core to execute its initialization code, which releases the
SHARC cores from reset. The SHARC cores will run until they hit the breakpoints automatically inserted
at the beginning of their respective main () routines, but the ARM core is still running.

. 7 Debug - MultiCoreTalkThruSharcSharc_Corel/src/SHARC linkMasterinterface.c - CrossCore Embedded Studio o || B2
File Edit Source Refactor Mavigate Search Target Projagt Run Window Help
R Gle Hdomum Q-7 AR AR R Quick Access B | B C/C++ |45 Debug
45 Debug 2 # 7 = 0O ||t Variables | % Breakpoints| % Expressions 2 8| % x| 9 v= 0O
L New_configuration [Application with CrossCore Debugger] 3 Expression Type Value
4 i ADSP-SC589 via ICE-2000 AdcCount Error: Unknown variab,
4 ¢ Core 0 (Cortex-AS5) [DebughMultiCoreTalkThruSharcSharc_Core0] (Suspended : Breakpoint) DacCount unsigned int 0
= maintint, char**) at MultiCoreTalkThruSharcSharc_Core0.c:75 Oxc10043ce RXBuffersReceived unsigned int 0
4 4@ Core 1 SHARC) [Debug\MultiCoreT alkThruSharcSharc_Corel.dxe] (Suspended) CycleCountBuffer volatile unsigned long long[][] fo}
= (x90004 o Add new expression
4 4@ Core 2 { SHARC) [DebugiMultiCoreTalkThruSharcSharc_Core2.dxe] (Suspended)
= 0x90004
] I »
[g] SHARC linkMasterinterf &2 .l SHARC linkSlavelnterfa Lt MultiCoreTalkThruShar L& MultiCoreT alkThruShar < MultiCoreTalkThruShar = B ||8% Outline |== Disassembly 2 = o
[AR ARAAA KRR AR ATAAIA AR AR AR AR AR IARIAAAAARAAAAA AR KA AIARK, - Enter location here « | & :-‘Y[I] [N,
// Called from Master Sharc (sending Sharc) i ize the SHARC link. 4
i./: Uses MCAPT to establish SHARC link. SHARC link as not use MCAPI during runtime. = __dnmt_jump_RSTI, .__dnd
Iz

» DDO00R4 nop; =
00090005 ; Jump start;

// 1) Master opens M

pOOGAERS: nop;

// 3) Master opens MCA n to sla — 00090007 : nop. ~
4 i L
0 Console 22 &) Tasks [£ Problems O Executables| 0 Memory Browser k| B~ = 0
Qutput
Trying to load an executable built for @.9 silicon into a 9.1 silicon target. -

Load complete.

Loading application: "C:\Users\EGREGORI\Desktop\Projects\GriffinTalkThru\MultiCoreTalkThrusharcSharc\MultiCoreTalkThruSharcShare_Core2\Debug\MultiCoreTalkThrush
Trying to load an executable built for 8.2 silicon into a @.1 silicon target. E
Load complete.

« 1] 3

Figure 8. Loading and Running the Example (Step 3)

In order to start the SHARC cores, we need to halt the ARM core to reactivate the multicore resume button.
Click on the multi-core pause icon, as shown in Figure 18 (indicated as step 4). At this point, all three cores
are halted. The ARM has done its initialization and is paused in a while (1) loop. The SHARC cores are
both paused at the start of main ().

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 16 of 20

ANALOG
DEVICES

X Debug - MultiCoreTalkThruSharcSharc_Corelfsrc/MultiCoreTalkThruShareSharc_Corel.c - CrossCore Embedded Studio

t ect Run Window Help
Qv I~

#+ Debug = -

File Edit Source Refactor Mavigate Search Targe!

= - N I v Bl vty -

¥ = O ||t0=Variables | % Breakpoints | % Expressions

4 | New_configuration [Application with CrossCore Debugger] Expression
4 2 ADSP-5C589 via ICE-2000 4 AdcCount
+@ Care 0 (Cortex-A5) [DebughMultiCoreTalkThruSharcShare_Core0] (Running : User Request) DacCount
4 o Caore 1{ SHARC) [DebughMultiCoreTalkThruShareSharc_Coreldxe] (Suspended : Breakpoint) RXBuffersReceived

= mainfint, char**) at MultiCoreTalkThruSharcSharc_Corelc:68 Oxlcdd0s
4 ¥ Core 2 { SHARC) [DebugiMultiCoreTalkThruSharcSharc_Core2.dxe] (Suspended : Breakpoint)
= main(int, char**) at MultiCoreTalkThruSharcSharc_Core2.c:88 Oxlcdcla

CycleCountBuffer
¢ Add new expression

<

L SHARC_linkMasterlnterf .._t_ SHARC _linkSl avelnterfa ._t} MultiCoreTalkThruShar £
¥ @return zero on success

*/

le] MultiCoreTalkThruShar L&l MultiCoreTalkThruShar

* adi_initComponents();
// Initialise ADAULS74
if(Adaul979Init() != Qu)
{ - - . m———— s - -
«
B Console & & Tasks| [£] Problems 3 Executables| 0 Memory Browser
Output

Trying to load an executable built for 2.0 silicon into a 9.1 silicon target.
Load complete.

[F= Fok =<~
E | o+

t%|it = O

Quick Access

Type
unsigned int

t B¢
Value
0
Error: Unknown variab
Error: Unknown variab
Error: Unknown variab

11

& Qutline (= Disassembly &

Enter location here

= % 001c4das: cjump adi_initComponeni
= 001cados: dm (i7,m7)=r2; E
001c4deg; dm (i7,m7)=0x1cddib;
71 if (Adaul979Init() l=
. olcddac: =

ciump Adaul979Init (db’
[T r

»]

A MB~oiv =

Loading application: "C:\Users\EGREGORI\Desktop\Projects\GriffinTalkThru\MultiCoreTalkThruSharcSharc\MultiCoreTalkThruSharcShare_Core2\Debug\MultiCoreTalkThruSh

Trying to load an executable built for 8.8 silicon inte a 8.1 silicon target.
Load complete.

n

Figure 9. Loading and Running the Example (Step 4)

At this point we want to resume all three cores at the same time. Click the multi-core resume icon, as shown

in Figure 19 (indicated as step 5).

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377)

Page 17 of 20

ANALOG
DEVICES

I, Debug - MultiCoreTalkThruSharcSharc_Corel/sre/MultiCoreTalkThruSharcSharc_Corel.c - CrossCore Embedded Studio
File Edit Source Refactor Mavigate Search Target Project Run Window Help

i @l e wmberomzoe| @ L Q™ i v heD
Debug & & ¥ = O ||=Variables | % Breakpoints | %% Expressions &2
4 Il New _configuration [Application with CrossCore Debugger] Expression Type
+ (¥ ADSP-SC589 via ICE-2000 5 AdeCount unsigned int
4 @ Core 0 Cortex-A5) [Debug\MultiCoreT alkThruSharcSharc_Corel] (Suspended : Breakpoint) DacCount
= main(int, char**) at MultiCoreTalkThruSharcSharc_Core0.c:177 Oxc1004b48 RXBuffersReceived
4 o Core 1(SHARC) [Debugh\MultiCoreTalkThruSharcSharc_Corel.dxe] (Suspended : Breakpoint) CycleCountBuffer

= main(int, char**) at MultiCoreTalkThruSharcSharc_Corel.c:68 (x1cdd0s
4 o Core 2 { SHARC) [DebughMultiCoreTalkThruSharcSharc_Core2.dxe] (Suspended : Breakpoint)
= main{int, char**) at MultiCoreTalkThruSharcSharc_Core2.c:88 Uxlcdcla

¢ Add mew expression

«

L&l SHARC |inkMasterinterf i SHARC linkS| avelnterfa .5 MultiCoreTalkThruShar lel MultiCoreTalkThruShar & L8 MultiCoreT alkThruShar) = O ||8= Qutline | Disassembly &2
* @return zero on success o Enter locationhere » | &1 fi
* _
r S e e s =| |[® 991c4des: cjump adi_initComponent
e) 001c4dos dm (i7,m7)=r2; =
/f Initialise ADAULS79 .
! . 291cadeg; dm (i7,m7)=0x1c4déb;
if (Adaul979Init() 1= ou) 71 if (Adaul979Init() |=
e e i e e e .y s e m M Bolcddac ciump Adaul979Init (db” ™
« » 11l b
B Console & & Tasks| (22 Problems| O Executables| O Memory Browser ik #=EB-my=0
Output

Trying to load an executable built for 2.0 silicon into a 9.1 silicon target.
Load complete.

Loading application: "C:\Users\EGREGORI\Desktop\Projects\GriffinTalkThru\MultiCoreTalkThruShareSharc\MultiCoreTalkThruSharcShare_Core2\DebughMultiCoreTalkThruSh

Trying to load an executable built for B.8 silicon into a 8.1 silicon target.
Load complete.

Quick Access @ | BC/C++

IR =

[E=8 ol =%

= r = =1

Value

0

Error: Unknown variab
Error: Unkno
Error: Unknown variab:

Figure 10. Loading and Running the Example (Step 5)

After all three cores are resumed, the console window will show the two SHARC cores communicating with
each other via MCAPI (as shown in Figure 20), transferring the Sid and audio buffer destination address.
After the MDMA ICC is fully configured, the ADC is enabled. After an audio frame is received from the
ADC, it is sent to the destination core using MDMA. The MDMA completion interrupt on the destination
core causes the DAC to be enabled. The result is synchronization between ADC and DAC.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377)

Page 18 of 20

ANALOG
DEVICES

. " Debug - MultiCoreTalkThruSharcShare_Corel/sre/MultiCoreTalkThruSharcShare_Corell.c - CrossCore Embedded Studio o [& e
File Edit Source Refactor Mavigate Search Target Project Run Window Help
[& | LY o = -l HrQhvr® 9~ v oo v Quick Access @ | EC/C++ |45 Debug
45 Debug & ¥ = O == Yariables | % Breakpoints | %{ Expressions i % B R[4 -5 0O
4 I New_configuration [Application with CrossCore Debugger] = || Expression Type Value -
4 (! ADSP-5C589 via [CE-2000 = AdcCount Error: Target not av
¥ Core 0 { Cortex-AS) [DebugiMultiCoreTalkThruSharcSharc_Core0] {Running : User Request) = = ¥
+@ Core 1 (SHARC) [Debug\MultiCoreTalkThruSharcSharc_Coreldxe] (Running : User Request)
le] SHARC_linkMasterinterf ¢ SHARC_linkSlavelnterfa || MultiCoreTalkThruShar g MultiCoreTalkThruShar & o MultiCoreTalkThruShar = 08 ||g Qutline |= Disassembly &2 =
Rt o e Enter location here = C‘
B Console £ ¥ Tasks (! Problems {3 Executables| @ Memory Browser A MBEB~H-=0
Qutput
Load complete. -

Loading application: "C:\Users\EGREGORI\Desktop\Projects\GriffinTalkThru\MultiCoreTalkThruSharcSharc\MultiCoreTalkThruSharcSharc_Corel\Debug\MultiCoreTalkThruSh
Trying to load an executable built for 0.2 silicon inte a ©.1 silicon target.

Load complete.

Loading application: "C:\Users\EGREGORI\Desktop\Projects\GriffinTalkThru\MultiCoreTalkThrusharcSharc\MultiCoreTalkThruSharcShare_Core2\Debug\MultiCoreTalkThruSh
Trying to load an executable built for 2.2 silicon into a 8.1 silicon target.

Load complete.

Corel: Opening MOMA channel

Core2: DMA Slave Destination Address = @x28A48688

Core2: Creating MCAPI slave endpoint

Destination Channel interrupt SID: BBABAGAD
Core2: MCAPI slave endpoint created

Corel: Creating MCAPI master endpoint

Corel: Waiting for MCAPI slave endpoint creation
Corel: MCAPI slave endpoint captured

Corel: Sending 5id to slave

Core2: Received 8x002800AD Sid from master

Corel: Waiting for destination address from slawve
Core2: MDMA interrupt handler installed

Core2: Sending buffer destination address @x28448688 to master
Corel: SHARKlink connection established 9x28A4E6EE
Core2: SHARC_link connection established

Corel: ADC Started

Core2: Entering superloop

Corel: Entering superloop

Core2: DAC Started

] [T v

Figure 11. Example Output in Console Window

Conclusion

The ADSP-SC58x processor is a multicore SoC with an ARM Cortex-A5 core and two SHARC+ cores.
While MCAPI is very easy to use with a rich API, it uses core accesses to move data from one SRAM to
the next, requiring CPU cycles that could otherwise be used by application code. MDMA requires a separate
synchronization mechanism during configuration (making it more difficult to setup) and some compile-time
decisions about how to share Sid and destination buffer address during initialization. The advantage,
however, is that MDMA does not require CPU cycles to transfer data (data transfer is done by hardware in
the background) and a hardware-generated interrupt occurs on the destination core to indicate the buffer is
ready for processing. MDMA uses significantly less CPU cycles to transfer data from a source to destination.

References

[1] Associated ZIP File (EE377v01.zip) for ADSP-SC58x MCAPI and MDMA Dual SHARC Talkthrough Example (EE-377).
June 2015. Analog Devices, Inc.

[2] SHARC+ Core Dual Processor with ARM Cortex-A5 Data Sheet. Rev PrC, May 2015. Analog Devices, Inc.

[3] ADSP-SC58x Processor Hardware Reference. Preliminary Revision 0.2, June 2015. Analog Devices, Inc.

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 19 of 20

ANALOG
DEVICES

Document History

Revision Description

Rev 2 — October 9, 2015 Corrected Throughput
by Eric Gregori

Rev 1 — June 11, 2015 Initial Release
by Eric Gregori

Using MCAPI/MDMA for ADSP-SC58x Dual-SHARC Audio Talkthrough (EE-377) Page 20 of 20

	Introduction
	Dual-SHARC Audio Talkthrough Overview
	Inter-Core Communications (ICC)
	Multicore Communications API (MCAPI)
	Using MCAPI to Synchronize MDMA Initialization

	Memory DMA (MDMA)
	MDMA Driver

	Loading and Running the Example
	Conclusion
	References
	Document History

