
Engineer To Engineer Note EE-199

a

Technical Notes on using Analog Devices' DSP components and development tools
Contact our technical support by phone: (800) ANALOG-D or e-mail: dsp.support@analog.com
Or visit our on-line resources http://www.analog.com/dsp and http://www.analog.com/dsp/EZAnswers

Link Port Booting the ADSP-21161 SHARC® DSP
Contributed by Andrew Caldwell August 19, 2003

Copyright 2003, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

Introduction
The following engineer note will discuss the
steps required in order to successfully link boot
one slave ADSP-21161 SHARC® DSP from
another master ADSP-21161 DSP. We will
discuss the link boot process from both the
perspective of the master device and the slave.

There are four possible boot modes: EPROM,
Host, SPI, and Link Booting. This application
note will go into detail about the complications
that must be considered when performing a link
port boot, the link port kernel and how to use the
loader utility to create a bootable file. Example
code is included in the note itself as well as being
provided in the accompanying zip file
(EE199.zip). The example consists of code for
the master ADSP-21161 SHARC DSP that will
transfer the boot code to a slave ADSP-21161
SHARC DSP through the link ports, the link port
boot kernel executed on the slave device being
booted and a simple blink program that is
executed after the boot kernel.

This engineer note briefly describes the various
booting methods for the ADSP-21161 and how
to configure a slave device for link port booting.
The reader is introduced to the loader utility and
link kernels and how these are used by the
VisualDSP++™ IDDE to create a file suitable
for booting an ADSP-21161 SHARC DSP
through the link port. This is followed by a
description of the actual booting process and
how the slave device uses the boot kernel to
bring the core into a state in which it is ready to

receive the actual program to be booted. Some
hardware issues associated with link port booting
and how to accommodate for these issues in
software are then described. Finally the reader is
taken through a step-by-step example of link port
booting one ADSP-21161 DSP from another and
is introduced to the techniques used to debug a
link port boot problem. This section includes
fully documented code.

VisualDSP++™ Tools Required
This engineer note and the accompanying
projects included in EE199.zip were developed
and tested for VisualDSP++ 3.0 for the SHARC
family with Service Pack 1 installed. The loader
utility used to create the loader files was:
ADSP-21100 Family Loader version 2.0.3.18

If you have an earlier version of the loader utility
then please make sure you have the correct
version of VisualDSP++ installed as detailed
above and you have downloaded and installed
the following file from our ftp site at
ftp://ftp.analog.com/pub/tools/patches
sharcloader_4.1.3.11_and_hhloader_2.0.3.18_a
nd_sharcloaderpropertypage_1.2.4.1_and_21161
loaderpropertypage_1.0.1.6.zip

Also make sure you read the accompanying
release note:
sharcloader_4.1.3.11_and_hhloader_2.0.3.18_a
nd_sharcloaderpropertypage_1.2.4.1_and_21161
loaderpropertypage_1.0.1.6_ReleaseNote.doc

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 2 of 30

Contents
Introduction.. 1

VisualDSP++™ Tools Required .. 1

Contents ... 2

List of Figures .. 3

ADSP-21161 Booting Methods ... 4

Loader Kernel and Loader Utility.. 4

Loader file format .. 5

Understanding the contents of the loader file .. 6

Link port boot kernel structure .. 9

Link Port Booting Process ... 10

Hardware Considerations... 12

Debugging Guidelines ... 12

Setting up the VisualDSP++ Configurator .. 12

Creating a boot kernel for debug purposes .. 15

Debugging the boot process... 16

Step 1: Open up VisualDSP++ IDDE.. 16

Step 2: Setting up the VisualDSP++ Environment.. 16

Step 3: Setup Breakpoints.. 18

Step 4: Starting the debug process... 18

Step 5: Analyzing the registers .. 18

References.. 30

Document History.. 30

Appendix 1: Blink_Example Source code... 26

Appendix 2: Master Source Code.. 28

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 3 of 30

List of Figures
Figure 1 Elfloader Operation ... 5

Figure 2 Loader Utility Options... 5

Figure 3 Loader File Formats .. 6

Figure 4 16-bit Include file format .. 7

Figure 5 Tag and control words... 7

Figure 6 Link Port kernel functions and locations... 9

Figure 7 DMA Channel 8 reset values... 10

Figure 8: DMA Channel 8 setup in final_init .. 11

Figure 9: VisualDSP++ Configurator .. 13

Figure 10: Platform Properties... 14

Figure 11: Device Properties ... 14

Figure 12: Loader Utility ... 15

Figure 13: New session and session list... 16

Figure 14: VisualDSP++ IDDE Setup immediately after opening the kernel debug session 17

Figure 15: VisualDSP++ IDDE after environment setup and symbol load... 17

Figure 16: Breakpoint location within kernel .. 18

Figure 17: Register contents showing tag number... 18

Figure 18: Register contents showing address and word count... 19

Figure 19: Register contents showing first instruction .. 19

Figure 20: 16-bit data initialization ... 20

Figure 21: 16-bit data zero initialization ... 20

Figure 22: 32-bit data initialization ... 20

Figure 23: 32-bit data zero initialization ... 21

Figure 24: 40-bit data initialization ... 21

Figure 25: 40-bit data zero initialization ... 21

Figure 26: 64-bit data initialization ... 22

Figure 27: 64-bit data zero initialization ... 22

Figure 28: Final Init ... 22

Figure 29: Alteration to Reset interrupt Vector for debugging purposes .. 23

Figure 30: Assemble options for additional debug.. 24

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 4 of 30

ADSP-21161 Booting Methods
There are four booting methods possible on the
ADSP-21161 SHARC DSP. These are EPROM,
host, SPI, and link port booting. Booting is the
method of taking data and application code into
the processor so it may then begin instruction
execution. EPROM booting is achieved by
reading data from the EPROM through the
external port. Host booting is also achieved
through the external port although DMA (Direct
Memory Access) configuration is slightly
different to that when EPROM boot method is
selected. For more information on these two
booting methods please refer to pages 6-74
through 6-80 of [1]. SPI booting is achieved
when the ADSP-21161 is configured for SPI
boot mode, in this mode the DSP receives 8-bit,
16-bit or 32-bit wide data through the SPI
receive buffer. Refer to pages 11-36 through 11-
46 of [1] for further details. Finally we have link
port booting. This is achieved by reading 4-bit
wide data through link buffer 0. This data may
come from another DSPs link port such as a
member of the SHARC family, an ADSP-21160
or another ADSP-21161. The data could also
come from an external device such as an FPGA,
as long as data is provided in 4 bit widths and the
external device provides a clock signal to the
link port assigned to link buffer 0. There is also a
no boot mode; in this mode the DSP begins
executing instructions from external memory.

The various booting modes are configured in
hardware. The ADSP-21161 samples three pins
during reset, these three pins are: EBOOT,
LBOOT, and /BMS. For the ADSP-21161 EZ-
KIT Lite these pins may be configured through
JP20 which is labeled “Boot Mode”. Table 1
shows the various boot modes and the
configuration required for each of the EBOOT,
LBOOT and /BMS pins for the DSP to boot via
that method.

EBOOT LBOOT /BMS Booting Mode

1 0 1 (Output) EPROM

0 0 1 (Input) Host Processor

0 1 0 (Input) Serial Boot
(SPI)

0 1 1 (Input) Link Port

0 0 0 (Input) No Boot

1 1 X (Input) Reserved

Table 1 Boot Mode pin configuration

On initial power up or after a hardware/software
reset, the ADSP-21161 is automatically
configured for a 256 Word DMA through the
external port, SPI port or link port. For the ‘No
Boot’ configuration the DSP core starts
executing code directly from external memory
and no DMA is required. This 256 word DMA is
used to load the boot kernel into the DSP
memory. This kernel serves as a loading routine
for the application.

Loader Kernel and Loader Utility
The loader utility (elfloader.exe) generates boot-
loadable files for the ADSP-21161 by processing
the executable files. The output of the loader
utility is a boot-loadable file with a “.LDR”
extension.

The loader utility allows the user to choose
various options such as the boot type (Prom,
Host, Link, SPI), boot kernel file, and the type of
file format (hex, ASCII, binary or include). All
this information is located under the “Load” tab
of the project options window in the
VisualDSP++ 3.0 environment as shown in
Figure 2.

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 5 of 30

Loader Kernel
(.dxe) DSP 6

Executable
(.dxe)

DSP 5
Executable

(.dxe)
DSP 4

Executable
(.dxe)

DSP 3
Executable

(.dxe)
DSP 2

Executable
(.dxe)

DSP 1
Executable

(.dxe)

DSP 0
Executable

(.dxe)

Loader file
(.ldr)

Elfloader.exeLoader options

Figure 1 Elfloader Operation

There are four types of loader kernel to choose
from depending on whether host boot, SPI boot,
EPROM boot and link boot is being used. After
selecting the boot type, you can select the file
format of the generated loader file and also select
the associated kernel for the boot method.
Default kernels are provided with the
VisualDSP++ software. In VisualDSP ++ 3.0,
four kernels are supplied, one for each boot type:
host, SPI, EPROM, and link boot. A single
executable (161_prom.dxe, 161_host.dxe,
161_spi.dxe, 161_link.dxe) can now initialize
code in all four external memory widths.

Figure 2 Loader Utility Options

Please note that in previous versions of the
VisualDSP++ software, four separate executable
kernel files were provided for each boot type.
The one that was required was dependant upon
the external memory data bus widths in which
the DSP was to read and/or write to. i.e.
161_link8.dxe, 161_link16.dxe, 161_link32.dxe,
161_link48.dxe.

Each boot kernel is less than or equal to 256
words in length and is pre-pended to the user
code when the loader utility is run. The ADSP-
21161, like all the other ADSP-21xxx devices,
has a special hardware feature that allows for a
maximum of 256 instruction words to be loaded
in upon reset. This code must then be responsible
for placing the application code and data into the
correct memory locations such as external
SDRAM, internal program memory and various
data memory locations before overwriting itself
with application code allowing for maximum
memory usage for the application. The detailed
functionality of the link port boot kernel and it’s
operation is not covered in this document as the
kernel source files are very well documented and
it is advised that a user study these to gain a
better understanding of the operation of the
kernel.

Loader file format
Before we take a closer look at the link port
loader boot kernel and how it operates we need
to be able to understand the file format of the
boot loader file that is created by the loader
utility and its contents.

Both the Include and ASCII file formats generate
16-bit hexadecimal values. The only difference
between the two being that the Include format
consists of comma separated 16-bit values
consisting of three values per line whereas the
ASCII file format has one 16-bit value per line
and is not comma separated as shown in Figure
3.

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 6 of 30

Take the following three instructions:

0x063e04040009
0x0f7b00000000
0x06be00040054

16-bit Include format representation:

0x0009, 0x0404, 0x063e
0x0000, 0x0000, 0x0f7b
0x0054, 0x0004, 0x06be

16-bit ASCII format representation:

0x0009
0x0404
0x063e
0x0000
0x0000
0x0f7b
0x0054
0x0004
0x06be

Figure 3 Loader File Formats

The Include file format confirms to the C-style
include format and can be included into a C
program as shown in Code listing 1 or used to
include into any assembly program as shown in
Code listing 2.

int dm Boot_Data[N] = {
#include “boot_file.ldr”
};

Code listing 1 C-style inclusion of a loader file

.var Boot_Data[N] = “boot_file.ldr”;

Code listing 2 Assembly style inclusion of a loader file

The ASCII file format allows for simple
inclusion into an assembly file in the same
manner as is shown in Code listing 2. This is
similar to an assembler initialization data file
(.DAT). The ASCII file format cannot be used to
include into a C program.

The binary file format supports a variety of
PROM and micro-controller storage options.
This file format uses less space than the other file
formats and contains 48-bit instructions in big-
endian format (most significant bit first).

Understanding the contents of the
loader file
Now that we are familiar with the various file
formats lets take a look at the loader file
contents. We will use the Include file format to
describe the contents.

The loader file can be broken down into three
main parts. The first part consisting of the kernel
program instructions, the second containing the
application instructions and various control
words (tags) used by the kernel to place data into
the correct locations within internal and external
memory. The third section contains the 256
application code instructions that are to
overwrite the kernel after all other initialization
has completed. The elfloader makes a couple of
modifications to this section:

• The first instruction of the applications LP0
interrupt vector (instruction address
0x40038), is replaced with an RTI command.

• The first instruction of the application LP0
interrupt vector is placed immediately after
the FINAL_INIT tag.

• The first instruction of the __RSTI interrupt
vector is replaced with the value
0x39732d802000.

These three modifications are required due to the
operation of the Final_Init routine in the kernel.
This is described fully in Link Port Booting
Process.

The first and third sections of the loader file are
the easiest to break down, as they contain no tag
words. The first section simply contains the op-
code representation of the kernel source file that
gets directly loaded into the core and takes up the
first 256 lines of the loader file. The third section
contains the first 256 instructions that reside in
the Interrupt Vector Table (except for the
modifications made by the elfloader). These
overwrite the kernel instructions that were
loaded earlier. This section takes up the last 256
lines of the loader file.

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 7 of 30

Each line in the Include format loader file as read
from left to right consists of the lower 16-bits
(MSB to LSB) of the instruction followed by the
middle 16-bits (MSB to LSB) and then the upper
16-bits (MSB to LSB).

 Instruction: IM ASK = 0;

 0x0f7b00000000

 0x0000, 0x0000, 0x0f7b

Figure 4 16-bit Include file format

The second part of the loader file is more
complex. There are a number of different types
of data initialization that the boot kernel needs to
be able to distinguish between, such as 48-bit
program memory instructions, 32-bit data
memory or 16-bit external memory, to name just
a few. There are currently 27 different types of
memory initialization that can take place. In
order for the boot kernel to process and initialize
the data type correctly, each data section in the
generated loader file is preceded by two 48-bit
words. The first is what we call a “tag”. Each tag
is used as an indicator to the boot kernel of the
type of memory initialization that is to take
place. A full description of the tag and its
associated initialization type is shown in Table 2.

Following the tag is a second 48-bit word
containing a 16-bit value for the number of
words in the data section that follows and a 32-
bit address at which the data section is to be
located as shown in Figure 5.

The two shaded areas in Table 2 indicate illegal
tag words. These tags are only illegal for the link
port boot kernel as 48-bit external memory
writes cannot be performed unless the link ports
are disabled. This is due to the fact that external
data bus lines 15-0 are multiplexed with the link
port 1 and link port 0 data lines as shown in
Figure 7-1 on Page 7-2 of [1].

 Tag word = 0x00000000000e

 0x000e, 0x0000, 0x0000,
 0x01ce, 0x0100, 0x0004,

 32-bit address of where

16-bit count value for beginning of block is to be
number of words in loaded = 0x00040100
following block = 0x01ce

Figure 5 Tag and control words

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 8 of 30

Tag Number Initialization Type Description

0 0x0 FINAL INIT Indicates the end of the application code and that the following instructions are the
final 256 instructions to overwrite the kernel

1 0x1 ZERO DM16 Indicates initialization to zero of 16-bit internal data memory

2 0x2 ZERO DM32 Indicates initialization to zero of 32-bit internal data memory

3 0x3 ZERO DM40 Indicates initialization to zero of 40-bit internal data memory

4 0x4 INIT DM16 Indicates start of data to be placed in 16-bit internal data memory

5 0x5 INIT DM32 Indicates start of data to be placed in 32-bit internal data memory

6 0x6 INIT DM40 Indicates start of data to be placed in 40-bit internal data memory

7 0x7 ZERO PM16 Indicates initialization to zero of 16-bit internal program memory

8 0x8 ZERO PM32 Indicates initialization to zero of 32-bit internal program memory

9 0x9 ZERO PM40 Indicates initialization to zero of 40-bit internal program memory

10 0xA ZERO PM48 Indicates initialization to zero of 48-bit internal program memory

11 0xB INIT PM16 Indicates start of data to be placed in 16-bit internal program memory

12 0xC INIT PM32 Indicates start of data to be placed in 32-bit internal program memory

13 0xD INIT PM40 Indicates start of data to be placed in 40-bit internal program memory

14 0xE INIT PM48 Indicates start of data to be placed in 48-bit internal program memory

15 0xF ZERO DM64 Indicates initialization to zero of 64-bit internal data memory

16 0x10 INIT DM64 Indicates start of data to be placed in 64-bit internal data memory

17 0x11 ZERO PM64 Indicates initialization to zero of 64-bit internal program memory

18 0x12 INIT PM64 Indicates start of data to be placed in 64-bit internal program memory

19 0x13 INIT PM8 EXT Indicates start of program instructions to be loaded to 8-bit external memory

20 0x14 INIT PM16 EXT Indicates start of program instructions to be loaded to 16-bit external memory

21 0x15 INIT PM32 EXT Indicates start of program instructions to be loaded to 32-bit external memory

22 0x16 INIT PM48 EXT Indicates start of program instructions to be loaded to 48-bit external memory

23 0x17 ZERO PM8 EXT Indicates initialization to zero of 8-bit external memory

24 0x18 ZERO PM16 EXT Indicates initialization to zero of 16-bit external memory

25 0x19 ZERO PM32 EXT Indicates initialization to zero of 32-bit external memory

26 0x1A ZERO PM48 EXT Indicates initialization to zero of 48-bit external memory

Table 2 Tag Initialization Types

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 9 of 30

Link port boot kernel structure
This section briefly describes the contents of the
link port boot kernel for the ADSP-21161. The
kernel source files can be found in the following
directory if default installation of VisualDSP++
3.0 was selected:
C:\ProgramFiles\Analog Devices\VisualDSP\
211xx\ldr

When looking down the file the first thing you
should notice is that there is no interrupt vector
table. As there are only two interrupts that are
used with the link port booting method, the reset
interrupt and the link buffer 0 interrupt, all other
vector interrupt locations have been utilized for
implementing actual loader kernel operations.
This saves on original kernel space leaving more
space available for user modifications. A
breakdown of the various kernel routines and
their locations in memory is shown below. The
two interrupt vectors used have been highlighted.

seg_ldr 0x00040000
reset 0x00040004
loader_kernel_init 0x00040009
read_boot_info 0x00040018
read_link_word 0x0004001c
test_pm32_initext 0x00040024
pm32_init_ext_code 0x00040027
pm32_init_external_loop 0x0004002c
ext_zero_code 0x0004002e
ext_zero_code.end 0x00040032
lp0i_at_0x38 0x00040038
final_init 0x0004003c
user_init 0x00040054
Start_Load 0x00040055
test_dm_zero 0x00040057
dm_zero 0x00040059
dm_zero_loop 0x0004005b
test_dm40_zero 0x0004005d
dm40_zero 0x0004005f
dm40_zero.end 0x00040062
test_dm_init 0x00040064
dm_init 0x00040066
dm_init.end 0x0004006b
test_dm40_init 0x0004006d
dm40_init 0x0004006f
dm40_init.end 0x00040074
test_pm_zero 0x00040076
test_pm_init 0x0004007a
test_dm64_zero 0x0004007e
dm64_zero 0x00040080
test_dm64_init 0x00040083
dm64_init 0x00040085
dm64_init.end 0x0004008c
test_pm64_zero 0x0004008e

test_pm8_initext 0x00040092
pm8_init_ext_code 0x00040094
pm8_init_external.end 0x0004009c
test_pm16_initext 0x0004009e
pm16_init_ext_code 0x000400a0
pm16_init_external_loop 0x000400a6

Figure 6 Link Port kernel functions and locations

The kernel source file is well documented, for
more details of how each of the individual
functions operates, refer to the comments within
the source file.

The main function that is of interest to the user is
the USER_INIT routine. The ADSP-21161 link
port kernel begins by executing any initialization
code that is specific to the particular application
and system. This generally includes SDRAM
control settings, which must be set up before the
kernel can write data to external SDRAM. It may
also include the setting up of various peripheral
control registers such as SYSCON and SPICTL
for example. This is the routine in the boot kernel
source file where these initializations are entered
and is in most cases, the only routine that needs
be altered by the user. As this routine is located
after the link port buffer 0 interrupt vector, the
user need not worry about alignment of this
routine.

 It is imperative that the two interrupt
vectors highlighted remain at the
addresses listed in Figure 5 for correct
execution of the kernel.

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 10 of 30

Link Port Booting Process
During the link port boot process there are three
stages for booting. The first stage is loading in
the first 256 words boot kernel. The program
sequencer automatically unmasks the DMA
channel 8 interrupt, initializing the LIRPTL
register to 0x00010000 and IMASK register to
0x00004003. DMA channel 8 transfers the 256
words to internal memory. This DMA channel’s
parameters are initialized at reset to the
following values:

IILB0 = 0x00040000
IMLB0 = un-initialized (automatically

incremented by 1)
CLB0 = 0x0100
CPLB0 = un-initialized
GPLB0 = un-initialized

Figure 7 DMA Channel 8 reset values

When the ADSP-21161 is configured for link
port boot, the default value of the LCTL register
is overridden. The link port is configured to
receive 48-bit data transfers through link buffer 0
of 4-bit data width. Equivalent to LCTL =
0x00200011.

Thus the boot kernel must be transferred in 48-
bit instructions on a 4-bit wide data bus (d3:d0)
with the most significant nibble of the instruction
transmitted first.

The device that is booting the ADSP-21161,
whether it is another DSP or a 4-bit wide
external device, must provide a clock signal to
link port 0 for the boot kernel to be transmitted.

The clock can be of any frequency up to a
maximum of the core clock frequency of the
DSP being booted. As the receive protocol is
fully asynchronous there is no need for the link
ports to be hardwired to a specific core clock
divisor. After power up or reset the processor sits in an
idle condition until all 256 48-bit words are
received resulting in the DMA count field of
DMA channel 8 decrementing to zero and
generating a link buffer 0 interrupt. The link

buffer 0 interrupt vector located at 0x38 consists
of the following instructions:

Lp0i_at_0x38: nop;
 RTI(DB);
 Bit clr lirptl 0x10000;
 nop;

Code listing 3 Link Buffer 0 Interrupt Vector

The RTI(DB) instruction causes the instruction
execution to branch back to execute the
instructions at memory location 0x40000. The
link buffer 0 DMA interrupt mask bit is also
cleared resulting in any further LP0 interrupts
not being served.

As execution returns to 0x40000 the next valid
instructions to be executed are contained within
the reset interrupt vector:

reset: idle;
 nop;
 JUMP loader_kernel_init (DB);
 IMASK = 0;
 LIRPTL = 0;

Code listing 4 Reset Interrupt Vector

The idle command is an implicit instruction that
is not executed. The instruction at this location
should be either an ‘idle’ or a ‘nop’. The above
code results in the execution of the rest of the
kernel. As the various interrupt vector addresses
contain kernel functions all the interrupts are
masked to guarantee that the kernel executes
correctly.

After some basic initialization required for the
operation of the kernel, a loop is entered which
continually monitors the link buffer 0 status bits
in the LCTL register, specifically the MSB of the
two as this indicates that there is at least one
word in the buffer.

The first word expected is a tag. This tag is
stored to a register until the next word is received
indicating the destination address and the length
of the following block. These two words are
passed through several checking routines to
determine the action to be taken. Once the

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 11 of 30

correct routine for the received tag has been
found, the memory is either initialized to zero
without reading any further data from the link
ports or the correct number of words are read
from the link port and transferred to their
destination address. This process continues until
the FINAL INIT tag is received. The FINAL
INIT routine is the most complex stage of the
boot kernel process and so is explained in more
detail.

The kernel is designed to read two words at a
time, the tag and then the control word. The
exception to this is the word following the
FINAL INIT tag. The address and count for the
FINAL INIT routine is always known. This is
start address 0x40000 and a count of 0xFF.
Therefore the elfloader has no requirement for a
count and address word to follow the
FINAL_INIT tag. Instead, the first instruction of
the link port 0 interrupt vector (0x40038) is
stored here and the elfloader automatically places
an “rti;” instruction in its place. This ensures
that an RTI is executed after the final 256 word
DMA.

As the FINAL INIT tag is read, so also is the
instruction immediately following. This
instruction remains in the PX register for use
further on in the FINAL INIT routine.

final_init:
 R11=BSET R11 BY 9;
 DM(SYSCON)=R11;
 R9=0xb16b0000;
 I4=0x040004;
 I8=0x040038;
 R1=0x040000;
 DM(IILB0)=R1;
 R2=0x100;
 DM(CLB0)=R2;
 DM(CPLB0)=M5;
 DM(IMLB0)=M14;
 R9 = pass R9, R11=R12;
 DO 0x40004 UNTIL EQ;
 PCSTK=0x40004;
 FLUSH CACHE;
 r8=L0EN|L0DEN|L0EXT|LAB1;

 DM(LCTL)=R8;
 bit set mode1 0x1800;
 bit clr lirptl 0x1;
 bit set lirptl 0x10000;
 bit set imask 0x4000;

 JUMP 0x40004 (DB);
 IDLE;
 IMASK=0;

Code listing 5 final_init sub-routine

The value 0xB16B0000 is written to a register
also for use further on in the FINAL INIT
routine. This is effectively the op-code for the
instruction:

pm(0,I8) = px;

This instruction is responsible for transferring
the current contents of the PX register (rti;) to
memory location 0x38 thus overwriting the first
instruction (nop;) within the link 0 interrupt
vector. The reason for this will become clear in a
moment.

The FINAL INIT routine uses a DMA transfer to
initialize the 256 instructions that reside in
memory locations 0x40000 through 0x400FF.
DMA channel 8 is set up with the following
parameters:

IILB0 = 0x00040000
IMLB0 = 0x0001
CLB0 = 0x0100
CPLB0 = 0x00000
GPLB0 = uninitialized

Figure 8: DMA Channel 8 setup in final_init

A dummy loop is set up as follows:

DO 0x40004 UNTIL EQ;

Execution of this instruction places the address
0x40004 and the termination condition onto the
loop address stack. The sequencer also pushes
the address of the instruction following the
DO/UNTIL onto the PC stack.

The value 0x40004 is then pushed onto the PC
stack thus effectively replacing the top of loop
address before executing a delayed branch jump
to 0x40004.

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 12 of 30

JUMP 0x40004 (DB);
IDLE;
IMASK = 0;

When the link buffer 0 DMA interrupt brings the
processor out of the idle state, code execution
branches to the corresponding interrupt vector at
memory location 0x40038. As the loader utility
has automatically placed an RTI command at this
location, and the value 0x40004 was pushed onto
the stack due to the delayed branch jump
instruction, the execution of the RTI command
returns code execution to 0x40004.

The contents of memory location 0x40004 at this
point is always 0x39732d802000 which
corresponds to the instruction:

r0=r0–r0,dm(i4,m5)=r9,pm(i12,m13)=r11;

This instruction when executed sets the AN flag
so that the until equal condition becomes true for
the dummy loop, the default power up setting of
the SYSCON register (stored in R11) is restored
and the instruction overwrites itself with:

pm(0,I8) = px;

As the AN flag indicating the equal condition for
the dummy loop was the last instruction executed
within the loop, the instruction at location
0x40004 is executed one last time (remember the
loop start address was overwritten earlier). This
is due to the fact that the test condition for the
loop occurs two locations before the last
instruction of the loop. This results in the
execution of the pm(0,I8)=px; command which
replaces the RTI instruction at location
0x400038 with the user intended value
completing the booting process. Instruction
execution then starts from memory location
0x40005 as normal.

Hardware Considerations
As described earlier, when the ADSP-21161N is
configured for link port boot, the LCTL register
is set to a predefined value. Bit 0 (L0EN), bit1

(L0DEN) and bit 4 (L0EXT) are logic 1 and bit 9
(L0DPWID) is logic 0. Writing other values to
these bits through an LCTL write will have no
effect during the booting process. However, the
other bits can be written to. This does not mean
however that it is possible to boot the ADSP-
21161N from link port 1 rather than link port 0.

After the original 256-word DMA has taken
completed the LCTL register is not altered in any
way, thus link port 0 is still enabled and assigned
to link buffer 0. This is unlike earlier revisions of
the ADSP-21160M in which the LCTL register
was ignored upon reset until after the 256-word
DMA had completed at which point a small
delay was required before transmitting the rest of
the boot data to allow for the setting up and
validation of the LCTL register.

Debugging Guidelines
If you are experiencing problems with booting an
ADSP-21161 via the link ports there are a
number of steps that can be taken to determine
what could be going wrong.

The link port kernel assembly files provided with
the VisualDSP++ tools have a small feature
added to them that places an endless loop at the
very beginning of the kernel execution. This
allows for a user with an emulator to halt the
processors without generating a reset interrupt
and view the booting process within the
VisualDSP++ environment.

There are a number of steps that must first be
taken in order to allow for this type of
debugging.
Setting up the VisualDSP++ Configurator

The first step is to correctly set up the
VisualDSP++ Configurator so that when the
VisualDSP++ session is opened, the processor is
not reset to start code execution from the reset
interrupt vector.

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 13 of 30

Open up the VisualDSP++ Configurator:
Start Programs VisualDSP VisualDSP++
Configurator

You will see something like that shown in Figure
9 below.

Figure 9: VisualDSP++ Configurator

You then need to select “New” to enter new
platform. Here you need to enter the platform
name and emulator type. You then also need to
configure your devices on the target platform. To
do this first select the device in the list and then
select “modify” as shown in Figure 10.

The next step requires you to enter a name for
the device and select the type from the pull-down
menu. To allow for debugging of the link port
boot process you must make sure that the “Initial
reset on startup” option is NOT selected, as
shown in Figure 11.

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 14 of 30

Figure 10: Platform Properties

Figure 11: Device Properties

By not selecting this option, the emulator will
not generate a reset interrupt upon opening of the
VisualDSP++ session, thus the emulator can be
used to simply halt program execution at the
point where VisualDSP++ is opened.

Now select “OK” on all the open windows to
exit the VisualDSP++ Configurator.

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 15 of 30

Creating a boot kernel for debug purposes

The ADSP-21161 link port boot kernel has some
instructions included that assist in the debugging
of booting problems. If the kernel is rebuilt by
defining “PAUSE”, a jump(pc,0); instruction is
added to the beginning of the kernel which stops
the kernel from being executed.

PAUSE may be defined in 3 ways:

• Add the following to the 161_link.asm file
and rebuild the 161_link project:

#define PAUSE

• From the project options window, select the
“Assemble” tab and add the following line to
the “Additional options:” box:
-DPAUSE

• Use the –D switch at the command line to
define PAUSE and generate the object file.
For example:
easm21k –21161 –o 161_link_debug.doj
161_link.asm -DPAUSE

Once the new kernel executable file has been
created, it is then used to create a new loader file
as shown in Figure 12.

Figure 12: Loader Utility

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 16 of 30

Debugging the boot process

Once the VisualDSP++ session has been set up
and the debug boot kernel has been created, we
can now break into the kernel and view exactly
what is going on. This allows us to debug if
required. The following steps are assuming that
the VisualDSP++ project that accompanies this
EE-Note is being used (Master.dpj). The project
allows for one ADSP-21161 to boot another with
the Blink_Example loader files that are also
included.

Step 1: Open up VisualDSP++ IDDE
Once the device that is booting the slave ADSP-
21161 via the link port has started transmitting

the newly created debug version of the loader
file, open up VisualDSP++ (making sure that the
emulator is connected to the target) while
holding down the control (Ctrl) key on the
keyboard. This is a useful technique for opening
up a new or different VisualDSP++ session;
otherwise the VisualDSP++ IDDE opens up with
the last session that was used. This is especially
useful in the case where the last session used had
the “Initial reset on startup” option checked.
Create your new session using the platform name
that was previously created in the VisualDSP++
Configurator or select the required session from
the list.

Figure 13: New session and session list

Step 2: Setting up the VisualDSP++ Environment
Once VisualDSP++ connects to the target via the
emulator you will be presented with something
like that shown in Figure 14.

To make the debug process easier, load the
symbols from the executable (file extension .dxe)
file of the kernel that was used to create the
loader file. This will then load in all function
names and makes it far easier to determine where
within the kernel execution is currently taking
place.

The symbols are loaded by selecting the “Load
Symbols…” option from the File pulldown menu
in the VisualDSP++ IDDE.

Also for debugging the kernel we want to pay
particular attention to some specific registers and
their contents.

The registers of main interest to us for debugging
purposes are:

• PX Registers
• Loop Counters

Open up the above register windows within the
VisualDSP++ IDDE so that you have something
similar to that shown in Figure 15.

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 17 of 30

Figure 14: VisualDSP++ IDDE Setup immediately after opening the kernel debug session

Figure 15: VisualDSP++ IDDE after environment setup and symbol load

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 18 of 30

Step 3: Setup Breakpoints
For this example there are two instructions at
which we are interested in placing breakpoints
for debugging the kernel and understanding what
is going on.

The first breakpoint needs to be placed at the
sixth instruction within the function
“read_link_word”. This should be located at
address 0x040021 in the disassembly window
and the instruction should be “rts (db);”

The second breakpoint needs to be located at the
first instruction within the “final_init” routine.
This routine should begin at memory location
0x04003C in the disassembly window as shown
within Figure 16.

Figure 16: Breakpoint location within kernel

Step 4: Starting the debug process
Before we can run to the first breakpoint as
shown in Figure 16, the “jump (pc,0);”
instruction at 0x04005 needs to be manually
edited to a “nop;”. This is done by simply right-
clicking with the mouse on the instruction and
then selecting edit. Change the contents to
“nop;” then press the enter key. Now it is
possible to run to the first breakpoint as shown in
Figure 16.

Step 5: Analyzing the registers
Upon reaching this breakpoint the contents of the
PX registers should be analyzed. The PX register
at this point holds the tag number for the
initialization type of the data that is to follow. If
using the Blink_Example project included with
this application note then the contents of the PX
register at this point is 0x00000000000E0000 as
shown in Figure 17.

Figure 17: Register contents showing tag number

 As the link port transfer is a 48-bit transfer
loaded into the upper 48 bits of the PX register,
ignore the lower 4 nibbles; these should always
remain as “0000”. This is a tag word of 0xE
indicating that the following data is to initialize
48-bit internal program memory (refer to Table
2).

Run to the breakpoint for a second time. Now the
PX register contains the address of where the
following data section is to be located as well as
the number of words to be initialized.
Specifically, the address is stored in PX2 and the
number of words in the upper four nibbles of

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 19 of 30

PX1 as shown in Figure 18. In this case there are
0x1E words in the section to follow.

Figure 18: Register contents showing address and
word count

After running to the breakpoint for a third time,
the PX register should now contain the first piece
of data or instruction. The LCNTR and
CURLCNTR registers are also loaded with the
count value from PX1 as shown in Figure 19.

Further runs to the breakpoint will load in a new
48-bit value into the PX register for writing to
memory.

Figure 19: Register contents showing first instruction

The value of the CURLCNTR register can be
used as an indication as to when the next tag
word will be received. Keep running to the
breakpoint until the value in CURLCNTR = 0x1.
On the next run to the breakpoint, the PX register
contains the next tag word. In this case the next
tag word is 0x4 indicating the initialization of
16-bit data memory.

Following the procedure just described it is
possible to verify initialization of all the various
memory sections.

In the Blink_Example project data sections for
16-bit, 32-bit, 40-bit and 64-bit data memory are
initialized. Figure 20 through Figure 27 show the
tag words, address and count values as well as
where the data is located within the PX register
for these various formats.

You will notice that when it comes to a data
section that has an initialization type of zero
(refer to Table 2 for details), that the data
immediately following the address and word
count is not 0x000000000000, but actually the
tag number for the next section. Instead of large
arrays of zeros being stored in the loader file, the
actual kernel application initializes the section by
writing zeros to the relevant locations. This
results in a smaller loader file being generated
thus requiring less memory storage, especially
for applications that require large zero
initialization arrays. An example of this is shown
in Figure 21. In this figure the tag word is 0x1,
which indicates initialization to 0x0000 of 16-bit
internal data memory. The word following the
tag number contains the address and number of
words. The next 48-word received through the
link port is the tag number of the next data
section as shown in Figure 22(a).

Figure 28 shows the receiving of the Final Init
tag word and also that RTI instruction that is
used by the final init routine to overwrite the link
port interrupt vector that was required for the
booting process.

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 20 of 30

(a) Tag number

(b) Address and word count

(c) Data alignment within PX register

Figure 20: 16-bit data initialization

(a) Tag number

(b) Address and word count

Figure 21: 16-bit data zero initialization

(a) Tag number

(b) Address and word count

(c) Data alignment within PX register

Figure 22: 32-bit data initialization

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 21 of 30

(a) Tag number

(b) Address and word count

Figure 23: 32-bit data zero initialization

(a) Tag number

(b) Address and word count

(c) Data alignment within PX register

Figure 24: 40-bit data initialization

(a) Tag number

(b) Address and word count

Figure 25: 40-bit data zero initialization

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 22 of 30

(a) Tag number

(b) Address and word count

(c) Lower 32-bits data alignment within PX register

(d) Upper 32-bits data alignment within PX register

Figure 26: 64-bit data initialization

(a) Tag number

(b) Address and word count

Figure 27: 64-bit data zero initialization

(a) Tag number

(b) Op-code for RTI instruction. Stored for use later by the
kernel

Figure 28: Final Init

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 23 of 30

Once execution reaches the FINAL_INIT routine
then all that is left is to overwrite the first 256
instructions with the required interrupt vector
initialization. It is best to run through this routine
rather than single step. This is largely down to
the fact that the DMA is set up and then the core
goes into an idle state. Single stepping at this
point may cause a problem due to the emulation
interrupt. After running from the FINAL_INIT
routine, the final application should now be fully
loaded into the processor and executing as
normal.

If problems are still being experienced and yet
there appears to be no problem up until reaching
the FINAL_INIT routine then we need to be able
to successfully determine that the final 256-word
write of the interrupt vector table is occurring
correctly. The best method of verifying this is to
place a jump(pc,0); command within the reset
interrupt vector before the jump to main program
execution.

If programming in C/C++, this would require an
alteration to the interrupt vector table that is used
by the VisualDSP++ C run-time environment.
The files in which the interrupt vector tables are
initialized are:

161_hdr.asm and 161_cpp_hdr.asm depending
whether the project is created for the C or C++
environment.

These files are located in the following directory
if installation of VisualDSP++ was to the default
directory.
C:\ Program Files \ Analog Devices \
VisualDSP \ 211xx\ lib \ src\ crt_src

Figure 29 shows the alteration required to the
reset interrupt vector in the two files.

___lib_RSTI: NOP;
 JUMP(PC,0);
 JUMP ___lib_start;
 NOP;

Figure 29: Alteration to Reset interrupt Vector for
debugging purposes

Rather than modify the original files. Copy the
required file to your project folder and simply
add this file to the project. This way the run time
set up that you have just added to the project will
be used instead of the original.

In order for the project to build properly with the
addition of the 161_hdr.asm file to your project,
you will also need to add an additional include
directory to the assemble tab of the project
options. The directory you need to add is as
follows:
C:\ Program Files \ Analog Devices \
VisualDSP \ 211xx\ lib \ src\ libc_src

You will also need to select the “Both” option
from the Behavior section of the Assemble tab in
the project options as shown in Figure 30.

This modification will enable you to verify that
the first 256 instructions are overwritten
correctly as execution remains in the reset
interrupt vector. If you halt the core and you are
not sitting on the jump(pc,0); instruction then
some problem has occurred during the
overwriting of the first 256 memory locations. If
this is the case make sure that the FINAL_INIT
routine has not been altered from the original in
any way, also make sure that your tools are fully
up to date. As VisualDSP++ advances, changes
are required to the kernels. It is important that
the kernel is suitable for the version of
VisualDSP++ that is being used. Please refer to
VisualDSP++™ Tools Required for further
details.

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 24 of 30

Figure 30: Assemble options for additional debug

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 25 of 30

Appendix 1: Blink_Example Source code

#include <def21161.h>
#define JINX 0x1FF000
#define PAUSE 0xfffFFF

/**/
/**** The following data sections have no real functionality but have ****/
/**** been included into the project for demonstration purposes. ****/
/**** They have been included to show how a user can easily propogate ****/
/**** from one loader file tag section to the next when debugging Link ****/
/**** port boot applications.Refer to Debugging Guidlines in EE-199 for ****/
/**** further details. ****/
/**/

// The following data section declares 16-bit initialized data memory.
// This results in a link port loader tag of 0x4.
// Refer to figure 20 in EE-199 to see how this data section
// is loaded into internal memory.
.section /dm seg_dm_data16;
.var tag_word_0x4[16] = {0x1234, 0x1111, 0x2222, 0x3333,
 0x4444, 0x5555, 0x6666, 0x7777,
 0x8888, 0x9999, 0xaaaa, 0xbbbb,
 0xcccc, 0xdddd, 0xeeee, 0xffff};

// The following data section declares 16-bit zero-init data memory.
// This results in a link port loader tag of 0x1.
// Refer to figure 21 in EE-199 to see how this data section
// is loaded into internal memory.
.var tag_word_0x1[16];

// The following data section declares 32-bit initialized data memory.
// This results in a link port loader tag of 0x5.
// Refer to figure 22 in EE-199 to see how this data section
// is loaded into internal memory.
.section /dm seg_dm_data32;
.var tag_word_0x5[16] = {0x12345678, 0x11111111, 0x22222222, 0x33333333,
 0x44444444, 0x55555555, 0x66666666, 0x77777777,
 0x88888888, 0x99999999, 0xaaaaaaaa, 0xbbbbbbbb,
 0xcccccccc, 0xdddddddd, 0xeeeeeeee, 0xffffffff};

// The following data section declares 32-bit zero-init data memory.
// This results in a link port loader tag of 0x1.
// Refer to figure 23 in EE-199 to see how this data section
// is loaded into internal memory.
.var tag_word_0x2[16];

// The following data section declares 40-bit initialized data memory.
// This results in a link port loader tag of 0x6.
// Refer to figure 24 in EE-199 to see how this data section
// is loaded into internal memory.
.section /dm seg_dm_data40;
.var tag_word_0x6[16] = {0x123456789a, 0x1111111111, 0x2222222222, 0x3333333333,
 0x4444444444, 0x5555555555, 0x6666666666, 0x7777777777,
 0x8888888888, 0x9999999999, 0xaaaaaaaaaa, 0xbbbbbbbbbb,
 0xcccccccccc, 0xdddddddddd, 0xeeeeeeeeee, 0xffffffffff};

// The following data section declares 40-bit zero-init data memory.

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 26 of 30

// This results in a link port loader tag of 0x3.
// Refer to figure 25 in EE-199 to see how this data section
// is loaded into internal memory.
.var tag_word_0x3[16];

// The following data section declares 64-bit initialized data memory.
// This results in a link port loader tag of 0x6.
// Refer to figure 26 in EE-199 to see how this data section
// is loaded into internal memory.
.section /dm seg_dm_data64;
.var tag_word_0x10[16] = {0x9abcdef0, 0x12345678, 0x33333333, 0x22222222,
 0x55555555, 0x44444444, 0x77777777, 0x66666666,
 0x99999999, 0x88888888, 0xbbbbbbbb, 0xaaaaaaaa,
 0xdddddddd, 0xcccccccc, 0xffffffff, 0xeeeeeeee};

// The following data section declares 64-bit zero-init data memory.
// This results in a link port loader tag of 0x3.
// Refer to figure 27 in EE-199 to see how this data section
// is loaded into internal memory.
.var tag_word_0xF[16];

.section /pm seg_pm_code;
.global __main;
__main:
 r1=0xff00;
 dm(IOFLAG)=r1; // set flags as outputs
 r2=-3;

__wayback:
// count up
 lcntr = 9; do __up until lce;
 r0 = DM(IOFLAG);
 r0 = btgl r0 by r1; // toggle flag r1
 r0 = btgl r0 by r2; // toggle flag r1
 DM(IOFLAG) = r0;
 lcntr=JINX; do __delay until lce; //wait
 __delay: nop;
 r1 = r1 + 1; // increment which flag is toggled
__up: r2 = r2 + 1;

// count down
 lcntr = 9; do __down until lce;
 r1 = r1 - 1; // increment which flag is toggled
 r2 = r2 - 1;
 r0 = DM(IOFLAG);
 r0 = btgl r0 by r1; // toggle flag r1
 r0 = btgl r0 by r2; // toggle flag r1
 DM(IOFLAG) = r0;
 lcntr=JINX; do __delay2 until lce; // wait
 __delay2:nop;
__down: nop;

 lcntr = PAUSE; do __stylee until lce;
__stylee: nop;

 jump __wayback;
__main.end:

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 27 of 30

Appendix 2: Master Source Code

/***/
/* ADSP-21161 Lite Link port boot example */
/* Code accompaniment to EE-199 Link Port Booting the ADSP-21161 */
/* Written by Andrew Caldwell */
/* European DSP Applications Engineer */
/* */
/* Description: */
/* This program requires two ADSP-21161 EZ-KIT Lite development boards and */
/* link port cable to attach the two boards. It may also be used in a */
/* master DSP in an ADSP-21161 MP cluster. */
/* */
/* The file to be booted is a simple blink example that flashes LED */
/* 2,3,4,5,6,and 7 on the ADSP-21161N EZ-KIT Lite Evaluation Platform. */
/* These LEDs are connected to flags 9, 8, 7, 6, 5 and 4 respectively. */
/* */
/* The defined value "size" refers to the number of 16 bit words contained */
/* in the loader file. This is all that requires to be altered to boot with */
/* various loader files. */
/* */
/* The loader file to be included can be built using either the ASCII or */
/* the Include file format, the example works with both. */
/* */
/***/
#include "def21161.h"
#include "defines.h"

.global __main;
// Each 16-bit word of the loader file is stored in the lower 16 bits of 32-bit
// data memory
.section/dm seg_dmda;
.var _ldr_source[size] = "knightrider_link_sdram.ldr";

.section/pm seg_pmco;
__main:
// Clear link control registers
 r1 = 0x0;
 dm(LCTL) = r1;

// The 16 bit words from the ldr_source buffer must be packed into a 48-bit
// instruction before being transmitted. The loader file is of the format that the
// first 16-bit word is the least significant 16 bit words of the 48-bit
// instruction, the next 16-bit word is the middle 16-bits of the 48-bit
// instruction and the third 16-bit word is the 16 most significant bits of the
// 48-bit instruction. This is the same for ASCII or Include loader file formats.
 B0 = _ldr_source; M0 = 1; L0 = 0; // Declare base, modify and length values
 // of buffer
 r0 = LAB1 | L0EN | L0TRAN |L0EXT;
 dm(LCTL) = r0;

// This routine calls the tx_instructions procedure passing the kernel_count of 256
// to the routine
__transmit_kernel:
 call __tx_instructions (db);
 r4 = kernel_count;
 nop;
__transmit_kernel.end:

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 28 of 30

// This routine calls the tx_instructions procedure passing the count value to the
// routine
__transmit_code:
 call __tx_instructions (db);
 r4 = count;
 nop;
__transmit_code.end:
// End of program
__stay: jump __stay;
__main.end:

// The tx_instructions routine is set up to run either kernel_count or count times
// to transmit either the first 256 words or the remainder of the code.
// The loop consists of three parts. The first is test_lbuf. This reads the value
// of the link port common control register to check if the link port buffer is
// full, if the buffer is full then it continually monitors this register until the
// buffer is not full. If the buffer is not full then three 16-bit words are read
// and packed into the px register using px1 and px2 to create the 48-bit
// instruction to be transmitted.
__tx_instructions:
 lcntr = r4, do __tx_word until lce; // set loop counter to 256 to transmit

// kernel

 __test_lbuf:
 r3 = dm(LCTL); // read LCTL register
 r3 = ASHIFT r3 by LCTL_SHIFT; // Shift so correct LBUF status can be

// compared to 0x3 (full)
 r2 = 0x3;
 comp(r2, r3);
 if eq jump __test_lbuf; // Check LBUF status, if full then

// test_lbuf, if not then create
// instruction

 __pack_word:
 r0 = dm(i0, m0); // Read first 16-bit word
 r0 = LSHIFT r0 by 16; // Shift 16 bits to MSBs of r0 to be

// loaded into px1
 px1 = r0; // LSBs of px1 are dropped when reading px
 r0 = dm(i0, m0); // Read middle 16 bits of instruction
 r1 = dm(i0, m0); // Read upper 16 bits of instruction
 r0 = r0 OR LSHIFT r1 by 16; // Create upper 32 bits of instruction
 px2 = r0; // Store in px2
 __tx_word:
 pm(tx_buffer) = px; // Transmit contents of px. 48 bits are

// transmitted and not 64 (16 LSBs
// dropped)

 rts;
__tx_instructions.end:

 a

Link Port Booting the ADSP-21161 SHARC® DSP (EE-199) Page 29 of 30

References
[1] ADSP-21161 SHARC® DSP Hardware Reference. Third Edition, May 2002. Analog Devices, Inc.

[2] ADSP-21161N SHARC® DSP Datasheet. Revision A, May 2003, Analog Devices, Inc.

[3] VisualDSP++™ 3.0 Linker and Utilities Manual for ADSP-21xxx DSPs. Revision 4.0, January 2003.
Analog Devices, Inc.

Document History

Version Description

August 19, 2003 by A.Caldwell Initial Release

	Introduction
	VisualDSP++™ Tools Required
	Contents
	List of FiguresFigure 1 Elfloader Operation5Figure 2 Loader Utility Options5Figure 3 Loader File Formats6Figure 4 16-bit Include file format7Figure 5 Tag and control words7Figure 6 Link Port kernel functions and locations9Figure 7 DMA Channel 8 reset val
	ADSP-21161 Booting Methods
	Loader Kernel and Loader Utility
	Loader file format
	Understanding the contents of the loader file
	Link port boot kernel structure
	Link Port Booting Process
	Hardware Considerations
	Debugging Guidelines
	Setting up the VisualDSP++ Configurator
	Creating a boot kernel for debug purposes
	Debugging the boot process
	Step 1: Open up VisualDSP++ IDDE
	Step 2: Setting up the VisualDSP++ Environment
	Step 3: Setup Breakpoints
	Step 4: Starting the debug process
	Step 5: Analyzing the registers

	Appendix 1: Blink_Example Source code
	Appendix 2: Master Source Code
	References
	Document History

