
REV. 0 © Analog Devices, Inc., 2001

a AN-572
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106 • 781/329-4700 • World Wide Web Site: http://www.analog.com

Overlay Linking on the ADSP-219x

By David Starr

OVERVIEW

This applications note is for software designers starting
an ADSP-219x overlay design. Using this note and the
information in the Linker and Utilities Manual for ADSP-
21xx Family DSPs the following may be done:

Divide a program into overlays.
Write LDF files for simple and overlay links.
Write an overlay manager.

HARVARD VS. PRINCETON ARCHITECTURE AND THE

LINKER

Early in the history of computing, the modern design of
one memory to hold both data and program instructions
acquired the name “Princeton.” Such a machine is flex-
ible because programs with lots of code and little data
work, as well as programs with little code and lots of
data. It’s simple in that address is the only memory
parameter of interest. Performance is adequate, even
though it takes two memory cycle times to fetch data
from memory: one cycle to fetch the instruction and the
second cycle for the instruction to fetch the data.

A faster architecture has separate program and data
memories. This is “Harvard” architecture, which improves
speed because the machine can fetch program instruc-
tions and data in parallel; a data fetch from memory can
thus be accomplished in a single memory cycle. All
Analog Devices Inc. DSPs are Harvard architecture.
They possess a separate program and data memory for
speed and, for extra speed, data can be kept in program
memory as well as data memory and there are instruc-
tions to fetch data from both memories simultaneously.
To use the full memory bandwidth, the ADSP-219x fam-
ily possesses an instruction cache. Instructions come
from cache, freeing up the program memory bus for data
fetch from program memory. This permits multiply
accumulate instructions to fetch a multiplier and a multi-
plicand, compute a product, and add the new product
to the accumulator, all in a single instruction. In this
case, it is important to locate the multiplier data in pro-
gram memory and the multiplicand data in data
memory. It is the programmer’s responsibility to assign
data buffers to memory. This is done with instructions to

the linker. Having a number of memories to deal with
makes the DSP linker somewhat more complex than
linkers for Princeton architecture machines.

In addition, each DSP project must fit into a different
memory arrangement. Different DSP boards have differ-
ent amounts of memory, located at different addresses.
The ADSP-219x family supports an external memory
interface, allowing rather large amounts of memory, but
at a penalty in speed. Internal memory is ten times faster
than external memory, so it may be desirable to keep
large amounts of program code in external memory
swap parts of it to internal memory for speed in execu-
tion. Such a program is said to run in “overlays.”

For code reuse and portability, a program should not
require modification to run in different machines or in
different locations in memory. So the C or assembler
source code does not specify the addresses of either
code or data. Instead, the source code assigns names to
sections of code and/or data at compile or assembly
time, leaving it up to the linker to assign physical
memory addresses to each section of code or data. The
goal is to make the source program’s position indepen-
dent and let the linker assign all the addresses.

The address assignment task has become too much to
handle with just command line switches to the linker.
ADI has devised a “linker programming language” to
allow full control of “what goes where.” Each DSP soft-
ware project consists of one or more source code
modules and a “linker description file” (.ldf file).

At link time, the linker follows directions in the .ldf file to
place code and data at the proper addresses. The “linker
programming language” is quite powerful and fairly
complex. The manual for it is as thick as the classic “C
Programming Language” by Kernighan and Ritchie. The
.ldf file can select which compiler libraries are searched,
which C run time start-up code is linked, and can supply
all command line arguments and override all defaults. A
default .ldf file is shipped with each release of the VDSP
tools, and kept in the VDSP directories. VDSP allows an
.ldf file as part of a project, as does a C source file. If a
project does not contain an .ldf file, the linker will use

–2–

AN-572

REV. 0

the default one. If an .ldf file is included with the project,
the project will link the same way each time, even if the
default .ldf is edited or replaced by a new release of
the VDSP tools, or the project is rebuilt on another
computer with another version of the default .ldf file.

PHYSICAL MEMORY BLOCKS VS. LOGICAL MEMORY

SECTIONS

What is the difference between a block and a section? A
block is a named piece of the target system’s memory.
Blocks have attributes of address, size, and width (16-bit
vs. 24-bit). Sections are named pieces of code or data.
.SECTION directives in the source file mark code/data as
belonging to one named section or another. Typical
.SECTION names are “program,” “dm_data,” and
“pm_data.” Locate code and data at the desired address
by putting code sections into memory blocks. The linker
programming language uses “>” as the “put into” opera-
tor, (not to be confused with C’s ‘greater than’ operator).
The linker programming language has statements to
define memory blocks, define code/data sections and
marry the two together. When absolute addressing is
needed (say to place an interrupt vector or to access
memory-mapped I/O devices) define a memory block at
the desired absolute address. Place the code or data
into a .SECTION in the source file, and put the .SECTION
into the memory block with the “put into” operator (“>”)
in the .ldf file. The C compiler automatically places
.SECTION directives into its output files. The compiler
uses a series of default section names described in the
compiler documentation.

THE LDF FILE

LDF files have two major parts (each delimited by curly
brackets), the MEMORY part, and the PROCESSOR part.
Statements inside the MEMORY part create memory
blocks. The PROCESSOR part contains at least a SEC-
TIONS command. The SECTIONS command uses
more curly braces to enclose a number of statements.
For example

MEMORY

{

 ram_blk {TYPE (PM RAM) START (0x000000)

END (0x00FFFF) WIDTH 24)}

}

PROCESSOR CORE1

{

SECTIONS

{

dontcare0 {INPUT_SECTIONS

(frodo.doj (program))} > ram_blk

}

}

This simple .ldf file defines one memory block (ram_blk)
starting at 0 and ending at 64K. It defines one section
named dontcare0 containing all the code in module
frodo.doj, and puts the section into ram_blk, which
starts at address 0. The section is named “dontcare0” to
indicate that this name does NOT link to anything impor-
tant. The name shows up in the link map but does not
control which code goes where. This simple example
has only one code module (frodo.doj). If the program
had two modules, the INPUT_SECTIONS statement
would look like:

dontcare0 {INPUT_SECTIONS

(frodo.doj,bilbo.doj(program)} > ram_blk

A practical program would, of course, contain a signifi-
cant number of modules, and listing them in the
INPUT_SECTIONS statement would be tiresome. The
linker programming language provides a macro facility
using syntax like the UNIX make program. A macro
$OBJ is defined as:

$OBJ =

main.doj,frodo.doj,bilbo.doj,merry.doj,pippin.doj,

sam.doj,… …. ….. gandalf.doj;

and the INPUT_SECTIONS statement might look like:

 dontcare0 {INPUT_SECTIONS ($OBJ (program)}

> ram_blk

and, finally, to simplify matters, the linker has a
convenient and automatically defined macro
$COMMAND_LINE_OBJECTS, which is written:

dontcare0 {INPUT_SECTIONS

($COMMAND_LINE_OBJECTS(program)} > ram_blk

In this way, modules can be added to the project without
editing the .ldf file by hand each time a new module
is added.

What does that (program) name do? It refers back to
the source file. Assembly language module frodo.dsp
looks like:

.section/CODE program

ax0 = dm(this_and_that);

I0 = input_buffer;

….

….

rts;

.section/DATA dm_data;

.var this_and_that;

.var input_buffer[100];

….

–3–

AN-572

REV. 0

This (program) means take only the code in the source
module .SECTION-named program. In this example,
ram_blk will receive just the program code and NOT the
.var- defined data buffers. The linker matches the name
in () with the names in the .SECTION pseudo ops in the
source code. In this way code from one source file can
be split into different sections, which are put into differ-
ent memory blocks.

A SIMPLE ASSEMBLER PROGRAM LINK

ARCHITECTURE(ADSP-219x)

// Libraries from the command line are included in COMMAND_LINE_OBJECTS.

$OBJECTS = $COMMAND_LINE_OBJECTS ;

MEMORY

{

 vector_blk { TYPE(PM RAM) START(0x000000) END(0x0000ff) WIDTH(24) }

 program_blk { TYPE(PM RAM) START(0x001000) END(0x06FFF) WIDTH(24) }

 dmdata_blk { TYPE(DM RAM) START(0x008000) END(0x009fff) WIDTH(16) }

 pmdata_blk { TYPE(PM RAM) START(0x07000) END(0x07FFF) WIDTH(16) }

}

PROCESSOR CORE1

{

 LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)

 OUTPUT($COMMAND_LINE_OUTPUT_FILE)

 SECTIONS

 {

 dont_care_0 /* reset vector */
 {

INPUT_SECTIONS($OBJECTS(IVreset))

 } > vector_blk

 dont_care_1 /* code space */
 {

 INPUT_SECTIONS($OBJECTS(program))

 } >program_blk

 dont_care_2 /* data memory data */
 {

 INPUT_SECTIONS($OBJECTS(dm_data))

 INPUT_SECTIONS($OBJECTS(dmdata))

 } >dmdata_blk

 dont_care_3 /* Program memory DATA */
 {

 INPUT_SECTIONS($OBJECTS(pm_data))

 INPUT_SECTIONS($OBJECTS(pmdata))

 } >pmdata_blk

 } // end SECTIONS

} // end PROCESSOR

One final note. The linker programming language syn-
tax does NOT use ; as a statement terminator as does
the assembler. Most linker programming language state-
ments have a variable number of arguments enclosed in
curly brackets. The closing curly bracket ends the state-
ment. The syntax ignores white space (tab, space, CR,
LF) in the same way that C does. The $MACROs, how-
ever, require a terminating semicolon.

–4–

AN-572

REV. 0

Above is a simple .ldf for assembly work. It has four
memory blocks, a vector block at 0 for the reset vector, a
program code block, a program memory data block and
a data memory block. All code in .SECTIONs named
“program” from all object files in the project goes into
program_blk starting at address 1000. This file links
modules created by several programmers, some of whom
used a .SECTION dmdata and others used .SECTION
dm_data. No matter, both spellings are put into data
memory, starting at 8000. Why 8000? This file is for an
ADSP-2191 and data memory starts at 8000 in the ADSP-
2191. Likewise we will accept two spellings of pmdata,
one with and one without the underscore.

Notice program_blk and pmdata_blk both fit below
8000 hex. In the ADSP-2191, 24-bit program memory
exists from address 0 to address 7FFF. You must store
your program code there, and you can also store 16-
bit data there. This .ldf file allocates 1000 words for

data and 6000 words for code. A program with lots of
pm_data and little code, will require reallocation of
program memory, making pmdata_blk larger and
program_blk smaller.

Or, a more flexible arrangement might be to eliminate
pmdata_blk entirely and put INPUT_SECTION
don’t_care_3 into program_blk. Redefine program_blk
to cover all of 24-bit program memory (0-7fff) and the
linker will automatically allocate space for both code
and data in the lower 16K of memory address space.

This .ldf file also has an ARCHITECTURE statement to
tell the linker to link for the ADSP-219x family instead of
the SHARC family, an OUTPUT statement that names
the output file in accordance with command line input,
and an LINK_AGAINST statement which is not neces-
sary. There is one macro $OBJECT which serves as a
short name for all the object modules passed in on the
command line.

A SIMPLE OVERLAY LINK

/*
 Overlay link file

*/

ARCHITECTURE(ADSP-219x)

//SEARCH_DIR(.\)

//MAP(adi_over.map) /* write out a map file */

MEMORY

/* Define Physical memory blocks. Assign a name, addresses and a width
to each type of physical memory in the target machine. Sections (below)

are “put into” (> is the “put into” operator) physical memory blocks

*/
{

reset_vector_blk{ TYPE(PM RAM) START(0x000000) END(0x00001f) WIDTH(24)}

int_vector_blk { TYPE(PM RAM) START(0x000020) END(0x000aff) WIDTH(24)}

rootcode_blk { TYPE(PM RAM) START(0x000B00) END(0x000cFF) WIDTH(24)}

ovlrun_blk { TYPE(PM RAM) START(0x000D00) END(0x000dFF) WIDTH(24)}

ovlstore_blk { TYPE(PM RAM) START(0x000E00) END(0x007FFF) WIDTH(24)}

dmdata_blk { TYPE(DM RAM) START(0x001000) END(0x00Ffff) WIDTH(16)}

pmdata_blk { TYPE(PM RAM) START(0x018000) END(0x01ebff) WIDTH(16)}

}

/* Procedure Linkage Table (PLIT) template. The PLIT is a jump table
constructed by Linker in root memory. Each call to an overlay section is

replaced with a call to the PLIT. This template tells link what instructions to put into each PLIT

entry. This example passes parameters to the overlay manager (over_man) in registers. Keyword

PLIT must be all capitals, the linker is case sensitive.

*/

PLIT {

 ax0 = PLIT_SYMBOL_OVERLAYID; /* overlay number */
 jump (PC,over_man); /* call overlay manager */
}

–5–

AN-572

REV. 0

PROCESSOR CORE1 // Single Core DSP example.

{

$BOOT_MODULE = adi_over.doj;

$ROOT_OBJECTS = adi_over.doj;

LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)

 OUTPUT($COMMAND_LINE_OUTPUT_FILE) // write out root.dxe

/* Tell the linker which .doj code goes into which section. Then
put the sections into physical memory blocks (> == put into operator)

*/

SECTIONS

{

/* Create the reset vector. Get it from the Boot module’s .SECTION
IVReset. Put it into (>) reset_vector_block defined in the

MEMORY section above. In this example the reset vector is a jump

start instruction. Reset vector is always at program memory address 0.

The section name is a don’t care.

*/
dont_care_0 { // Reset Vector

INPUT_SECTIONS($BOOT_MODULE(IVreset))

} > reset_vector_blk

/* Create the root code. Get it from all the root .doj files
.SECTION seg_rootcode. Put it into (>) rootcode_blk defined in the

MEMORY section above. The section name is a don’t care.

*/
dont_care_1 {

 INPUT_SECTIONS ($ROOT_OBJECTS (program))

}>rootcode_blk

/* Create the overlay branches. The section name is a don’t care.
*/
 dont_care_2 {

/* Create overlay branch 1. Write it out to file ovl1.ovl. Get
the code from ovl1.doj .SECTION seg_ovlrun. Store it in

ovlstore_blk.

*/
 OVERLAY_INPUT {

OVERLAY_OUTPUT (ov11.ovl)

INPUT_SECTIONS (ovl1.doj(program))

ALGORITHM(ALL_FIT)

} >ovlstore_blk

 OVERLAY_INPUT {

/* Likewise, create overlay branch 2 */
OVERLAY_OUTPUT (ovl2.ovl)

INPUT_SECTIONS (ovl2.doj(program))

ALGORITHM(ALL_FIT)

} >ovlstore_blk

 OVERLAY_INPUT {

/* Likewise, create overlay branch 2 */
OVERLAY_OUTPUT (ovl3.ovl)

INPUT_SECTIONS (ovl3.doj(program))

ALGORITHM(ALL_FIT)

} >ovlstore_blk

} > ovlrun_blk // Link overlays for ovlrun_blk

–6–

AN-572

REV. 0

/* Create the Program Linkage Table (PLIT). Put it into rootcode_blk. .plit MUST be lower case,
the linker is case sensitive.

*/
.plit {} > rootcode_blk

/* Create the Data Memory data blk. Get it from all the root .doj files .SECTION dmdata. Put
it into (>) dmdata_blk defined in the MEMORY section above. The section name is a don’t care.

*/
dont_care_3 {

INPUT_SECTIONS($ROOT_OBJECTS (dmdata))

}>dmdata_blk

 } // end SECTIONS

} // end PROCESSOR Core1

Dividing the Program into Overlays

This example uses a simple memory arrangement. The
program has a single root (code always resident) and a
single overlay block, (ovlrun_blk) into which three over-
lay “branches” are swapped in and out as required. For
simplicity, the overlays are stored in ordinary program
memory (ovlstore_blk). In a real application, the inactive
overlays would be stored in external memory or host
memory, and swapped in via the PCI interface, or in the
boot EPROM or elsewhere.

Following is the list of input sections. Input section
don’t_care_0 is the boot block, which must reside at
address 0, the power-on reset in the ADSP-219x starts
fetching instructions from address 0. The boot block
contains a single “jump start” instruction. Input section
dont_care_1 is the root segment which, in this simple
example, is a single module adi_over.doj. All program
code from the $ROOT_OBJECTS list of object files will
go into rootcode_blk. Input section don’t_care_2 is the
overlay run area mapped into ovlrun_blk. Link each of
the three branches to run in ovlrun_blk. Linking three
different functions to the SAME address is something
proper linkers are ordinarily reluctant to do, but inside
the don’t_care_2 are three OVERLAY_INPUT instruc-
tions, one for each overlay. The three instructions are
identical except that they name three different output
files and three different lists of modules.

Inside each OVERLAY_INPUT instruction an
OVERLAY_OUTPUT instruction is needed, otherwise
nothing will be written to disk. An INPUT_SECTIONS
instruction is needed to tell linker which modules
go into which overlay branch, and we need the
ALGORITHM(ALL_FIT) instruction because the linker
demands it be there. Each overlay branch is put into (.>)
the ovlstore_blk telling the linker where to store the
overlay. The three OVERLAY_INPUT instructions are
nested inside the single don’t_care_2 instruction, which
is put into (>) the ovlrun_blk telling the linker to resolve
the addresses inside the overlay branch for the runtime
addresses rather than the storage time addresses.

Notice that this example divides code into overlays just
by module name. This permits reshuffling of the overlay
structure without editing the module source code. From
assembler, code could be assigned to overlay branches
with the .SECTION directives. However, if it is necessary
to rearrange the overlay structure, the user would
have to go into the module code and edit those .SEC-
TION directives.

Calling the Overlay Manager

After successfully dividing the program into overlays,
the user must make the overlays load. When a “call
frodo” instruction is coded, it should branch into frodo if
frodo is part of root, but it has to branch to an overlay
manager (loader) if frodo is an overlay branch. To reach
the overlay manager, the linker replaces calls to the
overlay entrance with a call to the Procedure Linkage
Table (PLIT). This table has one item per overlay. A PLIT
item is a short user-written bit of code that calls the user-
written overlay manager and passes arguments to it.
The linker automatically creates a PLIT, assembles the
necessary instructions from source code found in the
.ldf file, and aims all the overlay calls into the proper
place in the PLIT.

In the .ldf file there is a PLIT template, containing the
source code, and a .plit{} > rootcode instruction telling
the linker where to put the PLIT. Specifically, the PLIT
had better reside in the root. If it is put into ovlrun_blk,
the overlay manager will overwrite it when he loads to
first overlay. This example has a simple PLIT template,

ax0 = PLIT_SYMBOL_OVERLAY_ID ;

jump (PC, over_man);

These two instructions will transfer control into the
overlay manager, with the required overlay number in
ax0. There are no restrictions upon the size or contents
of the PLIT template. You can have any amount or kind
of DSP code required. For instance, a DMA based over-
lay manager could load the DMA registers with the
proper addresses in the PLIT and then branch to

–7–

AN-572

REV. 0

over_man, in effect, passing the arguments via the DMA
control registers rather than in ax0. One restriction,
however, is that the PLIT keyword must be all capitals.
The .plit instruction simply tells the linker where to put
the PLIT, and that instruction must be all lower case.

Symbol PLIT_SYMBOL_OVERLAY_ID is a special linker
symbol that will evaluate as “1” for the first overlay, “2”
for the second overlay and so on.

Example Overlay Manager

Since the overlays might be loaded from anywhere, the
overlay manager is user-written code. The following
example is a simple one that can serve as a skeleton.

section/pm IVreset;

 JUMP start; /* power on reset vector */

.SECTION/PM program;

.GLOBAL task_table,wait_loop;

.GLOBAL root_util; /* common utility routine in root */

.GLOBAL over_man; /* overlay manager */

.EXTERN number_one_overlay;

.EXTERN number_two_overlay;

.EXTERN number_three_overlay;

start:

m0=0;m1=1;m2=-1;m3=0;m4=0;m5=1;m6=-1;m7=0;

L0=0;L1=0;L2=0;L3=0;L4=0;L5=0;L6=0;L7=0;

wait_loop:

call number_one_overlay;

nop;

 nop;

 call number_two_overlay;

 nop;

 nop;

call number_three_overlay;

 nop;

 nop;

I4 = number_one_overlay;

I5 = number_two_overlay;

I6 = number_three_overlay;

jump(PC,wait_loop);

root_util:

nop;

nop;

rts;

over_man:
/*
 Processing: load overlays

 Inputs: ax0 = overlay ID,

 Outputs:

*/
 ay0 = dm(ovl_id);

 ar = ax0 -ay0;

 dm(ovl_id) = ax0; /* update active ovl id # */
 if ne call ovl_load; /* */
 i0 = dm(ovl_run_add);

 jump (i0);

–8–

AN-572

REV. 0

P
R

IN
T

E
D

 IN
 U

.S
.A

.
E

02
36

2–
1–

1/
01

 (
re

v.
 0

)

ovl_load:

 ar = dm(ovl_id);

 ar = ar -1; /* map 1,2,3... to 0,1,2... */
 sr = LSHIFT ar by 2 (LO); /* four words per table entry */
 ay0 = ovl_table;

 ar = sr0 + ay0 ; /* ar = table base + 4 * ovl_id */
 I1 = ar; /* I1 points to overlay table entry */
 M1 = 1;

 L1 = 0; /* Linear addressing */
 I0 = dm(I1,m1); /* I0 wptr points to ovl dest address*/
 dm(ovl_run_add) = I0;

 L0 = 0; /* Linear addressing */
 ar = dm(I1,m1); /* cntr = overlay size */
 dm(ovl_len) = ar;

 cntr = ar;

 I1 = dm(I1,M1); /* I1 rptr points to ovl source address */

 do move_code until ce;

 ar = pm(i1,m1);

move_code:

 pm(I0,m1) = ar;

 rts;

.section/DATA dmdata;

.var task_table[4]=0,0,0,0;

.var ovl_id = 0xffff;

.var ovl_run_add;

.var ovl_len;

.var ovl_table[] =

 _ov_runtimestartaddress_1, _ov_word_size_live_1

 ,_ov_startaddress_1,_ov_word_size_run_1

 ,_ov_runtimestartaddress_2, _ov_word_size_live_2

 ,_ov_startaddress_2,_ov_word_size_run_2

 ,_ov_runtimestartaddress_3, _ov_word_size_live_3

 ,_ov_startaddress_3,_ov_word_size_run_3

 ;

The key to writing an overlay manager is ovl_table down
in .SECTION dmdata. This program has three overlays.
For each overlay, the linker will automatically evaluate
four symbols with names starting _ov_.

These four symbols tell an overlay manager where to
fetch the overlay, where to put it, how many reads to do,
and how many writes to do. In this simple example,
overlays are kept in 24-bit program memory, so the num-
ber of reads and writes is equal. If the overlays were stored
in an 8-bit-wide EPROM you would have to do three reads
for each write, hence the separate _word_size symbols.

The rest of over_man is pretty straightforward. First he
checks to see if the desired overlay is already loaded
(does ax0 = dm(ovl_id). If not (the usual case), he calls
ovl_load. Ovl_load takes the overlay id number, maps it
down from 1,2,3 to 0,1,2, and uses it to compute the
address of the needed overlay’s information in ovl_table.
Then he does the copy and uses the register jump to
access the newly loaded overlay.

	OVERVIEW
	HARVARD VS.PRINCETON ARCHITECTURE AND THE LINKER
	PHYSICAL MEMORY BLOCKS VS.LOGICAL MEMORY SECTIONS
	THE LDF FILE
	A SIMPLE ASSEMBLER PROGRAM LINK
	A SIMPLE OVERLAY LINK
	DIVIDING THE PROGRAM INTO OVERLAYS
	CALLING THE OVERLAY MANAGER
	EXAMPLE OVERLAY MANAGER

