
Engineer To Engineer Note          EE-98
Technical Notes on using Analog Devices’ DSP components and development tools from the DSP division

Phone: (800) ANALOG-D, FAX: (781) 461-3010, FTP: ftp.analog.com, EMAIL: dsp.support@analog.com

a

Using external bus arbitration to
group more than two ADSP-21065L

into a multiprocessing cluster

contributed by hs

Introduction:

The new ADSP-21065L allows by its system design
to face high speed real words digital signal
processing applications. To acquire the data or to
provide external mass storage, peripherals have to
be interfaced to the external port of the SHARC
processor. If the complexity of the task rises and
more than two ADSP-21065L are required to meet
the real time specification, an external bus arbiter is
necessary to keep the external bus free of conflicts.
This application note will show how easily more than
two ADSP-21065L can be arbitrated using a small
external programmable logic device.

Multiprocessing capabilities:

The ADSP-21065L is already equipped with
configuration pins and bus arbitration logic for up-to
two processors. These dedicated pins are:

ID1-0   : Definition of processor ID within a cluster
BR1-0 : Bus arbitration lines between two processors

So in a cluster of two, it is totally sufficient to assign
one processor to ID1 and the other to ID2. Finally,
the BR1 and BR2 lines have to be connected
together, as they are used for the handshaking
between the processors. This allows to connect both
external ports together and to log onto a common
external address and data bus which can be
mastered by a host processor, too.

Bus arbitration protocol:

When a multiprocessing system is reset by the
RESET pin, the bus arbitration logic on each
processor must synchronize to insure that only one
ADSP-21065L will drive the external bus. There
must be one bus master, and the other processors
must recognize which one it is before actively
arbitrating for the bus. The bus synchronization
scheme also allows the system to safely bring two
ADSP-21065L into and out of reset.

As soon as more than two processors have to share
the external resources, further external arbitration
logic is necessary to prevent bus conflicts.

This external logic has to take care that after reset
all ADSP-21065L will be synchronized and update
their internal record of who the current master is (in
the current bus master field, CRBM, of the SYSTAT
register). The synchronization after reset performs
according to the following rules:

• All ADSP-21065L except the one with ID=1 will
deassert their BRx line during reset. They will
keep their BRx deasserted for at least two cycles
after reset and until their bus arbitration logic is
synchronized.

• Afterwards an ADSP-21065L will consider itself
synchronized when it sees a cycle in which only
one BRx line is asserted. The ADSP-21065L will
identify the bus master by recognizing which BRx

is asserted, and will update its internal record of
who the current master is.

• The bus master will drive all memory strobes
directly after reset to prevent them from floating.

Realization in external logic:

To emulate this protocol, every processor must be
configured to ID=2 to remove multiple bus masters
driving memory strobes after reset. This is done by
the external logic asserting the BR1 pin of each
processor forming the cluster during reset. Further-
more it will keep BR1 pin low after reset to prevent
the bus slaves from glitching into the target. An
ADSP-21065L with ID=2 will drive its BR2 low after
reset. If it sees the BR1 line asserted after reset, it
will deassert its BR2 and check BR1 within the next
two cycles. As this is held low by the programmable
logic device, it will consider itself as a bus slave with
ID=2 and normal processor arbitration can start.

The external logic will give bus mastership to the
attached processors by monitoring their BR2 pins.
Every ADSP-21065L requiring external access for
peripheral operations will indicate this with driving it
BR2 output pin low. If no other ADSP-21065L is
currently requiring the external bus, the BR1 line of
the requesting ADSP-21065L will be deasserted
(e.g. driven high) so that a bus transition cycle
(BTC) can occur. All other BR1 lines connected to
the other processor will still be kept low. After this



EE-98  Page 2

Technical Notes on using Analog Devices’ DSP components and development tools from the DSP division
Phone: (800) ANALOG-D, FAX: (781) 461-3010, FTP: ftp.analog.com EMAIL: dsp.support@analog.com

BTC the ADSP-21065L has gained bus mastership
and will perform the external operation. The end of
this access is indicated by driving its BR2 pin high
again. Nevertheless the current ADSP-21065L will
maintain the bus token (BR1 high) until a different
ADSP-21065L wants to perform an external access.
This insures that the started SDRAM controller will
supply proper signals to possibly available SDRAM
memory bank connected to the external port.

Priority assignments:

Of course, it now may happen that several ADSP-
21065L requiring external access at the same time.
Therefore there must be some provisions that the
bus in only granted to one processor. Basically this
gives two possible arbitration schemes with either
fixed or rotating priority.

For example the bus mastership token would be
granted in a cluster of four ADSP-21065L with fixed
priority according to table1

Processor Number
Cycle # P #1 P #2 P #3 P #4

1 M - - -
2 M - BR BR
3 - BR M BR
4 - M - BR
5 - - - M

table1: fixed priority

where (M) = bus mastership, (BR) = external bus
required and (-) = no external request and for
rotating priority like in table2:

Processor Number
Cycle # P #1 P #2 P #3 P #4

1 M - - -
2 M - BR BR
3 - BR M BR
4 - BR - M
5 - M - -

table2: rotating priority

To improve the real time character of the bus usage
it is advisable to check what arbitration scheme
would be best suitable and to use the BMAX register
to determine the maximum amount of time for bus
masterhip.

The programmable logic device:

The following example of an bus arbiter for four
ADSP-21065L explains the requirements for the
logic device and the implemented schemes.

To monitor all BR2 pins of all the connected ADSP-
21065L, a certain number of input pins (4) is
needed. Additionally, the reset signal (1) and the
processor clock signal (1) is required. Finally a
RPBA pin (1) will allow to switch the arbitration
schemes. For the output the chip needs the BR1

pins (4), an init flip- flop for the delay after reset (1)
and a number of flip-flops for the implemented state
machine (3).

Over all, the design requires 7 inputs and 8 outputs
in a device with register capability. Due to the
complexity of the state equations, the design can
not be fitted into 20V8, instead a 22V10 has to used.
This device offers furthermore two unused
registered output pins, so that the device could
easily handle the bus arbitration for a cluster of six
ADSP-21065L. Figure 1 shows one of the possible
pin assignments for the device.

              PALL22V10
             +----++----+
   CLK_IN  --| 1  ++ 24 |--  VCC
   RESET   --| 2     23 |--  INIT    REG
   RPBA    --| 3     22 |--  BR1_4   REG
   BR2_4   --| 4     21 |--  BR1_3   REG
   BR2_3   --| 5     20 |--  BR1_2   REG
   BR2_2   --| 6     19 |--  BR1_1   REG
   BR2_1   --| 7     18 |--  B3      REG
   NC      --| 8     17 |--  B2      REG
   NC      --| 9     16 |--  B1      REG
   NC      --| 10    15 |--  NC
   NC      --| 11    14 |--  NC
   GND     --| 12    13 |--  NC
             +----------+

figure1: pinout of the PLD

The equations for the state machine can be found
attached to this document.

References:
• ADSP-2106x user’s manual chapter 7
• ADSP-21065L preliminary user’s manual
• ADSP-21065L preliminary data sheet
• AMD PALASM software
• http://www.analog.com/sharc/attack



EE-98   Page 3

Technical Notes on using Analog Devices’ DSP components and development tools from the DSP division
Phone: (800) ANALOG-D, FAX: (781) 461-3010, FTP: ftp.analog.com EMAIL: dsp.support@analog.com

;PALASM Design Description

;---------------------------------- Declaration Segment ------------
TITLE    Bus Arbiter for Multiple ADSP-21065L PlutO
PATTERN
REVISION 1.00.00
AUTHOR   HS
COMPANY  Analog Devices/DSP Europe
DATE     04/25/98

CHIP  _bus_ar  PAL22V10

;---------------------------------- PIN Declarations ---------------
PIN  1          Clk_in                          ; system clock
PIN  2          Reset                           ; reset line
PIN  3          RPBA                            ; fixed or /rotating
PIN  4          BR2_4                           ; from P4
PIN  5          BR2_3                           ; from P3
PIN  6          BR2_2                           ; from P2
PIN  7          BR2_1                           ; from P1
PIN  23         INIT                        REG ; delay
PIN  16         B1                          REG ; state
PIN  17         B2                          REG ; state
PIN  18         B3                          REG ; state
PIN  19         BR1_1                       REG ; to P1
PIN  20         BR1_2                       REG ; to P2
PIN  21         BR1_3                       REG ; to P3
PIN  22         BR1_4                       REG ; to P4

;----------------------------------- Boolean Equation Segment ------
STATE
MOORE_MACHINE

STATE00 = /B1 * /B2 * /B3
STATE01 = /B1 * /B2 *  B3
STATE02 = /B1 *  B2 * /B3
STATE03 = /B1 *  B2 *  B3
STATE04 =  B1 * /B2 * /B3
STATE05 =  B1 * /B2 *  B3
STATE06 =  B1 *  B2 * /B3
STATE07 =  B1 *  B2 *  B3

START_UP := POWER_UP -> STATE00

;TRANSITION EQUATIONS------------------
STATE00   :=  bf21ass    -> STATE01 ; P1 req
          +   bf22ass    -> STATE02 ; P2 req
          +   bf23ass    -> STATE03 ; P3 req
          +   bf24ass    -> STATE04 ; P4 req
          +   restart    -> STATE00 ; restart state
          +->               STATE00 ; no request



EE-98    Page 4

Technical Notes on using Analog Devices’ DSP components and development tools from the DSP division
Phone: (800) ANALOG-D, FAX: (781) 461-3010, FTP: ftp.analog.com EMAIL: dsp.support@analog.com

STATE01   :=  restart    -> STATE00 ; reset of state
    +   bf12grd  -> STATE02 ; fixed, P1 - P2
    +   bf13grd  -> STATE03 ; fixed, P1 - P3
    +   bf14grd  -> STATE04 ; fixed, P1 - P4

          +   bt12grd    -> STATE02 ; rotating P1 - P2
          +   bt13grd    -> STATE03 ; rotating P1 - P3
          +   bt14grd    -> STATE04 ; rotating P1 - P4
          +->               STATE01 ; access running

STATE02   :=  restart    -> STATE00 ; reset of state
    +   bf21grd  -> STATE01 ; fixed, P2 - P1
    +   bf23grd  -> STATE03 ; fixed, P2 - P3
    +   bf24grd  -> STATE04 ; fixed, P2 - P4
    +   bt23grd    -> STATE03 ; rotating P2 - P3
    +   bt24grd    -> STATE04 ; rotating P2 - P4
    +   bt21grd    -> STATE01 ; rotating P2 - P1

          +->               STATE02 ; access running

STATE03   :=  restart    -> STATE00 ; reset of state
    +   bf31grd  -> STATE01 ; fixed, P3 - P1
    +   bf32grd  -> STATE02 ; fixed, P3 - P2

      +   bf34grd  -> STATE04 ; fixed, P3 - P4
          +   bt34grd    -> STATE04 ; rotating P3 - P4

    +   bt31grd    -> STATE01 ; rotating P3 - P1
    +   bt32grd    -> STATE02 ; rotating P3 - P2

          +->               STATE03 ; access running

STATE04   :=  restart    -> STATE00 ; reset of state
    +   bf41grd  -> STATE01 ; fixed, P4 - P1
    +   bf42grd  -> STATE02 ; fixed, P4 - P2
    +   bf43grd  -> STATE03 ; fixed, P4 - P3
    +   bt41grd    -> STATE01 ; rotating P4 - P1
    +   bt42grd    -> STATE02 ; rotating P4 - P2
    +   bt43grd    -> STATE03 ; rotating P4 - P3

          +->               STATE04 ; access running

STATE05   := VCC         -> STATE00     ; future expansion
STATE06   := VCC         -> STATE00     ; future expansion
STATE07   := VCC         -> STATE00     ; future expansion

;OUTPUT EQUATIONS----------------------
STATE00.OUTF   = /BR1_1 * /BR1_2 * /BR1_3 * /BR1_4
STATE01.OUTF   =  BR1_1 * /BR1_2 * /BR1_3 * /BR1_4
STATE02.OUTF   = /BR1_1 *  BR1_2 * /BR1_3 * /BR1_4
STATE03.OUTF   = /BR1_1 * /BR1_2 *  BR1_3 * /BR1_4
STATE04.OUTF   = /BR1_1 * /BR1_2 * /BR1_3 *  BR1_4

CONDITIONS
;first branch
 bf21ass =  RESET * INIT * /BR2_1                             ; highest
 bf22ass =  RESET * INIT *  BR2_1 * /BR2_2                    ;
 bf23ass =  RESET * INIT *  BR2_1 *  BR2_2 * /BR2_3           ;
 bf24ass =  RESET * INIT *  BR2_1 *  BR2_2 *  BR2_3 * /BR2_4  ; lowest

;return for RESET
 restart =  /INIT



EE-98    Page 5

Technical Notes on using Analog Devices’ DSP components and development tools from the DSP division
Phone: (800) ANALOG-D, FAX: (781) 461-3010, FTP: ftp.analog.com EMAIL: dsp.support@analog.com

;returns for fixed priority
 bf12grd = RESET * INIT * BR2_1 *  RPBA *          /BR2_2
 bf13grd = RESET * INIT * BR2_1 *  RPBA *           BR2_2 * /BR2_3
 bf14grd = RESET * INIT * BR2_1 *  RPBA *           BR2_2 *  BR2_3 * /BR2_4

 bf21grd = RESET * INIT * BR2_2 *  RPBA * /BR2_1
 bf23grd = RESET * INIT * BR2_2 *  RPBA *  BR2_1 *          /BR2_3
 bf24grd = RESET * INIT * BR2_2 *  RPBA *  BR2_1 *           BR2_3 * /BR2_4

 bf31grd = RESET * INIT * BR2_3 *  RPBA * /BR2_1
 bf32grd = RESET * INIT * BR2_3 *  RPBA *  BR2_1 * /BR2_2
 bf34grd = RESET * INIT * BR2_3 *  RPBA *  BR2_1 *  BR2_2 *          /BR2_4

 bf41grd = RESET * INIT * BR2_4 *  RPBA * /BR2_1
 bf42grd = RESET * INIT * BR2_4 *  RPBA *  BR2_1 * /BR2_2
 bf43grd = RESET * INIT * BR2_4 *  RPBA *  BR2_1 *  BR2_2 * /BR2_3

;handover for rotationg priority
 bt12grd = RESET * INIT * BR2_1 * /RPBA *          /BR2_2
 bt13grd = RESET * INIT * BR2_1 * /RPBA *           BR2_2 * /BR2_3
 bt14grd = RESET * INIT * BR2_1 * /RPBA *           BR2_2 *  BR2_3 * /BR2_4

 bt21grd = RESET * INIT * BR2_2 * /RPBA * /BR2_1 *           BR2_3 *  BR2_4
 bt23grd = RESET * INIT * BR2_2 * /RPBA *                   /BR2_3
 bt24grd = RESET * INIT * BR2_2 * /RPBA *                    BR2_3 * /BR2_4

 bt31grd = RESET * INIT * BR2_3 * /RPBA * /BR2_1 *                    BR2_4
 bt32grd = RESET * INIT * BR2_3 * /RPBA *  BR2_1 * /BR2_2 *           BR2_4
 bt34grd = RESET * INIT * BR2_3 * /RPBA *                            /BR2_4

 bt41grd = RESET * INIT * BR2_4 * /RPBA * /BR2_1
 bt42grd = RESET * INIT * BR2_4 * /RPBA *  BR2_1 * /BR2_2
 bt43grd = RESET * INIT * BR2_4 * /RPBA *  BR2_1 *  BR2_2 * /BR2_3

EQUATIONS
 INIT      := RESET
 INIT.CLKF  = CLK_in

;----------------------------------- Simulation Segment ------------
SIMULATION
TRACE_ON CLK_in BR2_1 BR1_1 BR2_2 BR1_2 BR2_3 BR1_3 BR2_3 BR1_3 BR2_4 BR1_4
RESET INIT RPBA

;INIT validation (when all four /BR occur after RESET)
   SETF /BR2_1 /BR2_2 /BR2_3 /BR2_4       ; RESET after start-up
   SETF /RESET RPBA
   CLOCKF CLK_in
   CLOCKF CLK_in
   CLOCKF CLK_in
   SETF RESET
   CLOCKF CLK_in
   SETF BR2_1 BR2_2 BR2_3 BR2_4
   CLOCKF CLK_in
   CLOCKF CLK_in
   SETF /BR2_1 /BR2_2 /BR2_3 /BR2_4       ; arbitration starts
   CLOCKF CLK_in
   CLOCKF CLK_in
   CLOCKF CLK_in



EE-98     Page 6

Technical Notes on using Analog Devices’ DSP components and development tools from the DSP division
Phone: (800) ANALOG-D, FAX: (781) 461-3010, FTP: ftp.analog.com EMAIL: dsp.support@analog.com

   SETF  BR2_1   ; P#1 finished
   CLOCKF CLK_in
   CLOCKF CLK_in
   CLOCKF CLK_in
   SETF  BR2_2   ; P#2 finished
   CLOCKF CLK_in
   CLOCKF CLK_in
   CLOCKF CLK_in
   SETF  BR2_3 /BR2_2   ; P#3 finished, P#2 wants
   CLOCKF CLK_in
   CLOCKF CLK_in
   CLOCKF CLK_in
   SETF  BR2_2   ; P#2 finished
   CLOCKF CLK_in
   CLOCKF CLK_in
   CLOCKF CLK_in
   SETF /BR2_1
   CLOCKF CLK_in
   CLOCKF CLK_in
   CLOCKF CLK_in
   SETF  BR2_4   ; P#4 finished
   CLOCKF CLK_in
   CLOCKF CLK_in
   CLOCKF CLK_in
   SETF /BR2_1 /BR2_2 /BR2_3 /BR2_4       ; arbitration starts
   CLOCKF CLK_in
   CLOCKF CLK_in
   CLOCKF CLK_in
   SETF  BR2_1 BR2_2 BR2_4                ; break of lower priority
   CLOCKF CLK_in
   CLOCKF CLK_in
   CLOCKF CLK_in
   SETF BR2_1 BR2_2 BR2_3 BR2_4
   CLOCKF CLK_in
   CLOCKF CLK_in
   CLOCKF CLK_in
   SETF  /BR2_4
   CLOCKF CLK_in
   CLOCKF CLK_in
   CLOCKF CLK_in
TRACE_OFF
;-------------------------------------------------------------------


