

Engineer-to-Engineer Note EE-375

Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors

Contributed by Robert Hoffmann Rev 1 – June 11, 2015

Copyright 2015, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction

Analog Devices recently introduced the next generation of floating-point SHARC® devices as the follow-

on to the ADSP-214xx series. The ADSP-2158x model is the first dual-core SHARC product, and the

ADSP-SC58x has the dual-core SHARC architecture plus an integrated ARM Cortex A5 core. Combined,

these new products offer flexible System-on Chip (SoC) architectures to address a wide range of application

requirements. Notably, the SHARC cores resident on these products have been upgraded from the previous

generation SHARC products, now featuring an 11-stage pipeline and an ARM-friendly chip infrastructure

(system fabric) that allows flexibility in connections with various peripherals.

The new 11-stage pipeline been defined in such a way that it remains backwards-compatible at the assembly

code level with previous generations of SHARC devices. However, due to some phenomena like pipeline

stage splitting, stack dependencies, data hazards, and stall conditions, some corner case combinations of

code flow will be handled differently from the previous design, which may result in performance

degradation if not modified to work well with the new pipeline.

This EE-note will describe these conditions, provide benchmarks and definitions to the known pipeline

stalls, and provide examples of how to go about optimizing assembly code going from the 5-stage pipeline

of the ADSP-214xx (and older) SHARC processors (hereon referred to as SHARC) to the deeper 11-stage

pipeline of these ADSP-2158x/ADSP-SC58x processors (hereon referred to as SHARC+).

Legacy Core with 5-Stage Pipeline (SHARC)

The SHARC system is shown in Figure 1. It illustrates the core surrounded by its L1 memory blocks

(RAM/ROM) and its connectivity buses for core and I/O operations. The two master and two slave ports

communicate with the system infrastructure to exchange data with peripherals. This architecture applies to

almost all SHARC product models that include an external port (e.g., all ADSP-2136x and ADSP-214xx

SHARC products). One master/slave pair is assigned to a peripheral, and another is assigned to the external

port.

http://www.analog.com/processors

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 2 of 21

Figure 1. Legacy SHARC Processor with SHARC Core SoC Block Diagram

New Core with 11-Stage Pipeline (SHARC+)

The SHARC+ system (Figure 2) illustrates the core surrounded by its L1 memory blocks (RAM, but no

ROM) and its connectivity buses for core and I/O operations. The two master and two slave ports

communicate with the system infrastructure to exchange data with peripherals. This architecture applies to

all ADSP-SC58x/ADSP2158x SHARC+ products. The master/slave pair is now assigned to any peripheral

via the system infrastructure. Similar to the SHARC implementation above, the system still supports two

memory-mapped slave ports, where one may be assigned to the external port while the other is assigned to

the 2nd SHARC+ coprocessor (refer to the product datasheet[1] for the address map of the slave ports).

 The physical memory map of the L1 memory blocks has not changed from

the previous ADSP-214xx processors and can be directly derived from LDF

files for ADSP-214xx-based projects.

Cross SHARC+ Core Communication

The two master/slave ports allow high speed communication between the two SHARC+ cores. The slave

ports handle exchange of 64-bit single-instruction-multiple-data (SIMD) as serialized 2 x 32-bit transfers

before writing into L1 memory. For memory DMA (MDMA), the master drives 32-bit data at the core clock

speed over its master port into the system fabric, and the data is synchronized into 64-bit transfers at

SYSCLK speed (1/2 core clock). This data is then captured at any slave port by doing the inverse

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 3 of 21

synchronization and writing into L1 destination memory. Both cores can exchange data in full-duplex mode

and can freely change between core and MDMA accesses.

Figure 2. New SHARC Processor with SHARC+ Core SoC Block Diagram

Core Register File Register Changes

Diving down into the cores, the first difference worth describing is with respect to the core registers

themselves. There are two groups of registers classified - register file registers accessed directly via an

instruction:

bit set mode1 PEYEN; /* PEYEN bit set in MODE1 Register */

and the core memory-mapped registers accessed via addressing instructions:

dm(SYSCTL)=USTAT1; /* USTAT1 is written via address to SYSCTL */

Table 1 provides the information regarding differences between the new SHARC+ implementation versus

the previous SHARC implementation.

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 4 of 21

Register Update Reset Setting Read Latency Effect Latency SIMD Pair LW Pair

R/S0-15 No change Undefined No change No change Rn-Sn R[n,n+1]

S[n,n+1]

MRF/B

MSF/B

No change Undefined No change No change MRF-MSF

MRB-MSB

N/A

DAG

I/B/M/L

No change 0x0 No change No change N/A I/B/M/L

[n,n+1]

USTAT No change 0x0 No change No change N/A U [n,n+1]

PX No change Undefined No change No change N/A PX

PX1,PX2 No change Undefined No change No change PX1-PX2 N/A

ASTATx/y Exclusive access response

ORed with EQ flag

? No change No change ASTATx-

ASTATy

N/A

STKYx/y No change 0x540_0000 No change No change ASTATx-

ASTATy

N/A

MODE1 Bits [29,28,27]: new Parity

enable

Bit 30: Nested interrupt in

progress

Bit 31: “Exclusive PEx/PEy

in place of FLAG2

condition”

0x0 No change No change N/A N/A

MODE1STK New UREG 0x0 0 2 N/A N/A

MODE2 Bit [0-2] IRQ-012 bits

removed

Bit 0: Reused for Self-

nesting enable

Bit 3: EXTCADIS removed

Bit 7: New SLOWLOOP

0x540_0000 No change No change N/A N/A

IRPTL IVT changed 0x0 No change No change N/A N/A

IMASK IVT changed 0x3 No change No change N/A N/A

IMASKP IVT changed 0x0 No change No change N/A N/A

MMASK No change 0x20_0000 No change No change N/A N/A

LIRPTL Removed

PC No change Undefined No change No change N/A N/A

PCSTK No change 0x7FFF_FFFF No change No change N/A N/A

PCSTKP No change 0x0 No change No change N/A N/A

LADDR No change 0xFFFF_FFFF No change No change N/A N/A

LCNTR No change 0x0 No change No change N/A N/A

TPERIOD No change Undefined No change No change N/A N/A

TCOUNT No change Undefined No change No change N/A N/A

FLAG0-2 No change Output selects 0x0 No change No change N/A N/A

FADDR Removed - now CMMR

DADDR Removed - now CMMR

Table 1. SHARC+ Core Register Changes vs SHARC

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 5 of 21

For specific details regarding these core MMRs, consult the ADSP-SC58x Programming Reference

Manual[2].

Memory-Mapped Register (MMR) Access Latencies

Core MMR (CMMR) accesses cause a variable number of stalls due to timing and effect latency reasons.

Stalls on reads and writes can be up to 4 cycles.

System MMR (SMMR) accesses (to various peripheral control/status registers) take between 38-60 core

cycles, depending on the system clock frequency (SYSCLK), the peripheral module clock, and the system

fabric arbitration.

Conflict Cache

The tiny (32-entry) conflict cache in the SHARC core continues to operate in the new SHARC+ core;

however, entries are cached only when internal bus conflicts are encountered. This is unlike the

implementation on ADSP-214xx products and earlier, where the conflict cache was also filled from external

ISA/VISA instruction and data memory spaces. As the new ADSP-SC58x/2158x devices feature dedicated

program and data cache memories, the conflict cache no longer needs to care for this.

SHARC+ Instruction Pipeline

The eleven stages of the SHARC+ pipeline were created by splitting each of the SHARC pipeline stages

into two. After splitting the floating point ALU/MAC unit into two stages, they were positioned at the 10th

stage of the pipe instead of the 9th, which created the 11th stage of the pipe. The benefit here is that this 1-

stage shift ensures no load-to-use stall in the SHARC+ core.

In the entire pipeline, memory is accessed two times (phases in red in Figure 3) - once for instructions and

once for data. There can be up to two data accesses, using either the PM or DM buses. These accesses can

happen simultaneously if they are to both blocks, otherwise they cause a one-cycle stall to resolve each

block conflict in exactly the same manner as with the SHARC core. Refer to the ADSP-SC58x Programming

Reference Manual for pipeline stage descriptions.

11 e2 Ex2

10 m4 Mem4/Ex1

9 m3 Mem3

8 m2 Mem2

7 m1 Mem1/COF

6 d2 DAG

5 d1 Dec/DAG

4 f4 Fetch4

3 f3 Fetch3

2 f2 Fetch2

1 f1 Fetch1 Target

Figure 3. Pipeline - Memory Access Phases

In the above, the pipeline stages can be defined further, as follows:

Stages 1-4 (Fetch1-4): Instruction fetch

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 6 of 21

Stage 5 (Dec): Instruction decode

Stage 6 (DAG): Instruction address + arithmetic (I+M)

Stages 7-10 (Mem1-4): Data access

COF: Change of flow (interrupts, jumps, calls, returns)

Target: COF target

Stages 10-11 (Ex1-2): Compute

Instruction Pipeline Flushes and Stalls

The processors use pipeline flushes and stalls to ensure correct and efficient program execution. Since the

instruction pipeline is fully interlocked, programmers need to be aware of different scenarios which result

in pipeline stages being either flushed or stalled.

Pipeline stalls are used in the following situations:

 Structural hazards are incurred when different instructions at various stages of the instruction pipeline

attempt to use the same processor resources simultaneously. For example, when the processor issues a

data access on the PM bus, it conflicts with an instruction request being issued by the sequencer on the

same bus.

 Data and control hazards are incurred when an instruction attempts to read a value from a register or

from a conditional flag that has been updated by an earlier instruction before the value becomes

available. For example, an index register is changed during data address generation, which happens in an

early stage of the pipeline, which causes a stall when the same index register is being loaded in a previous

instruction.

 Performance execution for a certain sequence of instructions: For example, when both the input operands

are forwarded to the multiplier unit from a previous compute instruction, it causes stalls to accommodate

additional operation.

 Additional stalls include those to retain effect latencies compatible with earlier SHARC processors and

stalls on double-precision computations.

Pipeline flushes are used when the processor branches to a new location, whether this is due to an interrupt

or execution of a branch instruction (jump, call, return). When these are encountered, the pipeline flushes

the instructions behind them in the instruction flow.

The following sections describe various scenarios of stalls and pipeline flushes in more detail.

Pipeline Stalls

Stalls are usually introduced into complex systems because data to be used in the next cycle is not available

because of crossing a clock domain, performing a change in instruction flow, or pending on a semaphore in

a multi-core system.

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 7 of 21

Memory Access Stalls

This section describes stalls related to the sequencer making accesses to instruction and data memory. Table

2 summarizes the memory access stalls.

Details Example Stall Type SHARC SHARC+

Conflict Cache Miss on PM Data Access r0 = pm(Addr); Structural 1 1

Two Accesses to Same Bank in Same Cycle

r0 = dm(Block0-addr1),

background DMA to Block0

Structural

1 1

Conditional Store to Any Load

If eq DM(A) = Fz;

Fa = DM(A/B)

Timing

0 1

Table 2. Memory Access Stalls

As can be seen in Table 2, using different memory blocks will avoid the stall introduced when having two

accesses to the same bank. Similarly, the conditional store stall could be avoided by issuing any other

instruction between the conditional store and the subsequent load.

Compute Stalls

This section describes stalls related to computational instruction sequences that depend on conditions or

data forwarding. Table 3 summarizes the compute stalls.

Table 3. Compute Stalls

As was the case with the memory access stalls in the previous section, these compute stalls can be avoided

by inserting unrelated instructions that do not affect the registers of interest into the identified sequence.

Listing 1 illustrates some compute-to-compute hazards.

Details Example Stall Type SHARC SHARC+

1 Data Forwarding to Compute Operation

Floating point compute/multiply operation –to- next

compute dependency

Fx = PASS Fy;

Fz = Fx + Fa;

Data dependency

0 1
If previous instruction is conditional fixed point

compute or conditional register read and condition set is

just before

Rx = PASS Ry;

IF eq Rz = Ra + Rb;

Fc = Fz + Fd;

ASTATx/y register update –to- carry or overflow

dependent instruction

ASTATx = DM(..);

Rx = Ry + Rz + CI;

2 Dual Forwarding to Multiplier

Dual forwarding to multiply operation from N-2 to Nth

location.

Fx = Fa+Fb, Fy = Fa–Fb;

[unrelated instruction];

Fz = Fx * Fy;

Timing

0 1

Dual forwarding to multiply operation from N-1 to Nth

location

Fx = Fa+Fb, Fy = Fa–Fb;

Fz = Fx * Fy; 1 2

3

Floating point multiply operation to next fixed

point ALU

Fz = Fx * Fy;

Ra = Rz + Rb; 1 0

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 8 of 21

.SECTION/SW seg_swco; /* VISA instructions */

 R4 = R1*R4(SSFR); /* single forwarding Fixed-Point */

 R14 = R4*R12; /* SHARC = 0 stalls / SHARC+ = 1 stall */

 nop;

 nop;

 R4 = R1*R4(SSFR), R12 = R8-R12; /* dual forwarding Fixed-Point */

 nop;

 R14 = R4*R12; /* SHARC = 0 stalls / SHARC+ = 1 stall */

 nop;

 nop;

 R4 = R1*R4(SSFR), R12 = R8-R12; /* dual forwarding Fixed-Point */

 R14 = R4*R12; /* SHARC = 1 stall / SHARC+ = 2 stalls */

 nop;

 nop;

 F4 = F1*F4; /* single forwarding Floating-Point */

 F14 = F4*F12; /* SHARC = 0 stalls / SHARC+ = 1 stall */

 nop;

 nop;

 F4 = F1*F4, F12 = F8-F12; /* dual forwarding Floating-Point */

 nop;

 F14 = F4*F12; /* SHARC = 0 stalls / SHARC+ = 1 stall */

 nop;

 nop;

 F4 = F1*F4, F12 = F8-F12; /* dual forwarding Floating-Point */

 F14 = F4*F12; /* SHARC = 1 stall / SHARC+ = 2 stalls */

 nop;

 nop;

Listing 1. Compute-Compute Hazards

Data Address Generation (DAG) Stalls

This section describes stalls related to data address generation used to access on- and off-chip data memory.

Table 4 summarizes the DAG stalls.

Details Example Stall Type SHARC SHARC+*

1

Unconditional DAG register load-to-

use

Ix = DM(..);

 DM(Ix…) = …;

Data Dependency

 2 4

2

Conditional DAG register load (with

condition set just before) -to- use

Rx = PASS Ry;

IF eq Ix =

DM(..);

DM(Ix…) = …; 2 5

3

Condition set -to- conditional post

modify DAG operation on Ix -to- any

DAG operation on same Ix

Rx = PASS Ry;

IF eq DM(Ix,..);

DM(Ix…) = …; 2 5

4

Load of DAG register with immediate

value –to- use
Ix = [IMM VALUE];

DM(Ix..)..
2 0

* One stall cycle is added if the condition set happens through write to ASTATx and if the register load is used with sign extension modifier

Table 4. DAG Stalls

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 9 of 21

Again, as was the case in the previous sections, these stalls can be mitigated by inserting unrelated

instructions that do not affect the registers of interest into the identified sequence. Listing 2 illustrates a

DAG register load hazard.

.SECTION/SW seg_swco; /* VISA instructions */

 m0 = L1_memory;

 r0 = dm(i2,m0); /* SHARC = 2 stalls / SHARC+ = 0 stalls */

 nop;

 nop;

 m0 = 2;

 r0 = dm(i0,m1); /* SHARC = 0 stalls / SHARC+ = 2 stalls */

 nop;

 nop;

 i4 = L1_memory;

 r0 = dm(i4,m4); /* SHARC = 2 stalls / SHARC+ = 4 stalls */

 nop;

 nop;

 b0 = L1_memory;

 r0 = dm(i0,m1); /* SHARC = 2 stalls / SHARC+ = 2 stalls */

 nop;

 nop;

 l0 = 16;

 r0 = dm(i0,m4); /* SHARC = 2 stalls / SHARC+ = 2 stalls */

Listing 2. DAG Register Load Hazards

Data Move Stalls

This section describes stalls that are introduced when data movement depends on instruction sequences.

Table 5 lists data move stalls.

Details Example Stall Type SHARC SHARC+

Floating point compute or any multiplier
operation followed by move of the result to any
register outside the relevant PE

F1 = F2 + F3;
USTAT1 = F1;

Timing

0 1

Condition set followed by a conditional load of a
DAG reg followed by move of that reg to any
other Ureg

R0 = R1 + 1;
IF EQ I0 = PM(<Addr>);
USTAT1 = I0; 0 1

Access of any Timer register TCOUNT = USTAT1; 0 1

Read of these registers:
IRPTL, IMASKP, MODE1STK, LPSTK, CCNTR,
LCNTR, PCSTK, PCSTKP, MODE1, FLAGS,
ASTATx/y, STKYx/y, FADDR, DADDR R0 = IRPTL; 0 1

Write Followed by Read of these registers:
IMASK, USTAT, MMASK, MODE2

USTAT1 = DM(<Addr>;
R0 = USTAT1; 0 1

Read and write of any core MMR R0 = SYSCTL; 0-1 0-4

Table 5. Data Move Stalls

There is no way to avoid stalls associated with MMR accesses; however, the same concept as in previous

sections also applies here to stalls introduced by specific instruction sequences. Inserting unrelated

instructions that do not affect the registers of interest into the identified sequence will mitigate the stall

cycles that would otherwise be incurred.

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 10 of 21

Miscellaneous Stalls

Table 6 lists miscellaneous stalls not covered in the previous sections.

Table 6. Miscellaneous Stalls/Flushes

Stalls and Pipeline Flushes Related to Instruction Flow

In most cases, any branch instruction (jumps, calls, returns, rframe, and cjump) flushes the pipeline, and

some cycles are lost. A new feature of the ADSP-2158x/ADSP-SC58x devices is the branch predictor,

which attempts to minimize the loss of cycles incurred as a result of branch instructions that cause a change

in instruction flow.

Branch Target Buffer (BTB)

With the deeper pipeline, changes of flow (COF) become more costly to the processor’s performance due

to the increased number of pipeline flushes and stalls. However, these stall and flush cycles can be mitigated

by employing the branch target buffer (BTB) condition predictor. COF works differently with and without

BTB, and this section provides details regarding BTB-enabled COF in a SHARC+ system.

 The BTB is enabled after reset (similar to conflict cache). BTB content can

be disabled and frozen to test efficiency and to inspect for debug purposes.

BTB Condition Prediction

The BTB adds value to the SHARC+ pipeline, as all branch-related latencies and stalls are significantly

reduced with correct BTB prediction. A listing of the incurred stalls/flushes is shown in Table 7.

Details Example Stall Type SHARC SHARC+

During the execution of first four instructions of

an unrolled loop, when COF is at Nth position in

loop from top, where N = 0-3

Loop state

machine

0 4-N

If RTS/RTI is returning to a loop at “Last-Addr”-

N, where N = 0-3

Data dependency

1-N 4-N

Jump with loop abort Jump <Target> (LA); 1 4

Target/next-to-target of CALL/RTS/RTI itself

being an RTS/RTI 0 3

Target of CALL/RTS/RTI itself being a Jump 0 1

Loop-stack modification followed by

RTS/RTI/Jump 0 5

Sreg or SYSCTL update to N+2 instruction

Bit set MODE1 CBUFEN;

[Instr];

DM(I0…);

Control

dependency

1 5

Bit set/clear MODE1 PEYEN to N+2 instruction Bit set MODE1 PEYEN; 1 0

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 11 of 21

Branch Prediction Condition

Prediction

Target Prediction Stall/Flush Cycles

for Non-DB/DB

Conditional Taken HIT HIT 2/0

Conditional Not Taken HIT — 0

Conditional Taken MISS — 11

Conditional Not Taken MISS — 11/9

Conditional Taken HIT MISS 6/4

Unconditional — — HIT 2/0

Unconditional — — MISS 6/4

Table 7. Branch Target Buffer Flushes/Stalls

BTB Prediction Masking

While the branch predictor provides some execution gains when it is enabled, BTB prediction can be masked

off in two ways. First, options like indirect branch prediction are configurable, so the user has the ability to

disable various aspects of the prediction logic via writes to configuration registers, and this is obviously at

the full discretion of the user. However, architectural limitations also influence the behavior of the hardware.

For example, hardware loops and BTB are incompatible because they interfere with each other’s state

machines. As such, when hardware loops are executing, the processor automatically masks BTB prediction

to ensure proper sequencing.

Table 8 lists places where BTB prediction is masked due to architectural reasons.

Cases Where BTB Prediction Is Masked Reason

Two instructions after a branch is predicted Basic functional requirement

Return to last 8 instructions of an F1 active loop To prevent counter decrement

Return to last 3 instructions of an E2 active and arithmetic loop Stack dependency

DO_UNTIL instruction from D1 to E2 stage Stack dependency

RTI Status/mode stack dependency

Branches which are placed within 5 instructions after loop-stack modification Loop stack dependency

Table 8. Branch Target Buffer Disable Scenarios

Table 9 describes the number of lost cycles when BTB is disabled or the branch entry is not present in the

BTB (i.e., a BTB miss occurs). If the branch is the one with a delay slot of two instructions, the number of

flushed instructions is reduced by 2.

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 12 of 21

Details Example

Stall Type SHARC

(Non-Delayed/Delayed)

SHARC+

(Non-Delayed/Delayed)

1 Unconditional branch Jump(My,Ix); Pipeline flush 3/1 6/4**

2
Condition set for conditional
branch

Rx = PASS Ry;
IF eq Jump(My,Ix);

Control dependency
4/2*** 11/9*

 * One additional stall cycle if condition set happens through write to ASTATx or ASTATy register
 ** As an exception, RTI (DB) and RTI cause a 7-cycle pipeline flush
*** Two-cycle stall for multiplier-generated conditions

Table 9. Stalls/Flushes for COF

When the BTB is enabled and there is a hit, the pipeline stalls and flushes are possible. These stalls are

described for various situations in Table 10.

Branch Type Prediction

Condition

Prediction Target Prediction

SHARC+

(Non-Delayed/Delayed)

1 Conditional Taken Correct Correct 2/0

2 Conditional Not Taken Correct — 0

3 Conditional Taken Incorrect — 11

4 Conditional Not Taken Incorrect — 11/9

5 Conditional Taken Correct Incorrect 6/4

6 Unconditional — — Correct 2/0

7 Unconditional — — Incorrect 6/4

Table 10. Stalls/Flushes for COF with BTB

In addition to the above stalls, there are other data and control dependency stalls relative to branch

instructions. The cycles in Table 11 are in addition to the cycles incurred due to the reasons described in the

above tables in this section.

† One additional stall cycle if register load is used with sign extension modifier
* One additional stall cycle if condition set happens through write to ASTATx or ASTATy register

Table 11. Stalls/Flushes for COF Data/Control Dependency

Hardware Loop Stalls/Flushes

With SHARC+, the LCE condition governing loop lengths of 10 and under will not give the same result as

its SHARC predecessor. This is because of pipeline depth and because termination of loop lengths of 1 to

10 happens when the CCNTR value is 2 rather than 1. Restrictions for call and jump instructions inside a

loop are identical to those on SHARC.

Details Example Stall Type SHARC SHARC+

1 CJUMP/RFRAME –to- use of I6 CJUMP; DM(I6,..) = …; Data dependency 2 6

2 CJUMP/RFRAME –to- read of I6/7 RFRAME; R0 = I6; 2 6

3
Unconditional DAG register load -to- use
in indirect branch

Ix = DM(..);
 Jump(Ix…) = …; 2 4†

4

Conditional DAG register load (with
condition set just before) -to- use in
indirect jump

Rx = PASS Ry;
IF eq Ix = DM(..);
Jump(Ix…) = …;

Data and control
dependencies

2 5*†

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 13 of 21

New restrictions due to the increased pipeline depth include:

 The last five instructions of an arithmetic loop cannot be a delayed branch (dB).

 The last three instructions of an arithmetic loop cannot be a branch.

 Short loops of 2-4 instructions cannot contain two branches.

 Short loops of 1-4 instructions carrying a nested loop cannot contain branches.

 In short loops carrying a nested loop, 1/2 instructions before the inner do until instruction cannot be a

branch.

Table 12 shows the hardware loop stalls.

Details Example Stall Type SHARC SHARC+

On termination of E2 active and short loops LCNTR = 4, DO (PC,2) UNTIL LCE; Pipeline flush 4 11

On termination of arithmetic condition based
loops DO (PC,2) UNTIL EQ; 2 11

Write to CCNTR to LCE based instruction
CCNTR = 4;
 If not LCE R0 = R1;

Timing
2 1

Start of 1,2,4 instruction loop LCNTR = 4, DO (PC,2) UNTIL LCE; 1 0

Table 12. Hardware Loop Stalls/Flushes

Assembly Code Optimization Example (FIR Filter)

With the stall conditions defined above, it is useful to describe methods that can be applied when taking

existing SHARC code and moving to the SHARC+ core. While the code itself will yield the same correct

results using the SHARC+ core as it did using the SHARC core, architectural differences between the two

cores may cause performance degradation when executed on the SHARC+ core. This section uses the FIR

filter library code that ADI provides with the development tools as an example to apply some pipeline-

specific optimizations to.

Code/Data Buffer Placement

The linker description file (LDF) plays a significant role in throughput optimization when using

multifunction instructions with dual-data moves. The application should try to employ conflict-free

placement of the source and destination data buffers to avoid additional block arbitration latencies. The

SHARC’s Super Harvard architecture drives an internal conflict cache during loop iterations while DAG1

and DAG2 drive both data buses.

All the known rules for the SHARC memory architecture continue to apply to the SHARC+ architecture.

Consider the case of a dual data move instruction. During cycle a of the SHARC pipeline (Figure 4), the

pipeline posts addresses to instruction-assigned memory and data memory (assuming a hit in the conflict

cache). Figure 5 shows the address and data phases in the SHARC+ pipeline for the same dual data move

instruction. Note that there is another stage between the address and the data, which allows for higher-speed

accesses.

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 14 of 21

Cycles 1 2 3 4 5

E N (Data)

A N (Addr) N+1

D N N+1 N+2

f2 N N+1 N+2 N+3 (Data)

f1 N N+1 N+2 N+3 (Addr) N+4

Figure 4: Dual Data Move Instruction in SHARC

Cycles 1 2 3 4 5 6 7 8 9 10 11

e2 N

m4 N N+1

m3 N N+1 N+2

m2 N (Data) N+1 N+2 N+3

m1 N N+1 N+2 N+3 N+4

d2 N (Addr) N+1 N+2 N+3 N+4 N+5

d1 N N+1 N+2 N+3 N+4 N+5 N+6

f4 N N+1 N+2 N+3 N+4 N+5 N+6 N+7

f3 N N+1 N+2 N+3 N+4

N+5

(Addr) N+6 N+7 N+8

f2 N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9

f1 N N+1 N+2 N+3 N+4

N+5

(Addr) N+6 N+7 N+8 N+9 N+10

Figure 5: Dual Data Move Instruction in SHARC+

In the case of an application like an FIR filter, the code/data might be placed as follows:

Block 0: VISA/ISA code and FIR coefficients

Block 1: State memory (delay line)

Blocks 2/3: Ping-Pong DMA data buffers

This layout guarantees conflict-free block accesses (core PM/DM bus vs. slave port1-2 DMA buses).

 Core vs DMA block conflicts are more expensive based on the 2::1

CCLK::SYSCLK clock speed ratio. Refer to the ADSP-SC58x

Programming Reference Manual for the block arbitration priorities.

SHARC FIR Filter

When attempting to run SHARC FIR filter source code on a SHARC+ core target, it will function correctly.

However, as stated above, the new SHARC+ pipeline will add a mixture of static and dynamic stalls that

might negatively impact the performance. As described earlier in this EE-note, there are various reasons for

the sequencer to stall the instruction flow, with three of the more notable being:

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 15 of 21

- floating-point compute-to-compute hazards

- loop sequencer stalls

- conflict cache stalls

In both the single channel (SISD, Listing 3) and dual-channel (SIMD, Listing 4) listings below, the

SHARC+ core will stall in the loop because the sequencer identifies identical source and destination data

registers in consecutive 32-bit floating-point compute operations. As this stall is taken in the inner loop of

the FIR, it is extremely costly from a performance perspective (highlighted in red).

 In all the source code provided below, a common header is used to differentiate

among the various implementations being shown. Please refer to it when comparing

between the SHARC core and SHARC+ core targets.

Single-Channel 40-Bit SISD FIR

.SECTION/SW seg_swco; // VISA instructions

 /* SHARC Pipelined 40-bit SISD Version */

 bit set MODE1 CBUFEN;

 bit clr MODE1 PEYEN;

 b5 = Input_Buf; // FIR Input Buffer

 m5 = 1;

 l5 = 0;

 b6 = Output_Buf; // FIR Output Buffer

 l6 = 0;

 b9 = FIR_Coeff_Buf; // i9 allows broadcast mode

 m9 = 1;

 l9 = TAPS;

 b2 = FIR_State_Buf; // Delay Line Buf

 m2 = 1;

 l2 = TAPS;

 lcntr = BP_COUNT, do Block until lce; // block processing

 r8 = r8-r8, f0 = dm(i5,m5); // clr acc, read new sample

 r9 = r9-r9, dm(i2,m2) = f0; // clr acc, write into DL

 f0 = dm(i2,m2), f4 = pm(i9,m9);

 f12 = f0*f4, f0 = dm(i2,m2), f4 = pm(i9,m9);

 lcntr = TAPS-2, do MAC until lce;

MAC: f12 = f0*f4, f8 = f8+f12, f0 = dm(i2,m2), f4 = pm(i9,m9); // 1-cycle SHARC+ stall

 f12 = f0*f4, f8 = f8+f12;

 f8 = f8+f12;

Block: dm(i6,m5) = f8; // write to output

Listing 3. SHARC SISD FIR

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 16 of 21

Dual-Channel 32-Bit SIMD FIR

.SECTION/SW seg_swco; // VISA instructions

 /* SHARC Pipelined 32-Bit SIMD Version */

 bit set MODE1 PEYEN|CBUFEN|BDCST9;

 b5 = Input_Buf; // FIR Input Buffer

 m5 = 2;

 l5 = 0;

 b6 = Output_Buf; // FIR Output Buffer

 l6 = 0;

 b9 = FIR_Coeff_Buf; // i9 allows broadcast mode

 m9 = 1;

 l9 = TAPS;

 b2 = FIR_State_Buf; // Delay Line Buffer

 m2 = 2;

 l2 = 2*TAPS;

 lcntr = BP_COUNT/2, do Block until lce; // block processing

 r8 = r8-r8, f0 = dm(i5,m5); // clr acc, read new sample

 r9 = r9-r9, dm(i2,m2) = f0; // clr acc, write into DL

 f0 = dm(i2,m2), f4 = pm(i9,m9);

 f12 = f0*f4, f0 = dm(i2,m2), f4 = pm(i9,m9);

 lcntr = TAPS-2, do MAC until lce;

MAC: f12 = f0*f4, f8 = f8+f12, f0 = dm(i2,m2), f4 = pm(i9,m9); // 1-cycle SHARC+ stall

 f12 = f0*f4, f8 = f8+f12;

 f8 = f8+f12;

Block: dm(i6,m5) = f8; // write to output

Listing 4. SHARC SIMD FIR

Hand-Optimizing the Single-Channel FIR Filter in SHARC+

The basic idea for optimizing the code is to use the floating-point compute-to-compute hazard stall cycle

identified in Listing 3 to interleave an independent MAC operation. In other words, split the MAC into two

MAC operations with different result registers (MAC F8 and MAC F9) for accumulation, as shown in

Listing 5.

.SECTION/SW seg_swco; // VISA instructions

 /* SHARC Unpipelined 40-Bit SISD Version */

 lcntr = BP_COUNT, do Block until lce; // block processing

 r8 = r8-r8, f0 = dm(i5,m5); // clr acc, read new sample

 r9 = r9-r9, dm(i2,m2) = f0; // clr acc, write into DL

 f0 = dm(i2,m2), f4 = pm(i9,m9); // MAC only for odd TAP count

 f12 = f0*f4;

 f8 = f8+f12;

 lcntr = TAPS/2, do MAC until lce;

 f0 = dm(i2,m2), f4 = pm(i9,m9); // MAC F8

 f12 = f0*f4;

 f8 = f8+f12;

 f0 = dm(i2,m2), f4 = pm(i9,m9); // MAC F9

 f13 = f0*f4;

MAC: f9 = f9+f13;

 f10= f8+f9; // add MAC1-0

Block: dm(i6,m5) = f10; // write to output

Listing 5. SISD FIR Optimization 1

From a performance perspective, this is actually a step in the wrong direction, as cycles are being added to

split the MAC operations; however, doing so lends itself to further possible optimizations targeting the

SHARC+ pipeline performance. In Listing 6, the code is reordered to take full advantage of the parallel

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 17 of 21

operation instructions, where data accesses are performed first, multiplication second, and accumulation

third; hence, three instruction cycles are required to fill the pipeline with data. When filled, the instruction

is executed in the HW loop body until the loop exits, at which point the pipeline needs to be flushed (which

takes another 3 cycles until finished). Note that this code sequence illustrates separate pipelining for the F8

and F9 result registers, controlled by two separate inner loops, which is the next opportunity for further

optimization.

.SECTION/SW seg_swco; // VISA instructions

 /* SHARC Pipelined 40-Bit SISD Version with Separate MAC */

 lcntr = BP_COUNT, do Block until lce; // block processing

 r8 = r8-r8, f0 = dm(i5,m5); // clr acc, read new sample

 r9 = r9-r9, dm(i2,m2) = f0; // clr acc, write into DL

 f0 = dm(i2,m2), f4 = pm(i9,m9);

 f12 = f0*f4, f0 = dm(i2,m2), f4 = pm(i9,m9);

 lcntr = (TAPS-4)/2, do MAC0 until lce;

 MAC0: f12 = f0*f4, f8 = f8+f12, f0 = dm(i2,m2), f4 = pm(i9,m9);

 f12 = f0*f4, f8 = f8+f12;

 f8 = f8+f12;

 f0 = dm(i2,m2), f4 = pm(i9,m9);

 f13 = f0*f4, f0 = dm(i2,m2), f4 = pm(i9,m9);

 lcntr = (TAPS-4)/2, do MAC1 until lce;

 MAC1: f13 = f0*f4, f9 = f9+f13, f0 = dm(i2,m2), f4 = pm(i9,m9);

 f13 = f0*f4, f9 = f9+f13;

 f9 = f9+f13;

 f10= f8+f9; // MAC f8+f9

Block: dm(i6,m5) = f10; // write to output

Listing 6. SISD Optimization 2

As a final step, the MAC operations can be interleaved such that the now singular inner loop body contains

just two instructions. Keeping the same red/green color encoding to differentiate between the F8 and F9

MACs, Listing 7 depicts this modification.

.SECTION/SW seg_swco; // VISA instructions

 /* SHARC+ Pipelined 40-Bit SISD Version with Interleaved MAC */

 lcntr = BP_COUNT, do Block until lce; // block processing

 r8 = r8-r8, f0 = dm(i5,m5); // clr acc, read new sample

 r9 = r9-r9, dm(i2,m2) = f0; // clr acc, write into DL

 f0 = dm(i2,m2), f4 = pm(i9,m9);

 f12 = f0*f4, f0 = dm(i2,m2), f4 = pm(i9,m9);

 f13 = f0*f4, f0 = dm(i2,m2), f4 = pm(i9,m9);

 lcntr = (TAPS-4)/2, do MAC until lce;

 f12 = f0*f4, f8 = f8+f12, f0 = dm(i2,m2), f4 = pm(i9,m9);

MAC: f13 = f0*f4, f9 = f9+f13, f0 = dm(i2,m2), f4 = pm(i9,m9);

 f12 = f0*f4, f8 = f8+f12, f0 = dm(i2,m2), f4 = pm(i9,m9);

 f13 = f0*f4, f9 = f9+f13;

 f8 = f8+f12;

 f9 = f9+f13;

 f10= f8+f9; // MAC f8+f9

Block: dm(i6,m5) = f10; // write to output

Listing 7. SISD Optimization 3

The loop execution ensures the desired source and destination registers are sequenced such that consecutive

reads and writes of the F12 and F13 registers never occur on consecutive cycles, which results in the

compute-to-compute stall penalty being removed. In the loop epilogue, one instruction must be added to

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 18 of 21

sum the two MAC result registers to get the correct result stored to the F10 register to be written to the

output buffer, and the FIR is now fully optimized for the SHARC+ pipeline!

 As an addendum to this exercise, the FIR filter design criteria may require that the

TAP count be odd. In that case, one additional multi-function instruction must be

added into the loop prologue to account for it, as shown in red in Listing 8.

.SECTION/SW seg_swco; // VISA instructions

 /* Pipelined SISD Version with Interleaved MAC */

 lcntr = BP_COUNT, do Block until lce; // block processing

 r8 = r8-r8, f0 = dm(i5,m5); // clr acc, read new sample

 r9 = r9-r9, dm(i2,m2) = f0; // clr acc, write into DL

 f0 = dm(i2,m2), f4 = pm(i9,m9);

 f12 = f0*f4, f0 = dm(i2,m2), f4 = pm(i9,m9);

 f13 = f0*f4, f0 = dm(i2,m2), f4 = pm(i9,m9);

 f12 = f0*f4, f8 = f8+f12, f0 = dm(i2,m2), f4 = pm(i9,m9); // only odd TAP count

 lcntr = (TAPS-4)/2, do MAC until lce; /* for odd loop (TAPS-5)/2 */

 f12 = f0*f4, f8 = f8+f12, f0 = dm(i2,m2), f4 = pm(i9,m9);

MAC: f13 = f0*f4, f9 = f9+f13, f0 = dm(i2,m2), f4 = pm(i9,m9);

 f12 = f0*f4, f8 = f8+f12, f0 = dm(i2,m2), f4 = pm(i9,m9);

 f13 = f0*f4, f9 = f9+f13;

 f8 = f8+f12;

 f9 = f9+f13;

 f10= f8+f9; // MAC f8+f9

Block: dm(i6,m5) = f10; // write to output

Listing 8. SISD Optimization 3 with Odd Loop Count

Dual-Channel SHARC+ SIMD FIR Filter

Given the SISD example above, moving from single-channel to dual-channel SIMD source code is fairly

straightforward, though there are a few differences that need to be discussed.

First, the total loop count is half that of the SISD implementation, as the workload in the SIMD model is

distributed between the PEX and PEY processing units. Second, as a result of the data being fetched and

forwarded to the two processing units in parallel, the data access modifier (DAG stride) is set to two in the

SIMD version rather than 1, as was the case in the SISD version (Listing 9).

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 19 of 21

.SECTION/SW seg_swco; // VISA instructions

 /* SHARC+ Pipelined 32-Bit SIMD Version with Interleaved MAC */

 bit set MODE1 PEYEN|CBUFEN|BDCST9;

 b5 = Input_Buf; // FIR Input Buffer

 m5 = 2; // SIMD Stride is 2

 l5 = 0;

 b6 = Output_Buf; // FIR Output Buffer

 l6 = 0;

 b9 = FIR_Coeff_Buf; // i9 broadcast mode

 m9 = 1;

 l9 = TAPS;

 b2 = FIR_State_Buf; // Delay Line Buffer

 m2 = 2; // SIMD Stride is 2

 l2 = 2*TAPS;

 lcntr = BP_COUNT/2, do Block until lce; // SIMD block processing

 r8 = r8-r8, f0 = dm(i5,m5); // clr acc, read new sample

 r9 = r9-r9, dm(i2,m2) = f0; // clr acc, write into DL

 f0 = dm(i2,m2), f4 = pm(i9,m9);

 f12 = f0*f4, f0 = dm(i2,m2), f4 = pm(i9,m9);

 f13 = f0*f4, f0 = dm(i2,m2), f4 = pm(i9,m9);

 f12 = f0*f4, f8 = f8+f12, f0 = dm(i2,m2), f4 = pm(i9,m9); // only odd loop count

 lcntr = (TAPS-4)/2, do MAC until lce; /* for odd loop (TAPS-5)/2 */

 f12 = f0*f4, f8 = f8+f12, f0 = dm(i2,m2), f4 = pm(i9,m9);

MAC: f13 = f0*f4, f9 = f9+f13, f0 = dm(i2,m2), f4 = pm(i9,m9);

 f12 = f0*f4, f8 = f8+f12, f0 = dm(i2,m2), f4 = pm(i9,m9);

 f13 = f0*f4, f9 = f9+f13;

 f8 = f8+f12;

 f9 = f9+f13;

 f10= f8+f9; // add MAC1-0

Block: dm(i6,m5) = f10; // write to output

Listing 9. SIMD Optimization (Including Odd Tap Count)

As was the case in the SISD implementation, note also that explicit and implicit DAG addressing is

interleaved within the multi-function instructions (the I2/M2 register pair is used on the DM bus access, and

the I9/M9 pair is used on the PM bus access). Finally, keep in mind that dual-channel processing depends

on the broadcast mode.

Filter Broadcast Mode

Broadcast mode is useful if the same filter kernel is processed by both channels (PEX and PEY). In this

case, the length of the coefficient buffer is exactly the number of taps (identical to SISD mode), and the

circular pointer increment stride is 1 regardless of SIMD mode.

Filter No Broadcast Mode

With broadcast mode disabled (MODE1.BDCST9 bit is cleared), the length of the coefficient buffer is twice

the number of taps (one coefficient for each channel), and the PEX and PEY coefficients are interleaved in

a single buffer in memory. If the tap count for each channel is odd, then the total count becomes even. In

this case, the circular pointer increment is 2 (SIMD mode).

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 20 of 21

FIR Benchmark Summary - SHARC vs SHARC+

The following section summarizes floating-point benchmarks, measured in core clock (CCLK) cycles,

obtained when running various versions of the FIR source code referenced throughout this EE-note on target

devices representing each of the SHARC (ADSP-21469) and SHARC+ (ADSP-SC58x) core technologies.

The SHARC FIR Code is the DSP library code furnished by Analog Devices, which was developed and

optimized for the legacy SHARC processor architecture and has been a staple offering in the VisualDSP++®

and CrossCore® Embedded Studio development tools platforms for a number of years. The SHARC+ FIR

Code is the fully optimized example from this note, which is part of the new DSP libraries supporting the

new SHARC+ architecture.

In each of the tables provided, a 255-tap FIR was executed for a sample size of 256. Each algorithm was

run on both architectures, such that a comprehensive analysis between the two architectures can be made.

32-bit Standard Precision (SIMD Implementation)

For the SIMD implementation, Table 13 shows the relevant benchmark data.

Dual-Channel (SIMD)
32-Bit Precision

SHARC Target
(ADSP-21469)

SHARC+ Target
(ADSP-SC589)

SHARC FIR Code 33,560 65,950

SHARC+ FIR Code 33,820 34,090

Table 13. FIR Code SIMD Mode

As can be seen, the legacy ADSP-21469 SHARC code performs admirably with a baseline benchmark of

33,560 CCLK cycles; however, when the very same code is run on the SHARC+ core, it takes nearly twice

as many cycles (96.5% performance degradation). By fixing the consecutive compute-compute stalls

described in the previous section, the cycle count drops by 48.5% and is very nearly on par with the optimal

performance of the original FIR code running on the SHARC target (34,090 CCLK cycles vs 33,560 CCLK

cycles). If this optimized SHARC+ code is then run on a SHARC core, the benchmark is even closer by

comparison (now 34,090 CCLK cycles vs 33,820 CCLK cycles). This minor delta can be explained by the

added loop prologue/epilogue instructions and by effects of the new pipeline/loop controller.

40-bit Extended Precision (SISD Implementation)

By comparison, the 40-bit extended precision SISD implementation data is shown in Table 14 (SIMD mode

is not supported).

Single-Channel (SISD)
40-Bit Precision

SHARC Target
(ADSP-21469)

SHARC+ Target
(ADSP-SC589)

SHARC FIR Code 67,100 131,870

SHARC+ FIR Code 67,610 68,140

Table 14. FIR Code SISD Mode

Migrating Legacy SHARC to ADSP-SC58x/2158x SHARC+ Processors (EE-375) Page 21 of 21

The data follows that depicted in the previous section for the 32-bit SIMD implementation in terms of

performance degradation of the original code between the two targets, the performance improvement on the

SHARC+ core after the recommended optimizations were made, and the performance of the SHARC+ code

when run on the original SHARC target.

Conclusion

There are many architectural differences between the legacy SHARC and the new SHARC+ core

technologies, which cause different behavior in terms of stall conditions that are transparent to the user.

Simply taking code from the old architecture to the new will work, but the performance might suffer due to

some of these differences relative to the longer pipeline. As an example, the FIR filter is a good reference

because it introduces one such stall (compute-to-compute) in the oft-executed inner loop of the algorithm.

Convolution is based on a two-deep nested loop, where the outer loop does the block accesses to/from the

system buffers (block processing vs. sample processing, system decisions with regards to latency, ISR

context savings, etc.) while the inner loop performs the filter convolution (tap filter kernel, filter design

requirements, etc.). Due to this structure, cycles can be traded between the loops, and the inner loop is

iterated with interleaved MAC operations to mitigate the compute-to-compute stall.

The overall performance highly depends on the total loop count (inner loop count x outer loop count). For

example, a system with a large filter kernel (e.g., 1024) does sample processing much faster than a 512-

sample block processing algorithm, even though both use the same optimized inner loop count.

References

[1] SHARC+ Core Dual Processor with ARM Cortex-A5 Data Sheet. Rev PrC, May 2015. Analog Devices, Inc.

[2] SHARC+ Core Programming Reference. Preliminary Revision 0.1. May 2015. Analog Devices, Inc.

[3] ADSP-SC58x Processor Hardware Reference. Preliminary Revision 0.2, June 2015. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – June 11, 2015

by Robert Hoffmann

Initial Release

	Introduction
	Legacy Core with 5-Stage Pipeline (SHARC)
	New Core with 11-Stage Pipeline (SHARC+)
	Cross SHARC+ Core Communication
	Core Register File Register Changes
	Memory-Mapped Register (MMR) Access Latencies
	Conflict Cache
	SHARC+ Instruction Pipeline
	Instruction Pipeline Flushes and Stalls
	Pipeline Stalls
	Memory Access Stalls
	Compute Stalls
	Data Address Generation (DAG) Stalls
	Data Move Stalls
	Miscellaneous Stalls

	Stalls and Pipeline Flushes Related to Instruction Flow
	Branch Target Buffer (BTB)
	BTB Condition Prediction
	BTB Prediction Masking

	Hardware Loop Stalls/Flushes

	Assembly Code Optimization Example (FIR Filter)
	Code/Data Buffer Placement
	SHARC FIR Filter
	Single-Channel 40-Bit SISD FIR
	Dual-Channel 32-Bit SIMD FIR

	Hand-Optimizing the Single-Channel FIR Filter in SHARC+
	Dual-Channel SHARC+ SIMD FIR Filter
	Filter Broadcast Mode
	Filter No Broadcast Mode

	FIR Benchmark Summary - SHARC vs SHARC+
	32-bit Standard Precision (SIMD Implementation)
	40-bit Extended Precision (SISD Implementation)

	Conclusion
	References
	Document History

