
  
Engineer-to-Engineer Note EE-347 

 

 
 

Technical notes on using Analog Devices DSPs, processors and development tools 
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or 
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support. 
 

 

Formatted Print to a UART Terminal with Blackfin® Processors 
Contributed by Andreas Pellkofer Rev 3 – June 21, 2012 

 

Copyright 2010-2012, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of 
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of 
their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no 
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes. 
 

Introduction 
This Engineer-to-Engineer Note discusses 
advanced implementations of various output 
functions for the Analog Devices Blackfin® 
processor family. The VisualDSP++® 
development tools provide C-standard I/O 
support through functions such as printf and 
fprintf. The achieved output performance is 
sufficient enough for sending sporadic (debug) 
information to the Output window (console) of 
the VisualDSP++ IDDE. However, multiple 
prints can cause an immense decrease of the 
application’s speed. 

All derivatives of the Blackfin processor family 
feature the UART module, a PC-style industry-
standard compatible peripheral. Additionally, the 
software overhead is very low. In principle, one 
single output pin is sufficient for the purpose. 
The speed is fast enough to send lots of 
information to a PC terminal application with 
minimal impact to the performance of the actual 
application. 

 
 

 
Figure 1. UART Terminal output example 

http://www.analog.com/processors�


   

 

Formatted Print to a UART Terminal with Blackfin® Processors (EE-347) Page 2 of 2 

This EE-Note provides three different ways to 
implement a powerful debug system, which 
keeps the look and feel of C-standard I/O 
functions. It includes software examples for 
currently available Blackfin evaluation boards. 
The three methods are described in the sections: 

• Accessing the UART Directly 

• Replacing the Standard Device 

• Extending I/O Support to New Devices 
It is assumed that the audience of this EE-Note is 
familiar with the C programming language and 
the I/O features which are implemented in the 
standard. For details, refer to  [1]. 

To understand this EE-Note, it is 
necessary to work with the example code 
provided in the associated .ZIP file. 

Preparations 
All the methods described later will require the 
Blackfin processor’s UART interface to be set up 
properly. The examples provide target-specific 
functions to do this. They can be found in the 
ADSP-BF5xx-UART.c and ADSP-BF60x-UART.c 
files, respectively. The functions are used to 
initialize the Blackfin ports, the UART, and the 
routines to send out buffer contents over the 
UART. 

The associated header files, named ADSP-BF5xx-
UART.h, contain information about the UART 
device number to be used, the DMA channel, and 
indicate whether autobaud detection is used 
instead of a hard-coded bitrate. 

Another set of required sources is BfDebugger.c 
and BfDebugger.h. Their functions are 
described in the following sections. 

Accessing the UART Directly 
Direct access, the first method illustrated in this 
EE-Note, is based on a set of preprocessor 
macros and uses the string library (string.h) to 

generate a formatted string for UART 
transmission. 

The functions can be found in BfDebugger.c 
and BfDebugger.h and use the following 
prototypes: 

short udprintf(unsigned char UartNum, 
unsigned char DmaChan, const char 
*format, /* args */ ...); 

short uprintf(unsigned char UartNum, 
const char *format, /* args */ ...); 

The look and feel is like printf, which takes a 
variable list of arguments. The argument format 
contains a set of conversion specifiers, directives, 
and ordinary characters that are used to control 
how the data is formatted. 

udprintf(0,9,”Hello UART%d\n”,0); 

uprintf(0,”Hello UART%d\n”,0); 

A carriage return and C-style NULL termination is 
inserted automatically. The first arguments are 
the UART number and the DMA channel 
number, respectively. 

The function returns the number of characters 
transmitted, or a negative value if unsuccessful. 

Preprocessor Definitions 
To assist the programmer with a flexible support 
of the uprintf functions versus the regular 
printf functions, a set of preprocessor macros 
helps to switch between different modes. Use 
only one at the same time: 

• __DEBUG_UART_DMA__ Directs prints to the 
UART, DMA mode 

• __DEBUG_UART__ Directs prints to the 
UART, Core mode 

• __DEBUG_FILE__ Directs prints to a file 
• __DEBUG_VDSP__ Directs prints to the 

VisualDSP++ Output window (console) 



   

 

Formatted Print to a UART Terminal with Blackfin® Processors (EE-347) Page 3 of 3 

The last two definitions are just an additional 
feature for completeness and use the standard 
fprintf() function. 

• __VERBOSITY__ [int] Level of verbosity 
(LoV) 

This definition allows masking or unmasking 
certain messages using a level hierarchy. So for 
example, __VERBOSITY__ is defined as 2, so any 
messages using the preprocessor macros in the 
next section and have n set to 1 or 2 (DEBUG(1, 
args) or DEBUG(2, args)) are printed while 3 
(DEBUG(3, args)) or higher are masked by the 
preprocessor. 

Preprocessor Macros 

A set of preprocessor macros adds additional 
functionality such as evaluation of a desired 
verbosity level and automatic color output. They 
insert, according to ADSP-BF5xx-UART.h., the 
correct UART number and DMA channel, 
respectively. 

• DEBUG(n, *format, /* args */ ...)  
No color 

• INFO(n, *format, /* args */ ...) 
Yellow text 

• ERROR(n, *format, /* args */ ...)  
Red text 

• MSG(n, *format, /* args */ ...)  
Green text 

ANSI escape sequences are used to color the 
output. A list of available ESC codes can be 
found in  [4]. 

Finally, the macros DEBUG_OPEN()and 
DEBUG_CLOSE(), both of which are required only 
once in the application, are used to prepare and 
close all required resources, including the UART 
setup. 

DEBUG_OPEN(); 
DEBUG(1,”Hello UART%d\n”,0); 
ERROR(1,"This is an error message\n"); 
DEBUG_CLOSE(); 

C/C++ Run-Time I/O Library 
This section discusses C/C++ run-time (CRT) 
I/O library features, which can be used to send 
debug information from within an application. 
Additional examples showing how to work with 
the I/O library can be found in  [2] and  [3]. 

Stdio.h Basics 

The stdio.h header file defines a set of 
functions, macros, and data types for performing 
input and output. The standard functions for 
generating formatted output are the printf 
family. The printf function sends its arguments 
to stdout, which by default, is the VisualDSP++ 
console output window. The programmer can 
change the device or file to which stdout refers. 
The fprintf function writes to a file-pointer. 
The associated file is opened / closed on the PC 
by the fopen / fclose function. 

File I/O Support 
File I/O support is described in detail in  [1]. By 
default, the standard C functionality is achieved 
through a device called PrimIO. It is set up and 
registered on startup by the CRT and handles the 
three standard files (stdin, stdout, and stderr) 
and any other stream to be opened by the user, 
unless the default device is changed. 

Replacing the Standard Device 
This method is radical. Any printf call will be 
formatted as usual by the I/O subsystem but 
directed to the _write function (see DevEntry 
structure, defined in the device.h header file), 
which is associated with your new device. The 
downside is that you lose the print-to-console 
functionality. The advantage is that existing 
source files may remain virtually unchanged. 
Only a few additions to the project are required. 
The documentation describes what changes are 
required to devtab.c and primiolib.c. These 
files are prepared and included in the example 
projects already. 



   

 

Formatted Print to a UART Terminal with Blackfin® Processors (EE-347) Page 4 of 4 

A modification to devtab.c is required if a 
device should be pre-registered when the CRT is 
setting up. 
If a new device claims the standard streams 
instead of the PrimIO device, primiolib.c must 
be modified. 

The BfDebugger.c file defines the device with 
the required function pointers: 

struct DevEntry UartIODevice 

The BfDebugger.h file provides the 
preprocessor definitions used to activate the 
replacing method: 
• __UART_IO_DEVICE__ 
• __PRE_REGISTERING_DEVICE__ 

The following definitions determine whether the 
UART transfer is done by Core or DMA. Use 
only one at a time: 
• __DEBUG_UART_DMA__ 
• __DEBUG_UART__ 

Now any printf output is redirected. 

Extending I/O Support to New 
Devices 
The last method is a bit more elegant than the 
previous one. It uses the possibility to extend I/O 
support to new devices, too. But now standard 
functionality is preserved. 

The same sources as the previous example are 
used. Pre-registering of the device is not done. 

int PrimDevId = 

get_default_io_device(); 

int SecDevId = 

add_devtab_entry(&UartIODevice); 

set_default_io_device(SecDevId); 

pUartIOFile = fopen("uart","w"); 

if(setvbuf(pUartIOFile,buf,_IOLBF,size

of(buf)) == -1) { return -1; } 

set_default_io_device(PrimDevId); 
fprintf(pUartIOFile,"Test\n"); 

printf("Test\n"); 

fclose(pUartIOFile); 

The above example saves the current device ID 
(PrimDevId). Then a new device 
(UartIODevice) is added and marked as default. 
A fopen operation opens a dummy file on the 
default device. Immediately afterwards, a new 
buffer is required to be associated with the new 
device. Line buffering is preferred for console 
output. The previous default device can be 
restored, and writes can be performed to the new 
device. A printf output will still be seen to the 
VisualDSP++ Output window. 

SDTIO System Service 

The System Services, starting with VisualDSP++ 
Update 8, provide a similar approach for re-
directing a printf to UART. The examples can 
be found in the specific Evaluation Board 
examples folder: 
\Services\stdio\char_echo\ 

UART Direct Access vs. I/O 
Device 
The downside of using an I/O device rather than 
accessing the UART directly is the DMA mode. 
Before updating the buffer, any ongoing DMA 
transfer must be finished first. This is ensured by 
a function named 

UartDmaWaitForDmaDone. 

Since the I/O system that prepares the buffer is 
called in the very first stage, polling of the 
DMA_DONE status bit must be performed 
immediately after starting the transfer. Accessing 
the UART directly allows moving the wait 
routine right before preparing the buffer to be 
transmitted. 



   

 

Formatted Print to a UART Terminal with Blackfin® Processors (EE-347) Page 5 of 5 

Console Application 
Figure 1 shows the console output with the 
Windows program PuTTY. See  [5] for download 
details. This program can be used as an 
alternative terminal window as HyperTerminal® 
has been removed from Windows Vista®. The 
window must be set to at least 91 columns to 
show the “welcome screen” displayed in the 
picture. 

The Blackfin application features a UART talk-
through mode based on interrupts. This means 
you can type characters in you console 
application window and get them bounced back 
and displayed on the screen. 

CrossCore Embedded Studio® 
Support 
The document and especially the attached ZIP 
file have been updated to support the new 
members of the Blackfin family, ADSP-BF60x 
processors. This processor family is only 
supported by the new IDE, CrossCore Embedded 
Studio® software. A dual core project running on 
the ADSP-BF609 ET-KIT Lite® Evaluation 
Board is included. 

Conclusion 
This EE-Note has shown some methods to create 
debug information and print them without the 
low-speed Output window (console) output of 
the VisualDSP++ debugger. The provided 
examples can be used as is on any Blackfin EZ-
KIT Lite evaluation board and easily included in 
existing projects with similar targets. 

References 
[1] VisualDSP++ 5.0 C/C++ Compiler and Library Manual for Blackfin Processors. Rev. 5.2, September 2009.       

Analog Devices, Inc. 

[2] VisualDSP++ 5.0 Blackfin examples: Services\File System\VDK\shell_browser\. Analog Devices, Inc. 

[3] VisualDSP++ 5.0 Blackfin examples: LAN\FileServerStdio\. Analog Devices, Inc. 

[4] ASCII-Table.com: http://ascii-table.com/ansi-escape-sequences.php  

[5] PuTTY.org: http://www.putty.org  

[6] CrossCore® Embedded Studio 1.0.0 C/C++ Compiler and Library Manual for Blackfin Processor. Rev. 1.0, March 2012. 
Analog Devices, Inc.    

Document History 

Revision Description 

Rev 1 – January 26, 2010  
by Andreas Pellkofer 

Initial release. 

Rev 2 – December 10, 2010  
by Andreas Pellkofer 

Chapter Console Application updated. Example Code enhanced and extended to 
new Blackfin Evaluation Boards. 

Rev 3  – June 21, 2012  
by Andreas Pellkofer 

Example Code enhanced and extended to new Blackfin Evaluation Boards. 

Support for ADSP-BF60x Blackfin Processor family added. 

 

http://www.putty.org/�
http://www.analog.com/static/imported-files/software_manuals/50_ccblk_man_5.2.pdf�
http://www.analog.com/static/imported-files/software_manuals/50_ccblk_man_5.2.pdf�
http://ascii-table.com/ansi-escape-sequences.php�
http://www.putty.org/�

	Introduction
	Preparations
	Accessing the UART Directly
	Preprocessor Definitions
	Preprocessor Macros

	C/C++ Run-Time I/O Library
	Stdio.h Basics
	File I/O Support

	Replacing the Standard Device
	Extending I/O Support to New Devices
	SDTIO System Service

	UART Direct Access vs. I/O Device
	Console Application
	CrossCore Embedded Studio® Support
	Conclusion
	References
	Document History

