
AN-709
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106 • Tel: 781/329-4700 • Fax: 781/326-8703 • www.analog.com

INTRODUCTION
The platinum RTD is one of the most accurate sen-
sors available for measuring temperature within the
range –200°C to +850°C, capable of achieving calibrated
accuracy of ±0.02°C or better. To get the most of an RTD’s
accuracy, however, requires precise signal condition-
ing, A/D conversion, linearization, and calibration. The
Analog Devices MicroConverter product family (http:
//www.analog.com/MicroConverter) includes devices
with a 16-bit or 24-bit ADC and an 8052 MCU in a single
chip along with signal conditioning circuitry ideally suited
to RTD sensors. This application note describes ways to
implement a complete RTD sensor interface using the
ADuC834 (or other similar MicroConverter) and just a
few passive components.

Software utilities and sample code, referenced here and
highly recommended for anyone implementing a Micro-
Converter-based RTD sensor interface, can be found at
http://www.analog.com/MicroConverter

HARDWARE DESIGN
An RTD (resistance temperature detector) is a resistance
that varies as a function of temperature in a precisely
defined manner. Before getting into the details of the
RTD’s transfer function of resistance to temperature
(which is nonlinear), assume that the nonlinearities will
be corrected digitally, and first concentrate on convert-
ing the RTD’s resistance to a digital value. A common
way to do this is shown in Figure 1.

����

����

� ��� �������
����

��������

Figure 1. RTD Interfacing Hardware Configuration

RTD Interfacing and Linearization Using an ADuC8xx MicroConverter®

by Grayson King and Toru Fukushima

Here, a single current source (IEXC) excites both the RTD
(RRTD) and a precision reference resistor (RREF) by way
of a series connection, generating the ADC input voltage
(VRTD) and reference voltage (VREF), respectively:

V I R

V I R
RTD EXC RTD

REF EXC REF

= ¥
= ¥

The ADC’s normalized digital output (zero input = 0, full-
scale input = 1) is simply a ratio of its input voltage to its
reference voltage multiplied by the gain stage, AADC :

ADC A
V
V

A
I R
I R

A
R
Rnorm ADC

RTD

REF
ADC

EXC RTD

EXC REF
ADC

RTD

REF

= ¥ = ¥ ¥
¥

= ¥

Notice how IEXC cancels out of the above equation, meaning
that even if the excitation current changes or is imprecise,
the ADC result always corresponds directly to the ratio of
the RTD resistance to the reference resistance. Choosing
a precision, low-drift reference resistor means the RTD
resistance can be known to a high degree of precision,
even with a much less precise current source.

Applying this same principle using a MicroConverter,
Figure 2 shows the ADuC834 connected for interfac-
ing with a 4-wire RTD. Note that this is the same overall
topology as shown in Figure 1, except that all the active
components (excitation current source, differential input
stages for VRTD and VREF, gain stage AADC, the ADC itself,
and a microcontroller) are included internally to the
ADuC834 chip, along with a number of other peripher-
als such as serial communication ports for the digital
communication path(s). Notice also that some passive
components have been added for R/C filtering of signals
and for protection from overvoltage conditions at the
terminal block. This represents a complete implementa-
tion, requiring only a power supply and any particular
peripheral chip needed for the digital interface (RS-232
or RS-485 line driver/receiver, for example).

REV. 0

http://www.analog.com
http://www.analog.com/MicroConverter
http://www.analog.com/MicroConverter
http://www.analog.com/MicroConverter

–2–

AN-709

–3–

AN-709

CALCULATING RTD RESISTANCE FROM ADC RESULT
Recall from the Hardware Design section that

ADC A
R
Rnorm ADC

RTD

REF

= ¥

which can be rewritten as

R ADC
R
A

ADC scaleRTD norm
REF

ADC
norm= ¥ = ¥

where:

scale
R
A

REF

ADC

=

The scale value is the fixed scaling factor used in the
sample code. Taking this a step further, a fixed offset
value can be added to the equation, resulting in

R ADC scale offsetRTD norm= ¥ +

where the offset term represents a fixed offset that can
be used to compensate for errors. This offset term is
discussed further in the Calibration section. For most
situations, a value of zero is sufficient for this offset term.
Note that a direct equation for RTD resistance has been
obtained as a function of the ADC result using only a pair
of fixed values for scale and offset.

The remainder of this document considers the most
common type of platinum RTD, which has a nominal
resistance (R0) of 100 at 0°C. Also assume a refer-
ence resistor value of 5.62 k, which provides a good
match to such an RTD. With these component values
and using the ADuC834, an internal gain of 7.8125 is the
highest available ADC gain setting that still allows the
RTD to cover its full specified temperature range. (Recall

that ADCnorm is by definition limited to the range 0 to 1,
which is what defines the temperature range limitation
at higher ADC gains.) The gain of 7.8125 corresponds to
an ADC0CON value of 0x4C, or a range setting of 320 mV
unipolar (AADC = VREF/span = 2.5 V/320 mV = 7.8125). To
correspond to this gain setting, the scale value works
out to 719.36 (scale = RREF/AADC = 5.62 k/7.8125 = 719.36,)
which is the default scale value used in the sample code.
The default value for the offset term is zero.

The above equations for RRTD are merely methods of deter-
mining (in software) the RTD’s resistance directly from a
given ADC conversion result. To then determine the RTD’s
temperature as a function of its resistance requires an
understanding of the RTD’s transfer function.

RTD TRANSFER FUNCTION
A platinum RTD’s transfer function is described by two
distinct polynomial equations: one for temperatures
below 0°C and another for temperatures above 0°C.
These equations are

RRTD(t) = R0 [1 + At + Bt2 + C (t – 100°C)t3] (for t 0°C)

RRTD(t) = R0 [1 + At + Bt2] (for t 0°C)

where:

t = RTD temperature [°C]

RRTD(t) = RTD resistance as a function of RTD tempera-
ture (t)

R0 = RTD resistance at 0°C (most often 100)

A = 3.9083 10–3 °C–1

B = –5.775 10–7 °C–2

C = –4.183 10–12 °C–4

Notice that the notation is changed from RRTD to RRTD(t)

�������
�����

�����

���
��
���

����

����

������

������

���

���
���

����
����
����

�����

�����

���

�����

�����
���

���

�����

���

�����

�����

�����
�����������

������ ���������� ��� ���� ��������� ����� ���� �� ������� ��� ������� ���� ������
�� ��� ����� �� ����������� ���������� �� ��� �������� ������

��������
�����

����
��������

Figure 2. Complete RTD Interfacing Circuit Using ADuC834

REV. 0 REV. 0

–2–

AN-709

–3–

AN-709

to reflect that the RTD’s resistance is a function of its
temperature. Figure 3 shows the RTD’s transfer function
(resistance plotted as a function of temperature) along
with a linear expansion of the transfer function’s slope
at 0°C (for visual comparison).

����������� ����

�
�

�
��

�
�

�
�

�
��

�

���

���

���

���

���

���

���

���

��

�
���� ����� ���� ��� ��� ��� ��� ��������� ��� ���

������ ���������
���� ���

������ ���

Figure 3. RTD Transfer Function

The previous equations define the RTD’s resistance as
a function of its temperature (RRTD(t)). But to implement
an RTD sensor interfacing circuit, the RTD’s tempera-
ture must be determined instead as a function of its
resistance (TRTD(r)), which may be less straightforward,
given the RTD’s nonlinear transfer function. Some tech-
niques useful for this task are explored in the following
sections.

LINEARIZATION TECHNIQUES
There are a number of different ways to determine
temperature as a function of RTD resistance, given
the RTD’s transfer function as described above. This
application note examines three techniques useful in
embedded designs, and more specifically, very well
suited to MicroConverter-based designs. Table 1 out-
lines some of the strengths and weaknesses of each
method, also summarizing the situations in which each
might be most useful.

Table 1. Three Linearization Techniques

Technique Advantages Disadvantages Summary

Direct • Very accurate • Requires math library (usually > 1 kB) Useful if math library
Mathematical • No look-up table required • Somewhat slow (10 ms to 50 ms*) is already required for
Method other functions

Single Linear • Very fast (< 1 ms*) • Poor accuracy over wide Good option when
Approximation • Very small code space temperature span code space is limited
Method requirement and temperature span
 • Fairly accurate over narrow is fairly narrow
 temperature spans
 • No math library required
 • No look-up table required

Piecewise Linear • Fast (< 5 ms*) • Greater code size than single-linear Possibly the most
Approximation • Designer control of code approximation method useful of these three
Method size/accuracy trade-off • Greater code size than mathematical methods in >90% of
 • Can be very accurate method if math library is already embedded designs
 • No math library required needed for other functions

*Execution times indicated here represent empirical measurements of an ADuC834, at a core clock speed of 12.58 MHz, running the C subroutines referenced herein.

REV. 0 REV. 0

–4–

AN-709

–5–

AN-709

The following sections explore these linearization tech-
niques in detail.

DIRECT MATHEMATICAL METHOD
Earlier in this document, explicit mathematical equa-
tions were shown for an RTD’s resistance as a function
of its temperature (RRTD(t)). So why not just turn those
equations around and solve for expressions of the RTD’s
temperature as a function of its resistance (TRTD(r))? This is
a fairly straightforward task for the equation that defines
positive temperature behavior, because it is merely a qua-
dratic. The solution to the quadratic yields two expressions;
to determine which one is correct, simply plug in a couple
of known values. The result is the following equation for
RTD temperature at temperatures of 0°C or greater:

T (r)

A A B
R

BRTD

r

=
- + - -

Ê
ËÁ

ˆ
¯̃

2 4 1

2
0

where A, B, and R0 are defined previously (in the RTD
Transfer Function section) and r is the RTD’s resistance.
Because this function will be solved in real time, it is
beneficial to change it to the following form:

T (r)
Z Z Z r

ZRTD =
+ + ¥1 2 3

4

where:

Z A1
–33.9083 10= - = - ¥

Z A B2
2 64 17.58480889 10= - ¥ = ¥ -

Z
B

R3
–94

23.10 10=
¥

= - ¥
0

Z B4
62 1.155 10= ¥ = - ¥ -

This is advantageous for real-time computation because
Z1 through Z4 are constant and absolute, and so there
are fewer computations to be done. The above equation
for TRTD(r) is referred to herein as the positive function
because it relates to temperatures of 0°C and above.
And, because this is a direct mathematical solution, it is
100% accurate within that range. Rounding errors when
using 32-bit floating-point math in 8051 C code work out
to about +0.0001°C/–0.0005°C when solving this equa-
tion, which is certainly close enough to 100% accuracy
for any practical purposes. Using the ADuC832 with a core
clock speed of 12.58 MHz running the sample C routine
of RTDmath.c, the execution time of this equation is less
than 4.2 ms.

The previous equation is valid only for temperatures
of 0°C and above. The equation for RRTD(t) that defines
negative temperature behavior is a fourth-order poly-
nomial (after expanding the third term) and is quite
impractical to solve for a single expression of tempera-
ture as a function of resistance. However, making use
of computer math tools can assist in finding a close
approximation to the inverse transfer function. Using
Mathematica® (http://www.wolfram.com/products/
mathematica) or a similar software math tool, one
can come up with the following best-fit polynomial
expressions for RTD temperature at temperatures of
0°C or less:

T (r) r

r r

r r

RTD = + ¥ + ¥

¥ ¥ ¥ ¥

¥ + ¥ ¥

–242.02 2.2228 2.5859 10

– 4.8260 10 – 2.8183 10

1.5243 10

–3

2 –6 3 –8

4 –10 5

T (r) r

r r r
RTD = + ¥ + ¥

¥ ¥ ¥ ¥ ¥

–241.96 2.2163 2.8541 10

– 9.9121 10 – 1.7052 10

–3

2 –6 3 –8 4

T (r) r

r r
RTD = + ¥ + ¥

¥ ¥ ¥

–242.09 2.2276 2.5178 10

– 5.8620 10

–3

2 –6 3

 T (r) r rRTD = + ¥ + ¥ ¥–242.97 2.2838 1.4727 10–3 2

These four equations are referred to herein as the nega-
tive functions because each is valid only for temperatures
of 0°C and below. The top (fifth-order) equation is the
most accurate but takes the longest time to compute,
while the bottom (second-order) equation is the least
accurate but fastest to compute. Some characteristics
of these negative functions are given in Table 2, and a
plot of the error of each as a function of temperature is
shown in Figure 4 along with (for visual reference) the
error of the positive function extended into the negative
temperature space. Notice from Figure 4 that at near-zero
negative temperatures, there is actually less error in the
positive function than in the second-, third-, or fourth-
order negative functions. The sample code RTDmath.c
takes advantage of this behavior by using the positive
function even at slightly negative temperatures. The
actual threshold to determine if the positive or negative
function should be used is different depending on which
negative function (second-, third-, fourth-, or fifth-order)
is used, and is represented in the Threshold column of
Table 2. Above this threshold value, the positive function
yields lower error; below this threshold value, the nega-
tive function yields lower error. The Equation Accuracy
column of Table 2 represents errors only for temperatures
below the corresponding threshold value.

REV. 0 REV. 0

http://www.wolfram.com/products/mathematica
http://www.wolfram.com/products/mathematica

–4–

AN-709

–5–

AN-709

Table 2. Characteristics of Best-Fit Polynomial Equations (Negative Functions)

 Maximum Execution Time* Equation Accuracy* Threshold

Fifth-order 41 ms +0.0001°C/–0.00005°C 0°C/100
Fourth-order 31 ms +0.0022°C/–0.001°C –8.75°C/96.6
Third-order 21 ms +0.0053°C/–0.0085°C –12.5°C/95.1
Second-order 11 ms +0.075°C/–0.17°C –70.5°C/72.1
*Execution time and equation accuracy were measured empirically on an ADuC832, at a core clock speed of 12.58 MHz, running the
sample C routine of RTDmath.c.

����������� ����

�
��

�
�

�
��

�
�

��
�

�
�

�
�

�
��

�
�

����

����

����

����

�

�����

�����

�����

�����
���� ���� ���� ���� ���� ���� ��� ��� ��� ��� �

��� �����

��� �����

��� �����

��������
��������

��� �����

Figure 4. Error Plot of Best-Fit Polynominal
Equations (Negative Functions)

One drawback of this direct mathematical technique for lin-
earization is that it requires floating-point power and square
root functions such as those found in the math library of the
C51 compiler from Keil (http://www.keil.com). These float-
ing-point math functions alone typically add more than 1 kB
to the code size. Similar or better accuracy can be achieved
with smaller overall code size using the piecewise linear
approximation method described later in this document.
However, if the math library functions are required for
other operations in the program, the direct mathematical
technique might be the best solution because those library
functions are already available.

SINGLE LINEAR APPROXIMATION METHOD
In Figure 3, notice that over smaller temperature spans
the RTD transfer function looks much like a straight line.
If the required measurement temperature range spans
only a portion of the full RTD measurement band, one
might not need to linearize the RTD signal at all. In such
cases, a best-fit linear approximation to the transfer
function over the desired measurement temperature
range can often yield sufficient precision. For example,
over the industrial temperature range of –40°C to +85°C,
a best-fit linear approximation is accurate to ±0.3°C.

In general, a linear equation for temperature as a func-
tion of RTD resistance (r) is of the form

T (r) A r BLIN = ¥ +

where A and B are constants. Note that these are not the
same A and B from the RTD Transfer Function. Choosing
optimum values for A and B to minimize the error band
involves some math not explored here. There is, howev-
er, a very simple software tool (intended to accompany
this document) that can automatically find optimum val-
ues of A and B to fit your specific temperature range. This
tool is examined later in this document, but first it must
be determined whether a single linear approximation is
suitable for the specific design requirement.

����������� ����������� ���� ���������� �����

�
��

�
�

�
��

�
�

��
�

�
�

�
�

�
�

��
�

�
��

�
�

�
�

�
�

��
��

� ���

���

���

���

�
� ��� ��� ��� ��� ���

Figure 5. Single Linear Approximation Error vs.
Measurement Temperature Span

Figure 5 offers a view of the total approximation error
that results for measurement temperature spans of up to
500°C. For more than 500°C spans, approximation error
continues to degrade with increasing temperature span.
The imprecise nature of the Figure 5 plot (that is, the
broad width of the data trace) is due to the fact that even
for the same span of temperature, the error is different
for different absolute temperature bands. For example,
the temperature ranges –200°C to 0°C and +600°C to
+800°C do not have the same precision even though they
both span exactly 200°C. Figure 5 provides little more
than a rough idea of error in order to help gauge whether
single linear approximation should be considered as an
option. If it is determined that it might be an option, the
RTD coefficient generator tool described later can help
determine the actual approximation error for a specific
temperature range, and can generate source code opti-
mized for that temperature range.

REV. 0 REV. 0

http://www.keil.com

–6–

AN-709

–7–

AN-709

PIECEWISE LINEAR APPROXIMATION METHOD
Taking linear approximation one step further, one can
conceptualize any number of linear segments strung
together to better approximate the nonlinear RTD trans-
fer function. Generating this series of linear segments so
that each segment’s endpoints meet those of neighboring
segments results in what can be viewed as a number of
points connected by straight lines. These points (or coef-
ficients) can be calculated once to best match the RTD’s
nonlinear transfer function and then stored permanently in
ROM or Flash memory. From this table of coefficients, the
MCU can perform simple linear interpolation to determine
temperature based on measured RTD resistance.

To understand how this is implemented in practice, first
assume the table of coefficients already exists. Each
coefficient in the table is simply a point on the transfer
function, represented by a resistance and a temperature.
So the table takes the form

{r0,t0; r1,t1; r2,t2;...rN,tN}.

Given this table, the MCU’s real-time task (in deter-
mining temperature at a given resistance r) is to first
determine which two coefficients are closest to the point
in question (call these {rm,tm} and {rn,tn}), and to then
linearly interpolate between those two points to solve
for temperature. The actual linear interpolation formula
for that range (i.e., valid only for values of r between rm
and rn) will then take the form

T r t r – r
t t
r rSEG m m

n m

n m
() = + () -

–

Note that each coefficient in the above lookup table
consists of two numbers, one for resistance and one for
temperature (essentially x and y values in the transfer
function). So for N linear segments (i.e., N+1 coefficients),
a total of 2N+2 values must be stored in memory. To
reduce the size of the look-up table, consider a table con-
sisting of N segments, each spanning an equal breadth
of resistance. Such a table can be stored as a set of tem-
perature points only

{t0; t1; t2; ... tN}

since, for a given coefficient {rn,tn}, the value of rn can
be calculated by

rn = r0 + n rSEG

where both r0 and rSEG are fixed values, stored in ROM
along with the table of coefficients. r0 is the resistance
at coefficient zero {r0,t0} and rSEG is the fixed span of
resistance that separates adjacent coefficients. The

linear interpolation formula for a given segment then
becomes

T r t r r + i r
t t
rSEG i 0 SEG
i+ i

SEG
() = + - ¥()[] ¥ 1 –

where i indicates which segment (i.e., which pair of coef-
ficients) is being used, and is calculated using the value
of r as follows:

i trunc

r – r
rSEG

=
Ê
ËÁ

ˆ
¯̃

0

Again, the above expression for TSEG(r) is nothing more
than a linear interpolation between the two coefficients
ti and ti+1. To implement this in practice, the MCU must
first solve for i (per the lower of the above two equations)
so that the coefficients ti and ti+1 are the two closest to
the input value for r. Then, with i solved for, the MCU
can simply solve the equation TSEG(r) to determine the
temperature at the given input resistance.

The overall error generated by this piecewise linear
approximation technique will depend on: 1) the number
of segments (or number of coefficients, or size of look-up
table), and 2) the overall span of temperature. Figure 6
shows the linear approximation error for a measure-
ment temperature range of –200°C to +850°C plotted as
a function of look-up table size (using optimized coeffi-
cients generated by the RTD coefficient generator tool
to be discussed shortly). Note that if the measurement
temperature range is reduced, a better error will result
given the same size look-up table, or the same error with
a smaller look-up table.

����� ���� �������

�
��

�
�

�
�

�
�

�
�

�
��

�
�

��
�

�
�

�
�

�
��

�
�

���

��

�

���

����

�����

������

��
����
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
����

Figure 6. Piecewise Linear Approximation Error
vs. Look-Up Table Size (–200°C to +850°C Range)

REV. 0 REV. 0

–6–

AN-709

–7–

AN-709

RTD COEFFICIENT GENERATOR TOOL
Certainly the most difficult part of implementing a
piecewise linearization function is generating the look-
up table. However, the RTD coefficient generator tool
intended to accompany this document (coefRTD.exe)
will do so automatically for Platinum RTDs. It is a simple
DOS executable intended to assist with 8051-based
RTD interface designs using piecewise linear or single
linear approximation methods. It performs the follow-
ing tasks:

• Generates optimized look-up table coefficients for a
given temperature range and look-up table size.

• Indicates resulting error band and look-up
table size.

• Generates complete RTD linearization function
(including look-up table) in 8051 C source code.

• Generates table of error values as a function of tem-
perature resulting from the given look-up table.

Figure 7 shows a sample screen from a typical run
through the program, with user input highlighted in red.
Note that the user needs to input only three parameters
(TMIN, TMAX, and NSEG) and the program does all the rest.
The program can generate the file RTDpwl0.c, which is
a complete C source file (customized to the user’s spe-
cific look-up table) that can be included as is in a project
where the T_rtd() function is available to be called
directly from functions in other source files. Alternative-
ly, any portion(s) of RTDpwl0.c can be copied and pasted
directly into other source file(s). The coefficient genera-
tor can also output an error analysis file (errorRTD.txt),
which is a tab-delimited text file that can be imported
into Microsoft® Excel or any other spreadsheet program
to examine the errors generated by the linear approxi-
mation routine.

Figure 7. Coefficient Generator Session Example, with Piecewise Linear Approximation (User Input in Red)

REV. 0 REV. 0

–8–

AN-709

–9–

AN-709

Figure 8. Coefficient Generator Session Example, with Single Linear Approximation (User Input in Red)

The coefficient generator program generates linearization
functions not only for piecewise linear approximation,
but also for single linear approximation. To do this,
simply enter 1 for the table size to indicate only a single
linear segment. The program recognizes this and out-
puts results pertaining to the single linear approximation
method instead of the piecewise linear approximation
method, as shown in Figure 8.

CALIBRATION
The ADuC834 has a built-in function to calibrate the
ADC for endpoint errors (offset and gain error) as docu-
mented in the product data sheet. However, if the entire
signal chain, including the RTD itself, is taken into
account instead during calibration, one can end up with
a lower overall error, and in such a case, the built-in
ADC calibration provides no added benefit. This appli-
cation note examines the overall calibration first, and
then points out some instances where the built-in ADC
calibration might still be useful.

Up to this point, the assumption has been that the RTD
itself is perfect. But real RTDs are not perfect. Just like
anything else in the real world, they have errors associ-
ated with them as specified by the RTD manufacturer’s
data sheet. Fortunately, much of this error can be fairly
easily calibrated out in software. The calibration func-
tion discussed here works as either a single-point or a
two-point calibration, and this function can be used in
conjunction with any of the previously described linear-
ization techniques.

To understand how a single-point calibration works in
principle, refer back to the RTD transfer function RRTD(t)
discussed earlier in this document and recall that it is

largely defined by the value R0, which is the resistance
of the RTD at 0°C. For the most common RTDs, R0 is
nominally 100 . But this R0 value is the most significant
source of error in an RTD sensor, because it can vary sig-
nificantly from one device to the next. And because the
R0 value is simply multiplied by the rest of the transfer
function in the expressions for RRTD(t), errors due to R0

tolerance are purely multiplicative, and so can be cor-
rected by adjusting the scale multiplier in the following
expression (as given previously) for RRTD as a function
of normalized ADC conversion result.

R ADC scale offsetRTD norm= ¥ +

Specifically, if the RTD can be brought to a very precise
known temperature and an ADC conversion performed,
then the corrected scale value can be calculated as

scale
R

ADC
cal

cal

=

where ADCcal is the actual normalized result of the A/D
conversion and Rcal is the ideal (expected) resistance
value at that RTD temperature. Rcal can be calculated
manually using the equations for RRTD(t). By this method
(called single-point calibration), a corrected scale value
is obtained, compensating for the RTD’s R0 tolerance and
also, simultaneously, for the reference resistor’s initial
tolerance. To take this a step further, one can employ a
two-point calibration, which compensates not only for
these scaling errors but also for any offset error that
might exist. Doing so requires adjusting not only the
scale value, but the offset value as well. Assume for
the moment that a single-point calibration has already

REV. 0 REV. 0

–8–

AN-709

–9–

AN-709

been performed, and the RTD can now be brought to
a second very precise known temperature and another
ADC conversion performed. The equation for the scale
value (that is, the slope of the RRTD versus ADCnorm func-
tion) is then

scale
R R

ADC ADC
cal prevcal

cal prevcal

=
–

–

where:

Rprevcal and ADCprevcal are the resistance and ADC con-
version result, respectively, at the previous calibration
point.

Rcal and ADCcal are the same for the current calibration
point.

Note that this is merely a way of determining the slope
of the RRTD versus ADCnorm transfer function using two
points on that line. Now one has only to take care of
the offset value, which, because the scale value is now
known, can be determined using a single point. The fol-
lowing expression for the offset value comes by solving
for the offset of the above RRTD expression and then
replacing RRTD and ADCnorm with Rprevcal and ADCpreval,
respectively.

offset R – ADC scaleprevcal prevcal= ¥

Note that if Rprevcal and ADCprevcal are both zero (repre-
senting no prior calibration point), then the expression
for the scale value becomes the same as for a single-
point calibration, and the expression for the offset value
becomes zero, just as if this were a single-point calibra-
tion. Therefore, the same function (Cal() in the sample
code) can be used to perform either a single-point or a
2-point calibration.

If using the sample code as is, follow these steps to per-
form a 2-point calibration:

1. Choose two temperatures at which to perform cali-
bration, making sure that the temperature points are
sufficiently separated (ideally at least one quarter of the
total measurement span) to avoid errors accumulating
near the extremes of the measurement temperature
range.

2. Bring the RTD to the first temperature point, wait for
the displayed result to settle to the new value, and
then press any key of the terminal (or terminal emula-
tor) to bring up the user I/O menu.

3. Follow the menu prompts to calibrate to a known
temperature, and then enter the temperature as
prompted.

4. Repeat steps 2 and 3 for the second temperature
point.

Note: for a single-point calibration, simply ignore step 4.

There are many benefits to calibration, but just as many
system considerations that make it impractical for certain
applications. If a calibration cannot be performed as
described above, consider performing a system ADC cali-
bration instead, as described in the ADuC834 data sheet.
To do so, simply replace the RTD with a short (0) and
trigger a system zero-scale calibration, and then replace
the RTD with a high precision 719.36 resistance and trig-
ger a full-scale calibration. This compensates for internal
ADC errors and for initial tolerance of the RREF resistor, but
does not account for any error of the RTD itself.

It is worth pointing out that an added benefit of the
ADuC832 (and all other MicroConverter products) is
that it includes nonvolatile Flash data memory on-chip,
which can be used in this case to store the calibrated
scale and offset values. This way, the chip can restore
the calibrated values each time the system powers up,
rather than requiring a calibration each time the system
is powered up. The sample code RTD834.c makes use of
this feature for exactly that purpose.

ERROR ANALYSIS
There are many contributing error sources to data
acquisition designs (ADC linearity, input amplifier noise,
resistor Johnson noise, amplifier temperature drift,
resistor temperature drift, and so on). Determining
which ones are dominant for a given design can be a
daunting task. Fortunately, the ADuC834 integrates all
the active stages into a single fully factory specified
device, making error analysis a much simpler task, but
one that still requires a fair bit of insight in designs
such as this that involve a nonlinear sensor element.
This application note, therefore, explores the few error
components that happen to be most significant for the
specific hardware and software configurations that have
been discussed thus far in this document.

First of all, if the system is not calibrated to a specific RTD
(using the single-point or 2-point calibration discussed
previously), the RTD itself is almost certainly the most
significant source of absolute error. This error should be
well quantified on the RTD manufacturer’s data sheet,
and depends on the specific model of RTD chosen. This
application note concentrates instead on error sources
other than the RTD itself.

REV. 0 REV. 0

–10–

AN-709

–11–

AN-709

��� ����������� ����

�
�

�
�

�
��

�
��

�
�

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
��

��
��

��
��

��
��

�������������

��� �����

Figure 9. ADC Noise vs. RTD Temperature

One type of error to examine is noise. There are three
main noise sources to consider in this design: resistor
Johnson noise, amplifier/ADC input voltage noise, and
amplifier/ADC input current noise. These add together
as a root-sum-of-squares, and so the lesser contributing
sources are negligible when one noise source is even
slightly greater than the others. For this specific case,
that dominant noise source happens to be amplifier/
ADC input voltage noise. Specifically, at the gain setting
discussed, the ADuC834’s input voltage noise specifica-
tion is 0.37 V rms, or about 2.44 V p-p. Translating this
input voltage noise into the resulting output temperature
noise may not be intuitively obvious and, because of the
nonlinear resistance-to-temperature transfer function,
results in a temperature noise that varies as a function
of RTD temperature. The end result is shown in Figure
9. Notice that even at the highest RTD temperatures
(that is, the worst noise), peak-to-peak noise is always
below 0.019°C, and is even better at lower measurement
temperatures. Keep in mind that this variation of noise
as a function of RTD temperature is not a function of
the ADC itself but rather, as mentioned previously, is
a direct result of the nonlinear TRTD(r) transfer function
being implemented in the digital domain.

Another source of error to consider here is tempera-
ture drift, specifically ADC offset and gain temperature
drift and reference resistor temperature drift. This is
the change in DC errors (offset and gain errors) as a
function of changing temperature of the ADC chip or
reference resistor. So this relates to ambient tempera-
ture of the RTD conditioning circuitry rather than to the
actual measurement RTD temperature. For brevity, these
two distinct temperatures are referred to here as ambi-
ent temperature and RTD temperature, respectively. To
confuse things further, the value of temperature drift

(that is, sensitivity to ambient temperature) changes as
a function of RTD temperature due to the nonlinear TRTD(r)
transfer function. The end result is shown in Figure 10
but will likely require some explanation. The x axis of
Figure 10 is simply the RTD temperature. The y axis is
the temperature drift in °C change in measurement error
per °C change in ambient temperature. For example, if
the RTD temperature is fixed at 100°C, the VREF drift (with a
5 ppm/°C reference resistor) is approximately ±0.01°C/°C.
So, if the ambient temperature changes by, say, 50°C,
the measurement temperature reading might change
by as much as ±0.5°C (neglecting other contributors to
temperature drift).

��� ����������� ����

�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
��

��
��
�
�

���

����

�����

������

�������

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
��

��
��

��
��

��
��

���� ����� ��� ������� ��������

���� ����� ��� ������� ��������

��� ���� �����

��� ������ �����

Figure 10. Temperature Drift vs. RTD Temperature

It is not difficult to see that, in industrial environments
with ambient temperature ranges sometimes span-
ning –40°C to +85°C or more, temperature drift can
be quite a significant source of error. It would be fairly
straightforward to use the on-chip temperature sensor
of the ADuC834 to measure chip temperature (which
tracks ambient temperature closely) and then use this
measured chip/ambient temperature to compensate
for temperature-drift errors. This would require an
additional temperature-cycling step during manufactur-
ing, specifically bringing the ambient temperature to two
fixed values and taking zero-scale and full-scale ADC
readings at each of these ambient temperatures. But
after doing this, software could do the rest to compen-
sate for temperature drift errors within the limits of
temperature sensor accuracy and temperature gradi-
ents between the reference resistor and the ADuC834.
This application note does not explore such tempera-
ture drift compensation techniques any further, but it
should be noted that the on-chip resources exist to make
this option possible with nothing more than software
changes.

REV. 0 REV. 0

–10–

AN-709

–11–

AN-709

RTD self-heating is yet another source of error to con-
sider. Simply put, placing a current through the RTD
causes it to dissipate power, which raises the RTD’s tem-
perature. Fortunately, because the RTD is being excited
with only 400 A, the total power dissipated by the RTD
is never more than 16 W for a 100 R0. The amount of
self-heating caused by this small power dissipation var-
ies, depending on the specific model of RTD used, but
typically the resulting self-heating is negligible. If it is not
negligible in the specific application, simply reduce the
excitation current to 200 A under software control, thus
reducing RTD power dissipation by a factor of four.

Other sources of error are mostly negligible. DC end-
point errors (offset and gain errors) can be fully corrected
using the calibration techniques discussed previously.
Resistor Johnson noise is well below the ADC’s input
voltage noise. The only other error source worthy of con-
sideration is ADC INL (integral nonlinearity, or relative
accuracy). Though the ADuC834 data sheet specification
for worst-case INL is 15 ppm of full scale, which would
result in output-referred INL error about twice the value
of the peak-to-peak output noise shown in Figure 9, the
actual INL is much closer to 2 ppm of full scale, which is
well below the noise floor. This is typical of ADI’s con-
servative specifications.

SOFTWARE AND SOURCE CODE
All of the software and source code referenced herein
is included in a zip file intended to accompany this
document, and can be downloaded from the location
mentioned on Page 1. The individual contents of the zip
file can be described as follows:

• coefRTD.exe – The coefficient generator tool execut-
able.

• coefRTD.cpp – Source-code for the coefficient gen-
erator tool.

• RTDmath.c – Linearization subroutines using direct
mathematical linearization method.

• RTDpwl0.c – Linearization subroutines using piece-
wise linear approximation method. (A customized
version of this code can be generated using the
coefRTD.exe program).

• RTDlin0.c – Linearization subroutines using single
linear approximation method. (A customized version
of this code can be generated using the coefRTD.exe
program).

• RTD834.c – Example complete RTD interface program
for the ADuC834 or ADuC836. (Makes use of any one
of the above linearization functions).

• RTD834.hex – Complete compiled version of RTD834.c
and RTDpwl0.c, ready to download and run on an
ADuC834 or ADuC836.

• RTD845.c – Example complete RTD interface program
for the ADuC845, ADuC847, or ADuC848. (Makes use
of any one of the above linearization functions).

• RTD845.hex – Complete compiled version of ADuC845.c
and RTDpwl0.c, ready to download and run on an
ADuC845, ADuC847, or ADuC848.

• ReadMe.txt – Text file giving revision information and
describing the function of each file.

A complete project using the above source code must
include both a main program (RTD834.c, RTD845.c, or a
from scratch program) and a linearization subroutines
file (RTDmath.c, RTDpwl0.c, RTDlin0.c, or a customized
source file generated by the coefRTD.exe tool). Many
details are provided in the comments of the various C
source files.

Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips
I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.

REV. 0 REV. 0

A
N

04
63

0–
0–

8/
04

(0
)

–12–
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

	INTRODUCTION
	HARDWARE DESIGN
	CALCULATING RTD RESISTANCE FROM ADC RESULT
	RTD TRANSFER FUNCTION
	LINEARIZATION TECHNIQUES
	DIRECT MATHEMATICAL METHOD
	SINGLE LINEAR APPROXIMATION METHOD
	PIECEWISE LINEAR APPROXIMATION METHOD
	RTD COEFFICIENT GENERATOR TOOL
	CALIBRATION
	ERROR ANALYSIS
	SOFTWARE AND SOURCE CODE

