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INTRODUCTION
The platinum RTD is one of the most accurate sen-
sors available for measuring temperature within the 
range –200°C to +850°C, capable of achieving calibrated 
accuracy of ±0.02°C or better. To get the most of an RTD’s 
accuracy, however, requires precise signal condition-
ing, A/D conversion, linearization, and calibration. The 
Analog Devices MicroConverter product family (http:
//www.analog.com/MicroConverter) includes devices 
with a 16-bit or 24-bit ADC and an 8052 MCU in a single 
chip along with signal conditioning circuitry ideally suited 
to RTD sensors. This application note describes ways to 
implement a complete RTD sensor interface using the 
ADuC834 (or other similar MicroConverter) and just a 
few passive components.

Software utilities and sample code, referenced here and 
highly recommended for anyone implementing a Micro-
Converter-based RTD sensor interface, can be found at 
http://www.analog.com/MicroConverter

HARDWARE DESIGN
An RTD (resistance temperature detector) is a resistance 
that varies as a function of temperature in a precisely 
defined manner. Before getting into the details of the 
RTD’s transfer function of resistance to temperature 
(which is nonlinear), assume that the nonlinearities will 
be corrected digitally, and first concentrate on convert-
ing the RTD’s resistance to a digital value. A common 
way to do this is shown in Figure 1.
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Figure 1. RTD Interfacing Hardware Configuration

RTD Interfacing and Linearization Using an ADuC8xx MicroConverter®

by Grayson King and Toru Fukushima

Here, a single current source (IEXC ) excites both the RTD 
(RRTD ) and a precision reference resistor (RREF ) by way 
of a series connection, generating the ADC input voltage 
(VRTD ) and reference voltage (VREF ), respectively:
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The ADC’s normalized digital output (zero input = 0, full-
scale input = 1) is simply a ratio of its input voltage to its 
reference voltage multiplied by the gain stage, AADC :
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Notice how IEXC cancels out of the above equation, meaning 
that even if the excitation current changes or is imprecise, 
the ADC result always corresponds directly to the ratio of 
the RTD resistance to the reference resistance. Choosing 
a precision, low-drift reference resistor means the RTD 
resistance can be known to a high degree of precision, 
even with a much less precise current source.

Applying this same principle using a MicroConverter, 
Figure 2 shows the ADuC834 connected for interfac-
ing with a 4-wire RTD. Note that this is the same overall 
topology as shown in Figure 1, except that all the active 
components (excitation current source, differential input 
stages for VRTD and VREF, gain stage AADC, the ADC itself, 
and a microcontroller) are included internally to the 
ADuC834 chip, along with a number of other peripher-
als such as serial communication ports for the digital 
communication path(s). Notice also that some passive 
components have been added for R/C filtering of signals 
and for protection from overvoltage conditions at the 
terminal block. This represents a complete implementa-
tion, requiring only a power supply and any particular 
peripheral chip needed for the digital interface (RS-232 
or RS-485 line driver/receiver, for example).
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CALCULATING RTD RESISTANCE FROM ADC RESULT
Recall from the Hardware Design section that

ADC A
R
Rnorm ADC

RTD

REF

= ¥

which can be rewritten as

R ADC
R
A

ADC scaleRTD norm
REF

ADC
norm= ¥ = ¥

where:

scale
R
A

REF

ADC

=

The scale value is the fixed scaling factor used in the 
sample code. Taking this a step further, a fixed offset 
value can be added to the equation, resulting in

R ADC scale offsetRTD norm= ¥ +

where the offset term represents a fixed offset that can 
be used to compensate for errors. This offset term is 
discussed further in the Calibration section. For most 
situations, a value of zero is sufficient for this offset term. 
Note that a direct equation for RTD resistance has been 
obtained as a function of the ADC result using only a pair 
of fixed values for scale and offset.

The remainder of this document considers the most 
common type of platinum RTD, which has a nominal 
resistance (R0) of 100  at 0°C. Also assume a refer-
ence resistor value of 5.62 k, which provides a good 
match to such an RTD. With these component values 
and using the ADuC834, an internal gain of 7.8125 is the 
highest available ADC gain setting that still allows the 
RTD to cover its full specified temperature range. (Recall 

that ADCnorm is by definition limited to the range 0 to 1, 
which is what defines the temperature range limitation 
at higher ADC gains.) The gain of 7.8125 corresponds to 
an ADC0CON value of 0x4C, or a range setting of 320 mV 
unipolar (AADC = VREF/span = 2.5 V/320 mV = 7.8125). To 
correspond to this gain setting, the scale value works 
out to 719.36 (scale = RREF/AADC = 5.62 k/7.8125 = 719.36,) 
which is the default scale value used in the sample code. 
The default value for the offset term is zero.

The above equations for RRTD are merely methods of deter-
mining (in software) the RTD’s resistance directly from a 
given ADC conversion result. To then determine the RTD’s 
temperature as a function of its resistance requires an 
understanding of the RTD’s transfer function.

RTD TRANSFER FUNCTION
A platinum RTD’s transfer function is described by two 
distinct polynomial equations: one for temperatures 
below 0°C and another for temperatures above 0°C. 
These equations are

RRTD(t) = R0 [1 + At + Bt2 + C (t – 100°C)t3 ]       (for t  0°C)

RRTD(t) = R0 [1 + At + Bt2 ]                                   (for t  0°C)

where:

t = RTD temperature [°C]

RRTD(t) = RTD resistance as a function of RTD tempera-
ture (t)

R0 = RTD resistance at 0°C (most often 100 )

A = 3.9083  10–3 °C–1

B = –5.775  10–7 °C–2

C = –4.183  10–12 °C–4

Notice that the notation is changed from RRTD to RRTD(t) 
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Figure 2. Complete RTD Interfacing Circuit Using ADuC834
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to reflect that the RTD’s resistance is a function of its 
temperature. Figure 3 shows the RTD’s transfer function 
(resistance plotted as a function of temperature) along 
with a linear expansion of the transfer function’s slope 
at 0°C (for visual comparison).
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Figure 3. RTD Transfer Function

The previous equations define the RTD’s resistance as 
a function of its temperature (RRTD(t)). But to implement 
an RTD sensor interfacing circuit, the RTD’s tempera-
ture must be determined instead as a function of its 
resistance (TRTD(r)), which may be less straightforward, 
given the RTD’s nonlinear transfer function. Some tech-
niques useful for this task are explored in the following 
sections.

LINEARIZATION TECHNIQUES
There are a number of different ways to determine 
temperature as a function of RTD resistance, given 
the RTD’s transfer function as described above. This 
application note examines three techniques useful in 
embedded designs, and more specifically, very well 
suited to MicroConverter-based designs. Table 1 out-
lines some of the strengths and weaknesses of each 
method, also summarizing the situations in which each 
might be most useful.

Table 1. Three Linearization Techniques

Technique                        Advantages                                              Disadvantages                                                    Summary

Direct                             • Very accurate                                         • Requires math library (usually > 1 kB)           Useful if math library
Mathematical                • No look-up table required                    • Somewhat slow (10 ms to 50 ms*)                is already required for
Method                                                                                                                                                                     other functions

Single Linear                 • Very fast (< 1 ms*)                                • Poor accuracy over wide                                 Good option when
Approximation              • Very small code space                           temperature span                                            code space is limited
Method                           requirement                                                                                                                      and temperature span
                                       • Fairly accurate over narrow                                                                                            is fairly narrow
                                        temperature spans
                                       • No math library required
                                       • No look-up table required

Piecewise Linear           • Fast (< 5 ms*)                                        • Greater code size than single-linear               Possibly the most
Approximation              • Designer control of code                       approximation method                                   useful of these three
Method                           size/accuracy trade-off                          • Greater code size than mathematical             methods in >90% of
                                       • Can be very accurate                             method if math library is already                   embedded designs
                                       • No math library required                      needed for other functions

*Execution times indicated here represent empirical measurements of an ADuC834, at a core clock speed of 12.58 MHz, running the C subroutines referenced herein.
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The following sections explore these linearization tech-
niques in detail.

DIRECT MATHEMATICAL METHOD
Earlier in this document, explicit mathematical equa-
tions were shown for an RTD’s resistance as a function 
of its temperature (RRTD(t)). So why not just turn those 
equations around and solve for expressions of the RTD’s 
temperature as a function of its resistance (TRTD(r))? This is 
a fairly straightforward task for the equation that defines 
positive temperature behavior, because it is merely a qua-
dratic. The solution to the quadratic yields two expressions; 
to determine which one is correct, simply plug in a couple 
of known values. The result is the following equation for 
RTD temperature at temperatures of 0°C or greater:

T (r)

A A B
R

BRTD

r

=
- + - -

Ê
ËÁ

ˆ
¯̃

2 4 1

2
0

where A, B, and R0 are defined previously (in the RTD 
Transfer Function section) and r is the RTD’s resistance. 
Because this function will be solved in real time, it is 
beneficial to change it to the following form:

T (r)
Z Z Z r

ZRTD =
+ + ¥1 2 3

4

where:

Z A1
–33.9083 10= - = - ¥

Z A B2
2 64 17.58480889 10= - ¥ = ¥ -

Z
B

R3
–94

23.10 10=
¥

= - ¥
0

Z B4
62 1.155 10= ¥ = - ¥ -

This is advantageous for real-time computation because 
Z1 through Z4 are constant and absolute, and so there 
are fewer computations to be done. The above equation 
for TRTD(r) is referred to herein as the positive function 
because it relates to temperatures of 0°C and above. 
And, because this is a direct mathematical solution, it is 
100% accurate within that range. Rounding errors when 
using 32-bit floating-point math in 8051 C code work out 
to about +0.0001°C/–0.0005°C when solving this equa-
tion, which is certainly close enough to 100% accuracy 
for any practical purposes. Using the ADuC832 with a core 
clock speed of 12.58 MHz running the sample C routine 
of RTDmath.c, the execution time of this equation is less 
than 4.2 ms.

The previous equation is valid only for temperatures 
of 0°C and above. The equation for RRTD(t) that defines 
negative temperature behavior is a fourth-order poly-
nomial (after expanding the third term) and is quite 
impractical to solve for a single expression of tempera-
ture as a function of resistance. However, making use 
of computer math tools can assist in finding a close 
approximation to the inverse transfer function. Using 
Mathematica® (http://www.wolfram.com/products/
mathematica) or a similar software math tool, one 
can come up with the following best-fit polynomial 
expressions for RTD temperature at temperatures of 
0°C or less:

T (r) r

r r

r r

RTD = + ¥ + ¥

¥ ¥ ¥ ¥

¥ + ¥ ¥

–242.02 2.2228 2.5859 10

– 4.8260 10 – 2.8183 10

1.5243 10

–3

2 –6 3 –8

4 –10 5

T (r) r

r r r
RTD = + ¥ + ¥

¥ ¥ ¥ ¥ ¥

–241.96 2.2163 2.8541 10

– 9.9121 10 – 1.7052 10

–3

2 –6 3 –8 4  

T (r) r

r r
RTD = + ¥ + ¥

¥ ¥ ¥

–242.09 2.2276 2.5178 10

– 5.8620 10

–3

2 –6 3

        T (r) r rRTD = + ¥ + ¥ ¥–242.97 2.2838 1.4727 10–3 2

These four equations are referred to herein as the nega-
tive functions because each is valid only for temperatures 
of 0°C and below. The top (fifth-order) equation is the 
most accurate but takes the longest time to compute, 
while the bottom (second-order) equation is the least 
accurate but fastest to compute. Some characteristics 
of these negative functions are given in Table 2, and a 
plot of the error of each as a function of temperature is 
shown in Figure 4 along with (for visual reference) the 
error of the positive function extended into the negative 
temperature space. Notice from Figure 4 that at near-zero 
negative temperatures, there is actually less error in the 
positive function than in the second-, third-, or fourth-
order negative functions. The sample code RTDmath.c 
takes advantage of this behavior by using the positive 
function even at slightly negative temperatures. The 
actual threshold to determine if the positive or negative 
function should be used is different depending on which 
negative function (second-, third-, fourth-, or fifth-order) 
is used, and is represented in the Threshold column of 
Table 2. Above this threshold value, the positive function 
yields lower error; below this threshold value, the nega-
tive function yields lower error. The Equation Accuracy 
column of Table 2 represents errors only for temperatures 
below the corresponding threshold value.
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Table 2. Characteristics of Best-Fit Polynomial Equations (Negative Functions)

                                            Maximum Execution Time*            Equation Accuracy*                      Threshold

Fifth-order                          41 ms                                                 +0.0001°C/–0.00005°C               0°C/100 
Fourth-order                       31 ms                                                 +0.0022°C/–0.001°C                   –8.75°C/96.6 
Third-order                         21 ms                                                 +0.0053°C/–0.0085°C                 –12.5°C/95.1 
Second-order                     11 ms                                                 +0.075°C/–0.17°C                       –70.5°C/72.1 
*Execution time and equation accuracy were measured empirically on an ADuC832, at a core clock speed of 12.58 MHz, running the 
sample C routine of RTDmath.c.
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Figure 4. Error Plot of Best-Fit Polynominal 
Equations (Negative Functions)

One drawback of this direct mathematical technique for lin-
earization is that it requires floating-point power and square 
root functions such as those found in the math library of the 
C51 compiler from Keil (http://www.keil.com). These float-
ing-point math functions alone typically add more than 1 kB 
to the code size. Similar or better accuracy can be achieved 
with smaller overall code size using the piecewise linear 
approximation method described later in this document. 
However, if the math library functions are required for 
other operations in the program, the direct mathematical 
technique might be the best solution because those library 
functions are already available.

SINGLE LINEAR APPROXIMATION METHOD
In Figure 3, notice that over smaller temperature spans 
the RTD transfer function looks much like a straight line. 
If the required measurement temperature range spans 
only a portion of the full RTD measurement band, one 
might not need to linearize the RTD signal at all. In such 
cases, a best-fit linear approximation to the transfer 
function over the desired measurement temperature 
range can often yield sufficient precision. For example, 
over the industrial temperature range of –40°C to +85°C, 
a best-fit linear approximation is accurate to ±0.3°C.

In general, a linear equation for temperature as a func-
tion of RTD resistance (r) is of the form

T (r) A r BLIN = ¥ +

where A and B are constants. Note that these are not the 
same A and B from the RTD Transfer Function. Choosing 
optimum values for A and B to minimize the error band 
involves some math not explored here. There is, howev-
er, a very simple software tool (intended to accompany 
this document) that can automatically find optimum val-
ues of A and B to fit your specific temperature range. This 
tool is examined later in this document, but first it must 
be determined whether a single linear approximation is 
suitable for the specific design requirement.
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Figure 5. Single Linear Approximation Error vs. 
Measurement Temperature Span

Figure 5 offers a view of the total approximation error 
that results for measurement temperature spans of up to 
500°C. For more than 500°C spans, approximation error 
continues to degrade with increasing temperature span. 
The imprecise nature of the Figure 5 plot (that is, the 
broad width of the data trace) is due to the fact that even 
for the same span of temperature, the error is different 
for different absolute temperature bands. For example, 
the temperature ranges –200°C to 0°C and +600°C to 
+800°C do not have the same precision even though they 
both span exactly 200°C. Figure 5 provides little more 
than a rough idea of error in order to help gauge whether 
single linear approximation should be considered as an 
option. If it is determined that it might be an option, the 
RTD coefficient generator tool described later can help 
determine the actual approximation error for a specific 
temperature range, and can generate source code opti-
mized for that temperature range.
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PIECEWISE LINEAR APPROXIMATION METHOD
Taking linear approximation one step further, one can 
conceptualize any number of linear segments strung 
together to better approximate the nonlinear RTD trans-
fer function. Generating this series of linear segments so 
that each segment’s endpoints meet those of neighboring 
segments results in what can be viewed as a number of 
points connected by straight lines. These points (or coef-
ficients) can be calculated once to best match the RTD’s 
nonlinear transfer function and then stored permanently in 
ROM or Flash memory. From this table of coefficients, the 
MCU can perform simple linear interpolation to determine 
temperature based on measured RTD resistance.

To understand how this is implemented in practice, first 
assume the table of coefficients already exists. Each 
coefficient in the table is simply a point on the transfer 
function, represented by a resistance and a temperature. 
So the table takes the form

{r0,t0; r1,t1; r2,t2;...rN,tN}.

Given this table, the MCU’s real-time task (in deter-
mining temperature at a given resistance r) is to first 
determine which two coefficients are closest to the point 
in question (call these {rm,tm} and {rn,tn}), and to then 
linearly interpolate between those two points to solve 
for temperature. The actual linear interpolation formula 
for that range (i.e., valid only for values of r between rm 
and rn ) will then take the form

T r t r – r
t t
r rSEG m m

n m

n m
( ) = + ( ) -

–

Note that each coefficient in the above lookup table 
consists of two numbers, one for resistance and one for 
temperature (essentially x and y values in the transfer 
function). So for N linear segments (i.e., N+1 coefficients), 
a total of 2N+2 values must be stored in memory. To 
reduce the size of the look-up table, consider a table con-
sisting of N segments, each spanning an equal breadth 
of resistance. Such a table can be stored as a set of tem-
perature points only

{t0; t1; t2; ... tN}

since, for a given coefficient {rn,tn}, the value of rn can 
be calculated by

rn = r0 + n  rSEG

where both r0 and rSEG are fixed values, stored in ROM 
along with the table of coefficients. r0 is the resistance 
at coefficient zero {r0,t0} and rSEG is the fixed span of 
resistance that separates adjacent coefficients. The 

linear interpolation formula for a given segment then 
becomes

T r t r r + i r
t t
rSEG i 0 SEG
i+ i

SEG
( ) = + - ¥( )[ ] ¥ 1 –

where i indicates which segment (i.e., which pair of coef-
ficients) is being used, and is calculated using the value 
of r as follows:

 
i trunc

r – r
rSEG

=
Ê
ËÁ

ˆ
¯̃

0

Again, the above expression for TSEG(r) is nothing more 
than a linear interpolation between the two coefficients 
ti and ti+1. To implement this in practice, the MCU must 
first solve for i (per the lower of the above two equations) 
so that the coefficients ti and ti+1 are the two closest to 
the input value for r. Then, with i solved for, the MCU 
can simply solve the equation TSEG(r) to determine the 
temperature at the given input resistance.

The overall error generated by this piecewise linear 
approximation technique will depend on: 1) the number 
of segments (or number of coefficients, or size of look-up 
table), and 2) the overall span of temperature. Figure 6 
shows the linear approximation error for a measure-
ment temperature range of –200°C to +850°C plotted as 
a function of look-up table size (using optimized coeffi-
cients generated by the RTD coefficient generator tool 
to be discussed shortly). Note that if the measurement 
temperature range is reduced, a better error will result 
given the same size look-up table, or the same error with 
a smaller look-up table.
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Figure 6. Piecewise Linear Approximation Error 
vs. Look-Up Table Size (–200°C to +850°C Range)
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RTD COEFFICIENT GENERATOR TOOL
Certainly the most difficult part of implementing a 
piecewise linearization function is generating the look-
up table. However, the RTD coefficient generator tool 
intended to accompany this document (coefRTD.exe) 
will do so automatically for Platinum RTDs. It is a simple 
DOS executable intended to assist with 8051-based 
RTD interface designs using piecewise linear or single 
linear approximation methods. It performs the follow-
ing tasks:

•    Generates optimized look-up table coefficients for a 
given temperature range and look-up table size.

•    Indicates resulting error band and look-up   
table size.

•    Generates complete RTD linearization function 
(including look-up table) in 8051 C source code.

•    Generates table of error values as a function of tem-
perature resulting from the given look-up table.

Figure 7 shows a sample screen from a typical run 
through the program, with user input highlighted in red. 
Note that the user needs to input only three parameters 
(TMIN, TMAX, and NSEG) and the program does all the rest. 
The program can generate the file RTDpwl0.c, which is 
a complete C source file (customized to the user’s spe-
cific look-up table) that can be included as is in a project 
where the T_rtd() function is available to be called 
directly from functions in other source files. Alternative-
ly, any portion(s) of RTDpwl0.c can be copied and pasted 
directly into other source file(s). The coefficient genera-
tor can also output an error analysis file (errorRTD.txt), 
which is a tab-delimited text file that can be imported 
into Microsoft® Excel or any other spreadsheet program 
to examine the errors generated by the linear approxi-
mation routine.

Figure 7. Coefficient Generator Session Example, with Piecewise Linear Approximation (User Input in Red)
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Figure 8. Coefficient Generator Session Example, with Single Linear Approximation (User Input in Red)

The coefficient generator program generates linearization 
functions not only for piecewise linear approximation, 
but also for single linear approximation. To do this, 
simply enter 1 for the table size to indicate only a single 
linear segment. The program recognizes this and out-
puts results pertaining to the single linear approximation 
method instead of the piecewise linear approximation 
method, as shown in Figure 8. 

CALIBRATION
The ADuC834 has a built-in function to calibrate the 
ADC for endpoint errors (offset and gain error) as docu-
mented in the product data sheet. However, if the entire 
signal chain, including the RTD itself, is taken into 
account instead during calibration, one can end up with 
a lower overall error, and in such a case, the built-in 
ADC calibration provides no added benefit. This appli-
cation note examines the overall calibration first, and 
then points out some instances where the built-in ADC 
calibration might still be useful.

Up to this point, the assumption has been that the RTD 
itself is perfect. But real RTDs are not perfect. Just like 
anything else in the real world, they have errors associ-
ated with them as specified by the RTD manufacturer’s 
data sheet. Fortunately, much of this error can be fairly 
easily calibrated out in software. The calibration func-
tion discussed here works as either a single-point or a 
two-point calibration, and this function can be used in 
conjunction with any of the previously described linear-
ization techniques.

To understand how a single-point calibration works in 
principle, refer back to the RTD transfer function RRTD(t) 
discussed earlier in this document and recall that it is 

largely defined by the value R0, which is the resistance 
of the RTD at 0°C. For the most common RTDs, R0 is 
nominally 100 . But this R0 value is the most significant 
source of error in an RTD sensor, because it can vary sig-
nificantly from one device to the next. And because the 
R0 value is simply multiplied by the rest of the transfer 
function in the expressions for RRTD(t), errors due to R0 

tolerance are purely multiplicative, and so can be cor-
rected by adjusting the scale multiplier in the following 
expression (as given previously) for RRTD as a function 
of normalized ADC conversion result.

R ADC scale offsetRTD norm= ¥ +
 

Specifically, if the RTD can be brought to a very precise 
known temperature and an ADC conversion performed, 
then the corrected scale value can be calculated as

scale
R

ADC
cal

cal

=
  

where ADCcal is the actual normalized result of the A/D 
conversion and Rcal is the ideal (expected) resistance 
value at that RTD temperature. Rcal can be calculated 
manually using the equations for RRTD(t). By this method 
(called single-point calibration), a corrected scale value 
is obtained, compensating for the RTD’s R0 tolerance and 
also, simultaneously, for the reference resistor’s initial 
tolerance. To take this a step further, one can employ a 
two-point calibration, which compensates not only for 
these scaling errors but also for any offset error that 
might exist. Doing so requires adjusting not only the 
scale value, but the offset value as well. Assume for 
the moment that a single-point calibration has already 
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been performed, and the RTD can now be brought to 
a second very precise known temperature and another 
ADC conversion performed. The equation for the scale 
value (that is, the slope of the RRTD versus ADCnorm func-
tion) is then

scale
R R

ADC ADC
cal prevcal

cal prevcal

=
–

–   

where:

Rprevcal and ADCprevcal are the resistance and ADC con-
version result, respectively, at the previous calibration 
point.

Rcal and ADCcal are the same for the current calibration 
point. 

Note that this is merely a way of determining the slope 
of the RRTD versus ADCnorm transfer function using two 
points on that line. Now one has only to take care of 
the offset value, which, because the scale value is now 
known, can be determined using a single point. The fol-
lowing expression for the offset value comes by solving 
for the offset of the above RRTD expression and then 
replacing RRTD and ADCnorm with Rprevcal and ADCpreval, 
respectively.

offset R – ADC scaleprevcal prevcal= ¥
  

Note that if Rprevcal and ADCprevcal are both zero (repre-
senting no prior calibration point), then the expression 
for the scale value becomes the same as for a single-
point calibration, and the expression for the offset value 
becomes zero, just as if this were a single-point calibra-
tion. Therefore, the same function (Cal() in the sample 
code) can be used to perform either a single-point or a 
2-point calibration.

If using the sample code as is, follow these steps to per-
form a 2-point calibration:

1. Choose two temperatures at which to perform cali-
bration, making sure that the temperature points are 
sufficiently separated (ideally at least one quarter of the 
total measurement span) to avoid errors accumulating 
near the extremes of the measurement temperature 
range.

2. Bring the RTD to the first temperature point, wait for 
the displayed result to settle to the new value, and 
then press any key of the terminal (or terminal emula-
tor) to bring up the user I/O menu.

3. Follow the menu prompts to calibrate to a known 
temperature, and then enter the temperature as 
prompted.

4. Repeat steps 2 and 3 for the second temperature 
point.

Note: for a single-point calibration, simply ignore step 4.

There are many benefits to calibration, but just as many 
system considerations that make it impractical for certain 
applications. If a calibration cannot be performed as 
described above, consider performing a system ADC cali-
bration instead, as described in the ADuC834 data sheet. 
To do so, simply replace the RTD with a short (0 ) and 
trigger a system zero-scale calibration, and then replace 
the RTD with a high precision 719.36  resistance and trig-
ger a full-scale calibration. This compensates for internal 
ADC errors and for initial tolerance of the RREF resistor, but 
does not account for any error of the RTD itself.

It is worth pointing out that an added benefit of the 
ADuC832 (and all other MicroConverter products) is 
that it includes nonvolatile Flash data memory on-chip, 
which can be used in this case to store the calibrated 
scale and offset values. This way, the chip can restore 
the calibrated values each time the system powers up, 
rather than requiring a calibration each time the system 
is powered up. The sample code RTD834.c makes use of 
this feature for exactly that purpose.

ERROR ANALYSIS
There are many contributing error sources to data 
acquisition designs (ADC linearity, input amplifier noise, 
resistor Johnson noise, amplifier temperature drift, 
resistor temperature drift, and so on). Determining 
which ones are dominant for a given design can be a 
daunting task. Fortunately, the ADuC834 integrates all 
the active stages into a single fully factory specified 
device, making error analysis a much simpler task, but 
one that still requires a fair bit of insight in designs 
such as this that involve a nonlinear sensor element. 
This application note, therefore, explores the few error 
components that happen to be most significant for the 
specific hardware and software configurations that have 
been discussed thus far in this document.

First of all, if the system is not calibrated to a specific RTD 
(using the single-point or 2-point calibration discussed 
previously), the RTD itself is almost certainly the most 
significant source of absolute error. This error should be 
well quantified on the RTD manufacturer’s data sheet, 
and depends on the specific model of RTD chosen. This 
application note concentrates instead on error sources 
other than the RTD itself.
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Figure 9. ADC Noise vs. RTD Temperature

One type of error to examine is noise. There are three 
main noise sources to consider in this design: resistor 
Johnson noise, amplifier/ADC input voltage noise, and 
amplifier/ADC input current noise. These add together 
as a root-sum-of-squares, and so the lesser contributing 
sources are negligible when one noise source is even 
slightly greater than the others. For this specific case, 
that dominant noise source happens to be amplifier/
ADC input voltage noise. Specifically, at the gain setting 
discussed, the ADuC834’s input voltage noise specifica-
tion is 0.37 V rms, or about 2.44 V p-p. Translating this 
input voltage noise into the resulting output temperature 
noise may not be intuitively obvious and, because of the 
nonlinear resistance-to-temperature transfer function, 
results in a temperature noise that varies as a function 
of RTD temperature. The end result is shown in Figure 
9. Notice that even at the highest RTD temperatures 
(that is, the worst noise), peak-to-peak noise is always 
below 0.019°C, and is even better at lower measurement 
temperatures. Keep in mind that this variation of noise 
as a function of RTD temperature is not a function of 
the ADC itself but rather, as mentioned previously, is 
a direct result of the nonlinear TRTD(r) transfer function 
being implemented in the digital domain.

Another source of error to consider here is tempera-
ture drift, specifically ADC offset and gain temperature 
drift and reference resistor temperature drift. This is 
the change in DC errors (offset and gain errors) as a 
function of changing temperature of the ADC chip or 
reference resistor. So this relates to ambient tempera-
ture of the RTD conditioning circuitry rather than to the 
actual measurement RTD temperature. For brevity, these 
two distinct temperatures are referred to here as ambi-
ent temperature and RTD temperature, respectively. To 
confuse things further, the value of temperature drift 

(that is, sensitivity to ambient temperature) changes as 
a function of RTD temperature due to the nonlinear TRTD(r) 
transfer function. The end result is shown in Figure 10 
but will likely require some explanation. The x axis of 
Figure 10 is simply the RTD temperature. The y axis is 
the temperature drift in °C change in measurement error 
per °C change in ambient temperature. For example, if 
the RTD temperature is fixed at 100°C, the VREF drift (with a 
5 ppm/°C reference resistor) is approximately ±0.01°C/°C. 
So, if the ambient temperature changes by, say, 50°C, 
the measurement temperature reading might change 
by as much as ±0.5°C (neglecting other contributors to 
temperature drift).
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Figure 10. Temperature Drift vs. RTD Temperature

It is not difficult to see that, in industrial environments 
with ambient temperature ranges sometimes span-
ning –40°C to +85°C or more, temperature drift can 
be quite a significant source of error. It would be fairly 
straightforward to use the on-chip temperature sensor 
of the ADuC834 to measure chip temperature (which 
tracks ambient temperature closely) and then use this 
measured chip/ambient temperature to compensate 
for temperature-drift errors. This would require an 
additional temperature-cycling step during manufactur-
ing, specifically bringing the ambient temperature to two 
fixed values and taking zero-scale and full-scale ADC 
readings at each of these ambient temperatures. But 
after doing this, software could do the rest to compen-
sate for temperature drift errors within the limits of 
temperature sensor accuracy and temperature gradi-
ents between the reference resistor and the ADuC834. 
This application note does not explore such tempera-
ture drift compensation techniques any further, but it 
should be noted that the on-chip resources exist to make 
this option possible with nothing more than software 
changes.
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RTD self-heating is yet another source of error to con-
sider. Simply put, placing a current through the RTD 
causes it to dissipate power, which raises the RTD’s tem-
perature. Fortunately, because the RTD is being excited 
with only 400 A, the total power dissipated by the RTD 
is never more than 16 W for a 100  R0. The amount of 
self-heating caused by this small power dissipation var-
ies, depending on the specific model of RTD used, but 
typically the resulting self-heating is negligible. If it is not 
negligible in the specific application, simply reduce the 
excitation current to 200 A under software control, thus 
reducing RTD power dissipation by a factor of four.

Other sources of error are mostly negligible. DC end-
point errors (offset and gain errors) can be fully corrected 
using the calibration techniques discussed previously. 
Resistor Johnson noise is well below the ADC’s input 
voltage noise. The only other error source worthy of con-
sideration is ADC INL (integral nonlinearity, or relative 
accuracy). Though the ADuC834 data sheet specification 
for worst-case INL is 15 ppm of full scale, which would 
result in output-referred INL error about twice the value 
of the peak-to-peak output noise shown in Figure 9, the 
actual INL is much closer to 2 ppm of full scale, which is 
well below the noise floor. This is typical of ADI’s con-
servative specifications.

SOFTWARE AND SOURCE CODE
All of the software and source code referenced herein 
is included in a zip file intended to accompany this 
document, and can be downloaded from the location 
mentioned on Page 1. The individual contents of the zip 
file can be described as follows:

•    coefRTD.exe – The coefficient generator tool execut-
able.

•   coefRTD.cpp – Source-code for the coefficient gen-
erator tool.

•   RTDmath.c – Linearization subroutines using direct 
mathematical linearization method.

•   RTDpwl0.c – Linearization subroutines using piece-
wise linear approximation method. (A customized 
version of this code can be generated using the 
coefRTD.exe program).

•   RTDlin0.c – Linearization subroutines using single 
linear approximation method. (A customized version 
of this code can be generated using the coefRTD.exe 
program).

•   RTD834.c – Example complete RTD interface program 
for the ADuC834 or ADuC836. (Makes use of any one 
of the above linearization functions).

•   RTD834.hex – Complete compiled version of RTD834.c 
and RTDpwl0.c, ready to download and run on an 
ADuC834 or ADuC836.

•   RTD845.c – Example complete RTD interface program 
for the ADuC845, ADuC847, or ADuC848. (Makes use 
of any one of the above linearization functions).

•   RTD845.hex – Complete compiled version of ADuC845.c 
and RTDpwl0.c, ready to download and run on an 
ADuC845, ADuC847, or ADuC848.

•   ReadMe.txt – Text file giving revision information and 
describing the function of each file.

A complete project using the above source code must 
include both a main program (RTD834.c, RTD845.c, or a 
from scratch program) and a linearization subroutines 
file (RTDmath.c, RTDpwl0.c, RTDlin0.c, or a customized 
source file generated by the coefRTD.exe tool). Many 
details are provided in the comments of the various C 
source files.

Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips 
I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.
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