
Engineer-to-Engineer Note EE-278 
 

a 
 

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.
 

 

Interfacing NAND Flash Memory with ADSP-21161 SHARC® Processors 
Contributed by Aseem Vasudev Prabhugaonkar Rev 1 – November 17, 2005 

 

Copyright 2005, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of 
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property 
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however 
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes. 
 

Introduction 
NAND flash provides an alternative to hard 
drives, especially in portable and handheld 
systems. Cellular phones, personal digital 
assistants (PDAs), digital cameras, MP3 players, 
and other mobile computing, communications, 
and consumer products use flash memory as their 
primary storage media. Applications that use 
NAND flash memory to store information such 
as images, data, and music require high density.  

This application note describes how to interface 
NAND flash memory to ADSP-21161 SHARC® 
processors, even though the ADSP-21161 does 
not have a NAND flash controller on-chip. The 
interface is demonstrated by code examples, 
which are validated on a hardware platform. The 
code examples are provided in “C” and assembly 
languages. Two different interfacing schemes are 
used to provide more flexibility to the system 
designer while designing a flash memory 
interface. The memory device used to 
demonstrate this interface is the K9F1208U0B, 
manufactured by Samsung Electronics. 

NAND Flash versus NOR Flash 
The most important parameter regarding 
memories is cost per bit. In semiconductor 
memory, bit cost depends on memory cell area 
per bit. The cell area of NAND flash memory is 
smaller than that of NOR flash, hence NAND 
flash can be less expensive than NOR flash. 

Functionally, the primary difference between 
NAND flash and NOR flash is that NAND flash 
is block accessible and NOR flash is byte 
accessible.  

NAND flash has the advantage of short erasing 
and programming times. The programming 
current into the floating gate is very small 
because NAND flash uses Fowler-Nordheim 
tunneling for erasing and programming. 
Therefore, power consumption for programming 
does not significantly increase, even as the 
number of memory cells being programmed 
increases. As a result, many NAND flash 
memory cells can be programmed 
simultaneously, decreasing the programming 
time per byte. Conversely, NOR flash can be 
programmed by byte or word only. Since it uses 
the hot electron injection mechanism for 
programming, it also consumes more power and 
the programming time per byte is longer. 
Typically, the programming time for NOR flash 
is more than an order of magnitude greater than 
that of NAND flash. 

From the system designer’s point of view, the 
most striking difference between NAND flash 
and NOR flash is the hardware interface. NOR 
flash has a fully memory-mapped random access 
interface like an EPROM, with dedicated address 
lines and data lines. This interface makes it easy 
to “boot” NOR flash systems. On the other hand, 
NAND flash has no dedicated address lines. It is 
controlled using an indirect I/O-like interface and 
by sending commands and addresses through an 
8-bit bus to an internal command and address 



  a 

 

Interfacing NAND Flash Memory with ADSP-21161 SHARC® Processors (EE-278) Page 2 of 9 

register. Therefore, NOR flash memories are 
mainly used to boot-load a processor, and NAND 
flash memories are used to store large amounts 
of audio and video data. 

Overview of the ADSP-21161 
Processor’s External Port 
NAND flash is interfaced to the external port of 
ADSP-21161 processor, which extends address 
and data buses off-chip. Using these buses and 
external control lines, systems can interface the 
processor with external devices such as memory, 
8-, 16-, or 32-bit host processors, and other 
processors. In addition to its on-chip SRAM, the 
processor provides addressing of up to 64 mega 
words SRAM or SBSRAM or 254 mega words 
of off-chip SDRAM memory through its external 
port. The external memory map is divided in to 
four equal-sized banks so that the systems can 
accommodate I/O devices with different timing 
requirements. 

K9F1208U0B NAND Flash 
The K9F1208U0B is offered in a 64M x 8-bit 
configuration. The K9F1208X0B is 512 Mbits 
with spare 16 Mbits capacity. The device is 
offered in 1.8V, 2.7V, and 3.3V supply voltage 
ranges. Its NAND cell provides the most cost-
effective solution for solid-state mass storage. A 
program operation can be performed in 200 µs 
(typical) on the 528-byte page. An erase 
operation can be performed in 2 ms (typical) on a 
16-Kbyte block. Data in the page can be read out 
at 50 ns (60 ns for K9F1208R0B) cycle time per 
byte. The I/O pins serve as the ports for address 
and data input/output as well as command input. 

NAND Flash Interface 
NAND flash, which is controlled using I/O pins, 
does not have dedicated address and data lines. 

Thus, the programmer must use additional flash 
control signals to send commands that perform 
various tasks like read and write. The basic 
commands supported by NAND flash memories 
are block erase, block program, read status, and 
block read. Figure 1 shows the pinout of NAND 
flash in a TSOP1 package. 

 
Figure 1. NAND Flash Pinout in a TSOP1 Package 

Assert chip enable (CE#) logic low to access the 
device. It enables the NAND flash to accept 
bytes written to the chip when write enable 
(WE#) is asserted low (and to enable the output 
of a data byte when read enable (RE#) is asserted 
low). When CE# is high, the chip ignores RE# 
and WE# and the I/O is three-stated. Command 
Latch Enable (CLE) is used to send commands to 
the device when CE# is asserted. Address Latch 
Enable (ALE) is used to latch the address into 
the flash’s address register. Table 1 indicates the 
selected internal register for valid combinations 
of CLE and ALE. 

ALE CLE Register Selected 

0 0 Data Register 

0 1 Command Register 

1 0 Address Register 

1 1 Not Defined 

Table 1. Combinations of ALE and CLE, when CS# is 
Asserted 

The flash memory is accessed in terms of 
column, page, and block. Read and program 
operations take place on a per-page basis. An 
erase operation takes place on a block basis. One 
page consists of 528 bytes. The size of the data 



  a 

 

Interfacing NAND Flash Memory with ADSP-21161 SHARC® Processors (EE-278) Page 3 of 9 

register is therefore 528 bytes. One block 
comprises 32 such pages. There are three basic 
operations in a NAND flash: reading a page, 
programming a page, and erasing a block. 
Figure 2 shows the organization of K9F1208U0B 
flash memory in terms of pages and blocks. 

 
Figure 2. K9F1208U0B Flash Memory Organization 

The command phase comprises a single byte 
transfer to the command register. The address 
phase comprises a series of byte transfers, which 
depend on the size of the flash. The address 
phase consists of the column address byte 
followed by a series of row address bytes. The 
number of row address bytes depends on the 
number of blocks, and hence the size of the 
memory device. 

Flash Commands 
This discusses the primary NAND flash 
commands. The primary and very commonly 
used flash memory commands are read page, 
program page, read status, and erase block. 
Every command (except read status) consists of a 
command write phase followed by address write 
phase. The read status command does not have 
an address write phase. The command is written 
into the flash’s command register followed by 
the start address for the read or program 
operation latched into address register. 

READ Operation 

After issuing the read command and the address, 
the read operation is performed from the flash 
memory into its internal data register. Once the 
internal read operation is completed, as indicated 

by the R/B# (BUSY) signal, the data register can 
be read over the external data bus. The various 
phases are explained as follows. 

 Command Phase: With CS# asserted, 
CLE=1, and ALE=0, the command byte 
(00H) is placed on the I/O pins. This is a 
command write operation. On the rising edge 
of WE#, the “read mode 1” command is 
latched into the command register. 

 Address Phase: With CS# asserted, ALE=1, 
and CLE =0, the column and row address is 
latched into the address register. This 
operation is usually a series of writes. The 
byte-wide addresses are latched on the rising 
edge of every WR# pulse. The first address 
byte is the column address, and the 
subsequent bytes are the row addresses. The 
five least-significant bits of first row address 
indicate the page number within a block. The 
three most-significant bits of the first row 
address and the rest of the higher row address 
bits determine the block. 

 Data Transfer Phase: With CS# asserted, 
CLE=0, and ALE=0, the device goes into a 
busy state to transfer data from memory into 
the on-chip data register. This is indicated by 
the BUSY (R/B#) signal. R/B# goes to logic 
low and remains at logic low until the data-
transfer phase is completed. Once the R/B# 
goes back to logic level high, the data can be 
read from data register. 

 Read-Out Phase: This is indicated by R/B# 
going to logic level high after the busy 
period. With CS# asserted, ALE=0, and 
CLE=0, the data can be read over I/O with a 
series of RD# pulses. 

Figure 3 shows the timing diagram for a read 
operation. 



  a 

 

Interfacing NAND Flash Memory with ADSP-21161 SHARC® Processors (EE-278) Page 4 of 9 

 
Figure 3. Read Operation Timing 

Program Operation 

This is a memory write operation. The data in the 
on-chip data register is written into memory. 
Similar to a read operation, the device asserts 
R/B# to logic level low, indicating its busy 
status. The various phases of this operation are 
explained below. 

 Command Phase: With CS# asserted, 
CLE=1, and ALE=0, the command byte 
(0x80) is placed on the I/O pins. This is a 
command write operation. On the rising edge 
of WE#, the “serial data input” command is 
latched into the command register. 

 Address Phase: This is similar to the address 
phase (See READ Operation on page 1). 
With CS# asserted, ALE=1, and CLE =0, the 
column and row addresses are latched into 
the address register. 

 Data Input Phase: With CS# asserted, 
ALE=0, and CLE=0, the data is written into 
the data register. The data is driven on the 
I/O lines, and every byte is latched on the 
rising edge of WR#.  

 Program Phase: With CS# asserted, ALE=0, 
and CLE=1, the auto program command is 
written into the flash’s command register. 
The device then goes to the BUSY state, 
indicated by R/B# going to a logic level low 
state. 

 Timeout Check Phase: The status is 
checked after the completion of the program 
phase to determine whether the programming 
was successful. 

Figure 4 shows the timing diagram for a program 
operation. 

 
Figure 4. Program Operation Timing 

Block Erase Operation 

In a block erase operation, a group of 
consecutive pages (typically 32) is erased in a 
single operation. Although programming turns 
bits from “1” to “0”, block erasure is necessary 
to turn bits from “0” back to “1”. 

 Command Phase: With CS# asserted, 
ALE=0, and CLE=1, command byte 0x60 
(auto block erase) is written to the flash’s 
command register. This is done by placing 
the command byte (0x60) on the I/O lines. 
The rising edge of WR# latches this value 
into the command register. 

 Address Phase: Since this is a block erase, 
column and page addresses are not required. 
With CS# asserted, ALE=1, and CLE=0, the 
block address is written to the address 
register with series of writes into the flash. 

 Erase Phase: With CS# asserted, ALE=0, 
and CLE=1, the auto block erase confirm 
command (0xD0) is written to the command 
register. The device then goes to a BUSY 
state to complete the block erase operation. 

 Timeout Check Phase: The status is 
checked after the completion of the program 
phase to determine whether the erasure was 
successful. 

Figure 5 shows the timing diagram for a block 
erase operation. 



  a 

 

Interfacing NAND Flash Memory with ADSP-21161 SHARC® Processors (EE-278) Page 5 of 9 

 
Figure 5. Block Erase Operation Timing 

Interface with ADSP-21161 
Processors 
Since the ADSP-21161 processor does not have a 
dedicated on-chip NAND flash controller, a 
software driver is required to control and use the 
NAND flash. Two approaches are described for 
this interface. Standard NAND flash memories 
require that the chip enable remains asserted 
during the read busy period. Thus, using 
processor’s FLAG pin to drive the flash’s chip 
enable makes the driver code compatible with 
standard NAND flash and CEDC (chip enable 
don’t care) NAND flash memories. Approach A 
uses the processor’s dedicated FLAG pins to 
drive CS#, ALE, and CLE on the flash device. 
This approach relies on the delays mentioned in 
the flash device’s data sheet for various 
operations and does not probe R/B# signal driven 
by the flash device.  

Approach B utilizes address lines “A0” and “A1” 
to drive CLE and ALE, respectively. Approach B 
also uses the flash’s R/B# signal to determine the 
memory’s BUSY state. From a system 
standpoint, Approach B is a more optimized and 
reliable method, but it engages one of the 
processor’s interrupt (IRQ) signals. 

Approach A 

Refer to Figure 6 for details on the connections 
between the ADSP-21161 processor and the 
flash memory. This approach relies completely 
on the delays mentioned for various tasks in the 

flash device data sheet. To be on the safe side, 
the delay provided in the code should be more 
than necessary for a given task.  

 
Figure 6. ADSP-21161 and Flash Memory Interface – 
Approach A 

Figure 7 shows the flowchart for the block erase 
code implemented in Approach A. 

 
Figure 7. Flowchart of Block Erase Function – 
Approach A 

Figure 8 shows the flowchart for the block 
program code implemented in Approach A. 



  a 

 

Interfacing NAND Flash Memory with ADSP-21161 SHARC® Processors (EE-278) Page 6 of 9 

 
Figure 8. Flowchart of Block Program Function – 
Approach A 

Figure 9 shows the flowchart for the block read 
code implemented in Approach A. 

 
Figure 9. Flowchart of Block Read Function – 
Approach A 

Approach B 

Refer to Figure 10 for details on the connections 
between an ADSP-21161 processor and a flash 
memory. R/B# (BUSY) from the flash is an 
active low signal; hence, it is inverted before 
being connected to the processor’s external 
interrupt. Being an open drain output signal, 
R/B# requires an external pull-up resister. Note 
that the processor’s external interrupt must be 
configured to be edge sensitive. 

It is also important to use the hold cycle for 
address and data during the processor’s external 
memory accesses. This ensures that the CLE and 
ALE driven by A0 and A1, respectively, are still 
active for a cycle of external port after the RD# 
or WR# strobes are inactivated by the processor. 
This can be ensured by configuring two or more 
wait states. The code configures seven wait 
states. 

 
Figure 10. ADSP-21161 Processor and Flash 
Memory Interface – Approach B 

Figure 11 shows the flowchart for the block erase 
code implemented in Approach B. 



  a 

 

Interfacing NAND Flash Memory with ADSP-21161 SHARC® Processors (EE-278) Page 7 of 9 

 
Figure 11.  Flowchart of Block Erase Function – 
Approach B 

Figure 12 shows the flowchart for the block 
program code implemented in Approach B. 

 
Figure 12. Flowchart of Block Program Function – 
Approach B 

Figure 13 shows the flowchart for the block read 
code implemented in Approach B. 

 
Figure 13.  Flowchart of Block Read Function – 
Approach B 

The DMA mode of data transfer can also be used 
to perform read data and write data operations to 
the flash memory. In such a case, ensure that no 
other core or DMA accesses happen to any of the 
external memory banks. Any such accesses cause 
spurious RD# and/or WR# pulses to the flash 
memory, which may cause unexpected results. 

Screenshots representing timing diagrams for 
this interface are shown in the following figures. 



  a 

 

Interfacing NAND Flash Memory with ADSP-21161 SHARC® Processors (EE-278) Page 8 of 9 

          
Write Command -1                 Erase Command -1 

           
Write Command -2                Read Command -2 

           
Read Command -1                Write Command -3 

Figure 14. Timing Plots 



  a 

 

Interfacing NAND Flash Memory with ADSP-21161 SHARC® Processors (EE-278) Page 9 of 9 

Conclusion 
The interface between an ADSP-21161 processor 
and a NAND flash can be achieved seamlessly. 
This interface can be implemented using multiple 
approaches, which provide system designers with 
even more flexibility. 

Appendix 
Code is supplied in the .ZIP file associated with 
this EE-Note. 

References 
[1] ADSP-21161N Bring-Up-Board schematics. Analog Devices, Inc. 

[2] Preliminary data sheet of K9F1208U0B 64M X 8-bit NAND Flash memory, Samsung Electronics. 

[3] NAND Flash Applications Design Guide, Revision 1.0 April 2003, System Solutions from Toshiba America Electronic 
Components, Inc. 

[4] ADSP-21161 Hardware Reference Manual, Third Edition, May 2002. Analog Devices, Inc. 

Document History 

Revision Description 

Rev 1 – November 17, 2005  
by Aseem Vasudev Prabhugaonkar 

Initial Release 

 


	Introduction
	NAND Flash versus NOR Flash
	Overview of the ADSP-21161 Processor’s External Port
	K9F1208U0B NAND Flash
	NAND Flash Interface
	Flash Commands
	READ Operation
	Program Operation
	Block Erase Operation

	Interface with ADSP-21161 Processors
	Approach A
	Approach B

	Conclusion
	Appendix
	References
	Document History

