
Engineer-to-Engineer Note EE-344

a

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Using the NAND Flash Controller on Blackfin® Processors
Contributed by Gurudath Vasanth Rev 1 – September 15, 2008

Copyright 2008, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
Analog Devices Blackfin® processors are targeted to be widely used in many handheld products such as
PDAs, smart phones and PDA phones, digital cameras, and many other portable media devices. These
products usually store multi-media content such as movie clips, pictures, and music. NAND flash is most
commonly used for storing such high-density data. The processor’s NAND flash controller simplifies the
memory interface design and eliminates the need for external on-board glue logic. It also reduces the
overhead on application software and thus improves the performance to a large extent.

This EE-Note discusses the on-chip NAND flash controller (NFC) on ADSP-BF52x and ADSP-BF54x
Blackfin processors. It covers software driver development and the algorithms that are required to manage
the NAND flash memories. Example code associated with this EE-Note includes block erase, page
program, page read, random data input, random data output, and copyback operations in addition to
managing the bad blocks. The driver code is written for the flash devices from ST Microelectronics
available on ADSP-BF527 EZ-KIT Lite® and ADSP-BF548 EZ-KIT Lite boards. The EE-Note concludes
with guidelines to re-use the drivers for SLC NAND flash devices from other vendors. Appendix A
summarizes the differences in NFC between ADSP-BF52x and ADSP-BF54x processors.

NAND Flash
NAND flash is arranged as blocks, and each block contains many pages. For example, NAND02G-B2C
from ST Microelectronics used on the ADSP-BF548 EZ-KIT Lite board contains 2048 blocks, and each
block contains 64 pages. The page size is 2048 bytes of main area used to store data and 64 bytes of spare
area which is commonly used to store ECC, software flags, and so on.

Unlike hard disks, NAND flash memories can only be programmed one page at a time and they can only
be re-programmed after the entire block containing the page has been erased. Also, NAND flash has a
restriction of a limited number of erasures per block. Usually, the number of program/erase cycles will
vary from 10,000 to 100,000 times, after which a block is not reliable to store data. Due to these
constraints, a sophisticated algorithm is used to make the NAND flash appear to the system as an ideal
storage device. This section discusses bad block management and wear leveling algorithms that extend the
life of the NAND flash devices. For more information on NAND flash memories, refer to
http://en.wikipedia.org/wiki/Flash_memory [6].

 a

Using the NAND Flash Controller on Blackfin® Processors (EE-344) Page 2 of 10

Bad Block Management

Some of the blocks of NAND flash shipped from the manufacturer are marked as “bad” and some blocks
can become bad during the course of use. NAND flash driver code must recognize these bad blocks and
be able to avoid using them by the application software.

For example, on ST Microelectronics flash devices, any block where the 1st and 6th bytes (or 1st word, in
the spare area of the 1st page) does not contain 0xFF, is treated as a bad block. So, these blocks should be
identified first before any erase operation is performed. A table containing the information of invalid
blocks should be maintained. Any blocks that become invalid during the course of use should be updated
in the bad block table.

The associated code first checks for the existence of a bad block table. If it is not created, the code checks
for the invalid blocks marked by the manufacturer. This table is usually kept in block 0 as all the vendors
guarantee block 0 as a valid block. (Associated code provides users with an option to keep the bad block
table in any block). This table is loaded to internal memory for further updating when the erase/program
operation fails or when there is error in the error checking and correction (ECC) itself during a read
operation. Figure 1 shows the flowchart of bad block management implementation in the sample code.

Since the NAND boot starts from block 0, the bad block table in the associated code can be kept
in a block other than block 0, so as to evaluate NAND boot feature as well. By default, the table
is kept in block 5.

The NAND flash file system sample code provided with the VisualDSP++® 5.0 Update 4
development tools, by default, reserves a 10-block region at the start of the array, which is not
managed by the file translation layer. This is intended to allow the user to evaluate NAND boot
or for other purposes. Hence, it is recommended that users use this space to evaluate the sample
code provided with this EE-Note. Refer to the readme file of the NAND flash file system
example in the VisualDSP++ installation for more details.

Figure 1. Flowchart of bad block detection

 a

Using the NAND Flash Controller on Blackfin® Processors (EE-344) Page 3 of 10

Wear Leveling

NAND flash has a special property in that any page to be written into a block must be erased. Usually, the
number of program/erase cycles will vary from 10,000 to 100,000 times, after which the memory cells
wear out. For write-intensive applications, it is recommended to implement a wear-leveling algorithm to
monitor and spread the number of write cycles per block. This way all the blocks will undergo an equal
number of erase cycles, thereby extending the life of the device.

There are many methods to implement a wear-leveling algorithm. The basic requirement is to spread the
number of program/erase cycles across all the blocks. For example, a round-robin method can be used to
select the physical blocks. Another method is to maintain a vector having the number of program/erase
cycles undergone by each block. The algorithm should map the virtual block to the youngest physical
block. A highly reliable system should implement a sophisticated algorithm to extend the life and data
retention of the device.

NAND Flash File System

Most of the portable and handheld systems require high density to store large multimedia files, and
NAND flash suits these applications. The main characteristics of NAND flash is that bits can be cleared
only by erasing a large block of memory, and each block can sustain a limited number of erase cycles.
Due to these limitations, the existing file systems cannot be used directly to support NAND flash.
Sophisticated algorithms must be used in file systems to overcome these limitations and effectively use
the flash memory. This can be achieved either by having a translation layer between the existing file
system and flash device to mask the differences, or by developing a customized file system to suit the
flash properties. A file translation layer would basically perform block-to-sector mapping, reclamation
(garbage collection), and wear leveling. This layer communicates with the low-level drivers which
includes ECC and bad block management.

Many file systems such as JFFS (Journaling Flash File System), JFFS2, and Trimble File Systems are
feasible to use with NAND flash. Among these, YAFFS (Yet Another Flash File System) by Aleph One is
only one file system that is designed specifically for NAND flash memories under any operating system.
It uses an efficient map structure to map file locations to physical address of NAND flash.

NAND Flash Drivers
This section discusses how to implement the basic drivers such as erase/program/read. The discussion
starts with an overview of NFC on ADSP-BF52x and ADSP-BF54x processors.

A Quick Look at NFC

The key features of NFC include:

 Support for SLC NAND flash devices with page sizes of 256 and 512 bytes. Larger page sizes are
supported through software

 Supports DMA transfer between internal memory and NAND flash device

 a

Using the NAND Flash Controller on Blackfin® Processors (EE-344) Page 4 of 10

 Supports error checking and correction (ECC) that allows the detection of multiple-bit and correction
of 1-bit errors

Along with these features, NFC provides a configurable set-up time for writing and reading data to easily
suit the requirements of the flash device interfaced with the processor. The page size, NAND width, and
set-up times are configured in the NFC_CTL register. The module is enabled by configuring the PORTx_FER
and PORTx_MUX registers appropriately. For more information on NFC of ADSP-BF52x and ADSP-BF54x
processors, refer to ADSP-BF52x Blackfin Processor Hardware Reference (Volume 2 of 2) [8] and the
ADSP-BF54x Blackfin Processor Peripheral Hardware Reference. [9]

Block Erase

Before writing to the page, the block to which the page belongs must be erased. First, the block erase set-
up must be issued by writing to the NFC_CMD register. This is followed by the address cycle providing the
block address by writing to the NFC_ADDR register. Finally, the block erase confirm code must be issued.
An interrupt can be set up to detect the rising edge on the ND_RB/ signal, which indicates that the block
erase operation is completed. Figure 2 shows the flow chart for the block erase operation.

Figure 2. Flow chart of block erase operation

BlockErase(BlockNo); // Pass the BlockNo to be erased

Listing 1. API to erase a block

Page Write

The page program operation is the standard sequential operation to program data to the memory array. All
the flash commands are issued by writing to the NFC_CMD command register.

First, the page program set-up code command must be issued. This is followed by the address cycle by
writing to the NFC_ADDR register. The number of address bus cycles to be issued depends on the size of the
NAND flash device used. For example, a 2-Gbit NAND flash device requires 5 address bus cycles. The
flash device data sheet gives the details about the address bus cycle required for the specific operation.

 a

Using the NAND Flash Controller on Blackfin® Processors (EE-344) Page 5 of 10

The page write start bit in the NFC_PGCTL register must be set; this initiates the DMA transfers to complete
the page write. After writing all of the data, software can append the ECC values from the ECC registers
to store them in the spare area of the NAND flash. The ECC for a 256-byte page will be available in the
NFC_ECC0 and NFC_ECC1 registers. For a 512-byte page, the ECC values in the NFC_ECC2 and NFC_ECC3
registers should also be considered. Finally, page program confirm command is issued to initiate the
programming, which asserts the ND_RB/ signal.

Once the operation is complete, the ND_RB/ signal de-asserts and a rising edge on this signal will set the
bit in the NFC_STAT register. An interrupt can be set up to detect the rising edge of the ND_RB/ signal,
which indicates the page write operation is completed.

Large page size is supported in software. For example, a 2K-byte page can be treated as four 512-byte
pages. The ECC generated for every 512-byte page is temporarily stored and finally written to the spare
area during page write operation. Software must reset the ECC registers by writing to the NFC_RST register
before starting the next 512-byte transfer.

Figure 3 shows the flow chart for a page write operation. The example code associated with this EE-Note
demonstrates a page write operation to a flash device that has a 2048-byte page size.

Figure 3. Flow chart of page write operation

PageWrite(PageNo, BlockNo, &WriteData); // &WriteData is the address in internal

// memory where data to be written to
 // flash is stored.

Listing 2. API to perform page write operation

 a

Using the NAND Flash Controller on Blackfin® Processors (EE-344) Page 6 of 10

Random Data Input

During a sequential input operation, the next sequential address to be programmed can be replaced by a
random address, by issuing a random data input command. This way, it allows writing to a particular
location in a page. The data to be written into NAND flash is stored in the NFC_DATA_WR register. Figure 4
shows the flow chart of the random data input operation. The code associated with this EE-Note provides
an API to perform this operation.

Figure 4. Flow chart of random data input operation

RandomDataInput(ByteNo, PageNo, BlockNo, DataInput); //DataInput is the data to be
 //stored in the Byte of a page

Listing 3. API to perform random data input

Page Read

For page read operations, first the read set-up command is issued by writing to the NFC_CMD register,
which is followed by the address cycle. Then the read command code is issued, which asserts the ND_RB/
signal. When a rising edge on ND_RB/ is detected, it indicates that the data requested from a particular
page is available. To initiate the DMA transfers for a page read operation, the page read start bit in the
NFC_PGCTL register must be set. The ECC values are calculated for every 256- or 512-byte page. When the
page read is complete, the core must read the ECC stored in the spare are during page write operation. The
ECC stored during write operation is compared to the new ECC generated during read operation to
determine the error.

Figure 5 shows the flow chart for a page read operation. The example code associated with this EE-Note
demonstrates a page read operation to a flash device of that has a 2048-byte page size.

 a

Using the NAND Flash Controller on Blackfin® Processors (EE-344) Page 7 of 10

Figure 5. Flow chart of page read operation

PageRead(PageNo, BlockNo, &ReadData); // &ReadData is the address where data to
 // read from flash to be stored in
 // internal memory.

Listing 4. API to perform a page read operation

Random Data Output

The random data output command can be used to read data in any location of a page. After issuing the
sequential read command, the column address should be changed and the random data output command
output must be issued. A read request is triggered by writing to the NFC_DATA_RD register. The RD_RDY bit
in the NFC_IRQSTAT register indicates that the data is available in the NFC_READ register, which can be
read to internal memory. Figure 6 shows the flow chart for a random data output operation. The code
associated with this EE-Note provides an API to perform this operation.

 a

Using the NAND Flash Controller on Blackfin® Processors (EE-344) Page 8 of 10

Figure 6. Flow chart of random data output operation

RandomDataOutput(PageNo, BlockNo, DataOutput); //DataOutput is the data read
 //from a location in a page

Listing 5. API to perform a random data output operation

Error Analysis
NFC employs ECC hardware that uses the Hamming code algorithm. It generates two sets of parity bits
for every 256-byte page, which is available in the NFC_ECC0 and NFC_ECC1 registers. A 512-byte page is
split as two halves, and ECC is calculated for each half. The ECC for first half is stored in the NFC_ECC0
and NFC_ECC1 registers, and the ECC for the next half is stored in the NFC_ECC2 and NFC_ECC3 registers.

Once the page read operation is done, the software must compare the ECC stored during write operation
to the new ECC generated during the read operation to determine the error. This is determined by
generating the syndromes which is the XOR operation of the ECC values stored during write
(ECC0calculated and ECC1calculated) to the ECC generated during the read (ECC0stored and ECC1stored)
operation. The following equations are used to calculate the syndromes. Software should analyze these
syndromes and should take necessary actions.

Syndrome0[21:0] = ((ECC1calculated, ECC0calculated) ^ (ECC1stored, ECC0stored));
Syndrome1[10:0] = (ECC0calculated) ^ ECC0stored);
Syndrome2[10:0] = (ECC0calculated ^ ECC1calculated);
Syndrome3[10:0] = (ECC0stored ^ ECC1stored);
Syndrome4[10:0] = Syndrome2 ^ Syndrome3;

Listing 6. Syndrome calculation

 a

Using the NAND Flash Controller on Blackfin® Processors (EE-344) Page 9 of 10

If Syndrome0 is equal to zero, the data is valid.

If Syndrome0 has 11 bits set to ‘1’ and Syndrome4 is equal to 0x7FF, there is a one-bit correctable error.
Syndrome1 gives the failing bit within the 256-byte block. Syndrome1[0-2] indicates failing bit, and
Syndrome1[3-10] indicates a failing byte, which has to be inverted.

If Syndrome0 has one bit that is one, there is an error in the ECC data itself.

If Syndrome0 has any other value, there is a multiple-bit, unrecoverable error. Software should mark the
block containing this page as a bad block.

The sample code associated with this EE-Note performs the error analysis when a page read operation is
performed.

Guidelines to Re-Use the Drivers
This section gives the guidelines to re-use the software drivers for other SLC NAND flash devices. As an
example, the MT29F4G08AAAWP device from Micron® is considered here and the modified drivers for
this flash device is also available with this EE-Note.

 The flash commands are to be included appropriately in the main.h header file.

 Flash information about number of blocks and page size must be changed in the Init.h header file.

 The number of address cycles to be issued must be changed in the BlockErase.c, PageWrite.c, and
PageRead.c files; this depends on the flash density. For example, MT29F4G08AAAWP is a 4G-byte
NAND flash and requires 5 address cycles to be issued for page write and page read operations. The
flash device data sheet provides the details about addressing information.

 Refer to the flash device data sheet to identify the bad blocks marked by the manufacturer. For
example, on flash devices from Micron, the 1st byte in the spare area of the 1st and 2nd page of every
block must be read to determine the invalid blocks marked by the manufacturer.

Appendix A
Table 1 lists differences between the NFC on ADSP-BF52x processors and ADSP-BF54x processors.

Parameters ADSP-BF52x Processors ADSP-BF54x Processors

Data width 8 bits. D0-D7 8/16 bits: D0-D15

NFC signals Separate signals for write enable (ND_WR/) and
read enable (ND_RE/).

NFC is shared with AMC and ATAPI. Uses
AWE/ and ARE/ signals for write and read
enable, respectively.

DAB bus 16 bits: 2 access for 8-bit flash. 32 bits: 4 access for 8-bit flash.
 2 access for 16-bit flash.

DMA channel When NFC is functionality is selected, the shared DMA
channel will be available for NFC automatically.

NFC and SDH share a PMAP assignment on
DMA Controller 1. It is enabled in the
DMAC1_PERIMUX register.

Table 1. Differences in NFC on ADSP-BF52x and ADSP-BF54x processors

 a

Using the NAND Flash Controller on Blackfin® Processors (EE-344) Page 10 of 10

References
[1] NAND01G-B2G NAND02G-B2C Data Sheet, Rev 3, November 2006, ST Microelectronics

[2] NAND512-B, NAND01G-B NAND02G-B NAND04G-B NAND08G-B Data Sheet, February 2005, ST Microelectronics

[3] AN1820 Application Note How to Use the FTL and HAL Software Modules to Manage Data in Single Level Cell NAND
Flash Memories, October 2004, ST Microelectronics

[4] AN1822 Application Note Wear Leveling in Single Level Cell NAND Flash Memories, November 2004,
ST Microelectronics

[5] Algorithms and Data Structures for Flash Memories- Survey of various Flash File Systems by Eran Gal and Sivan
Toledo, Tel-Aviv University August 2005

[6] http://en.wikipedia.org/wiki/Flash_memory

[7] MT29F4G08AAA, MT29F8G08BAA, MT29F8G08DAA, MT29F16G08FAA Data Sheet, Rev B February 2007, Micron®
Technology, Inc

[8] ADSP-BF52x Blackfin Processor Hardware Reference (Volume 2 of 2). Rev 0.3, September 2007. Analog Devices, Inc.

[9] ADSP-BF54x Blackfin Processor Hardware Reference (Volume 1 of 2) Preliminary. Rev 0.4, August 2008.
Analog Devices, Inc.

[10] ADSP-BF54x Blackfin Processor Hardware Reference (Volume 2 of 2) Preliminary. Rev 0.4, August 2008.
Analog Devices, Inc.

[11] ADSP-BF522/523/524/525/526/527 Blackfin Embedded Processor Preliminary Data Sheet, Rev. PrE, August 2008.
Analog Devices, Inc.

[12] ADSP-BF542/BF544/BF547/BF548/BF549 Blackfin Embedded Processor Preliminary Data Sheet, Rev. PrH,
August 2008. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – September 15, 2008
by Gurudath Vasanth

Initial release.

http://en.wikipedia.org/wiki/Flash_memory

	Introduction
	NAND Flash
	Bad Block Management
	Wear Leveling

	NAND Flash File System
	NAND Flash Drivers
	A Quick Look at NFC
	Block Erase
	Page Write
	Random Data Input
	Page Read
	Random Data Output

	Error Analysis
	Guidelines to Re-Use the Drivers
	Appendix A
	References
	Document History

