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Introduction 
This application note discusses cache memory 
management for Analog Devices Blackfin® 
processor family. The document introduces 
popular cache schemes and then discusses the 
Blackfin instruction cache and the data cache in 
detail.  

The described features are available on all 
Blackfin processors. Example code is provided 
with this application note to demonstrate cache 
memory management. It applies to all derivatives 
of the Blackfin processor family. This document 
assumes that the reader is familiar with basic 
cache terminology.  

 
Figure 1. ADSP-BF533 block diagram
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Cache Memory Concepts 
This section discusses the cache memory model 
in general. The actual Blackfin memory model is 
discussed in the next section. 

Memory Configuration 
Systems that require huge amounts of memory 
generally employ a memory configuration with 
different memory levels. Memory at the highest 
level (internal L1 memory) provides the highest 
performance at the highest cost. Lower-level 
memories have multiple cycles of access times, 
but cost less (e.g., external SDRAM memory). 

Cache memory is a high-level memory mastered 
by the cache controller. It is guarded against 
direct data access. The cache controller allows 
larger instruction and data sections to exist in 
low-level memory, and code and data that are 
used most frequently are brought into cache (by 
the cache controller) and thus, are available for 
single-cycle access, just as though it is in L1 
memory. The cache architecture is based on the 
fact that processor memory space has been sub-
divided in to a number of fixed-size blocks 
(referred to as cache-lines). A cache-line is 
considered to be the smallest unit of memory to 
be transferred from external memory to the cache 
memory as a result of a cache miss.  

A reference to the memory is identified as a 
reference to a particular block. Figure 2 depicts a 
memory configuration in which external memory 
space has been sub-divided into twenty-four 
memory blocks and the cache memory is divided 
into six blocks. (This is an example of a general 
memory configuration. The number of memory 
blocks is actually different for the Blackfin 
memory model.) The block size for the external 
memory and the cache memory is the same. 
Since the cache memory has a size of six blocks 
(in this particular example), at any time, a 
maximum of six data blocks of the main memory 
is available in the cache memory. 

Cache Terminology 

 Way: An array of line storage elements in an 
m-way cache. 

 Locked way: If a way is locked, it does not 
participate in the least-recently used (LRU) 
replacement policy. 

 Set: A group of m-way storage locations in a 
way of an m-way cache. A specific memory 
block is mapped to a specific set. The cache 
controller chooses a way within the set. 

 Cache-line: 32-byte line of memory that is 
transferred to/from higher-level memory 
from/to cache. 

 Dirty/clean: State of cache-line, indicating 
whether the data in the cache has changed 
since it was copied from source memory. 

 Cache hit: The processor references a 
memory block (in the main memory) that is 
already buffered in the cache. The processor 
will access the data from the cache memory. 

 Cache miss: The processor references a 
memory block that is not available in the 
cache. Upon a cache miss, the cache 
controller moves the referenced memory 
block from lower-level memory to the cache 
memory. 

 Victim: A dirty cache line that must be 
written to memory before it can be replaced 
to free space for a cache line allocation (see 
victim buffer in Figure 1). 

For more details on cache terminology, refer to 
the “Memory” chapter of the Blackfin Processor 
Programming Reference  [3]. 

In the following discussions, the words 
line, cache-line, and cache-block are 
used interchangeably. Therefore, a block 
in external memory represents the same 
amount of memory size as a cache-line. 
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Block Placement 
Three schemes are commonly used for deciding 
the location where the incoming block may be 
placed in the cache memory. 

Direct Mapped Cache 

 
Figure 2. Memory arranges as fixed-size blocks 

Every block in the lower-level memory has only 
one fixed destination block in the cache. There 
exists a one-to-one mapping from lower-level 
memory to the cache memory. This mapping is 
based on the address of the block in the lower-
level memory. This scheme has the lowest 
management complexity and flexibility. 

Fully Associative Cache 
A block in the main memory can replace any 
block in the cache memory. The mapping is 
completely random. This strategy has the highest 
management complexity but also provides the 
highest flexibility. 

Set Associative Cache 
Cache memory is arranged in sets. A set consists 
of a number of blocks. Any block in the lower-
level memory has a fixed destination set (in 
which it can be placed) in the cache. The 
incoming block may replace any of the blocks 
within this associated set. If there are m blocks in 
a set, the cache configuration is called an m-way 
set associative. This block placement method is a 
compromise between management complexity 
and flexibility. Figure 3 depicts a 2-way set 
associate memory. 

The first two schemes are special cases of the set 
associative cache (direct mapped for m = 1, and 
fully associative for m = number of cache-lines). 

 
Figure 3. Configuration for a 2-way set associative 
cache memory 

Block Replacement 
Figure 4 shows a comparison of block placement 
for a 1-way and a 4-way set associative cache. 
Consider a linear flow through a large loop 
program in external memory. When cache 
locations are overwritten before they can be used 
again, cache is “trashed”. A 4-way cache is much 
more likely to have the required instruction or 
data word still present in the cache to re-use it 
again than a 1-way cache. Code must be re-used 
to make cache attractive. 

In direct mapped cache, there is always a fixed 
location inside the cache memory, at which a 
specific part from cacheable (external) memory 
can be placed. However, with fully associative or 
set-associative placement, multiple locations may 
be chosen on a cache-miss. The blocks that can 
possibly be replaced are called participating 
blocks. Following are some strategies primarily 
employed for selecting the block to be replaced: 

 Random replacement: The destination block 
is randomly selected out of participating 
blocks. A pseudo-random number generator 
may be used to select the destination block. 
This is the simplest, but least efficient 
implementation. 

 First in, first out (FIFO) replacement: The 
incoming block replaces the oldest 
participating block. 
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 Least-recently used (LRU) replacement: 
Under this scheme, all accesses to blocks are 
recorded. The replaced block is the one that 
has been unused for the longest time. LRU 
replacement relies on a corollary of locality: 
If recently used blocks are likely to be used 
again, a good candidate for disposal is the 
least-recently used block. 

 Modified LRU replacement: Modified in the 
case of a Blackfin processor means that bit 8 
(CPLB_LRUPRIO) in the CPLB data registers 
is set or cleared (see Figures 17 and 18). This 
bit has higher priority than LRU policy. 

Under this scheme, a block is assigned a low 
priority or a high priority.  

If the incoming block is a low-priority block, 
only low-priority blocks can participate in the 
cache replacement. 

If the incoming block is of high priority, all 
low-priority blocks will participate in the 
cache replacement. If there are no low-
priority blocks, the high-priority blocks can 
participate in the replacement policy. 

LRU policy is used to choose the victim 
block among participating blocks. 

 

 
Figure 4. Block placement

Block Identification 

Block Address 

Tag Field Index Field Block Offset 

Used by the cache 
controller to 
determine a cache 
hit or miss 

Used to map a 
given block to 
a particular set 

Used to select a 
word within the 
given block 

Table 1. Address partitioning 

Not all the cache-blocks may have valid 
information contents. For example, at system 
startup, cache memory will not contain any valid 
data. The cache-blocks will be filled whenever a 
cache-miss is encountered. A mechanism must 

identify whether a cache-block has a valid data 
entry in it. To identify this, a so-called “valid” bit 
is associated with each cache-block. When a 
cache-block is filled with valid data, the 
corresponding valid bit is set  

In addition to a valid bit, every block in the cache 
also has an address tag associated with it. This 
address tag provides the physical address of 
cached block in external memory. When the 
external memory block is referenced, the cache 
controller compares external address with cache 
address tags (with a valid bit) for the set that 
might contain this block. If the block address 
matches one of the cache address tags, it results 
in a cache hit. 
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Under a set-associative cache configuration, each 
memory address can be viewed as a combination 
of three fields (Table 1). The first division is 
between the block address and the block offset. 
The block (frame) address can be further divided 
into the tag field and the index field. 

The block offset field selects the desired data 
from the block. The index field selects the set, 
and the tag field is compared against it for a hit. 

Write Strategies 
The following section discusses two different 
issues with the memory write operations 
associated with data cache. 

Write Operations with a Cache Hit 
There are two basic options when writing data 
back to external memory: 

 Write-through (WT): The information is 
written to both the block in the cache and to 
the block in the source memory. The 
behavior/performance is similar to write 
accesses to external memory without having 
cache enabled. 

 Write-back (WB): The information is written 
only to the block in the cache. When 
modified, the victim cache-line is written to 
the main memory only when it is replaced. 

A store operation, especially in Write-
Through operation mode, will only 
update the modified data. No complete 
cache-line is written to external memory 
if not necessary. 

To reduce the frequency of writing back blocks 
on replacement, a feature called dirty bit is 
commonly used. This status bit indicates whether 
the block is dirty (modified while in the cache) or 
clean (not modified). If the block is clean, it is 
not written back during replacement. Although it 
is application dependent, write-back mode yields 
about a 10-15% improvement over write-through 
mode. Write-through mode is best when 
coherency must be maintained between more 
than one resource (e.g., DMA and core). 

Write Operations with a Cache Miss 
Since the data are not needed on a write, there 
are two options on a write miss: 

 Write allocate: The block is allocated on a 
write miss, followed by the write-hit actions 
described above. In this scheme, a write miss 
act like a read miss. First, a cache-line is 
fetched from external memory before 
updating both internal cache and source 
memory. 

 No-write allocate: Under this option, write-
misses do not affect the cache. The block is 
modified only in lower-level memory and no 
caching takes place. 

Blackfin Cache Model 
Blackfin processors have (up to) three levels of 
memory, providing a trade-off between capacity 
and performance. Level 1 memory (also known 
as L1 memory) provides the highest performance 
with the lowest capacity. Level 2 (L2) memory 
and level 3 (L3) memory provide much larger 
memory sizes, but typically have multiple cycle 
access times. 

Blackfin processors have on-chip (L1) data and 
instruction memory banks, which can be 
independently configured as SRAM or cache. 
When the memory is configured as cache, neither 
the DMA controller nor the core’s load/store 
instructions can access its content. All Blackfin 
processors have a similar cache configuration 
(see Table 2), but as a reference, the following 
discussion is based on ADSP-BF533 devices. 

The internal L1 memory of the Blackfin 
processor is connected via the External 
Access Bus (EAB) to the External Bus 
Interface Unit (EBIU), which manages 
accesses to external memory (e.g., 
SDRAM memory). Any ongoing 
activity on the EAB cannot be 
interrupted. An ongoing cache-line fill 
will always finish once started. 
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ADSP-BF561 

 

Start 
Address: Derivative: ADSP- 

BF51x 
ADSP- 
BF52x 

ADSP- 
BF531 

ADSP- 
BF532 

ADSP- 
BF533 

ADSP- 
BF536 

ADSP- 
BF534/7 

ADSP- 
BF538/9 

ADSP- 
BF54x Core A Core B 

0xFFE0 0000 Core MMR 2MB 2MB 2MB 2MB 2MB 2MB 2MB 2MB 2MB 2MB 2MB 

0xFFC0 0000 System MMR 2MB 2MB 2MB 2MB 2MB 2MB 2MB 2MB 2MB 2MB 

0xFFB0 1000 RESERVED 

0xFFB0 0000 Scratchpad 4kB 4kB 4kB 4kB 4kB 4kB 4kB 4kB 4kB 4kB  

    

0xFFA1 4000 Instr. ROM 
            RESERVED 

64kB  

0xFFA1 0000 Instr. SRAM/Cache 16kB 16kB 16kB 16kB 16kB 16kB 16kB 16kB 16kB 16kB  

0xFFA0 C000 Instr. SRAM  16kB 16kB  16kB  

0xFFA0 8000 Instr. SRAM  16kB 16kB 16kB 16kB 16kB 16kB 16kB 16kB 

0xFFA0 4000 Instr. SRAM 16kB 16kB 16kB 16kB 16kB 16kB 16kB 
 

0xFFA0 0000 Instr. SRAM 16kB 16kB 
 

16kB 16kB 16kB 16kB 16kB 16kB  

0xFF90 8000 RESERVED 

0xFF90 4000 Data B SRAM/Cache 16kB 16kB  16kB 16kB 16kB 16kB 16kB 16kB 16kB 

0xFF90 0000 Data SRAM 16kB 16kB  16kB  16kB 16kB 16kB 16kB 
 

0xFF80 8000 RESERVED 

0xFF80 4000 Data A SRAM/Cache 16kB 16kB 16kB 16kB 16kB 16kB 16kB 16kB 16kB 16kB 

0xFF80 0000 Data SRAM 16kB 16kB  16kB  16kB 16kB 16kB 16kB 
 

0xFF70 1000  

0xFF70 0000 Scratchpad  4kB 

0xFF61 4000  

0xFF61 0000 Instr. SRAM/Cache  16kB 

0xFF60 4000  

0xFF60 0000 Instr. SRAM  16kB 

0xFF50 8000 RESERVED 

0xFF50 4000 Data B SRAM/Cache 16kB 

0xFF50 0000 Data B SRAM 
 

16kB 

0xFF40 8000  

0xFF40 4000 Data A SRAM/Cache 16kB 

0xFF40 0000 Data A SRAM 
 

16kB 

In
te

rn
al

  M
em

or
y 

L
1 

0xFEB2 0000  

L
2 0xFEB0 0000 L2 SRAM               RESERVED 128kB 128kB 

 RESERVED 
0xEF00 0000 Boot  ROM 32kB 32kB 1kB 1kB 1kB 2kB 2kB 1kB 4kB 2kB 

 RESERVED 

0x2030 0000 ASYNC Bank 3 1MB 1MB 1MB 1MB 1MB 1MB 1MB 1MB 64MB 1MB 
0x2020 0000 ASYNC Bank 2 1MB 1MB 1MB 1MB 1MB 1MB 1MB 1MB 64MB 1MB 
0x2010 0000 ASYNC Bank 1 1MB 1MB 1MB 1MB 1MB 1MB 1MB 1MB 64MB 1MB 
0x2000 0000 ASYNC Bank 0 1MB 1MB 1MB 1MB 1MB 1MB 1MB 1MB 64MB 1MB 

 RESERVED 

E
xt

er
na

l  
M

em
or

y 
L

3 

0x0000 0000 SDRAM Memory 128MB 128MB 128MB 128MB 128MB 512MB 512MB 128MB 512MB 128MB 

Table 2. Blackfin processors memory map 
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Blackfin Instruction Cache Configuration 

Cache Organization 
The ADSP-BF533 processor has 80K bytes of 
on-chip instruction memory. 64K bytes of 
instruction memory are available as instruction 
SRAM. The remaining 16K bytes of memory can 
be configured as instruction cache or can be used 
as instruction SRAM. Table 2 shows a combined 
memory map for all currently available Blackfin 
processor family members. 

All Blackfin processor derivatives offer the same 
amount of instruction memory available that is 
configurable as either instruction cache or 
SRAM. The start address in the memory map is 
always identical. 

When enabled as cache, the instruction memory 
works as a 4-way set associative memory. Each 
of the four ways can be locked independently. 
The instruction cache-controller can be 
configured to use the modified LRU policy or the 
LRU policy for cache-line replacement. 

 The 16K-byte cache is arranged as four 4K-
byte subbanks. A subbank is selected by 
memory address bits [13:12]. 

 Each 4K-byte subbank consists of 32 sets. A 
set is selected by memory address bits [9:5]. 

 Each set consists of four ways. A way is 
selected by the cache controller according to 
the cache-line placement policy. The ways 
can be identified by the address bits [11:10] 
in SRAM. 

 In other words, a set-0 represents the four 
ways of line-0. 

 The size of a cache-line (to be read on a 
cache miss) is 32 bytes. 

The external read data port (for cache controller) 
is 64 bits (8 bytes) wide. Hence, the cache 
controller reads the complete cache-line as a 
burst of four 8-byte-wide chunks of data. 

Each line has a tag portion associated with it. 
The tag portion consists of four parts: 

 20-bit Address Tag: Compared against 
memory address to determine cache-hit or 
cache-miss. 

 LRU Priority: Priority for modified LRU 
policy. 

 LRU State: To be used by cache controller 
for LRU policy. 

 Valid Bit: Valid data in line. 

The 32-bit address space is mapped to cache 
memory space as following: 

 Subbank Select: Select a particular 4K-byte 
subbank. 

 Set Select: Select a set out of 32 cache sets. 

 Byte Select: Select a byte within the given 
line. 

Figure 5 shows how a 4K-byte subbank in the 
instruction cache is arranged. Each 4K-byte 
subbank provides the same structure. 
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Figure 5. Instruction cache configuration for one subbank – 4-way set associative 

Situation Strategy 

Only one invalid way in 
the set 

Incoming block would replace this block  

More than one invalid way 
in the cache 

The invalid ways would be replaced in the following order:  
Way0 first, then way1, then way2, and finally way3  

No invalid ways in the 
cache  

Least-recently used (LRU) way would be replaced. 
For Modified LRU policy: Way with high priority would not be replaced if a low-priority way 
exists in the given set. A low-priority block cannot replace a high-priority block. If all ways are 
high priority, the low-priority way cannot be cached.  

Table 3. Line replacement policy for the Blackfin instruction cache 

Cache Hits/Misses and Cache-Line Replacement 
A cache hit is determined by comparing the 
upper 18 bits and bits 11 and 10 of the 
instruction fetch address to the address tag of 
valid lines currently stored in a cache set. If the 
address-tag comparison operation results in a 
match, a cache hit occurs. If the address-tag 
compare operation does not result in a match, a 
cache miss occurs. 

Consider an access to the address 0x10374956. 
This address is mapped to set-10 of subbank 0. 
The upper 18 bits and bits 11-10 of this address 
(this forms the tag word) will hence be compared 
against all the valid tags of set-10. 

On a cache miss, the instruction memory unit 
generates a cache-line fill access to retrieve the 

missing cache-line from the external memory. 
The core stalls until the target instruction word is 
returned from external memory. 

The address for the external memory access is 
the address of the target instruction word. The 
cache-line replacement unit uses the Valid and 
LRU bits (of unlocked ways) to determine which 
block (in the given set) is to be used for the new 
cache-line. Table 3 shows how the cache-line 
replacement policy is selected. 

The cache-line fill access consists of fetching 
32 bytes (one block) of data from memory. The 
address for the read transfer is the address of the 
target instruction word. When responding to a 
line-read request from the instruction memory 
unit, the external memory returns the target 
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instruction 64-bit word first. The next three 
words are fetched in sequential address order as 
depicted in Table 4. 

Target word Fetching order for next three words 

WD0 WD0, WD1, WD2, WD3 

WD1 WD1, WD2, WD3, WD0 

WD2 WD2, WD3, WD0, WD1 

WD3 WD3, WD0, WD1, WD2 

Table 4. Instruction cache-line word fetching order 

When the cache-block is retrieved from the 
external memory, each 64-bit word is buffered in 
a four-entry line fill buffer before it is written to a 
4K-byte memory bank. The line fill buffer allows 
the core to access the data from the new cache-
line as the line is being retrieved from external 
memory, rather than having to wait until the line 
has been written in to the cache. 

Instruction Fetch Latency: Cache vs. no Cache 
 Cache off: 64 bits / 8 bytes are fetched 

 Cache on: always 256 bits / 32 bytes (burst 
fill) are fetched 

 As the SDRAM interface is 16 bits wide on 
most of the Blackfin derivatives, each 
instruction fetch is a sequence of 16-bit 
accesses. 

Figure 6 shows an instruction fetch from external 
SDRAM memory (target address 0x000Ah) with 
instruction cache turned off. A 64-bit block is 
fetched (defined as WDx). Start address is 
0x0008h as the access (instruction fetch) is 64-bit 
aligned. 

Figure 7 shows the same access but with 
instruction cache turned on. The start address is 
0x0008h as well. This is the beginning of WD1. 
WD2 starts at address 0x0010h, and WD3 starts at 
address 0x0018h. WD0 at address 0x0000h is the 
last part of the cache-block to be transferred. 

Figure 8 and Figure 9 show the execution latency 
for instructions stored in external memory (start 
address 0x00000). The signal “GPIO” is toggled 

from 1 to 0 by the function in external memory. 
The function looks like the following listing: 

[--SP] = (R7:7,P5:5); 
P5.H = hi(FIO_FLAG_C); 
P5.L = hi(FIO_FLAG_C); 
R7 = 0x20 (z); 
w[P5] = R7; 
ssync; 
(R7:7,P5:5) = [SP++]; 
rts; 

For an access to SDRAM memory, there are 
several operations beside the actual memory read 
(RD: Read command). For more details on 
SDRAM performance, see Performance 
Considerations on page 25. 

Figure 8 and Figure 9 show the first access to a 
specific bank in SDRAM memory. The target 
row must be opened in the particular bank 
(ACT: Active command) first. 

After the ACTIVE-to-READ-or-WRITE-delay 
(tRCD, here 3 SCLK cycles), the read command can 
be sent. After the CAS latency (CL, here 3 SCLK 
cycles), the first piece of data is available. 

The latency for both instruction cache on and 
instruction cache off is the same so far. For the 
first 64-bit block of instructions, it makes no 
differences. Execution time is identical. After 
about 10 SCLK cycles, the first instruction is 
executed. 

The advantage of the instruction cache is that the 
next piece of code – and usually the program 
flow is linear – is fetched right after the first 64-
bit block. Compared to a cache-line length of 
256 bits, it takes about 4x11 (plus ACT) SCLK 
cycles until the last piece of data is available on 
the EAB when instruction cache is not enabled. 

With instruction cache enabled, the same 
operation is done within 21 SCLK cycles 
(including ACT). 

For more information on instruction fetch latency 
for internal L2 memory, refer to the “Memory” 
chapter in the Blackfin Processor Programming 
Reference  [3]. 
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Figure 6. Instruction fetch with cache off 

 
Figure 7. Instruction fetch with cache on 

 
Figure 8. Latency with instruction cache off 

 
Figure 9. Latency with instruction cache on 

Blackfin Data Cache Configuration 

Cache Organization 
The ADSP-BF533 has 64K bytes of on-chip data 
memory. 32K bytes of data memory are available 

as data SRAM. The remaining 32K bytes of 
memory are available as two independent 16K-
byte memory banks, which can be configured as 
either data cache or data SRAM. 



   

 

Using Cache Memory on Blackfin® Processors (EE-271) Page 12 of 32 

Some Blackfin processor derivatives offer only 
one bank of data memory that is configurable as 
either data cache or SRAM. See Table 2 for more 
details. 

When enabled, the data cache works as 2-way set 
associative memory. The data cache-controller 
uses LRU policy for cache-line replacement (it 
cannot use modified LRU policy as is the case 
with instruction cache). 

 Depending on the number of memory banks 
configured as cache, the data cache is either 
16K bytes (one bank) or 32K bytes (two 
banks). 

 Each 16K-byte cache bank is arranged as 
four 4K-byte subbanks. A subbank is selected 
by memory address bits [13:12]. 

 Each 4K-byte subbank consists of 64 sets. 
A set is selected by memory address bits 
[10:5]. 

 Each set consists of two ways. A way is 
selected by the cache controller according to 
the cache-line placement policy. The ways 
can be identified by the address bit [11] in 
SRAM. 

 In other words, a set-0 represents the two 
ways of line-0. 

 The size of a cache-line (to be read on a 
cache miss) is 32 bytes. 

Similar to the instruction cache, each cache-line 
has a tag portion associated with it (see 
Figure 10): 

 19-bit address tag: Compared against 
memory address to determine cache-hit or 
cache-miss. 

 Dirty bit: Cache-line has been modified. 

 LRU state: To be used by cache controller for 
LRU policy. 

 Valid bit: Valid data in line. 

The 32-bit address space is mapped to cache 
memory space as following (see Figure 10): 

 Subbank select: Select a particular 4K-byte 
subbank. 

 Set select: Select a set out of 64 cache sets. 

 Byte select: Select a byte within the given 
line. 

Figure 10 shows how a 4K-byte subbank in the 
data cache is arranged. When both data banks are 
enabled as cache, depending on the state of DCBS 
bit, either bit 14 (every 16K bytes) or bit 23 
(every 8M bytes) of the address space is used to 
select one of 16K-byte data banks (see 
Figure 11). 

The cache-line fill access consists of fetching 
32 bytes of data from memory. The address for 
the read transfer is the address of the target data 
word. Assuming a 16-bit read access on a 16-bit 
I/O memory, when responding to a line-read 
request from the data memory unit, the external 
memory returns the target data 16-bit word first. 
The next 15 words are fetched in sequential 
address order as depicted in Table 5. 

Target word Fetching order for next 15 words 

WD0 WD0, … , WD15 

WD1 WD1,  … , WD15, WD0 

WD2 WD2, …, WD15, WD0, WD1 

WD15 WD15, WD0, … , WD14 

Table 5. Data cache-line word fetching order 

When the cache-line is retrieved from the 
external memory, each 32-bit word is buffered in 
an eight-entry line fill buffer before it is written 
to a 4K-byte memory bank. The line fill buffer 
allows the core to access the data from the new 
cache-line as the line is being retrieved from 
external memory, rather than having to wait until 
the line has been written in to the cache. 

Unlike instructions, data are usually modified 
and written back to (external) memory. Any 
cacheable write-through single (non-burst) writes 
from the core to the external memory go through 
the write buffer. The depth of this buffer can vary 
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according to the settings in the interrupt priority 
register (IPRIO). 

A third buffer is used to read a dirty cache-line 
being flushed or being replaced by a cache-line 
fill and then to initialize a burst write operation 
on the bus to perform the line copy-back to the 

external memory. This buffer is called a victim 
buffer. It is implemented like the line fill buffer 
as an 8-entry-deep FIFO, 32-bit-wide each (see 
Figure 1). 

 
Figure 10. Data cache configuration for one subbank – 2-way set associative 

 
Figure 11. Data cache mapping according to DCBS bit 
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Figure 12. Data fetch with cache off 

 
Figure 13. Data fetch with cache on

Data Fetch from External Memory 
 Cache off: 1 byte, 2 bytes, or 4 bytes wide 

accesses 

 Cache on: always 256 bits / 32 bytes 
(burst fill) are fetched 

 As the SDRAM interface is 16 bits wide on 
most Blackfin derivatives, each access is 16 
bits wide. For a byte access, the lower or 
upper byte is masked out by the SDQM signals. 

Figure 12 shows a 16-bit data read access to the 
external memory (target address 0x0032h). Data 
cache is turned off. For each access, one 16-bit 
word is fetched. 

Figure 13 shows the same access, but with data 
cache turned on. The start address here is 
0x0032h. The other data belonging to this cache-
line are fetched as depicted in Table 5. 

Cache Write Methods 

The external memory is divided into different 
pages (defined by data cache protection 

lookaside buffers — DCPLB registers). The 
attributes for each page can be configured 
independently. As discussed in the next section, 
the memory pages can be: 

 Configured either in write-back mode or in 
write-through mode (CPLB_WT bit). 

 Configured to allocate the cache-lines either 
on reads only or on reads and writes 
(CPLB_L1_AOW bit). 

 Cache-line valid Cache-line invalid 

WT 
AOW = 0 

Update cache-line 
& external memory 

Update external 
memory only 

WT 
AOW = 1 

Update cache-line 
& external memory 

Fetch cache-line 
Update cache-line 
Update ext. mem. 

WB Update cache-line 
only 

Fetch cache-line 
Update cache-line 

Table 6. Behavior in specific write situation 
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Table 6 describes the behavior with the different 
cache write methods. Figure 14 illustrates when 
data cache is enabled in write-through mode and 
with CPLB_L1_AOW bit set. A write access to 

address 0x0040h is initiated. First, a cache-line 
fill is done, followed by the write to the external 
memory.

 

 
Figure 14. Data fetch with cache on in write-through mode and AOW enabled

Memory Protection and Cache Unit 
The Blackfin processor contains a page-based 
Memory Protection and Cache Unit (MPCU), 
which provides control over cacheability of 
memory ranges and management of protection 
attributes at a page level. The MPCU is 
implemented as two 16-entry content addressable 
memory (CAM) blocks. Each entry is referred to 
as a cacheability protection lookaside buffer 
(CPLB) descriptor. The MPCU functionality 
includes: 

 Caching and protection lookaside buffers 
(CPLBs) 

 Cache/protection properties determined on a 
per memory page basis (1KB, 4KB, 1MB, 
and 4MB sizes) 

 User/supervisor, and task/task protection  

Cacheability Protection Lookaside Buffers 
(CPLBs) 
Each entry to the CPLB descriptors defines 
cacheability and protection attributes for the 
given memory page. The CPLB entries are 
divided between instruction and data CPLBs. 
16 CPLB entries (called ICPLBs) are used for 
instruction fetch requests. Another 16 CPLB 
entries (called DCPLBs) are used for data 
transactions. Setting the appropriate bits in the 
instruction memory control (IMEM_CONTROL) and 

data memory control (DMEM_CONTROL) registers 
enable the ICPLBs and DCPLBs. Each CPLB 
entry consists of a pair of 32-bit values. Before 
loading descriptor data into any CPLBs, the 
corresponding group of 16 CPLBs must be 
disabled using the ENICPLB or ENDCPLB bits in 
the instruction memory control register 
(IMEM_CONTROL) and data memory control 
register (DMEM_CONTROL), respectively. 

For Instruction Fetches  
ICPLB_ADDR[n] defines the start address of the 
page described by the CPLB descriptor. 

ICPLB_DATA[n] defines the properties of the 
page described by the CPLB descriptor. 
Figure 15 depicts various bit-fields and their 
functionality in the ICPLB_DATA register. 

For Data Operations  
DCPLB_ADDR[m] defines the start address of the 
page described by the CPLB descriptor. 

DCPLB_DATA[m] defines the properties of the 
page described by the CPLB descriptor. 
Figure 16 depicts various bit-fields and their 
functionality in the DCPLB_DATA register. 

Using CPLBs 
 Cache enabled: CPLB must be used to define 

cacheability properties. 
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 Cache disabled: CPLBs can be used to 
protect pages of memory. 

 If CPLBs are used, a valid CPLB entry must 
exist before an access to a specific memory 
location is attempted. Otherwise, an 
exception will be generated. 

 There are two default CPLB descriptors for 
data accesses to the scratchpad data memory 
and to the system and core MMR space. 
These default descriptors define the above 
space as non-cacheable, so that additional 
CPLB’s do not need to be set up for these 
regions of memory. 

 

If valid CPLBs are set up for this space, 
the default CPLBs are ignored. 

On newer Blackfin derivatives such as 
ADSP-BF51x, ADSP-BF52x, and 
ADSP-BF54x, the on-chip boot ROM 
(read-only memory) provides functions 
(SysControl()) for accessing the PLL 
and voltage regulator registers. 
Additionally, internal L1 instruction 
ROM and/or L2 SRAM is available as 
well. For all these cases, a valid CPLB 
descriptor (instruction and data) is 
required. Refer to the processor’s data 
sheet or Table 2 for more details on the 
amount of memory available on you 
Blackfin derivative. 

 
Figure 15. Bit fields and their functionalities for the ICPLB_DATA registers 
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Figure 16. Bit fields and their functionalities for the DCPLB_DATA registers

Memory Pages and Page Attributes 
Each CPLB entry corresponds to a valid memory 
page. Every address within a page shares the 
attributes defined for that page. The address 
descriptor xCPLB_ADDR[n] provides the base 
address of the page in memory. The property 
descriptor word xCPLB_DATA[n] specifies size 
and attributes for the page. Figure 15 and 
Figure 16 depict various bit-fields and their 
functionality in the ICPLB_DATAx registers and 
DCPLB_DATAx registers), respectively. A short 
description of the bits follows. 

Page Size 
The Blackfin memory architecture supports four 
different page sizes – 1KB, 4KB, 1MB, or 4MB. 
Pages must be aligned on page boundaries that 
are an integer multiple of their size. 

Cache-Line Allocation 
Present on data memory only, with write-through 
cache enabled. The CPLB_L1_AOW bit controls 
whether a cache-line fill is triggered by a read 
only or on a write access as well. For writes with 
the CPLB_L1_AOW bit not set, cache behaves as if 
it is not present. If this bit is set, a cache-line fill 
is triggered first followed by updating internal 
and external memory. 

Write-Through/Write-Back Flag 
Present on data memory only, this attribute 
(CPLB_WT bit) enables the write-through mode for 
the data cache when set. By default (CPLB_WT = 
0), write-back mode is active. 

Cacheable/Non-cacheable Flag 
If a page is defined as non-cacheable 
(CPLB_L1_CHBL = 0), access to this page 
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bypasses the cache. The memory pages may not 
be defined as cacheable, when: 

 An I/O device is mapped to the memory 
address. 

 The code residing in the page is in-frequently 
called (the user may not want it to be 
cached). 

 The code is extremely non-linear. 

LRU Priority 
This attribute (CPLB_LRUPRIO) is available on 
instruction memory CPLBs only. It defines LRU 
priority (low/high) for the given page. This is 
used for the modified LRU policy (see Block 
Placement on page 4 for further details). 

Dirty/Modified Flag 
The CPLB_DIRTY bit gives the programmer the 
choice for signaling that a (first) write access to 
external memory has occurred. 

Present on data memory only, this attribute is 
valid only when the page is defined as cacheable 
in write-back mode. This bit should be set by 
software prior to store accesses to this page. 

When this bit is cleared, an access to the page 
causes an exception (EXCAUSE 0x23). The 
exception routine must be set the bit to mark the 
page as dirty. 

Write Access Permission Flags 
Data memory CPLBs feature two flags that 
enable/disable write accesses to the 
corresponding page for supervisor mode 
(CPLB_SUPV_WR) and user mode 
(CPLB_USER_WR), individually. 

User Read Access Permission Flag 
This attribute (CPLB_USER_RD) enables/disables 
reads from this page in user mode.  

Lock Flag 
When the CPLB_LOCK bit is set, the 
corresponding CPLB entry is locked. This 

attribute is useful for dynamic memory 
management. When a CPLB entry is locked, the 
exception handler for CPLB miss will not 
consider it for replacement. 

The page attributes related to “read/write 
permission” deal with the memory protection. It 
may be required in a real-time application in 
which the entire application is partitioned 
between OS code and user code. The user code 
may have different threads, with each thread 
having its own memory resources, which are not 
accessible to the other threads. However, the OS 
kernel can access all the memory resources. This 
task can be achieved by having different CPLB 
configurations in different threads.  

When the CPLBs are enabled, a valid CPLB 
entry should exist in the CPLB table for every 
address to which an access is made. If there is no 
valid CPLB entry for the referenced address, a 
CPLB exception is generated. 

CPLB Status Registers 
The MPCU features two independent status 
registers: one for the ICPLB status (Figure 17), 
and one for the DCPLB status (Figure 18). 

FAULT_ILLADDR 
An access to memory that does not exist was 
attempted. 

FAULT_DAG 
This bit indicates that DAG0 or DAG1 caused the 
fault data access (DCPLB only). 

FAULT_USERSUPV 
Access was done in either user mode or 
supervisor mode. 

FAULT_RW 
Data access was either a read or a write access 
(DCPLB only). 

FAULT 
Hit/miss status of the associated CPLB entry. 
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Figure 17. Bit fields and their functionalities for the ICPLB status register 

 
Figure 18. Bit fields and their functionalities for the DCPLB status register 

Exception EXCAUSE 
[5:0] 

Notes/Examples 

Data access CPLB protection violation 0x23 Attempted read/write to Supervisor resource (see  [3]), or illegal data 
memory access. This entry is used to signal a protection violation caused 
by disallowed memory access, and it is defined by the Memory Protection 
and Cache Unit (MPCU) cacheability protection lookaside buffer (CPLB). 

Data access misaligned address violation 0x24 Attempted misaligned data memory or data cache access. 

Data access CPLB miss 0x26 Used by the MPCU to signal a CPLB miss on a data access. 

Data access multiple CPLB hits 0x27 More than one CPLB entry matches data fetch address. 

Instruction fetch CPLB protection violation 0x2B Illegal instruction fetch access (memory protection violation). 

Instruction fetch CPLB miss 0x2C CPLB miss on an instruction fetch. 
Instruction fetch multiple CPLB hits 0x2D More than one CPLB entry matches instruction fetch address. 

Table 7. CPLB events that cause exceptions  [3]
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CPLB-Related Sequencer Exceptions 

In the ICPLB_DATAx and DCPLB_DATAx registers, 
some access policies (read/write in user mode 
and supervisor mode) can be defined for specific 
memory areas. Violating the permission rules 
cause sequencer exceptions. 

The reason for an exception can be read from the 
EXCAUSE bit field of the sequencer status register 
(SEQSTAT). Table 7 shows an extract of all 
Exceptions that can be originated by the CPLBs. 

Page Descriptor Table 
Generally, a memory-based data structure called 
a page descriptor table is used for CPLB 
management. All the potentially required CPLB 
entries can be stored in the page descriptor table 
(which is generally located in the internal 
SRAM). When the CPLBs need to be configured, 
the application code can pick up the CPLB 
entries from page descriptor table and fill them 
into the CPLB descriptor registers.  

For small/simple memory models it may be 
possible to define a set of CPLB descriptors that 
fit into 32 CPLB entries (16 ICPLBs and 16 
DCPLBs). This type of definition is referred to as 
a static memory management model. 
“Example1”  (1) uses a static memory 
management model. 

For complex memory models, the page 
descriptor table may have CPLB entries that do 
not fit into the available 16 CPLB registers. 
Under such conditions, the CPLBs can be 
configured first with any 16 entries. When the 
processor references a memory location, which is 
not defined by the CPLBs, an exception is 
generated and the address of faulting memory 
location is stored in the Fault Address register 
(xCPLB_FAULT_ADDR). The exception handler can 
use the faulting address to search for the required 
entry in the CPLB table. One of the existing 
CPLB entries can be replaced by this new CPLB 
entry. 

The CPLB replacement policy can be simple or 
complex, depending upon the system 

requirement. It is possible that more than one 
memory reference are made to the addresses for 
which there are no valid entry in the CPLB 
descriptors. Under such a condition, the 
exceptions are prioritized and serviced in the 
following order: 

1. Instruction page misses 

2. Page misses on DAG0 

3. Page misses on DAG1 

The code in “Example2”  (2) provides an 
exception handler for DCPLB miss (see Table 7: 
EXCAUSE 0x26). It uses a round-robin scheduling 
method for the DCPLB replacement. 

Coherency Considerations 
If an outside source (e.g., DMA controller) is 
accessing external memory that is defined as 
cacheable, the programmer must ensure memory 
coherency. The cache controller is not aware of 
any changes that are not done by the MPCU. 
Simple memory polling will not work. 

An example for such a situation might be a 
circular data buffer that is stored in external 
memory. Data are transferred between buffer and 
a peripheral interface (e.g. audio stream). The 
core has to do some calculations and must write 
the data back to the buffer where the data are 
transferred back to the peripheral interface. In 
this case, a write-through strategy is preferable. 

Cache and Instruction Pipeline 
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Table 8. Stages of the instruction pipeline 

Table 8 shows the stages of the Blackfin 
processor’s instruction pipeline. 

In stage 1 (IF1), an instruction address is issued 
to the Instruction Access Bus (IAB). In this 
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phase, the comparison of the instruction cache 
tags is started. 

In stage 6 (DF1), a data address is issued to the 
Data Access Buses (DA0 and DA1). In this 
phase, the comparison of the data cache tags is 
started. 

For more details on the instruction pipeline, refer 
to the “Program Sequencer” chapter in the 
Blackfin Processor Programming Reference  [3]. 

Handling the Instruction and 
Data Cache 

Enabling the Cache 
The instruction and data caches can be enabled 
or disabled independently by configuring the 
IMEM_CONTROL and DMEM_CONTROL registers 
appropriately. The example demonstrates how 
the data/instruction caches can be enabled. 

 Before enabling the cache, valid CPLB 
descriptors must be configured and enabled. 

 When the memory is configured as cache, it 
cannot be accessed directly (neither through 
core, nor through DMA). 

Instruction Memory Control Register 
(IMEM_CONTROL) 
Figure 19 depicts various bit-fields and their 
functionality in the IMEM_CONTROL register. 

LRU Priority Reset 
The LRUPRIORST bit can be used to reset all 
cached LRU priority bits. 

Instruction Cache Locking by Way 
The instruction cache has four independent lock 
bits (these bits are available in the Instruction 
Memory Control register), which can be used to 
lock any of the four ways independently.  

When a particular way is locked (the 
corresponding ILOC bit in the instruction 
memory control register is set), it does not 
participate in the line replacement. The cached 

instructions from a locked way can be removed 
only with an IFLUSH instruction. 

Cache locking only prevents valid 
cache-lines from being selected for 
replacement. Invalid cache-lines stored 
in a locked way can still be selected for 
replacement. This means a cache miss to 
an invalid entry will cause that entry to 
be replaced with the new cache-line. 

“Example3”  (3) (see associated ZIP file) 
demonstrates how the more frequently used 
functions (in the external memory) can be cached 
and locked such that they would not be replaced. 
The scheme consists of locking Way1, Way2, Way3 
(Way0 unlocked), and making a dummy call to 
the functions of interest. The functions will be 
cached to Way0 (as all other ways are locked). 
Now, Way0 can be locked (and Way1, Way2, Way3 
can be unlocked). Any subsequent cache miss 
can replace lines in Ways 1-3 (Way0 is locked) 
only. 

Locking all four ways at the same time is not 
recommended. 

L1 Instruction Memory Configuration 
The IMC bit controls if the upper 16K-byte bank 
of the instruction memory is configured as cache. 
The ENICPLB bit must be 1 as well if cache 
support is enabled. 

Instruction CPLB Enable 
With the ENICPLB bit, Instruction CPLBs can be 
enabled/disabled. Before loading new descriptor 
data into any CPLBs, the corresponding group of 
16 CPLBs must be disabled using the ENICPLB 
bit. 

Data Memory Control Register 
(DMEM_CONTROL) 
Figure 20 depicts various bit-fields and their 
functionality in the DMEM_CONTROL register. 

DAG Port Preference 
With the two PORT_PREFx bits non-cacheable 
data fetches – originated by the Data Address 
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Generators (DAG0 and DAG1) – can be mapped 
to one specific DAG Port (Port A or Port B, see 
Figure 1). 

L1 Data Cache Bank Select 
The DCBS bit controls if address bit 14 or address 
bit 23 is used to switch between Bank A and 
Bank B for cache access (see Figure 20). 

L1 Data Memory Configuration 
The DMC bits enable/disable cache support for the 
L1 data memory banks. The DMC[1] bit controls 
Bank A, and DMC[0] controls Bank B. 
Configuring Bank A or Bank A + Bank B as 
cache is supported. Bank B cannot be configured 
as the only available L1 data cache memory. The 

ENDCPLB bit must be 1 as well if cache support is 
enabled. 

Some Blackfin derivatives do not have 
two data banks and hence do not support 
the DCBS and the DMC[0] bit (see 
Table 2). 

Data CPLB Enable 
With the ENDCPLB bit, data CPLBs can be 
enabled/disabled. Before loading new descriptor 
data into any CPLBs, the corresponding group of 
16 CPLBs must be disabled using the ENDCPLB 
bit. 

 
 

 
Figure 19. Bit fields and their functionalities for the IMEM_CONTROL register 

 
Figure 20. Bit fields and their functionalities for the DMEM_CONTROL register 



   

 

Using Cache Memory on Blackfin® Processors (EE-271) Page 23 of 32 

Cache Control Instructions 

Instruction Cache Invalidation 
By invalidating the cache-lines associated with 
the buffer, “coherency” is maintained between 
the contents stored in cache and the actual values 
in source memory. There are three schemes for 
invalidating the instruction cache: 

 The IFLUSH instruction can be used to 
invalidate a specific address in the memory 
map. When the instruction IFLUSH [P2]; is 
executed, if the memory address pointed by 
P2 has been brought in to the cache, the 
corresponding cache-line will be invalidated 
after execution of the above instruction. 
When the instruction is used like IFLUSH 
[P2++]; the pointer increments by the size of 
a cache-line. 

 The VALID bit of the tag section for any line 
in the cache can be cleared explicitly by 
writing a one to the tag section. The value to 
the tag section can be written using the 
ITEST_COMMAND register. This is discussed in 
detail in the next section. 

 In order to invalidate the entire cache, the 
IMC bit in the IMEM_CONTROL register can be 
cleared. This clears the VALID bit for all tag 
sections in the cache. The IMC bit can be set 
to enable the cache again. 

Data Cache Control Instructions 
 The PREFETCH instruction can be used to 

allocate a line into the L1 cache.  

 The FLUSH instruction causes the data cache 
to synchronize the specified cache-line with 
the external memory. If the cached data line 
is dirty, the instruction writes the line back to 
external memory and marks the line clean in 
the data cache. 

 The FLUSHINV instruction causes the data 
cache to perform the same function as the 
FLUSH instruction and then invalidates the 
specified line in the cache. If the location is 

not dirty, no flush will occur. In this case, 
only the invalidate step takes place. 

Accessing the Cache Memory 
When configured as cache, the L1 memory bank 
cannot be accessed directly by the core or the 
DMA. Read/write operations can be performed 
onto the cache space using the ITEST_COMMAND 
and DTEST_COMMAND registers. The 
DTEST_COMMAND register can also be used to 
access the instruction SRAM banks. Figure 21 
shows the bit fields for the ITEST_COMMAND 
register. Figure 22 shows bit fields for the 
DTEST_COMMAND register. 

Accessing the Instruction Cache 

The ITEST_COMMAND register can be used to 
access the data or tag sections of the instruction 
cache-lines. 

A cache-line is divided in to four 64-bit words. 
Any of the four words can be selected for access. 
While reading the cache, the data value is read 
into the ITEST_DATA[1:0] register set. While 
writing to the cache, the value from the 
ITEST_DATA[1:0] register set are written to the 
cache. 

When a tag section is being accessed, the 32-bit 
tag value is transferred to/from the ITEST_DATA0 
register. 

Consider an example where value 0x0C010360 is 
written in to the ITEST_COMMAND register. This 
instruction will read the tag section from the 
way-3, set-27, subbank-1 and transfer it to the 
ITEST_DATA0 register. Similarly, writing 
0x0C010362 transfers the contents of 
ITEST_DATA0 register to the tag section of the 
line located in way-3, set-27, and subbank-1. 
While accessing the tag section (read or write), 
bits 3 and 4 of the ITEST_COMMAND register are 
reserved. 

Writing a value of 0x0C010374 will read the 
second word of the cache-line located at way-3, 
set-27, subbank-1 and transfer it to the 
ITEST_DATA[1:0] register set. Writing a value 
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of 0x0C010366 to the ITEST_COMMAND register 
transfers the value of the ITEST_DATA[1:0] 
register set to word-0 of the cache-line located at 
way-3, set-27, subbank-1 of the instruction 
cache. While writing to the cache, the 
ITEST_DATA[1:0] register test must be loaded 
before the ITEST_COMMAND register is written. 

Accessing the Instruction SRAM 

When bit 24 of the DTEST_COMMAND register is 
set, the DTEST_COMMAND register can be used to 
access the instruction SRAM. A 64-bit word can 
be transferred to/from the DTEST_DATA[1:0] 
register set to/from the instruction SRAM. Thus, 
memory can be accessed eight bytes at a time. 

Bit 2 of the DTEST_COMMAND register must be set 
while working in this mode. Bits 3-10 must be 
assigned with bits 3-10 of the address being 
accessed. Consider a case where the byte from 
address 0xFFA07935 has to be read from the 
instruction memory. This address lies in bank-1. 
While accessing the above byte an entire line 
addressed by (0xFFA07930 – 0xFFA07937) will 
be accessed. The control value that must be 

loaded to the DTEST_COMMAND register will be 
0x05034134. 

Accessing the Data Cache 

When bit 24 of the DTEST_COMMAND register is 
cleared, the DTEST_COMMAND register can be used 
to access the data or tag sections of data cache-
lines. A word from the data section of cache-line 
can be transferred to/from the DTEST_DATA[1:0] 
register set. 

While accessing the tag section, the 32-bit tag 
value is transferred to/from the DTEST_DATA0 
register. 

Consider a case where the values of the 
DTEST_DATA[1:0] register set needs to be 
written to word-0 of the data line in way-1, set-
39, subbank-0, data cache bank-A. Then the 
DTEST_COMMAND register can be written with a 
value of 0x040004E5. The DTEST_DATA[1:0] 
register set must be loaded before writing to the 
DTEST_COMMAND register. Bit 14 of the 
DTEST_COMMAND register is reserved while 
accessing the data cache space (bit 24 = 0). 

 

 
Figure 21. Bit fields and their functionalities for the ITEST_COMMAND register 
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Figure 22. Bit fields and their functionalities for the DTEST_COMMAND register

Performance Considerations 
The following section provides comparison 
figures with and without using the cache. These 
examples apply to special scenarios and provide 
ideas of how to obtain the best performance for a 
specific framework. 

For these particular examples, the PLL is 
configured for a 270 MHz core clock speed 
(CCLK) and a 54 MHz system clock speed (SCLK), 
respectively (CLKIN = 27 MHz) on the ADSP-
BF533 EZ-KIT Lite® evaluation board. 

Instruction Cache: Optimized Conditions 
For a linear code execution from external 
memory, the performance can be increased by up 
to 13% (compare to Instruction Fetch Latency: 
Cache vs. no Cache on page 10) when code is not 
stored in cache memory. If the instructions are 
already copied to cache and executed at least two 
times, greater than 50% performance 
enhancement is possible. Table 9 shows a 
comparison (in core clock cycles), when 
functions are executed 1x to 1000x (e.g., filter 
algorithm) and instruction cache is turned off and 
on, respectively. The numbers – counted in core 

clock cycles – are derived from “Example6”  (6). 
The “Gain” column shows how many cycles are 
saved (in percent). The numbers can vary up to ± 
100 cycles when performing several test runs 
(e.g., refreshing SDRAM). 

Exec # ICache OFF ICache ON Gain 

1x 1430 1245 12.9% 

2x 2480 1329 46.4% 

4x 4580 1469 67.9% 

8x 8740 1973 77.4% 

10x 10814 2173 79.9% 

100x 104620 11850 88.7% 

1000x 1042950 109050 89.5% 

Table 9. Instruction cache performance with good 
conditions 

Instruction Cache: Bad Concept 
Table 9 shows similar numbers similar to the 
previous example. But now the code is no longer 
linear (each function contains just a jump 
instruction) and many cache-misses / cache-line 
replacements must be done. Each cache miss 
causes a cache-line fill operation. If the function 
just contains a jump instruction, the advantage of 
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having code already available in cache when 
needed (linear code flow) is gone, and the 
additional fetched code was a waste of time. 

Exec # ICache OFF ICache ON Loss 

1x 1031 1164 -12.9% 

2x 1924 2394 -24.4% 

4x 3747 4654 -24.2% 

8x 7462 8918 -19.5% 

10x 9314 11100 -19.2% 

100x 91643 109201 -19.2% 

1000x 915488 1090127 -19.1% 

Table 10. Instruction cache performance with wrong 
concept 

Data Cache 

Data Cache Settings Mem Write Mem Read 

No Data Cache 23039 55248 

WB 10572 3866 

WT without AOW bit set 23039 10583 

WT with AOW bit set 32154 3866 

Table 11. Data cache performance 

The page size is set to 1KB. The core is first 
writing 15K bytes to external memory and then 
reading the data back; 32-bit accesses are 
performed to the same internal bank. With this 
setup, no CPLB replacement will be triggered. 
The DCBS bit is not relevant in this case, only L1 
Data Bank A will be used for cache and all data 
can be stored there without a need for cache data 
replacement. 

A CPLB replacement can cost several hundred 
cycles (exception handling, replacement 
algorithm, etc.). A good strategy for the CPLB 
table settings is important. 

Table 11 shows the results represented by core 
clock cycles: 

 A memory write without cache enabled and 
write-through cache (allocate cache-line on 
reads only) makes no difference. 

 A memory write operation with write-back 
strategy, additional cache-line fills require 
more cycles. 

 A memory write with the AOW bit set, write-
through cache has worst write performance 
when accessing external memory for the first 
time (all cache-lines invalid). 

 A memory read in write-back mode and 
write-through mode with the AOW bit set gives 
best performance as data are already stored in 
cache memory. 

 A memory read with write-through cache 
with the AOW bit not set benefits from the 
cache-line burst fill. 

 The memory read performance without data 
cache enabled is poor compared to the rest. 

Core Clock vs. System Clock 

An inappropriate ratio between CCLK and SCLK 
can cause a penalty. Figure 23 shows an 
instruction fetch starting from address 0x00h 
with instruction cache turned on. 

CCLK:SCLK = 3:1 or higher should be the 
preferred settings when cache is in use. This 
requires 22 SCLK cycles. 

The ratio between core clock and system clock is 
2:1. For every second word, an additional SCLK 
cycle is inserted. About 28 SCLK cycles are 
required to fetch the complete cache-line 
(including activation command). 

A ratio of 1:1 lowers the throughput. In this case, 
two additional SCLK cycles are inserted with each 
second word (see Figure 24). About 36 SCLK 
cycles are required. 

This differences show the time for the core 
required to compare cache tags, arrange 
instruction in the alignment unit, and finally 
execute them. 

Refreshing SDRAM Memory 
Figure 25 shows a situation where a cache-line 
fill is interrupted by a memory refresh. The 
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transfer stops and the memory controller (auto-
refresh mode) issues a precharge (close 
row/page) command and a refresh command. 
When finished, the transfer continues with the 
next increment of the last address. 

When the SDRAM is in self-refresh mode, the 
memory can still be accessed by the processor. In 
this case, the SDC releases the self-refresh mode 
to either temporary auto-refresh or auto-refresh 
mode, depending on the state of the SRFS bit in 
the EBIU_SDGCTL register. 

SDRAM Performance 
More information on SDRAM performance with 
the Blackfin SDC can be found in the “External 
Bus Interface Unit” chapter of the ADSP-BF537 
Blackfin Processor Hardware Reference  [5]. A 
DAG read/write access is 8/1 SCLK cycles per 16-
bit word, respectively. Instruction fetches and 
cache-line fills require about 1.1 SCLK cycles per 
16-bit word. 

Conclusions 
Code must be used in a linear way to 
utilize the advantage of a cache-line 
burst fill (pre-fetch). 

Code must be re-used to make cache 
attractive. 

 

 
Figure 23. Instruction fetch with cache on (CCLK:SCLK = 2:1) 

 
Figure 24. Instruction fetch with cache on (CCLK:SCLK = 1:1) 

 
Figure 25. Instruction fetch with cache on (interrupted by auto-refresh)
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VisualDSP++® Compiler Support 
The VisualDSP++® tools support cache memory 
management. Some features are discussed below. 
Detailed information can be found in the 
VisualDSP++ C/C++ Compiler and Library 
Manual for Blackfin Processors [4]. Instruction 
and data caches can be enabled together or 
separately, and the memory spaces they cache 
are configured individually. 

Header Files 
The VisualDSP++ header files 
def_LPBlackfin.h and cplb.h offer user-
friendly pre-defined macros and masks for CPLB 
configuration and more. The value 0x0C010366 
from one of the previous examples would look 
like: 

TEST_WAY3|TEST_MB1|TEST_SET(27)|TEST_D
W0|TEST_DATA|TEST_WRITE 

CPLB Control 
CPLB support is controlled through a global 
integer variable, ___cplb_ctrl. Its C name has 
two leading underscore characters, and its 
assembler name has three underscore characters. 
The value of this variable determines whether the 
startup code enables the CPLB system. By 
default, the variable has the value zero, 
indicating that CPLBs should not be enabled. 
The pragma retain_name should be used with 
__cplb_ctrl, such that this variable is not 
eliminated by the compiler when optimization is 
enabled. 

The value of ___cplb_ctrl may be changed in 
the following ways: 

 The variable may be defined as a new global 
with an initialization value. This definition 
supersedes the definition in the library.  

 The linked-in version of the variable may be 
altered in a debugger, after loading the 
application but before running it, so that the 
startup code sees a different value. 

When enabling caches using ___cplb_ctrl, it is 
imperative that USE_CACHE also be specified.  

CPLB Installation  

When ___cplb_ctrl indicates that CPLBs are to 
be enabled, the startup code calls the routine 
_cplb_init. This routine sets up instruction and 
data CPLBs from a table, and enables the 
memory-protection hardware. The default 
configuration tables are defined in files called 
cplbtabn.s in VisualDSP\Blackfin\lib\src\ 
libc\crt, where n is the part number of the 
Blackfin processor. 

When the cache is enabled, the default CPLB 
configuration defined in the above file is 
installed. However, you can modify the given 
files to define your own CPLB configuration. 
The given file must be included in the project file 
in order for the changes to be effective. The 
project “Example5” (5) demonstrates how the 
CPBL configuration table can be modified. 

Exception Handling 
As discussed earlier, in a complex memory 
model there may need to be more CPLBs than 
can be active at once. In such systems, there will 
eventually come a time when the application 
attempts to access memory that is not covered by 
one of the active CPLBs. This will raise a CPLB 
miss exception. 

The VisualDSP++ library includes a CPLB 
management routine for these occasions, called 
_cplb_mgr. This routine should be called from 
an exception handler that has determined that a 
CPLB miss has occurred, regardless whether it is 
a data miss or an instruction miss. _cplb_mgr 
identifies the inactive CPLB that must be 
installed to resolve the access, and replaces one 
of the active CPLBs with this one. If CPLBs are 
to be enabled, the default startup code installs a 
default exception handler, called _cplb_hdr; this 
does nothing other than to test for CPLB miss 
exceptions, which it delegates to _cplb_mgr. It is 
expected that users will have their own exception 
handlers to deal with additional events. 



   

 

Using Cache Memory on Blackfin® Processors (EE-271) Page 29 of 32 

Using the Project Wizard 
The Project Wizard offers the possibility to 
create a project that includes support for memory 
protection and cache for both instruction and data 
memory. Figure 26 through Figure 30 show the 
additional actions required: 

1. .LDF file and startup code must be added 
(Figure 26). 

 

 
Figure 26. Project Wizard: Add Startup Code/LDF 

2. Support for external memory (SDRAM) and 
the memory size must be added (Figure 27). 

 
Figure 27. Project Wizard: LDF Settings: External 
Memory 

3. In the “Cache and Memory Protection” 
settings, the support for memory protection 
and cache can be added for both instruction 

and data memory (Figure 28). Customizable 
CPLB tables can be generated, and you can 
choose between write-through/write-back 
data cache. The “Cache mapping set size” 
option controls the DCBS bit in the 
DMEM_CONTROL register. 

 
Figure 28. Project Wizard: Startup Code Settings: 
Cache and Memory Protection 

4. All settings can be modified in the Project 
Options dialog box. The files will then be re-
created (Figure 29). 

 
Figure 29. Project Options: Startup Code 
Settings: Cache and Memory Protection 

When finished, a project will be generated 
including a file called 
<Project_Name>_cplbtab.c (Generated Files-
>Startup). This file contains the configurable 
CPLB table (Figure 30). 
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Figure 30. VisualDSP++: Generated CPLB table 

Summary of MMRs 
The following memory-map registers are used 
for the memory management on Blackfin 
processors: 

IMEM_CONTROL DMEM_CONTROL 

ITEST_COMMAND DTEST_COMMAND 

ITEST_DATA [1:0] DTEST_DATA [1:0] 

ICPLB_DATA [15:0] DCPLB_DATA [15:0] 

ICPLB_ADDR [15:0] DCPLB_ADDR [15:0] 

ICPLB_STATUS DCPLB_STATUS 

ICPLB_FAULT_ADDR DCPLB_FAULT_ADDR 

Table 12. CPLB memory-mapped registers 

Cache Configuration for Blackfin 
Derivatives 
The preceding section discussed cache 
configuration and cache control on ADSP-BF533 
processors. The same discussion also applies to 
ADSP-BF531 and ADSP-BF532 processors. The 
example code  (1) through  (5) can be used for 

ADSP-BF531 and ADSP-BF532 processors too. 
Example code  (6) and  (7) supplied with this 
application note can be used with all single-core 
Blackfin processors. 

The amount of instruction memory configurable 
as cache is the same (16K bytes) on all currently 
available single-core Blackfin processors. 

Most single-core Blackfin processors support 
two L1 data banks configurable as cache, 16K 
bytes each. The ADSP-BF531 processor has only 
one data bank available. 

The amount of memory available on the ADSP-
BF561 Blackfin dual-core processor as cache is 
double of that of ADSP-BF533 processor. 

Conclusion 
This document discusses the instruction and data 
cache configuration on Blackfin processors. The 
address mapping to the cache-lines is also 
discussed. The example code provided with this 
application note demonstrates how to set up 
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CPLB descriptors for instruction memory and 
data memory, how to enable/disable the 
instruction/data cache, and how to handle the 
CPLB exceptions and locking the instruction 

cache by way. Discussion on accessing the 
instruction/data cache by core through 
ITEST_COMMAND and DTEST_COMMAND is also 
included. 

Appendix 
A .ZIP file is associated with this document. It contains the following code examples: 

(1) Example code for configuring the CPLB descriptors and instruction/data cache (C) 

(2) Example code for CPLB exception handling (C) 

(3) Example code for locking the instruction cache by way (C) 

(4) Example codes demonstrating the data cache control instructions (C) 

(5) Example code demonstrating VisualDSP++ compiler support for Blackfin cache (C) 

(6) Example code for configuring the ICPLB descriptors and instruction cache (Blackfin assembly) 

(7) Example code for configuring the DCPLB descriptors and data cache (Blackfin assembly) 

(8) Example code for a bad instruction cache concept (Blackfin assembly) 
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