
Engineer To Engineer Note EE-151
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Copyright 2002, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or for
any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices regarding
the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes.

 a

Implementing Software Data
Overlays for the ADSP-21161
Using the EZ-KIT Lite

Last Modified: 1/25/02

Contributed by: John Tomarakos

Overview

In many DSP applications, there may be system
memory requirements where the DSP
programmer wishes to assign a section of
internal “scratchpad” memory to use for
multiple temporary variables, then store the
variables back to external SDRAM or FLASH
memory for later usage. Often, variables arrays,
or lookup tables are only used during a small
fraction of time of the DSP’s processing, but
they often can take up a large portion of the
internal memory space of the DSP. Or, an audio
system developer may want to copy a block of
recorded audio samples to storage and then
retrieve the data for playback at a later time.
Once the audio data is stored, the internal
memory is free to use for other operations.
Another example could be an application which
requires using a temporary section of shared
memory for sine/cosine lookup tables or FFT
twiddle factors which are only required when
the FFT algorithm is executed, but then perhaps
during the FFT algorithm’s “down time” the
user wants to use the same memory for loading
one out of a number of stored sets of filter
coefficients for other post-filtering operations,

only requiring one selected filter response at any
given time upon request from a user-controlled
interface. And finally, another DSP application
could be a music synthesizer, where the DSP is
performing a wavetable synthesis or sample
playback algorithm, and when the musician
selects a new “instrument” on command from a
set of control knobs, telling the system’s host
microcontroller to direct the DSP to download a
new block of wavetable data to the same section
of memory to generate the new sound. To
support such memory management tasks we can
set up what is called a “soft data overlay” to
automate the process of reusing a small section
of internal memory efficiently.

External
SDRAM
or FLASH

ADSP-
21161
Internal
Memory

Store Data x[] Load Data w[]
x[n]

w[n]

Swap data buffers x[] & w[] to/from
same shared internal memory block

FIGURE 1: Basic Data Overlay Concept

Figure 1 demonstrates a basic concept of a soft
data overlay, where information is loaded from
external memory to a shared section if internal
memory, while the previous data is stored
simultaneously to external memory and recalled
at a later time. This data overlay technique may
provide support for applications where the total
amount of data memory required is greater than

EE-151 Page 2
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

the available amount of internal data memory
provided by the processor, and the user is
seeking a way to “make the code and data fit
into the DSP’s internal memory space.”

The data overlay “save-and-restore” approach
may be desirable because by keeping all the data
buffers outside in the external memory and
operating on them there, it can result in a
significant reduction in available MIPS, due to
external waitstates or SDRAM latencies. MAC
operations can slow down significantly if the
delay line data or filter coefficients are accessed
from external memory, and the cycle overhead
can also increase significantly depending on
SDRAM latencies if we access non-consecutive
addresses. However, the SHARC processor
may often provide much available non-utilized
I/O processor bandwidth to take advantage of.
During these unused IOP bus cycles it would be
desirable to initiate data overlay transfers which
would execute with zero-overhead to internal
memory from SDRAM, or vice versa. Perhaps
the application is performing 5 active serial port
DMAs or link port DMAs, but this still provides
much IOP bus bandwidth available for quick
100 MHz external port SDRAM block transfers
on a dedicated EPBx DMA channel. 100 MHz
SDRAM DMA transfer throughput with 32-bit
fixed or floating point data can make the use of
data overlays attractive because the SDRAM
controller is able to sustain 100 MHz throughput
in consecutive reads/writes to the same page in
SDRAM (of course, as long as there is no other
core, host or EPBx DMA activity to slow down
access to the external bus). Therefore, the DSP
core can initiate a fast data overlay load, then go
and execute another task in internal instruction
space while the data is quickly loaded by the I/O
processor in the background with no core
intervention.

The advantage of data overlays to SDRAM is
that SDRAM provides a low-cost, bulk-storage,

high-speed interface to move the blocks of data
at up to 100 MHz throughput. The disadvantage
is that a system requires external memory in
addition to a boot flash device, increasing
system cost. If the system does not necessarily
need fast access to swap data blocks, an external
boot flash used for data overlays can could meet
system cost constraints. It is possible to still use
the unused upper sectors of the flash device
which is not used for boot program storage to be
able to temporarily load and store samples, or
filter coefficients or data tables. In this case, we
can set up data overlays with the necessary 8-bit
DMA packing and flash memory commands.
Table 1 below shows the tradeoffs for
implementing data overlays in flash or SDRAM.

TABLE 1. DATA OVERLAY SDRAM/Boot
FLASH comparisons:

MEMORY
Type

Data Overlay
Throughput

Bus
Width

System Cost

SDRAM

 SBSRAM

 FLASH

100 MHz
transfer
throughput
possible

50 MHz fixed
transfer
throughput

Could require
up to 7 CLKIN
waitstates,
slowest data
throughput

32-bit

32-bit

8/16-bit

May require both
SDRAM and boot
memory

May require both
SBSRAM and
boot memory

Only Boot Flash
Required, can be
mapped to both
/BMS and /MSx
space

So then the question becomes, how can we use
the current VisualDSP++ code generation tools
to provide the ability to load and store data
variables and buffers? As one suggested
solution, this Engineer-To-Engineer Note
discusses a simple technique using Analog
Devices’ Visual DSP++ 2.0 tools and it’s code
overlay support to implement “Data Software
Overlays.”

EE-151 Page 3
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

The source code listing in this EE-Note
demonstrates a way to accomplish swapping
data to and from SDRAM using the 21161 EZ-
KIT Lite Evaluation Platform (Figure 2) as the
demonstration vehicle. For more information on
implementing software overlays, refer to EE-
Note # 66: Using Memory Overlays. Keep in
mind the example demonstrated here is just a
sample of one process that may be required in
an actual application. Depending on the user’s
application, further customization of the overlay
process may be required to suit your needs
(through the modification of the overlay
manager discussed later in this document).

FIGURE 2: ADDX-21161-EZ-LITE

The current VisualDSP 2.0++ tools support
software code (instruction) overlays but no
direct data overlay support built into the linker.
By using some of the existing code overlay
support methods supplied with our tools, we can
alternatively develop a data overlay routine
which copy the data variables and buffers from
external memory to internal memory, and then
back to the external memory after the variables
have been modified. This is taken care by a
routine called the data overlay manager, but
when using data overlays (in the current
VisualDSP++ 2.0 toolset) the data movement

process is still required to be initiated by the
programmer in order to start the DMA transfer
(vs. code overlays, which are a more automatic
process with the linker generating the necessary
jump instructions via access to a jump table).

As mentioned earlier, it is also possible for the
ADSP-21161 programmer to perform data
overlays to flash memory. This can be done on
the flash memory used on the EZ-KIT Lite, by
simply modifying the overlay manager to
perform 8-bit DMA accesses to flash memory
while including all of the necessary
housekeeping flash instructions in with the data
overlay manager. For more information on
programming the EZ-KIT flash, refer to EE-
150: In-circuit programming a boot-image into
the FHASH on the ADDS-21161N-EZLITE.
Look for an additional update to this EE-NOTE
to include data overlays to/from flash memory
using the EZ-KIT Lite.

SDRAM Data Overlay System Design
Assembly and C Examples:

External
Memory

Internal
Memory

 (non-overlay code)
Interrupt Vector Table
Main code
PLIT
overlay manager

Run Space for
Overlays 5 and 6

DM data “Run Space” for
Data Overlays 1 and 2

Overlay FUNC_
FUNC_

Overlay 5 FUNC_E

Overlay 6 FUNC_F
FUNC_G

Data Overlay 1 X[1000]
Y[1000]

Data Overlay 2 M[1000]
N[1000]

FUNC_D

Data Overlay 3 P[1024]
Q[1024]

Data Overlay 4 U[512]
V[512]

DM data “Run Space” for
Data Overlays 3 and 4

 FIGURE 3: Data Overlay Live and Run
Segments

Like code overlays, data overlays are a “many to
one” memory mapping system. For example,
Figure 3 shows how several data overlays “live”

EE-151 Page 4
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

(or are stored) in unique external memory
locations, but then “run” (or are
executed/accessed) in a common shared location
in internal memory. This demonstrates an
application in which there are six “live”
segments in external SDRAM. Four segments
are data overlay segments, while the other two
are code overlay segments. There are also two
data overlay “run” segments and one code
overlay “run” segment which is shared between
the overlays in the internal memory of the DSP.

The data overlay concept is demonstrated in
both an assembly version and a C version.
Figures 3 and 4 show the project files for both
the assembly and C implementations. Both
projects consist of the linker description file,
DSP system initialization files, the main routine,
overlay, data files, macros/functions, three
overlay variable declaration files, the data
overlay manager and the data overlay test
routine.

FIGURE 5. Project Files for C Language
Data Overlay Example

FIGURE 4. Project Files for Assembly
Language Data Overlay Example

In these VisualDSP ++ project files, we
implement three data overlay segments which
share the same internal memory run space. The
example defines six 1K buffers x[], y[], m[],
n[], p[], q[] which will share a 2 k segment of
internal memory run space.

In the ADSP-21161’s 1 M-bit internal memory,
we would allocate at least 2K words of internal
memory in BLOCK1 as the “run” time memory
for the data by defining this memory segment in
the MEMORY{} section of the LDF file as
follows:

EE-151 Page 5
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

rundmda { TYPE(DM RAM) START(0x00051000)
END(0x00051fff) WIDTH(32) }

Next we want to define our “live” space in
SDRAM mapped to bank0, where our data
overlays will be stored. This is also defined in
the MEMORY {} section of the LDF file:

ovlydmda { TYPE(DM RAM) START(0x00200000)
END(0x0020FFFF) WIDTH(32) }

Each buffer within the two data overlay files are
defined with a length of 1000 words, and each
element contains 32 bit words. These are shown
in the two source listings below. Note that
Buffers x[] and m[] and q[] contain some
initialized values.

LISTING 1: Data Overlay Declarations for
ASM Example

dm1_overlay.asm

.SEGMENT/DM run_dmda;

.GLOBAL x, y;

.VAR x[1000]="sine1000.dat";

.VAR y[1000];

.ENDSEG;

dm2_overlay.asm

.SEGMENT/DM run_dmda;

.GLOBAL m, n;

.VAR m[1000]="sawtooth1000.dat";

.VAR n[1000];

.ENDSEG;

dm3_overlay.asm
.SEGMENT/DM run_dmda;
.GLOBAL p, q;

.VAR p[1000]="square1000.dat";

.VAR q[1000];

.ENDSEG;

LISTING 2: Data Overlay Declarations for

the C Example

dm1_overlay.c
/* Data Overlay 1 */
float sinetbl[1000] =
{

#include "sine1000.dat"
};

float y_out[1000];

dm2_overlay.c

/* Data Overlay 2 */
float sawtbl[1000] =
{

#include "sawtooth1000.dat"
};

float z_out[1000];

dm3_overlay.c
/* Data Overlay 3 */
float squartbl[1000] =
{

#include "square1000.dat"
};

float q_out[1000];

The objective in the ADSP-21161 data overlay
C and assembly tests shown here is to load in
the data buffers x[] and y[] inside to the internal
run space, copy the data from buffer x[] to
buffer y[], then store the current contents of
both buffers back to external SDRAM memory.
Once this process is over the run time memory
can be freed. Thus, this same process is then
repeated for buffers m[] and n[], where buffers
m[] and n[] are loaded to the same run space
previously used by the x[] and y[] buffers.
Buffer m[] is copied to buffer n[] and both
buffers are stored back to SDRAM for later use.
And again, the same process is repeated a third
time for buffers p[] and q[]. This process is
repeated over and over again, while the LED

EE-151 Page 6
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

blink status gives an indication which data
overlay load/store is executing.

Data Overlays Load/Store Functions:
As the VisualDSP++ tool only fully support
code overlays, we are still able take advantage
of this built in support to develop a scheme to
handle data overlays. This can be accomplished
by making a few modifications to the ADI-
supplied instruction overlay manager which is
provided in EE-66. It does, however, require a
certain amount of house keeping on the
programmer’s part. Basically, this scheme
requires the programmer to initiate the loading
of an overlay containing the data buffers to be
brought into internal memory from external
SDRAM. This can be done by defining and
calling an assembly macro called
Load_Data_Overlay(). For the C example, we
take a similar approach but instead of
implementing a macro, we can develop a small
C function to initiate the data overlay process.
The parameter the programmer must pass is the
ID of the overlay to be loaded. This can easily
be obtained from the map file.

To write the overlay back to external SDRAM
memory with the changes, the programmer then
calls a second macro or function called
Save_Data_Overlay(). Again, this macro or
function requires the overlay ID as an input (this
also is obtained from symbol map file).

LISTING 3. data_ovl.h for ASM Data Overlay
Example

#define Load_Data_Overlay(SYMBOL_OVERLAYID)
r0 = 1;\
call _OverlayManager (DB);\
dm(DataTransfer) = r0;\
R0 = SYMBOL_OVERLAYID

#define Store_Data_Overlay(SYMBOL_OVERLAYID)
r0 = 1;\
dm(Internal2exttransfer)=r0;\
call _OverlayManager (DB);\
dm(DataTransfer) = r0;\
R0 = SYMBOL_OVERLAYID

LISTING 4. data_ovl.h for C Data Overlay
Example

extern int SYMBOL_OVERLAYID;

void load_data_overlay (int SYMBOL_OVERLAYID)
{

DataTransfer = 1;
asm volatile("R0 = R4;");
OverlayManager();

}

void store_data_overlay(int SYMBOL_OVERLAYID)
{

DataTransfer = 1;
Internal2exttransfer = 1;
asm volatile("R0 = R4;");
OverlayManager();

}

Thus, these two macros (assembly version) or
functions (C version) simply call the overlay
manager with the proper parameters set. This is
the only difference between data and code
overlays (aside from the overlay manager DMA
setup to initiate data vs. instruction transfers) as
far as the linker is concerned. The macros take
place of the PLIT table since a PLIT entry is not
created for data overlays.

The overlay support provided is built in to the
linker, and is partially designed by the user in
the linker description file (LDF). To set up a
data overlay, the user specifies which data
overlays share runt time memory and which
memory segments establish the live and run data
spaces. The following LDF file fragments shows
how we define three data overlays in the LDF.
The first example is the LDF file portion
contained in the assembly project. Listing 1
shows how to place the data overlay variables
defined in the three overlay asm files to reside in
the run space – run_dmda.

LISTING 3: Overlay Input/Output Sections
for assembly example

no_dmda
{

OVERLAY_INPUT
{
ALGORITHM(ALL_FIT)
OVERLAY_OUTPUT(dm1_ovly.ovl)
INPUT_SECTIONS(dm1_overlay.doj(run_dmda))

EE-151 Page 7
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

}>ovlydmda

OVERLAY_INPUT
{
ALGORITHM(ALL_FIT)
OVERLAY_OUTPUT(dm2_ovly.ovl)
INPUT_SECTIONS(dm2_overlay.doj(run_dmda))
}>ovlydmda

OVERLAY_INPUT
{
ALGORITHM(ALL_FIT)
OVERLAY_OUTPUT(dm3_ovly.ovl)
INPUT_SECTIONS(dm3_overlay.doj(run_dmda))
}>ovlydmda

} >run_dmda

The LDF file data overlay declaration shown
above demonstrates how to configure two data
overlays to share a common run time data
memory space. The first overlay, dm1_ovly,
contains buffers x[] and y[] and lives
somewhere in the external memory live segment
ovlydmda. The second data overlay,
dm2_ovly, contains buffers m[] and n[] and
also lives in the external memory segment
ovlydmda. The common run time data
locations shared by overlays dm1_ovly and
dm2_ovly is the segment run_dmda. The
third data overlay, dm3_ovly, contains buffers
p[] and q[] and also lives in the external
memory segment ovlydmda. The common
run time data locations shared by overlays
dm1_ovly, dm2_ovly, and dm3_ovly is the
segment run_dmda. The dummy output
section no_dmda is a placeholder to keep the
linker happy.

To set up our overlays in C for the floating point
variables defined in Listing 2, we set up a
similar redirection of the overlay input/output
files, except we tell the linker to scan all
seg_dmda sections in the 3 overlay object files
and create separate overlay output files with the
information pulled from each object file.
However, the variables will still be directed to
reside in the “run” space segment run_dmda.

LISTING 4: Overlay Input/Output Sections
for C example

no_dmda
{

OVERLAY_INPUT
{
ALGORITHM(ALL_FIT)
OVERLAY_OUTPUT(dm1_ovly.ovl)
INPUT_SECTIONS(dm1_overlay.doj(seg_dmda))
}>ovlydmda

OVERLAY_INPUT
{
ALGORITHM(ALL_FIT)
OVERLAY_OUTPUT(dm2_ovly.ovl)
INPUT_SECTIONS(dm2_overlay.doj(seg_dmda))
}>ovlydmda

OVERLAY_INPUT
{
ALGORITHM(ALL_FIT)
OVERLAY_OUTPUT(dm3_ovly.ovl)
INPUT_SECTIONS(dm3_overlay.doj(seg_dmda))
}>ovlydmda

} >run_dmda

The LDF provides the linker with direction on
how to configure overlays as well as the
information necessary for the data overlay
manager routine to load in the data overlays.
The data overlay information resolved by the
linker to initiate DMA transfers in our example
includes the following constants:

Data Overlay 1
_ov_word_run_size_1
_ov_word_live_size_1
_ov_startaddress_1
_ov_runtimestartaddress_1

Data Overlay 2
_ov_word_run_size_2
_ov_word_live_size_2
_ov_startaddress_2
_ov_runtimestartaddress_2

Data Overlay 3
_ov_word_run_size_3
_ov_word_live_size_3
_ov_startaddress_3
_ov_runtimestartaddress_3

These linker-generated constants are stored
specified locations in user-defined buffers for
the overlay manager to access and initiate DMA

EE-151 Page 8
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

transfers. In this overlay example the data is
stored as follows:

liveAddresses[3] = ���� (EIEPx)
_ov_startaddress_1,
_ov_startaddress_2,
_ov_startaddress_3;

runAddresses[3] = ���� (IIEPx)
_ov_runtimestartaddress_1,
_ov_runtimestartaddress_2,
_ov_runtimestartaddress_3;

runWordSize[3] = ���� (CEPx)
_ov_word_size_run_1,
_ov_word_size_run_2,
_ov_word_size_run_3;

liveWordSize[3] = ���� (ECEPx)
_ov_word_size_live_1,
_ov_word_size_live_2,
_ov_word_size_live_3;

The linker will replace these constants with
actual internal memory run space addresses and
sizes and external memory live space addresses
and sizes, which are used to program the IIEPx,
IMEPx, CEPx, EIEPx, EMEPx, ECEPx DMA
parameter registers to initiate the loading or
storing of a data overlay.

The Data Overlay Manager:
The data overlay manager is a user-defined
routine that is responsible for loading a
referenced overlay data variable or buffer into
the internal memory “run” time space. The
central task of the data overlay manager is to
initiate an External Port DMA operation using
one of the external port buffer DMA channels
(DMA channels 10 to 13). This DMA operation
is managed with the aid of the linker generated
constants, in which the internal start address
(IIEPx), external start address (EIEPx), modify
(IMEPx/EMEPx) and DMA count
(CEPx/ECEPx) are programmed from the

linker-generated overlay constants. The main
objective of the data overlay manager is to set
up a DMA transfer to/from the “live” space
to/from the “run” space. Thus, the main
objective of the data overlay manager is to:

• Perform a context save/restore of all
registers used by the overlay manager via
a software stack.

• Identify the desired data overlay module
by getting the ID# of the overlay.

• Sets up an EPBx DMA transfer. Before
enabling the DMA transfer, the overlay
manager determines if the data overlay
module associated with the ID# will
require a load from external memory, or
a store to external memory. Thus, the
DMA transfer set up in the DMACx
register will either write the contents of
internal memory to external memory, or
read the contents from external memory
to internal memory.

• Assign the appropriate live/run addresses
and DMA count size to the I/O
processor, so that the data overlay is
properly loaded from or stored to
external memory.

The overlay manager shown here is written such
that the core processor sits at an “IDLE”
instruction while the transfer occurs. However,
there is additional instructional support which
allows the user to initiate an overlay load/store
while the DSP core executes another section of
unrelated code. The user is referred to EE-66
for more information on how to implement
more advanced predictive overlay managers.

EE-151 Page 9
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Stored Live Space Overlay ID Identifiers for Visual DSP Debugger Symbol
Support
In order to support debugging of overlay variables and buffers, the latest VisualDSP ++ 2.0 linker
overlay support also includes the storage of the overlay ID in the live and run spaces to assist with
symbol support in the debugger. In our assembly data overlay example, since we define a data overlay
run memory section to beginning at address 0x51000 to be run space for overlays, that address will
always hold the Overlay ID, so then our data overlay actually begins at address 0x50001. And the image
in live space will always hold the overlay id. For example, the following memory window of 0x51000
shows the Overlay ID identifier for the data overlay run space, followed by the actual data buffers:

Overlay 1 ID @ 0x51000 Overlay 2 ID @ 0x51000 Overlay 3 ID @ 0x51000

 Overlay 1 ID stored in live space at address 0x0x200000

 Overlay 2 ID stored in live space at address 0x0x2009C6

 Overlay 3 ID stored in live space at address 0x0x20138C

Since address 0x51000 contains the overlay ID, this allows the debugger to display the correct symbol
names for the data overlay variables. If you wanted for some reason to avoid having the overlay ID in
run memory you have to increment the live start address provided by the linker by 1… but doing do
would defeat the symbol support. Since we in most cases reference all the code or data symbolically,
this step of incrementing the live start address is not necessary.

In our assembly example, the following addresses show where all of the variables and overlay symbol
IDs reside in internal run space and external live space:

Address What resides here:
0x200000 Overlay 1 Symbol ID live space storage
0x2009C6 Overlay 2 Symbol ID live space storage
0x20138C Overlay 3 Symbol ID live space storage
0x51000 Symbol ID run space location for Data Overlays 1, 2 and 3
0x51001 Run space start address for data overlay variables x[], m[] and p[]
0x513E9 Run space start address for data overlay variables y[], n[] and q[]
0x200001 Live space start address for x[]
0x2003E9 Live space start address for y[]
0x2009c7 Live space start address for m[]
0x200DAF Live space start address for n[]
0x20138D Live space start address for p[]
0x20176E Live space start address for q[]

EE-151 Page 10
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

21161 EZ-KIT USB Debugger Session Results of the 3 Data Overlay Buffer
Load/Copy operation in internal “RUN” space [Assembly Data Overlay Example]

Sine Wavetable Data Overlay Loaded and Processed

Sawtooth Wavetable Data Overlay Loaded and Processed

EE-151 Page 11
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Square Wavetable Data Overlay Loaded and Processed

Linker-Generated Data Overlay “Live” and “Run” Address and Size Buffer Constants for the EZ-KIT Data

Overlay Example

 Assembly Example C Example

EE-151 Page 12
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Listing 5. Assembly Data Overlay Test: data_overlay_test.asm

///
// //
// In this example data overlay code there are four buffers x,y,m,n. //
// Each are of length 1000.(32 bit words) //
// //
// Buffers x and m contain some initialised values. //
// //
// Our objective is to copy x to y, m to n and p to q. //
// //
// To save internal memory, we allocate the same 2k internal memory as //
// the run time data memory. //
// //
// First we bring in x and y inside copy x to y and copy back //
// the current values to the external SDRAM memory. //
// Once this process is over the run time memory can be freed. //
// //
// The same process same block copy process is also repeated for //
// buffers m and n, and then again for p and q. //
// //
///

#include "data_ovl.h"

#define xy_ovl 1
#define mn_ovl 2
#define pq_ovl 3

.GLOBAL data_overlay_test;

.EXTERN x, y, m, n, p, q;

.EXTERN Blink_LEDs_Twice, Blink_LEDs_Thrice, Blink_LEDs_4times;

.EXTERN prefetch;

.EXTERN DataTransfer;

.EXTERN Internal2exttransfer;

.SEGMENT/PM pm_code;

data_overlay_test:
Load_Data_Overlay(xy_ovl); /* load x & y data buffers from overlay live space

in SDRAM */
l0 = 0;
i0 = x;
l1 = 0;
i1 = y;

lcntr=1000, do copy_m2n until lce;
r0 = dm(i0,1);

copy_x2y: dm(i1,1) = r0;

Store_Data_Overlay(xy_ovl); /* store x & y data buffers to overlay live space in
SDRAM */

call Blink_LEDs_Twice; /* Data Overlay x & y load/store LED confirm */

Load_Data_Overlay(mn_ovl); /* load m & n data buffers from overlay live space
in SDRAM */

l0 = 0;
i0 = m;
l1 = 0;
i1 = n;

lcntr =1000, do copy_m2n until lce;
r0 = dm(i0,1);

EE-151 Page 13
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

copy_m2n: dm(i1,1) = r0;

Store_Data_Overlay(mn_ovl); /* store m & n data buffers to overlay live space in
SDRAM */

call Blink_LEDs_Thrice; /* Data Overlay m & n load/store LED confirm */

Load_Data_Overlay(pq_ovl); /* load p & q data buffers from overlay live space
in SDRAM */

l0 = 0;
i0 = p;
l1 = 0;
i1 = q;

lcntr =1000, do copy_p2q until lce;
r0 = dm(i0,1);

copy_p2q: dm(i1,1) = r0;

Store_Data_Overlay(pq_ovl); /* store p & q data buffers to overlay live space in
SDRAM */

call Blink_LEDs_4times; /* Data Overlay p & q load/store LED confirm */

RTS;

.ENDSEG;

Listing 6. C Data Overlay Code Test: data_overlay_test.c

///
// //
// In this example data overlay code there are six buffers, which //
// consist of 3 input wavetables: sine, triangle and square, and 3 //
// output buffers used as output sources for each input wavetable. //
// Each buffer is of length 1000.(32 bit words) //
// //
// Buffers sinetbl[], sawtbl[] and squartbl[] contain initialized //
// floating point data //
// //
// Our objective is to copy sinetbl[] to y_out[], //
// sawtbl[] to z_out[] and squartbl[] to q_out[], //
// //
// To save internal memory, we allocate the same 2k internal memory as //
// the run time data memory. //
// //
// First we bring in sinetbl[] and y_out[] inside copy sinetbl[] //
// to y_out[] and copy back the current values to the external //
// SDRAM memory. Once this process is over the run time memory //
// can be freed. //
// //
// The same process same block copy process is also repeated for //
// buffers sawtbl[], squartbl[], z_out[] and q_out[]. //
// //
// Analog Devices, DSP Applications //
// Last Modified: 01/22/02 //
// //
///

#include "21161_EZKit.h"
#include "data_ovl.h.h "

#define sine_ovl 1
#define triang_ovl 2

EE-151 Page 14
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

#define square_ovl 3

int num_times;
int OverlayID;

void data_overlay_test()
{

int i, j, k;

OverlayID = sine_ovl;
load_data_overlay(OverlayID); /* load sine wave data buffers from overlay live

space in SDRAM */
for (i = 0; i < 1000; ++i)
{

y_out[i] = sinetbl[i];
}
store_data_overlay(OverlayID); /* store sine wave data buffers to overlay live space
num_times = 4; in SDRAM */
Blink_LEDs_Slow(num_times); /* sine wave data overlay load/store LED

confirm */

OverlayID = triang_ovl;
load_data_overlay(OverlayID); /* load m & n data buffers from overlay live

space in SDRAM */
for (j = 1; j <= 1000; ++j)
{

z_out[j] = sawtbl[j];
}
store_data_overlay(OverlayID); /* store triangle wave data buffers to overlay live
num_times = 6; space in SDRAM */
Blink_LEDs_Medium(num_times); /* sawtooth wave data overlay load/store LED

confirm */

OverlayID = square_ovl;
load_data_overlay(OverlayID); /* load m & n data buffers from overlay live space

in SDRAM */
for (k = 1; k <= 1000; ++k)
{

q_out[k] = squartbl[k];
}
store_data_overlay(OverlayID); /* store square wave data buffers to overlay live
num_times = 8; space in SDRAM */
Blink_LEDs_Fast(num_times); /* Square Wave Data Overlay load/store LED confirm */

}

EE-151 Page 15
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Listing 7. Overlay Manager Source File: data_ovly_mgr.asm
///
// //
// This code/data overlay manager sets up data overlays to/from SDRAM //
// mapped to Bank 0 on the 21161 EZ-KIT Lite. Since the SDRAM data accesses //
// are 32-bits, a generic 32-to-32 non-packed is used to transfer of data //
// to/from interal/external memory. Therefore, no PACKING{} command is //
// required in the overlay declaration section of the linker. //
// //
// This example could be modified to set up data overlays to/from Bank 1 Flash //
// memory, using 8to32 or 8to48 DMA packing modes and the appropriate flash //
// write commands. The Overlay Declaration in the LDF file would require //
// the necessary PACKING{} command to prestore data to 8-bit space. //
// Refer to EE-150 for information on how to write to the EZ-KIT Flash Memory. //
// //
///

#include "def21161.h"

.SEGMENT/DM dm_data;

.EXTERN _ov_word_run_size_1;

.EXTERN _ov_word_run_size_2;

.EXTERN _ov_word_run_size_3;

.EXTERN _ov_word_live_size_1;

.EXTERN _ov_word_live_size_2;

.EXTERN _ov_word_live_size_3;

.EXTERN _ov_startaddress_1;

.EXTERN _ov_startaddress_2;

.EXTERN _ov_startaddress_3;

.EXTERN _ov_runtimestartaddress_1;

.EXTERN _ov_runtimestartaddress_2;

.EXTERN _ov_runtimestartaddress_3;

.VAR liveAddresses[2] = _ov_startaddress_1,
_ov_startaddress_2,
_ov_startaddress_3;

.VAR runAddresses[2] = _ov_runtimestartaddress_1,
_ov_runtimestartaddress_2,
_ov_runtimestartaddress_3;

.VAR runWordSize[4] = _ov_word_size_run_1,
_ov_word_size_run_2,
_ov_word_size_run_3;

.VAR liveWordSize[4] = _ov_word_size_live_1,
_ov_word_size_live_2,
_ov_word_size_live_3;

.VAR prefetch=0;

.GLOBAL prefetch;

.VAR ov_stack[10];

.VAR DataTransfer;

.VAR Internal2exttransfer;

.GLOBAL DataTransfer;

.GLOBAL Internal2exttransfer;

.ENDSEG;

EE-151 Page 16
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

/* -- */

.SEGMENT/PM pm_code;

.GLOBAL _OverlayManager;

_OverlayManager:
/* R0 register is the overlay ID 1,2,... */
/* R1 register is the SYMBOL REFERENCE Address */
dm(ov_stack) = i8; /* save user registers temporarily to overlay stack */
dm(ov_stack+1) = m8;
dm(ov_stack+2) = l8;
dm(ov_stack+3) = r2;

m8 = R0; /* get user-selected overlay ID from table */

skip_if_overlay_loaded:
i8 = runAddresses - 1; /* pointer to previous address before runAddresses

buffer */
r0 = dm(Internal2exttransfer); /* check if we are loading or storing data ovelay

data */
r0 = pass r0; /* if = 1, we store to ext mem, otherwise, = 0 loads

from ext mem */

if NE jump continue_ovly_load_process;

i8 = runAddresses - 1; /* pointer to previous address before runAddresses buffer */
i8 = pm (m8,i8); /* Can we skip overlay transfer if data already resident? */
px = pm(0,i8);
r2 = px1; /* Now check if already loaded */

r0 = r0 – r2; /* If equal to zero, data still there */
if EQ jump TransferOver; /* we can skip DMA setup for load to run space */

continue_ovly_load_process:
i8 = runAddresses - 1; /* pointer to previous address before runAddresses buffer */

dm(ov_stack+4) = i0; /* save more user registers temporarily to overlay stack */
dm(ov_stack+5) = m0;
dm(ov_stack+6) = l0;
dm(ov_stack+7) = ustat1;

l8 = 0; /* disable DAGs modulus logic, no circular buffering */
l0 = 0;

m0 = m8; /* premodify values are equal to the overlay symbol ID # */

i0 = liveAddresses - 1; /* pointer to previous address before live Addresses
buffer */

r0 = 0;
dm(DMAC10) = r0; /* initially disable and clear out DMA channel 10 */

r0 = dm(m0,i0); /* External Live Address from liveAddresses buffer */
dm(EIEP0) = r0; /* write Live Address to EPB0 external index address register */

r0 = pm(m8,i8); /* Internal Run Address from runAddresses buffer */
dm(IIEP0) = r0; /* write Run Address to EPB0 internal index address register */

r0 = 1; /* DMA int/ext modifys = 1 */
dm(EMEP0) = r0; /* setup EPB0 external and internal index modify registers */
dm(IMEP0) = r0;

i8 = liveWordSize - 1; /* pointer to buffer for DMA external count size */

EE-151 Page 17
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

i0 = runWordSize - 1; /* pointer to buffer get DMA internal count size */

r0 = dm(m0,i0);
dm(CEP0) = r0; /* set number of "Run" internal words to transfer */

r0 = pm(m8,i8);
pm(ECEP0) = r0; /* set number of "Live" external words to transfer */

Program_or_Data_Transfer:
r0 = dm(DataTransfer); /* check for data overlay task */
r0 = pass r0; /* if DataTransfer = 1, we do a data overlay DMA */
if eq jump LoadOpcodes;

r1 = pcstk; /* Jump back to location where call was made */
pop pcstk; /* This will help us get back using the indirect delayed

jump instruction */

LoadData:
r0 = dm(Internal2exttransfer); /* check if we are loading or storing data

overlay data */
r0 = pass r0; /* if = 1, we store to ext mem, otherwise, = 0

loads from ext mem */
if ne jump StoreData;

/* master mode DMA, 32-32 no packing, data xfer, ext-to-int, DMA enable */
r0 = MASTER | PMODE4;
dm(DMAC10) = r0;
jump Start_DMA_Sequence;

StoreData:
/* master mode DMA, 32-32 no packing, data xfer, int-to-ext, DMA enable */
jump Start_DMA_Sequence (db);
r0 = MASTER | PMODE4 | TRAN;
dm(DMAC10) = r0;

LoadOpcodes:
/* NOTE: This data overlay example never calls the instruction overlay support. This
code is not executed in this example, but is included in case the programmer wants to
do both code and data overlays */
/* master mode DMA, 32-to-48 packing, instructions xfer, ext-to-int, DMA enable */
r0 = MASTER | PMODE3 | DTYPE | TRAN;
dm(DMAC10) = r0;

Start_DMA_Sequence:
IRPTL = 0x00000000;
bit set mode1 IRPTEN;
bit set imask EP0I;

/* now turn on DMA channel 10 for code/data overlay loading or storing */
ustat1 = dm(DMAC10);
bit set ustat1 DEN; /* DMA enable bit on */
dm(DMAC10) = ustat1;

r0 = 0; /* Used to reset key variables */
dm(DataTransfer) = r0; /* Reset to 0 */
dm(Internal2exttransfer) = r0; /* Reset to 0 */

ustat1 = dm(ov_stack+7); /* restore overlay modified registers */
l0 = dm(ov_stack+6);
m0 = dm(ov_stack+5);
i0 = dm(ov_stack+4);

i8 = prefetch; /* determines if we wish to sit at IDLE or return */
r2 = pm(0,i8); /* to do some other core accesses while load

completes */

EE-151 Page 18
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

r2 = pass r2;

if NE jump dont_wait_for_DMA_IRQ;

wait_for_EPB0_DMA_end:
idle; /* Overlay Load/Store complete */
bit clr imask EP0I; /* temporarily disable EPB0 interrupts */

jump TransferOver;

dont_wait_for_DMA_IRQ:
r2 = 0;
dm(prefetch) = r2;
r2 = dm(ov_stack+3); /* restore the rest of overlay-modified variables */
l8 = dm(ov_stack+2);
r0 = dm(ov_stack);
i8 = r0;
m8 = r1;

rts; /* return if we don't need to wait for EPB0 DMA
Interrupt */

TransferOver:
r2 = dm(ov_stack+3); /* restore the rest of overlay-modified variables */
l8 = dm(ov_stack+2);
i8 = r1;
m8 = 0;
r1 = dm(ov_stack+1);
r0 = dm(ov_stack);

flush cache; /* this instruction not required for data overlay
transfers */

jump (m8,i8) (db); /* indirect jump and return from overlay manager */
i8 = r0; /* remember we already popped the PC Stack earlier */
m8 = r1;

.ENDSEG;

