
Engineer-to-Engineer Note EE-263

a

Technical notes on using Analog Devices DSPs, processors and development tools
Contact our technical support at dsp.support@analog.com and at dsptools.support@analog.com
Or visit our on-line resources http://www.analog.com/ee-notes and http://www.analog.com/processors

Parallel Implementation of Fixed-Point FFTs on TigerSHARC® Processors
Contributed by Boris Lerner Rev 1 – February 3, 2005

Copyright 2005, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

Introduction
The advance of modern highly paralleled
processors, such as the Analog Devices
TigerSHARC® family of processors, requires
finding efficient ways to parallel
implementations of many standard algorithms.
This applications note not only explains how the
fastest 16-bit FFT implementation on the
TigerSHARC works, but also provides guidance
about algorithm development, so you can apply
similar techniques to other algorithms.

Generally, most algorithms have several levels of
optimization, which are discussed in detail in this
note. The first and most straightforward level of
optimization is the paralleling of instructions, as
permitted by the processor's architecture. This is
simple and boring. The second level of
optimization is loop unrolling and software
pipelining to achieve maximum parallelism and
to avoid pipeline stalls. Although more complex
than the simple parallelism of level one, this can
be done in prescribed steps without a firm
understanding of the algorithm and, thus,
requires little ingenuity. The third level is
restructuring the math of the algorithm to still
produce valid results, but fit the processor’s
architecture better. This requires a thorough
understanding of the algorithm and, unlike
software pipelining, there are no prescribed steps
that lead to the optimal solution. This is where
most of the fun in writing optimized code lies.

In practical applications, it is often unnecessary
to go through all of these levels. When all of the

levels are required, it is best to perform these
levels of optimization in reverse order. By the
time the code is fully pipelined, it is too late to
try to change the fundamental underlying
algorithm. Thus, a programmer would have to
think about the algorithm structure first and
organize the code accordingly. Then, levels one
and two (paralleling, unrolling, and pipelining)
are usually done at the same time.

The code to which this note refers is supplied by
Analog Devices. A 256-point FFT is used as the
specific example, but the mathematics and ideas
apply equally to other sizes (no smaller than 16
points).

As we will see, the restructured algorithm breaks
down the FFT into much smaller parts that can
then be paralleled. In the case of the 256-point
FFT (its code listing is at the end of this
applications note), the FFT is split into 16 FFTs
of 16 points each and each, 16-point FFT is done
in radix-4 fashion (i.e., each has only two
stages). If we were to do a 512=point FFT, we
would have to do 16 FFTs of 32 points each
(and, also, 32 FFTs of 16 points each), each 32-
point FFT would have the first two stages done
in radix-4 and the last stage in radix-2. These
differences imply that it would be difficult to
write the code that is FFT size-generic. Although
the implemented algorithm is generic and applies
equally well to all sizes, the code is not, and it
must be hand-tuned to each point size to be able
to take full advantage of its optimization.

 a

Parallel Implementation of Fixed-Point FFTs on TigerSHARC® Processors (EE-263) Page 2 of 12

With all this in mind, let us dive into the
fascinating world of fixed-point FFTs in the land
of the TigerSHARC.

Standard Radix-2 FFT Algorithm
Figure 1 shows a standard 16-point radix-2 FFT
implementation, after the input has been bit-
reversed. Traditionally, in this algorithm, stages

1 and 2 are combined with the required bit
reversing into a single optimized loop (since
these two stages require no multiplies, only adds
and subtracts). Each of the remaining stages is
usually done by combining the butterflies that
share the same twiddle factors together into
groups (so the twiddles need only to be fetched
once for each group).

Figure 1. Standard Structure of the 16-Point FFT

Since TigerSHARC processors offer vectorized
16-bit processing on packed data, we would like
to parallel this algorithm into at least as many
parallel processes as the TigerSHARC can
handle. An add/subtract instruction of the
TigerSHARC (which is instrumental in

computing a fundamental butterfly) can be
paralleled to be performed on eight 16-bit values
per cycle (four in each compute block of the
TigerSHARC processor). Since data is complex,
this equates to four add/subtracts of data per
cycle. Thus, we would like to break the FFT into

 a

Parallel Implementation of Fixed-Point FFTs on TigerSHARC® Processors (EE-263) Page 3 of 12

at least four parallel processes. Looking at the
diagram of Figure 1, it is clear that we can do
this by simply combining the data into blocks,
four points at a time, i.e.:

1st block = {x(0), x(8), x(4), x(12)}

2nd block = {x(2), x(10), x(6), x(14)}

3rd block = {x(1), x(9), x(5), x(13)}

4th block = {x(3), x(11), x(7), x(15)}

These groups have no interdependencies and will
parallel very nicely for the first two stages of the
FFT. After that we are in trouble and the
parallelism is gone. At this point, however, we
could re-arrange the data into different blocks to
ensure that the rest of the way the new blocks do
not crosstalk to each other and, thus, can be
paralleled. A careful examination shows that the
required re-arrangement is an operation of
interleaving (or de-interleaving), with new
blocks given by:

1st block = {x(0), x(2), x(1), x(3)}

2nd block = {x(8), x(10), x(9), x(11)}

3rd block = {x(4), x(6), x(5), x(7)}

4th block = {x(12), x(14), x(13), x(15)}

Another way to look at these new blocks is as the
4x4 matrix transpose (where blocks define the
matrix rows). Of course, there is a significant
side effect—after the data re-arrangement the last
stages will parallel, but will not produce data in
the correct order. Maybe we can compensate for
this by starting with an order other than the bit-
reverse we had started with, but let us leave this
detail for the rigorous mathematical analysis that
comes later.

At this time, the analysis of the 16 point FFT
seems to suggest that, in general, given an N
point FFT, we would like to view it in two
dimensions as a NN × matrix of data and
parallel-process the rows or columns, then
transpose the matrix and parallel-process the
rows or columns again. Another requirement that

comes from this is that N must be a perfect
square. As it turns out, we can dispose of this
requirement, but that will be discussed later. At
this time we are concerned with the 256-point
FFT and, as luck would have it, 216256 = .

So, which shall we parallel, the rows or the
columns? The answer lies in the TigerSHARC
processor’s vector architecture. When the
TigerSHARC processor fetches data from
memory, it fetches it in chunks of 128 bits at a
time (i.e., four 16-bit complex data points) and
packs it into quad or paired (for SIMD fetches)
registers. Then it vectorizes processing across the
register quad or pair. Thus, it is the columns of
the matrix that we want to parallel (i.e., we
would like to structure our math so that all the
columns of the matrix are independent from one
another).

Now that we know what we would like the math
to give us, it is time to do this rigorously in the
language of mathematics.

Mathematics of the Algorithm
The following notation will be used:

N = Number of points in the original FFT (256 in
our example),

NM = ,
∧

x will stand for the Discrete Fourier Transform
(henceforth abbreviated as DFT) of x.

Now, given signal x,

∑∑ ∑

∑∑∑
−

=

∧−−

=

−

=

−−

−

=

−

=

+−−

=

−∧

=+

=+==

1

0

21

0

1

0

22

1

0

1

0

)(21

0

2

)()(

)()()(

M

m
m

N
inmM

m

M

l

M
inl

N
inm

M

m

M

l

N
mMlinN

k

N
ink

nxeemMlxe

emMlxekxnx

πππ

ππ

where:

)(:)(mMlxlxm += (1)

 a

Parallel Implementation of Fixed-Point FFTs on TigerSHARC® Processors (EE-263) Page 4 of 12

and
∧

mx is this function’s M–point DFT. Now, we
view the output index n as arranged in an M x M
matrix (i.e., 1,0 , −<≤+= MtstMsn) Thus,

∑

∑
−

=

∧−−

−

=

∧+−∧

=+=+

1

0

22

1

0

)(2

)(

)()(

M

m
m

N
itm

M
ism

M

m
m

N
mtMsi

txee

tMsxetMsx

ππ

π

since
∧

mx , being an M–point DFT, is periodic
with period = M. Thus,

)()()(*
1

0

*
2

sxmxetMsx t

M

m
t

M
ism ∧−

=

−∧

==+ ∑
π

, (2)

where:

)(:)(
2

* txemx m
N

itm

t

∧−

=
π

 (3)

and
∧
*
tx is this function’s M–point DFT.

Implementation of the Algorithm
Equations (1), (2), and (3) show how to compute
the DFT of x using the following steps (here we
go back to our specific example of N=256,
M=16):

1. Arrange the 256 points of the input data x(n)
linearly, but think of it as a 16x16 matrix:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)255()242()241()240(

)47()34()33()32(
)31()18()17()16(
)15()2()1()0(

xxxx

xxxx
xxxx
xxxx

L

MMMMM

L

L

L

2. Using equation (1), re-write as:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)15()15()15()15(

)2()2()2()2(
)1()1()1()1(
)0()0()0()0(

15210

15210

15210

15210

xxxx

xxxx
xxxx
xxxx

L

MMMMM

L

L

L

3. We now compute parallel FFTs on columns
(as mentioned before, TigerSHARC
processors do this very efficiently) obtaining:

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∧∧∧∧

∧∧∧∧

∧∧∧∧

∧∧∧∧

)15()15()15()15(

)2()2()2()2(

)1()1()1()1(

)0()0()0()0(

15210

15210

15210

15210

xxxx

xxxx

xxxx

xxxx

L

MMMMM

L

L

L

4. We point-wise multiply this by matrix

15,0

256
2

≤≤

−

⎥
⎦

⎤
⎢
⎣

⎡

mt

itm

e
π

to obtain

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−∧−∧−∧−∧

−∧−∧−∧−∧

−∧−∧−∧−∧

−∧−∧−∧−∧

256
2252

15
256

302

2
256

152

1
256

02

0

256
302

15
256

42

2
256

22

1
256

02

0

256
152

15
256

22

2
256

12

1
256

02

0

256
02

15
256

02

2
256

02

1
256

02

0

)15()15()15()15(

)2()2()2()2(

)1()1()1()1(

)0()0()0()0(

iiii

iiii

iiii

iiii

exexexex

exexexex

exexexex

exexexex

ππππ

ππππ

ππππ

ππππ

L

MMMMM

L

L

L

which, according to equation (3) is precisely

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)15()2()1()0(

)15()2()1()0(
)15()2()1()0(
)15()2()1()0(

*
15

*
15

*
15

*
15

*
2

*
2

*
2

*
2

*
1

*
1

*
1

*
1

*
0

*
0

*
0

*
0

xxxx

xxxx
xxxx
xxxx

L

MMMMM

L

L

L

5. Now we would like to compute the 16-point
FFTs of)(* mxt , but these are arranged to be
paralleled in rows instead of columns. Thus,
we have to transpose to obtain

 a

Parallel Implementation of Fixed-Point FFTs on TigerSHARC® Processors (EE-263) Page 5 of 12

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)15()15()15()15(

)2()2()2()2(
)1()1()1()1(
)0()0()0()0(

*
15

*
2

*
1

*
0

*
15

*
2

*
1

*
0

*
15

*
2

*
1

*
0

*
15

*
2

*
1

*
0

xxxx

xxxx
xxxx
xxxx

L

MMMMM

L

L

L

6. We compute parallel FFTs on the columns
and use equation (2) to obtain

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∧∧∧∧

∧∧∧∧

∧∧∧∧

∧∧∧∧

)255()242()241()240(

)47()34()33()32(

)31()18()17()16(

)15()2()1()0(

xxxx

xxxx

xxxx

xxxx

L

MMMMM

L

L

L

This is the FFT result that we want, and it is in
the correct order! The math is done, and we are
ready to consider the programming
implementation. In the following discussion, we
will refer to the steps outlined above as Steps 1
through 6.

Programming Implementation
We will go through the steps of the previous
section, one step at a time.

Steps 1 and 2 do not need to be programmed.
The input data is already arranged in the proper
order.

Step 3 requires us to compute 16 parallel 16-
point FFTs on the columns of the input matrix.
As mentioned before, the TigerSHARC can
easily parallel four FFTs at a time, thanks to its
vector processing, so we can do four FFTs at a
time and repeat this process four times to
compute all 16 FFTs. 16-point FFTs can be done
very efficiently in radix-4, resulting in two
stages, at four butterflies per stage. To minimize
overhead, it is more efficient to compute only the
first stage for each of the four sets of the four
FFTs, followed by computing the second stage

for each of the four sets of the four FFTs (instead
of doing both stages for each set).

Step 4 is a point-wise complex multiply (256
multiplies in total), and Step 5 is a matrix
transpose. These two steps can be combined—
while multiplying the data points we can store
them in a transposed fashion.

Step 6 is identical to Step 3—we have to
compute 16 parallel 16-point FFTs on the
columns of our new input matrix. This part need
not need be written. We can simply branch to the
code of Step 3, remembering to exit the routine
once the FFTs are finished (instead of going on
to the Step 4, as before).

Figure 2 represent buffers containing the data,
and arrows correspond to transformations of data
between buffers.

Figure 2. Block Diagram of the Code

 a

Parallel Implementation of Fixed-Point FFTs on TigerSHARC® Processors (EE-263) Page 6 of 12

Pipelining the Algorithm - Stage 1
Let us concentrate on Step 3 first.

Mnemonic Operation

F1 Fetch 4 complex Input1 of the 4
butterflies=4 32-bit values

F2 Fetch 4 complex Input2 of the 4
butterflies=4 32-bit values

F3 Fetch 4 complex Input3 of the 4
butterflies=4 32-bit values

F4 Fetch 4 complex Input4 of the 4
butterflies=4 32-bit values

AS1 F1+/-F2

AS2 F3+/-F4

MPY1
1st half of (F1-F2)*(-i)

Note that we can do only 2 complex
mpys per cycle

M1 Move MPY1 into compute block register

MPY2
2nd half of (F1-F2)*(-i)

Note that we can do only 2 complex
mpys per cycle

M2 Move MPY2 into compute block register

AS3 (F3 + F4)+/-(F1+F2) =Output1 and
Output3 of the 4 butterflies

AS4 (F3 – F4)+/-(F1-F2)*(-i) =Output2 and
Output 4 of the 4 butterflies

S1 Store (Output1) of the 4 butterflies=4 32-
bit values

S2 Store (Output2) of the 4 butterflies=4 32-
bit values

S3 Store (Output3) of the 4 butterflies=4 32-
bit values

S4 Store (Output4) of the 4 butterflies=4 32-
bit values

Table 1. Single Butterfly of Stage 1 Done Linearly –
Logical Implementation

Table 1 lists the operations necessary to perform
four parallel radix-4 complex butterflies of stage
1 in vector fashion of the TigerSHARC
processor. Actually, this portion is the same for
stages other than first, except that the other
stages also require a complex twiddle multiply at
the beginning of the butterfly. This makes other
stages more complicated, and they will be dealt
with in the next section.

Cycle/
Operat

ion
JALU KA

LU MAC ALU

1 F1 S4--- AS3--

2 F2 S1-- MPY1- AS2-

3 F3 S2-- M1-, MPY2- AS4--

4 F4 S3-- M2- AS1

5 F1+ S4-- AS3-

6 F2+ S1- MPY1 AS2

7 F3+ S2- M1, MPY2 AS4-

8 F4+ S3- M2 AS1+

9 F1++ S4- AS3

10 F2++ S1 MPY1+ AS2+

11 F3++ S2 M1+, MPY2+ AS4

12 F4++ S3 M2+ AS1++

13 F1+++ S4 AS3+

14 F2+++ S1+ MPY1++ AS2++

15 F3+++ S2+ M1++, MPY2++ AS4+

16 F4+++ S3+ M2++ AS1++
+

Table 2. Pipelined Butterflies – Stage 1

Table 2 shows the butterflies pipelined. A “+” in
the operation indicates the operation that

 a

Parallel Implementation of Fixed-Point FFTs on TigerSHARC® Processors (EE-263) Page 7 of 12

corresponds to the next set of the butterflies and
a “-” corresponds to the operation in the previous
set of butterflies. All instructions are paralleled,
and there are no stalls.

Pipelining the Algorithm - Stage 2
To do a butterfly for stage 2, one must perform
the same computations as for stage 1, except for
an additional complex multiply of each of the 16
(4 paralleled x 4 points) inputs at the beginning.
This creates a problem. The original butterfly has
two SIMD complex multiplies in it already.
Adding 8 more makes 10 complex multiplies,
while ALU, fetch, and store remain at 4. This
would make the algorithm unbalanced—too
many multiplies and too few other compute units
will not parallel well. The best that can be done
this way is 10 cycles per vector of butterflies.

It turns out that each of the two original
multiplies (being multiplies by -i) can be
replaced by one short ALU (negate) and one long
rotate. In addition, two register moves are
required to ensure that the data is back to being
packed in long registers for the parallel
add/subtracts that follow. For the vectored
butterfly, this would leave a total of 8 multiplies,
6 ALUs (4 add/subtracts and 2 negates), and 2
shifts (rotates)—perfectly balanced for an 8-
cycle execution. Also, 4 fetches and 4 stores
leave plenty of room for register moves.

Table 3 lists the operations necessary to perform
vectored (i.e., four parallel) radix-4 complex
butterflies of stage 2 on the TigerSHARC
processor. Things have gotten significantly more
complex!

Table 4 shows the butterflies pipelined. A “+” in
the operation indicates the operation that
corresponds to the next set of the butterflies, and
a “-” corresponds to the operation in the previous
set of the butterflies.

Mnemonic Operation

F1 Fetch 4 complex Input1 of the 4
butterflies=4 32-bit values

F2 Fetch 4 complex Input2 of the 4
butterflies=4 32-bit values

F3 Fetch 4 complex Input3 of the 4
butterflies=4 32-bit values

F4 Fetch 4 complex Input4 of the 4
butterflies=4 32-bit values

MPY1 1st half of F1*twiddle

M1 Move MPY1 into compute block register

MPY2 2nd half of F1*twiddle

M2 Move MPY2 into compute block register

MPY3 1st half of F2*twiddle

M3 Move MPY3 into compute block register

MPY4 2nd half of F2*twiddle

M4 Move MPY4 into compute block register

MPY5 1st half of F3*twiddle

M5 Move MPY5 into compute block register

MPY6 2nd half of F3*twiddle

M6 Move MPY6 into compute block register

MPY7 1st half of F4*twiddle

M7 Move MPY7 into compute block register

MPY8 2nd half of F4*twiddle

M8 Move MPY8 into compute block register

AS1 M1,M2+/-M3,M4

AS2 M5,M6+/-M7,M8

A1 Negate (M1-M3)

MV1 Move (M1-M3) into a pair of the register
that contains A1

 a

Parallel Implementation of Fixed-Point FFTs on TigerSHARC® Processors (EE-263) Page 8 of 12

R1 Rotate the long result of A1,MV1 – now
the low register contains (M1-M3)*(-i)

A2 Negate (M2-M4)

MV2 Move (M2-M4) into a pair of the register
that contains A2

R2 Rotate the long result of A2,MV2 – now
the low register contains (M2-M4)*(-i)

AS3 (F3 + F4)+/-(F1+F2)

AS4
(F3 – F4)+/-(F1-F2)*(-i)

Here (F1-F2)*(-i) was obtained by R1
and R2

S1 Store 1 of the 4 butterflies=4 32-bit values

S2 Store 2 of the 4 butterflies=4 32-bit values

S3 Store 3 of the 4 butterflies=4 32-bit values

S4 Store 4 of the 4 butterflies=4 32-bit values

Table 3. Single Butterfly of Stage 2 Done Linearly –
Logical Implementation

All instructions are paralleled, and there are no
stalls. There is still a question of twiddle fetch
which was not addressed, but there are so many
JALU and KALU instruction slots still available
that scheduling twiddle fetches will not cause
any problems (they are actually the same value
per vector, so broadcast reads will bring them in
efficiently).

Cycle/
Operat

ion
JALU KALU MAC ALU

1 F1 MV1-- M3-, MPY4- A1--

2 F2 M4-, MPY5- A2--

3 S3--- M5-, MPY6- R1--

4 S4--- M6-, MPY7- R2--

5 F3 MV2-- M7-, MPY8- AS3--

6 F4 M8-, MPY1 AS1-

7 S1-- M1, MPY2 AS4--

8 S2-- M2, MPY3 AS2-

9 F1+ MV1- M3, MPY4 A1-

10 F2+ M4, MPY5 A2-

11 S3-- M5, MPY6 R1-

12 S4-- M6, MPY7 R2-

13 F3+ MV2- M7, MPY8 AS3-

14 F4+ M8, MPY1+ AS1

15 S1- M1+, MPY2+ AS4-

16 S2- M2+, MPY3+ AS2

17 F1++ MV1 M3+, MPY4+ A1

18 F2++ M4+, MPY5+ A2

19 S3- M5+, MPY6+ R1

20 S4- M6+, MPY7+ R2

21 F3++ MV2 M7+, MPY8+ AS3

22 F4++ M8+, MPY1++ AS1+

23 S1 M1++, MPY2++ AS4

24 S2 M2++, MPY3++ AS2+

25 F1+++ MV1+ M3++, MPY4++ A1+

26 F2+++ M4++, MPY5++ A2+

27 S3 M5++, MPY6++ R1+

28 S4 M6++, MPY7++ R2+

Table 4. Pipelined Butterflies – Stage 2

The multiplies and transpose of Steps 4 and 5 are
very simple to pipeline. They involve only
fetches, multiplies, and stores, so the pipelining
of these parts of the algorithm is not discussed in
detail here.

 a

Parallel Implementation of Fixed-Point FFTs on TigerSHARC® Processors (EE-263) Page 9 of 12

The Code
Now, writing the code is trivial. The ADSP-
TS201 TigerSHARC processor is so flexible that
it takes all the challenge right out of it. Just
follow the pipelines of Table 2 and Table 4 and
the code is done. The resulting code is shown in
Listing 1.

Now, for the bottom line—how much did the
cycle count improve? Table 5 lists cycle counts
for the old and new implementations of the 16-
bit complex input FFTs. As shown, the cycle
counts have improved considerably.

Points

N

Old
Implementation

New
Implementation

64 302 147

256 886 585

1024 3758 2725

2048 7839 5776

4096 16600 12546

Table 5. Core Clock Cycles for N-Point 16-bit
Complex FFT

Usage Rules
The C-callable complex FFT routine is called as

fft256pt(&(input), &(ping_pong_buffer1),
 &(ping_pong_buffer2), &(output));

where:

input -> FFT input buffer,

output -> FFT output buffer,

ping_pong_bufferx are the ping pong buffers.

All buffers are packed complex values in normal
(not bit-reversed) order.

ping_pong_buffer1 and ping_pong_buffer2 must
be two distinct buffers. However, depending on
the routine’s user requirements, some memory

optimization is possible. ping_pong_buffer1 can
be made the same as input if input does not need
to be preserved. Also, output can be made the
same as ping_pong_buffer2. Below is an
example of the routine usage with minimal use of
memory:

fft256pt (&(input), &(input),
 &(output), &(output));

To eliminate memory block access conflicts,
input and ping_pong_buffer1 must reside in a
different memory block than ping_pong_buffer2
and output, and the twiddle factors must reside in
a different memory block than the ping-pong
buffers. Of course, all code must reside in a
block that is different from all the data buffers, as
well.

Remarks
The example examined here is that of a 256-
point FFT. At the time of writing this note, 64-
point, 1024-point, 2048-point and 4096-point
FFT examples using the algorithm described
above have also been written. In those cases, the
FFTs were viewed as 8x8, 32x32, 32x64, and
64x64 matrices, respectively. The 32-point FFTs
were done in radix-4 (all the way to the last
stage) and the last stage was done in the
traditional radix-2.

The 2048-point FFT was arranged in a matrix of
32 columns and 64 rows. 32 FFTs of 64 points
each are done in parallel on the columns.
Applying a point-wise multiply and transpose
gives a matrix of 64 columns and 32 rows. Doing
64 FFTs of 32 points each in parallel on the
columns completes the algorithm. The only side
effect is that the parallel FFT portion of the code
cannot be re-used (remember, the algorithm
needs it twice) because the number of rows and
columns is no longer the same. This results in
longer source code, but the cycle count
efficiency is just as good.

 a

Parallel Implementation of Fixed-Point FFTs on TigerSHARC® Processors (EE-263) Page 10 of 12

Appendix

Complete Source Code of the Optimized FFT

/**

 fft256pt.asm

 Prelim rev. August 10, 2004 BL

 This is assembly routine for the complex C-callable 256-point 16-bit FFT on
 TigerSHARC family of DSPs.

 I. Description of Calling.

 1. Inputs:
 j4 -> input
 j5 -> ping_pong_buffer1
 j6 -> ping_pong_buffer2
 j7 -> output

 2. C-Calling Example:
 Fft256pt(&(input), &(ping_pong_buffer1), &(ping_pong_buffer2), &(output));

 3. Limitations:
 a. All buffers must be aligned on memory boundary which is a multiple of 4.
 b. Buffers input.and ping_pong_buffer2 must be aligned on memory boundary
 which is a multiple of 256.
 c. If memory space savings are required and input does not have to be
 preserved, ping_pong_buffer1 can be the same buffer as input with no
 degradation in performance.
 d. If memory space savings are required, output can be the same buffer
 as ping_pong_buffer2 with no degradation in performance.

 4. For the code to yield optimal performance, the following must be observed:
 a. Buffer input must have been cached previously. This is reasonable to
 assume since any engine that would have brought the data into internal
 memory, such as a DMA, would also have cached it.
 b. input and ping_pong_buffer2 must be located in different memory blocks.
 c. ping_pong_buffer1 and ping_pong_buffer2 must be located in different
 memory blocks.
 d. ping_pong_buffer1 and output must be located in different memory blocks.
 e. twiddles and input must be located in different memory blocks.
 f. AdjustMatrix and ping_pong_buffer1 must be located in different memory
 blocks.

 II. Description of the FFT algorithm.

 1. All data is treated as complex packed data.
 2. An application note will be provided for the description of the math of
 the algorithm.

**/

//************************* Includes **

#include <defTS201.h>

//***
.section data6a;
.align 4; // allign to quad
.var _AdjustMatrix[256] = "MatrixCoeffs.dat";

.align 4; // allign to quad
.var _twiddles16[32] = "Twiddles16.dat";

//***
.section program;
.global _fft256pt;

//************************************** Start of code **
_fft256pt:

j2=j4+64;;
j0=j4+0; k1=j6;;
j3=j4+(128+64); LC1=2;; // ------------------------------------
r5:4 =br Q[j2+=32]; k3=k31+(_twiddles16+2);; //|F1-- | | | | |
j1=j4+128;; // ------------------------------------

.align_code 4;
_VerticalLoop:

//*************************************** Stage 1 ***
// 1st time: From j0,j1,j2,j3->_input to k1->_ping_pong_buffer2
// 2nd time: From _ping_pong_buffer2 to _ping_pong_buffer1
 // ------------------------------------
r7:6 =br Q[j3+=32]; kL1=k31+252;; //|F2-- | | | | |
r1:0 =br Q[j0+=32]; r31=0x80000000;; //|F3-- | | | | |
r3:2 =br Q[j1+=32]; kB3=k31+_twiddles16; sr13:12=r5:4+r7:6, sr15:14=r5:4-r7:6;; //|F4-- | | |AS1-- | |
r5:4 =br Q[j2+=32]; kB1=k1+4;; //|F1- | | | | |
 // ------------------------------------
r7:6 =br Q[j3+=32]; jL0=252; mr1:0+=r14**r31(C); sr9:8=r1:0+r3:2, sr11:10=r1:0-r3:2;; //|F2- |MPY1-- | |AS2-- | |
r1:0 =br Q[j0+=32]; kL3=k31+32; r24=mr1:0, mr1:0+=r15**r31(C);; //|F3- |MPY2-- |M1-- | | |
r3:2 =br Q[j1+=32]; LC0=4; r25=mr1:0, mr1:0+=r15**r31(C); sr29:28=r5:4+r7:6, sr15:14=r5:4-r7:6;; //|F4- | |M2-- |AS1- | |
r5:4 =br Q[j2+=32]; jB0=kB1; sr17:16=r9:8+r13:12, sr21:20=r9:8-r13:12;; //|F1 | | |AS3-- | |
 // ------------------------------------
.align_code 4;
_VerFFTStage1: // ------------------------------------
r7:6 =br Q[j3+=32]; cb Q[k1+=32]=r17:16; mr1:0+=r14**r31(C); sr9:8=r1:0+r3:2, sr27:26=r1:0-r3:2;; //|F2 |MPY1- | |AS2- |S1-- |
r1:0 =br Q[j0+=32]; cb Q[k1+=-16]=r21:20; r24=mr1:0, mr1:0+=r15**r31(C); sr19:18=r11:10+r25:24, sr23:22=r11:10-r25:24;; //|F3 |MPY2- |M1- |AS4-- |S2-- |
r3:2 =br Q[j1+=32]; cb Q[k1+=32]=r19:18; r25=mr1:0, mr1:0+=r15**r31(C); sr13:12=r5:4+r7:6, sr15:14=r5:4-r7:6;; //|F4 | |M2- |AS1 |S3-- |

 a

Parallel Implementation of Fixed-Point FFTs on TigerSHARC® Processors (EE-263) Page 11 of 12

r5:4 = Q[j2+=-44]; cb Q[k1+=16]=r23:22; sr17:16=r9:8+r29:28, sr21:20=r9:8-r29:28;; //|F1+ | | |AS3- |S4-- |
 // ------------------------------------
r7:6 = Q[j3+=-44]; cb Q[k1+=32]=r17:16; mr1:0+=r14**r31(C); sr9:8=r1:0+r3:2, sr11:10=r1:0-r3:2;; //|F2+ |MPY1 | |AS2 |S1- |
r1:0 = Q[j0+=-44]; cb Q[k1+=-16]=r21:20; r24=mr1:0, mr1:0+=r15**r31(C); sr19:18=r27:26+r25:24, sr23:22=r27:26-r25:24;; //|F3+ |MPY2 |M1 |AS4- |S2- |
r3:2 = Q[j1+=-44]; cb Q[k1+=32]=r19:18; r25=mr1:0, mr1:0+=r15**r31(C); sr29:28=r5:4+r7:6, sr15:14=r5:4-r7:6;; //|F4+ | |M2 |AS1+ |S3- |
r5:4 =br Q[j2+=32]; cb Q[k1+=16]=r23:22; sr17:16=r9:8+r13:12, sr21:20=r9:8-r13:12;; //|F1++ | | |AS3 |S4- |
 // ------------------------------------
r7:6 =br Q[j3+=32]; cb Q[k1+=32]=r17:16; mr1:0+=r14**r31(C); sr9:8=r1:0+r3:2, sr27:26=r1:0-r3:2;; //|F2++ |MPY1+ | |AS2+ |S1 |
r1:0 =br Q[j0+=32]; cb Q[k1+=-16]=r21:20; r24=mr1:0, mr1:0+=r15**r31(C); sr19:18=r11:10+r25:24, sr23:22=r11:10-r25:24;; //|F3++ |MPY2+ |M1+ |AS4 |S2 |
r3:2 =br Q[j1+=32]; cb Q[k1+=32]=r19:18; r25=mr1:0, mr1:0+=r15**r31(C); sr13:12=r5:4+r7:6, sr15:14=r5:4-r7:6;; //|F4++ | |M2+ |AS1++ |S3 |
r5:4 =br Q[j2+=32]; cb Q[k1+=16]=r23:22; sr17:16=r9:8+r29:28, sr21:20=r9:8-r29:28;; //|F1+++ | | |AS3+ |S4 |
 // ------------------------------------
r7:6 =br Q[j3+=32]; cb Q[k1+=32]=r17:16; mr1:0+=r14**r31(C); sr9:8=r1:0+r3:2, sr11:10=r1:0-r3:2;; //|F2+++ |MPY1++ | |AS2++ |S1+ |
r1:0 =br Q[j0+=32]; cb Q[k1+=-16]=r21:20; r24=mr1:0, mr1:0+=r15**r31(C); sr19:18=r27:26+r25:24, sr23:22=r27:26-r25:24;; //|F3+++ |MPY2++ |M1++ |AS4+ |S2+ |
r3:2 =br Q[j1+=32]; cb Q[k1+=32]=r19:18; r25=mr1:0, mr1:0+=r15**r31(C); sr29:28=r5:4+r7:6, sr15:14=r5:4-r7:6;; //|F4+++ | |M2++ |AS1+++ |S3+ |
 // ------------------------------------
.align_code 4;
if NLC0E, jump _VerFFTStage1; // ------------------------------------
r5:4 =br Q[j2+=32]; cb Q[k1+=16]=r23:22; sr17:16=r9:8+r13:12, sr21:20=r9:8-r13:12;; //|F1++++ | | |AS3++ |S4+ |
 // ------------------------------------

//*************************************** Stage 2 ***
// 1st time: From j0->_ping_pong_buffer2 to k1->_ping_pong_buffer1
// 2nd time: From j0->_ping_pong_buffer1 to k1->_output

.align_code 4;
j0=j6+12*16; j1=-4*16;; // ------------------------------------
r7:6 = Q[j0+=-4*16]; r31:30= L[k3+=-2];; //| F1-- | | | | |
r5:4 =cb Q[j0+=-4*16]; r29:28=cb L[k3+=6]; mr1:0+=r7**r31(C);; //| F2-- |MPY1-- | | | |
r3:2 = Q[j0+=-4*16]; LC0=7; r15=mr1:0, mr1:0+=r6**r31(C);; //| F3-- |MPY2-- |M1-- | | |
r1:0 =cb Q[j0+=28*16]; j2=28*16; r14=mr1:0, mr1:0+=r5**r30(C);; //| F4-- |MPY3-- |M2-- | | |
 // ------------------------------------
r7:6 =cb Q[j0+=-4*16]; k1=j5; r13=mr1:0, mr1:0+=r4**r30(C);; //| F1- |MPY4-- |M3-- | | |
r5:4 =cb Q[j0+=j1]; r12=mr1:0, mr1:0+=r3**r29(C);; //| F2- |MPY5-- |M4-- | | |
 r11=mr1:0, mr1:0+=r2**r29(C);; //| |MPY6-- |M5-- | | |
 r10=mr1:0, mr1:0+=r1**r28(C);; //| |MPY7-- |M6-- | | |
 // ------------------------------------
r3:2 = Q[j0+=j1]; r9=mr1:0, mr1:0+=r0**r28(C);; //| F3- |MPY8-- |M7-- | | |
r1:0 =cb Q[j0+=28*16]; r8=mr1:0, mr1:0+=r7**r31(C); sr21:20=r13:12+r15:14, sr23:22=r13:12-r15:14;; //| F4- |MPY1- |M8-- |AS1-- | |
 r15=mr1:0, mr1:0+=r6**r31(C);; //| |MPY2- |M1- | | |
 kB1=k1+4; r14=mr1:0, mr1:0+=r5**r30(C); sr17:16=r9:8 +r11:10, sr19:18=r9:8 -r11:10;; //| |MPY3- |M2- |AS2-- | |
r7:6 =cb Q[j0+=j1]; r8=r23; r13=mr1:0, mr1:0+=r4**r30(C); sr9=-r23;; //| F1 |MPY4- |M3- |A1-- |MV1-- |
r5:4 =cb Q[j0+=j1]; r31:30=cb L[k3+=-2]; r12=mr1:0, mr1:0+=r3**r29(C); sr23=-r22;; //| F2 |MPY5- |M4- |A2-- | |
 r11=mr1:0, mr1:0+=r2**r29(C); lr9:8=rot r9:8 by -16;; //| |MPY6- |M5- |R1-- | |
 k5=k31+4*16; r10=mr1:0, mr1:0+=r1**r28(C); lr23:22=rot r23:22 by -16;; //| |MPY7- |M6- |R2-- | |
 // ------------------------------------
.align_code 4;
_VerFFTStage2: // ------------------------------------
r3:2 = Q[j0+=j1]; r23=r8; r9=mr1:0, mr1:0+=r0**r28(C); sr17:16=r17:16+r21:20, sr21:20=r17:16-r21:20;; //| F3 |MPY8- |M7- |AS3-- |MV2-- |
r1:0 =cb Q[j0+=j2]; r29:28=cb L[k3+=6]; r8=mr1:0, mr1:0+=r7**r31(C); sr25:24=r13:12+r15:14, sr27:26=r13:12-r15:14;; //| F4 |MPY1 |M8- |AS1- | |
cb Q[k1+=k5]=r17:16; r15=mr1:0, mr1:0+=r6**r31(C); sr19:18=r19:18+r23:22, sr23:22=r19:18-r23:22;; //| S1-- |MPY2 |M1 |AS4-- | |
cb Q[k1+=k5]=r19:18; r14=mr1:0, mr1:0+=r5**r30(C); sr17:16=r9:8 +r11:10, sr19:18=r9:8 -r11:10;; //| S2-- |MPY3 |M2 |AS2- | |
r7:6 =cb Q[j0+=j1]; r8=r27; r13=mr1:0, mr1:0+=r4**r30(C); sr9=-r27;; //| F1+ |MPY4 |M3 |A1- |MV1- |
r5:4 =cb Q[j0+=j1]; r12=mr1:0, mr1:0+=r3**r29(C); sr27=-r26;; //| F2+ |MPY5 |M4 |A2- | |
cb Q[k1+=k5]=r21:20; r11=mr1:0, mr1:0+=r2**r29(C); lr9:8=rot r9:8 by -16;; //| S3-- |MPY6 |M5 |R1- | |
cb Q[k1+=k5]=r23:22; r10=mr1:0, mr1:0+=r1**r28(C); lr27:26=rot r27:26 by -16;; //| S4-- |MPY7 |M6 |R2- | |
 // ------------------------------------
r3:2 = Q[j0+=j1]; r27=r8; r9=mr1:0, mr1:0+=r0**r28(C); sr17:16=r17:16+r25:24, sr25:24=r17:16-r25:24;; //| F3+ |MPY8 |M7 |AS3- |MV2- |
r1:0 =cb Q[j0+=j2]; r8=mr1:0, mr1:0+=r7**r31(C); sr21:20=r13:12+r15:14, sr23:22=r13:12-r15:14;; //| F4+ |MPY1+ |M8 |AS1 | |
cb Q[k1+=k5]=r17:16; r15=mr1:0, mr1:0+=r6**r31(C); sr19:18=r19:18+r27:26, sr27:26=r19:18-r27:26;; //| S1- |MPY2+ |M1+ |AS4- | |
cb Q[k1+=k5]=r19:18; r14=mr1:0, mr1:0+=r5**r30(C); sr17:16=r9:8 +r11:10, sr19:18=r9:8 -r11:10;; //| S2- |MPY3+ |M2+ |AS2 | |
r7:6 =cb Q[j0+=j1]; r8=r23; r13=mr1:0, mr1:0+=r4**r30(C); sr9=-r23;; //| F1++ |MPY4+ |M3+ |A1 |MV1 |
r5:4 =cb Q[j0+=j1]; r31:30=cb L[k3+=-2]; r12=mr1:0, mr1:0+=r3**r29(C); sr23=-r22;; //| F2++ |MPY5+ |M4+ |A2 | |
cb Q[k1+=k5]=r25:24; r11=mr1:0, mr1:0+=r2**r29(C); lr9:8=rot r9:8 by -16;; //| S3- |MPY6+ |M5+ |R1 | |
.align_code 4; // ------------------------------------
if NLC0E, jump _VerFFTStage2; // ------------------------------------
cb Q[k1+=k5]=r27:26; r10=mr1:0, mr1:0+=r1**r28(C); lr23:22=rot r23:22 by -16;; //| S4- |MPY7+ |M6+ |R2 | |
 // ------------------------------------
.align_code 4; // ------------------------------------
 r23=r8; r9=mr1:0, mr1:0+=r0**r28(C); sr17:16=r17:16+r21:20, sr21:20=r17:16-r21:20;; //| |MPY8+ |M7+ |AS3 |MV2 |
k3=k31+_AdjustMatrix; r8=mr1:0, mr1:0+=r7**r31(C); sr25:24=r13:12+r15:14, sr27:26=r13:12-r15:14;; //| | |M8+ |AS1+ | |
 // ------------------------------------
cb Q[k1+=k5]=r17:16; k2=-236; sr19:18=r19:18+r23:22, sr23:22=r19:18-r23:22;; //| S1 | | |AS4 | |
cb Q[k1+=k5]=r19:18; j10=j31+j6; sr17:16=r9:8 +r11:10, sr19:18=r9:8 -r11:10;; //| S2 | | |AS2+ | |
 // ------------------------------------
cb Q[k1+=k5]=r21:20; j9=j31+j5;;

//*************************************** MPY/Xpose ***
// 1st time: From _ping_pong_buffer1 to _ping_pong_buffer2
 // -----------------------------------
r29:28=Q[k3+=16]; r8=r27; sr9=-r27;; //| | | | |TF1-- |
r1:0= Q[j9+=16]; cb Q[k1+=k5]=r23:22; sr27=-r26;; //|F1-- | | | | |
r3:2= Q[j9+=16]; r31:30=Q[k3+=16]; lr9:8=rot r9:8 by -16;; //|F2-- | | | |TF2-- |
r5:4= Q[j9+=16]; r21:20=Q[k3+=16]; lr27:26=rot r27:26 by -16;; //|F3-- | | | |TF3-- |
j4=j31+j6; r27=r8; mr1:0+=r2**r28(C); sr17:16=r17:16+r25:24, sr25:24=r17:16-r25:24;; //| |MPY1-- | | | |
 // -----------------------------------
r7:6= Q[j9+=16]; r23:22=Q[k3+=16]; r8=mr1:0, mr1:0+=r3**r29(C);; //|F4-- |MPY2-- |M1-- | |TF4-- |
cb Q[k1+=k5]=r17:16; LC0=4; r12=mr1:0, mr1:0+=r0**r30(C); sr19:18=r19:18+r27:26, sr27:26=r19:18-r27:26;; //| |MPY3-- |M2-- | | |
cb Q[k1+=k5]=r19:18; j6=j5; r9=mr1:0, mr1:0+=r1**r31(C);; //| |MPY4-- |M3-- | | |
cb Q[k1+=k5]=r25:24; k8=j4; r13=mr1:0, mr1:0+=r4**r20(C);; //| |MPY5-- |M4-- | | |
 // -----------------------------------
.align_code 4;
if LC1E, CJMP(ABS); // -----------------------------------
cb Q[k1+=k5]=r27:26; j5=j7; r10=mr1:0, mr1:0+=r5**r21(C);; //| |MPY6-- |M5-- | | |
 // -----------------------------------
.align_code 4;
_MultXposeLoop: // -----------------------------------
r1:0= Q[j9+=16]; r17:16=Q[k3+=16]; r14=mr1:0, mr1:0+=r6**r22(C);; //|F1- |MPY7-- |M6-- | |TF1- |
r3:2= Q[j9+=16]; r19:18=Q[k3+=16]; r11=mr1:0, mr1:0+=r7**r23(C);; //|F2- |MPY8-- |M7-- | |TF2- |
r5:4= Q[j9+=16]; r21:20=Q[k3+=16]; r15=mr1:0, mr1:0+=r0**r16(C);; //|F3- |MPY1- |M8-- | |TF3- |
r7:6= Q[j9+=16]; r23:22=Q[k3+=16]; r24=mr1:0, mr1:0+=r1**r17(C);; //|F4- |MPY2- |M1- | |TF4- |
Q[j10+=16]=yr11:8; j0=k8; r28=mr1:0, mr1:0+=r2**r18(C);; //|S1-- |MPY3- |M2- | | |
Q[j10+=16]=yr15:12; k9=k8+128; r25=mr1:0, mr1:0+=r3**r19(C);; //|S2-- |MPY4- |M3- | | |
Q[j10+=16]=xr11:8; j1=k9; r29=mr1:0, mr1:0+=r4**r20(C);; //|S3-- |MPY5- |M4- | | |
Q[j10+=-44]=xr15:12; k1=j6; r26=mr1:0, mr1:0+=r5**r21(C);; //|S4-- |MPY6- |M5- | | |
 // -----------------------------------
r1:0= Q[j9+=16]; r17:16=Q[k3+=16]; r30=mr1:0, mr1:0+=r6**r22(C);; //|F1 |MPY7- |M6- | |TF1 |

 a

Parallel Implementation of Fixed-Point FFTs on TigerSHARC® Processors (EE-263) Page 12 of 12

r3:2= Q[j9+=16]; r19:18=Q[k3+=16]; r27=mr1:0, mr1:0+=r7**r23(C);; //|F2 |MPY8- |M7- | |TF2 |
r5:4= Q[j9+=16]; r21:20=Q[k3+=16]; r31=mr1:0, mr1:0+=r0**r16(C);; //|F3 |MPY1 |M8- | |TF3 |
r7:6= Q[j9+=16]; r23:22=Q[k3+=16]; r8=mr1:0, mr1:0+=r1**r17(C);; //|F4 |MPY2 |M1 | |TF4 |
Q[j10+=16]=yr27:24; k9=k8+64; r12=mr1:0, mr1:0+=r2**r18(C);; //|S1- |MPY3 |M2 | | |
Q[j10+=16]=yr31:28; j2=k9; r9=mr1:0, mr1:0+=r3**r19(C);; //|S2- |MPY4 |M3 | | |
Q[j10+=16]=xr27:24; k9=k8+(128+64); r13=mr1:0, mr1:0+=r4**r20(C);; //|S3- |MPY5 |M4 | | |
Q[j10+=-44]=xr31:28; j3=k9; r10=mr1:0, mr1:0+=r5**r21(C);; //|S4- |MPY6 |M5 | | |
 // -----------------------------------
r1:0= Q[j9+=16]; r17:16=Q[k3+=16]; r14=mr1:0, mr1:0+=r6**r22(C);; //|F1+ |MPY7 |M6 | |TF1+ |
r3:2= Q[j9+=16]; r19:18=Q[k3+=16]; r11=mr1:0, mr1:0+=r7**r23(C);; //|F2+ |MPY8 |M7 | |TF2+ |
r5:4= Q[j9+=16]; r21:20=Q[k3+=16]; r15=mr1:0, mr1:0+=r0**r16(C);; //|F3+ |MPY1+ |M8 | |TF3+ |
r7:6= Q[j9+=-236]; r23:22=Q[k3+=k2]; r24=mr1:0, mr1:0+=r1**r17(C);; //|F4+ |MPY2+ |M1+ | |TF4+ |
Q[j10+=16]=yr11:8; r28=mr1:0, mr1:0+=r2**r18(C);; //|S1 |MPY3+ |M2+ | | |
Q[j10+=16]=yr15:12; r25=mr1:0, mr1:0+=r3**r19(C);; //|S2 |MPY4+ |M3+ | | |
Q[j10+=16]=xr11:8; r29=mr1:0, mr1:0+=r4**r20(C);; //|S3 |MPY5+ |M4+ | | |
Q[j10+=-44]=xr15:12; r26=mr1:0, mr1:0+=r5**r21(C);; //|S4 |MPY6+ |M5+ | | |
 // -----------------------------------
r1:0= Q[j9+=16]; r17:16=Q[k3+=16]; r30=mr1:0, mr1:0+=r6**r22(C);; //|F1++ |MPY7+ |M6+ | |TF1++ |
r3:2= Q[j9+=16]; r19:18=Q[k3+=16]; r27=mr1:0, mr1:0+=r7**r23(C);; //|F2++ |MPY8+ |M7+ | |TF2++ |
r5:4= Q[j9+=16]; r21:20=Q[k3+=16]; r31=mr1:0, mr1:0+=r0**r16(C);; //|F3++ |MPY1++ |M8+ | |TF3++ |
r7:6= Q[j9+=16]; r23:22=Q[k3+=16]; r8=mr1:0, mr1:0+=r1**r17(C);; //|F4++ |MPY2++ |M1++ | |TF4++ |
Q[j10+=16]=yr27:24; r12=mr1:0, mr1:0+=r2**r18(C);; //|S1+ |MPY3++ |M2++ | | |
Q[j10+=16]=yr31:28; r9=mr1:0, mr1:0+=r3**r19(C);; //|S2+ |MPY4++ |M3++ | | |
Q[j10+=16]=xr27:24; r13=mr1:0, mr1:0+=r4**r20(C);; //|S3+ |MPY5++ |M4++ | | |
.align_code 4; // -----------------------------------
if NLC0E, jump _MultXposeLoop; // -----------------------------------
Q[j10+=4]=xr31:28; r10=mr1:0, mr1:0+=r5**r21(C);; //|S4+ |MPY6++ |M5++ | | |
 // -----------------------------------
.align_code 4;
jump _VerticalLoop; // Repeat the vertical loop
r5:4=br Q[j2+=32]; k3=k31+(_twiddles16+2);; // with swapped pointers

//*** Done **
_fft256pt.end:

Listing 1. fft256pt.asm

References
[1] ADSP-TS201 TigerSHARC Processor Programming Reference. Revision 1.0, August 2004. Analog Devices, Inc.

Document History

Revision Description

Rev 1 – February 03, 2005
by Boris Lerner

Initial Release

	Introduction
	Standard Radix-2 FFT Algorithm
	Another way to look at these new blocks is as the 4x4 matrix

	Mathematics of the Algorithm
	Implementation of the Algorithm
	Programming Implementation

	Pipelining the Algorithm - Stage 1
	Pipelining the Algorithm - Stage 2
	The Code
	Usage Rules
	Remarks
	Appendix
	Complete Source Code of the Optimized FFT

	References
	Document History

