
Engineer-to-Engineer Note EE-249

a

Technical notes on using Analog Devices DSPs, processors and development tools
Contact our technical support at dsp.support@analog.com and at dsptools.support@analog.com
Or visit our on-line resources http://www.analog.com/ee-notes and http://www.analog.com/processors

Implementing Software Overlays on ADSP-218x DSPs with VisualDSP++®
Contributed by Ramesh Babu and Aseem Vasudev Prabhugaonkar Rev 1 – October 4, 2004

Copyright 2004, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

Introduction
This EE-Note discusses the implementation of
software overlays on ADSP-218x DSPs. A
simple code example, demonstrating the software
overlay technique for ADSP-218x DSP, is
discussed later in this document.

Early versions of the VisualDSP® toolset used a
different scheme to support software overlays as
discussed in the legacy EE-Note Everything You
Always Wanted to know about Overlays - *But
were afraid to ask (EE-67). With VisualDSP++®
3.5 a new approach has been enabled.

What are Software Overlays?
Due to limited address space, many ADSP-218x
derivatives provide multiple memory pages,
called hardware overlays. The software overlay
technique is a completely different scheme to
populate the content of physical SRAM with
different data or code on demand.

The software overlay technique is commonly
used when a processor is does not have sufficient
internal memory to hold all of the application's
data / program code. In these situations, part of
data / program code is loaded into internal
memory during the booting process and the
remaining part is placed in external memory.
When program code (or data) in external
memory has to be executed, it is loaded into
internal memory and executed.

The memory address range where the overlay
function resides in the external memory is called

“live address space”, and the memory address
where the program is executed in internal
memory is called “run address space”. The code
responsible for transferring the data / program
code from external memory to internal memory
at runtime is called an overlay manager. It
typically resides in a reserved space of the DSP’s
internal memory.

Software Overlays on ADSP-218x DSPs

Software overlays can be implemented using the
ADSP-218x DSP's external byte-wide memory
space. A byte-wide memory can be interfaced
through the processor's BDMA port. The overlay
code/data resides in the external byte-wide
memory. The overlay manager is responsible for
initializing byte DMA (BDMA) to transfer the
data/code from external memory into internal
memory when required.

VisualDSP++ Support

The VisualDSP++ linker automatically generates
overlay constants, which configure the BDMA
parameters in the overlay manager. Each overlay
has a word size, run-time address and live
address used by the overlay manager to
determine where the overlay resides and where it
is executed.

The linker-generated constants (where N is the
ID# of the overlay) are:

 _ov_startaddress_N (live address space)

 _ov_word_size_run_N

 A

Implementing Software Overlays on ADSP-218x DSPs with VisualDSP++® (EE-249) Page 2 of 6

 _ov_word_size_live_N

 _ov_runtimestartaddress_N (run addr. space)

The linker is also responsible for resolving the
symbol addresses of overlay data and labels.

Example Program
This section shows a simple example program to
illustrate the software overlay implementation on
ADSP-218x DSPs. The assembly program
provided with this EE-Note toggles a flag pin at
two different speeds. This program uses two
software overlay functions which exist in the
external byte memory.

Figure 1. Simple Memory Overlay Example

The main program calls the two software overlay
functions in an infinite loop. One of the software
overlay functions (Fast-LED-Blink()) toggles
the LED at a faster rate; the other (Slow-LED-
Blink()) toggles the LED at a slower rate.
Figure 1 illustrates where the overlay functions,
overlay manager, and the main function are
stored.

The main() and Overlay_Manager() functions
are loaded into the internal RAM of the ADSP-
218x during the booting process. The Fast-LED-
Blink() and Slow-LED-Blink() overlay

functions are saved in external byte memory.
During runtime, when an overlay functions is
called, the function is loaded into internal
memory and then executed. Accessing code
and/or data overlays dynamically provides
greater flexibility toward managing your DSP’s
internal memory.

Linker Definitions

Let's look into the declarations required in the
Linker Description File (.LDF) for the example
program explained above.

// "run" space for PMOVLAY pages
mem_pmovly {
 TYPE(PM RAM)
 START(0x002000)
 END(0x003fff)
 WIDTH(24)
}

// "live" space for PMOVLAY pages
mem_pmpage1 {
 TYPE (BM RAM)
 START(0x001000)
 END(0x001fff)
 WIDTH(8)
}
mem_pmpage2 {
 TYPE(BM RAM)
 START(0x002000)
 END(0x002fff)
 WIDTH(8)
}

Listing 1. Run and Live Space Declaration in .LDF

The statements in Listing 1 in the MEMORY {}
section of the .LDF file define the target memory
(i.e., the run space and live space addresses of
the overlay program code).

Live space. which is specified in the byte
memory (BM), helps the linker generate the
overlay constants.

The statements in Listing 2, which are specified
in PROCESSOR { } section of the .LDF file, map
code and data to the physical memory of a
processor in a DSP system. In Listing 2, the
commands tell the linker that a specific section
(e.g., pm_ovlay_1) from a specified input file

 L

iv
e

Sp
ac

e

0x2000

0x0000

 R
un

 S
pa

ce

0x2000

0x1000
Fast-LED-Blink ()

 Main ()

Overlay_Manager ()

Internal PM
Memory

External Byte
Memory

Slow-LED-Blink ()

 A

Implementing Software Overlays on ADSP-218x DSPs with VisualDSP++® (EE-249) Page 3 of 6

(Fast-LED-Blink.doj) is to be used as an input
for this overlay segment (mem_pmpage1). For
.LDF file syntax and definitions, refer to the
VisualDSP++ 3.5 Linker and Utilities Manual
for 16-Bit Processors [2].

sec_pmpage {
 OVERLAY_INPUT {
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(pmpage1.ovl)
 INPUT_SECTIONS(
 Fast-LED-Blink.doj(
 pm_ovlay_1
)
)
 } > mem_pmpage1

 OVERLAY_INPUT {
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(pmpage2.ovl)
 INPUT_SECTIONS(
 Slow-LED-Blink.doj(
 pm_ovlay_2
)
)
 } > mem_pmpage2
} > mem_pmovly

Listing 2. Specifying Overlay Sections in the .LDF

The Linker Description File (.LDF) in an overlay
project has a section called a procedure linkage
table (PLIT). The PLIT is a jump table in root
memory constructed by the linker.

Each call to an overlay section is replaced by a
call to the PLIT. The PLIT {} commands
provide a template by which the linker generates
distinct assembly code for each overlay section.
Listing 3 shows an example PLIT section that
would be defined in the .LDF file. This section is
defined only once in the .LDF file. However, the
linker generates separate PLIT code for each
overlay function call (pm_ovlay_1 and
pm_ovlay_2). In other words, the PLIT {}
command in an .LDF file inserts assembly
instructions that handle calls to functions in
overlays.

The template in Listing 3 informs the linker
which instructions to put into each PLIT entry.
Since each call to an overlay function is replaced

by a call to the PLIT, you must place the jump
instruction to the user-defined overlay manager
code in the PLIT section.

PLIT {
 AY0 = PLIT_SYMBOL_OVERLAYID;
 JUMP Overlay_Manager;
}

Listing 3. Simple LDF PLIT Entry Example

Each overlay module declared in the .LDF file has
a unique copy of the PLIT entry defined in the
.LDF file. The example program has two code
overlays, and a simple PLIT is declared in the
.LDF file shown in Listing 3. The corresponding
PLIT table for the two overlay functions would
look like Listing 4.

plt_1__Fast_LED_Blink:

 AY0 = 0x0001;

 JUMP Overlay_Manager;

plt_2__Slow_LED_Blink:

 AY0 = 0x0002;

 JUMP Overlay_Manager;

Listing 4. Example PLIT Table

The AY0 register is loaded with the overlay ID,
which is used by the overlay manager to
determine the live address, run address, and word
size of the overlay function.

Simple Overlay Manager

The overlay manager is responsible for
transferring the data/code from the live space to
the run space. The linker generates various
overlay constants, such as live addresses, run
addresses, live word sizes for each live address,
and run word sizes. The linker-generated
constants must be declared as external constants
as shown in Listing 5 in the overlay manager
function. The overlay manager configures the
BDMA parameters using the linker-generated
overlay constants and then the BDMA transfer is
initiated.

 A

Implementing Software Overlays on ADSP-218x DSPs with VisualDSP++® (EE-249) Page 4 of 6

Figure 2. Overlay Manager Flowchart

/* The following constants are defined
 by the linker.
 These constants contain the word
 size, live location and run
 location of the overlay functions.
*/

.SECTION/DM data1;
.EXTERN _ov_word_size_run_1;
.EXTERN _ov_word_size_run_2;
.EXTERN _ov_word_size_live_1;
.EXTERN _ov_word_size_live_2;
.EXTERN _ov_startaddress_1;
.EXTERN _ov_startaddress_2;
.EXTERN _ov_runtimestartaddress_1;
.EXTERN _ov_runtimestartaddress_2;

Listing 5. Declaration of Linker-generated Constants

In this example, the linker constants are placed in
an array (Listing 6) so that the overlay manager
can use the appropriate constants based on the
overlay ID.

.VAR liveAddresses[2] =
 _ov_startaddress_1,
 _ov_startaddress_2;

.VAR runAddresses[2] =
 _ov_runtimestartaddress_1,
 _ov_runtimestartaddress_2;

.VAR runWordSize[2]=
 _ov_word_size_run_1,
 _ov_word_size_run_2;

.VAR liveWordSize[2] =
 _ov_word_size_live_1,
 _ov_word_size_live_2;

Listing 6. Buffer Declaration using Linker-generated
Constants

You can extract the required data from these
arrays to set up the BDMA transfer (Listing 8).

// Get Pointer to access the constants
AR = AY0 -1;
// Save the pointer in Modifier Reg.
M0 = AR;
M3 = 0;

// Set array pointers to access
// Linker generated constants
I0 = liveAddresses;
I2 = runAddresses;
I3 = runWordSize;
modify(I0,M0);
modify(I2,M0);
modify(I3,M0);

Listing 7. Setting DAG Pointers to Access
Appropriate Overlay Constants in Arrays

/* Load the BDMA registers and trigger
 the Byte DMA transfer
*/
 AX0=DM(I0,M0);
 DM(BDMA_External_Address)=AX0;

 AX0=DM(I2,M3);
 DM(BDMA_Internal_Address)=AX0;

 AX0=0x000;
 DM(BDMA_Control)=AX0;

Overlay Manager

Initialize index pointers to access
the linker-generated constants

Access the run address, live
address, and the word size from the
linker-generated constants based on
overlay ID

Set up BDMA registers to initiate
the transfer the overlay code/data
from the live space to the run space

BDMA
complete?

Yes

No

Jump to the run address space to
execute the overlay function

End

 A

Implementing Software Overlays on ADSP-218x DSPs with VisualDSP++® (EE-249) Page 5 of 6

 AX0 = DM(I3,M0);
 DM(BDMA_Word_Count)=AX0;

Listing 8. Initiating BDMA Transfer Example

Figure 2 shows a simple overlay manager.

Figure 3. Overlay Function Execution Flowchart

In the main code, the overlay functions are called
similar to ordinary (non-overlay) functions. For
the overlay functions, the linker replaces the
actual overlay function call with a call to the
PLIT code generated for that particular overlay
function.

For example, the instruction:

 call Fast-LED-Blink;

is replaced automatically by:

 call plt_1__.Fast_LED_Blink;

Looking back at the code:

plt_1__Fast_LED_Blink:

 AY0 = 0x0001;

 JUMP Overlay_Manager;

In the AY0=0x0001 instruction, the content of the
AY0 register in the plt_1__Fast_LED_Blink
table is used as a pointer to access the linker-
generated data in the overlay manager. The next
instruction (jump Overlay_Manager ())
transfers program control to the overlay manager.

As explained earlier, the overlay manager code
initiates a BDMA transfer of the Fast-LED-
Blink overlay function from external memory
to internal memory.

Finally, the overlay manager executes a JUMP
instruction to transfer program control to the
Fast-LED-Blink() overlay function in run
space.

The overlay manager can also use a software
stack to save the contents of registers used in the
overlay manager function.

The loader file (.BNM) created using the
VisualDSP++ can be burned into
Flash/EEPROM memory directly. The .BNM file
will have the memory image of both the bootable
and non-bootable parts of the code. During
booting, the page loader instructions load the
non-overlay code only; they do not load the
overlay functions. During booting, only the
main() and overlay_manager() functions of
the example are loaded into the DSP. However,
the overlay functions mapped to 0x1000 and
0x2000 in byte memory are not loaded into the
ADSP-218x during booting. During runtime,
when overlay functions are called, they are
transferred into the run space and executed.

The overlay manager discussed in this section is
very simple. For complete code, refer to the
source code provided with this EE-Note.

 main ()

Call overlay
function

PLIT Table

 Overlay_ manager ()

Jump to run space to
execute the function

End

 A

Implementing Software Overlays on ADSP-218x DSPs with VisualDSP++® (EE-249) Page 6 of 6

References:
[1] ADSP-218x DSP Hardware Reference. First Edition, February 2001. Analog Devices, Inc.

[2] VisualDSP++ 3.5 Linker and Utilities Manual for 16-Bit Processors. Rev 1.0, October 2003. Analog Devices, Inc.

[3] Using Software Overlays with the ADSP-219x VisualDSP 2.0++ (EE-152). February 2002. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – October 04, 2004
by Ramesh Babu

Initial Release

	Introduction
	What are Software Overlays?
	Software Overlays on ADSP-218x DSPs
	VisualDSP++ Support

	Example Program
	Linker Definitions
	Simple Overlay Manager

	References:
	Document History

