
Engineer-to-Engineer Note EE-271

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Using Cache Memory on Blackfin® Processors
Contributed by Kunal Singh & Andreas Pellkofer Rev 2 – May 13, 2009

Copyright 2005-2009, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of
their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
This application note discusses cache memory
management for Analog Devices Blackfin®
processor family. The document introduces
popular cache schemes and then discusses the
Blackfin instruction cache and the data cache in
detail.

The described features are available on all
Blackfin processors. Example code is provided
with this application note to demonstrate cache
memory management. It applies to all derivatives
of the Blackfin processor family. This document
assumes that the reader is familiar with basic
cache terminology.

Figure 1. ADSP-BF533 block diagram

Using Cache Memory on Blackfin® Processors (EE-271) Page 2 of 32

Contents
Introduction ...1
Contents ...2
Cache Memory Concepts ..3

Memory Configuration ...3
Cache Terminology ..3
Block Placement ...4
Block Replacement ..4
Block Identification ...5
Write Strategies...6

Blackfin Cache Model...6
Blackfin Instruction Cache Configuration ..8
Blackfin Data Cache Configuration11
Memory Protection and Cache Unit15
Cacheability Protection Lookaside Buffers
(CPLBs) ..15
Memory Pages and Page Attributes17
CPLB Status Registers ...18
CPLB-Related Sequencer Exceptions20
Page Descriptor Table ...20
Coherency Considerations......................................20
Cache and Instruction Pipeline........................20

Handling the Instruction and Data Cache........21
Enabling the Cache ..21
Instruction Memory Control Register
(IMEM_CONTROL) ...21
Data Memory Control Register
(DMEM_CONTROL) ...21
Cache Control Instructions23

Accessing the Cache Memory23
Accessing the Instruction Cache23
Accessing the Instruction SRAM........................24
Accessing the Data Cache......................................24

Performance Considerations25
Instruction Cache: Optimized Conditions ..25
Instruction Cache: Bad Concept........................25
Data Cache ...26
Core Clock vs. System Clock...............................26
Refreshing SDRAM Memory ..26

SDRAM Performance .. 27
Conclusions .. 27

VisualDSP++® Compiler Support 28
Header Files.. 28
CPLB Control.. 28
CPLB Installation .. 28
Exception Handling.. 28
Using the Project Wizard 29

Summary of MMRs .. 30
Cache Configuration for Blackfin Derivatives
... 30
Conclusion.. 30
Appendix... 31
References.. 31
Table of Figures.. 31
List of Tables .. 32
Document History.. 32

Using Cache Memory on Blackfin® Processors (EE-271) Page 3 of 32

Cache Memory Concepts
This section discusses the cache memory model
in general. The actual Blackfin memory model is
discussed in the next section.

Memory Configuration
Systems that require huge amounts of memory
generally employ a memory configuration with
different memory levels. Memory at the highest
level (internal L1 memory) provides the highest
performance at the highest cost. Lower-level
memories have multiple cycles of access times,
but cost less (e.g., external SDRAM memory).

Cache memory is a high-level memory mastered
by the cache controller. It is guarded against
direct data access. The cache controller allows
larger instruction and data sections to exist in
low-level memory, and code and data that are
used most frequently are brought into cache (by
the cache controller) and thus, are available for
single-cycle access, just as though it is in L1
memory. The cache architecture is based on the
fact that processor memory space has been sub-
divided in to a number of fixed-size blocks
(referred to as cache-lines). A cache-line is
considered to be the smallest unit of memory to
be transferred from external memory to the cache
memory as a result of a cache miss.

A reference to the memory is identified as a
reference to a particular block. Figure 2 depicts a
memory configuration in which external memory
space has been sub-divided into twenty-four
memory blocks and the cache memory is divided
into six blocks. (This is an example of a general
memory configuration. The number of memory
blocks is actually different for the Blackfin
memory model.) The block size for the external
memory and the cache memory is the same.
Since the cache memory has a size of six blocks
(in this particular example), at any time, a
maximum of six data blocks of the main memory
is available in the cache memory.

Cache Terminology

 Way: An array of line storage elements in an
m-way cache.

 Locked way: If a way is locked, it does not
participate in the least-recently used (LRU)
replacement policy.

 Set: A group of m-way storage locations in a
way of an m-way cache. A specific memory
block is mapped to a specific set. The cache
controller chooses a way within the set.

 Cache-line: 32-byte line of memory that is
transferred to/from higher-level memory
from/to cache.

 Dirty/clean: State of cache-line, indicating
whether the data in the cache has changed
since it was copied from source memory.

 Cache hit: The processor references a
memory block (in the main memory) that is
already buffered in the cache. The processor
will access the data from the cache memory.

 Cache miss: The processor references a
memory block that is not available in the
cache. Upon a cache miss, the cache
controller moves the referenced memory
block from lower-level memory to the cache
memory.

 Victim: A dirty cache line that must be
written to memory before it can be replaced
to free space for a cache line allocation (see
victim buffer in Figure 1).

For more details on cache terminology, refer to
the “Memory” chapter of the Blackfin Processor
Programming Reference [3].

In the following discussions, the words
line, cache-line, and cache-block are
used interchangeably. Therefore, a block
in external memory represents the same
amount of memory size as a cache-line.

Using Cache Memory on Blackfin® Processors (EE-271) Page 4 of 32

Block Placement
Three schemes are commonly used for deciding
the location where the incoming block may be
placed in the cache memory.

Direct Mapped Cache

Figure 2. Memory arranges as fixed-size blocks

Every block in the lower-level memory has only
one fixed destination block in the cache. There
exists a one-to-one mapping from lower-level
memory to the cache memory. This mapping is
based on the address of the block in the lower-
level memory. This scheme has the lowest
management complexity and flexibility.

Fully Associative Cache
A block in the main memory can replace any
block in the cache memory. The mapping is
completely random. This strategy has the highest
management complexity but also provides the
highest flexibility.

Set Associative Cache
Cache memory is arranged in sets. A set consists
of a number of blocks. Any block in the lower-
level memory has a fixed destination set (in
which it can be placed) in the cache. The
incoming block may replace any of the blocks
within this associated set. If there are m blocks in
a set, the cache configuration is called an m-way
set associative. This block placement method is a
compromise between management complexity
and flexibility. Figure 3 depicts a 2-way set
associate memory.

The first two schemes are special cases of the set
associative cache (direct mapped for m = 1, and
fully associative for m = number of cache-lines).

Figure 3. Configuration for a 2-way set associative
cache memory

Block Replacement
Figure 4 shows a comparison of block placement
for a 1-way and a 4-way set associative cache.
Consider a linear flow through a large loop
program in external memory. When cache
locations are overwritten before they can be used
again, cache is “trashed”. A 4-way cache is much
more likely to have the required instruction or
data word still present in the cache to re-use it
again than a 1-way cache. Code must be re-used
to make cache attractive.

In direct mapped cache, there is always a fixed
location inside the cache memory, at which a
specific part from cacheable (external) memory
can be placed. However, with fully associative or
set-associative placement, multiple locations may
be chosen on a cache-miss. The blocks that can
possibly be replaced are called participating
blocks. Following are some strategies primarily
employed for selecting the block to be replaced:

 Random replacement: The destination block
is randomly selected out of participating
blocks. A pseudo-random number generator
may be used to select the destination block.
This is the simplest, but least efficient
implementation.

 First in, first out (FIFO) replacement: The
incoming block replaces the oldest
participating block.

Using Cache Memory on Blackfin® Processors (EE-271) Page 5 of 32

 Least-recently used (LRU) replacement:
Under this scheme, all accesses to blocks are
recorded. The replaced block is the one that
has been unused for the longest time. LRU
replacement relies on a corollary of locality:
If recently used blocks are likely to be used
again, a good candidate for disposal is the
least-recently used block.

 Modified LRU replacement: Modified in the
case of a Blackfin processor means that bit 8
(CPLB_LRUPRIO) in the CPLB data registers
is set or cleared (see Figures 17 and 18). This
bit has higher priority than LRU policy.

Under this scheme, a block is assigned a low
priority or a high priority.

If the incoming block is a low-priority block,
only low-priority blocks can participate in the
cache replacement.

If the incoming block is of high priority, all
low-priority blocks will participate in the
cache replacement. If there are no low-
priority blocks, the high-priority blocks can
participate in the replacement policy.

LRU policy is used to choose the victim
block among participating blocks.

Figure 4. Block placement

Block Identification

Block Address

Tag Field Index Field Block Offset

Used by the cache
controller to
determine a cache
hit or miss

Used to map a
given block to
a particular set

Used to select a
word within the
given block

Table 1. Address partitioning

Not all the cache-blocks may have valid
information contents. For example, at system
startup, cache memory will not contain any valid
data. The cache-blocks will be filled whenever a
cache-miss is encountered. A mechanism must

identify whether a cache-block has a valid data
entry in it. To identify this, a so-called “valid” bit
is associated with each cache-block. When a
cache-block is filled with valid data, the
corresponding valid bit is set

In addition to a valid bit, every block in the cache
also has an address tag associated with it. This
address tag provides the physical address of
cached block in external memory. When the
external memory block is referenced, the cache
controller compares external address with cache
address tags (with a valid bit) for the set that
might contain this block. If the block address
matches one of the cache address tags, it results
in a cache hit.

Using Cache Memory on Blackfin® Processors (EE-271) Page 6 of 32

Under a set-associative cache configuration, each
memory address can be viewed as a combination
of three fields (Table 1). The first division is
between the block address and the block offset.
The block (frame) address can be further divided
into the tag field and the index field.

The block offset field selects the desired data
from the block. The index field selects the set,
and the tag field is compared against it for a hit.

Write Strategies
The following section discusses two different
issues with the memory write operations
associated with data cache.

Write Operations with a Cache Hit
There are two basic options when writing data
back to external memory:

 Write-through (WT): The information is
written to both the block in the cache and to
the block in the source memory. The
behavior/performance is similar to write
accesses to external memory without having
cache enabled.

 Write-back (WB): The information is written
only to the block in the cache. When
modified, the victim cache-line is written to
the main memory only when it is replaced.

A store operation, especially in Write-
Through operation mode, will only
update the modified data. No complete
cache-line is written to external memory
if not necessary.

To reduce the frequency of writing back blocks
on replacement, a feature called dirty bit is
commonly used. This status bit indicates whether
the block is dirty (modified while in the cache) or
clean (not modified). If the block is clean, it is
not written back during replacement. Although it
is application dependent, write-back mode yields
about a 10-15% improvement over write-through
mode. Write-through mode is best when
coherency must be maintained between more
than one resource (e.g., DMA and core).

Write Operations with a Cache Miss
Since the data are not needed on a write, there
are two options on a write miss:

 Write allocate: The block is allocated on a
write miss, followed by the write-hit actions
described above. In this scheme, a write miss
act like a read miss. First, a cache-line is
fetched from external memory before
updating both internal cache and source
memory.

 No-write allocate: Under this option, write-
misses do not affect the cache. The block is
modified only in lower-level memory and no
caching takes place.

Blackfin Cache Model
Blackfin processors have (up to) three levels of
memory, providing a trade-off between capacity
and performance. Level 1 memory (also known
as L1 memory) provides the highest performance
with the lowest capacity. Level 2 (L2) memory
and level 3 (L3) memory provide much larger
memory sizes, but typically have multiple cycle
access times.

Blackfin processors have on-chip (L1) data and
instruction memory banks, which can be
independently configured as SRAM or cache.
When the memory is configured as cache, neither
the DMA controller nor the core’s load/store
instructions can access its content. All Blackfin
processors have a similar cache configuration
(see Table 2), but as a reference, the following
discussion is based on ADSP-BF533 devices.

The internal L1 memory of the Blackfin
processor is connected via the External
Access Bus (EAB) to the External Bus
Interface Unit (EBIU), which manages
accesses to external memory (e.g.,
SDRAM memory). Any ongoing
activity on the EAB cannot be
interrupted. An ongoing cache-line fill
will always finish once started.

Using Cache Memory on Blackfin® Processors (EE-271) Page 7 of 32

ADSP-BF561

Start
Address: Derivative: ADSP-

BF51x
ADSP-
BF52x

ADSP-
BF531

ADSP-
BF532

ADSP-
BF533

ADSP-
BF536

ADSP-
BF534/7

ADSP-
BF538/9

ADSP-
BF54x Core A Core B

0xFFE0 0000 Core MMR 2MB 2MB 2MB 2MB 2MB 2MB 2MB 2MB 2MB 2MB 2MB

0xFFC0 0000 System MMR 2MB 2MB 2MB 2MB 2MB 2MB 2MB 2MB 2MB 2MB

0xFFB0 1000 RESERVED

0xFFB0 0000 Scratchpad 4kB 4kB 4kB 4kB 4kB 4kB 4kB 4kB 4kB 4kB

0xFFA1 4000 Instr. ROM
 RESERVED

64kB

0xFFA1 0000 Instr. SRAM/Cache 16kB 16kB 16kB 16kB 16kB 16kB 16kB 16kB 16kB 16kB

0xFFA0 C000 Instr. SRAM 16kB 16kB 16kB

0xFFA0 8000 Instr. SRAM 16kB 16kB 16kB 16kB 16kB 16kB 16kB 16kB

0xFFA0 4000 Instr. SRAM 16kB 16kB 16kB 16kB 16kB 16kB 16kB

0xFFA0 0000 Instr. SRAM 16kB 16kB

16kB 16kB 16kB 16kB 16kB 16kB

0xFF90 8000 RESERVED

0xFF90 4000 Data B SRAM/Cache 16kB 16kB 16kB 16kB 16kB 16kB 16kB 16kB 16kB

0xFF90 0000 Data SRAM 16kB 16kB 16kB 16kB 16kB 16kB 16kB

0xFF80 8000 RESERVED

0xFF80 4000 Data A SRAM/Cache 16kB 16kB 16kB 16kB 16kB 16kB 16kB 16kB 16kB 16kB

0xFF80 0000 Data SRAM 16kB 16kB 16kB 16kB 16kB 16kB 16kB

0xFF70 1000

0xFF70 0000 Scratchpad 4kB

0xFF61 4000

0xFF61 0000 Instr. SRAM/Cache 16kB

0xFF60 4000

0xFF60 0000 Instr. SRAM 16kB

0xFF50 8000 RESERVED

0xFF50 4000 Data B SRAM/Cache 16kB

0xFF50 0000 Data B SRAM

16kB

0xFF40 8000

0xFF40 4000 Data A SRAM/Cache 16kB

0xFF40 0000 Data A SRAM

16kB

In
te

rn
al

 M
em

or
y

L
1

0xFEB2 0000

L
2 0xFEB0 0000 L2 SRAM RESERVED 128kB 128kB

 RESERVED
0xEF00 0000 Boot ROM 32kB 32kB 1kB 1kB 1kB 2kB 2kB 1kB 4kB 2kB

 RESERVED

0x2030 0000 ASYNC Bank 3 1MB 1MB 1MB 1MB 1MB 1MB 1MB 1MB 64MB 1MB
0x2020 0000 ASYNC Bank 2 1MB 1MB 1MB 1MB 1MB 1MB 1MB 1MB 64MB 1MB
0x2010 0000 ASYNC Bank 1 1MB 1MB 1MB 1MB 1MB 1MB 1MB 1MB 64MB 1MB
0x2000 0000 ASYNC Bank 0 1MB 1MB 1MB 1MB 1MB 1MB 1MB 1MB 64MB 1MB

 RESERVED

E
xt

er
na

l
M

em
or

y
L

3

0x0000 0000 SDRAM Memory 128MB 128MB 128MB 128MB 128MB 512MB 512MB 128MB 512MB 128MB

Table 2. Blackfin processors memory map

Using Cache Memory on Blackfin® Processors (EE-271) Page 8 of 32

Blackfin Instruction Cache Configuration

Cache Organization
The ADSP-BF533 processor has 80K bytes of
on-chip instruction memory. 64K bytes of
instruction memory are available as instruction
SRAM. The remaining 16K bytes of memory can
be configured as instruction cache or can be used
as instruction SRAM. Table 2 shows a combined
memory map for all currently available Blackfin
processor family members.

All Blackfin processor derivatives offer the same
amount of instruction memory available that is
configurable as either instruction cache or
SRAM. The start address in the memory map is
always identical.

When enabled as cache, the instruction memory
works as a 4-way set associative memory. Each
of the four ways can be locked independently.
The instruction cache-controller can be
configured to use the modified LRU policy or the
LRU policy for cache-line replacement.

 The 16K-byte cache is arranged as four 4K-
byte subbanks. A subbank is selected by
memory address bits [13:12].

 Each 4K-byte subbank consists of 32 sets. A
set is selected by memory address bits [9:5].

 Each set consists of four ways. A way is
selected by the cache controller according to
the cache-line placement policy. The ways
can be identified by the address bits [11:10]
in SRAM.

 In other words, a set-0 represents the four
ways of line-0.

 The size of a cache-line (to be read on a
cache miss) is 32 bytes.

The external read data port (for cache controller)
is 64 bits (8 bytes) wide. Hence, the cache
controller reads the complete cache-line as a
burst of four 8-byte-wide chunks of data.

Each line has a tag portion associated with it.
The tag portion consists of four parts:

 20-bit Address Tag: Compared against
memory address to determine cache-hit or
cache-miss.

 LRU Priority: Priority for modified LRU
policy.

 LRU State: To be used by cache controller
for LRU policy.

 Valid Bit: Valid data in line.

The 32-bit address space is mapped to cache
memory space as following:

 Subbank Select: Select a particular 4K-byte
subbank.

 Set Select: Select a set out of 32 cache sets.

 Byte Select: Select a byte within the given
line.

Figure 5 shows how a 4K-byte subbank in the
instruction cache is arranged. Each 4K-byte
subbank provides the same structure.

Using Cache Memory on Blackfin® Processors (EE-271) Page 9 of 32

Figure 5. Instruction cache configuration for one subbank – 4-way set associative

Situation Strategy

Only one invalid way in
the set

Incoming block would replace this block

More than one invalid way
in the cache

The invalid ways would be replaced in the following order:
Way0 first, then way1, then way2, and finally way3

No invalid ways in the
cache

Least-recently used (LRU) way would be replaced.
For Modified LRU policy: Way with high priority would not be replaced if a low-priority way
exists in the given set. A low-priority block cannot replace a high-priority block. If all ways are
high priority, the low-priority way cannot be cached.

Table 3. Line replacement policy for the Blackfin instruction cache

Cache Hits/Misses and Cache-Line Replacement
A cache hit is determined by comparing the
upper 18 bits and bits 11 and 10 of the
instruction fetch address to the address tag of
valid lines currently stored in a cache set. If the
address-tag comparison operation results in a
match, a cache hit occurs. If the address-tag
compare operation does not result in a match, a
cache miss occurs.

Consider an access to the address 0x10374956.
This address is mapped to set-10 of subbank 0.
The upper 18 bits and bits 11-10 of this address
(this forms the tag word) will hence be compared
against all the valid tags of set-10.

On a cache miss, the instruction memory unit
generates a cache-line fill access to retrieve the

missing cache-line from the external memory.
The core stalls until the target instruction word is
returned from external memory.

The address for the external memory access is
the address of the target instruction word. The
cache-line replacement unit uses the Valid and
LRU bits (of unlocked ways) to determine which
block (in the given set) is to be used for the new
cache-line. Table 3 shows how the cache-line
replacement policy is selected.

The cache-line fill access consists of fetching
32 bytes (one block) of data from memory. The
address for the read transfer is the address of the
target instruction word. When responding to a
line-read request from the instruction memory
unit, the external memory returns the target

Using Cache Memory on Blackfin® Processors (EE-271) Page 10 of 32

instruction 64-bit word first. The next three
words are fetched in sequential address order as
depicted in Table 4.

Target word Fetching order for next three words

WD0 WD0, WD1, WD2, WD3

WD1 WD1, WD2, WD3, WD0

WD2 WD2, WD3, WD0, WD1

WD3 WD3, WD0, WD1, WD2

Table 4. Instruction cache-line word fetching order

When the cache-block is retrieved from the
external memory, each 64-bit word is buffered in
a four-entry line fill buffer before it is written to a
4K-byte memory bank. The line fill buffer allows
the core to access the data from the new cache-
line as the line is being retrieved from external
memory, rather than having to wait until the line
has been written in to the cache.

Instruction Fetch Latency: Cache vs. no Cache
 Cache off: 64 bits / 8 bytes are fetched

 Cache on: always 256 bits / 32 bytes (burst
fill) are fetched

 As the SDRAM interface is 16 bits wide on
most of the Blackfin derivatives, each
instruction fetch is a sequence of 16-bit
accesses.

Figure 6 shows an instruction fetch from external
SDRAM memory (target address 0x000Ah) with
instruction cache turned off. A 64-bit block is
fetched (defined as WDx). Start address is
0x0008h as the access (instruction fetch) is 64-bit
aligned.

Figure 7 shows the same access but with
instruction cache turned on. The start address is
0x0008h as well. This is the beginning of WD1.
WD2 starts at address 0x0010h, and WD3 starts at
address 0x0018h. WD0 at address 0x0000h is the
last part of the cache-block to be transferred.

Figure 8 and Figure 9 show the execution latency
for instructions stored in external memory (start
address 0x00000). The signal “GPIO” is toggled

from 1 to 0 by the function in external memory.
The function looks like the following listing:

[--SP] = (R7:7,P5:5);
P5.H = hi(FIO_FLAG_C);
P5.L = hi(FIO_FLAG_C);
R7 = 0x20 (z);
w[P5] = R7;
ssync;
(R7:7,P5:5) = [SP++];
rts;

For an access to SDRAM memory, there are
several operations beside the actual memory read
(RD: Read command). For more details on
SDRAM performance, see Performance
Considerations on page 25.

Figure 8 and Figure 9 show the first access to a
specific bank in SDRAM memory. The target
row must be opened in the particular bank
(ACT: Active command) first.

After the ACTIVE-to-READ-or-WRITE-delay
(tRCD, here 3 SCLK cycles), the read command can
be sent. After the CAS latency (CL, here 3 SCLK
cycles), the first piece of data is available.

The latency for both instruction cache on and
instruction cache off is the same so far. For the
first 64-bit block of instructions, it makes no
differences. Execution time is identical. After
about 10 SCLK cycles, the first instruction is
executed.

The advantage of the instruction cache is that the
next piece of code – and usually the program
flow is linear – is fetched right after the first 64-
bit block. Compared to a cache-line length of
256 bits, it takes about 4x11 (plus ACT) SCLK
cycles until the last piece of data is available on
the EAB when instruction cache is not enabled.

With instruction cache enabled, the same
operation is done within 21 SCLK cycles
(including ACT).

For more information on instruction fetch latency
for internal L2 memory, refer to the “Memory”
chapter in the Blackfin Processor Programming
Reference [3].

Using Cache Memory on Blackfin® Processors (EE-271) Page 11 of 32

Figure 6. Instruction fetch with cache off

Figure 7. Instruction fetch with cache on

Figure 8. Latency with instruction cache off

Figure 9. Latency with instruction cache on

Blackfin Data Cache Configuration

Cache Organization
The ADSP-BF533 has 64K bytes of on-chip data
memory. 32K bytes of data memory are available

as data SRAM. The remaining 32K bytes of
memory are available as two independent 16K-
byte memory banks, which can be configured as
either data cache or data SRAM.

Using Cache Memory on Blackfin® Processors (EE-271) Page 12 of 32

Some Blackfin processor derivatives offer only
one bank of data memory that is configurable as
either data cache or SRAM. See Table 2 for more
details.

When enabled, the data cache works as 2-way set
associative memory. The data cache-controller
uses LRU policy for cache-line replacement (it
cannot use modified LRU policy as is the case
with instruction cache).

 Depending on the number of memory banks
configured as cache, the data cache is either
16K bytes (one bank) or 32K bytes (two
banks).

 Each 16K-byte cache bank is arranged as
four 4K-byte subbanks. A subbank is selected
by memory address bits [13:12].

 Each 4K-byte subbank consists of 64 sets.
A set is selected by memory address bits
[10:5].

 Each set consists of two ways. A way is
selected by the cache controller according to
the cache-line placement policy. The ways
can be identified by the address bit [11] in
SRAM.

 In other words, a set-0 represents the two
ways of line-0.

 The size of a cache-line (to be read on a
cache miss) is 32 bytes.

Similar to the instruction cache, each cache-line
has a tag portion associated with it (see
Figure 10):

 19-bit address tag: Compared against
memory address to determine cache-hit or
cache-miss.

 Dirty bit: Cache-line has been modified.

 LRU state: To be used by cache controller for
LRU policy.

 Valid bit: Valid data in line.

The 32-bit address space is mapped to cache
memory space as following (see Figure 10):

 Subbank select: Select a particular 4K-byte
subbank.

 Set select: Select a set out of 64 cache sets.

 Byte select: Select a byte within the given
line.

Figure 10 shows how a 4K-byte subbank in the
data cache is arranged. When both data banks are
enabled as cache, depending on the state of DCBS
bit, either bit 14 (every 16K bytes) or bit 23
(every 8M bytes) of the address space is used to
select one of 16K-byte data banks (see
Figure 11).

The cache-line fill access consists of fetching
32 bytes of data from memory. The address for
the read transfer is the address of the target data
word. Assuming a 16-bit read access on a 16-bit
I/O memory, when responding to a line-read
request from the data memory unit, the external
memory returns the target data 16-bit word first.
The next 15 words are fetched in sequential
address order as depicted in Table 5.

Target word Fetching order for next 15 words

WD0 WD0, … , WD15

WD1 WD1, … , WD15, WD0

WD2 WD2, …, WD15, WD0, WD1

WD15 WD15, WD0, … , WD14

Table 5. Data cache-line word fetching order

When the cache-line is retrieved from the
external memory, each 32-bit word is buffered in
an eight-entry line fill buffer before it is written
to a 4K-byte memory bank. The line fill buffer
allows the core to access the data from the new
cache-line as the line is being retrieved from
external memory, rather than having to wait until
the line has been written in to the cache.

Unlike instructions, data are usually modified
and written back to (external) memory. Any
cacheable write-through single (non-burst) writes
from the core to the external memory go through
the write buffer. The depth of this buffer can vary

Using Cache Memory on Blackfin® Processors (EE-271) Page 13 of 32

according to the settings in the interrupt priority
register (IPRIO).

A third buffer is used to read a dirty cache-line
being flushed or being replaced by a cache-line
fill and then to initialize a burst write operation
on the bus to perform the line copy-back to the

external memory. This buffer is called a victim
buffer. It is implemented like the line fill buffer
as an 8-entry-deep FIFO, 32-bit-wide each (see
Figure 1).

Figure 10. Data cache configuration for one subbank – 2-way set associative

Figure 11. Data cache mapping according to DCBS bit

Using Cache Memory on Blackfin® Processors (EE-271) Page 14 of 32

Figure 12. Data fetch with cache off

Figure 13. Data fetch with cache on

Data Fetch from External Memory
 Cache off: 1 byte, 2 bytes, or 4 bytes wide

accesses

 Cache on: always 256 bits / 32 bytes
(burst fill) are fetched

 As the SDRAM interface is 16 bits wide on
most Blackfin derivatives, each access is 16
bits wide. For a byte access, the lower or
upper byte is masked out by the SDQM signals.

Figure 12 shows a 16-bit data read access to the
external memory (target address 0x0032h). Data
cache is turned off. For each access, one 16-bit
word is fetched.

Figure 13 shows the same access, but with data
cache turned on. The start address here is
0x0032h. The other data belonging to this cache-
line are fetched as depicted in Table 5.

Cache Write Methods

The external memory is divided into different
pages (defined by data cache protection

lookaside buffers — DCPLB registers). The
attributes for each page can be configured
independently. As discussed in the next section,
the memory pages can be:

 Configured either in write-back mode or in
write-through mode (CPLB_WT bit).

 Configured to allocate the cache-lines either
on reads only or on reads and writes
(CPLB_L1_AOW bit).

 Cache-line valid Cache-line invalid

WT
AOW = 0

Update cache-line
& external memory

Update external
memory only

WT
AOW = 1

Update cache-line
& external memory

Fetch cache-line
Update cache-line
Update ext. mem.

WB Update cache-line
only

Fetch cache-line
Update cache-line

Table 6. Behavior in specific write situation

Using Cache Memory on Blackfin® Processors (EE-271) Page 15 of 32

Table 6 describes the behavior with the different
cache write methods. Figure 14 illustrates when
data cache is enabled in write-through mode and
with CPLB_L1_AOW bit set. A write access to

address 0x0040h is initiated. First, a cache-line
fill is done, followed by the write to the external
memory.

Figure 14. Data fetch with cache on in write-through mode and AOW enabled

Memory Protection and Cache Unit
The Blackfin processor contains a page-based
Memory Protection and Cache Unit (MPCU),
which provides control over cacheability of
memory ranges and management of protection
attributes at a page level. The MPCU is
implemented as two 16-entry content addressable
memory (CAM) blocks. Each entry is referred to
as a cacheability protection lookaside buffer
(CPLB) descriptor. The MPCU functionality
includes:

 Caching and protection lookaside buffers
(CPLBs)

 Cache/protection properties determined on a
per memory page basis (1KB, 4KB, 1MB,
and 4MB sizes)

 User/supervisor, and task/task protection

Cacheability Protection Lookaside Buffers
(CPLBs)
Each entry to the CPLB descriptors defines
cacheability and protection attributes for the
given memory page. The CPLB entries are
divided between instruction and data CPLBs.
16 CPLB entries (called ICPLBs) are used for
instruction fetch requests. Another 16 CPLB
entries (called DCPLBs) are used for data
transactions. Setting the appropriate bits in the
instruction memory control (IMEM_CONTROL) and

data memory control (DMEM_CONTROL) registers
enable the ICPLBs and DCPLBs. Each CPLB
entry consists of a pair of 32-bit values. Before
loading descriptor data into any CPLBs, the
corresponding group of 16 CPLBs must be
disabled using the ENICPLB or ENDCPLB bits in
the instruction memory control register
(IMEM_CONTROL) and data memory control
register (DMEM_CONTROL), respectively.

For Instruction Fetches
ICPLB_ADDR[n] defines the start address of the
page described by the CPLB descriptor.

ICPLB_DATA[n] defines the properties of the
page described by the CPLB descriptor.
Figure 15 depicts various bit-fields and their
functionality in the ICPLB_DATA register.

For Data Operations
DCPLB_ADDR[m] defines the start address of the
page described by the CPLB descriptor.

DCPLB_DATA[m] defines the properties of the
page described by the CPLB descriptor.
Figure 16 depicts various bit-fields and their
functionality in the DCPLB_DATA register.

Using CPLBs
 Cache enabled: CPLB must be used to define

cacheability properties.

Using Cache Memory on Blackfin® Processors (EE-271) Page 16 of 32

 Cache disabled: CPLBs can be used to
protect pages of memory.

 If CPLBs are used, a valid CPLB entry must
exist before an access to a specific memory
location is attempted. Otherwise, an
exception will be generated.

 There are two default CPLB descriptors for
data accesses to the scratchpad data memory
and to the system and core MMR space.
These default descriptors define the above
space as non-cacheable, so that additional
CPLB’s do not need to be set up for these
regions of memory.

If valid CPLBs are set up for this space,
the default CPLBs are ignored.

On newer Blackfin derivatives such as
ADSP-BF51x, ADSP-BF52x, and
ADSP-BF54x, the on-chip boot ROM
(read-only memory) provides functions
(SysControl()) for accessing the PLL
and voltage regulator registers.
Additionally, internal L1 instruction
ROM and/or L2 SRAM is available as
well. For all these cases, a valid CPLB
descriptor (instruction and data) is
required. Refer to the processor’s data
sheet or Table 2 for more details on the
amount of memory available on you
Blackfin derivative.

Figure 15. Bit fields and their functionalities for the ICPLB_DATA registers

Using Cache Memory on Blackfin® Processors (EE-271) Page 17 of 32

Figure 16. Bit fields and their functionalities for the DCPLB_DATA registers

Memory Pages and Page Attributes
Each CPLB entry corresponds to a valid memory
page. Every address within a page shares the
attributes defined for that page. The address
descriptor xCPLB_ADDR[n] provides the base
address of the page in memory. The property
descriptor word xCPLB_DATA[n] specifies size
and attributes for the page. Figure 15 and
Figure 16 depict various bit-fields and their
functionality in the ICPLB_DATAx registers and
DCPLB_DATAx registers), respectively. A short
description of the bits follows.

Page Size
The Blackfin memory architecture supports four
different page sizes – 1KB, 4KB, 1MB, or 4MB.
Pages must be aligned on page boundaries that
are an integer multiple of their size.

Cache-Line Allocation
Present on data memory only, with write-through
cache enabled. The CPLB_L1_AOW bit controls
whether a cache-line fill is triggered by a read
only or on a write access as well. For writes with
the CPLB_L1_AOW bit not set, cache behaves as if
it is not present. If this bit is set, a cache-line fill
is triggered first followed by updating internal
and external memory.

Write-Through/Write-Back Flag
Present on data memory only, this attribute
(CPLB_WT bit) enables the write-through mode for
the data cache when set. By default (CPLB_WT =
0), write-back mode is active.

Cacheable/Non-cacheable Flag
If a page is defined as non-cacheable
(CPLB_L1_CHBL = 0), access to this page

Using Cache Memory on Blackfin® Processors (EE-271) Page 18 of 32

bypasses the cache. The memory pages may not
be defined as cacheable, when:

 An I/O device is mapped to the memory
address.

 The code residing in the page is in-frequently
called (the user may not want it to be
cached).

 The code is extremely non-linear.

LRU Priority
This attribute (CPLB_LRUPRIO) is available on
instruction memory CPLBs only. It defines LRU
priority (low/high) for the given page. This is
used for the modified LRU policy (see Block
Placement on page 4 for further details).

Dirty/Modified Flag
The CPLB_DIRTY bit gives the programmer the
choice for signaling that a (first) write access to
external memory has occurred.

Present on data memory only, this attribute is
valid only when the page is defined as cacheable
in write-back mode. This bit should be set by
software prior to store accesses to this page.

When this bit is cleared, an access to the page
causes an exception (EXCAUSE 0x23). The
exception routine must be set the bit to mark the
page as dirty.

Write Access Permission Flags
Data memory CPLBs feature two flags that
enable/disable write accesses to the
corresponding page for supervisor mode
(CPLB_SUPV_WR) and user mode
(CPLB_USER_WR), individually.

User Read Access Permission Flag
This attribute (CPLB_USER_RD) enables/disables
reads from this page in user mode.

Lock Flag
When the CPLB_LOCK bit is set, the
corresponding CPLB entry is locked. This

attribute is useful for dynamic memory
management. When a CPLB entry is locked, the
exception handler for CPLB miss will not
consider it for replacement.

The page attributes related to “read/write
permission” deal with the memory protection. It
may be required in a real-time application in
which the entire application is partitioned
between OS code and user code. The user code
may have different threads, with each thread
having its own memory resources, which are not
accessible to the other threads. However, the OS
kernel can access all the memory resources. This
task can be achieved by having different CPLB
configurations in different threads.

When the CPLBs are enabled, a valid CPLB
entry should exist in the CPLB table for every
address to which an access is made. If there is no
valid CPLB entry for the referenced address, a
CPLB exception is generated.

CPLB Status Registers
The MPCU features two independent status
registers: one for the ICPLB status (Figure 17),
and one for the DCPLB status (Figure 18).

FAULT_ILLADDR
An access to memory that does not exist was
attempted.

FAULT_DAG
This bit indicates that DAG0 or DAG1 caused the
fault data access (DCPLB only).

FAULT_USERSUPV
Access was done in either user mode or
supervisor mode.

FAULT_RW
Data access was either a read or a write access
(DCPLB only).

FAULT
Hit/miss status of the associated CPLB entry.

Using Cache Memory on Blackfin® Processors (EE-271) Page 19 of 32

Figure 17. Bit fields and their functionalities for the ICPLB status register

Figure 18. Bit fields and their functionalities for the DCPLB status register

Exception EXCAUSE
[5:0]

Notes/Examples

Data access CPLB protection violation 0x23 Attempted read/write to Supervisor resource (see [3]), or illegal data
memory access. This entry is used to signal a protection violation caused
by disallowed memory access, and it is defined by the Memory Protection
and Cache Unit (MPCU) cacheability protection lookaside buffer (CPLB).

Data access misaligned address violation 0x24 Attempted misaligned data memory or data cache access.

Data access CPLB miss 0x26 Used by the MPCU to signal a CPLB miss on a data access.

Data access multiple CPLB hits 0x27 More than one CPLB entry matches data fetch address.

Instruction fetch CPLB protection violation 0x2B Illegal instruction fetch access (memory protection violation).

Instruction fetch CPLB miss 0x2C CPLB miss on an instruction fetch.
Instruction fetch multiple CPLB hits 0x2D More than one CPLB entry matches instruction fetch address.

Table 7. CPLB events that cause exceptions [3]

Using Cache Memory on Blackfin® Processors (EE-271) Page 20 of 32

CPLB-Related Sequencer Exceptions

In the ICPLB_DATAx and DCPLB_DATAx registers,
some access policies (read/write in user mode
and supervisor mode) can be defined for specific
memory areas. Violating the permission rules
cause sequencer exceptions.

The reason for an exception can be read from the
EXCAUSE bit field of the sequencer status register
(SEQSTAT). Table 7 shows an extract of all
Exceptions that can be originated by the CPLBs.

Page Descriptor Table
Generally, a memory-based data structure called
a page descriptor table is used for CPLB
management. All the potentially required CPLB
entries can be stored in the page descriptor table
(which is generally located in the internal
SRAM). When the CPLBs need to be configured,
the application code can pick up the CPLB
entries from page descriptor table and fill them
into the CPLB descriptor registers.

For small/simple memory models it may be
possible to define a set of CPLB descriptors that
fit into 32 CPLB entries (16 ICPLBs and 16
DCPLBs). This type of definition is referred to as
a static memory management model.
“Example1” (1) uses a static memory
management model.

For complex memory models, the page
descriptor table may have CPLB entries that do
not fit into the available 16 CPLB registers.
Under such conditions, the CPLBs can be
configured first with any 16 entries. When the
processor references a memory location, which is
not defined by the CPLBs, an exception is
generated and the address of faulting memory
location is stored in the Fault Address register
(xCPLB_FAULT_ADDR). The exception handler can
use the faulting address to search for the required
entry in the CPLB table. One of the existing
CPLB entries can be replaced by this new CPLB
entry.

The CPLB replacement policy can be simple or
complex, depending upon the system

requirement. It is possible that more than one
memory reference are made to the addresses for
which there are no valid entry in the CPLB
descriptors. Under such a condition, the
exceptions are prioritized and serviced in the
following order:

1. Instruction page misses

2. Page misses on DAG0

3. Page misses on DAG1

The code in “Example2” (2) provides an
exception handler for DCPLB miss (see Table 7:
EXCAUSE 0x26). It uses a round-robin scheduling
method for the DCPLB replacement.

Coherency Considerations
If an outside source (e.g., DMA controller) is
accessing external memory that is defined as
cacheable, the programmer must ensure memory
coherency. The cache controller is not aware of
any changes that are not done by the MPCU.
Simple memory polling will not work.

An example for such a situation might be a
circular data buffer that is stored in external
memory. Data are transferred between buffer and
a peripheral interface (e.g. audio stream). The
core has to do some calculations and must write
the data back to the buffer where the data are
transferred back to the peripheral interface. In
this case, a write-through strategy is preferable.

Cache and Instruction Pipeline

In
st

r F
et

ch
 1

In
st

r F
et

ch
 2

In
st

r F
et

ch
 3

In
st

r D
ec

A
dd

r C
al

c

D
at

a
Fe

tc
h

1

D
at

a
Fe

tc
h

2

Ex
 1

Ex
 2

W
B

Table 8. Stages of the instruction pipeline

Table 8 shows the stages of the Blackfin
processor’s instruction pipeline.

In stage 1 (IF1), an instruction address is issued
to the Instruction Access Bus (IAB). In this

Using Cache Memory on Blackfin® Processors (EE-271) Page 21 of 32

phase, the comparison of the instruction cache
tags is started.

In stage 6 (DF1), a data address is issued to the
Data Access Buses (DA0 and DA1). In this
phase, the comparison of the data cache tags is
started.

For more details on the instruction pipeline, refer
to the “Program Sequencer” chapter in the
Blackfin Processor Programming Reference [3].

Handling the Instruction and
Data Cache

Enabling the Cache
The instruction and data caches can be enabled
or disabled independently by configuring the
IMEM_CONTROL and DMEM_CONTROL registers
appropriately. The example demonstrates how
the data/instruction caches can be enabled.

 Before enabling the cache, valid CPLB
descriptors must be configured and enabled.

 When the memory is configured as cache, it
cannot be accessed directly (neither through
core, nor through DMA).

Instruction Memory Control Register
(IMEM_CONTROL)
Figure 19 depicts various bit-fields and their
functionality in the IMEM_CONTROL register.

LRU Priority Reset
The LRUPRIORST bit can be used to reset all
cached LRU priority bits.

Instruction Cache Locking by Way
The instruction cache has four independent lock
bits (these bits are available in the Instruction
Memory Control register), which can be used to
lock any of the four ways independently.

When a particular way is locked (the
corresponding ILOC bit in the instruction
memory control register is set), it does not
participate in the line replacement. The cached

instructions from a locked way can be removed
only with an IFLUSH instruction.

Cache locking only prevents valid
cache-lines from being selected for
replacement. Invalid cache-lines stored
in a locked way can still be selected for
replacement. This means a cache miss to
an invalid entry will cause that entry to
be replaced with the new cache-line.

“Example3” (3) (see associated ZIP file)
demonstrates how the more frequently used
functions (in the external memory) can be cached
and locked such that they would not be replaced.
The scheme consists of locking Way1, Way2, Way3
(Way0 unlocked), and making a dummy call to
the functions of interest. The functions will be
cached to Way0 (as all other ways are locked).
Now, Way0 can be locked (and Way1, Way2, Way3
can be unlocked). Any subsequent cache miss
can replace lines in Ways 1-3 (Way0 is locked)
only.

Locking all four ways at the same time is not
recommended.

L1 Instruction Memory Configuration
The IMC bit controls if the upper 16K-byte bank
of the instruction memory is configured as cache.
The ENICPLB bit must be 1 as well if cache
support is enabled.

Instruction CPLB Enable
With the ENICPLB bit, Instruction CPLBs can be
enabled/disabled. Before loading new descriptor
data into any CPLBs, the corresponding group of
16 CPLBs must be disabled using the ENICPLB
bit.

Data Memory Control Register
(DMEM_CONTROL)
Figure 20 depicts various bit-fields and their
functionality in the DMEM_CONTROL register.

DAG Port Preference
With the two PORT_PREFx bits non-cacheable
data fetches – originated by the Data Address

Using Cache Memory on Blackfin® Processors (EE-271) Page 22 of 32

Generators (DAG0 and DAG1) – can be mapped
to one specific DAG Port (Port A or Port B, see
Figure 1).

L1 Data Cache Bank Select
The DCBS bit controls if address bit 14 or address
bit 23 is used to switch between Bank A and
Bank B for cache access (see Figure 20).

L1 Data Memory Configuration
The DMC bits enable/disable cache support for the
L1 data memory banks. The DMC[1] bit controls
Bank A, and DMC[0] controls Bank B.
Configuring Bank A or Bank A + Bank B as
cache is supported. Bank B cannot be configured
as the only available L1 data cache memory. The

ENDCPLB bit must be 1 as well if cache support is
enabled.

Some Blackfin derivatives do not have
two data banks and hence do not support
the DCBS and the DMC[0] bit (see
Table 2).

Data CPLB Enable
With the ENDCPLB bit, data CPLBs can be
enabled/disabled. Before loading new descriptor
data into any CPLBs, the corresponding group of
16 CPLBs must be disabled using the ENDCPLB
bit.

Figure 19. Bit fields and their functionalities for the IMEM_CONTROL register

Figure 20. Bit fields and their functionalities for the DMEM_CONTROL register

Using Cache Memory on Blackfin® Processors (EE-271) Page 23 of 32

Cache Control Instructions

Instruction Cache Invalidation
By invalidating the cache-lines associated with
the buffer, “coherency” is maintained between
the contents stored in cache and the actual values
in source memory. There are three schemes for
invalidating the instruction cache:

 The IFLUSH instruction can be used to
invalidate a specific address in the memory
map. When the instruction IFLUSH [P2]; is
executed, if the memory address pointed by
P2 has been brought in to the cache, the
corresponding cache-line will be invalidated
after execution of the above instruction.
When the instruction is used like IFLUSH
[P2++]; the pointer increments by the size of
a cache-line.

 The VALID bit of the tag section for any line
in the cache can be cleared explicitly by
writing a one to the tag section. The value to
the tag section can be written using the
ITEST_COMMAND register. This is discussed in
detail in the next section.

 In order to invalidate the entire cache, the
IMC bit in the IMEM_CONTROL register can be
cleared. This clears the VALID bit for all tag
sections in the cache. The IMC bit can be set
to enable the cache again.

Data Cache Control Instructions
 The PREFETCH instruction can be used to

allocate a line into the L1 cache.

 The FLUSH instruction causes the data cache
to synchronize the specified cache-line with
the external memory. If the cached data line
is dirty, the instruction writes the line back to
external memory and marks the line clean in
the data cache.

 The FLUSHINV instruction causes the data
cache to perform the same function as the
FLUSH instruction and then invalidates the
specified line in the cache. If the location is

not dirty, no flush will occur. In this case,
only the invalidate step takes place.

Accessing the Cache Memory
When configured as cache, the L1 memory bank
cannot be accessed directly by the core or the
DMA. Read/write operations can be performed
onto the cache space using the ITEST_COMMAND
and DTEST_COMMAND registers. The
DTEST_COMMAND register can also be used to
access the instruction SRAM banks. Figure 21
shows the bit fields for the ITEST_COMMAND
register. Figure 22 shows bit fields for the
DTEST_COMMAND register.

Accessing the Instruction Cache

The ITEST_COMMAND register can be used to
access the data or tag sections of the instruction
cache-lines.

A cache-line is divided in to four 64-bit words.
Any of the four words can be selected for access.
While reading the cache, the data value is read
into the ITEST_DATA[1:0] register set. While
writing to the cache, the value from the
ITEST_DATA[1:0] register set are written to the
cache.

When a tag section is being accessed, the 32-bit
tag value is transferred to/from the ITEST_DATA0
register.

Consider an example where value 0x0C010360 is
written in to the ITEST_COMMAND register. This
instruction will read the tag section from the
way-3, set-27, subbank-1 and transfer it to the
ITEST_DATA0 register. Similarly, writing
0x0C010362 transfers the contents of
ITEST_DATA0 register to the tag section of the
line located in way-3, set-27, and subbank-1.
While accessing the tag section (read or write),
bits 3 and 4 of the ITEST_COMMAND register are
reserved.

Writing a value of 0x0C010374 will read the
second word of the cache-line located at way-3,
set-27, subbank-1 and transfer it to the
ITEST_DATA[1:0] register set. Writing a value

Using Cache Memory on Blackfin® Processors (EE-271) Page 24 of 32

of 0x0C010366 to the ITEST_COMMAND register
transfers the value of the ITEST_DATA[1:0]
register set to word-0 of the cache-line located at
way-3, set-27, subbank-1 of the instruction
cache. While writing to the cache, the
ITEST_DATA[1:0] register test must be loaded
before the ITEST_COMMAND register is written.

Accessing the Instruction SRAM

When bit 24 of the DTEST_COMMAND register is
set, the DTEST_COMMAND register can be used to
access the instruction SRAM. A 64-bit word can
be transferred to/from the DTEST_DATA[1:0]
register set to/from the instruction SRAM. Thus,
memory can be accessed eight bytes at a time.

Bit 2 of the DTEST_COMMAND register must be set
while working in this mode. Bits 3-10 must be
assigned with bits 3-10 of the address being
accessed. Consider a case where the byte from
address 0xFFA07935 has to be read from the
instruction memory. This address lies in bank-1.
While accessing the above byte an entire line
addressed by (0xFFA07930 – 0xFFA07937) will
be accessed. The control value that must be

loaded to the DTEST_COMMAND register will be
0x05034134.

Accessing the Data Cache

When bit 24 of the DTEST_COMMAND register is
cleared, the DTEST_COMMAND register can be used
to access the data or tag sections of data cache-
lines. A word from the data section of cache-line
can be transferred to/from the DTEST_DATA[1:0]
register set.

While accessing the tag section, the 32-bit tag
value is transferred to/from the DTEST_DATA0
register.

Consider a case where the values of the
DTEST_DATA[1:0] register set needs to be
written to word-0 of the data line in way-1, set-
39, subbank-0, data cache bank-A. Then the
DTEST_COMMAND register can be written with a
value of 0x040004E5. The DTEST_DATA[1:0]
register set must be loaded before writing to the
DTEST_COMMAND register. Bit 14 of the
DTEST_COMMAND register is reserved while
accessing the data cache space (bit 24 = 0).

Figure 21. Bit fields and their functionalities for the ITEST_COMMAND register

Using Cache Memory on Blackfin® Processors (EE-271) Page 25 of 32

Figure 22. Bit fields and their functionalities for the DTEST_COMMAND register

Performance Considerations
The following section provides comparison
figures with and without using the cache. These
examples apply to special scenarios and provide
ideas of how to obtain the best performance for a
specific framework.

For these particular examples, the PLL is
configured for a 270 MHz core clock speed
(CCLK) and a 54 MHz system clock speed (SCLK),
respectively (CLKIN = 27 MHz) on the ADSP-
BF533 EZ-KIT Lite® evaluation board.

Instruction Cache: Optimized Conditions
For a linear code execution from external
memory, the performance can be increased by up
to 13% (compare to Instruction Fetch Latency:
Cache vs. no Cache on page 10) when code is not
stored in cache memory. If the instructions are
already copied to cache and executed at least two
times, greater than 50% performance
enhancement is possible. Table 9 shows a
comparison (in core clock cycles), when
functions are executed 1x to 1000x (e.g., filter
algorithm) and instruction cache is turned off and
on, respectively. The numbers – counted in core

clock cycles – are derived from “Example6” (6).
The “Gain” column shows how many cycles are
saved (in percent). The numbers can vary up to ±
100 cycles when performing several test runs
(e.g., refreshing SDRAM).

Exec # ICache OFF ICache ON Gain

1x 1430 1245 12.9%

2x 2480 1329 46.4%

4x 4580 1469 67.9%

8x 8740 1973 77.4%

10x 10814 2173 79.9%

100x 104620 11850 88.7%

1000x 1042950 109050 89.5%

Table 9. Instruction cache performance with good
conditions

Instruction Cache: Bad Concept
Table 9 shows similar numbers similar to the
previous example. But now the code is no longer
linear (each function contains just a jump
instruction) and many cache-misses / cache-line
replacements must be done. Each cache miss
causes a cache-line fill operation. If the function
just contains a jump instruction, the advantage of

Using Cache Memory on Blackfin® Processors (EE-271) Page 26 of 32

having code already available in cache when
needed (linear code flow) is gone, and the
additional fetched code was a waste of time.

Exec # ICache OFF ICache ON Loss

1x 1031 1164 -12.9%

2x 1924 2394 -24.4%

4x 3747 4654 -24.2%

8x 7462 8918 -19.5%

10x 9314 11100 -19.2%

100x 91643 109201 -19.2%

1000x 915488 1090127 -19.1%

Table 10. Instruction cache performance with wrong
concept

Data Cache

Data Cache Settings Mem Write Mem Read

No Data Cache 23039 55248

WB 10572 3866

WT without AOW bit set 23039 10583

WT with AOW bit set 32154 3866

Table 11. Data cache performance

The page size is set to 1KB. The core is first
writing 15K bytes to external memory and then
reading the data back; 32-bit accesses are
performed to the same internal bank. With this
setup, no CPLB replacement will be triggered.
The DCBS bit is not relevant in this case, only L1
Data Bank A will be used for cache and all data
can be stored there without a need for cache data
replacement.

A CPLB replacement can cost several hundred
cycles (exception handling, replacement
algorithm, etc.). A good strategy for the CPLB
table settings is important.

Table 11 shows the results represented by core
clock cycles:

 A memory write without cache enabled and
write-through cache (allocate cache-line on
reads only) makes no difference.

 A memory write operation with write-back
strategy, additional cache-line fills require
more cycles.

 A memory write with the AOW bit set, write-
through cache has worst write performance
when accessing external memory for the first
time (all cache-lines invalid).

 A memory read in write-back mode and
write-through mode with the AOW bit set gives
best performance as data are already stored in
cache memory.

 A memory read with write-through cache
with the AOW bit not set benefits from the
cache-line burst fill.

 The memory read performance without data
cache enabled is poor compared to the rest.

Core Clock vs. System Clock

An inappropriate ratio between CCLK and SCLK
can cause a penalty. Figure 23 shows an
instruction fetch starting from address 0x00h
with instruction cache turned on.

CCLK:SCLK = 3:1 or higher should be the
preferred settings when cache is in use. This
requires 22 SCLK cycles.

The ratio between core clock and system clock is
2:1. For every second word, an additional SCLK
cycle is inserted. About 28 SCLK cycles are
required to fetch the complete cache-line
(including activation command).

A ratio of 1:1 lowers the throughput. In this case,
two additional SCLK cycles are inserted with each
second word (see Figure 24). About 36 SCLK
cycles are required.

This differences show the time for the core
required to compare cache tags, arrange
instruction in the alignment unit, and finally
execute them.

Refreshing SDRAM Memory
Figure 25 shows a situation where a cache-line
fill is interrupted by a memory refresh. The

Using Cache Memory on Blackfin® Processors (EE-271) Page 27 of 32

transfer stops and the memory controller (auto-
refresh mode) issues a precharge (close
row/page) command and a refresh command.
When finished, the transfer continues with the
next increment of the last address.

When the SDRAM is in self-refresh mode, the
memory can still be accessed by the processor. In
this case, the SDC releases the self-refresh mode
to either temporary auto-refresh or auto-refresh
mode, depending on the state of the SRFS bit in
the EBIU_SDGCTL register.

SDRAM Performance
More information on SDRAM performance with
the Blackfin SDC can be found in the “External
Bus Interface Unit” chapter of the ADSP-BF537
Blackfin Processor Hardware Reference [5]. A
DAG read/write access is 8/1 SCLK cycles per 16-
bit word, respectively. Instruction fetches and
cache-line fills require about 1.1 SCLK cycles per
16-bit word.

Conclusions
Code must be used in a linear way to
utilize the advantage of a cache-line
burst fill (pre-fetch).

Code must be re-used to make cache
attractive.

Figure 23. Instruction fetch with cache on (CCLK:SCLK = 2:1)

Figure 24. Instruction fetch with cache on (CCLK:SCLK = 1:1)

Figure 25. Instruction fetch with cache on (interrupted by auto-refresh)

Using Cache Memory on Blackfin® Processors (EE-271) Page 28 of 32

VisualDSP++® Compiler Support
The VisualDSP++® tools support cache memory
management. Some features are discussed below.
Detailed information can be found in the
VisualDSP++ C/C++ Compiler and Library
Manual for Blackfin Processors [4]. Instruction
and data caches can be enabled together or
separately, and the memory spaces they cache
are configured individually.

Header Files
The VisualDSP++ header files
def_LPBlackfin.h and cplb.h offer user-
friendly pre-defined macros and masks for CPLB
configuration and more. The value 0x0C010366
from one of the previous examples would look
like:

TEST_WAY3|TEST_MB1|TEST_SET(27)|TEST_D
W0|TEST_DATA|TEST_WRITE

CPLB Control
CPLB support is controlled through a global
integer variable, ___cplb_ctrl. Its C name has
two leading underscore characters, and its
assembler name has three underscore characters.
The value of this variable determines whether the
startup code enables the CPLB system. By
default, the variable has the value zero,
indicating that CPLBs should not be enabled.
The pragma retain_name should be used with
__cplb_ctrl, such that this variable is not
eliminated by the compiler when optimization is
enabled.

The value of ___cplb_ctrl may be changed in
the following ways:

 The variable may be defined as a new global
with an initialization value. This definition
supersedes the definition in the library.

 The linked-in version of the variable may be
altered in a debugger, after loading the
application but before running it, so that the
startup code sees a different value.

When enabling caches using ___cplb_ctrl, it is
imperative that USE_CACHE also be specified.

CPLB Installation

When ___cplb_ctrl indicates that CPLBs are to
be enabled, the startup code calls the routine
_cplb_init. This routine sets up instruction and
data CPLBs from a table, and enables the
memory-protection hardware. The default
configuration tables are defined in files called
cplbtabn.s in VisualDSP\Blackfin\lib\src\
libc\crt, where n is the part number of the
Blackfin processor.

When the cache is enabled, the default CPLB
configuration defined in the above file is
installed. However, you can modify the given
files to define your own CPLB configuration.
The given file must be included in the project file
in order for the changes to be effective. The
project “Example5” (5) demonstrates how the
CPBL configuration table can be modified.

Exception Handling
As discussed earlier, in a complex memory
model there may need to be more CPLBs than
can be active at once. In such systems, there will
eventually come a time when the application
attempts to access memory that is not covered by
one of the active CPLBs. This will raise a CPLB
miss exception.

The VisualDSP++ library includes a CPLB
management routine for these occasions, called
_cplb_mgr. This routine should be called from
an exception handler that has determined that a
CPLB miss has occurred, regardless whether it is
a data miss or an instruction miss. _cplb_mgr
identifies the inactive CPLB that must be
installed to resolve the access, and replaces one
of the active CPLBs with this one. If CPLBs are
to be enabled, the default startup code installs a
default exception handler, called _cplb_hdr; this
does nothing other than to test for CPLB miss
exceptions, which it delegates to _cplb_mgr. It is
expected that users will have their own exception
handlers to deal with additional events.

Using Cache Memory on Blackfin® Processors (EE-271) Page 29 of 32

Using the Project Wizard
The Project Wizard offers the possibility to
create a project that includes support for memory
protection and cache for both instruction and data
memory. Figure 26 through Figure 30 show the
additional actions required:

1. .LDF file and startup code must be added
(Figure 26).

Figure 26. Project Wizard: Add Startup Code/LDF

2. Support for external memory (SDRAM) and
the memory size must be added (Figure 27).

Figure 27. Project Wizard: LDF Settings: External
Memory

3. In the “Cache and Memory Protection”
settings, the support for memory protection
and cache can be added for both instruction

and data memory (Figure 28). Customizable
CPLB tables can be generated, and you can
choose between write-through/write-back
data cache. The “Cache mapping set size”
option controls the DCBS bit in the
DMEM_CONTROL register.

Figure 28. Project Wizard: Startup Code Settings:
Cache and Memory Protection

4. All settings can be modified in the Project
Options dialog box. The files will then be re-
created (Figure 29).

Figure 29. Project Options: Startup Code
Settings: Cache and Memory Protection

When finished, a project will be generated
including a file called
<Project_Name>_cplbtab.c (Generated Files-
>Startup). This file contains the configurable
CPLB table (Figure 30).

Using Cache Memory on Blackfin® Processors (EE-271) Page 30 of 32

Figure 30. VisualDSP++: Generated CPLB table

Summary of MMRs
The following memory-map registers are used
for the memory management on Blackfin
processors:

IMEM_CONTROL DMEM_CONTROL

ITEST_COMMAND DTEST_COMMAND

ITEST_DATA [1:0] DTEST_DATA [1:0]

ICPLB_DATA [15:0] DCPLB_DATA [15:0]

ICPLB_ADDR [15:0] DCPLB_ADDR [15:0]

ICPLB_STATUS DCPLB_STATUS

ICPLB_FAULT_ADDR DCPLB_FAULT_ADDR

Table 12. CPLB memory-mapped registers

Cache Configuration for Blackfin
Derivatives
The preceding section discussed cache
configuration and cache control on ADSP-BF533
processors. The same discussion also applies to
ADSP-BF531 and ADSP-BF532 processors. The
example code (1) through (5) can be used for

ADSP-BF531 and ADSP-BF532 processors too.
Example code (6) and (7) supplied with this
application note can be used with all single-core
Blackfin processors.

The amount of instruction memory configurable
as cache is the same (16K bytes) on all currently
available single-core Blackfin processors.

Most single-core Blackfin processors support
two L1 data banks configurable as cache, 16K
bytes each. The ADSP-BF531 processor has only
one data bank available.

The amount of memory available on the ADSP-
BF561 Blackfin dual-core processor as cache is
double of that of ADSP-BF533 processor.

Conclusion
This document discusses the instruction and data
cache configuration on Blackfin processors. The
address mapping to the cache-lines is also
discussed. The example code provided with this
application note demonstrates how to set up

Using Cache Memory on Blackfin® Processors (EE-271) Page 31 of 32

CPLB descriptors for instruction memory and
data memory, how to enable/disable the
instruction/data cache, and how to handle the
CPLB exceptions and locking the instruction

cache by way. Discussion on accessing the
instruction/data cache by core through
ITEST_COMMAND and DTEST_COMMAND is also
included.

Appendix
A .ZIP file is associated with this document. It contains the following code examples:

(1) Example code for configuring the CPLB descriptors and instruction/data cache (C)

(2) Example code for CPLB exception handling (C)

(3) Example code for locking the instruction cache by way (C)

(4) Example codes demonstrating the data cache control instructions (C)

(5) Example code demonstrating VisualDSP++ compiler support for Blackfin cache (C)

(6) Example code for configuring the ICPLB descriptors and instruction cache (Blackfin assembly)

(7) Example code for configuring the DCPLB descriptors and data cache (Blackfin assembly)

(8) Example code for a bad instruction cache concept (Blackfin assembly)

References
[1] ADSP-BF533 Blackfin Processor Hardware Reference. Rev 3.4, April 2009. Analog Devices, Inc.

[2] Computes Architecture A Quantitative Approach. Second Edition, 2000 David A. Patterson and John L. Hennessy

[3] Blackfin Processor Programming Reference. Rev. 1.3, September 2008. Analog Devices, Inc.

[4] VisualDSP++ C/C++ Compiler and Library Manual for Blackfin Processors. Rev. 5.1, August 2008.
Analog Devices, Inc.

[5] ADSP-BF537 Blackfin Processor Hardware Reference. Rev 3.1, March 2009. Analog Devices, Inc.

Table of Figures
Figure 1. ADSP-BF533 block diagram ... 1
Figure 2. Memory arranges as fixed-size blocks ... 4
Figure 3. Configuration for a 2-way set associative cache memory .. 4
Figure 4. Block placement... 5
Figure 5. Instruction cache configuration for one subbank – 4-way set associative 9
Figure 6. Instruction fetch with cache off .. 11
Figure 7. Instruction fetch with cache on... 11
Figure 8. Latency with instruction cache off.. 11
Figure 9. Latency with instruction cache on .. 11
Figure 10. Data cache configuration for one subbank – 2-way set associative .. 13
Figure 11. Data cache mapping according to DCBS bit ... 13
Figure 12. Data fetch with cache off... 14
Figure 13. Data fetch with cache on ... 14

Using Cache Memory on Blackfin® Processors (EE-271) Page 32 of 32

Figure 14. Data fetch with cache on in write-through mode and AOW enabled ... 15
Figure 15. Bit fields and their functionalities for the ICPLB_DATA registers .. 16
Figure 16. Bit fields and their functionalities for the DCPLB_DATA registers .. 17
Figure 17. Bit fields and their functionalities for the ICPLB status register 19
Figure 18. Bit fields and their functionalities for the DCPLB status register 19
Figure 19. Bit fields and their functionalities for the IMEM_CONTROL register 22
Figure 20. Bit fields and their functionalities for the DMEM_CONTROL register 22
Figure 21. Bit fields and their functionalities for the ITEST_COMMAND register 24
Figure 22. Bit fields and their functionalities for the DTEST_COMMAND register 25
Figure 23. Instruction fetch with cache on (CCLK:SCLK = 2:1).. 27
Figure 24. Instruction fetch with cache on (CCLK:SCLK = 1:1).. 27
Figure 25. Instruction fetch with cache on (interrupted by auto-refresh) ... 27
Figure 26. Project Wizard: Add Startup Code/LDF... 29
Figure 27. Project Wizard: LDF Settings: External Memory ... 29
Figure 28. Project Wizard: Startup Code Settings: Cache and Memory Protection 29
Figure 29. Project Options: Startup Code Settings: Cache and Memory Protection 29
Figure 30. VisualDSP++: Generated CPLB table.. 30

List of Tables
Table 1. Address partitioning ... 5
Table 2. Blackfin processors memory map ... 7
Table 3. Line replacement policy for the Blackfin instruction cache ... 9
Table 4. Instruction cache-line word fetching order ... 10
Table 5. Data cache-line word fetching order.. 12
Table 6. Behavior in specific write situation ... 14
Table 7. CPLB events that cause exceptions [3] ... 19
Table 8. Stages of the instruction pipeline .. 20
Table 9. Instruction cache performance with good conditions .. 25
Table 10. Instruction cache performance with wrong concept .. 26
Table 11. Data cache performance .. 26
Table 12. CPLB memory-mapped registers .. 30

Document History

Revision Description

Rev 2 – May 13, 2009
by Andreas Pellkofer

Added new figures along with their descriptions. Example codes rebuild for
VisualDSP++ Release 5.0 (tested with Update 5). Also, two new assembly example
codes added to associated .ZIP file.

Rev 1 – June 13, 2005
by Kunal Singh

Initial release.

	Introduction
	Contents
	Cache Memory Concepts
	Memory Configuration
	Cache Terminology
	Block Placement
	Direct Mapped Cache
	Fully Associative Cache
	Set Associative Cache

	Block Replacement
	Block Identification
	Write Strategies
	Write Operations with a Cache Hit
	Write Operations with a Cache Miss

	Blackfin Cache Model
	Blackfin Instruction Cache Configuration
	Cache Organization
	Cache Hits/Misses and Cache-Line Replacement
	Instruction Fetch Latency: Cache vs. no Cache

	Blackfin Data Cache Configuration
	Cache Organization
	Data Fetch from External Memory
	Cache Write Methods

	Memory Protection and Cache Unit
	Cacheability Protection Lookaside Buffers (CPLBs)
	For Instruction Fetches
	For Data Operations
	Using CPLBs

	Memory Pages and Page Attributes
	Page Size
	Cache-Line Allocation
	Write-Through/Write-Back Flag
	Cacheable/Non-cacheable Flag
	LRU Priority
	Dirty/Modified Flag
	Write Access Permission Flags
	User Read Access Permission Flag
	Lock Flag

	CPLB Status Registers
	FAULT_ILLADDR
	FAULT_DAG
	FAULT_USERSUPV
	FAULT_RW
	FAULT

	CPLB-Related Sequencer Exceptions
	Page Descriptor Table
	Coherency Considerations
	Cache and Instruction Pipeline

	Handling the Instruction and Data Cache
	Enabling the Cache
	Instruction Memory Control Register (IMEM_CONTROL)
	LRU Priority Reset
	Instruction Cache Locking by Way
	L1 Instruction Memory Configuration
	Instruction CPLB Enable

	Data Memory Control Register (DMEM_CONTROL)
	DAG Port Preference
	L1 Data Cache Bank Select
	L1 Data Memory Configuration
	Data CPLB Enable

	Cache Control Instructions
	Instruction Cache Invalidation
	Data Cache Control Instructions

	Accessing the Cache Memory
	Accessing the Instruction Cache
	Accessing the Instruction SRAM
	Accessing the Data Cache

	Performance Considerations
	Instruction Cache: Optimized Conditions
	Instruction Cache: Bad Concept
	Data Cache
	Core Clock vs. System Clock
	Refreshing SDRAM Memory
	SDRAM Performance
	Conclusions

	VisualDSP++® Compiler Support
	Header Files
	CPLB Control
	CPLB Installation
	Exception Handling
	Using the Project Wizard

	Summary of MMRs
	Cache Configuration for Blackfin Derivatives
	Conclusion
	Appendix
	References
	Table of Figures
	List of Tables
	Document History

