Engineer To Engineer Note

EE-151

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Copyright 2002, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or for
any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information
furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices regarding

the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes.

Implementing Software Data
Overlays for the ADSP-21161
Using the EZ-KIT Lite

Last Modified: 1/25/02

Contributed by: John Tomarakos

Overview

In many DSP applications, there may be system
memory requirements where the DSP
programmer wishes to assign a section of
internal “scratchpad” memory to use for
multiple temporary variables, then store the
variables back to external SDRAM or FLASH
memory for later usage. Often, variables arrays,
or lookup tables are only used during a small
fraction of time of the DSP’s processing, but
they often can take up a large portion of the
internal memory space of the DSP. Or, an audio
system developer may want to copy a block of
recorded audio samples to storage and then
retrieve the data for playback at a later time.
Once the audio data is stored, the internal
memory is free to use for other operations.
Another example could be an application which
requires using a temporary section of shared
memory for sine/cosine lookup tables or FFT
twiddle factors which are only required when
the FFT algorithm is executed, but then perhaps
during the FFT algorithm’s “down time” the
user wants to use the same memory for loading
one out of a number of stored sets of filter
coefficients for other post-filtering operations,

only requiring one selected filter response at any
given time upon request from a user-controlled
interface. And finally, another DSP application
could be a music synthesizer, where the DSP is
performing a wavetable synthesis or sample
playback algorithm, and when the musician
selects a new “instrument” on command from a
set of control knobs, telling the system’s host
microcontroller to direct the DSP to download a
new block of wavetable data to the same section
of memory to generate the new sound. To
support such memory management tasks we can
set up what is called a “soft data overlay” to
automate the process of reusing a small section
of internal memory efficiently.

x[n]

Load Data wl[]

Store Data
X1 ADSP-

21161
Internal
Memory

Swap data buffers x[] & w[] to/from
same shared internal memory block

win]

External
SDRAM
or FLASH

FIGURE 1: Basic Data Overlay Concept

Figure 1 demonstrates a basic concept of a soft
data overlay, where information is loaded from
external memory to a shared section if internal
memory, while the previous data is stored
simultaneously to external memory and recalled
at a later time. This data overlay technique may
provide support for applications where the total
amount of data memory required is greater than

— o

the available amount of internal data memory
provided by the processor, and the user is
seeking a way to “make the code and data fit
into the DSP’s internal memory space.”

The data overlay “save-and-restore” approach
may be desirable because by keeping all the data
buffers outside in the external memory and
operating on them there, it can result in a
significant reduction in available MIPS, due to
external waitstates or SDRAM latencies. MAC
operations can slow down significantly if the
delay line data or filter coefficients are accessed
from external memory, and the cycle overhead
can also increase significantly depending on
SDRAM latencies if we access non-consecutive
addresses. However, the SHARC processor
may often provide much available non-utilized
I/O processor bandwidth to take advantage of.
During these unused 10P bus cycles it would be
desirable to initiate data overlay transfers which
would execute with zero-overhead to internal
memory from SDRAM, or vice versa. Perhaps
the application is performing 5 active serial port
DMAs or link port DMAs, but this still provides
much 10P bus bandwidth available for quick
100 MHz external port SDRAM block transfers
on a dedicated EPBx DMA channel. 100 MHz
SDRAM DMA transfer throughput with 32-bit
fixed or floating point data can make the use of
data overlays attractive because the SDRAM
controller is able to sustain 100 MHz throughput
in consecutive reads/writes to the same page in
SDRAM (of course, as long as there is no other
core, host or EPBx DMA activity to slow down
access to the external bus). Therefore, the DSP
core can initiate a fast data overlay load, then go
and execute another task in internal instruction
space while the data is quickly loaded by the 1/O
processor in the background with no core
intervention.

The advantage of data overlays to SDRAM is
that SDRAM provides a low-cost, bulk-storage,

high-speed interface to move the blocks of data
at up to 100 MHz throughput. The disadvantage
is that a system requires external memory in
addition to a boot flash device, increasing
system cost. If the system does not necessarily
need fast access to swap data blocks, an external
boot flash used for data overlays can could meet
system cost constraints. It is possible to still use
the unused upper sectors of the flash device
which is not used for boot program storage to be
able to temporarily load and store samples, or
filter coefficients or data tables. In this case, we
can set up data overlays with the necessary 8-bit
DMA packing and flash memory commands.
Table 1 below shows the tradeoffs for
implementing data overlays in flash or SDRAM.

TABLE 1. DATA OVERLAY SDRAM/Boot
FLASH comparisons:

MEMORY |Data Overlay |Bus System Cost

Type Throughput |Width

SDRAM 100 MHz 32-bit May require both
transfer SDRAM and boot
throughput memory
possible

SBSRAM 50 MHz fixed [32-bit May require both
transfer SBSRAM and
throughput boot memory

FLASH Could require [8/16-bit
up to 7 CLKIN

Only Boot Flash
Required, can be
waitstates, mapped to both
slowest data /BMS and /MSx
throughput space

So then the question becomes, how can we use
the current VisualDSP++ code generation tools
to provide the ability to load and store data
variables and buffers? As one suggested
solution, this Engineer-To-Engineer Note
discusses a simple technique using Analog
Devices’ Visual DSP++ 2.0 tools and it’s code
overlay support to implement “Data Software
Overlays.”

EE-151

Page 2

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

The source code listing in this EE-Note
demonstrates a way to accomplish swapping
data to and from SDRAM using the 21161 EZ-
KIT Lite Evaluation Platform (Figure 2) as the
demonstration vehicle. For more information on
implementing software overlays, refer to EE-
Note # 66: Using Memory Overlays. Keep in
mind the example demonstrated here is just a
sample of one process that may be required in
an actual application. Depending on the user’s
application, further customization of the overlay
process may be required to suit your needs
(through the modification of the overlay
manager discussed later in this document).

FIGURE 2: ADDX-21161-EZ-LITE

The current VisualDSP 2.0++ tools support
software code (instruction) overlays but no
direct data overlay support built into the linker.
By using some of the existing code overlay
support methods supplied with our tools, we can
alternatively develop a data overlay routine
which copy the data variables and buffers from
external memory to internal memory, and then
back to the external memory after the variables
have been modified. This is taken care by a
routine called the data overlay manager, but
when using data overlays (in the current
VisualDSP++ 2.0 toolset) the data movement

process is still required to be initiated by the
programmer in order to start the DMA transfer
(vs. code overlays, which are a more automatic
process with the linker generating the necessary
jump instructions via access to a jump table).

As mentioned earlier, it is also possible for the
ADSP-21161 programmer to perform data
overlays to flash memory. This can be done on
the flash memory used on the EZ-KIT Lite, by
simply modifying the overlay manager to
perform 8-bit DMA accesses to flash memory
while including all of the necessary
housekeeping flash instructions in with the data
overlay manager. For more information on
programming the EZ-KIT flash, refer to EE-
150: In-circuit programming a boot-image into
the FHASH on the ADDS-21161N-EZLITE.
Look for an additional update to this EE-NOTE
to include data overlays to/from flash memory
using the EZ-KIT Lite.

SDRAM Data Overlay System Design
Assembly and C Examples:

External Internal
Memory Memory

Data Overlay 1 X[1000]

(non-overlay code)
Y[1000]

Interrupt Vector Table
Main code

PLIT

overlay manager

Data Overlay 2 M[1000]
N[1000]

Data Overlay 3 p[1024]
Q[1024]

Run Space for
Overlays 5 and 6

Data Overlay 4 U[512]
V[512]

DM data “Run Space” for
Overlay 5 Data Overlays 1 and 2

DM data “Run Space” for
Data Overlays 3 and 4

Overlay 6

FIGURE 3: Data Overlay Live and Run
Segments

Like code overlays, data overlays are a “many to
one” memory mapping system. For example,
Figure 3 shows how several data overlays “live”

EE-151

Page 3

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

(or are stored) in unique external memory
locations, but then “run” (or are
executed/accessed) in a common shared location
in internal memory. This demonstrates an
application in which there are six “live”
segments in external SDRAM. Four segments
are data overlay segments, while the other two
are code overlay segments. There are also two
data overlay “run” segments and one code
overlay “run” segment which is shared between
the overlays in the internal memory of the DSP.

The data overlay concept is demonstrated in
both an assembly version and a C version.
Figures 3 and 4 show the project files for both
the assembly and C implementations. Both
projects consist of the linker description file,
DSP system initialization files, the main routine,
overlay, data files, macros/functions, three
overlay variable declaration files, the data
overlay manager and the data overlay test
routine.

Project: 161_EPKIT Data Overlay T... [§EE3

A header files
21161_EzKit h
{ data_ovlh

=143 Linker Files
- 21161_EZKIT_Lite.Idf

------ data_overlays test.map
=1 DSP System Init Stuff

Ela data overlay files

- * dat files
gawtooth000.dat
----- sine1000.dat
square] 000, dat
-3 overlay manager

L]\ Project I

FIGURE 5. Project Files for C Language
Data Overlay Example

[

[—]a [nterrupt Yector T able

L [SR_table.asm

=123 Linker Files

..... 21161_EZKIT_Lite.Idf
----- data_overlays_test.map
=43 DSP System Irit Stuff

..... Init_21161_EZKit.asm
..... SDRAM_initislization. asm
Ea data overlay files

=3 . dat files

- sawtooth] 000.dat
- sine1000.dat

(- square] 000, dat
[—]a overlay manager
- data_ovly_mar.asm
----- data_overlay_test azm
----- dm_orverlay. asm

----- dm_orverlay. asm

----- dma_overlay. asm

L]\ Project I

FIGURE 4. Project Files for Assembly
Language Data Overlay Example

In these VisualDSP ++ project files, we
implement three data overlay segments which
share the same internal memory run space. The
example defines six 1K buffers x[], y[], m[],
n[], p[], q[] which will share a 2 k segment of
internal memory run space.

In the ADSP-21161’s 1 M-bit internal memory,
we would allocate at least 2K words of internal
memory in BLOCK1 as the “run” time memory
for the data by defining this memory segment in
the MEMORY{} section of the LDF file as
follows:

EE-151

Page 4

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

rundnda { TYPE(DM RAM) START(0x00051000)
END(0x00051f ff) W DTH(32) }

Next we want to define our “live” space in
SDRAM mapped to bank0, where our data
overlays will be stored. This is also defined in
the MEMORY {} section of the LDF file:

ovlydnda { TYPE(DM RAM) START(0x00200000)
END{ 0x0020FFFF) W DTH(32) }

Each buffer within the two data overlay files are
defined with a length of 1000 words, and each
element contains 32 bit words. These are shown
in the two source listings below. Note that
Buffers x[] and m[] and g[] contain some
initialized values.

LISTING 1: Data Overlay Declarations for

LISTING 2: Data Overlay Declarations for
the C Example

dml overlay.c

/* Data Overlay 1 */
float sinetbl[1000] =

#i ncl ude "sinel000. dat"
s

float y_out[1000];

dm2_overlay.c

/* Data Overlay 2 */
float sawt bl [1000] =

#i ncl ude "sawt oot h1000. dat "
s

float z_out[1000];

dm3 overlay.c

ASM Example
dml overlay.asm
. SEGVENT/ DM run_dnda;
.GLOBAL X, VY;

. VAR x[1000] ="si ne1000. dat ";
. VAR y[1000] ;

/* Data Overlay 3 */
float squartbl[1000] =

#i ncl ude "squarel000. dat"
s

fl oat g_out[1000];

. ENDSEG,

dm?2 overlay.asm
. SEGVENT/ DM run_dnda;
.GOBAL m n;

. VAR n{ 1000] =" sawt oot h1000. dat ";
. VAR n[1000] ;

. ENDSEG,

dm3_overlay.asm
. SEGVENT/ DM run_dnda;
.GLOBAL p, q;

. VAR p[1000] ="squar €1000. dat ";
. VAR [1000];

The objective in the ADSP-21161 data overlay
C and assembly tests shown here is to load in
the data buffers x[] and y[] inside to the internal
run space, copy the data from buffer x[] to
buffer y[], then store the current contents of
both buffers back to external SDRAM memory.
Once this process is over the run time memory
can be freed. Thus, this same process is then
repeated for buffers m[] and n[], where buffers
m[] and n[] are loaded to the same run space
previously used by the x[] and y[] buffers.
Buffer m[] is copied to buffer n[] and both
buffers are stored back to SDRAM for later use.
And again, the same process is repeated a third

. ENDSEG, time for buffers p[] and g[]. This process is
repeated over and over again, while the LED
EE-151 Page 5

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

blink status gives an indication which data
overlay load/store is executing.

Data Overlays Load/Store Functions:
As the VisualDSP++ tool only fully support
code overlays, we are still able take advantage
of this built in support to develop a scheme to
handle data overlays. This can be accomplished
by making a few modifications to the ADI-
supplied instruction overlay manager which is
provided in EE-66. It does, however, require a
certain amount of house keeping on the
programmer’s part. Basically, this scheme
requires the programmer to initiate the loading
of an overlay containing the data buffers to be
brought into internal memory from external
SDRAM. This can be done by defining and
calling an assembly macro called
Load_Data_Overlay(). Forthe C example, we
take a similar approach but instead of
implementing a macro, we can develop a small
C function to initiate the data overlay process.
The parameter the programmer must pass is the
ID of the overlay to be loaded. This can easily
be obtained from the map file.

To write the overlay back to external SDRAM
memory with the changes, the programmer then
calls a second macro or function called
Save_Data_Overlay(). Again, this macro or
function requires the overlay ID as an input (this
also is obtained from symbol map file).

LISTING 3. data_ovl.h for ASM Data Overlay

LISTING 4. data_ovl.h for C Data Overlay
Example

extern int SYMBOL_OVERLAYI D

voi d | oad_data_overlay (int SYMBOL_OVERLAYI D)
{

Dat aTransfer = 1;

asmvolatile("RO = R4;");

Over | ayManager () ;
}

voi d store_data_overlay(int SYMBOL_OVERLAYI D)
{
Dat aTransfer = 1;
I nternal 2exttransfer = 1;
asmvolatile("RO = R4;");
Over | ayManager () ;
}

Example
#define Load_Data_Overl ay(SYMBOL_OVERLAYI D)
ro = 1;\

call _OverlayManager (DB);\
dm(Dat aTransfer) = r0;\
RO = SYMBOL_OVERLAYI D

#define Store_Data_Overl ay(SYMBOL_OVERLAYI D)
ro = 1;\
dn(I nternal 2exttransfer)=r0;\
call _OverlayManager (DB);\
dm(Dat aTransfer) = r0;\
RO = SYMBOL_OVERLAYI D

Thus, these two macros (assembly version) or
functions (C version) simply call the overlay
manager with the proper parameters set. This is
the only difference between data and code
overlays (aside from the overlay manager DMA
setup to initiate data vs. instruction transfers) as
far as the linker is concerned. The macros take
place of the PLIT table since a PLIT entry is not
created for data overlays.

The overlay support provided is built in to the
linker, and is partially designed by the user in
the linker description file (LDF). To setup a
data overlay, the user specifies which data
overlays share runt time memory and which
memory segments establish the live and run data
spaces. The following LDF file fragments shows
how we define three data overlays in the LDF.
The first example is the LDF file portion
contained in the assembly project. Listing 1
shows how to place the data overlay variables
defined in the three overlay asm files to reside in
the run space — r un_dnda.

LISTING 3: Overlay Input/Output Sections
for assembly example

no_dnda
OVERLAY_| NPUT
{
ALGORI THM ALL_FI T)

OVERLAY_QUTPUT(dnil_ovly. ovl)
I NPUT_SECTI ONS(dmlL_over | ay. doj (run_dnda))

EE-151

Page 6

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

} >ovl ydnda
OVERLAY_I NPUT

{

ALGORI THM ALL_FI T)

OVERLAY_QUTPUT(dn2_ovl y. ovl)

I NPUT_SECTI ONS(dn®2_over | ay. doj (run_dnda))
} >ovl ydnda

OVERLAY_I NPUT

{
ALGORI THM ALL_FI T)
OVERLAY_QUTPUT(dnB_ovly. ovl)
I NPUT_SECTI ONS(dnB_over | ay. doj (run_dnda))
} >ovl ydnda

} >run_dnda

The LDF file data overlay declaration shown
above demonstrates how to configure two data
overlays to share a common run time data
memory space. The first overlay, dmlL_ovl vy,
contains buffers x[] and y[] and lives
somewhere in the external memory live segment
ovl ydnda. The second data overlay,
dn2_ovl y, contains buffers m[] and n[] and
also lives in the external memory segment

ovl ydnda. The common run time data
locations shared by overlays dnmil_ovl y and
dn2_ovl y is the segment r un_dnda. The
third data overlay, dnB_ovl y, contains buffers
p[] and q[] and also lives in the external
memory segment ovl ydnda. The common
run time data locations shared by overlays
dml_ovly,dn2_ovly,anddnB_ovl vy isthe
segment r un_dnda. The dummy output
section no_dnda is a placeholder to keep the
linker happy.

To set up our overlays in C for the floating point
variables defined in Listing 2, we set up a
similar redirection of the overlay input/output
files, except we tell the linker to scan all
seg_dnda sections in the 3 overlay object files
and create separate overlay output files with the
information pulled from each object file.
However, the variables will still be directed to
reside in the “run” space segment r un_dnda.

LISTING 4: Overlay Input/Output Sections
for C example

no_dnda
OVERLAY_I NPUT

{

ALGORI THM ALL_FI T)
OVERLAY_QUTPUT(dnl_ovly. ovl)

I NPUT_SECTI ONS(dni._over | ay. doj (seg_dnda))
} >ovl ydnda

OVERLAY_I NPUT

{

ALGORI THM ALL_FI T)
OVERLAY_QUTPUT(dn2_ovly. ovl)

I NPUT_SECTI ONS(dn2_over | ay. doj (seg_dnda))
} >ovl ydnda

OVERLAY_I| NPUT

{
ALGORI THM ALL_FI T)
OVERLAY_QUTPUT(dnB_ovl y. ovl)
I NPUT_SECTI ONS(dnB_over | ay. doj (seg_dnda))
} >ovl ydnda
} >run_dnda

The LDF provides the linker with direction on
how to configure overlays as well as the
information necessary for the data overlay
manager routine to load in the data overlays.
The data overlay information resolved by the
linker to initiate DMA transfers in our example
includes the following constants:

Data Overlay 1
_ov_word_run_size 1
_ov_word_live size 1
_ov_startaddress_1
_ov_runtimestartaddress_1

Data Overlay 2
_ov_word_run_size 2
_ov_word_live_size 2
_ov_startaddress_2
_0V_runtimestartaddress_2

Data Overlay 3
_ov_word_run_size 3
_ov_word_live_size 3
_ov_startaddress_3
_ov_runtimestartaddress_3

These linker-generated constants are stored
specified locations in user-defined buffers for
the overlay manager to access and initiate DMA

EE-151

Page 7

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

transfers. In this overlay example the data is
stored as follows:

| i veAddr esses[3] = < (ElI EPX)
_ov_startaddress_1,
_ov_startaddress_2,
_ov_startaddress_3;
runAddresses[3] = < (11 EPX)

_ov_runtinestartaddress_1,
_ov_runtinestartaddress_2,
_ov_runtinestartaddress_3;

runWr dSi ze[3] = < (CEPx)
_ov_word_size run_1,
_ov_word_size run_2,
_ov_word_size run_3;

liveWbrdSi ze[3] = < (ECEPX)

_ov_word_size live_ 1,
_ov_word_size live 2,
_ov_word_size live_3;

The linker will replace these constants with
actual internal memory run space addresses and
sizes and external memory live space addresses
and sizes, which are used to program the IIEPX,
IMEPx, CEPx, EIEPX, EMEPx, ECEPx DMA
parameter registers to initiate the loading or
storing of a data overlay.

The Data Overlay Manager:

The data overlay manager is a user-defined
routine that is responsible for loading a
referenced overlay data variable or buffer into
the internal memory “run” time space. The
central task of the data overlay manager is to
initiate an External Port DMA operation using
one of the external port buffer DMA channels
(DMA channels 10 to 13). This DMA operation
is managed with the aid of the linker generated
constants, in which the internal start address
(NEPX), external start address (EIEPx), modify
(IMEPX/EMEPXx) and DMA count
(CEPX/ECEPX) are programmed from the

linker-generated overlay constants. The main
objective of the data overlay manager is to set
up a DMA transfer to/from the “live” space
to/from the “run” space. Thus, the main
objective of the data overlay manager is to:

» Perform a context save/restore of all
registers used by the overlay manager via
a software stack.

» Identify the desired data overlay module
by getting the ID# of the overlay.

» Sets up an EPBx DMA transfer. Before
enabling the DMA transfer, the overlay
manager determines if the data overlay
module associated with the ID# will
require a load from external memory, or
a store to external memory. Thus, the
DMA transfer set up in the DMACX
register will either write the contents of
internal memory to external memory, or
read the contents from external memory
to internal memory.

» Assign the appropriate live/run addresses
and DMA count size to the I/O
processor, so that the data overlay is
properly loaded from or stored to
external memory.

The overlay manager shown here is written such
that the core processor sits at an “IDLE”
instruction while the transfer occurs. However,
there is additional instructional support which
allows the user to initiate an overlay load/store
while the DSP core executes another section of
unrelated code. The user is referred to EE-66
for more information on how to implement
more advanced predictive overlay managers.

EE-151

Page 8

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Stored Live Space Overlay ID Identifiers for Visual DSP Debugger Symbol
Support

In order to support debugging of overlay variables and buffers, the latest VisualDSP ++ 2.0 linker
overlay support also includes the storage of the overlay ID in the live and run spaces to assist with
symbol support in the debugger. In our assembly data overlay example, since we define a data overlay
run memory section to beginning at address 0x51000 to be run space for overlays, that address will
always hold the Overlay ID, so then our data overlay actually begins at address 0x50001. And the image
in live space will always hold the overlay id. For example, the following memory window of 0x51000
shows the Overlay ID identifier for the data overlay run space, followed by the actual data buffers:

Dt al D) Memory | | Dt A[DM) Memary | #l Dt (M) Memary | Al
(0510001 oooooonl . [051000] oooooooz =] [05i000] Oooooooz =)
= | =
LUS1001] Dooooog —J [OS1001] 0000000 —J [DE1001] IFs000 —J
] _JJ Al _l_xj Al i
Overlay 1 ID @ 0x51000 Overlay 2 ID @ 0x51000 Overlay 3 ID @ 0x51000

[ZO0000] DDOOOOD0L OOO00QEDD =
L]

Overlay 1 ID stored in live space at address 0x0x200000

] - -

[Z00%C6] DODODO00Z OOO0000D

Overlay 2 ID stored in live space at address 0x0x2009C6

Tl P AT P

<

[Z0138C]) 00DOO00E AFAa00000 _|:“
4| iy

Since address 0x51000 contains the overlay ID, this allows the debugger to display the correct symbol
names for the data overlay variables. If you wanted for some reason to avoid having the overlay ID in
run memory you have to increment the live start address provided by the linker by 1... but doing do
would defeat the symbol support. Since we in most cases reference all the code or data symbolically,
this step of incrementing the live start address is not necessary.

Overlay 3 ID stored in live space at address 0x0x20138C

In our assembly example, the following addresses show where all of the variables and overlay symbol
IDs reside in internal run space and external live space:

Address What resides here:

0x200000 Overlay 1 Symbol ID live space storage

0x2009C6 Overlay 2 Symbol ID live space storage

0x20138C Overlay 3 Symbol ID live space storage

0x51000 Symbol ID run space location for Data Overlays 1, 2 and 3
0x51001 Run space start address for data overlay variables x[], m[] and p[]
0x513E9 Run space start address for data overlay variables y[], n[]and q[]
0x200001 Live space start address for X[]

0x2003E9 Live space start address for y[]

0x2009c7 Live space start address for m[]

0x200DAF Live space start address for n[]

0x20138D Live space start address for p[]

0x20176E Live space start address for q[]

EE-151 Page 9

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

21161 EZ-KIT USB Debugger Session Results of the 3 Data Overlay Buffer
Load/Copy operation in internal “RUN” space [Assembly Data Overlay Example]

Sine Wavetable Data Overlay Loaded and Processed
Cral af [} Moy | Flikalimg Paimt 32 &)

Cralaf [) HMermory | Flaating Point 32 I}ﬂ‘j

R ¥
[051001] 0.0 0 002831435 [D513Ea] 0.0 O 0O0E2831435
[O51i003] 0, 012566024 00iga4e44 [DE13EE] 0.012566039 0. 0lEE4B44
[0S1D05] O.02513009% 0. 031410757 [OS13ED] 0.025130095 0. 031410757
[051007] 0.037690181 D 043968115 [MS13EF] 0. 0376901231 0 043960115
[OS1009] O0.050244316 D 0BES1EEIZ [DS13F1]) 0 050244216 0 OGES1AC32
[OS100B] 0.0&627906L3 0 06906002 [D513F3) 0O.062790513 0 06%0&002
[051000] O.0753268 0. 0BLS90&06 [0513F5] 0O.07E3268 0. OBLE90E0E
[OS100F] 0.087851197 0. 0%4108313 [0513F7] O.0B7ESELLI7 0. 094108313
[0%1011] 0.100361FL 0 1066111% [0513F3] 010036171 0. 10661115
[O51013] 011285638 0.11%909%1a [OS13FE] 0O 11285638 011909716
[(051015] 0.12533322 013156435 .JI [0S13FD] 0O 12533322 0 13156435 ul
[O51027] 0. 13779022 0144010748 [0513FF) 0.13779028 014401078
[051019] 0,15022558 0 15643444 [051401] 0.16022E6E8 0. 16643446
[OS101B] O.1&62E3716E 0. 16883343 [051403] 0.16263716 0 16EE3343
[0510410] O.17502305 O_1B120E7S [051405) 0 17502305 018120575
[OS101F] 0.1873813L 019354945 [051407) 0O 18738131 0 19354945
[051021] 0.199709%7 0. 20E862E [051409] 0.19%970997 0. 20528626
[051023] 0.2120071L 0. 21B14324 [05140E] 0.21200711 0. 21804324
[051025] 0.22427075 023038942 [05140D) 0O.22427075 023038942
[051027] 0.236499 0. 24259922 [05140F] 0O.23649% 0 24259922
[051029] 0. 248689688 02547707 [051411) 0.248608%88 02547707
[05102B] 0 26084143 0 26690197 [051413] 0 26024149 0 26690197
[05102D] 0, 27295193 0 2789911 - [051415]) 0.2729%5193 0 2789911 -
EJ 3 él EJ ¥ ﬁl

Sawtooth Wavetable Data Overlay Loaded and Processed

[t a1 Menmory [Floating Paink 32 bit] Datal DE) Mermory [Floating Podnt 32 bik] |
m n

[051001] 0,0 0.00099999993 [0513E9] 0.0 0.000%%999993
[051003] 0.0019999999 00029999998 [O513EB] 0.0019999999 0 0029999998
[051005] 0.0039999997 0 0049999999 [0513ED] 0.00399993397 0.0043%999399
[051007] 0.0059%999996 0. 0069999998 [OS13EF] 0.0059999996 0 0069999998
[05100%] 0.0079999994 0 008999999 [0513F1] 0.00799993394 0.0083%99996
[05100E] 0.0099999998 0.011 [0513F3] 0, 00999999398 0. 011
[051000] 0.011999999 0012999999 [0513F5] 0.011999939 0.012995959
[05100F] 0.014 0.015 [0513F7] 0,014 0.015
[051011] 0.015999999 0016999999 [0513F3] 0.015999933 0.016995999
[051013] 0,017999999 0 018999999 [0513FE] 0, 017999999 0. 018999999
[051015] 0.02 0.021 | [0513FD] 0.02 0.021 |
[051017] 0.022 0 0229999498 [0513FF] 0.022 0022999998
[051019] 0.023999998 0.024999999 [051401] 0.023399998 0.02499%999
[05101B8] 0.025%999999 0026999999 [051403] 0.025999999 0. 026999399
[051010] 0.027999999 0. 028999999 [051405] 0.027399993 0.028993999
[05101F] 0.02%%99999 0.03099%999 [051407] 0.029999999 0.030999999
[051021] 0.031999998 0033 [051409] 0.031399993 0.033
[051023] 0.033999998 0034999996 [05140B] 0.033999993 0.034999996
[051025] 0, 035999998 0 036999997 [05140D] 0.035399998 0.036993997
[051027] 0.037999999 0.038999997 [05140F] 0.037999939 0.038999997
[051029] 0, 039999999 0 040999997 [051411] 0.039999999 0. 040995997
[05102B] 0.041999939 0.042999998 [051413] 0.041999939 0.042999998
[051020] 0.044 0 044999998 - [051415] 0.044 0.044995998 -
4] 4] Y A

EE-151 Page 10

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Square Wavetable Data Overlay Loaded and Processed

CratalDe) Mensory | Flaaling Point 32 H] Cral o D) Mismory | Flaalang Poenk 32 h":]

P q
[Dsi00i) 1.0 1.0 [ODEL3IES] 1.0 1o
[051003] 1.0 1.0 [OELIEE] 1.0 1.0
[os1005] 1.0 1.0 [O5L3ED] 1.0 1.0
(051007 1.0 1.0 [0513EF] 1.0 1.0
[051009] 1.0 i.0 [0513Fi] 1.0 1.0
[05100B] 1.0 1.0 [0513F3] 1.0 1.0
[Dsi0oD) 1.0 1.0 [ODEL3IFE] 1.0 1.0
[D5100F] 1.0 1.0 [O5L3FY] 1.0 1.0
[051011) 1.0 1.0 [O5L3FY] 1.0 1.0
[0si012] 1.0 1.0 Eg;;ﬁ} 1 g 1 E
[051015] 1.0 1.0 13FD] 1 1
[051017] 1.0 1.0 —" [ODEL3IFF] 1.0 1.0 = |
[DE1019] 1.0 1.0 [DEL401] 1.0 1.0
[05101E] 1.0 1.0 [05L403] 1.0 1.0
[os101b] 1.0 1.0 [O51405] 1.0 1.0
[05101iF] 1.0 1.0 [051407] 1.0 1.0
[O5i0zi] 1.0 i.0 [DE1409] 1.0 1.0
[051023] 1.0 1.0 [ODEL40E] 1.0 1o
[051025] 1.0 1.0 [O5L40D] 1.0 1.0
[O5102¥) 1.0 1.0 LOZ140F] 1.0 1.0
[051029] 1.0 1.0 [051411] 1.0 1.0
[05i0ZB] 1.0 1.0 [0E1413] 1.0 1.0
[05i02D] 1.0 1.0 - [DEL415] 1.0 1o -
il L _{E: _“I k =

Linker-Generated Data Overlay “Live” and “Run” Address and Size Buffer Constants for the EZ-KIT Data
Overlay Example

Assembly Example C Example
Drak a0) Memory [Hedsdedimnal) =l x|
sips_owl -
[0503201] unﬁinm
tria ol
[OLi302] I][II][IEEIIIEE
DatalD™) MMemeaory [Hexadecimal] =) SlLaTE_ o]
Livehddresmes [050303) 00000003
[0S0300] DDZODOOD 0DZ009CE 0020138C Cnenand] oonionos.
Tundddrasoes livehddresses
[O50202] Q0051000 00051000 00051000 [050305] 0DZOODGD DOZODSCT OOZ0138E
runbordSize ruenAddresses
[DS0306] DOOOOFDL 00000301 DOO0OOFDl [050208] IJDUEJ"._DU-EE[IEI[I‘S-IDUD Qoas1000
LivalordSize LEunfoedSi s
[O5020%] 00000Y0L 00000%01 000007Ed [05030%] GOODOTDE DOOOOTLE O0O0DTD2 J
pref=tich [05030E] Ton007oe D80007DE B0A0ATDZ
[OE020C] OO0O0d0000 _' _ prefetch
ov_stack [050311] DO000DOD
[OS0300] DODDOODD 00000000 OO0OOO0Q v Atack
[O50310] OOOQO0000 foO00000 ODO0O0OO0O00 [O50212] OOOGOILL DOOBO00Z OQOOO000
[OE0212] 00000000 00000000 OOOODOOO [050215] ODOE3IFEC DOOOO0OO00 O0O0o000
[QOE0316] DDDDROQD [O0503LE] 0DOOOOQD DOOQOQ00 Q0onQoon
[eteTranss = [OE0318] Q0000030
[OS0217] O0ddd0o00 .) LataTranzt ms
[rhternal fexs s ranst sy [05031C] E“E““”'}E_ —
[0S03LE] 00OODOOD 00ODODDOD DODODOOD Cenain popoonon =
4 5 L o
EE-151 Page 11

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Listing 5. Assembly Data Overlay Test: data overlay test.asm

TEELEEEEE i rrrrrrrrrr
I /1
/1 In this exanple data overlay code there are four buffers x,y,mn. /1
/1 Each are of |ength 1000. (32 bit words) I
I /1
/1 Buffers x and mcontain sone initialised val ues. I
I /1
/1 Qur objective is to copy x toy, mton and p to q. I
I /1
/1 To save internal nenory, we allocate the same 2k internal nmenmory as //
/1 the run tine data nenory. I
I /1
/1 First we bring in x and y inside copy x to y and copy back I
/1 the current values to the external SDRAM nenory. I
/1 Once this process is over the run tine nmenory can be freed. I
I /1
/1 The same process sane bl ock copy process is also repeated for /1
/1 buffers mand n, and then again for p and q. I
I /1
TEELEEEEE i

#i ncl ude "data_ovl.h"

#define xy_ovl 1
#define m_ovl 2
#define pg_ovl 3

. GLOBAL data_overlay_test;

.EXTERN x, vy, m n, p, Q;

. EXTERN Bl i nk_LEDs_Twi ce, Blink_LEDs_Thrice, Blink_LEDs_4tines;
. EXTERN prefetch

. EXTERN Dat aTr ansf er;

. EXTERN I nt er nal 2exttransfer;

. SEGVENT/ PM pm _code
data_overlay_test:
Load_Data_Overl ay(xy_ovl); /* load x &y data buffers fromoverlay |live space
in SDRAM */
10 = 0;
i0 = x;
11 = 0;
il =y
| cntr=1000, do copy_n2n until Ice
ro = dn(i0,1);
copy_x2y: dn(il,1) =710
Store_Data_Overlay(xy_ovl); /* store x & y data buffers to overlay |live space in
SDRAM */
call Blink_LEDs_Twi ce; /* Data Overlay x &y load/store LED confirm*/
Load_Data_Overlay(mm_ovl); /* load m& n data buffers fromoverlay |live space
in SDRAM */
10 = 0;
i0=m
11 = 0;
il =n;
| cntr =1000, do copy_n2n until Ice
ro = dn(i0,1);
EE-151 Page 12

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

copy_n2n: dnm(i1,1) = rQ0;

Store_Data_Overlay(m_ovl); /* store m& n data buffers to overlay live space in
SDRAM */
call Blink_LEDs_Thrice; /* Data Overlay m & n | oad/store LED confirm*/
Load_Dat a_Overl ay(pg_ovl); /* load p & q data buffers fromoverlay |live space
in SDRAM */
10 = 0;
i0 = p;
11 = 0;
il=aq;
| cntr =1000, do copy_p2q until Ice
ro = dn(io,1);
copy_p2q: dn(i1,1) = r0;
Store_Data_Overl ay(pqg_ovl); /* store p & q data buffers to overlay live space in
SDRAM */
call Blink_LEDs_4tines; /* Data Overlay p & gq |oad/store LED confirm*/
RTS;
. ENDSEG,

Listing 6. C Data Overlay Code Test: data overlay test.c

TEELELEEEE i
I /1
/1 In this exanpl e data overlay code there are six buffers, which I
/1 consi st of 3 input wavetables: sine, triangle and square, and 3 //
/1 out put buffers used as output sources for each input wavetabl e. I
/1 Each buffer is of length 1000. (32 bit words) /1
I /1
/1 Buf fers sinetbl[], sawtbhl[] and squartbl[] contain initialized I
/1 floating point data I
I /1
/1 Qur objective is to copy sinethbl[] to y_ out[], I
/1 sawt bl [] to z_out[] and squartbhl[] to g_out[], I
I /1
/1 To save internal nmenory, we allocate the same 2k internal nenory as //
/1 the run tine data nenory. Il
I /1
/1 First we bring in sinetbl[] and y_out[] inside copy sinethl[] /1
/1 to y out[] and copy back the current values to the external I
/1 SDRAM nenory. Once this process is over the run tinme nenory I
/1 can be freed. /]
I /1
/1 The same process sane bl ock copy process is also repeated for /1
/1 buffers sawtbl[], squartbl[], z_out[] and q_out[]. I
I /1
/1 Anal og Devices, DSP Applications I
I Last Modified: 01/22/02 /1
I /1
TEELELEEEE i

#include "21161_EZKit. h"
#include "data_ovl.h.h "

#define sine_ovl 1
#define triang_ovl 2

EE-151 Page 13

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

#define square_ovl 3

i nt

numtines;

int OverlaylD;

void data_overlay_test()
{
int i, j, k;
Overlayl D = sine_ovl;
| oad_dat a_overl ay(Overl ayl D); /* load sine wave data buffers fromoverlay |ive
space i n SDRAM */
for (i =0; i < 1000; ++i)
{
y out[i] = sinethbl[i];
store_data_overl ay(Overlayl D); /* store sine wave data buffers to overlay |ive space
numtines = 4; in SDRAM */
Bl i nk_LEDs_S| owm(num_ ti nes) ; /* sine wave data overlay |oad/store LED
confirm?*/
Overlayl D = triang_ovl;
| oad_dat a_overl ay(Overl ayl D); /* load m& n data buffers fromoverlay live
space i n SDRAM */
for (j =1; j <= 1000; ++j)
{
z_out[j] = sawtbl[j];
store_data_overl ay(Overlayl D); /* store triangle wave data buffers to overlay live
numtines = 6; space i n SDRAM */
Bl i nk_LEDs_Medi un{num ti nmes); /* sawt ooth wave data overlay | oad/store LED
confirm?*/
Overlayl D = square_ovl ;
| oad_dat a_overl ay(Overl ayl D); /* load m& n data buffers fromoverlay |live space
in SDRAM */
for (k = 1; k <= 1000; ++k)
{
g_out[k] = squartbl[K];
store_data_overl ay(Overl ayl D); /* store square wave data buffers to overlay live
numtines = 8; space i n SDRAM */
Bl i nk_LEDs_Fast (num_ti nes); /* Square Wave Data Overlay |oad/store LED confirm*/
}
EE-151 Page 14

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Listing 7. Overlay Manager Source File: data ovly mgr.asm

FEEEEEEEE i i i e i i i r

I /1
/1 This code/ data overlay nanager sets up data overlays to/from SDRAM /1
/1 mapped to Bank 0 on the 21161 EZ-KIT Lite. Since the SDRAM data accesses /1
/1l are 32-bits, a generic 32-t0-32 non-packed is used to transfer of data /1
/1 tol/frominteral/external nenory. Therefore, no PACKING{} command is /1
/'l required in the overlay declaration section of the |inker. I
I /1
/1 This exanple could be nodified to set up data overlays to/fromBank 1 Flash [/
/1 nmenory, using 8to032 or 8to48 DMA packi ng nodes and the appropriate flash /1
/'l wite comrmands. The Overlay Declaration in the LDF file would require I
/1 the necessary PACKING} conmmand to prestore data to 8-bit space. I
/'l Refer to EE-150 for infornation on howto wite to the EZ-KIT Flash Menory. [/
I /1
NNy

#i ncl ude "def21161. h"

. SEGVENT/ DM dm dat a;

. EXTERN _ov_word_run_size_1;

. EXTERN _ov_word_run_size_2;

. EXTERN _ov_word_run_size_3;

. EXTERN _ov_word_live_size_1;

. EXTERN _ov_word_live_size_2;

. EXTERN _ov_word_live_size_3;

. EXTERN _ov_startaddress_1;

. EXTERN _ov_startaddress_2;

. EXTERN _ov_startaddress_3;

. EXTERN _ov_runtinestartaddress_1;

. EXTERN _ov_runtinestartaddress_2;

. EXTERN _ov_runtinestartaddress_3;

. VAR i veAddresses[2] = _ov_startaddress_1,
_ov_startaddress_2,
_ov_startaddress_3;

. VAR runAddresses[2] = _ov_runtinmestartaddress_1,
_ov_runtinestartaddress_2,
_ov_runtinestartaddress_3;

. VAR runWr dsSi ze[4] = _ov_word_size_run_1,
_ov_word_size_run_2,
_ov_word_size_run_3;

. VAR liveWwbrdSi ze[4] = _ov_word_size_ live_1,
_ov_word_size_live_2,
_ov_word_size_live_3;

. VAR pr ef et ch=0;

. GLOBAL pr ef et ch;

. VAR ov_stack[10];

. VAR Dat aTr ansfer;

. VAR I nt ernal 2exttransfer;

. GLOBAL Dat aTr ansfer;

. GLOBAL I nt ernal 2exttransfer;

. ENDSEG,

EE-151 Page 15

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

. SEGVENT/ PM pm code;
. GLOBAL _Overl ayManager;

_Overl ayManager :

/* RO register is the overlay 1D 1,2,... */

/* Rl register is the SYMBOL REFERENCE Address */

dm(ov_stack) = i8; /* save user registers tenporarily to overlay stack */

dm(ov_stack+1l) = nB;

dm(ov_stack+2) = 18;

dm(ov_stack+3) = r2;

n8 = RO; /* get user-selected overlay ID fromtable */

skip_i f_overl ay_| oaded:

i 8 = runAddresses - 1; /* pointer to previous address before runAddresses
buffer */

rO = dn(Internal 2exttransfer); /* check if we are | oading or storing data ovel ay
data */

r0 = pass ro0; /* if =1, we store to ext nem otherwi se, = 0 |oads

fromext nmem*/

if NE junp continue_ovly_|oad_process;

i 8 = runAddresses - 1; /* pointer to previous address before runAddresses buffer */
i8 = pm(n8,i8); /* Can we skip overlay transfer if data already resident? */
px = pn(0,i8);

r2 = px1; /* Now check if already |oaded */

ro=r0 - r2; /* If equal to zero, data still there */

if EQ junp TransferOver; /* we can skip DVA setup for load to run space */

continue_ovly_| oad_process:

i 8 = runAddresses - 1; /* pointer to previous address before runAddresses buffer */
dm(ov_stack+4) = i0; /* save nore user registers tenporarily to overlay stack */
dm(ov_stack+5) = n0;
dm(ov_stack+6) = 10;
dm(ov_stack+7) = ustatl;
18 = 0; /* di sabl e DAGs nodul us logic, no circular buffering */
10 = 0;
nD = nB; /* prenodi fy values are equal to the overlay synbol ID # */
i0 = liveAddresses - 1; /* pointer to previous address before |live Addresses
buffer */
ro = 0;
dm(DMAC10) = rO; /* initially disable and clear out DVA channel 10 */
ro = dm(nD,i0); /* External Live Address fromliveAddresses buffer */
dm(EI EPO) = rO0; /* wite Live Address to EPBO external index address register */
roO = pnm(n8,i8); /* Internal Run Address from runAddresses buffer */
dm(11 EPO) = rO; /* wite Run Address to EPBO internal index address register */
ro = 1; /* DVA int/ext nmodifys = 1 */
dm(EMEPO) = rO0; /* setup EPBO external and internal index nodify registers */
dn(1 MEPO) = rO0;
i8 = liveWwrdSize - 1; /* pointer to buffer for DVA external count size */
EE-151 Page 16

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

i0 = runWrdsSi ze - 1; /* pointer to buffer get DVA internal count size */

ro = dn(no,io0);
dm(CEPO) = rO; /* set nunber of "Run" internal words to transfer */

ro = pn(n8,i8);
pm(ECEPO) = rO; /* set nunber of "Live" external words to transfer */

Program or _Data_Transfer:
r0O = dn(DataTransfer); /* check for data overlay task */
r0 = pass ro0; /* if DataTransfer = 1, we do a data overlay DVA */
if eq junp LoadOpcodes;

rl = pcstk; /* Junp back to location where call was nmade */
pop pcstk; /* This will help us get back using the indirect del ayed
jump instruction */
LoadDat a:
rO = dn(Internal 2exttransfer); /* check if we are loading or storing data
overlay data */
r0 = pass ro0; /* if =1, we store to ext nem otherwise, =0

| oads fromext nmem */
if ne junp StoreData;

/* master node DMA, 32-32 no packing, data xfer, ext-to-int, DVA enable */
rO = MASTER | PMODE4;

dm(DMACL0) = rO0;

junp Start_DMA Sequence;

St or eDat a:
/* master node DMA, 32-32 no packing, data xfer, int-to-ext, DMA enable */
junp Start_DMA Sequence (db);
roO = MASTER | PMODE4 | TRAN,
dm(DVACL10) = rO0;

LoadOpcodes:
/* NOTE: This data overlay exanple never calls the instruction overlay support. This
code is not executed in this exanple, but is included in case the progranmer wants to
do both code and data overlays */
/* master node DMA, 32-to0-48 packing, instructions xfer, ext-to-int, DVA enable */
r0O = MASTER | PMODE3 | DTYPE | TRAN
dm(DMACL0) = rO0;

Start_DMA Sequence:
| RPTL = 0x00000000;
bit set nodel | RPTEN;
bit set inmask EPOI;

/* now turn on DMA channel 10 for code/data overlay |loading or storing */
ustatl = dn({ DVAC10);

bit set ustatl DEN, /* DVA enable bit on */

dm(DMAC10) = ustati1;

ro = 0; /* Used to reset key variables */
dm(Dat aTransfer) = rO0; /* Reset to 0 */
dn(I nternal 2exttransfer) = ro; /* Reset to 0 */
ustatl = dn{ov_stack+7); /* restore overlay nodified registers */
|0 = dn{ov_stack+6);
nD = dn{ov_stack+5);
i 0 = dn{ov_stack+4);
i8 = prefetch; /* determines if we wish to sit at IDLE or return */
r2 = pn(0,i8); /* to do sone other core accesses while | oad
conpl etes */
EE-151 Page 17

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

r2 = pass r2;
if NE junp dont_wait_for_DVA | RQ

wai t _for_ EPBO_DMA end:
idle;

* Overlay Load/ Store conplete */
bit clr imsk EPOI; *

tenporarily disable EPBO interrupts */

~

junp TransferOver;

dont_wait_for_ DVA | RQ

r2 = 0;

dm(prefetch) = r2;

r2 = dnm{ov_stack+3); /* restore the rest of overlay-nodified variables */
| 8 = dn{ov_stack+2);

ro0 = dnm(ov_stack);

i8 =r0;

B = ril;

rts; /* return if we don't need to wait for EPBO DVA

Interrupt */

Tr ansf er Over:

r2 = dnm{ov_stack+3); /* restore the rest of overlay-nodified variables */
| 8 = dn{ov_stack+2);
i8 =r1l;
n8 = 0;
rl = dnm{ov_stack+l);
ro = dn{ov_stack);
flush cache; /* this instruction not required for data overl ay
transfers */
junmp (n8B,i8) (db); /* indirect junp and return from overlay nmanager */
i8 =r0; /* remenber we already popped the PC Stack earlier */
B = ril;
. ENDSEG,
EE-151 Page 18

Technical Notes on using Analog Devices’ DSP components and development tools
Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

