ANALOG
DEVICES

Interfacing the ADSP-21065L SHARC DSP
to the AD1819A 'AC-97' SoundPort Codec

Codec interface driver recommendations for use with the ADSP-21065L EZ-LAB 's AD1819A ...
as well as other Analog Devices AC'97-compatible codecs such as the AD1819, AD1819B,
AD1881, AD1881A, AD1882 and AD1885

Version 2.4A

John Tomarakos
ADI DSP Applications
10/12/99

10109[8S

MIC1T1 o a8/
MIC2 20 dB
16-bit
LINE - PGA H SDA/D —
SYNTH Converter
CcD]
VID 16-bit
L IlpGA H SDA/D | 1 RESET#
PHONE_IN Converter

SYNC

(j; +—d BIT_CLK
-
HP_OUT_L z {e——q SDATA_OUT
- - — ~
G 16-bit I—d spata N
L_OUTc M\—e A H SDD/A —
M Converter
MONO_OUT -
G 16-bit
R OUT A SDD/A —
- M Converter
HP_OUT_R)
G=Gain
A=Attenuate
PC_BEEP M=Mute Oscill
<] MV =Master Volume
3 3
> >
— -
Py C

0. Introduction

The AD1819x (AD1819, AD1819A and AD1819B) SoundPort Codec is a fully compliant AC'97 Analog Front End that can be
used for processing or playback of analog signals in personal computers. Audio Codec '97 codecs are used on PC soundcards
and PC motherboard's to interface with an AC-97 digital controller/accelerator, or directly to the PC motherboard's 64-bit
microprocessor for 'native signal processing' support. With extended codec features that have been added to the baseline
AC'97 specification, the AD1819x can aso be easily interfaced to an Analog Devices ADSP-21xx and ADSP-21xxx DSP, thus
providing additional flexibility of using the codec in an embedded low-cost audio application. The AD1819x can also provide a
V.34 compatible modem anal og front-end by supporting modem sample rates and filtering.

This application note will describe the how to interface the low-cost 32-bit SHARC DSP, the ADSP-21065L, to up to three daisy
chained AD1819As per SPORT for use in an audio system. The DSP programming recommendations are also applicable to code
compatible SHARC processors such as the ADSP-21061/61L, ADSP-21062/62L ADSP-21060/60L and the ADSP-21160. Using
multiple AD1819s gives the DSP system designer more flexibility for capture and playback of 'CD-Quality' audio by providing 6
inputs channel and 6 output channels per SPORT for processing of multiple audio signals concurrently. No additional
hardware glue-logic is required for daisy-chaining, and the programming of multiple AD1819s is easily accomplished through a
simple register command scheme. Single and multiple AD1819x driver source code examples are provided in the application note
for reference purposes. This source code was tested using the 21065L EZ-LAB Development Platform, which includes an
AD1819A as the analog interface. Triple-codec source was tested and verified using the SHARC EZ-LAB with the Triple
AD1819 MAFE board. Single codec drivers can serve asabasisfor adual or triple AD1819x codec interface requiring very little
modification of the driver to enable a multi-codec interface, due to the ability to broadcast similar commands to all AD1819s
through shared codec register address & register data timeslots. The latest revision of the AD1819 is the ADI819B. All
references to the AD1819 or AD1819x in this document refer to the ADI1819A and AD1819B as well. The programming
recommendations in this document are also applicable to the AD1881, AD1881A, AD1882 and AD1885 (AC-97 rev 2.1

compliant codecs).

0.1 What The AD1819x Offers Above The Baseline AC-97 1.03 Specification
The AD1819 exceeds all AC'97 Version 1.03 Specifications and offers additional features that are useful for DSP interfacing.
Some of these include:

Slot-16 DSP Serial Mode for DSP Serial Port Multichannel Mode (TDM) Compatibility.

Thismode ensuresthat all serial port time-slots are 16 bits, allowing amuch easier interface to 16-bit/32-bit DSPs that
support aTDM (time division multiplexed) interface. Slot-16 modeis useful sincethe TAG is always 16-bits and equal
length 16-bit slots easesto use of serial port 'autobuffering' of data, or 'DMA chaining', along with the SPORT's
Multichannel Mode TDM operation.

Variable Sampling Rate Support On Both The Stereo Sigma-Delta ADCs and DACs

Variable sample rate allows you to 'record' and 'play back' audio signals at any sample rate from 7KHz to 48Khz in 1Hhz
increments with the use of two sample rate generator registers. The AD1819A can record and transmit ADC samples at
onerate and play back received DAC samples at another rate. Theleft ADC and DAC channels can also be programmed to
run at different rates asthe right ADC and DAC channels. In addition to the 1Hz resolution the AD1819A also hasa
method for running at irrational modem rates by use of the 8/7 and 10/7 bits. To go with these modem sampl e rates the
AD1819A has modem filters on the left channel. Pleaserefer to our EE-Note #54 titled " How To Use AD1819A4 Variable
Sample Rate Support” for additional information (located at Analog's web site: www.anal og.com).

High Quality AC-97 Output greater than 90 dB SNR
AC'97 Rev 1.03 defines at |least 85 dB signal quality. The AD1819 exceeds this specification, providing greater than 90 dB
dynamic range to provide near 'CD-Quality' sound with the use of Multibit Sigma Delta converter technology.

Simple, Glueless Interface for Daisy-Chaining up to Three AD1819s

Three AD1819s can easily be interfacedto an Analog Devices DSP to provide 6 input channels and 6 output channels per
SPORT. From ahardware standpoint, no additional glue circuitry isrequired for connection of multiple codecs. Each codec
has 4 pins that are used for daisy-chaining up to 3 AD1819s: CS0, CS1, CHAIN_IN and CHAIN_CLK. From asoftware
point of view, the DSP can communicateto all AD1819s at once, or can read/write codec registersto any desired codec at
any time with the use of Mask Bitsin the AD1819's Serial Configuration Register. Analog Deviceswasthe only 1%
generation AC-97 1.03 vendor to implement a simple multi-codec scheme.

Phat Stereo 3D Enhancement

Provides awider three dimensional sound in a stereo output field by giving the impression of spaciousness. The phase
expansion capability allows the user to simulate the effect of the sound source coming from another direction other than the
left and right stereo speaker sources.

21065L EZ-LAB / AD1819A Audio Development System

ANALOG
DEVICES

ADSP-
21065L

SPORT1

Stereo

Line Out Left/Right

Speakers

o]

1. AD1819x / ADSP-2106x SHARC DSP Serial Interface Overview

The AD1819x (AD1819, AD1819A, AD1819B) Serial Port functionality is very similar other Analog Devices SoundPort Codecs
like the AD1843 and AD1847. It's interface can communicates with an AC 97 controller, DSP or ASIC in a time-division
multiplexed (TDM) mode, where codec register command/status information DAC/ADC data are received and transmitted in
different timedots in a TDM frame. The AD1819 communicates with the AC' 97 controller via a digital seria link, which is
referred to asthe "AC-link."”

The AD1819x incorporates a5 pin digital serial interface that links it to the AC’ 97 controller. The pins assigned to the AD1819x
are: SDATA _IN, SDATA OUT, SYNC, BIT CLK and RESET#. All digital audio data and command/status information is
communicated over this point to point serial interconnection to the DSP. A breakout of the signals connecting the two is shown
in Figure 1. For adetailed description of the AC-link seria protocol between the DSP and the codec, the reader can refer to the
next section.

Digital AC '97 Controller AC '97 Codec
RFSx SYNC
ADSP-2106x RCLKx BIT_CLK
TCLKx
TXx |}«
> DRx spatan JAD1819 [
> T
SPORT DA 12X SDATA_OUT
Transfers
FLG2 (Flag2 Out Pin) RESET#
% :

Figure 1. Example AD1819x Interconnection To The ADSP-2106x SHARC DSP's SPORT(0 or 1)

The AC-97 component specification defines digital serial connection known as an AC-Link, which is a bi-directional, fixed rate,
serial PCM digital stream. An AC'97-compatible codec handles multiple input and output audio streams, as well as command
register accesses employing a time-division-multiplexed (TDM) scheme. The baseline AC-link architecture divides each audio
frame into 12 outgoing and 12 incoming data streams, each with 20-bit sample resolution. The AD1819 also includes an
additional mode of operation, considered to be an Enhanced AC-link Protocol Extension, also referred to as SLOT-16 Mode.
Thisextension isvery similar such that it also isalso is a bi-directional, fixed rate, serial PCM digital stream. This Modified AC-
link divides each audio frame into 16 outgoing and incoming data streams, each 16-bits per slot. This alows low DSP software
overhead to transmit and receive data and thus enables a more simplified interface to an ADSP-21xx or ADSP-21xxx DSP. To
achieve this, the AD1819's SLOT-16 Mode of Operation will place al DAC/ADC and command/status Timeslots to 16-bits to
alow proper 16-bit TDM alignment for the DSP's serial port.

The AC-97 protocol could also be implemented with 18-bit or 20-bit DAC/ADC resolution with larger data word processors,
given the headroom that the AC-link architecture provides. This application note will only assume 16-bit data by placing the
AD1819x in SLOT-16 mode. As of thistime, there is no performance benefit for using 18-hit or 20-bit words, since the use of the
larger 20-bit timeslots will not necessarily improve the dynamic range and SNR. Also, the tag phase is always 16-hits, so all
other larger word slots would be skewed relative to the DSP timeslot alignment. Thiswould then require the DSP programmer to
use shift/extract/deposit instructions on all data coming after the 1st 16-hit slot so that proper memory and register alignment
occurs for all timeslot data. It is still possible to write a DSP driver that assumes 20-bit slots, although the DSP programmer
would have to use additional instructions to ensure that data is packed and sent out properly. A 16-bit DSP cannot easily
handle the additional headroom for 20-bit words, while a 32-bit DSP would have the overhead of packing and unpacking 20-bit
data after theinitial 16-bit timeslot. Again, since thereis no SNR benefit of using larger data word timeslot sizes, the use of the
AD1819 while not in SLOT-16 mode is not recommended for interfacing to aDSP TDM serial port as found in ADI's ADSP-21xx
and ADSP-2106x DSPs.

1.1 AD1819x (AD1819/A/B) "AC-Link" Serial Port Clocks And Frame Sync Rates

To keep clock jitter to a minimum, the AD1819x derives its clock internally from an externally attached 24.576 MHz crystal (as
required by the AC-97 specification), and drives a buffered and divided down (1/2) clock to the ADSP-2106x over AC-link under
the signal name BIT _CLK. The crystal frequency can be different, but it would no longer be AC-97 compliant since it also
affects actual value of the selected sample rate. Meeting AC-97 compliance is not necessary for embedded DSP designs (for
tips on using a different crystal frequency, refer to EE-Note #53 up on the Analog Devices Web Site: www.analog.com). Clock
jitter at the AD1819x DACs and ADCs is a fundamental impediment to high quality output, and the internally generated clock
provided the AD1819x with a clean clock that is independent of the physical proximity of the ADSP-2106x processor. BIT_CLK,
fixed at 12.288 MHz, provides the necessary clocking granularity to support 16, 16-bit outgoing and incoming time slots (12, 20-
bit outgoing and incoming time slots in normal AC-97 mode). AC-link serial data is transitioned on each rising edge of
BIT_CLK. Thereceiver of AC-link data, AD1819x for outgoing data and the ADSP-2106x for incoming data, samples each serial
bit on the falling edges of BIT_CLK. The AD1819x drives the seria bit clock at 12.288 MHz, which the ADSP-2106x then
qualifies with a synchronization signal to construct audio frames.

The beginning of all audio sample packets, or “Audio Frames” , transferred over the AC-Link is synchronized to the rising edge
of the SYNC signal. The SYNC pinisused for the serial interface frame synchronization and must be generated by the ADSP-
2106x AC-97 Controller. Synchronization of all AC-link datatransactionsis signaled by the ADSP-2106x viathe RFSx signal.
SYNC, fixed at 48 kHz, is derived by dividing down the serial bit clock (BIT_CLK). The ADSP-2106x SHARC takesBIT_CLK (or
RCLKX/TCLKx in SHARC DSP equivaent terms) asan input and generates SYNC (RFSx) by dividing BIT_CLK by 256. This
yieldsa48kHz SYNC signal whose period defines an audio frame, which is required to meet the AC-97 audio frame rate
requirement. The SYNC (RFSx) pulseisdriven by the ADSP-2106x processor by programming the RFSDIV register in the DSP.
To generate a48 kHz frame sync with an externally generated 12.288 MHz SCLK, the DSP must set avalue of 255 (0x00FF) in the
RFSDIV control register.

The SDATA _IN and SDATA _OUT pins handle the serial data input and output of the AD1819x. Both the AD1819x’s
SDATA_IN and SDATA_OUT pins transmit or receive data on 12 different timeslots (in addition to the Tag Phase) per framein
norma AC-97 mode, 16 different timeslots (1 Tag + 15 Data slots) in SLOT-16 mode. The AD1819x transmits data on every
rising edge of BIT_CLK (RCLKx/TCLKXx) and it samplesreceived data on the falling edge of BIT_CLK (RCLKX/TCLKX).

When the 48 kHz audio frame rate is not equivalent to the selected sample rate, then Valid Data Slot bits in the Tag Phase
timeslot as well as the DAC request bits in the AD1819's Serial Configuration Register are used to control the sample data
flow between the codec and the DSP. When the 48 kHz frame rate is equivalent to the converter sample rate, valid and request
bits can beignored since they will always be 1s.

2. AD1819x/ADSP2106x “AC-Link” Digital Serial Interface Protocol

The AC-link protocol described by the AC’' 97 specification provides for a special 16-bit time slot (Slot 0, often called the 'TAG

Phase') wherein each bit conveys avalid tag for its corresponding time slot within the current audio frame. A “1” in agiven bit
position of slot O indicates that the corresponding time slot within the current audio frame has been assigned to a data stream,
and contains valid data. If aslot is “tagged” invalid, it is the responsibility of the source of the data, (AD1819x for the input

stream, ADSP-2106x for the output stream), to stuff all bit positions with 0's during that slot’s active time. In the source code

examplein Appendix A, the ADSP-2106x processor ensures than invalid slots are stuffed with 0's.

SYNC can remain high for atotal duration of 16 BIT_CLKs at the beginning of each audio frame, although for DSP interfacing,

the ADI DSP usually pulses a frame sync for approximately 1 BIT_CLK, which is also acceptable for the AD1819x. The first

timeslot portion of the audio frame is defined as the “Tag Phase”. The remainder of the audio frame is defined as the "Data

Phase."

Slot #

SYNC (RFSx) []

0

10

11

12

r

OUTGOING STREAMS | TAG |CMD | CMD | PCM | PCMTI MS,GTC-Dl rsrvp | Rrsrp| rsrvp | Rsrvp| rsrvo| rsrvo| RSRVDr

INCOMING STREAMS

Slot #

SYNC (RFSx) |

OUTGOING
STREAMS

INCOMING
STREAMS

Figure 3.

Tag Phase

ADR

TATusI STATU

DALA

PCM | PCM
L LT

OPT.
MDM CD

OPT.
MIC

I RSRVDI RSRVDl RSRVDI RSRVDI RSRVDI RSRVDI

‘ TAG Is
|

Data Phase

Figure 2. Standard AC'97 Version 1.03 Bi-directional Audio Frame

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
TAG | €MD CMD | PCM [PCM |PCM | PCM PCM |PCM (Rsryp [RSRVD |RSRVD | RSRVD | RSRVD | RSRVD | RSRVD
ADR |DATA | LEFT | RIGHT [LEFT [RIGHT | LEFT |RIGHT
TAG | STATUS[STATUSPCM | PCM |PCM | PCM | PCM |PCM |gspyp [RsRVD |RSRVD | RSRVD | RSRVD | RSRVD | RSRVD
ADR _ |DATA | LEFT | RIGHT [LEFT |RIGHT | LEFT |RIGHT
MASTER SLAVE1 SLAVE2
: AD1819 : AD1819 : AD1819 :
— «—
! l. Data Phase
Tag Phase

Modified AD1819x 'AC-97' Bi-directional Audio Frame Configured In SLOT-16 Mode

2.1 ADSP2106x / AD1819x Audio Output Frame (DTx to SDATA_OUT)

The audio output frame data streams correspond to the multiplexed bundles of all digital output data targeting the AD1819x
DAC inputs, and control registers. Each audio output frame can support up to 16, 16-bit outgoing data time slots (by default, it
is actualy 12, 20-bit outgoing timeslots after the 16-bit slot O - the DSP must put the AD1819x into Slot-16 mode for SPORT
compatibility). Slot Oisaspecia reserved time slot containing 16 bits, which are used for AC-link protocol infrastructure.

Within slot O the first bit is a global bit (SDATA_OUT dlot O, bit 15) which flags the validity for the entire audio frame. If the
“Valid Frame” bit isa 1, thisindicates that the current audio frame contains at least one slot time of valid data. The next 12 bit
positions sampled by the AD1819 indicate which of the corresponding 12 time slots contain valid data. Note that in Slot-16
mode, bit positions 13, 14 and 15 are always assumed to be zero. In this way data streams of differing sample rates can be
transmitted across AC-link at its fixed 48 kHz audio frame rate. Thetiming diagram in Figure 4 illustrates the time slot based AC-
link protocol in Slot-16 Mode. Seria timingsin Figure 4 can assume either the SHARC's SPORTO or SPORT1 pins. For SPORTO
we use RFSO0 as the frame sync, TCLKO as the serial clock, and DTO/DTOA as the data transmit pin. These timings also apply to
SPORT1'sRFS1 and DT1/DT1A pins, while the serial clock would correspond to TCLK 1.

le————— Tag Phase »le Data Phase
16-bits 20.8uS
(48 KHz)
/\ 12 288 //
SYNC (RFSx) 228 I~—814 — // // /
BIT CLK(TCLKx) /[E‘ LT
SDATA_OUT (DTx) P13 T T /A D i e A W/ 'lﬂlﬂ'
e
End of previous Valld Frame Time Slot "Valid" Bits Slot 1 Slot 2 Slot 3 Slot 15
Audio Frame Bit ("1" = time slot contains valid PCM data)

Figure 4. AD1819x Audio Output Frame in SLOT-16 Mode - ADSP-2106x to AD1819x Data Path **

**Note: The timing in figure 4 differs from the standard AC-97 timing of 12 slots, 20 bits in length for the data phase portion of the audio frame. The timeslots are
set to 16 bits in length (SLOT16 Mode) by the ADSP-2106x during initial enabling of the DSP SPORT so that proper data alignment of TDM slots to occur. Also,
the frame sync generated by the DSP is not set for the duration of the Tag Phase, as described in the AC-97 spec and AD1819 data sheet. The DSP generates a
frame sync for approximately 1 serial clock cycle. However this does not affect the codec operation, since the codec samples the frame sync only for the first
cycle prior to transmission of the MSB of the Tag Phase timeslot. Setup and hold times on the AD1819 are relaxed enough to meet the SHARC RFSx external
generation timings listed in the ADSP-2106x data sheet.

A new audio output frame, shown in Figure 5, begins with alow to high transition of SYNC. SYNC is synchronousto the rising
edge of BIT_CLK. On the immediately following falling edge of BIT_CLK, the AD1819x samples the assertion of SYNC. This
falling edge marks the time when both sides of AC-link are aware of the start of a new audio frame. On the next rising of
BIT_CLK, the ADSP-2106x transitions SDATA_OUT into thefirst bit position of slot O (Valid Frame bit). Each new bit position
is presented to AC-link on arising edge of BIT_CLK, and subsequently sampled by AD1819x on the following falling edge of
BIT_CLK. This sequence ensures that data transitions and subsequent sample points for both incoming and outgoing data
streams are time aligned.

AD1819 samples SYNC assertion here

SYNC RFSx

ADSP-2106x samples
first SDATA_OUT bit of
frame here

BIT_CLK X TCLKx

SDATA_OUT f Vvaid xslot(l) x slot(2)) DTx

End of previous
Audio Frame

Figure 5. Start of an Audio Output Frame

SDATA_OUT’s composite stream is MSB justified (MSB first) with all non-valid slots’ bit positions stuffed with 0’'s by the
ADSP-2106x. The DSP software can initialize the transmit DMA buffer to 0x0000s in the SPORT ISR. (Note that thisis donein
the SPORT1 transmit and received interrupt service routines shown in Appendix A)

In the event that there are less than 16 valid bits within an assigned and valid time slot, the ADSP-2106x should always stuff al
trailing non-valid bit positions of the 16-bit slot with 0's.

When mono audio sample streams are output from the ADSP-2106x, it is necessary that BOTH left and right sample stream time
slots befilled with the same data.

2.2 AD1819x/ADSP2106x Audio Input Frame (SDATA_IN to DRx)

The audio input frame data streams correspond to the multiplexed bundles of all digital input data targeting the ADSP-2106x. As
is the case for audio output frame, each AD1819x audio input frame consists of 12, 16-bit time slots after the DSP programs the
codec in SLOT-16 Mode. Slot O is a specia reserved time slot containing 16 bits which are used for AC-link protocol
infrastructure. The timing diagram in Figure 6 illustrates the time slot based AC-link protocol in Slot-16 Mode, and the Tag
Phase’ s bit positions 13, 14 and 15 are zero. Serial timingsin Figure 6 can assume either the SHARC's SPORTO or SPORT1 pins.
For SPORTO we use RFS0 as the frame sync, RCLKO as the serial clock and DRO/DROA as the data receive pin. These timings
also apply to SPORT1's RFS1 and DR1I/DR1A pins, while the seria clock would correspond to RCLK 1.

Tag Phase
l«———— 16-bits ————p

<&
<

Data Phase

A

20.8uS
(48 KHz)

SYNC (RFSx) _/ __ mzews / / // // T

BIT_CLK (RCLKx) J_l_lwu_l/ ///ﬁ_m_{;ﬂ_lﬂ_ﬂ;// ﬂ ﬂ/{ﬂ —
SDATA_IN (DRx) 5o 5o)/ A /) B A ﬁ)(EDZXIX:
~ AW N J ~

AL
/ T Time SISt "Valid" Slot 1 Slot 2 Slot 3 SI t15
End of Codec © ° ° °
Ready
Bit

YV

Bits
("1" = time slot contains valid PCM data)
previous
Audio Frame

Figure 6. Modified AC-link Audio Input Frame - AD1819x to ADSP-2106x Data Path **

**Note: The timing in figure 6 differs from the standard AC-97 timing of 12 slots, 20 bits in length for the data phase portion of the audio frame. The timeslots are
set to 16 bits in length (SLOT16 Mode) by the ADSP-2106x during initial enabling of the DSP SPORT so that proper data alignment of TDM slots to occur. Also,
the frame sync generated by the DSP is not set for the duration of the Tag Phase, as described in the AC-97 spec and AD1819 data sheet. The DSP generates a
frame sync for approximately 1 serial clock cycle. However this does not affect the codec operation, since the codec samples the frame sync only for the first
cycle prior to transmission of the MSB of the Tag Phase timeslot. Setup and hold times on the AD1819 are relaxed enough to meet the SHARC RFSx external
generation timings listed in the ADSP-2106x data sheet.

The audio input frame, shown in Figure 7, (data samples sent to the DSP from the AD1819x) begins with alow to high transition
of SYNC/RFSx. SYNC is synchronous to the rising edge of BIT_CLK/RCLKx. On the immediately following falling edge of
BIT_CLK, the AD1819x samples the assertion of SYNC. Thisfalling edge marks the time when both sides of serial link are aware
of the start of anew audio frame. On the next rising of BIT_CLK, the AD1819x transitions SDATA_IN into the first bit position
of dot 0 (“Codec Ready” bit). Each new bit position is presented to AC-link on arising edge of BIT_CLK, and subsequently
sampled by the ADSP-2106x on the following falling edge of BIT_CLK. This sequence ensures that data transitions, and
subsequent sample points for both incoming and outgoing data streams are time-aligned. The SDATA_IN’s composite stream
isMSB justified (MSB first) with all non-valid bit positions (for assigned and/or unassigned time slots) stuffed with 0’'s by the
AD1819x. SDATA_IN dataissampled on thefalling edgesof BIT _CLK .

AD1819 samples SYNC assertion here

ADSP-2106x DSP samples
first SDATA_IN bit of

frame here
SYNC // RFSx
BIT_CLK l RCLKXx

SDATA_IN [o Ystotw)(sot@ DRx

End of previous
Audio Frame

Figure 7. Start of an Audio Input Frame

2.3 Codec Ready Bit (Most Significant Bit In Slot 0)

Within slot O the first bit isaglobal bit (SDATA_IN slot 0, bit 15) which flags whether AD1819x isin the “Codec Ready” state or
not. If the “Codec Ready” bit is a O, this indicates that AD1819x is not ready for normal operation. This condition is normal
following the deassertion of power on reset for example, while the AD1819’ s voltage references settle. When “ Codec Ready” is
alitindicatesthat the serial-link, the AD1819 control registers, and at least one of the subsystems described in the Powerdown
Control/Status Register is operational .

Prior to any attempts at putting the codec into operation the ADSP-2106x should poll the first bit in the audio input frame
(SDATA_IN slot 0, bit 15) for an indication that the AD1819x has gone “Codec Ready”. Below is example ADSP-2106x
Assembly Language I nstructions to accomplish the 'Poll Codec Ready' task:

Wi t _Codec_Ready: /* Wait for CODEC Ready State */
RO = DM rx_buf + 0); /* get bit 15 status bit from AD1819 tag phase sl ot 0*/
R1 = 0x8000; /* mask out codec ready bit in tag phase */
RO = RO AND R1; /* test the codec ready status flag bit */
| F EQ JUMP Wait_Codec_Ready; [* if flag is lo, continue to wait for a hi */

Once the AD1819x is sampled “Codec Ready” then the next 15 hit positions (in Slot-16) sampled by the ADSP-2106x indicate
which of the corresponding 15 time slots are assigned to input data streams, and that they contain valid data. There are several
sub-functions within AD1819x that can independently go busy/ready. The global “Codec Ready” bit indicates that at |east one
of these sub-functions is available. It is the responsibility of the DSP to probe more deeply into the AD1819x register file to
determine which AD1819x subsections are actually ready.

In addition to polling the "Codec Ready" indicator bit, the Power-Down Control/Status Register is useful for monitoring
subsystem readiness. The DSP programmer can choose to poll the Power-Down Control/Status Register to wait for Reference
Voltage, Analog Mixer, DAC & ADC Section Stabilization after polling the Codec Ready Bit. This step would ensure that the
DSP will not modify codec registers until the conversion resources and analog circuitry have stabilized. This step is
recommended by the AC-97 1.03 specification, although the source code example in Appendix A does not perform this step,
since it was found the successful programming of the AD1819x was achieved after simply polling the "Codec Ready" indicator
bit.

3. Configuring The ADSP-21065L Serial Port MCM Interface

When interfacing the AD1819A codec to an ADSP-21065L SHARC processor, the interconnection between the 2 devices can be
through either SPORTO or SPORT1. In the application code section of this document, SPORT1 is used in the example drivers
since the 21065L EZ-LAB makes use of SPORT1 for the codec interface.

Both the DSP and codec serial port shift data M SB first, and the AD1819A’sBIT_CLK frequency of 12.288 Mhz is less than the
SCLK maximum of 40 MHz for the 2106x. Therefore, the DSP's CLKOUT frequency must be greater than 12.288 Mhz.

Figure 8. ADSP-21065L SPORTs

otns

DEVICES

—> RX0a TX0a F—>

—>| RX0b TXOb >

<«—>|RFSO ADSP TESQ [——>

«—>»| RCKO TCKO [—>
21065

—>|RXla TXla f=—m—>
—>(RX1b TX1b e
<«—>RFS1 TFS] [—>
<—>»| RCK1 TCK1 [€—>

Table 1. ADSP-21065L Serial Port Pins

SPORTO0 SPORT1
Function A Chn B Chn A Chn B Chn
Transmit data DTOA DTOB DT1A DT1B
Transmit clock TCLKO TCLK1
Transmit frame sync/ TFSO TFS1
word select
Receive data DROA DROB DR1A DR1B
Receive cock RCLKO RCLK1
Receive frame sync RFS0 RFS1

The ADSP-21065L Serial Ports have two transmit and receive data pins for both the transmit side and the receive side.

Transmit A Channels- DTOA, DT1A
Transmit B Channels—DTOB, DT1B
Receive A Channels— DROA, DR1A
Receive B Channels— DROB, DR1B

NOTE: The ADSP-21065L SPORT channel B pins are not functional for multichannel mode. Both the transmitter and
receiver have their own serial clocks. The TFSx frame sync becomes an output ‘transmit data valid' pin and is not used, while
RFSx is used to control the start of a multichannel frame for both data transmission and reception.

RFS1 SYNC

I |-
ADSP-21067 rcik1 BIT_CLK
X1 |jeLCLKL €1
> |_DR spata_N |AD1819 L
sPorT DMA ke 2T! SDATA_OUT [
Transfers S’,w -20K
FLGn (Flag_n Out Pin) RESET# _
% >

Figure 9. Example AD1819A/ADSP-21062 SHARC Serial Port 1 Interconnections (assuming 5V 1/0)

IMPORTANT SERIAL INTERCONNECTION NOTES:
The 21065L°’s TFSx line is an output pin in multichannel mode (TDV - Transmit Data Valid).
It should be left unconnected and not tied with RFSx together to the AD1819x Frame Sync.
The RFSx pin is used to signal the start of a TDM frames for both reception and transmission
of data. Connecting TFSx(TDVx) could cause contention with the RFSx (SYNC) and will
most likely lock up the SPORT and possibly damage the RFSx pin over time!!!

A 10-K to 20-K Ohm pull-down resister is recommended on the ADSP-2106x’s DTx (DT0 /
DTOA/DT1/DT1A) line. The DTx lines on ADI's SHARC DSPs have a 50K internal pull-up,
which can cause the AD1819A to enter a test mode, referred to in the AC'97 spec. as ‘ATE
Factory Test Mode’. The pull-down is required to ensure proper codec serial operation.

Since BIT_CLK is the master serial clock, the DSP’'s RCLKx and TCLKx signals are set up
for external generation, since they are slave (input) signals. To synchronize shifting of data
channels, the RCLKx and TCLKXx pins are tied together to BIT _CLK.

For 3.3 Volt Interfaces, the AD1819x output signals connected as inputs to the DSP must be
level-converted down from 5.0 Volts to 3.3 Volts (See Next Section 3.1).

3.1 ADSP-21065L - 3.3V Level Shifting Considerations

The ADSP-21065L isanew derivative of the SHARC family that istargeted for low-cost/high-performance consumer oriented
applications. Sinceitisa3.3 Volt part, the 5 Volt AC-link signals that the AD1819A provides will damage the driver pinson the
21065L serid port. Level-shifting of all input signalsisrecommended. All SPORT output signals that are inputsto the AD1819
do not need to be level shifted since the AD1819A will recognize 3.3 voltsasavalid TTL high level. Also, al other 3.3V
SHARC processors like the ADSP-21060L, ADSP-21062L and ADSP-21061L should level shift al input seria port signals.

Figure 10 below shows the interface between the AD1819A and the ADSP-21065L. ADI's new code and pin compatible AC-97
rev 2.01 parts, The AD1881/AD1881A/AD1882/AD1885, include 3.3 V digital 1/O, removing the need for level shifting.

Figure 10. 21065L EZ-LAB DSP/Codec Interface

ADSP-21065L AD1819A

74LV125

DROA |= 3.3V-to-5V [* SDATA_IN
Level

RCLK0O |«——— Translator ::l— BIT_CLK

TCLKO |

DTOA »| SDATA_OUT

RFS0 »| SYNC

Note: The Second Generation pin-for-pin compatible AC-97 codecs, the AD188x series, have
3.3 Volt I/0 capability on the digital portion of the chip, thus level shifting is not required

In order to facilitate serial communications with the AD1819A, the SPORT1 pin connections are configured as shown in Table 1
and Figure 9:

Table 1.
ADSP-21065L Pin: _ADI1819A4 Pin: Driven By:
RCLKI, TCLK1 BIT CLK codec
RFS1 SYNC DSP
TFSI (unconnected) — ---------—- — ————emmeev
DRIA SDATA_IN codec

DTIA STATA _OUT DSP

3.2 Figure 11. Block Diagram Of A 5V ADSP-2106x Serial Interface To 3 AD1819 Codecs

IRESET G2

SDATA OUT = - LS

SDATA _IN =0 E
AD1819 ardlif =] | ~—Fs 8

CLKO

MASTER &2 [: —Jc0) ADSP-2106x

CHAIN TN e L

Ea:l D AC97 CONTROLLER

Timedots3 & 4 E(:
x

-
z
<
24576MHz [[
22pF N 22pF NPQ)

/RESET
SDATA_OUT
SDATA IN

SYNC

BIT_CLK

4444

AD1819
SLAVE2 gg f=ovor

CHAIN N
CHAIN_CLK

Timeslots 7& 8

—JXTAL_OU

Z
7
<
=
X

Slot # 0 1 2 3 4 5 6 7

SYNC (RFS0)_| | [

8 9 10 11 12 13 14 15

PCM PCM PCM PCM PCM RSRVD | RSRVD |RSRVD | RSRVD | RSRVD | RSRVD | RSRVD

OUTGOING TAG |cMD |cmp | pcm
STREAMS ADR DATA LEFT | RIGHT |LEFT |RIGHT LEFT |RIGHT
ISNTCROE':I:I:S TAG s;;.;rus g"};{g\“ T_EMF’IT I:I%TIT E(E:ng I:Ig'rvllT T.(éthT }:ICGTIT RSRVD | RsRvD |RsrRvD | RsRrvD | RsrRvD | RSRVD | RsrRVD
MASTER SLAVE1 @ SLAVE2
AD1819 : AD1819 AD1819
: < >
>
_.I !, Data Phase

Tag Phase

Figure 12. Timeslot Allocation For Multiple AD1819 Bi-directional TDM Audio Frame

3.3 SPORT DMA Channels And Interrupt Vectors

There are 8 dedicated DMA channels for both SPORTO0 and SPORT1 on the ADSP-21065L. The |OP addresses for the DMA
registers are shown in the table below for each corresponding channel and SPORT data buffer. In multichannel mode, only
channels 0, 2, 4 and 6 are active, because the channel B pins are disabled in Multichannel Mode.

Table 6. 8 SPORT DMA channels and data buffers

Chn| Data Buffer | Address Description

0 Rx0A 0x0060 0x0064 | Serial port 0 receive; A data
1 Rx0B 0x0030 0x0034 | Serial port 0 receive; B data
2 Rx1A 0x0068 0x006C | Serial port 1 receive; A data
3 Rx1B 0x0038 0x003C | Serial port 1 receive; B data
4 Tx0A 0x0070 0x0074 | Serial port 0 transmit; A data
5 Tx0B 0x0050 0x0054 | Serial port 0 transmit; B data
6 Tx1A 0x0078 0x005C | Serial port 1 transmit; B data
7 Tx1B 0x0058 0x005C | Serial port 1 transmit; B data

Each serial port hasatransmit DMA interrupt and areceive DMA interrupt (shown in Table 7 below). With serial port DMA
disabled, interrupts occur on aword by word basis, when one word is transmitted or received. Table 7 also shows the interrupt
priority, because of their relative location to one another in the interrupt vector table. The lower the interrupt vector address, the
higher priority theinterrupt. Notethat channels A and B for the transmit and receive side of each SPORT share the same
interrupt location. Thus, datafor both DMA buffersis processed at the same time, or on a conditional basis depending on the
state of the buffer status bitsin the SPORT control registers.

Table 7. ADSP-21065L Serial Port Interrupts

Priority
Interrupt’ | Function
SPROI SPORTO receive DMA channels 0 and 1 Highest
SPR1I SPORT1 receive DMA channels 2 and 3
SPTOI SPORTO transmit DMA channels 4 and 5
SPT1I SPORT1 transmit DMA channels 6 and 7
EPOI Ext. port buffer 0 DMA channel 8
EP1II Ext. port buffer 1 DMA channel 9 Lowest

" Interrupt names are defined in the def21065.h include file supplied
with the ADSP-21000 Family Visual DSP Development Software.

3.4 Serial Port Related IOP Registers

This section briefly highlightsthe list of available SPORT-related |OP registers that will need to be programmed when
configuring the SPORTsfor Multichannel Mode. To program these registers, write to the appropriate address in memory using
the symbolic macro definitions supplied inthedef 210651 . h file (included with the Visual DSP toolsin the/ | NCLUDE/
directory). External devices such as another 21065L., or a host processor, can write and read the SPORT control registersto set
up aseria port DMA operation or to enable a particular SPORT. Theseregisters are shown in the table below. The SPORT
DMA |OP registers are covered in section 4.8. Aswe will seein the next section, many of the availabl e registers shown below
need to be programmed to set up Multichannel Mode. These registers are highlighted in bold text.

Table 8. Serial Port IOP Registers

Register 1I0OP Address Description
SPORT0 STCTLO Oxe0 SPORTO transmit control register
SRCTLO Oxel SPORTO receive control register
TDIVO Oxed SPORTO transmit divisor
RDIV0 Oxe6 SPORTO receive divisor
MTCSO0 Oxe8 SPORTO multichannel transmit select
MRCS0 Oxe9 SPORTO multichannel receive select
MTCCS0 Oxea SPORTO multichannel transmit compand sel ect
MRCCS0 Oxeb SPORTO0 multichannel receive compand sel ect
KEYWDO Oxec SPORTO receive comparison register
IMASKO Oxed SPORTO receive comparison mask register
SPORT1 STCTL1 Oxfo SPORT1 transmit control register
SRCTL1 Oxf1 SPORT1 receive control register
TDIV1 Oxf4 SPORT1 transmit divisor
RDIV1 Oxf6 SPORT1 receive divisor
MTCS1 Oxf8 SPORT1 multichannel transmit select
MRCS1 Oxfo SPORT1 multichannel receive select
MTCCS1 Oxfa SPORT1 multichannel transmit compand select
MRCCS1 Oxfb SPORT1 multichannel receive compand sel ect
KEYWD1 Oxfc SPORT1 receive comparison register
IMASK1 Oxfd SPORT1 receive comparison mask register

In Multichannel Mode, the available SPORT data buffers that are active are the channel A registers (which are highlighted
below). Itisthese registersthat are actually used to transfer data between the AD1819A and the DMA controller on the ADSP-
21065L. The DMA controller isused to transfer data to and from internal memory without any intervention from the core.

SPORT TX0_A Oxe2 SPORTO transmit data buffer, channel A data

Data RX0_A Oxe3 SPORTO receive data buffer, channel A data

Buffers TX1_A Oxf2 SPORT1 transmit data buffer, channel A data
RX1_A Oxf3 SPORT1 receive data buffer, channel A data
TX0 B Oxee SPORTO transmit data buffer, channel B data
RX0 B Oxef SPORTO receive data buffer, channel B data
TX1 B Oxfe SPORT1 transmit data buffer, channel B data

RX1 B Oxff SPORT1 receive data buffer, channel B data

3.5 Example SPORT1 IOP Register Configuration For Audio Processing At 48 kHz
The configuration for SPORT1, for use with the ADSP-21065L EZ-LAB at afixed 48 kHz samplerate, is set up asfollows:

16-bit serial word length

Enable SPORT1 transmit and receive DMA functionality

Enable DMA chaining functionality for SPORT1 transmit and receive

External Serial Clock (RCLK1) - the codec providesthe serial clock to the ADSP-21065L .

Transmit and Receive DMA chaining enabled. The DSP program declares 2 buffers - tx_buf[5] and rx_buf[5] - for DMA
transfers of SPORTO transmit and receive serial data. Both buffersreserve 5 locationsin memory to reflect the AD1819A
time slot allocation for asingle codec. DMA chaining is almost certainly required, or the interrupt service overhead will
chew up too much of the DSP’ s bandwidth.

Multichannel Frame Delay = 1, i.e., the frame sync occurs 1 SCLK cycle before MSB of 1% word. New frames are marked by
aHl pulsedriven out on SYNC one serial clock period before the frame begins.

Program SPORT1_ Registers:
/* program sport0 receive control register */

RO = 0xOFO0C40F0; /* 16 chans, int rfs, ext rclk, slen = 15, sden&schen enabled*/
dm (SRCTL1) = RO; /* sport 0 receive control register */

/* sportl transmit control register */

RO = 0x001COOFO; /* 1 cyc mfd, data depend, slen = 15, sden & schen enabled */
dm (STCTL1) = RO; /* sport 0 transmit control register */

The ADSP-21065L provides an internally generated 48 kHz frame sync (RFSL). It must be a48 kHz framerate since the
AC97 specified frame rate of the AD1819A is48 kHz. Sincethe AD1819A serial clock is 12.288 MHz, adivide factor or 256
will produce a48 kHz internally generated frame sync.

/* sportl receive frame sync divide register */
RO = 0x00FF0000; /* SCKfrq(12.288M) /RFSfrq(48.0K)-1 = O0x00FF */
dm (RDIV1) = RO;

No companding.

/* sportl transmit and receive multichannel companding enable registers */

RO = 0x00000000; /* no companding */
dm (MRCCS1) = RO; /* no companding on receive */
dm (MTCCS1) = RO; /* no companding on transmit */

Multichannel Mode - Length = 5 multichannel words enabled. Thisallows 1 AD1819A audio frame per ADSP-21065L
multichannel frame.

/* sportl receive and transmit multichannel word enable registers */
RO = 0x0000001F; /* enable transmit and receive channels 0-4 */
dm (MRCS1) = RO;

dm (MTCS1) = RO;

3.6 DMA Registers For The ADSP-21065L Serial Ports 0 and 1

Thefollowing register descriptions are provided in the defs21065I.h file for programming the DMA registers associated with the
I/0 processor’s DMA controller. Wewill look at how these registers are programmed for DMA chaining, in which the DMA
registers are reinitialized automatically whenever a serial port interrupt request is generated in the next section.

Table 9. SPORT DMA IOP Registers
DMA Register Description DMA Register IOP Address

SPORTO0 Receive DMA Channel 0 Index Register [IROA 0x60
Channel A DMA Channel 0 Modify Register IMROA 0x61
DMA Channel 0 Count Register CROA 0x62
DMA Channel 0 Chain Pointer Register CPROA 0x63
DMA Channel 0 General Purpose Register GPROA oxe4
SPORTO Receive DMA Channel 1 Index Register IIROB 0x30
Channel B DMA Channel 1 Modify Register IMROB 0x31
DMA Channel 1 Count Register CROB 0x32
DMA Channel 1 Chain Pointer Register CPROB 0x33
DMA Channel 1 General Purpose Register GPROB ox34
SPORT1 Receive DMA Channel 2 Index Register IIR1A 0x68
Channel A DMA Channel 2 Modify Register IMR1A 0x69
DMA Channel 2 Count Register CR1A Ox6A
DMA Channel 2 Chain Pointer Register CPR1A Oox6B
DMA Channel 2 General Purpose Register GPR1A oxeC
SPORT1 Receive DMA Channel 3 Index Register IIR1B 0x38
Channel B DMA Channel 3 Modify Register IMR1B 0x39
DMA Channel 3 Count Register CR1B Ox3A
DMA Channel 3 Chain Pointer Register CPR1B 0x3B
DMA Channel 3 General Purpose Register GPR1B 0x3C
SPORTO0 Transmit DMA Channel 4 Index Register [ITOA 0x70
Channel A DMA Channel 4 Modify Register IMTOA ox71
DMA Channel 4 Count Register CTOA 0x72
DMA Channel 4 Chain Pointer Register CPTOA 0x73
DMA Channel 4 General Purpose Register GPTOA Oox74
SPORTO0 Transmit DMA Channel 5 Index Register 1ITOB 0x50
Channel B DMA Channel 5 Modify Register IMTOB 0x51
DMA Channel 5 Count Register CT0B 0ox52
DMA Channel 5 Chain Pointer Register CPTOB 0x53
DMA Channel 5 General Purpose Register GPTOB x4
SPORT1 Transmit DMA Channel 6 Index Register IT1A 0x78
Channel A DMA Channel 6 Modify Register IMT1A 0x79
DMA Channel 6 Count Register CT1A OX7A
DMA Channel 6 Chain Pointer Register CPT1A ox7B
DMA Channel 6 General Purpose Register GPT1A ox7C
SPORT1 Transmit DMA Channel 7 Index Register 11T1B 0x58
Channel B DMA Channel 7 Modify Register IMT1B 0x59
DMA Channel 7 Count Register CT1B Ox5A
DMA Channel 7 Chain Pointer Register CPT1B ox5B
DMA Channel 7 General Purpose Register GPT1B oxsC

3.7 Setting Up The ADSP-21065L DMA Controller For Chained SPORT DMA Transfers

To efficiently transmit and receive digital audio data to/from the AD1819A, the recommended method isto use serial port DMA
Chaining to transfer data between the serial bus and the DSP core. There are obvious benefits for doing this. First of all, DMA
transfers allow efficient transfer of data between the serial port circuitry and DSP internal memory with zero-overhead, i.e. there
is no processor intervention of the SHARC core to manually transfer the data. Secondly, there is a one-to-one correspondence
of the location of the word in the transmit and receive SPORT DMA buffers with the actual TDM audio frame timeslot on
the serial bus. Thirdly, an entire block (or audio frame) of data can be transmitted or received before generating asingle
interrupt. The 'chained-DMA' method of serial port processing is more efficient for the SHARC to process data, versus interrupt
driven transfers, which occur more frequently, for every serial word transmitted or received. Using chained DMA transfers
allowsthe ADSP-21065L DMA controller to autoinitialize itself between multiple DMA transfers. When the entire contents of
the current SPORT buffersrx_buf and tx_buf have been received or transmitted, the ADSP-21065L can automatically set up
another serial port DMA transfer that is continuously repeated for every DMA interrupt. For further information on DMA
chaining, the reader can refer to section 6.3.4 in the ADSP-2106x User's Manual, or section the DMA chapter of the ADSP-
21065L User's Manual.

The chain pointer register (CPxxx) is used to point to the next set of TX and RX buffer DMA chaining parameters stored in
memory. SPORT DMA transfersfor the AD1819A areinitiated by writing the DMA buffer's memory address to the CPR1A
register for SPORT 1 receive and CPT1A register for SPORT 1 transmit. The transmit and receive SCHEN_A and SCHEN_B bits
in the SPORTX Control registers enable DMA chaining.

To auto-initialize repetitive DMA-chained transfers, the programmer needs to set up abuffer in memory called a Transfer
Control Block (TCB) that will be used to initialize and further continue the chained DMA process. Transfer Control Blocks are
locationsin Internal Memory that store DMA register information in aspecified order. For example, Figure 13 below
demonstrates defined TCBs in internal memory for SPORT1 Channel A. The Chain Pointer Register (CPR1A and CPT1A)
stores the location of the next set of TCB parametersto be automatically be downloaded by the DMA controller at the
completion of the DMA transfer, which in this case it points back to itself to repeat the same

Figure 13. TCBs for Chained DMA Transfers
of SPORT1 Channel A Receive and Transmit

rcvla tch[8] xmitla tch[8]
DM(rcvla tcb + 0) M DM (xmitla tcb + ><
#fi SPORTS

E Sed .
DM(revia teb+ 1) | . csoR DM (xmitla_tcb + ><

EI d
DM(rovia tch +2) [o= sse DM (xmitla tcb + ><
DM(rcvla tcbh + 3) GPR1 DM (xmitla tch + GPT1A
DM(rcvla tcb + 4) CPR1 DM (xmitla_tcb + CPT1A
DM(rcvla tch + 5) CRIA DM (xmitla tcb + CT1A
DM(rcvla_tcb + 6) IMRIA DM (xmitla. tcb + IMT1A
DM(rcvla tch + 7) IIR1A *’ DM (xmitla tcb + IITIA *’

The TCBsfor both the transmit and receive buffers are can be defined in the variabl e declaration section of the DSP assembly or
C code. Inthe AD1819A initialization code shown in appendix A, the TCBsfor SPORT1 channel A are defined asfollows:

.var rcv_tcb[8] =0, 0, O, O, O, 5, 1, O; /* receive tcb */
.var xmit tcb[8] /* transmit tcb */

|

o
~
o
~
o
~
o
~
o
~
(6]
~
[
~
o
~

Note that the DMA count and modify values can be initialized in the buffer declaration so that they are resident after aDSP
reset and boot. However, at runtime, further modification of the buffer isrequired to initiate the DMA autobuffer process.

To setup and initiate achain of SPORT DMA operations at runtime, the 21065L program can follow this sequence:

1. Setup SPORT transmit and Receive TCBs (transfer control blocks). The TCBs are defined in the data variable declaration
section of your code. Before setting up the values in the TCB and kicking off the DMA process, make sure the SPORT
registers are programmed along with the appropriate chaining bitsrequired in step 2.

2. Writeto the SPORTO transmit and receive control registers (STCTLO and STCRLO0), setting the SDEN_A enable bit to 1 and
the SCHEN_A chaining enable bittoa 1.

3. Writetheinternal memory index address register (11xxx) of thefirst TCB to the CPxxx register to start the chain. The order
should be asfollows:

a) writethe starting address of the SPORT DMA buffer to the TCBsinternal index register IIxxx location (TCB
buffer base address + 7). Y ou need to get the starting address of the defined DM A buffer at runtime and copy it
into thislocation in the TCB.

b) writethe DMA internal modify register value IMxxx to the TCB (TCB buffer base address + 6). Notethat this
step may be skipped if it the location in the buffer was initialized in the variable declaration section of your code.

c) writethe DMA count register Cxxx value to the TCB (TCB buffer base address + 5). Also note that this step may
be skipped if it the location in the buffer was initialized in the variable declaration section of your code.

d) getthe llxxx value of the TCB buffer that was previously stored in step (@), set the PCI bit with athat internal
address value, and write the modified value to the chain pointer location in the TCB (TCB buffer base offset + 4).

e) writethe same‘PCl-bit-set’ internal address value from step (d) manually into that DMA channel’s chain pointer
register (CPxxx). At thismoment the DMA chaining begins.

The DMA interrupt request occurs whenever the Count Register decrements to zero.

SPORT DMA chaining occursindependently for the transmit and receive channels of the serial port. After the SPORT1 receive
buffer (rx_buy) isfilled with new data, a SPORT1 receive interrupt is generated, and the data placed in the receive buffer is
availablefor processing. The DMA controller will autoinitialize itself with the parameters set in the TCB buffer and begin to refill
the receive DMA buffer with new datain the next audio frame. The processed dataisthen placed in the SPORT transmit buffer,
where it will then be DMA’ ed out from memory to the SPORT DT1A pin. After the entire buffer istransmitted from internal
memory to the SPORT circuitry, the DMA controller will autoinitialize itself with the stored TCB parameters to perform another
DMA transfer of new datathat will be placed in the same transmit buffer (zx_buf) .

Below are example assembly instructions used to set up the receive and transmit DMA buffers and Transfer Control Blocks for
SPORT1 Channel A, whichisshown in the 21065L EZ-LAB example shown in appendix A. These values are reloaded from
internal memory to the DMA controller after the entire SPORT DMA buffer has been received or transmitted.

.segnment /dm dm codec;

/* define DMA buffer sizes to match nunber of active TDM channels */
.var rx_buf[5]; /* receive buffer */

/* transmt buffer */

.var tx_buf[5] = ENABLE_VFbit_SLOT1_SLOT2, /* set valid bits for slot 0, 1, and 2 */
SERI AL_CONFI GURATI ON, /* serial configuration register address */
0xFF80, /* set to slot-16 node for ADI SPORT conpatibility */
0x0000, /* stuff other slots with zeros for now */
0x0000;

/* DMA Chaining Transfer Control Blocks */

.var rcv_tcbhb[8 =0, 0, 0, O, 0, 5 1, O /* receive tch */

.var xmt_tcb[8 =0, 0, 0, O, O, 5 1, O; /* transmt tcb */

. endseg;

.segnment /pm pm code;

/* ___ */
/* DMA Control |l er Progranm ng For SPORT1 MCM Tx and Rx */
/* */
/* Setup SPORT1 for DMA Chai ning: */
/* ___ */
Program DMA_Control | er:
rl = Ox0001FFFF; /* cpx register mask */
/* sportl dma control tx chain pointer register */
roO = tx_buf;
dmxmt_tcb + 7) = ro0; /* internal dma address used for chaining */
ro = 1;
dm(xmt_tcb + 6) = ro0; /* DMA internal nenory DMA nodifier */
ro = 5;
dmxmt_tcb + 5) = ro0; /* DMA internal nmenory buffer count */
ro = xmt_tcbh + 7; /* get DMA chain intn mem pointer containing tx_buf address */
rO =rl1 AND rO; /* mask the pointer */
rO = BSET r0 BY 17; /* set the pci bit */
dmxmt_tcb + 4) = r0; /* wite DMA transmt bl ock chain pointer to TCB buffer */

dm(CPT1A) = rO0; /* transmt block chain pointer, initiate tx0 DMA transfers */
/* - _*/
/* - Note: TshiftO & TXO will be automatically |oaded with the first 2 values in the -*/
/* - Tx buffer. The Tx buffer pointer (I T1IA) will increment twice by the modify -*/
/* - modify value specified in (I MI1A). -*/
/* - _*/
/* sportl dma control rx chain pointer register */

rO = rx_buf;
dm(rcv_tcb + 7) = r0;
ro = 1;

dm(rcv_tch + 6) = rO0;
ro = 5;

dm(rcv_tcb + 5) = r0;

rO =rcv_tch + 7;
rO = rl1 AND rO;
r0O = BSET r0 BY 17;

dm(rcv_tcbh + 4) =
dm(CPR1A) = rO0;

ro;

. endseg;

/* internal dnma address used for chaining */

/* DMA internal nmenory DMA nodifier */

/* DMA internal nenory buffer count */

/* get DMA chain intn nmem pointer containing rx_buf address */
/* mask the pointer */

/* set the pci bit */

/* write DMA receive block chain pointer to TCB buffer */

/* receive block chain pointer, initiate rxO DMA transfers */

3.8 AD1819A TDM Serial Port Time Slot Assignments, DMA Buffer Relationships

The DSP SPORT Multichannel Mode Time Slot Map for AD1819A communication inSLOT16 Mode isasfollows:

Timeslot | SDATA OUT Pin (DT1A) SDATA IN Pin (DRI1A)
0 Tag Phase (ADSP-2106x) Tag Phase (Codec)
1 Command Address Port (Control Word Input) Status Address Port (Status Word Output)
2 Command Data Port (Control Register Data | nput) Status Data Port (Control Register Read Data Output)
3 Master PCM Playback L eft Channel Master PCM Capture (Record) Left Channel
4 Master PCM Playback Right Channel Master PCM Capture Right Channel
5 Slave 1 PCM Playback Left Channel Slave 1 PCM Capture Left Channel
6 Slave 1 PCM Playback Right Channel Slave 1 PCM Capture Right Channel
7 Slave 2 PCM Playback Left Channel Slave 2 PCM Capture L eft Channel
8 Slave 2 PCM Playback Right Channel Slave 2 PCM Capture Right Channel
9 Reserved for Future Use (should always stuff with 0s) Reserved for Future Use (AD1819 fills with 0s)
10 Reserved for Future Use (should always stuff with 0s) Reserved for Future Use (AD1819 fills with 0s)
11 Reserved for Future Use (should always stuff with 0s) Reserved for Future Use (AD1819 fills with 0s)
12 Reserved for Future Use (should always stuff with 0s) Reserved for Future Use (AD1819 fills with 0s)
13 Reserved Slot, SLOT16 Mode extension Reserved Slot, SLOT16 Mode extension
14 Reserved Slot, SLOT16 Mode extension Reserved Slot, SLOT16 Mode extension
15 Reserved Slot, SLOT16 Mode extension Reserved Slot, SLOT16 Mode extension

Corresponding ADSP-21065L SPORTO0 DMA Buffer Addresses For Associated Timeslots

rx_buf[9] - DSP SPORT DMA receive buffer

Slot# Description

O~NO UL WNEO

Tag Phase (AD1819)

Status Address Port

Status Data Port

Master PCM Capture (Record) Left Channel
Master PCM Capture Right Channel

Slave 1 PCM Capture Left Channel

Slave 1 PCM Capture Right Channel

Slave 2 PCM Capture Left Channel

Slave 2 PCM Capture Right Channel

tx_buf[9] - DSP SPORT DMA transmit buffer

Slot # Description

O~NO O WNEO

Tag Phase (DSP)

Command Address Port

Command Data Port

Master PCM Playback L eft Channel
Master PCM Playback Right Channel
Slave 1 PCM Playback L eft Channel
Slave 1 PCM Playback Right Channel
Slave 2 PCM Playback L eft Channel
Slave 2 PCM Playback Right Channel

DSP Data Memory Direct Address
DM(rx_buf + 0)
DM(rx_buf + 1)
DM(rx_buf + 2)
DM(rx_buf + 3)
DM(rx_buf + 4)
DM(rx_buf + 5)
DM(rx_buf + 6)
DM(rx_buf +7)
DM(rx_buf + 8)

DSP Data Memory Direct Address
DM(tx_buf + Q)
DM(tx_buf + 1)
DM(tx_buf +1)
DM (tx_buf +2)
DM(tx_buf +3)
DM (tx_buf +4)
DM(tx_buf +5)
DM (tx_buf +6)
DM(tx_buf +7)

Note: Even though there are 16 slots in the audio frame, the DMA buffer size (as well as the number of channels enabled in the SPORT
multichannel control registers) should be set to the size of the number of slots containing valid data to reduce 10P-bus overhead. For asingle codec
system, the buffer sizes should be 5 words. For a dual codec system, the buffer sizes should be 7 words while for a triple codec system, the DMA
buffers are set to 9 words in length. However, when processing data from the transmit interrupt while running the sample rate less than 48 kHz, it
is recommended to add two dummy slots, or two dummy words to the transmit DMA buffer. For 1, 2 or 3 codecs, this would correspond to 7, 9 or
11 words. We will cover these recommendations in sections 6.1, 6.2 and 6.3.

4. The AD1819's Serial Configuration Register (Address 0x74)

The AD1819's serial configuration register (located at codec index address 0x74) has additional functionality whichisan Analog
Devices addition to the register mapping of the AC'97 specification. Understanding this register iskey for successful
communication between the DSP and multiple AD1819As, especially for variable sample rate applications running less than 48
kHz. The Seria Configuration Register allowsthe DSP to perform the following functions:

. Operate the AC-link inSLOT-16 mode, all slots are 16-bitsin length. This mode should be set as soon as the
codecs are fully functional.

. Set Codec Register Mask Bits for the Master Codec, Slave 1 Codec, or Slave 2 codec, thus allowing the DSP to
communicateto 1 codec at atimefor setting/reading registers. Setting all 3 Mask bitswill allow the DSPto program all
3 codecs at the same time.

. Set an enable bit that will force the Status Address and Data Slots (Slots 1 and 2) to display the contents of the
serial configuration by default. Thiswill allow the host processor to read the DAC request bits to see if the codecs
are reguesting data, which isrequired if the DACs are running at a slower rate or different rate than the ADCs.

Below is more detailed description of the Serial Configuration Register:

Serial Configuration (Index 74h)

Reg Name D15 D14 D13 D12 D11 D10 D9 D8 D7 |D6|D |D4 D3 | D2 D1 DO Default
Number 5
74h Seria SLOT1 | REGM2 [REGM | REGMO| DRQEN | DLRQ [DLRQ1|DLRQO([X |X |X |X [X |DRRQ2|DRRQ1l | DRRQO X
Configuratio | 6 1 2
n
SLOT16 Enable 16-bit slots

SLOT16 makes all AC Link slots 16 bitsin length, formatted into 16 Slots

REGMO0 Master codec register mask
REGM1 Slave 1 codec register mask
REGM2 Slave 2 codec register mask

If your system uses only asingle AD1819, you can ignore the register mask and the slave 1/slave 2 request bits. If you write to
this register, write onesto all of the register mask bits. The DxRQXx bits are read-only.

DRQEN Fill idle status slots with DAC request reads,
and stuffs DAC requests into LSB of output address slot (AC-Link Slot 1).

If you set the DRQEN bit, then the AD1819 will fill all otherwise- unused AC-link status address & data slots with the contents
of register 74h. That makes it somewhat simpler to access the information, because you don't need to continually issue
Aclink read commands to get the register contents. Also, the DAC requests are reflected in Slot 1, bits (11....6).

DRRQO Master codec DAC right request
DRRQ1 Slave 1 codec DAC right request
DRRQ2 slave 2 codec DAC right request
DLRQO Master codec DAC left request
DLRQ1 Slave 1 codec DAC left request
DLRQ2 Slave 2 codec DAC left request

The codec asserts the DxRQx hit when the corresponding DAC channel can accept data in the next frame. These bits are
snapshots of the codec state taken when the current frame began (effectively, on the rising edge of SYNC), but they also take
notice of DAC samplesin the current frame.

4.1 Configuring The AD1819A Serial Link To SLOT-16 Mode For ADI SPORT Compatibility
Slot 16-Mode allows an efficient communication interface between DSPs and the AD1819A. Slot-16 modeis useful since the
TAG isaways 16-bits and equal length slots eases to use of serial port autobuffering or DMA chaining. DSPsthat support a
TDM interface usually do not provide the capability to program different slots to different word lengths. This mode ensures
that all 16 slots are 16-bits, allowing amuch easier interface to 16-bit/32-bit DSPs. The DSP will generate aframe sync every 256
serial clock cycles, soinstead of having 1 16 bit Tag Phase slot with 12, 20-bit slots, the AD1819A will generate 16, 16-bit slotsin
256 serial clock cycles:

16 bit Tag Phase + (12 x 20-bit timeslots)= 256 bit clock cycles
now becomes,
16 bit Tag Phase + (15 x 16-bit timeslots) = 256 bit clock cycles

Note that the DSP will generate aframe sync every 256 seria clock cycles. With an SCLK running at 12.288 MHz, the DSP will
then produce the 48KHz frame sync in SLOT-16 mode.

Toinitially configure the AD1819A to conform to DSP TDM schemes, the DSP should initially program the AD1819s for 16-bit
slots as soon as the codec (or multiple codecs) are operational. A successful technique that is has been used by ADI's DSP
Applications Group isto initialy fill up the SPORT transmit buffer with the register information to set the codecsin SLOT-16
mode. Assoon asthe DSP serial port operation is enabled and the codecs are reset and fully operational, the codecs will
respond to the DSP's repeated request to set up the AC-link to SLOT-16 mode. For example, the 21065L DSP codec driver
(shown in Appendix A) initialy fillsthe tx_buf with the correct tag phase info, serial configuration address, and data to set the
codecsto SLOT-16 mode with all 3 codec register mask bits set. The buffer initialization is shown below:

#defi ne SERI AL_CONFI GURATI ON 0x7400
#def i ne ENABLE_Vf bit _SLOT1_SLOT2 0xEO00

.var tx_buf[9] = ENABLE_Vfbit_SLOT1_SLOT2, /* set valid bits for slot 0, 1, and 2 */
SERI AL_CONFI GURATI ON, /* serial configuration register address 0x74 */
OxFF80, /* initially set to SLOT-16 nmode for ADI SPORT conpatibility */
0x0000, /* stuff other slots with zeros for now */
0x0000,
0x0000,
0x0000,
0x0000,
0x0000;

Figure 14. Enabling SLOT16 Mode Immediately After DSP Sport TDM Operation Begins

Tag Phase‘.‘ ! Data Phase !

Slot # 0o 1 2 3 4 5 6 7 8 9 10 11 12

SYNC (RFS0) [r
SDATA_OUT (DTO) IEOOO |7400F|F8000| PCMTETI PCW— " PCM T PCH [~ PCM I RSRVDI RSRVDI RSRVDI RSRVDI

LEFT LEFT | RIGHT | LEFT | RIGHT

TAG CMD CMD

ADR DATA
D S—
> «—>
MASTER 1819 SLAVE1 1819 SLAVE2 1819

Note, 16-bit DSP data intended for slot 2
is shifted over 4-bits into slot-1 because
of default 20-bit slots

After codec reset, slots 1-11 are 20-bit slots, the DSP needsto ensure that it's desired codec register datain slot 2 is shifted by 4
bits to take into account that slot 1 is 20 bits after SPORT operation is enabled (Figure 14). So, instead of writing 0xF800 into the
Seria Configuration Register, the DSP sends OxFF80. The AD1819 will then recognize the data in the 20-bit Command Register
Data Slot and see that SLOT-16 modeisrequired, aswell as enabling the register mask bitsfor all 3 codecs. Setting the mask
bitsfor all 3 codecswill allow usto program all 3 codecs at the same time to the same register configuration. Once SPORTO is
enabled and DMA transfers areinitialized, the DSP will start transmitting the above information to set up the codecs for 16-bits
per slot.

4.2 Programming Multiple AD1819xs Via The Serial Configuration Register

As stated earlier, the Serial Configuration Register (Address 0x74) isaVendor Defined register by Analog Devices. Multi-codec
index register communication is easily manageable through the use of the REGMx bits (D12, D13 and D14) for the Master , Slave
1 and Slave 2 codecs. The 3 bits are shown in the bit-level chart of address 0x74. Setting the desired REGM bit corresponding
to one of the 3 codecs will determineif that codec will respond to Command Register reads and writes.

Serial Configuration (Index 74h)

Reg Name D15 D14 D13 D12 D11 D10 D9 D8 D7 |D6|D (D4 [D3 | D2 D1 DO Default
Number 5
74h Serid SLOT1 | REGM2 | REGM [REGMO|DRQEN [DLRQ [DLRQ1|DLRQO|[X [X |X |[X |X |DRRQ2|DRRQ1 | DRRQO X
Configuratio | 6 1 2
n

Index 74h, Bit D12 (REGMO) enables Master AD1819 indexed address reads/writes
Index 74h, Bit D13 (REGM1) enables Slave 1 AD1819 indexed address reads/writes
Index 74h, Bit D14 (REGM2) enables Slave 2 AD1819 indexed address reads/writes

The table below shows the Mask bit selection label names used in the 2106x codec driver example. These labels can be used to
set the Serial Configuration Register for accessing registers on any of the 3 codecs. Whenever command register writes are sent
to address 0x74, the DSP can use 'SET BIT" instructions using these labels to set codec data bits D12, D13 and D14.

#define macro Codec Register Data Bits:
Selected AD1819 Label Name Mask Bits D15 D14 D12 D11 D10 D11
Mast er MASTER_Reg_Mask 0x1000 X 0 0 1 X .
Sl avel SLAVE1l Reg_Mask 0x2000 X 0 1 0 X
Sl ave?2 SLAVE2_Reg_Mask 0x4000 X 1 0 0 X
Master & Slavel MASTER_SLAVE1 0x3000 X 0 1 1 X
Master & Sl ave2 MASTER_SLAVE2 0x5000 X 1 0 1 X
X 1 1 1 X

Broadcast To All MASTER_SLAVE1l_SLAVE2 0x7000

Note: The 21062/Triple AD18194A MAFE EZ-LAB Codec Driver assumes that all REGMXx bits are set to enable broadcast
data writes to all codec indexed addresses. Forthe 21065L EZ-LAB Single AD1819A driver, only the Master REGM0 bit is
set.

Thus awrite to acodec indexed command register will broadcast register datawritesto all 3 codecs. Reading codec registers
will result in alogical OR'ing of the index register of all masked codecs. For example, with 3 codec mask bits set, reading any
given register address will result in datain all 3 registers being logically OR'ed together. When attempting aread of multiple
registers at the same time, the codec higher up in the chain will take precedence. For example, when reading aregister fromall 3
codecs, the value of the Master's requested register contents will be transmitted on the serial bus.

4.3 The AD1819A Serial Configuration Register Master And Slave DAC Request Bits

The Serial Configuration Register (Address 0x74), aVendor Defined register by Analog Devices, includes support for
transmitting data to the DA Cs at different sample ratesthan the ADCs. For Variable Sample Rate support, Analog Devices
added DAC reguest bitsto the AD1819A's Serial Configuration Register. This feature allows sample rate conversion to be done
inthe AD1819A/DSP TDM interface itself, removing the burden from the DSP to have to include DSP interpolation or
decimation routines to change from one sampl e rate to another. AD1819A V ariable Sample Rate Support is defined as follows:

The AD1819A is capable of sampling analog signals or converting digital signals from 7 kHz to 48 kHz in 1 Hz increments on
either the left and right ADCs and left and right DACs. Two sample rate generator registers are included in the AD1819A, and
either the left or right ADC and DAC channels can be assigned to either sample rate generated to sample or convert signals at a
desired sample rate. The normal AC-97 TDM protocol specifies afixed 48 kHz samplerate, in which avalid sampleistransmitted
or received every audio frame. Since the AD1819A can run at slower sample rates, there will not always be a valid sample in
every 48 kHz audio frame. If the application requires sample rate conversion, the DSP would need to know when avalid DAC
sample is requested from the AD1819A. For example, if the ADC sample rate is different than the DAC sample rate, the DSP
would need to know when to transmit DAC data only when the AD1819A needs a new DAC sample. To accomplish this, the
AD1819A's Seria Conversion Register Includes Left and Right DAC request bits (for the Master, Slavel and Slave2 AD1819s)
so that it will notify the AC-97 host processor that it needs anew DAC samplein the next audio frame (based on it's modified 1-
Hz increment sample rate).

Serial Configuration (Index 74h)

Reg Name D15 D14 D13 D12 D11 D10 D9 D8 D7 |(D6|D |D4 |D3 | D2 D1 DO Default
Number 5
74h Serial SLOT1 | REGM2 | REGM | REGMO| DRQEN | DLRQ |DLRQ1 |DLRQO|X [X [X |X |X |DRRQ2|DRRQ1 | DRRQO X

Configuratio | 6 1 2
n

To activate the DAC request bit support (which by reset default is not in operation), the DSP driver must write to bit D11, the
DRQEN hit, in the Serial Configuration Register. Once enabled, the idle Status Address Timeslot (AC-Link Timeslot 1) will
aways transmit the DAC requests into the Least Significant Bits of the Address Timeslot. The previously idle Status Data
Timeslot (AC-Link Timeslot 2) now will always contain the contents of the Serial Configuration Register 0x74. This makes it
much easier to access the DAC request bit information, because the DSP will not have to continually issue AC-link read
commands to get the DAC request bit contents from register 0x74. The DAC request bits for a single codec AD1819A system
should be inspected by looking at the DLRQO bit (bit D8, the Master codec DAC left request - Slot 3) for left channel sample
requests and the DRRQO (bit DO, the Master codec DAC right request bit - Slot 4) for right channel DAC sample reguests.

The AD1819A asserts the DxRQx hit when the corresponding DAC channel can accept data in the next frame. These bits are
snapshots of the codec state taken when the current frame began (effectively, on the rising edge of SYNC), but they also take
notice of DAC samples in the current frame. If you choose to poll DAC requests in the Status Data Slot, these request bits are
ACTIVE HIGH. If you choose to poll DAC request in the Status Address Slot (Timeslot 1) while in SLOT-16 mode with
DRQEN enabled, these bitsare ACTIVE LOW and should be inspected in the following locations in bitsD7 - D2 (not D11 - D6,
whichistrueif wearein AC-97 mode). The bit ordering of the DAC request bitsis as follows:

Status Address Slot Bit Assingments with DRQEN enabled (in any given audio frame, 0 = Request, 1=No Request):
Bit D15 Reserved (Stuffed with)

Bit D14 - D8 Control Register Index (when no codec commandsin prior frame.. this always shows 0x74)

Bit D7 DLRQO - DAC Request Slot 3 - Master Codec L eft

Bit D6 DLRQO - DAC Request Slot 4 - Master Codec Right

Bit D5 DLRQ1 - DAC Request Slot 5 - Slavel Codec Left

Bit D4 DLRQ1 - DAC Request Slot 6 - Slavel Codec Right

Bit D3 DLRQ2 - DAC Request Slot 7 - Slave2 Codec Left

Bit D2 DLRQ2 - DAC Request Slot 8 - Slave2 Codec Right

Bit D1-DO Reserved (Stuffed with 05)

5. DSP Programming Of The AD1819A Indexed Control Registers

Addr. __Index Register Name #define label in 2106x _program Defined State Set By DSP?
0x00 Reset REGS RESET 0x0400 N
0x02 Master Volume MASTER _VOLUME 0x0000 Y
oxo4 Reserved RESERVED REG 1 OXXXXX N
0x06 Master Volume Mono MASTER_VOLUME_MONO 0x8000 Y
0x08 Reserved RESERVED_REG 2 OXXXXX N
OXxOA PC BEEPVolume PC_BEEP_VOLUME 0x8000 Y
OxOC PhoneVolume PHONE_VOLUME 0x8008 Y
0x0E Microphone Volume MIC_VOLUME 0x8008 Y
0x10 Line In Volume LINE_IN_VOLUME 0x8808 Y
ox12 CD Volume CD_VOLUME 0x8808 Y
0x14 VideoVolume VIDEO_VOLUME Y
0x16 Aux Volume AUX_VOLUME Y
0x18 PCM Out Vol PCM_OUT_VOLUME 0x8808 Y
0x1A Record Select RECORD_SELECT 0x0404 Y
0x1C Record Gain RECORD_GAIN 0x0FOF Y
OXIE Reserved RESERVED _REG 3 OXXXXX N
0x20 General Purpose GENERAL_PURPOSE 0x8000 Y
0x22 3D Control THREE_D_CONTROL_REG 0x0000 Y
0x24 Reserved RESERVED REG 4 OXXXXX N
0x26 Power-Down Control/Status POWER _DOWN_CNTL_STAT 0x000X N
0x28 Reserved RESERVED _REG 5 OXXXXX N
0x74 Serial Configuration SERIAL_CONFIGURATION 0xFF80 Y
0X76 Miscellaneous Control Bits MISC_CONTROL_BITS (0x0000 Y
0x78 Sample Rate 0 SAMPLE_RATE_GENERATE 0 0xBB80 Y
OX7A SampleRatel SAMPLE_RATE_GENERATE_1 0xBB8O Y
Ox7C Vendor ID1 VENDOR 1D1 0x4144 N
OX7E Vendor ID2 VENDOR 1D2 0x5300 N

** Registers highlighted in bold have been altered from their default states by the 21065L for the talkthru example. Other registers set by the DSP

that are not highlighted but marked with a Y are set to their default reset state and are user configurable. All other registers marked with a N are
not set by the DSP.

All indexed control registersthat are used are initially set by the ADSP-21065L using a DSP memory buffer, where all register
addresses stored on even number memory buffer locations, and their corresponding register data stored at adjacent odd

numbered memory locationsin the buffer. 1n our ADSP-21065L example, 17 registers are programmed during codec initialization.

An example assembly language buffer initialization is shown below:

.var Init_Codec_Registers[34] =

MASTER_VCLUME, 0x0000,
MASTER VCLUMVE_MONOQ 0x8000,
PC_BEEP_\ol une, 0x8000,
PHONE_Vol urre, 0x8008,
M C Vol une, 0x8008,
LI NE_I N_Vol une, 0x0000,
CD Vol une, 0x8808,
VI DEO Vol une, 0x8808,
AUX_Vol une, 0x8808,
PCOM QUT_Vol une, 0x0808,
RECCRD_SELECT, 0x0404,
RECCRD _GAI N, 0xO0FOF,
GENERAL _ PURPCSBE, 0x8000,
THREE_D CONTROL_REG 0x0000,
M SC CONTRCL_BI TS, 0x0000,
SAWMPLE_RATE_GENERATE_O, 0xBB80,

SAVPLE_RATE_GENERATE 1, 0xBB8O;

5.1 Programming AD1819A Registers Using A Zero Overhead Loop Construct
The following assembly language hardware DO LOOP shows how the valuesin the Init_Codec_Registers| | buffer are sent to
the appropriate slots on the Serial Port TDM bus:

#define ENABLE Vfbit SLOT1 _SLOT2 OxE000
#define TAG_PHASE 0
#defi ne COMVAND_ADDRESS_SLOT 1
#def i ne COMVAND_DATA_SLOT 2

Initialize_1819_Registers:
4 = Init_Codec_Registers; /* pointer to codec initialization comands */
rl5 = ENABLE_Vfbit_SLOT1_SLOT2; /* enable valid frame bit,and slots 1&2 val data bits */

LCNTR = 17, DO Codec_Init UNTIL LCE;
dm(tx_buf + TAG PHASE) = r15 /* set valid slot bits in tag phase for slots 0,1,2 */

rl =dml4, 1); /* fetch next codec regi ster address */

dm(t x_buf + COMMAND_ADDRESS SLOT) = r1l; /[/* put codec reg address into tx slot 1 */

ri =dml4, 1); /* fetch register data contents */

dm(t x_buf + COMMAND_DATA_SLOT) = r1; /*put codec register data into tx slot 2*/
Codec_Init: idle; /[* wait until TDM frame is transmtted */

Explanation Of The AD1819A Codec Initialization Loop :
The buffer pointer isfirst set to point to the top of the codec register buffer.

Slot 0 (TAG Phase) is set up to enable the valid frame bit, slot 1 valid bit and slot 2 valid bit by writing avalue of OXEOQQ in
DM(tx_buf + 0)

The Loop Counter Register LCNTR is set to the number of registers to be programmed. In this case 17 registersin all three
codecs will be set to the same value. For multiple codecs programmed to the same configuration, by initialy filling tx_buf
with initialized Serial Configuration Register Data, we set up the codecs for SLOT16 mode with all three Codec Register
Mask bitsset. So all three codecswill then respond to command register address and datawrites.

Memory writesto DM (tx_buf + 1) will set the codec register address
Memory writes to DM (tx_buf + 2) will send the register write data for the codec address specified in the previous timeslot.

The IDLE instruction will allow you to do nothing but wait for a SPORTO transmit interrupt after data has be placed in the
appropriate locations in the SPORT DMA buffer tx_buf. Waiting for the SPORT interrupt will guarantee that all datain the
transmit buffer has been shifted out on the TDM bus, thus telling usit is safe to go the next codec command register
address and register datavalue in theinitialization buffer and transfer those contentsin the 'transmit buffer' queue.

5.2 Readback Of AD1819A Registers For Verification And Debugging Using A Zero-
Overhead DO LOOP

There may be instances during the debugging stage of driver code, the DSP programmer may want to verify the desired values
of the AD1819A'sinternal registers. One easy way to do thisisto set up an output buffer where all read requests of registers
can be stored after codec initialization. The readback and status of codec registers can also be done using a hardware loop.
The following assembly language instructions shown below are used to initiate codec read requests of registers shown in the
Init_Codec_Registers|[| buffer, which isthe name of the buffer used on our AD1819adriver. The results of the read requests
are then placed in an output buffer called Codec_Init_Results| |, in which even DSP memory addresses contain the AD1819A
register address, and the DSP's odd address in the buffer contains the register datafor the AD1819A address. On the 21065L
EZ-LAB, the AD1819A registers can then be verified with JTAG emulator or the VDSP RS232 debug monitor by setting a
breakpoint after this section of code and opening up the memory window that shows the val ues stored in the memory buffer.
After successful debugging of custom code these instructions can then be removed.

#def i ne ENABLE_Vf bi t _SLOT1 0xC000

#define TAG_PHASE 0
#def i ne COMVAND_ADDRESS_SLOT 1
#define STATUS_ADDRESS_SLOT 1
#define STATUS_DATA_SLOT 2

/* Verify integrity of AD1819a indexed control register states to see if comunication was
successful */
verify reg_writes:

4 = Init_Codec_Registers;

m = 2;

I5 = Codec_Init_Results;

ri5 = ENABLE_Vfbit_SLOT1; /* enable valid frame bit, and slots 1 data bits */

LCNTR = 17, Do adl1819_register_status UNTIL LCE;
dm(t x_buf + TAG PHASE) = r15;/*set valid slot bits in tag phase for slots 0,1,2 */

ri = dm(l4,2); /* get indexed register address that is to be inspected */

r2 = 0x8000; /* set bit #15 for read request in command address word */

ri =r1 ORr2; /* OR read request with the indirect register value */

dm(t x_buf + COMVAND_ADDRESS SLOT) = rl; /*send it out of conmmand address tinmeslot*/
idle; /* wait for 2 audio frane to go by,latency in getting data */
idle;

r3 = dm(rx_buf + STATUS_ADDRESS_SLOT) ;
dm(15,1) =r3;
r3 = dm(rx_buf + STATUS_DATA SLOT);/* fetch requested indexed register data */
dm(15,1) =r3; /* store to results buffer */
ad1819_regi ster_status: nop; /* wait until TDM franme is transmtted */

Explanation Of The AD1819A Codec Register Readback Loop :
The buffer pointers14 and 15 isfirst set to point to the top of the codec register buffer and codec results buffer.

Slot 0 (TAG Phase) is set up to enable the valid frame bit and slot 1 valid bit by writing avalue of 0xC000 in DM (tx_buf + 0)

The Loop Counter Register LCNTR is set to the number of registersto be read from the AD1819A. Inthiscase 17 registers
inall 3 codecswill be set to the same value.

Memory writesfrom DM (tx_buf + 1) will set aread request for the codec register address specified in the
Init_Codec_Registers[] buffer. Sincewe are modifying by two, we are only reading AD1819A register addresses from
thinsinput buffer, OR'ing in the read request bit #15 (the MSB) and transmitting the read request of the addressin the TX
address times| ot.

Two IDLE instructions are required to correctly readback the codec, since 1 TX audio frameisrequired to send the
readback reguest, and 1 rx audio frameis then required to send the contents of the register requested in the next audio
frame.

Memory reads from DM (rx_buf + 1) will fetch the register read address
Memory readsfrom DM (rx_buf + 2) will fetch the register read datafor the codec address specified in the previous timeslot.

The pointer 15 copies the register address and datain the Codec Init Results[] buffer for every read request. The
resulting buffer contents alternates with the codec addresses on even DSP addresses, and codec data for the
corresponding codec register address on odd DSP memory locations. This configuration is similar to that of the input
Init_Codec_Registers/] buffer, so the user can than easily compare the codec programming buffer to the codec read
results buffer.

6. Processing AD1819A Audio Samples via the SPORT Tx or Rx ISR

The 21065L" s SPORT1 Interrupt Vectors and I nterrupt Service Routines can be used to process incoming information from the
up to 3 AD1819As through one serial port. Aswas described earlier in section 3.4, the information sent from the AD1819A is
DMA-Chained (i.e., the SPORT receives the entire block of AD1819A frame data before a SPORT interrupt occurs, and the DMA
settings are automatically reloaded to repeat the transfer of codec data) into the rx_buf] | buffer and an interrupt is generated
when the buffer isfilled with new data. Therefore, whenaRX interrupt routineis being serviced the datafrom all active receive
timesl ots has been filled into the receive DMA buffer. When aTX interrupt routine is being services, the datafrom the DMA
buffer has been transferred out to the serial port. Output left and right samples, codec commands, and valid tag information are
filled into the transmit DMA buffer tx_buf] | for transmission out of SPORT. The programmer has the option of executing the
DSP dgorithm from either the transmit DMA interrupt or the receive DMA interrupt.

Figure 15 below shows a high level logical view of the audio streams that can be processed when interfacing up to 3 AD1819sto
the SHARC DSP. With stereo ADCs and DACs on each codec, each SHARC serial port is capable of processing 6 input audio
channels and send DSP output audio streams to 6 output channels. Thistype of multiple codec configuration can find
applicationsin low-cost audio designs, such asimplementation of a6 x 2 channel digital mixing console, or provide alow-cost
solution for running surround algorithms requiring 6 channels for audio playback. With the use or both SPORTO0 and SPORT1,
the ADSP-21065L can interface to up to 6 AD1819s, resulting in an audio system with 12 audio input and output channels.

Figure 15. High-Level View Of Three-AD1819 / SHARC Audio System

Analog Stereo
o

le—xnanneio - .

> Channel T). ADSP-2106x
1 ¢ Channel 2
Daisy-Chained
AD1819 Channel'3 Iv. N 5P
- Analog Front 7| Processing
2 End Channel4 "|»" 4
- Channel5)
e
3

Channel 6

Using a DSP SPORT interrupt routine, the processor can detect if it has valid datafrom the codecs. The DSP's interrupt routine
can then send audio data from a given input channel to that channels processing algorithm and places results back to the
output channel stream (in the SPORT DMA buffer) for conversion by that AD1819A DAC. In this section we will investigate
methods for processing data from either the SHARC's SPORTX receive interrupt vector or transmit interrupt vector.

With AD1819A variable sample rate capabilities, it is possible to sample signals at one rate and playback the samples at another
sampling rate. The example codec driver in Appendix A shows how the DSP can test to see if valid datais coming the current
frame. For sampling rates less than 48 kHz, there will not always be valid data, so the DSP's SPORT audio processing ISR must
allow for early return from interrupt with no processing if no valid datais detected in the current frame. For example, running at a
8 kHz sampling rate would result in valid data coming in once every 6 frames (48KHz Frame Rate / 8 kHz sampling rate = 6), so
callsto DSP processing routines would be made every 1 out of 6 SPORT ISR calls.

For variable sample rate applications where there is not always a valid sample per audio frame, slot0 rx and tx valid TAG slot
bits and left/right channel data slot synchronization becomes more crucial and cannot be ignored by the programmer, due to
SPORT MCM & DMA timing relationships . For instance, the DSP TX interrupt routine may try to poll the L/R ADC valid bits
in the rx buffer while the valid left and right data has not yet been DMA'ed into the receive buffer. Another problem occurs
when processing audio in the SPORT's RX interrupt with only 5 slotsyDMA words enabled. The DSP may try to set new tx vaid
slot tag bits in the transmit DMA buffer for transmission, but the slot 0 data has aready been DMA'ed to the SPORT TX
registers. So thetag slot information, instead of getting shifted out in the next audio frame, will remain in the tx DMA buffer and
will not be transmitted until the following frame. Since it will have been too late to write tx tag data to the to the transmit DMA
buffer because of these TDM, DMA and interrupt timing differences, the AD1819A will miss converting processed samples,
resulting in minor or severe audible distortion. However, there are afew tricks we will discuss in this section that will enable the
programmer to successfully write avariable sample rate codec driver. After extended testing and experimenting in search of the

most efficient driver implementations, we found using the SPORT TX interrupts to process data, when setting the codec to a
sample rate less than the default 48 kHz., resulted in the lowest the DSP's IOP bus bandwidth utilization. However, rx-based

processing with 16-word TX DMA buffers and 16 active TX TDM slots removes the restriction of having to read and write valid

tag information early in the SPORT receiveinterrupt service routine.

An example AD1819A audio service routine data flow sequence (this is the procedure actually used in our reference ADSP-
21065L codec drivers) for processing audio data in the SPORT1 transmit or receive ISR is shown below in Figure 16. This
diagram shows the flow of audio samples from the seria port registers, to the DMA buffers, and from there, the audio samples
are copied into temporary memory locations for a simple loopback, or to be used as inputs for the audio processing routines.
The output data is then copied from the output queue into the transmit DMA buffer, where it is then transferred to the SPORT
transmit data register for shifting out of the serial port. Again, the codec processing instructions can be serviced and executed
from either the transmit or receive interrupt vector. If we assume the ADCS/DACSsrun at the 48-kHz default sampling rate, there
is never a concern for TAG bit, ADC valid bit, and DAC request bit alignment. If all codecs are set to run at 48 kHz, then the
DSP SPORT1 receive I SR can skip testing of audio datasince valid bitsin the TAG for ADC data should always be 1's.

Figure 16. Example 21065L EZ-LAB AD1819 Software Driver

SPORT1 ADC RX DMA Buffer

RX_BUF
Tag Slot
Reg Addr
RX1 DM Audio Data Holders
Reg Data
SPO‘I:;I;L ADC ADC Left || DM(Left_Channel_In)
RX1 register ADC Right -1 DM|(Right_Channel_In) e

SPORT1 DAC TX DMA Buffer

TX_BUF
Tag Slot
CodecAdd
™1 DM Audio Data Holders
Codec
SPORT1 DAC DAC Left | DM(Left_Channel_Out) [rem—
data, -
X1 DAC Right |« DM(Right_Channel_Out)

Example SPORT1 RX or TX Interrupt Service Routine Workflow
1) Initially clear transmit DMA buffer slots in tx_buf (stuff all slots with 0's if no data is sent, to conform to AC'97 spec)
2) Check the AD1819 Stereo ADCs for valid data from Tag Phase in Slot 0. Also, instead of polling the ADC Valid Bits, the DAC request bits

in address 0x74 can be checked to see if the DACs are requesting data (This only is applicable for processing data at sample rates less than 48
kHz)

3) Set the TX Tag Phase Bits in TX slot 0 to Notify AD1819 DACs that valid data is being transmitted in the current frame, depending on if
either the ADCs containing data, or the DACs requesting data.

4) Based on Step 2's results, get valid data from AD1819a via the SPORT receive DMA buffer rx_buf

5) Save Codec Data to Registers or Memory for DSP Processing
6) Run Desired DSP Algorithm
7) Transmit DSP Algorithmic Results to AD1819A4 DACs via the SPORT DMA buffer tx_buf.

6.1 Important 21065L EZ-LAB SPORT1 DMA & AD1819A Multichannel Timing Notes

For asingle codec system (such asthe 21065L EZ-LAB AD1819A), the DSP programmer needs to be careful in the choice of
implementing a custom driver. Ideally, we wish to implement the DMA buffers with the minimum amount of memory required
with least possible number of TDM channels enabled, as we get amemory savings and areduction in IOP transfer bandwidth
utilization. For asingle AD1819A codec system, thiswould requirea TX and RX buffer of 5words. In some cases, the
programmer may discover that a driver that runs successfully at 48 kHz no longer runs correctly at slower samplerates. In other
instances, adriver that may run clean (no distortion) at 16 kHz, an integer divisor of 48 kHz, will sound distorted at fractional
sample rates of 48 kHz such a8.124 kHz. Thisis because at fractional samplerate ratios of 48 kHz, the ADC valid bits are being
set in unpredictabl e patterns compared the AD1819As DAC request bits, which may be set in alternative bit patterns. Inthis
case the DSP algorithm result may accidentally be transmitted to the AD1819 twice or skip and output sample because of data
overruns or under-runs. In this section we will DMA timing and various methods for processing data for successful DSP/Codec
driver implementations. (The topics discussed here apply for multi-codec systems with additional DMA buffer words and slots
enabled, but we will not discuss two or three codec system timing issuesin detail, since all timing issues described here apply
for multiple AD1819As interfaced to the SHARC SPORT)

For SPORT TX and RX DMA chaining in TDM mode, the DM A interrupts are always at least two timeslots apart (See
Figure 17 below). Thisisbecause after the Transmit TCB is downloaded from memory and the reactivated SPORT transmit
DMA channel prepares for data transmission, the DMA controller initially places the first two words from the SPORT transmit
DMA buffer into thetwo SPORT1 TX buffer FIFO registers. Thisautomatically decrements the Transmit DMA Count Register
by two. After the assertion of the TX chained-DMA interrupt, we would need to wait until the active RX chained-DMA transfer
bringsin datafor channels 3 and 4 for the current frame in which the rx ADC valid bits and DAC request bits are set, because
the Receive DMA Count Register is always delayed behind the Transmit DMA Count Register by avalue of two.

So, before timeslot 0 even begins transmit/receive activity, the RX DMA Count = 5 while the TX DMA Count = 3 (assuming we
have declared 5-word TX and RX DMA bufferswith 5 active rx and tx timeslots enabled on the serial port). The transmit
interrupt occurs when the TX DMA Count = 0, and thisinterrupt request occurs on the second DSP clock cycle immediately
after the LSB of timeslot 2 isreceived. While thistransmit interrupt is generated, the transmit data for the left channel DAC
timeslot is currently shifting out of the SPORT's TX-shift register in slot 2, while the AD1819 right channel TX DAC datafor
timeslot 4isinthe TX1A register queue, waiting to be transmitted after timeslot 2 dataiis finished shifting out of the SPORT. By
the time both the transmit and receive interrupts are latched in the current frame (after timeslot 4), therx and tx TCBs will be
reloaded, but no DMA internal memory transferswill occur until the next frame sync, which would occur 11 time-slots later (with
the exception of the 1% two words in the TX buffer, which reload into the TX SPORT shift register and data buffer TX1A asthe
previous channel 3 and 4 data shift out of the TX-shift register). After each reloading of the Transmit DMA TCB parameters,
thefirst two values from the TX DMA buffer are automatically reloaded into the tx-shift register and the TX data buffer after the
previoustimeslots 3 & 4 data are shifted out of the SPORT TX-Shift register, but remain in the 'tx-queue’ until the DSP generates
the next 48 kHz frame sync within 11 16-bit timeslots.

Figure 17. AD1819/SPORT Timeslot, DMA Count and RX & TX Interrupt Timing Relationships

RFS1 | 1 [
DR1_A < SLOTO0 >< SLOT1 >< SLOT2 >< SLOT3 >< SLOT4 > ---------- [/=-=—==—=—————————

No activity on Slots 5 - 15
CR1A 5 4 3 2 1 0 € RX Interrupt Here

(DMA RX Count Reg)

DT1_A < SLOTO0 >< SLOT1l >< SLOT2 >< SLOT3 >< SLOT4 > ---------- /-
No activity on Slots 5 - 15

CT1a 3 2 1 0 € TX Interrupt Here

(DMA TX Count Reg) TX queue reloaded with 1°° two tx_buf values

as slots 3 and 4 are shifted out of SPORT1

(1/12.288 MHz SCLK) x (16-bits/timeslot) x (2 timeslots) = 2.604 microseconds
1/ 60 MHz Instruction Execution = 16.667 nanoseconds per instruction
2.604 microseconds / 16.667 nanoseconds = 156.25 = 157 DSP cycles

6.2 Multichannel, DMA and ISR Methods of Implementation For Processing Data < 48 kHz
Now that we have examined in section 6.1 the relative timing difference in SPORT TX and RX interrupts between the transmit
and receive channels, we will investigate various implementation methods to ensure proper data and tag alignment for
processing data from the AD1819A. Note that these methods apply to the single codec case and they may become necessary to
follow when running at slower samplerates. For multiple codecs, these recommendations still apply, but additional DMA buffer
words and the number of active timeslots enabled in the TDM frame would need to be added (2 extratimeslots and DMA words
for adual codec system, and 4 extratimesiots and DMA words for atriple codec system).

1. Insert a Delay Loop
Use 5-word TX and RX DMA buffers with channels 0 - 4 active
Audio processing via the SPORT Transmit Interrupt

One method for guaranteeing new left/right rx datain slots 3 and 4 will be available when entering the SPORT TX interrupt and
detecting corresponding ADC tag bitsto be valid, isto implement adelay loop to simply wait for the data. This method isonly
applicable if we have declareda SPORT1 TX DMA buffer size of 5 along with 5 active TDM channels enabled in the SPORT TX
multichannel enable register, equivalent in size to the SPORT1 RX DMA buffer and enabled rx channels. Immediately before
fetching the left and right ADC data a delay loop can be added to wait for the data. This can be coded as follows:

LCNTR=126, Do Del ay_Getting_Data UNTIL LCE;
Del ay_Getting_Dat a: NOP

Thisdelay loop isonly required if the user needsto run at sample rates < 48 kHz with a 48 kHz frame rate and when processing
datafrom the TX interrupt while only declaringa TX DMA buffer size of 5 along with 5 TX TDM channels enabled.

Itis estimated that while waiting for the |eft channel in slot 3, it takes 79 DSP Cycles at 60 MIPs. While waiting for the right
channel datain slot 4, it takes approximately 157 DSP cycles.

Because of the interrupt latency and previousinstructionsto this point, it was found using the 21065L EZ-LAB that a L oop
counter value of 126 guarantees enough time for the right channel datato be received.

This approach is probably not acceptable for most designs, but has been found to work for smaller audio applications. Thisis
definitely trueif the programmer needs to include other background processing or interrupt routines that need to be executed
during thistime. Thus this method is not the preferable method because of the lossin M1Ps bandwidth (about 12% lossin
bandwidth utilization). The programmer can should instead try steps 2 and 3. Thelossin bandwidth is estimated as follows:

(60 MIPs /48 kHz AC-97 Audio Frame Rate) = 1250 DSP cycles to process data
DSP cycles - 150 = 1100 DSP cycles, or about 12% loss in available MIPs

Recommended DSP Driver Settings:

.var rcv_tcb[8] =0, O, O, O, O, 5, 1, O; /* receive tcb */

.var xmit tcb[8] =0, O, O, O, O, 5, 1, O; /* transmit tcb */

.var rx_buf[5]; /* receive buffer */

.var tx buf[5] = /* transmit buffer */
0xEQO00, /* set valid bits for slot 0, 1, and 2 */
0x7400, /* serial configuration register address */
0xFF80, /* Slot-16 mode */
0x0000, /* stuff other slots with zeros for now */

0x0000;

/* sportl receive and transmit multichannel word enable registers */

RO = 0x0000001F; /* enable transmit and receive channels 0-4 */
dm (MRCS1) = RO;
dm (MTCS1) = RO;

bit set imask SPT1I; /* enable sportl xmit */

2. Use a TX DMA buffer = 7 words in length with TX slots 0-6 active
RX DMA buffer = 5 words in length with 5 active slots - 0-4
Audio Processing via the SPORT TX Interrupt

An efficient implementation is to extend the TX DMA buffer sizeto 7 in length and enable 7 active TX TDM channels. Thiswill
guarantee that by the time the DSP generatesa TX DMA interrupt, the RX left and right data for the current frame have been
received in time before reading the samples. Slots 5 and 6 are dummy slots and never used. However, the advantage to this
implementation isthat the DSP core is not held up waiting for the RX left and right channels to be DMA'ed into RX BUF. (In
order to implement this method with the 21065L EZ-LAB RS232 Debugger, the programmer is required to run a SPORT1 register
clear routine to reset SPORT1 MCM and DMA activity... refer to Appendix A for an example SPORT1 register-clear routine)

Recommended DSP Driver Settings.

.var rcv_tcb[8] =0, 0, O, O, O, 5, 1, O; /* receive tcb */
.var xmit_ tcb[8] =0, O, O, O, O, 7, 1, O; /* transmit tcb, TX DMA count = 7 */
.var rx buf[5]; /* receive buffer */
.var tx buf[7] = /* transmit buffer */
0xEO000, /* set valid bits for slot 0, 1, and 2 */
0x7400, /* serial configuration register address */
O0xFF80, /* Slot-16 mode */
0x0000, /* stuff other slots with zeros for now */
0x0000,
0x0000, /* slots 5 and 6 are dummy slots */
0x0000;

/* sportl receive multichannel word enable registers */

RO = 0x0000001F; /* enable receive channels 0-4 */
dm (MRCS1) = RO;

/* sportl transmit multichannel word enable registers */
RO = 0x0000007F; /* enable transmit channels 0-6 */
dm (MTCS1) = RO;

bit set imask SPT1I; /* enable sportl xmit */

3. Use Both the SPORT RX and TX Interrupts for audio processing
RX ISR receives AD1819A Data and TAG/DAC reqister information
TX ISR transmits processed audio data to AD1819A DACs
Use 5-Word TX and RX DMA Buffers with rx/tx timeslots 0-4 enabled

Using this method, set the TX DMA buffer size and active MCM channelsto 5, and then use both the SPORT1 tx and rx
interruptsto send/receive AD1819a audio data. Refer to alternate AD1819 reference code for this solution. ADC Valid Bitsor
DAC Request Bitsinformation can be passed from the SPORT receive | SR to the SPORT transmit I SR through aregister or
variable stored in memory.

Recommended DSP Driver Settings:

.var rcv_tcb[8] =0, 0, O, O, O, 5, 1, O; /* receive tcb */

.var xmit_ tcb[8] =0, 0, O, O, O, 5, 1, O; /* transmit tcb */

.var rx_buf[5]; /* receive buffer */

.var tx buf[5] = /* transmit buffer */
0xEQO00, /* set valid bits for slot 0, 1, and 2 */
0x7400, /* serial configuration register address */
0xFF80, /* Slot-16 mode */
0x0000, /* stuff other slots with zeros for now */
0x0000;

/* sportl receive and transmit multichannel word enable registers */

RO = 0x0000001F; /* enable transmit and receive channels 0-4 */
dm (MRCS1) = RO;
dm (MTCS1) = RO;

bit set imask SPT1I | SPR1I; /* enable both sportl xmit and rcv */

When using the TX ISR for audio processing or for transmitting output audio data to the AD1819A (using either methods 1, 2
or 3), the DSP programmer has approximately 75 DSP cycles (assuming 60 Mhz operation) upon entering the SPORT TX
ISR to write new tag information to the DM(TX_BUF + 0), which is the TX TAG phase slot, in order that our left and right
transmit data slots go out within the same audio frame as the TAG slot. |f not donein time, the DSP would send data out in the
current frame, but the tag bits would get sent in the following frame. The DSP would then risk the dropping of samples, and
severe audible distortion results. The timing requirement for writing to the TX TAG location is estimated as follows:

(1/12.288 MHz SCLK) x (16-hits'timeslot) x (1 timeslots) = 1.302 microseconds
1/60 MHz Instruction Execution = 16.667 nanoseconds per instruction
microseconds/ 16.667 nanoseconds = 156.25 = 78.125 DSP cycles
DSP cycle (RX interrupt request 1 CLKIN cycle after last bit of serial word is shifted out of SPORT)
4 cycles Interrupt Vector Latency (1 cycle sync and latch, 1 cycle recognition, 2 cyclesto branch toint vector)

79-1-4=74DSP Ingtruction Cyclesto writeto the TAG fromthe TX ISR

Therefore, when processing data at slower sample rates < 48 kHz, it is recommended to use the SPORT TX interrupt to process
audio or transmit DAC data ... but thisis only required whenever you areusing 5 or 7 word TX DMA buffer sizes. Thisreason
for using the TX ISR instead of the RX ISR in thissituation isasfollows: If we wereto usethe RX ISR for processing,
whenever the RX DMA interrupt occurs, the Tx TAG slot datain the top of the TX DMA buffer has already been loaded into
the TX 1A register waiting for the next frame sync. Thusit would betoo lateto try to writeto the TAG DMA buffer offset
because it has already been transferred by the DMA controller to the SPORT circuitry. Thistransfer would have occurred
approximately 1 timeslot, or 16 BIT_CLK cycles prior to entering the RX Interrupt Service Routine.

For fixed 48 kHz sample rate applications, the RX interrupt can still be used to process codec data and run a selected DSP
algorithm, sincethe RX and TX TAG bitsand valid left/right data occur in every frame and will always be set. The programmer
therefore would not be concerned with polling ADC valid bits or DAC request bits. A ' one-audio-frame delay' would result in
the transmitting of the processed data, but inrealtime the latency would be negligible. The DSP actually would be transmitting
left or right data that would correspond to the TAG bits set in the previous audio frame and | SR, which does not adhere to the
AC-97 specification. However, sincethe ADC valid bits and DAC valid bits are set, the programmer no longer is concerned with
carefully setting them at the appropriate time since these bits will always be set.

4. Use the RX Interrupt for Audio Processing
5-word RX DMA Buffer & 5 RX slots (0 - 4) enabled
16-word TX DMA Buffer & 16 TX Slots (0 - 15) enabled

This method will allow the DSP programmer to use the RX interrupt for audio processing, without having to install aTX ISR
jump or call routine at the SPORT TX interrupt vector after programming the AD1819A. Another benefit isthat by processing
the datafrom the RX interrupt isthat we guarantee that data has left and right TAG information and left and right data has been
received in anewly filled buffer, after the generation of the RX interrupt after the 5" slot (SLOT 4), while at the same time the TX
interrupt will continue to send dummy 'zero'sin timeslots 5 - 15. Thiswill ensure that thereis plenty of timeto writeto the TX
TAG dlot location DM(TX_BUF + 0) at any timeinthe DSP's RX | SR audio processing routine, aslong asit is done before the
completion of the transmission of SLOT14 TX data. After SLOT14 istransmitted, the ADSP-21065L will DMA the new TX TAG
datainto the SPORT's TX 1A register, while SLOT 15 beginsto be shifted out of the SPORT T-shift register for SLOT15
transmission.

With this approach the DSP programmer can safely wait for adurationof 10 x 16-bit timeslotsin the RX | SR before writing anew
valueto DM(TX_BUF + 0), which will be transmitted in the following frame.

Interms of DSP cycles, this equates to:

SLOT 15(TX TAG DMA'ed into TX1A register)
SLOT5 (RX DMA Count = 0)

1 DSPcycle (RX interrupt request 1 CLKIN cycle after last bit of serial word is shifted into SPORT r-shift register)

4 cyclesInterrupt Vector Latency (1 cycle sync and latch, 1 cycle recognition, 2 cyclesto branch toint vector)
SLOT 15 - SLOT5 =10 x 16-hit dots= 160 SCLK cycles=171.25 DSP Cycles
172-1- 4 =777 DSP Instruction Cycles

Therefore, the programmer has 778 DSP Instruction Cycles (assuming 60 MHz operation) within the 21065L SPORT RX Interrupt
Service Routine for which the DSPis required to write the new transmit TAG slot information into DM(TX_BUF + 0) so that it
correctly gets transmitted in the next audio frame. The advantage to this method is that the programmer is not restricted to
having to write to the TX Tag location in the beginning of the ISR. The drawback is that DSP requires more memory for the TX
DMA buffer, and DMA transfer overhead isincreased from 5 or 7 transfers to 16 on the 21065L's |OP bus.

Recommended DSP Driver Settings.

.var rcv_tcb[8] =0, 0, O, O, O, 5, 1, O; /* receive tcb */
.var xmit tcb[8] =0, O, O, O, O, 16, 1, O; /* transmit tcb, TX DMA count = 16 */
.var rx buf[5]; /* receive buffer */
.var tx buf[l6] = /* transmit buffer */
0xE000, /* set valid bits for slot 0, 1, and 2 */
0x7400, /* serial configuration register address */
O0xFF80, /* Slot-16 mode */
0x0000, /* stuff other slots with zeros for now */
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,
0x0000,

0x0000,

0x0000,
0x0000;

/* sportl receive multichannel word enable registers */

RO = 0x0000001F; /* enable receive channels 0-4 */
dm (MRCS1) = RO;

/* sportl transmit multichannel word enable registers */

RO = 0x0000FFFF; /* enable transmit channels 0-15 */
dm (MTCS1) = RO;

bit set imask SPR1I; /* enable sportl rcv */

6.3 Using The 'Rx ADC Valid Bits' Method Or The '‘DAC Request Bits'Method To Transmit

Processed Audio Data To The AD1819A DACs (For Variable Sample Rates < 48 kHz)

When processing the audio datain the SPORT's transmit or receive interrupt service routine, the programmer has the option to
either poll the ADC valid bits of the incoming data or the DAC request bits (in the Serial Configuration address 0x74) to
determine when to transmit processed audio datato the AD1819A DACsin the next audio frame. To prepare DAC datato
transmit in the next audio frame, the DSP's SPORT ISR instructions should simply include DM data transfers the appropriate
locationsin the SPORT transmit DMA buffer, which in turn istransferred out of the serial port on the next TDM frame sync
assertion. The DSP's SPORT interrupt routine's codec-specific instructions either would poll therx-ADC valid bitsinthe TAG
slot (slot 0), or poll the DAC request bitsin either Slotl or Slot2. If either the ADC valid bits are set or DAC requests are made,
the DSP then executes instructions to ensure that the tx TAG bits (slot 0) for the left and right DAC channels are set, since it will
place processed data in the left channel slot (slot 3) and the right channel slot (slot4). We will look at both methods and offer
advantages and disadvantages to using either method.

6.3.1 'ADC Valid Bits' Method

Polling the ADC Valid Bitsin the Tag Phase (Slot 0) upon entering the SPORT/codec interrupt service routine will tell the DSP if
it needsto fill the TX DMA buffer slots 3 and 4 with valid data for transmission in the next audio frame. Usually, we will first
poll these bitsto determine if we have to save and process our left/right audio datain slots 3 and 4. Once we save our new
sample for processing, we will only transmit the ADC valid bit'scorresponding DAC channel dataif we have received new ADC
samples. This method is more of a pipelined FIFO approach, in which we always will transmit the newly processed sample to the
DACsin the next audio frame every time we get the new ADC sample and processit. Using the'ADC valid bits method usually
yieldsaclean ADC-DSP-DAC loopback path at fractional variable samplerates < 48 kHz.

Figure 18 on the following page visually shows the 21065L SPORT transmit and receive DMA buffers at the point when the DSP
vectors off to the SPORT interrupt to processdata. Typically, you would see this sort of display in the 65L RS232 VDSP
monitor debugger or JTAG VDSP EZ-ICE'S 'two-column memory window'. Inspecting the contents of the SPORT receive DMA
buffer 'rx_buf' will give an indication if we have new ADC data. If these valid bits are set, then we ensure that corresponding
DAC channel datawill be availablein the SPORT transmit buffer for transmission in the following audio frame.

The newly-filled SPORT receive DMA buffer contains new data from previous audio frame. We see that the ADC valid bitsfor
slots4 and 5 inthe slot 0 Tag (or DM(rx_buf + 0)) are set aswell as the Codec Ready bit D15, and valid data existsin slots 4,
DM(rx_buf +3), and 5, DM(rx_buf + 4). Slots1and 2 are 'Don't Care’ conditions and ignored in this case. It will usually
contain the status of the last codec read, or if the DRQEN bit is set, these slotswill display the contents of address 0x74, the
serial configuration register.

When the DSP ISR detects that there isvalid data, it then calls the user's processing routine, or sets aflag to notify the
background task that there is new datato process. Thus, for slower sample rates |ess than 48 kHz, we will only execute our DSP
routine when the DSP detects valid data, and as aresult, the DSP will only transmit DAC datawhen ADC datafor that channel
was valid for the previous frame and current SPORT ISR. Now, in examining the contentsof the Transmit DMA buffer in the
figure below, we see that new datais copied into the buffer and is transmitted on the next frame sync assertion as aresult of

detecting valid datain the previousframe. Sincethereisvalid ADC datain rx_buff], the DSP ensures that the DAC valid Tag
bitsfor slots 3 and 4, aswell asthe ‘Valid Frame' bit D15, are set in DM (tx_buf +0). The interrupt routine also places any
processed audio samplesin Slots 3 and 4 for the Left and Right DAC channels. Unused slots are filled with zeros.

Figure 18. ‘ADC Valid Bits'Method For Transmitting DAC Data In The Next Audio Frame

SPORT1 Receive SPORTI1 Transmit
DMA Buffer DMA Buffer
rx_buf [5] tx_buf [7]
rx_buf + 0f 29 Phase 0x9800 tx_buf + 0] @9 Fhase 0x9800
i buf+ 1| S OXXXXX tx_buf + 1| commany 0x0000
rx_buf + 2| Seatee OXXXXX = tx_buf + 2| command 0x0000
rx_buf + 3| ADC Left 0x4012 tx_buf + 3| DACLeit Qx578A
Data Data
rx_buf + 4| APC Right - 0x40AB tx_buf + 4| PACRight — 0x32F
Data Data

Wewill now examine some example 21065L Assembly Language Instructions incorporated in our 21065L SPORT Interrupt
Service Routine (listed in Appendix A), that show how to detect ADC valid bits and then set up the DA C slot tag bits for the
transmission of DAC datain the next audio frame if the ADC valid bits are set.

1) Theseinstructions check if we have new ADC datafrom the TAG slot O by reading from DM (rx_buf + 0). Masking out that
value with 0x1800 tests the bit positions corresponding to slots 3 and 4:

check_ADCs_for_valid_data:
roO = dm(rx_buf + TAG_PHASE); /* Get ADC valid bits fromtag phase slot*/
ri 0x1800; /* Inspect for valid L/R ADC data */
r2 ro0 and r1; /* Mask other bits in tag */
dm(ADC_valid_bits) = r2;

2) Wethen quickly set thetx TAG bitsfor slots 3 and 4. Thiswill either set thetx TAG bitsfor the left and right channel to zero
if novalid data, or we will set the DAC tag bitsif the ADC valid bits were set, and thus we will be filling up the tx DMA buffer
locations 3 and 4 with new left and right channel DAC data:

set _tx_slot_valid_bits:
rl = dm(tx_buf + TAG PHASE); /* set tx valid bits based on ADC valid bits info */
r3 =r2 or ri, /* set left/right channel bits in tag, if required */
dm(t x_buf + TAG PHASE) = r3; /* Wite tag to tx-buf ASAP before it's shifted out
SPORT! */

3) Now that we set up the TX TAG bits, we save our current left and right channel datafor processing. We will only save our
datawhenever we detect that we have valid data. Thisisdone by using the SHARC's shifter 'Bit Test' instruction, then testing
to seeif the shifter result was zero. If it iszero, we have no valid data, so we move on. If theresult wasa'l', then we save our
newly detected sample. Thisisdone asfollows:

check_AD1819 ADC | eft:

BTST r2 by M Left_ADC; /* Check Master left ADC valid bit */

IF sz JUW check_AD1819_ADC right; /* |If valid data then save ADC sanple */

ré6 = dm(rx_buf + LEFT); /* get Master 1819 |eft channel input sanple */
ré6 = Ishift r6 by 16; /* shift up to MSBs to preserve sign in 1.31 format */
dm(Left _Channel _In) = r6; /* save to data holder for processing */

check_AD1819_ADC ri ght:

BTST r2 by M_Ri ght _ADC; /* Check Master right ADC valid bit */

If sz rti; /* |If valid data then save ADC sanple */
ré = dm(rx_buf + RIGHT); /* get Master 1819 right channel input sanple */
ré = Ishift r6 by 16; /* shift up to MSBs to preserve sign in 1.31 format */
dm(Ri ght _Channel _In) = r6; /* save to data holder for processing */

4) Wethen call our DSP algorithm. This can be conditionally called only if we have detected new audio data:

user _applic:
cal |l DSP_Audi o_Routi ne;
/* ---- DSP processing is finished, now playback results to AD1819 ---- */

5) After processing our ADC data, we how re-test the ADC valid bitsto determine if we needed to send our resultsin the next
audio frame. If these bitsare set to a'l’, we copy our results to the left and right DAC channelsto slots 3 and 4 in the SPORT1
transmit DMA buffer, where it will await transmission to the AD1819A DA Csthrough the AC-link.

Pl ayback_audi o_dat a:
/* Transmt Left and Right Valid Data every tinme there the ADCs have valid data */
r2 = dm(ADC_val i d_bits);

tx_AD1819_DAC | eft:

BTST r2 by M Left_ADC; /* Check to see if we need to send DAC right sanple */
IF sz JUWMP tx_AD1819_DAC ri ght; /* If valid data then transmt DAC sanple */

rl5 = dm(Left_Channel _CQut);/ /* get channel 1 output result */

ri5 = Ishift rl1l5 by -16; /* put back in bits 0..15 for SPORT tx */

dm(tx_buf + LEFT) = r15; /* output right result to AD1819a Slot 3 */

t x_AD1819_DAC ri ght:

BTST r2 by M_Ri ght _ADC; /* Check to see if we need to send DAC right sanple */
If sz junp tx_done; /* 1f valid data then transmt DAC sanple */

ri5 = dm(Ri ght _Channel _Qut); /* get channel 2 output result */

rl5 = Ishift rl15 by -16; /* put back in bits 0..15 for SPORT tx */

dm(t x_buf + RIGHT) = ril5; /* output right result to AD1819a Slot 4 */

Thus, the 'ADC Valid Bits' Method provides an easy and predictable way to transmit DAC datain the next audio frame. This
method usually yields clean audio without any Tag/Data/DMA timing issues that can cause distortion for sample rate values
lessthan 48 kHz. Ring buffersare not required for fractional samplerateratios. There are limitations to using this method to
process audio data. The ADC and DAC channels (LADC/LDAC and RADC/RDAC) can only run at the sasme samplerates. You
cannot run both the ADCs and DACs at different rates unlessthe AD1819A's DAC request bitsare polled. We will cover this
method in detail in the following section.

6.3.2 'DAC Request Bits' Method

Polling the DAC Request Bitsin the Serial Configuration Register (automatically in the Status Address and Status Data slots
when the DRQEN bit is set) when we enter our SPORT interrupt service routine will tell the DSPif it needsto fill the TX DMA
buffer slots 3 and 4 with valid datafor transmission in the next audio frame. First, the ADC valid bits should be polled to
determineif we have to save and process our left/right audio datain slots 3 and 4. Once the valid new samples are detected and
saved for processing, we will only transmit DAC dataif the DAC Request Bitswere set in the AD1819A's Serial Configuration
Register 0x74. Thismethod isfairly pipelined at integer ratio sample rates of 48 kHz so that we never have any ADC/DAC
sample overruns or underruns, while for fractional sample ratios the use of ring buffersto handle ADC/DAC sample ratejitter is
recommended (see next section). The obvious benefit gained with the use of polling the DAC request hits, isthat we are free to
set left/right ADCsto different sample rates than the DAC, thus removing sample rate conversion routines on the DSP.

Figure 19.

'DAC Request Bits' Method For Transmitting DAC Data In The Next Audio Frame

SPORT1 Receive SPORT1 Transmit
DMA Buffer DMA Buffer
rx_buf [5] tx_buf [7]
rx_buf + 0| T2 Phase OxF800 tx_buf + 0| T@e Fhase 0x9800
ix_buf + 1| S 0x7400 tX_buf+ 1| commang 0x0000
rx_buf + 2| seotee . OXF901 = tx_buf + 2| command 0x0000
rx_buf + 3| ADC Lt 0x4012 tx_buf + 3| DACLeft Qx578A
Data Data
rx_buf + 4| APC Right 0x40AB tx_buf + 4| PAC Right — 0x32F
Data Data

Figure 19 shown above visually shows the 21065L SPORT transmit and receive DMA buffers at the point when the DSP vectors
off to the SPORT interrupt to process data. As stated before, you would see this sort of display in the 65L RS232 VDSP
debugger or JTAG VDSP ICE'S 'two-column memory window'. Inspecting the contents of the SPORT receive DMA buffer
'rx_buf' will give an indication if we have new ADC data, and if the AD1819A DACs are reguesting data viathe DAC request
bits. If these DAC request bits are set, then we ensure that corresponding DAC channel datawill be available in the SPORT
transmit buffer for transmission in the following audio frame.

The newly-filled SPORT receive DMA buffer contains new data from previous audio frame. We see that the ADC valid bitsfor
slots3 and 4 inthe slot 0 Tag (or DM(rx_buf + 0)) are set aswell as the Codec Ready bit D15, and valid data existsin slots 3,
DM(rx_buf +3), and 4, DM(rx_buf + 4). Slots 1 and 2 contain information on the DAC request bits through the automatic
display of the Serial Configuration Register (Codec address 0x74). Thisdatais automatically displayed when the DRQEN bit is
set in thisregister.

When the DSP detects that thereisvalid ADC data (or when it detects the DA C request bits are set), it can call the user's
processing routine, or set aflag to notify the background task that there is new datato process. So the DSP programmer can
process data when either the ADC valid bits or DAC request bits are set in the current audio frame. Thus, for slower sample
rates less than 48 kHz, the DSP will only execute the DSP filter routine it detects valid data (or DA C requests), and as aresult, it
will only transmit DAC datawhen ADC datafor that channel was valid for the current audio frame SPORT ISR. Now, in
examining the contentsof the Transmit DMA buffer in the figure above, we see that new datais copied into the buffer and is
transmitted on the next frame sync assertion as aresult of detecting valid datain the previousframe. Sincethereisnew valid
DAC requests for both the left and right channelsin rx_buf[], the DSP will ensure that the DAC valid Tag bitsfor slots 3 and 4,
aswell asthe‘Valid Frame' bit D15, are set in DM (tx_buf +0). The interrupt services routine also places any processed audio
samplesin Slots 3 and 4 for the Left and Right DAC channels. Unused slots are filled with zeros.

Wewill now examine some example 21065L Assembly Language I nstructions incorporated in our SPORT Interrupt Service
Routine (listed in Appendix A) that show how to detect active DAC Request Bits, and then set up the transmit DAC data tag
slot bits for the transmission in the next audio frame:

1) Theseinstructionsare used to poll the"Active Low" L/R DAC Request bits viathe Status Address Slot 1. We shift these
up by 5 bits, invert the values, so we can then used them to set the tx TAG bitsfor the left and right DAC timeslots 3 & 4.

Check_DAC request _bits:
rl = dm(rx_buf + STATUS_ADDRESS SLOT); /* Get ADC request bits from address slot */
r2 =rl1 and ro; /* Mask out the AD1819 Master DRRQ) and DLRQO bits */
r2 =r2 xor ro; /* Set active | ow DAC request bits to active hi */
r2 = Ishift r2 by 5; /* shift up so output tag info is bits 12 and 11 */

2) Wethen copy the shifted DAC request information to notify the AD1819 if slots 3 and 4 will contain valid data. If the bits
are set, then we will copy DAC datain the current ISR. This gets copied into the Tx Tag Phase Slot 0.

Set _TX_slot_valid_bits:

r0 = 0x8000; /* Wite tag to tx-buf ASAP before it's shifted out! */

r2 =r2 or ro; /* set tx valid bits based on received DAC request info
*/

dm(tx_buf + TAG PHASE) = r2; /* Set Valid Frame & Valid Slot bits in slot 0 tag phase
*/

3) Wethen poll the Rx Tag Slot 0 to seeif we have new L/R ADC dataand save the dataif valid.

RO = dm(rx_buf + TAG_PHASE); /* get tag information to inspect for valid L/R ADC data */ |

4) Aswe saw before with the'ADC Valid Bits Method', if we detect valid data (bit valueisa'l’) we save our current |eft and/or
right channel datafor processing. The hit validity istested with the SHARC's barrel shifter:

check_AD1819_ADC | eft:

BTST r0 by M Left_ADC; /* Check Master left ADC valid bit */

| F sz JUWP check_AD1819_ADC right; /* If valid data then save ADC sanple */
r6 = dm(rx_buf + LEFT); /* get Master 1819 left channel input sanple */
ré = Ishift r6 by 16; /* shift up to MSBs to preserve sign in 1.31 format */
dm(Left_Channel _In) = r6; /* save to data holder for processing */

check_AD1819_ ADC ri ght:

BTST r0 by M_Ri ght _ADC; /* Check Master right ADC valid bit */

IF sz junp user_applic; /* 1f valid data then save ADC sanple */
r6 = dm(rx_buf + RIGHT); /* get Master 1819 right channel input sanmple */
ré = Ishift r6 by 16; /* shift up to MSBs to preserve sign in 1.31 format */
dm(Ri ght _Channel _In) = r6; /* save to data hol der for processing */

5) Wethen call our DSP algorithm. This can be conditionally called only if we have detected new audio data:

user _applic:
call (pc, DSP_Audi o_Routine);
/* ---- DSP processing is finished, now playback results to AD1819 ---- */

6) After processing our ADC data, we now test the DAC Request bits to determine if we needed to send our results in the next
audio frame. If these bits are set, we copy our results to the left and right DAC channelsto slots 3 and 4 in the SPORT1
transmit DMA buffer, whereit will await transmission to the AD1819A DACsthrough the AC-link.

Pl ayback_audi o_dat a:
/[* Transmt Left and Right Valid Data if Requested */
r2=DAC_Req_Left; /* Check to see if Left DAC REQ? */
r3=rl1 and r2; /* DAC request is active low */
if ne junmp bypass_left; [* if it is 1, it neans we have no request, so move on*/
rl5 = dm(Left_Channel _CQut); /* get channel 1 output result */
rl5 = Ishift r1l5 by -16; /* put back in bits 0..15 for SPORT tx */
dm(tx_buf + LEFT) = r15; /* output right result to AD1819a Slot 3 */
bypass_l eft:
r 2=DAC_Req_Ri ght ; /* Check to see if Right DAC REQ? */
r3=rl1 and r2; /* DAC request is active low */
if ne junmp bypass_right; [* if it is 1, it neans we have no request, so move on*/
rl5 = dm(Ri ght _Channel _Qut); /* get channel 2 output result */
rl5 = Ishift r1l5 by -16; /* put back in bits 0..15 for SPORT tx */
dm(t x_buf + RIGHT) = r15; /* output right result to AD1819a Slot 4 */

6.3.3 Single (Master) AD1819A ADC Valid / DAC Request Reference Charts
The Tables below can be used as areference for inspecting ADC Valid Bits, DAC Request Bits and audio data during
debugging of a Single (Master) AD1819A Codec System:

Note: for single codec systems, the DAC request bits are zero'ed out for both the Slavel and Slave2 bit locations. The AD1819A Master Codec
stuffs zeros in these bit locations. In the cases below (which were observed with the Target65L RS232 VVDSP Debugger), Slot16 mode was enabled,
and al RegMx bits are set, even though there is only one master. Status Address Slot DAC Request Bits are 'Active Low'. Status Data Slot DAC
Request Bits are 'Active High'

Status Address Slot #1 for Single Codec System with L & R DAC requests, inactive '0' bits for slaves 1 & 2

D15 | D14 | D13 | D12 | D11 [D10 [D9 D8 D7 D6 D5 D4 D3 D2 D1 DO
0 1 1 1 0 1 0 0 0 0 X X X X 0 0
me|m]o]o] oo

Status Data Slot #2

for Single Codec System with Left

and Right DAC requests, inactive bits for slaves 1 & 2

D15 (D14 | D13 | D12 | D11 | D10 | D9 D8 D7 D6 D5 D4 D3 D2 D1 DO
1 X X 1 1 X X 1 X X X X X X X 1
Slot16 | REGM2 | REGM1 | REGMO | DRQEN 0 0 DLRQO 0 0 0 o 0 0 ‘0" | PRRaO

Table 10. Comparison of ADC Valid and DAC Request Bits

'ADC Valid Bits' Method:
Current Audio Frame (Read SPORT rx buffer)

Next Audio Frame (fill SPORT tx buffer)

ADC Valid DAC Request Left Channel Right Channel =» Tx Tag Slot 0 Left DAC Right DAC
Tag Bits Bits Timeslot 3 Timeslot 4 Timeslot 3 Timeslot 4
0x9800 OXXXXX Valid Data Valid Data 0x9800 Valid Data Valid Data
0x8800 OXXXXX Valid Data No Data 0x8800 Valid Data Zero Fill
0x9000 0XXXXX No Data Valid Data 0x9000 Zero Fill Valid Data
0x8000 OxXXXX No Data No Data 0x8000 Zero Fill Zero Fill

'‘DAC Request Bits' Method:
Current Audio Frame (Read SPORT rx buffer)

Next Audio Frame (fill SPORT tx buffer)

Rx Valid ~ DAC Request Bits Left Channel Right Channel=» Tx Tag Left DAC Right DAC
Tag Bits (slots 1 & 2) Timeslot 3 Timeslot 4 Timeslot 0 Timeslot 3 Timeslot 4
0xF800 [1] 0x7400 [2] 0xF901 Valid Data Valid Data 0x9800 Valid Data Valid Data
0xF800 [1] 0x7440 [2] 0xF900 Valid Data Valid Data 0x9000 Valid Data Zero Fill
0xF800 [1] 0x7480 [2] 0xF801 Valid Data Valid Data 0x8800 Zero Fill Valid Data
0xF800 [1] 0x74c0 [2] OxF800 Valid Data Valid Data 0x8000 Zero Fill Zero Fill
0xF000 [1] 0x7400 [2] 0xF901 Valid Data No Data 0x9800 Valid Data Valid Data
0xF000 [1] 0x7440 [2] 0xF900 Valid Data No Data 0x9000 Valid Data Zero Fill
0xF000 [1] 0x7480 [2] 0xF801 Valid Data No Data 0x8800 Zero Fill Valid Data
0xF000 [1] 0x74c0 [2] 0xF800 Valid Data No Data 0x8000 Zero Fill Zero Fill
0xE800 [1] 0x7400 [2] 0xF901 No Data Valid Data 0x9800 Valid Data Valid Data
0xE800 [1] 0x7440 [2] 0xF900 No Data Valid Data 0x9000 Valid Data Zero Fill
0xE800 [1] 0x7480 [2] 0xF801 No Data Valid Data 0x8800 Zero Fill Valid Data
0xE800 [1] 0x74c0 [2] 0xF800 No Data Valid Data 0x8000 Zero Fill Zero Fill
0xE000 [1] 0x7400 [2] 0xF901 No Data No Data 0x9800 Valid Data Valid Data
0xE000 [1] 0x7440 [2] 0xF900 No Data No Data 0x9000 Valid Data Zero Fill
0xE000 [1] 0x7480 [2] 0xF801 No Data No Data 0x8800 Zero Fill Valid Data
0xE000 [1] 0x74c0 [2] 0xF800 No Data No Data 0x8000 Zero Fill Zero Fill

6.4 Processing Data At Fractional (Versus Integer) Variable Sample Rate Ratios Via The
'DAC Request Bits'Method

(I would like to offer thanks to Al Clark, of Danville Signal Processing, for his suggestions in using ring buffers to
process AD1819A data at fractional sample rate ratios)

The above methods work well at slower sample rates that are integer ratio values of 48 kHz. Methods 1 - 4 described section 6.2,
and in our source code examplesin Appendix A, execute correctly for processing data set up for AD1819A samplerates of 16
kHz, 8 kHz, or 12 kHz. For example, when we program the AD1819A ADCsand DACsto run at asample rate of 8 kHz, we expect
to receive a sample once every 6 frames and we are required (or requested by an AD1819a DA C request bit) to transmit data
once every 6 audio frames. For 16 kHz, we would expect to transmit or receive data once ever 3 frames, and at 12 kHz, once
every 4 audio frames. Normally for these even spacing of samples, we would not ever risk any sample overruns or underruns
because datawill be evenly pipelined in and out of the DSP.

However, when running the AD1819A at fractional ratios of 48 kHz using the ADC valid bitsto receive ADC data and the DAC
request bitsto transmit DAC data, an occasional sample repeat or sample miss can occur. Thisis because received ADC valid
dataand AD1819A DAC requests can be random relative to one another on the ADCs and DACs, for sasmple rates of, say, 23456
Hz, 8201 Hz, or 44100. When processing datain an interrupt service routine and polling the fetched ADC Valid Bitsfrom the
receive TAG slot, we only execute our DSP routine every timewe get valid ADC data. After processing the current valid
samples, we would normally place our resultsinthe TX DMA buffer for the DACsto use when ready. The problemiis, the
DACs may not have been requesting dataviathe AD1819A DAC request bitsin the next audio frame, so werisk occasionally
drop aprocessed sample. Also, the ADC valid bits may not be set for agiven frame, so no processing is done, but at the same
time, we could get two consecutive 'DAC request bit' audio frames. Thisthen would result in repeating back a DSP output
sampletwice, since the DSP algorithm was not processed in the current interrupt service routine. Keep in mind, this has nothing
to do with the'REPEAT VS ZERO FILL SAMPLE! hit that isin thein the AD1819A's Miscellaneous Control Bits Register if the
DAC isstarved. That functionality isfor controlling theinternal operation of the AD1819A DACsif the DSP did not send a
requested sasmplein agiven frame. Of course, if theinput ADC and output DAC samplerates are different, we would then
expect some | SR interpolation or decimation of samplesto occur, in which we are repeating or skipping processed samples back
to the AD1819A output DA Csfrom the processing routine because the DACs are running at adifferent sample rate than the
ADCs. Here, we are only concerned about the specific case where the ADCs samplerate is equivalent to the DACs, and we
want to ensure every new ADC sample is processed and all processed samples are sent back to the AD18194.

For example, if we wereto |ook at a scenario (Figure 20) where ADC Valid Bits being set at non-integer ratios of 48 kHz by the

AD1819A, while at the same time, DAC requests are made by the AD1819A DACsto keep DAC datafilled at the same non-
integer samplerate ratio, we may see something likethis:

Figure 20. Non-Periodic ADC Valid & DAC Request Bit Patterns

SYNC Pulse

[l -l -l I -l |- I

Frame N Frame (N+1) Frame (N+2) Frame (N+3) Frame (N+4) Frame (N+5) Frame (N+6)
ADC L/R Val. ADC L/R Val. No ADC val. ADC L/R Val. No ADC val. No ADC val. ADC L/R Val.
No DAC Regq. No DAC Req. L/RDACReq. L/RDACReq. NoDAC Req. L/R DAC Req. L/RDAC Regq.
Left Ch. Data Left Ch. Data 0x0000 L Left Ch. Data 0x0000 L 0x0000 L Left Ch. Data
Right Ch. Data Right Ch. Data 0x0000 R Right Ch. Data 0x0000 R 0x0000 R Right Ch. Data
Note: 0x0000 L = No Data for left channel timeslot in current audio frame

0x0000 R = No Data for right channel timeslot in current audio frame
The AD1819A stuffs invalid slots with ‘zeros'

Noticein Figure 20 above that in two consecutive audio frames, 2 L/R ADC valid bits may be set back-to-back, while 1 or 0 L/R
DAC request will be made in the same two audio frames. Another possible scenario that can occur is that for two consecutive
audio frames, 1 or 0 L/R ADC valid bits may be set while at the same time while 2 consecutive L/R DAC requests are made in the
same two audio frames. It isexactly these two cases that can occur when sample rates for the ADCs and DACs are set to
fractional ratios, such as 12345 Hz. Thiscan cause 2 problems:

1) TheDSP may processtwo consecutive ADC samples, and place the result in a holding register (in the case of our DSP
driver, these are variables in memory) waiting for the AD1819A DAC to request it, but if the DAC does not make arequest,
then there is a possibility that that processed sample will be overwritten in the next audio processing interrupt routine.

2) TheDSP may not receive ADC samples 1 or 2 ADC samplesin agiven frame, however the AD1819A DACs make two
consecutive DAC requests for the processed audio data waiting in the DSP's holding register (or variable in memory). In
this case thereisapossihility that a processed sample will be transmitted to the DA Cstwice, before we are able to replace it
with an updated processed sample.

The solution for this'equal ADC/DAC fractional sample rate ratio case' when using the 'DAC Request Bits' method isto use a
ring buffer. A ring buffer isapiece of allocated memory that is designed so that it's addressing of data periodically isallowed to
overflow (or underflow) to a certain predetermined number of locations. Ring buffers are often used to prevent sampling jitter in
sampling clocks, which can affect the quality of an audio signal. With the insertion of aring buffer, the unpredictability of the
valid or requested datain a given audio frame between the ADCs and DACs are no longer affected. The memory buffer
increases the DSP's capturing of ADC data because sample frequency variations of the ADCs and DACs are absorbed by the
buffer. Valid AD1919A Left/Right DATA and AD1819A DAC request variations at fractional sample rates of 48 kHz can cause
the input and output data rate to vary independent in audio frames.

To ensure we have asmooth flow of datarunning at fractional ratios of 48 kHz, the programmer can implement asmall ring buffer
(Figure 21) for the left and right channel to prevent an occasional sample repeat or miss when running at fractional rates. A
recommended scheme that has been found to work isto create one or two (depending on if we are performing mono or stereo
processing) small 4-word (or up to 8-word) ring buffers inthe' FETCH ADC DATA' and 'SEND DAC DATA' sections of the
AD1819A processing routine (seefigure below). The small circular ring buffers are initialized such that the output pointer
offset the input pointer by 2 locationsin memory. Thiswould at |east guarantee, for applications where the AD1819A ADCs are
set to the same fractional sample rate asthe DACs, that the input pointer would never pass the output pointer, but may vary 1, 2
or 3 samples ahead from the output pointer. The effective delay will always be two samples, which means we would always be
between 1 to 3 '48-kHz' audio frames behind in getting an input sample into the DSP, and sending the result back out. This
delay, of course, in real-time processing is too negligible to affect the listener for real-time audio applications.

Figure 21. AD1819A DAC Left and Right Channel Ring Buffers

of Siored Lad
O Z S e iy L L

0x7A122112

Input Pointer to
Left Channel
Ring Buffer

AD1819A Left Input Pointer to
DAC Output Right Channel
From Buffer Ring Buffer

Below isan example ring buffer implementation for the left and right channels. Note that this code is not optimized. The
intermediate pointer states for the input and output are restored and saved using the same DAG index register 10, so that we are
not using 4 separate DA G index registers on the DSP to implement these ring buffers input and output taps. With some
additional overhead we only need to use oneindex register. The programmer can use a dedicated index register for each input
and output pointer if there are enough available for their application and then remove all memory pointer save and restore
instructions. Appendix A also includes ring buffer source code for use with the 'DAC Request Bits' Method.

AD1819A Right
DAC Output
From Buffer

. segnent/ dm dm dat a;
.var Lchan_ring_buff[4] =0, 0, 0, O;
.var Rchan_ring_buff[4] 0, 0,0 O
.var L_input_ptr;

.var L_DAC output_ptr; /* tenporary storage of Index register */
.var Rinput_ptr; /* this saves us fromusing 2 DAG */
.var R DAC output_ptr;

. endseg;

. segnent / pm pm code;
/* initialize the ring buffer input and output pointers */

BO = Lchan_ring_buff;

DM L_input_ptr) =10;

10 = Lchan_ring_buff + 2; /* start output ptr in mddl e of the buffer */
DM L_DAC out put_ptr) = 10;

BO = Rchan_ring_buff;
DM R_input _ptr) =10;

10 = Rechan_ring_buff + 2; /* start output ptr in niddle of the buffer */
DM R_DAC out put _ptr) = 10;
LO = 4; /* both ring buffers are 4 words deep */

/* these instruction can be added in the ADI819A Interrupt Service Routines where codec data is received, processed and transmtted */
LO = 4; /* input and output ring buffers are 4 words deep */
left_ring_buffer_input:
RL = DMrx_buf + LEFT_CHANNEL);
BO = Lchan_ring_buff;
10 = DM L_i nput_ptr);
DM 10, M) = RL;
DM L_i nput_ptr) =10;

right_ring_buffer_input:
RL = DMrx_buf + R GHT_CHANNEL);
BO = Rchan_ring_buff;
10 = DM R_i nput _ptr);
DM 10, M) = R1;
DMR.input_ptr) =10;

left_ring_buffer_output:
BO = Lchan_ring_buff;
10 = DM L_DAC output _ptr);
RL = DM 10, M);
DM L_DAC out put_ptr) = 10;
DMt x_buf + LEFT_CHANNEL) = RO

right_ring_buffer_output:

10 = DM R_DAC output _ptr);

RO = DM10, M);

DM R _DAC out put_ptr) = 10;

DMt x_buf + R GHT_CHANNEL) = RO;
. endseg;

NOTE:

Based on our ADI DSP Applications Group's ‘loopback’ listening tests for low distortion (i.e. clean audio) at fractional sample rate ratios using the 'ADC Valid Bits for
DAC transmission' Method, it was determined that the use of Ring Buffers is not really required. With this method of DAC transmission, a Left/Right DAC sample is
only transmitted in the next audio frame whenever we receive a new Left/Right ADC sample. This appears to properly pipeline input samples from the SPORT into the
21065L's DSP algorithm and back out of the SPORT without dropping (or rarely dropping) samples, because the AD1819A's Left and Right DAC ‘conversion hold'
register will never be overwritten with a new value received through the AD1819A's serial interface while waiting to convert the previous DAC sample back to an
analog signal. With this alternate method, the 'valid' ADC L/R sample timeslots received in the previous frame with always ensure that the DSP will transmit 'valid’
L/R DAC timeslots to the AD1819A in the next audio frame.

Thus, the 'ADC Valid Bits' Method does not require the use of ring buffers when the ADC sample rate is equivalent to the DAC sample rate for both channels. When
the ADC and DAC sample rates are the same for a given channel, this results in the ADC valid bit patterns being identical to the DAC Tag L/R valid bits which are set
in the following frame. Since these Tag Bits are 'in phase', we never really run into a situation where a processed sample is skipped or repeated in the D/A
conversion.

6.5 Using RX ADC Valid Flag And TX DAC Valid Flag Variables For Processing Audio
Data At Variable Sample Rates

In certain applications, the user may want to process codec data el sewhere. For example, in C-based applications, the C-runtime
DSP routines may be placed in amain program 'whil€e' loop waiting for SPORT interrupts. The codec interrupt service routine's
responsibility would be to receive and transmit codec data, while the processing of the datais done elsewhere. For slower
sampl e rates, the DSP processing routine would need to know which SPORT interrupt actually received valid data. The DSP
processing routine would also be responsible for notifying the codec transmit routine that it has valid processed data that can
be transmitted back to the DACs. In order to implement such a scheme, the user can define variables that can be used as
transmit and receive request flags that are set when datais ready, and cleared after the data has been transferred. For example,
the 21065L demo examples (Figure 22) use adual buffer scheme, which allows the user to copy datainto atemporary buffer
when the Rx Request variable has been set by the codec receive interrupt routine, while the DMA buffers are currently being
filled, the user processed data from alternate background buffers. After audio datais processed, the information is copied tothe
transmit user buffer, and the Tx request variable is set. The codec processing routine detects that valid datais transferred into
the user output buffer, and copied the datainto the SPORT transmit DMA buffer for transmission to the AD1819. Itisthe
responsibility of the DSP processing routineto clear any set rx flags after new ADC data has been processed and set any TX
flags when thereis new processed data available for the codec ISR. It isthe responsibility of the codec interrupt service routine
to set the RX flag for valid datareceived from the RX DMA buffer, or to clear the TX flag after transmit data has been copied to
the TX DMA buffer.

Figure 22. 21065L/AD1819A VSR Flag-Set-Clear Transfer Scheme

Tx Request

u DMA

User Tx Buffer
|
Tx Bufferv

€ > AD1819A
Codec

SPORT1

= u DMA

User Rx Buffer
|

Rx Buffer

Rx Request

Scheme Used with the 21065L RS232 Monitor Demonstration Programs

When the SPORT1 transmit DM A empties the transmit buffer, a SPORT 1 transmit interrupt occurs. The DSP routine that was
executed elsewhere would set the TX Request if new dataisavailable. If the variable TX Reguest > 0, then the SPORT1
interrupt service routine |oads the data from the DSP processed User TX Buffer into the TXDMA Buffer; otherwise, the TX
Buffer isloaded with Os. After the TX Buffer isloaded, the DMA is automatically re-initialized to transmit the new datain the TX
Buffer. With this structure in place, the user needsto only put datain the User TX Buffer, and then set TX Request to 1, to
send data to the CODEC.

The receive portion of the CODEC interface can be designed in asimilar way. The DMA for SPORT1’ sreceiveregister is
configured to load the Rx DMA Buffer. When the RX Buffer isfull, a SPORT interrupt isforced and the Rx Request variableis
set if thereisvalid ADC data. The DSP routineis conditionally called if the RX Request bit variableis set. If the variable> 0
then the contents of the RX Buffer iswritten into the User RX Buffer, and the RX Request iscleared. The DMA isreinitialized

tofill the RX Buffer again.

Assembly Language Rx Ready Flag Code Example For an 8 kHz ADC/DAC Sample Rate, with 48 kHz Frame Rate

The following example shows how the DSP routine and the Codec interrupt service routine would only process ADC data whenever there is new
ADC data available. The Codec ISR sets the rx flags whenever new ADC datais available. The DSP routine clears the rx flags after that data has
been processed. Since we are running at 8 kHz, the DSP routine would only be executed once out of every six interrupts, since:

48 kHz Audio Frame Rate / 8 kHz Sample Rate = 6 AC'97 Audio Frames Per Sample

.VAR RX_left flag; /* DSP
. VAR RX_right_flag;
/* SPORT1l Rx Interrupt Service Routine .

check_AD1819_ADC | eft:
BTST r0 by M Left_ADC;
IF sz JUMWP check_AD1819_ADC ri ght;

r6 = dm(rx_buf + LEFT);
ré = Ishift r6 by 16;
dm(Left_Channel _In) = r6;
rd = 1;

dm (RX_left_flag) r4d;
check_AD1819_ADC ri ght:
BTST r0 by M_Ri ght _ADC;
IF sz junmp user_applic;
ré dm(rx_buf + RIGHT);
ré Ishift r6 by 16;
dm(Ri ght _Channel _I n)
r4 1;
dm (RX_right_flag)

re6,;

= r4; /* if

/* DSP routine section where RX flag vari
Echo:
/* get input sanples from data hol
r0 = dm(Left_Channel _In);
rl = dm(Ri ght _Channel _I n);
rl = ashift r1 by -1,
r2 = ashift r2 by -1;
rl =r2 + r1l;
L6 = dm(del ay_tine);
/* tap output of circular delay Ii
r3 = dmi6, 0);
/* add del ayed signal together wit
rl = ashift r1 by -1;
r3 = ashift r3 by -1;
ra =r3 + ri,

/* write output sanples to AD1819

rd = ashift r4 by 2;
dm(Left _Channel _Qut) = r4;
dm(Ri ght _Channel _Qut) = r4;

/* put input sanple into tap-0 of
dm(i 6, -1) =r1;

rd4d = 0;

dm(RX_left_ flag) = r4;

dm (RX_right_ flag) = r4;

rts;

/* if we have a new left sample,

algorithm only processed when these bits are set */

section where ADC data is received */

/* Check Master left ADC valid bit */

/* |If valid data then save ADC sanple */

/* get Master 1819 |eft channel input sanmple */

/* shift up to MSBs to preserve sign in 1.31 format */

/* save to data hol der for processing */

let the DSP routine know */

/* Check Master right ADC valid bit */

/* If valid data then save ADC sanple */

/* get Master 1819 right channel input sanple */

/* shift up to MSBs to preserve sign in 1.31 format */
/* save to data holder for processing */

we have a new right sample, let the DSP routine know */

ables are cleared */

/* process both channel inputs */

ders */

/* left input sanple */

/* right input sanmple */

/* scale signal by 1/2 for equal mx */

/* scale signal by 1/2 for equal mx */

[* 1/ 2xL(n) + 1/2 xR(n) */

ne */

/* point to d-th tap and put in data register */
/* fetch address with no update */

h original signal */

/* scale input signal by 1/2 for equal mx */
/* scal e del ayed signal by 1/2 for equal mx */

/* 1/2xL(n) + 1/2 xR(n) */
Mast er Codec channels */
/[* turn up the volume a little */

/* left output sanmple */
/* right output sanple */
del ay |ine, post-nmodify address after storage of input */

/*
/*

put value fromregister rl into delay line */
and decrenment address by -1 */

/* clear RX_left flag since we have processed incoming data*/
/* clear RX_rightflag since we have processed incoming data*/

/* Return from Subroutine */

6.6 Processing 16-bit Data In 1.31 Fractional Format Or IEEE Floating Point Format

Datathat isreceived or transmitted in the SPORT1 ISR isin abinary, 2's complement format. The DSPinterpretsthe datain
fractional format, where all #s are between -1 and 0.9999999. Initially, the seria port places the datainto internal memory in data
bits DO to D15. In order to process the fractional datain 1.31 format, the processing routine first shifts the data up by 16 bits so
that it isleft-justified in the upper databits D16 to D31. Thisisnecessary to take advantage of the fixed-point
multiply/accumulator's fractional 1.31 mode, as well as offer an easy reference for converting from 1.31 fractional to floating point
formats. Thisalso guaranteesthat any quantization errors resulting from the computations will remain well below the 16 bit
result and thus below the AD1819A DAC Noise Floor. After processing the data, the DSP shiftsthe 1.31 result down by 16-bits
so that the dataistruncated to a 1.15 number. This 1.15 fractional result isthen sent to the AD1819A. Below are example
instructions to demonstrate shifting of data before and after the processing of data on the Master AD1819 left channel:

32-bit Fixed Point Processing

rl1 = dm(rx_buf + 3); /* get AD1819A l|eft channel input sanple */
ri= Ishift rl by 16; /* shift up to MSBs to preserve sign */
dm(Left _Channel) =r1; /* save to data holder for processing */

/* Process data here, data is processed in 1.31 format */

rl5 = dm(Left_Channel); /* get channel 1 output result */
ri5 = Ishift r6 by -16; /* put back in bits 0..15 for SPORT tx */
dm(tx_buf + 3) = ri5; /* output left result to AD1819A Slot 3 */

32-bit Floating Point Processing

To convert between our assuned 1.31 fractional number and | EEE floating point math, here are sone
exanpl e assenbly instructions. This assumes that our AD1819A data has already been converted to
floating point format, as shown above:

ri = -31; <-- scale the sanple to the range of +/-1.0
ro = DM Left_Channel);
foO = float r0 by r1;

[Call Floating_Point_Algorithm

rl = 31; <-- scale the result back up to MSBs
r8 = fix f8 by ri;
DM Left _Channel) = r8;

REFERENCES
The following sources contributed information to this applications note:

1. ADSP-21065L SHARC User’s Manual, Analog Devices, Inc.,
(82-001833-01, Prentice-Hall, September 1998)

1. ADSP-2106x SHARC User’s Manual, Analog Devices, Inc,.
Second Edition (82-000795-03, Prentice-Hall, July 1995)

2. AD18194 Data Sheet, Analog Devices, Inc,.
(C3261-8-3/98, 1998)

3. Audio Codec 97 Component Specification, Revision 1.03, Intel Corporation,
2200 Mission College Blvd, Santa Clara, CA 95052 (September 15, 1996)

4. EE-54 - How to Use the AD1819A4 Variable Sample Rate Support,
Analog Devices Inc., http://www.anal og.com/techsupt/application_notes/application_notes.html#3, (5/21/98)

(We at Analog Devices express our sincere gratitude to Al Clark of Danville Signal Processing [email address:
aclark@danvillesignal.com] for his contributions regarding the use of Ring Buffers to process AD1819A data at
fractional sample rates, along with his helpful hints in setting up the serial port DMA parameters for RX-
interrupt-based processing at variable sample rates)

7. ADSP-21065L / AD1819A DSP Driver Description

ANALOG
DEVICES

ADSP-
21065L

SPORT1

Stereo
Line Out Left/Right

Speakers
Stereo Q

Figure 23. 21065L EZ-LAB Audio Loopback Example

The DSP source listings for AD1819A initialization and audio processing, shown in Appendix A, can be ageneral starting point
for developing ADSP-21065L code using the AD1819A. The ADSP-21065L example program initializes the DSP seria port to
communicate with the AD1819A Seria Port interface, and then perform a talkthru' function of audio data to and from the
AD1819A. No DSP processing is performed after initialization. The only operation being performed is the fetching of data
received from the AD1819 Sigma Delta ADCs and loopback the same data out to the AD1819 DACs.

The ADSP-21065L/AD1819a EZ-LAB Driversin Appendix A are organized into the following sections:

1. 21065L EZ-LAB System Initialization Routine (for SPORT1 Tx Interrupt Audio Processing)

2. AD1819A Initialization Routine (for SPORT1 Tx Interrupt Audio Processing)

3. How To Reset The AD1819A ViaDSP Control With A Flag Out Pin

4. SPORT1 Clear Routine For Use With The Target65L RS232 / VDSP Debug Monitor

5. 21065L SPORT1 RX Interrupt Service Routine For Audio Processing Using The'ADC Valid Bits Method For DAC

Transmission

Installing A TX Interrupt Service Routine After Codec Register Initialization

Power Cycling The ADCs And DACs For Left/Right Sample Pair Synchronization With Variable Sample Rates Less

Than 48 kHz

8. Variable Sample Rate Tx Interrupt Service Routine For Audio Processing - 'ADC Valid Bits Method For DAC
Transmission.

9. Variable Sample Rate Tx Interrupt Service Routine For Audio Processing - DAC Transmission Based On DA C Request
Bitswith ADC/DAC Ring Buffers

10. Example Ring Buffer Implementation For The 'DAC Request Bits Method

11. Variable Sample Rate Using Both The RX And TX Interrupts For Audio Processing, 'DAC Request Bits' Version

12. Example RX ISR For Three Daisy-Chained AD1819As

13. ADSP-21065L Interrupt Vector Table

14. Visua DSP (21065L EZ-LAB) Linker Description File.

N o

The 21065L DSP example performs the following sequence of operations to establish AD1819A communications and process
audio data:

AD1819A Codec Driver Sequence Of Operations

Initialize 65L DSP system stuff such as timers, flag pins, SDRAM, DAGs...
Initialize Serial Port 1 Registers

Program DMA Controller for Serial Port 1 Tx and Rx DMA chaining

Turn on Serial Port 1 and enable SPORT1 transmit interrupts

Reset the AD1819A (Optional, and required if RESET is tied to a DSP Flag Pin)
Wait for Codec to come 'on-line’, and set up codec in Slot-16 Mode

Program desired AD1819A registers

Shut off SPORT1 transmit interrupts, enable SPORT1 receive interrupts

(only applies if processing audio data from the SPORT Rx Interrupt)

Start processing AD1819A audio data

WNOORWN

©

7.1 List of AD1819A Reference Drivers Available From Analog Devices

Below isalisting of all the currently available 21065L EZ-LAB AD1819A drivers provided as reference from Analog Devices.
These examples are fully downloadabl e as standal one applications viathe Target65L RS232-VDSP Debugger. To obtain these
reference drivers, you can submit an email to dsp.support@anal og.com, or call our DSP hotline at 1-800-ANALOGD. Y ou can
also look for 65L EZ-LAB AD1819A drivers onthe Analog Devices FTP server at:

ftp://ftp.analog.com/pub/dsp/audio/65L _ezlab/

Assembly Language Drivers
Fixed 48 kHz, ADC Valid Bits Method, SPORT 1 Receive Interrupt-based driver
Variable Sample Rate, ADC Valid Bits Method, SPORT 1 Receive I nterrupt-based, 5-word Rx DMA buffer & 5 RX Slots
Enabled, 16-word Tx DMA buffer & 16 Tx Slots Enabled
Variable Sample Rate, DAC Request Bits Method, ADC/DAC Ring Buffers, SPORT1 Receive Interrupt-based, 5-word Rx
DMA buffer & 5 RX Slots Enabled, 16-word Tx DMA buffer & 16 Tx Slots Enabled
Variable Sample Rate, ADC Valid Bits Method, SPORT1 Transmit Interrupt-based, 7-word Tx DMA buffer & 7 TX Slots
Enabled, 5-word Rx DMA buffer & 5 Rx Slots Enabled
Variable Sample Rate, DAC Request Bits Method, ADC/DAC Ring Buffers, SPORT1 Transmit I nterrupt-based, 7-word Tx
DMA buffer & 7 TX Slots Enabled, 5-word Rx DMA buffer & 5 Rx Slots Enabled
Variable Sample Rate, ADC Valid Bits Method, both SPORT1 Transmit & Receive Interrupt-based, 7-word Tx DMA buffer &
7 TX Slots Enabled, 5-word Rx DMA buffer & 5 Rx Slots Enabled
Variable Sample Rate, DAC Reguest Bits Method, ADC/DAC Ring Buffers, both SPORT1 Transmit & Receive Interrupt-
based, 7-word Tx DMA buffer & 7 TX Slots Enabled, 5-word Rx DMA buffer & 5 Rx Slots Enabled

C-Compiler-based Drivers

- Fixed 48 kHz, ADC Valid Bits Method, SPORT1 Receive | nterrupt-based driver
Variable Sample Rate, ADC Valid Bits Method, SPORT1 Transmit Interrupt-based, 7-word Tx DMA buffer & 7 TX Slots
Enabled, 5-word Rx DMA buffer & 5 Rx Slots Enabled
Variable Sample Rate, ADC Valid Bits Method, SPORT1 Receive Interrupt-based, 16-word Tx DMA buffer & 16 TX Slots
Enabled, 5-word Rx DMA buffer & 5 Rx Slots Enabled
Variable Sample Rate, ADC Valid Bits Method, both SPORT1 Transmit & Receive Interrupt-based, 5-word Tx DMA buffer &
5TX Slots Enabled, 5-word Rx DMA buffer & 5 Rx Slots Enabled
Variable Sample Rate, DAC Request Bits Method, both SPORT1 Transmit & Receive Interrupt-based, 5-word Tx DMA
buffer & 5 TX Slots Enabled, 5-word Rx DMA buffer & 5 Rx Slots Enabled

APPENDIX A:
Source Code Listing for 21065L EZ-LAB Audio
Driver (Visual DSP 4.x Project Files)

21065L EZ-LAB System Initialization Routine
(For SPORT1 TX ISR-based processing)

/*** INT 065L ELABAS'\A Khkhkhkhkhhhhhk Ak Ak hkdhkhkhhhhhkhkhkkkhkkhhkhhhhhkhkhkkkhkkhkhhhhhhkhkhkkkkkkkx
* - - *
* ADSP- 21065L EZ-LAB Initialization and Main Program Shell *
* Devel oped using the ADSP-21065L EZ-LAB Eval uation Pl atform *
* *
* This routine contains function calls and routines to initialize the *
* state of the 21065L, programthe DVA controller, initialize the AD1819a *
* and configure the SDRAMinterface. DSP algorithmbuffer initializations *
* are also called withing this routine. *
* *
* John Tonar akos *
* ADl DSP Applications Goup *
* Revi sion 2.0 *
* 12/ 17/ 98 *
* *

H A KKKk kKK Kk KKK K kR A Kk Kk kA k kK kKKK KKKk kKK kA K kA KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK kK

/* ADSP-21065L System Register bit definitions */
#i ncl ude "def21065I . h"
#incl ude "newe5Ldefs. h"

.GALCBAL _nmain;

.AQCBAL I nit_DSP,

.EXTERN I nit_65L_SDRAM Control |l er;
.EXTERN Blink_LEDs_Test;

.EXTERN Program SPCRT1_Regi sters;
.EXTERN Program DVA Control |l er;
.EXTERN AD1819_Codec_l nitializati on;

. SEQVENT/ dm dm dat a;

.var sine4000[4000] = "sinethl.dat"; /* optional, used for generating sine tone to ADL819A DACs */
.global audio_frane_timer;

.var audio_frane_timer = 0; /* 48kHz timer variable */

. endseg;

/* ___ */

. segnent /pm pm code;

_main: call Init_65L_SDRAM Control ler; /* Initialize External Menory */
call Program SPORT1_Regi sters; /* Initialize SPCORT1 for codec communications */
call Program DVA Controller; /* Start Serial Port 1 tx and rx DVA Transfers */
call AD1819_Codec_Initialization; /* Initialize & program AD1819 */

call Init_DAGs;

I RPTL = 0x00000000; /* clear pending interrupts */
bit set imask SPT1l; /* start audi o processing, re-enable SPCRT1 tx int */
call Blink_LEDs_Test; /* Are V¢ Alive? */

vait _forever:
call wait_flagl;
bit tgl ustatl Ox3F; /* toggle flag 4-9 LEDs */
dn(| GSTAT) =ust at 1;
junp wait_forever;

* Subr out i nes *
K o e e e e e e m e m e m e m m m e m m m m o m o m o m o m o m . m m m — m m m m m m . — o — . m o m . — — — — — ———— e — e — e — e — e ————————————— */
vait_flagl:
/* wait for flag 1 button press and rel ease */
if flagl_in junmp wait_flagl; /* wait for button press */
rel ease:
if not flagl_in junp rel ease; /* wait for button rel ease */
rts;
/* __ */
/* Note: This routine is first called at the Reset Vector in the Interrupt Vector Table */
/* __ */
I nit_DSP:
/* code to blink flag 4 */
ust at 1=0x3F; /* flags 4 thru 9 are outputs for LEDs */
dn(1 OCTL) =ust at 1;
bit set ustatl Ox3F; /* toggle flag 4-9 LEDs */
dn(| GSTAT) =ust at 1; /* turn on all LEDs */
bit clr mde2 FL&QO | FLGIO | FLAO /* flag 3, 2 & 0 inputs */
bit set nmode2 | RQLE | | RRE /* irgx edge sensitive */
bit clr node2 | RQE /* keep irgl to level sensitive for UART */
| RPTL = 0x00000000; /* clear pending interrupts */
bit set nodel | RPTEN | NESTM /* enabl e global interrupts & nesting */
bit set inmask IRQI | IRQAI | IRQI; /* irgl & irqg2 enabl ed, keep irq0 enabled for UART */
L0 = 0;
L1 = 0;
L2 = 0;
L3 = 0;
L4 = 0;
L5 = 0;
L6 = 0;
L7 = 0;
L8 = 0;
L9 = 0;
L10 = 0;
L11 = 0O;
L12 = 0;
L13 = 0;
L14 = 0;
L15 = 0O;
rts;
Init_DAGs:
Bl=si ne4000;
L1=4000;
| 1=si ne4000;
ML=50;
B2=si ne4000;
L2=4000;
| 2=si ne4000;
M2=40;
RTS,;

. endseg;

AD1819A Initialization Routine (For SPORT Tx Interrupt Processing)

/*** AD1819a |n|t|al|zat|0n. ASM hkhkkhkhhkhkhkhkhkhkhkhhkhhhhhhhhkhkhkhrhkhhhhhhhhkhkhkhkrhkhkrxhhkrk
* AD1819A/ ADSP- 21065L SPCRT1 I nitialization Driver *
* Devel oped using the ADSP-21065L EZ-LAB Eval uation Pl atform *
* *
* This version sets up codec comunication for Variable Sanple Rate *
* Support. After codec regi ster programmng, the ADCs and DACs are *
* power ed down and back up again, so left/right valid bits and DAC *
* requests occur sinultaneously in the sanme audio frane. *
* For efficient handling of Tag bits/ADC valid/ DAC requests, the codec *
* ISR is processes using the SPORT1 TX (vs RX) interrupt. The SPCRT1 TX *
* interrupt is used to first programthe ADL819A registers, with only *
* an RTI at that vector location. After codec initialization, the SPCRT1 *
* TX ISR junp label is installed, replacing an 'RTlI' instruction, so that *
* nornal codec audi o processing begins at that point. *
* *
* John Tomar akos *
* ADI DSP Applications Goup *
* Revision 3.0 *
* 04/ 29/ 99 *

ok Kk ok Kk ok Kk ok Kk k o Kk Kk Kk ok Kk kK ok ok kR Kk kR K kR Kk ok Kk ok Kk kK kR Kk kK Kk Kk kR k kR k kR Kk kK kR Kk kK ko

/* ADSP-21060 System Register bit definitions */
#incl ude "def21065I . h"
#incl ude "newe5Ldefs. h"

. EXTERN spt1_svc;

. GLCBAL Program SPORT1_Regi sters;

. GLCBAL Program DVA Control | er;

. GLCBAL AD1819_Codec_I nitialization;
. GLCBAL tx_buf;

. GLABAL rx_buf;

. EXTERN dear_All _SPT1_Regs;

/* AD1819 Codec Register Address Definitions */

#def i ne REGS_RESET 0x0000
#define MASTER VOLUME 0x0200
#define RESERVED REG 1 0x0400
#define MASTER VOLUME_MONO 0x0600
#def i ne RESERVED REG 2 0x0800
#def i ne PC_BEEP_\ol une 0x0A00
#define PHONE_\ol une 0x0Q00
#def i ne M C Vol une 0x0EO00
#define LI NE_I N_Vol une 0x1000
#def i ne CD Vol une 0x1200
#define V1 DEQ Vol une 0x1400
#def i ne AUX_Vol une 0x1600
#define PCM QUT_Vol une 0x1800
#define REQCORD_SELECT 0x1A00
#define RECCRD Al N 0x1Q00
#define RESERVED REG 3 0x1E00
#def i ne GENERAL _PURPCBE 0x2000
#define THREE_D CONTROL_REG 0x2200
#define RESERVED REG 4 0x2400
#define PONERDOM_CTRL_STAT 0x2600
#define SERI AL_CONFI GURATI CN 0x7400
#define M SC CONTROL_BI TS 0x7600
#def i ne SAVPLE_RATE_GENERATE_0O 0x7800
#define SAVPLE_RATE_GENERATE_1 0x7A00
#define VENDCR I D 1 0x7Q00
#define VENDCR | D 2 0x7E00

/* Mask bit selections in Serial Configuration Register for
accessing registers on any of the 3 codecs */

#def i ne MASTER Reg_Mask 0x1000
#define SLAVEL_Reg_Mask 0x2000
#def i ne SLAVE2_Reg_Mask 0x4000

#def i ne VASTER_SLAVEL 0x3000

#def i ne MASTER_SLAVE2 0x5000
#def i ne MASTER_SLAVEL_SLAVE2 0x7000

/* Macros for setting Bits 15, 14 and 13 in Slot 0 Tag Phase */
#define ENABLE_VFbi t _SLOT1_SLOT2 0xE000
#def i ne ENABLE_VFbi t _SLOT1 0xC000

/* AD1819 TDM Ti nesl ot Definitions */

#def i ne TAG PHASE 0
#define COMVAND_ADDRESS _SLOT 1
#def i ne OOMVAND_DATA SLOT 2
#define STATUS_ADDRESS SLOT 1
#def i ne STATUS_DATA_SLOT 2
#def i ne LEFT 3
#def i ne R GHT 4
#def i ne AD1819_RESET_CYCLES 60

/* ad1819 RESETb spec = 1.0(uS) min */
/* 60(MPs) = 16.67 (nS) cycle time, therefore >= 40 cycles */

#define AD1819_WARMUP_CYCLES 60000

/* ad1819 warmup = 1.0(nB) */

/* 60(MPs) = 16.67 (nS) cycle tinme, therefore >= 40000 cycles */
.segnent /dm dm codec;

.var rx_buf[5]; /* SPCRT1 receive DVA buffer */

/* SPCRT1 transnit DVA buffer */

.var tx_buf[7] = ENABLE VFbit _SLOT1_SLOT2, /* set valid bits for slot 0, 1, and 2 */
SERI AL_CONFI GURATI ON, /* serial configuration register address */
0xFF80, /* initially set to 16-bit slot node for ADl SPORT conpatibility */
0x0000, /* stuff other slots with zeros for now */
0x0000,
0x0000,
0x0000;
/* slots 5 and 6 are dumny slots, to allow enough tine in the TX ISRto go */
/* get rx slots 4 & 5 data in sane audio frame as the ADC valid tag bits. */
/* This is critical for slower sanple rates, where you may not have valid data */
/* every rx audio frame. So you want to nmake sure there is valid right */
/* channel data in the same rx DVA buffer fill as the detection of an ADC */
/* valid right bit. These extra slots are required O\LY for fs < 48 kHz. */

.var rcv_tcb[8 =0, 0, 0, 0, O, 5,
0, 0, 0, 0, O, 7

, 0 /* receive tcb */
.var xmt_tch[8] = 0

; /* transmt tcb */

PP

/* Codec register initializations */
/* Refer to ADL819A Data Sheet for register bit assignments */

#define Select_LINE | NPUTS 0x0404 /* LINE IN - 0X0404, Mc In - 0x0000 */
#define Select_M C | NPUT 0x0000

#define Line_Level _Vol ume 0x0000 /* 0 dB for line inputs */

#define Mc_Level _Vol une 0xOFOF

#define Sanple_Rate 23456

.var Init_Codec_Registers[34] =

MASTER_VCLUME, 0x0000, /* Master Volume set for no attenuation */

MASTER VCLUMVE_MONQ 0x8000, /* Master Mono volune is muted */

PC_BEEP_Vol une, 0x8000, /* PCvolune is nuted */

PHONE_Vol urre, 0x8008, /* Phone Volune is nuted */

M C Vol une, 0x8008, /* MC Input anal og | oopback is nuted */

LI NE_I N_Vol une, 0x8808, /* Line Input anal og | oopback is mited */

CD Vol urre, 0x8808, /* CD Volune is nuted */

VI DEO Vol une, 0x8808, /* Video Volune is nuted */

AUX_ Vol urre, 0x8808, /* AUX Volure is nmuted */

PCOM QUT_Vol une, 0x0808, /* POMout fromDAGs is Odb gain for both channels */
RECCRD_SELECT, Sel ect _LI NE_I NPUTS, /* Record Select on Line Inputs for L/R channels */
RECCRD GAI N, Li ne_Level _Vol une, /* Record Gain set for 0 dB on both L/R channels */
GENERAL _ PURPCSE, 0x0000, /* 0x8000, goes through 3D circuitry */

THREE_D CONTROL_REG 0x0000, /* no phat stereo */

M SC_CONTROL_BI TS, 0x0000, /* use SRO for both L & R ADGCs & DACs, repeat sanple */
SAMPLE_RATE_GENERATE O, Sanpl e_Rat e, /* user selectable sanple rate */

SAWPLE_RATE_GENERATE_1, 48000; /* Sanple Rate CGenerator 1 not used in this exanple */

.var Codec_|nit_Results[34] =

OO0000000000O0O0O0O0O0OO0
OO00000000O00O0O0O0O0O0OOoO

. endseg;

. SEQVENT / pm pm code;

/* Sportl Control Register Programm ng */
/* Miltichannel Mde, dma w chain, early fs, act hi fs, fall edge, no pack, data=16/big/zero */

Pr ogr am SPORT1_Regi sters:
/* This is required for disabling SPORT config for EZLAB RS232 debugger */
CALL A ear_A|_SPT1_Regs; /* dear and Reset SPORT1 and DMAs */

/* sportl receive control register */
RO = OxOF8CAOFO; /* 16 chans, int rfs, ext rclk, slen = 15, sden & schen enabled */
dnm(SRCTL1) = RO; /* sport O receive control register */

/* sportl receive frane sync divide register */
RO = 0x00FF0000; /* SCKfrq(12.288NM)/ RFSfrq(48.0K)-1 = Ox00FF */
dn{RDI V1) = RO;

/* sportl transmit control register */
RO = 0x001C00FO; /* 1 cyc nfd, data depend, slen = 15, sden & schen enabled */
dn(STCTL1) = RO; /* sport O transmit control register */

/* sportl receive and transnit multichannel word enabl e registers */

RO = 0x0000001F; /* enabl e recei ve channels 0-4 */
dn{ MRCS1) = RO;
RO = 0x0000007F; /* enable transmt channels 0-6 */

dn(MIcs1) = Ro;

/* sportl transnmit and recei ve multichannel conpanding enabl e registers */

RO = 0x00000000; /* no conpandi ng */

dm{ MRCCS1) = RO; /* no conpandi ng on receive */

dn(MIcCs1) = Ro; /* no conpanding on transmt */

RTS;
/'k __ */
/* DVA Control | er Programm ng For SPCRT1 */
/'k __ */

Program DVA Control | er:
rl = OxO0001FFFF; /* cpx register mask */

/* sportl dma control tx chain pointer register */

r0 = tx_buf;

dm{xmt_tch + 7) =r0; /* internal dma address used for chaining */
ro = 1;

dm{xmt_tch + 6) =r0; /* DVA internal nenory DVA nodifier */

ro =7

dm{xmt_tch + 5) =r0; /* DVA internal nenory buffer count */

r0O = xmt_tcbh + 7; /* get DMA chaining internal mem pointer containing tx_buf address */

r0 =rl1 AND rQ; /* mask the pointer */

r0 = BSET r0 BY 17; /* set the pci bit */

dm{xmt_tcb + 4) =r0; /* wite DVA transnit bl ock chain pointer to TCB buffer */

dn{ CPT1A) = rO0; /* transmt block chain pointer, initiate tx0 DVA transfers */

/* ___ *I

/* - Note: TshiftO & TXO will be automatically |oaded with the first 2 values in the -*/

/* - Tx buffer. The Tx buffer pointer (113) wll increment by 2x the nodify val ue -*

/* - (IMB). -*/

/* ___ *I

/* sportl dma control rx chain pointer register */

r0 = rx_buf;

dn{rcv_tcb + 7) =r0; /* internal dma address used for chaining */

ro =1;

dn{rcv_tcb + 6) =rO0; /* DVA internal nenory DVA nodifier */

ro = 5;

dn{rcv_tcb + 5) =r0; /* DVA internal nenory buffer count */

r0O =rcv_tch + 7;

r0 =rl1 AND rQ; /* mask the pointer */

r0 = BSET r0 BY 17; /* set the pci bit */

dn{rcv_tcb + 4) =r0; /* wite DVA receive bl ock chain pointer to TCB buffer */

dm{CPR1A) = rO0; /* receive block chain pointer, initiate rxO DVA transfers */

RTS,;
.. */

AD1819A Codec Initialization */

.. */

AD1819 Codec_Initialization:

bit set imask SPT1l; /* enable sportO x-mt interrupt */
Wi t _Codec_Ready: /* Wait for OCDEC Ready State */
RO = DMrx_buf + 0); /* get bit 15 status bit from AD1819 tag phase slot 0 */
Rl = 0x8000; /* mask out codec ready bit in tag phase */
RO = R0 AND Ri; /* test the codec ready status flag bit */
I F EQ JUW Wit _Codec_Ready; /* if flagis lo, continue to wait for a hi */
idle; /* wait for a couple of TDMaudio franes to pass */
idle;
Initialize_ 1819 Registers:
i4 = Init_Codec_Registers; /* pointer to codec initialization conmands */
r15 = ENABLE VFbit_SLOT1_SLOT2; /* enable v-frame bit, & slots 1& valid data bits */
LONTR = 17, DO Codec_lnit UNTIL LCE
dn(tx_buf + TAG PHASE) = r15 /* set valid slot bits in tag phase for slots 0,1,2 */
rl =dn(i4, 1); /* fetch next codec register address */
dn(tx_buf + COMVAND ADDRESS SLOT) = r1; /* put codec register address into tx slot 1 */
rl =dn(i4, 1); /* fetch register data contents */
dn(tx_buf + COWAND DATA SLOT) = r1; /* put fetched codec register data into tx slot 2 */
Codec_Init: idle; /* wait until TDMframe is transmtted */
/* __ */
/* Verify integrity of AD1819a indexed control registers to see if communication was successful */
/* ___ */
/* This section of codes is for debuggi ng/verification of ADL819 registers. Theses */
/* instructions initiate codec read requests of registers shown in the Init_Codec_Registers */
/* buffer. The results of the read requests are placed in an output buffer called */
/* Codec_lnit_Results, in which even DSP nenory addresses contain the ADL819A register */
/* address, and the DSP's odd address in the buffer contains the register data for the */
/* AD1819A address. The AD1819A registers can then be verified with a JTAG enul ator or the */
/* 65L RS232 VDSP debug nonitor program This section of code can be renoved after debug. */
/* __ */

verify _reg_wites:

i4 = Init_Codec_Registers;
m = 2;
i5 = Codec_lnit_Results;

r15 = ENABLE VFbit_SLOT1;

LCNTR = 17, Do ad1819 register_status UNTIL LCE
dn(tx_buf + TAG PHASE) ri5;
rl =dni4, 2));
r2 = 0x8000;

/* enable valid frame bit, and slots 1 data bits */

/* set valid slot bits in tag phase for slots 0,1,2 */

/* get indexed register address that is to be inspected */
/* set bit #15 for read request in conmand address word */

rl=r1 Rr2 /* CRread request with the indirect register value */

dn(tx_buf + COMVAND ADDRESS SLOT) = r1; /* send out command address tineslot */
idle; /* wait 2 audio frames to go by, latency in getting data */
idle;
r3 = dn{rx_buf + STATUS_ADDRESS SLOT);
dn(i5,1) =r3;
r3 = dn{rx_buf + STATUS DATA SLOT); /* fetch requested indexed register data */
dn(i5,1) =r3; /* store to results buffer */
ad1819_regi st er _st at us:
nop;

/* For variable sanple rate support, you nust powerdown and power back up the ADCs and DACs
so that the incomng ADC data and DAC requests occur in left/right pairs */
Power Down_DAGCs_ADCs:

idle;
r15 = ENABLE VFbit_SLOT1_SLOT2; /* enable valid frame bit, and slots 1& valid data bits */
dr(tx_buf + TAG PHASE) = r15; /* set valid slot bits in tag phase for slots 0, 1, 2 */

r 0=PONERDONN_CTRL_STAT;

dn(tx_buf + COMVAND ADDRESS SLOT) = r0;

r 0=0x0300; /* power down all DAGCs/ ADCs */
dr(tx_buf + COMWAND DATA SLOT) = r0;

idle;

idle;

LCNTR = AD1819_RESET_CYCLES-2, DO reset_|l oop UNTIL LCE

reset _| oop: NCP; /* wait for the min RESETb | o spec tine */
idle;
r15 = ENABLE VFbit_SLOT1_SLOT2; /* enable valid frame bit, and slots 1& valid data bits */
dn({tx_buf + TAG PHASE) = r15; /* set valid slot bits in tag phase for slots 0, 1, 2 */
r 0=PONERDONN_CTRL_STAT; /* address to wite to */
dn(t x_buf + COMWAND ADDRESS SLOT) = r0;
r 0=0; /* power up all DACs/ADGCs */
dn(t x_buf + COMWAND DATA SLOT) = rO0;
idle;
idle;

LCNTR = AD1819_ WARMUP_CYCLES- 2, DO war mup_| oop2 UNTIL LCE
war nup_| oop2: NCP; /* wait for ADL819 warmup */

bit clr imsk SPT1l; /* disable sportl xmt */

Instal | _I SR SPCRT1_Tx_I SR
/* Use SPORT1 TX interrupt service function call for audio processing */
/* install the transmt interrupt function call to replace the initial RTl instruction */
/* "JUWP Process_AD1819_Audi o_Sanpl es" instruction into PX (0Xx063E 0000 xxxx). */
/* xxxx = address of Process_AD1819_Audi o_Sanpl es */

PX2 = 0x063e0000; /* Upper 32 bit Qpcode for 'JUW xxxx' instruction */
PX1 = Process_AD1819_Audi o_Sanpl es; /* Lower 16 bits of Qpcode contain junp address */
PM'spt 1_svc) = PX /* copy to 0x34 - SPCRT1 interrupt vect location */
RTS; /* End of ADI819A Initialization */
5 */

. endseg;

How To Reset The AD1819A Via DSP Control With A Flag Out Pin

The following code fragment demonstrates how to reset the codec through output flag control to fulfill the minimum AD1819A
reset and warm up requirements. This example was used with the AD1819 MAFE (on the SHARC 21062 EZ-L AB) to reset the
AD1819. Notethat this code example assumes the use of a33 MIPs SHARC DSP. For the 21065L, the #defines should be
modified to assume the use of 60 MHz.

#def i ne AD1819_RESET_CYCLES 34
/* ad1819 RESETb spec = 1.0(uS) nmin */
/* 33.3(MPs) =30.0(nS) cycle time, therefore >= 33.3 cycles */

#def i ne AD1819_WARMUP_CYCLES 33334
/* ad1819 warmup = 1.0(nB) */
/* 33.3(MPs) =30.0(nS) cycle tinme, therefore >= 33333.3 cycles */

/* __ */

Reset _1819:
[% o e - */
/* - adl819a nafe pin assignments: - *
/* - FLAGQUT2 = RESETb = ad1819 reset - *
/* ______________________________ */

/* CCDEC Reset */

BI T CLR ASTAT FL@&; /* clear i/o flag #2 to assert RESETb pin */
LCNTR = AD1819_RESET_CYCQLES-2 , DO rsetloop UNTIL LCE ;
rsetl oop: NCP; /* wait for the mn RESETb */

/* OCDEC Vrm W */

Bl T SET ASTAT FL&; /* set i/o flag #2 to deassert RESETb pin */
LCNTR = AD1819 WARMUP_CYCLES-2 , DO warnioop UNTIL LCE
war nl oop: NCP; /* wait for warmup */

RTS;

SPORT1 Clear Routine For Use With The Target65L RS232 / VDSP
Debug Monitor

X LLLEEEEE P r i i i
ROUTI NE TO CLEAR AND RESET ALL SPCRT1 REQ STERS

This routine may be required for certai ng ADI819A denbs when using the 21065L EZ-LAB
RS232 Debug Monitor program The 21065L EZ- LAB boot EPROM Monitor kernel on power-up
executes a routine that prograns the SPORT1 Control and DVA registers to

comuni cate with the ADI819A for the exanpl e supplied EZ-LAB deno prograns.

Wien invoking the 65L VDSP RS232 Debugger, SPORT1 DVA is already active in

mul ti channel nmode with DVA chaining. |If we wish to |eave the SPORT TDM and DVA
channel configuration the sane (i.e. 5 active channels and 5-word DVA buffers),

we are usually still able to reprogramthe DVA controller to point to our own

own codec buffers with no side effects. However, if we need to change any SPCRT
control paraneters such as the nunber of active TDM channel s and DVA buffer sizes,
then the active EPRCM Monitor SPORT TDM configuration on powerup of the EZ-LAB board
will affect the re-programing of the SPORT within a downl oaded DSP execut abl e.

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
Since the nonitor programhas already activated the SPCRT1 registers after a board /
reset, the side effect that occurs (when re-witing over the SPCRT1 control /
registers) is that MOMDVA data transfers are mstakenly restarted /
without the full programming of all the SPCRT parameters. A so, the TX and /
RX buffers may be partially full or full, and can affect the DVA controller's /
ability to correctly DVA in/out SPORT data to/frominternal menory. Wat results /
is afailed link between the AD1819a and SPCRT1 in user-nodified code, because /
transmtted and received data is sent or received in different tinmeslots and msalign /
in the SPCRT DVA buffers. /

/

/

/

/

/

/

/

/

/

This routine sinply clears all SPORT1 ctrl and DVA registers back to their
default states so that we can reconfigure it for our AD1819a application.

John Tomar akos
ADl DSP Applications
Rev 1.0
4/ 30/ 99
THCLELEEETEEI T n i i i r i n i i i r i n i n i rg >

R N N N N N .

/* ADSP-21060 System Register bit definitions */
#i ncl ude "def 21065l . h"

#incl ude "newe5Ldefs. h"

.GLCBAL dear_Al_SPT1_Regs;

. SEQVENT / pm pm code;

dear Al _SPT1_Regs:
| RPTL = 0x00000000; /* clear pending interrupts */
bit clr imask SPT1l;
R0 = 0x00000000;

drm(SRCTL1) = RO; /* sportl receive control register */

dn{RDI V1) = RO; /* sportl receive frame sync divide register */

dn(STCTL1) = RO; /* sport O transmt control register */

dn{ MRCS1) = RO; /* sportl receive nultichannel word enabl e register */
dm(MICS1) = RO; /* sportl transmt multichannel word enabl e register */

dn{ MRCCS1) = RO; /* sportl receive nultichannel conpandi ng enabl e register */
dm{ MTCCS1) = RO; /* sportl transmt multichannel conpanding enabl e register */

/* reset SPORT1 DVA paraneters back to the Reset Default State */

Rl = OX1FFFF; dn(l1 I RIA) = RL;
RL = 0x0001; dm(I MR1IA) = RL;
Rl = OxFFFF; dn{CRLA) = R4;
Rl = Ox1FFFF; dm{CPR1A) = RL;
Rl = OX1FFFF; dm{GPR1IA) = RL;
Rl = Ox1FFFF; dn(11 T1IA) = RL;
Rl = 0x0001; dn(1 MIA) = Ri;
Rl = OxFFFF; dm(CT1A) = RL;
Rl = OX1FFFF; dn(CPT1A) = RL;
Rl = Ox1FFFF; dm(GPT1A) = RL;
RTS;

. ENDSEG

SPORT1 Receive Interrupt Service Routine For Audio Processing
Using The 'ADC Valid Bits' Method For DAC Transmission

]k ok ok ok ko ok sk ok ok ok ok ok ok ok ok ok ok ok Kk ok Kk ok ko ok ok ok ok ok ok ok ok ok Kk ok ok ko ok ko ok ko ok ok ok ok ok ok o ko ok ok ok ko ok ko K

AD1819A SPCRT1 RX | NTERRUPT SERVI CE ROUTI NE

Receives MCL input fromthe ADL819A via SPORTO and then transnmits the audio data back out to the ADL819A Stereo DACs/Line Qutputs.
This routine sends DAC data based on valid ADC data in a given audio frane.

This | SR version assunmes the use of the default 48kHz pro audio sanple rate, in which data is valid for every audio frane, if the tx and
rx DVA buffers are 5 words with 5 channel s enabled on the TDMinterface. Therefore, TAGslot info and ADC valid bit synchronization is
not as critical, since the tag bits and ADC valid bits are being set by the AD1819a and the DSP every tine there is a new audio frane
(and thus a newinterrupt) Therefore, the RX Interrupt can be used for audio processing after codec initialization. This makes it
sonewhat easier to initialize the codec, while saving the user the extra overhead and code space for programming the codec to use it's
variable sanple rate features. If the user wishes to use the RX interrupt for variable sanple rates < 48 kHz, then the tx DVA buffer
shoul d be 16 words, the DVA tx Count register equal to 16, and channels 0-15 enabled on the tx TDMinterface, so that we have plenty of
tinme towite to the tx TAGslot.

JT

ADl DSP Applications

Rev 3.0

12/ 17/ 98

hkkkkkkkkkkkkkkkkkkkkkkkk ko k ko k ok ok k ok ok k ok kk ok ok sk ok ok k ok ok k ok kkk ok ok kk ok k ok ok ok k sk k ok k ok k ok ok k ok ok kk ok k ko k ok kkkkk ok kkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkk k%

Serial Port 1 Receive Interrupt Service Routine perforns arithnetic conputations on SPCRT1 receive
data buffer (rx_buf) and sends results to SPORT1 transnmt data buffer (tx_buf)

rx_buf[5] - DSP SPCRT receive buffer

Slot # Description DSP Data Menory Address

0 AD1819A Tag Phase DMrx_buf + 0) = DMrx_buf + TAG PHASE)

1 Status Address Port DMrx_buf + 1) = DMrx_buf + STATUS ADDRESS SLOT)
2 Status Data Port DMrx_buf + 2) = DMrx_buf + STATUS DATA SLOT)

3 Master PCM Capture (Record) Left Chan. DMrx_buf + 3) = DMrx_buf + LEFT)

4 Master PCM Capt ure R ght Channel DMrx_buf + 4) = DMrx_buf + R GHI)

tx_buf[5] - DSP SPORT transmt buffer

Sl ot # Description DSP Data Menory Address

0 ADSP-2106x Tag Phase DM tx_buf + 0) = DMtx_buf + TAG PHASE)

1 Conmand Addr ess Port DMtx_buf + 1) = DMrx_buf + COMVAND ADDRESS SLOT)
2 Command Data Port DM tx_buf + 2) = DMrx_buf + COMWAND DATA SLOT)
3 Master PCM Pl ayback Left Channel DMtx_buf + 3) = DMrx_buf + LEFT)

4 Mast er POM Pl ayback R ght Channel DM tx_buf + 4) = DMrx_buf + R GHI)

H KKk Kk kK ok ok Kk Kk K kR Kk kK kK kKK K kK K kR K kR Kk kK kK kKKK kKK KKKk kK ok kk ok kA h kA K kA k kK hhkhhkhh ko h kA k kA h kK h kK hkk [

/* ADSP-21060 System Regi ster bit definitions */
#i ncl ude "def21065I . h"
#i ncl ude "newe5Ldefs. h"

/* AD1819 TDM Tinesl ot Definitions */

#def i ne TAG_PHASE 0
#define COMVAND_ADDRESS_SLOT 1
#def i ne COMVAND_DATA _SLOT 2
#define STATUS_ADDRESS _SLOT 1
#def i ne STATUS_DATA SLOT 2
#def i ne LEFT 3
#def i ne R GHT 4

/* Left and Right ADC valid Bits used for testing of valid audio data in current TDM frame */

#def i ne M Left _ADC 12
#def i ne M R ght _ADC 11
. GLCBAL Process_AD1819_Audi o_Sanpl es;

. GLCBAL Lef t _Channel ;

. GLCBAL R ght _Channel ;

. EXTERN tx_buf;

. EXTERN rx_buf;

.segnent /dm dm dat a;

/* AD1819a stereo-channel data hol ders - used for DSP processing of audio data recieved fromcodec */

. VAR
. VAR

. endseg;

Lef t _Channel ;
R ght _Channel ;

. segnent /pm pm code;

Process_AD1819_Audi o_Sanpl es:

r0 = 0x8000; /* dear all A7 link Audio Qutput Frane slots */
dr(tx_buf + TAG PHASE) = r0; /* and set Valid Frane bit in slot 0 tag phase */
ro = 0;

dr(tx_buf + COMAND ADDRESS SLOT) = r0;

dn(tx_buf + COMVAND DATA SLOT) = r0;

dr(tx_buf + LEFT) = r0;

dn(tx_buf + RGHI) = r0;

Check_ADCs_For _Val i d_Dat a:

r0 = dn(rx_buf + TAG PHASE); /* Get ADCvalid bits fromtag phase slot */

rl = 0x1800; /* Mask other bits in tag */
r2 =r0 and r1i,;

Set_TX Slot_Valid Bits:

rl = dn(tx_buf + TAG PHASE); /* frame/addr/data valid bits */

r3 =r2or rl; /* set tx valid bits based on recieve tag info */

dn(tx_buf + TAG PHASE) = r3;

Check_AD1819_ADC Left:

BTST r0 by M Left_ADG /* Check Master left ADC valid bit */

IF sz JUW Check_AD1819_ADC R ght; /* If valid data then save ADC sanple */
r6 = dn(rx_buf + LEFT); /* get Master 1819 left channel input sanple */
ré = Ishift r6 by 16; /* shift up to MSBs to preserve sign */
dn(Left_Channel) = r6; /* save to data hol der for processing */

Check_AD1819_ADC R ght:

/*
1 *
| *
1 *
| *
1 *
| *
1 *
| *
1 *
| *
1 *
| *
1 *
| *
1 *
| *
1 *
| *
1 *
| *
1 *
| *
1 *
| *
1 *
| *

BTST r0 by MR ght_ADC /* Check Master right ADC valid bit */

|F sz RTI; /* 1f valid data then save ADC sanpl e */
ré = dn(rx_buf + RIGHT); /* get Master 1819 right channel input sanple */
ré = Ishift ré by 16; /* shift up to MBBs to preserve sign */
dn{ R ght _Channel) = r6; /* save to data hol der for processing */

*** |nsert DSP Algorithns Here ***

Input L/R Data Streans - DM Left_Channel) DM R ght_Channel)
Qutput L/R Results - DM Left_Channel) DM R ght _Channel)

These left/right data hol ders are used to pipeline data through mul tiple nodul es, and
can be renoved if the dsp programmer needs to save instruction cycles

Coding TIP:

The sanpl es fromthe ADLI819A are 16-bit and are in the | ower 16 bits of the the 32-bit
word. They are shifted to the nost significant bit positions in order to preserve the
sign of the sanples when they are converted to floating point nunbers. The values are

al so scaled to the range +/-1.0 with the integer to float conversion

(fo =float r0 by r1).

To convert between our assuned 1.31 fractional nunber and | EEE floating point math,
here are sone exanpl e assenbly instructions ...

rl =-31 <-- scale the sanple to the range of +-1.0
r0 = DM Left_Channel);

fO =float r0O by ri;

[Call F oating_Point_A gorithnj

rl = 31; <-- scale the result back up to MSBs

r8 =fix f8 by ri,;

DM Left _Channel) = r8;

user_dsp_appli c:

/* ---- DSP processing is finished, now playback results to AD1819 ---- */

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Pl ayback_Audi o_Dat a:

r15 = dn{Left_Channel); /* get channel 1 output result */

rl5 = Ishift ri5 by -16; /* put back in bits 0..15 for SPCRT tx */

dn(tx_buf + LEFT) = r15; /* output left result to Master AD1819 Slot 3 */

r15 = dn(R ght _Channel); /* get channel 2 output result */

rti(db);

rl5 = Ishift ri5 by -16; /* put back in bits 0..15 for SPCRT tx */

dr(tx_buf + RIGHT) = ri5; /* output left result to Master AD1819 Slot 3 */
/* ___ */

Installing A TX Interrupt Routine After Codec Register Initialization

Instal | _I SR SPCRT1_Tx_I SR
/* Use SPORT1 TX interrupt service function call for audio processing */
/* install the transnit interrupt function call to replace the initial RTl instruction */
/* "JUWP Process_AD1819_Audi o_Sanpl es" instruction into PX (0Xx063E 0000 xxxx). */
/* xxxx = address of Process_AD1819_Audi o_Sanpl es */

PX2 = 0x063e0000; /* Upper 32 bit Qpcode for 'JUW xxxx' instruction */
PX1 = Process_AD1819_Audi o_Sanpl es; /* Lower 16 bits of Qpcode contain junp address */
PMspt 1_svc) = PX /* copy to 0x34 - SPCORT1 interrupt vect location */

Power Cycling The ADCs And DACs For Left/Right Sample Pair
Synchronization With Variable Sample Rates < 48 KHz

/* For variable sanple rate support, you nust powerdown and powerback up the ADCs and DAGs
so that the inconmng ADC data and DAC requests occur in left/right pairs */

Power Down_DAGs_ADCs:

idle;
r15 = ENABLE VFbit_SLOT1_SLOT2; /* enable valid frame bit, and slots 1& valid data bits */
dr(tx_buf + TAG PHASE) = r15; /* set valid slot bits in tag phase for slots 0, 1, 2 */

r 0=PONERDOM_CTRL__STAT;

dr(tx_buf + COMWAND ADDRESS SLOT) = r0;

r 0=0x0300; /* power down all DAGCs/ADCs */
dr(tx_buf + COWAND DATA SLOT) = r0;

idle;

idle;

LCNTR = AD1819_RESET_CYCLES-2, DO reset_| oop UNTIL LCE

reset _loop: NCP, /* wait for the mn RESETb |0 spec tine */
idle;
r15 = ENABLE VFbit_SLOT1_SLOT2; /* enable valid frame bit, and slots 1& valid data bits */
dn(tx_buf + TAG PHASE) = r15; /* set valid slot bits in tag phase for slots 0, 1, 2 */
r 0=PONERDONN_CTRL_STAT; /* address to wite to */
dn(tx_buf + COMWAND ADDRESS SLOT) = r0;
r 0=0; /* power up all DAGs/ ADGs */
dn(tx_buf + COWAND DATA SLOT) = r0;
idle;
idle;

LONTR = AD1819 WARMUP_CYCLES-2, DO war nup_| oop2 UNTI L LCE
war nup_| oop2: NCP; /* wait for ADL819 warmup */

Variable Sample Rate ISR Using The TX Interrupt For Processing -
'ADC Valid Bits' Method For DAC Transmission

[* ok ok ok ok ok ok ok ok ok ok ok ok ok ok Kok ok Kk ok ok ok ok ko ok ok ok Kok ok Kok ok ok ko ok ok o ko ok ok Kok ok ok ok ok ok ok ok ok ok ok ok ok ok Kk ok ko ok ko ok ok ok ok k ok ok k kK

/ /
/ AD1819A - SPCRT1 TX | NTERRUPT SERVI CE RQUTI NE /
/ /
/ Recei ves M Cl/Line input data fromthe ADL819A via SPCRT1 and transnits processed audio data /
/ back out to the ADL819A Stereo DAGCs/Line Qutputs /
/ /
/ This SPORT1 tx | SR version uses the ADC Valid Bits to send and recei ve audi o sanpl es at /
/ different rates other than the default 48 kHz. Assuming the L/R ADCs and DAGs are running /
/ at the sane sanple rate, we transmt a processed sanple for every newy recei ved ADC sanpl e. /
/ /
/

This Serial Port 1 Transnmit Interrupt Service Routine perforns arithnetic conputations on /
the SPCRT1 recei ve DVA buffer (rx_buf) and places results to SPORT1 transmt DVA buffer (tx_buf) /

/

rx_buf[5] - DSP SPCRT receive buffer /
Slot # Description DSP Data Merory Address /
___ /
0 AD1819A Tag Phase DMrx_buf + 0) = DMrx_buf + TAG PHASE) /
1 Status Address Port DMrx_buf + 1) = DMrx_buf + STATUS_ADDRESS SLOT) /
2 Status Data Port DMrx_buf + 2) = DMrx_buf + STATUS DATA SLOT) /
3 Master PCM Capture (Record) Left Chan. DMrx_buf + 3) = DMrx_buf + LEFT) /
4 Master POM Capture R ght Channel DM rx_buf + 4) = DMrx_buf + R GHI) /
/

tx_buf[7] - DSP SPCRT transmit buffer /
Slot # Description DSP Data Menory Address /
.. /
0 ADSP-21065L Tag Phase DM tx_buf + 0) = DMtx_buf + TAG PHASE) /
1 Command Address Port DM tx_buf + 1) = DMrx_buf + COMAND ADDRESS SLOT) /
2 Conmand Data Port DMtx_buf + 2) = DMrx_buf + COMVAND DATA SLOT) /
3 Mast er POM Pl ayback Left Channel DMtx_buf + 3) = DMrx_buf + LEFT) /
4 Mast er PCM Pl ayback R ght Channel DMtx_buf + 4) = DMrx_buf + R GHI) /
5 Dummy Slot (Not Used) /
6 Dummy Slot (Not used) /
/

*/

/* ADSP-21060 System Register bit definitions */
#incl ude "def21065I . h"
#i ncl ude "news5Ldefs. h"

/* AD1819 TDM Tinesl ot Definitions */

#defi ne TAG PHASE 0
#def i ne COMVAND_ADDRESS_SLOT 1
#defi ne COMVAND_DATA _SLOTr 2
#def i ne STATUS_ADDRESS _SLOT 1
#def i ne STATUS_DATA SLOT 2
#def i ne LEFT 3
#defi ne R GHT 4

/* Left and Rght ADC valid Bits used for testing of valid audio data in current TDMfrane */

#defi ne M Left _ADC 12
#defi ne M R ght _ADC 11
#defi ne DAC Req_Left 0x80
#defi ne DAC_Reqg_Ri ght 0x40
. GLCBAL Process_AD1819_Audi o_Sanpl es;

. GLCBAL Left _Channel _In;

. GLCBAL R ght _Channel _I n;

. GLCBAL Left _Channel _Qut;

. GLCBAL R ght _Channel _Qut;

. GLCBAL RX I eft_flag;

. GLCBAL RX_right_flag;

. EXTERN tx_buf;

. EXTERN rx_buf;

. EXTERN fir;

.segnent /dm

/* AD1819a st ereo- channel

. VAR
. VAR
. VAR
. VAR
. VAR
. VAR
. VAR
. VAR
. VAR

dm codec;

Left _Channel _I n;

R ght _Channel _I n;
Left _Channel _CQut;
R ght _Channel _Qut;
Lef t _Channel ;

R ght _Channel ;
RX |l eft_flag;
RX_right_flag;
ADC val i d_bits;

/* AC 97 audio frame/| SR counter, for

. VAR

. endseg;

audi o_frane_timer = 0;

. segnent / pm pm code;

Process_AD1819_Audi o_Sanpl es:

/* Build Transmt Tag Phase S ot

r0 = 0x8000;

dr(tx_buf + TAG PHASE) = r0;
ro = 0;

data hol ders - used for DSP processing of audio data received fromcodec */
/* Input val ues from AD1819A ADCs */

/* Qutput values for ADL819A DACs */
/* can use for internediate results to next filter stage */

/* can use for internediate results to next filter stage */
/* DSP algorithmonly processed when these bits are set */

debug pur poses */

I nformation */
/* Set Valid Frane bit 15 in slot 0 tag phase */
/* Wite tag to tx-buf ASAP before it's shifted out SPORT! */
/* dear AC7 link Audio Qutput Franme slots for now */

dr(tx_buf + COMWAND ADDRESS SLOT) = r0;
dn(tx_buf + COMVAND DATA SLOT) = r0;
dr(tx_buf + LEFT) = r0;

dn(tx_buf + RGHI) = r0;

check_ADCs_f or _val i d_dat a:

r0 = dn(rx_buf + TAG PHASE);
rl = 0x1800;

r2 =r0 and r1,;

dn{ADC valid_bits) = r2;

set_tx_slot_valid_bits:

rl = dn{tx_buf + TAG PHASE);
r3=r2or rl;

dr(tx_buf + TAG PHASE) = r3;

check_AD1819_ADC | eft:

BTST r2 by M Left_ADC

/* Get ADCvalid bits fromtag phase slot */
/* Inspect for valid L/R ADC data */
/* Mask other bits in tag */

/* set tx valid bits based on ADC valid bits info */
/* set left/right channel bits in tag, if required */
/* Wite tag to tx-buf ASAP before it's shifted out SPORT! */

/* Check Master left ADC valid bit */

IF sz JUW check_AD1819_ADC ri ght; /* 1f valid data then save ADC sanple, otherw se continue */

r6 = dn(rx_buf + LEFT);
ré = Ishift r6 by 16;
dn(Left_Channel _In) = r6;
r4 = 1;

dm(RX left_flag) =r4;

check_AD1819_ADC ri ght:

BTST r2 by MR ght_ADG

If sz junp user_applic;
ré = dn(rx_buf + RIGHT);
ré = Ishift ré by 16;
dn{ R ght _Channel _In) = r6;
r4 = 1;
dn{RX_right_flag) = r4;

/* get Master 1819 left channel input sanple */
/* shift up to MSBs to preserve sign in 1.31 format */
/* save to data hol der for processing */

/* if we have a new | eft sanple, let the DSP routine know */

/* Check Master right ADC valid bit */

/* 1f valid data then save ADC sanpl e, otherw se continue */
/* get Master 1819 right channel input sanple */

/* shift up to MBBs to preserve sign in 1.31 fornmat */

/* save to data hol der for processing */

/* if we have a new right sanple, let the DSP routine know */

/* __ */
/* user_applic() - User Applications Routines */
1* *** |nsert DSP Algorithns Here *** */
/* */
1* Input L/R Data Streans - DM Left_Channel _In) DM R ght_Channel _I n) */
/* Qutput L/R Results - DM Left_Channel _Qut) DM R ght _Channel _Qut) */
1* */
/* These left/right data hol ders are used to pipeline data through mul tiple nodul es, and */
1* can be renoved if the dsp programmer needs to save instruction cycles */
/* */
1* Coding TIP: */
/* The sanples fromthe ADL819A are 16-bit and are in the lower 16 bits of the the 32-bit */
1* word. They are shifted to the nost significant bit positions in order to preserve the */
/* sign of the sanples when they are converted to floating point nunbers. The values are */

/* al so scaled to the range +/-1.0 with the integer to float conversion */

1* (fo =float r0O by r1). */
/* */
1* To convert between our assuned 1.31 fractional nunber and | EEE floating point nath, */
/* here are sone exanpl e assenbly instructions ... */
1* */
/* rl =-31 <-- scale the sanple to the range of +-1.0 */
1* r0 = DM Left_Channel); */
/* fo =float rO by r1; */
1* [Call F oating_Point_A gorithni */
/* rl = 31; <-- scale the result back up to MsSBs */
1* r8 =fix f8 by ri; */
/* DM Left_Channel) =r8; */
/* ___ */

user _applic:
/* do audi o processing on input sanples */
r4 = 0x0; /* since we are not using the right flag, always clear */
dm{RX_right_flag) = r4; /* since left &right cone in pairs at sane fs rate, we
only need one flag (because we powered down ADCs for L/R sync).
Thus, the user can optionally renove the right flag set/clear
instructions to save cycles */
r4 = dm{RX |l eft_flag);
r4 = pass r4;
if eq junp pl ayback_audi o_dat a; /* if R{]eft_flag = 1, then do audi o processing */
/* filter routine will clear RX |left_flag */
do_audi o_processi ng:
call (pc, fir);

/* ---- DSP processing is finished, now pl ayback results to AD1819 ---- */

pl ayback_audi o_dat a:
/* Transmt Left and Rght Valid Data every tinme there the ADCs have valid data */
r2 = dn{ADC valid_bits);

tx_AD1819 DAC | eft:

BTST r2 by M Left_ADC /* Check to see if we need to send DAC right sanple */
IF sz JUW tx_AD1819 DAC right; /* 1f valid data then transmt DAC sanple */

r15 = dn{Left_Channel _Qut); /* get channel 1 output result */

rl5 = Ishift ri5 by -16; /* put back in bits 0..15 for SPORT tx */

dn(tx_buf + LEFT) = r15; /* output right result to AD1819a S ot 3 */

tX_AD1819_DAC right:

BTST r2 by MR ght_ADGC /* Check to see if we need to send DAC right sanple */
If sz junp tx_done; /* If valid data then transmt DAC sanple */
r15 = dn{R ght _Channel _Qut); /* get channel 2 output result */
rl5 = Ishift ri5 by -16; /* put back in bits 0..15 for SPCRT tx */
dr(tx_buf + RIGHT) = ri5; /* output right result to AD1819a Slot 4 */

t x_done:
rO=dnf audi o_frane_tiner); /* get last count */
rti(db); /* return frominterrupt, delayed branch */
r0=r 0+1; /* increnment count */
dr(audi o_frame_tinmer)=ro0; /* save updated count */

/* ___ */

Variable Sample Rate ISR Using The TX Interrupt For Processing -
DAC Transmission Based On DAC Request Bits With Ring Buffers

[* ok ok ok ok ok ok ok ok ok ok ok ok ok ok Kok ok Kk ok ok ok ok ko ok ok ok Kok ok Kok ok ok ko ok ok o ko ok ok Kok ok ok ok ok ok ok ok ok ok ok ok ok ok Kk ok ko ok ko ok ok ok ok k ok ok k kK

/ /
/ AD1819A - SPCRT1 TX | NTERRUPT SERVI CE RQUTI NE /
/ /
/ Recei ves M Cl/Line input data fromthe ADL819A via SPCRT1 and transnits processed audio data /
/ back out to the ADL819A Stereo DAGCs/Line Qutputs /
/ /
/ This SPORT1 tx | SR version uses the DAC Request Bits to send and recei ve audi o sanpl es at /
/ different rates other than the default 48 kHz. Assuming the L/R ADCs and DAGs are running /
/ at the sane sanple rate, we transmt a processed sanpl e based on the DAC requests fromthe /
/ AD1819A whi | e perform ng the processing based on the ADC valid bits. /
/ /
hkhkkhkhkhhkhkhkhkhkhkhkhkhkhkhkhhkhhkh ok k ok k ok k ok ko hkh ko hhkh ok kh ko hhkhk ko hkkhkhhkhkhkhkhkhkhhkhkhkhkhhkhkhkhkkhkhkhkhkhkhk*
/

This Serial Port 1 Transnit Interrupt Service Routine perforns arithnetic conputations on /
the SPORT1 receive DVA buffer (rx_buf) and places results to SPORT1 transmt DVA buffer (tx_buf) /

/

rx_buf[5] - DSP SPCRT receive buffer /
Slot # Description DSP Data Menory Address /
... /
0 AD1819A Tag Phase DMrx_buf + 0) = DMrx_buf + TAG PHASE) /
1 Status Address Port DMrx_buf + 1) = DMrx_buf + STATUS ADDRESS SLOT) /
2 Status Data Port DMrx_buf + 2) = DMrx_buf + STATUS DATA SLOT) /
3 Master PCM Capture (Record) Left Chan. DMrx_buf + 3) = DMrx_buf + LEFT) /
4 Mast er PCM Capture R ght Channel DMrx_buf + 4) = DMrx_buf + R GHI) /
/

tx_buf[7] - DSP SPCRT transmt buffer /
Slot # Description DSP Data Menory Address /
__ /
0 ADSP- 21065L Tag Phase DMtx_buf + 0) = DMtx_buf + TAG PHASE) /
1 Conmand Addr ess Port DMtx_buf + 1) = DMrx_buf + COMWAND ADDRESS SLOT) /
2 Command Data Port DMtx_buf + 2) = DMrx_buf + COMVAND _DATA SLOT) /
3 Master PCM Pl ayback Left Channel DM tx_buf + 3) = DMrx_buf + LEFT) /
4 Mast er POM Pl ayback R ght Channel DM tx_buf + 4) = DMrx_buf + R GHI) /
5 Dummy Slot (Not Used) /
6 Dummy Slot (Not used) /
/

>/

/* ADSP-21060 System Register bit definitions */
#incl ude "def21065I . h"
#i ncl ude "news5Ldefs. h"

/* AD1819 TDM Tinesl ot Definitions */

#defi ne TAG PHASE 0
#def i ne COMVAND_ADDRESS_SLOT 1
#defi ne COMVAND_DATA _SLOTr 2
#def i ne STATUS_ADDRESS _SLOT 1
#def i ne STATUS_DATA SLOT 2
#def i ne LEFT 3
#defi ne R GHT 4

/* Left and Rght ADC valid Bits used for testing of valid audio data in current TDMfrane */

#defi ne M Left _ADC 12
#defi ne M R ght _ADC 11
#defi ne DAC Req_Left 0x80
#defi ne DAC_Reqg_Ri ght 0x40
. GLCBAL Process_AD1819_Audi o_Sanpl es;

. GLCBAL Left _Channel _In;

. GLCBAL R ght _Channel _I n;

. GLCBAL Left _Channel _Qut;

. GLCBAL R ght _Channel _Qut;

. EXTERN tx_buf;

. EXTERN rx_buf;

.segnent /dm dm codec;

/* AD1819a stereo-channel data holders - used for DSP processing of audio data received fromcodec */

. VAR Left _Channel _In;

. VAR R ght _Channel _I n;
. VAR Left _Channel _Qut;
. VAR R ght _Channel _Qut;

/* AD1819 ADC/ DAC ring buffer variables, may be required for Fractional Sanple Rate Rations of 48 kHz*/
. VAR Lchan_ring_buff[(6] =0, 0, 0, 0, O, O;

. VAR Rchan_ring_buff[6] =0, 0, O, O, O, O;

. VAR L_input_ptr; /* tenporary storage of Index register, this saves us fromusing 4 DAG pointers */
. VAR L_DAC out put _ptr;

. VAR R input_ptr;

. VAR R _DAC out put _ptr;

. VAR ADC sanpl e_test = 0x00000000;

.@Q.BAL Lchan_ring_buff, Rchan_ring_buff, L_input_ptr, L_DAC output_ptr, Rinput_ptr, R DAC output_ptr;

/* AC 97 audio frame/|SR counter, for debug purposes */
. VAR audi o_frane_timer = 0;

. endseg;
. segnent / pm pm code;
Process_AD1819_Audi o_Sanpl es:
/* Build Transmit Tag Phase Slot Information */

r0 = 0x00cO0; /* slots3 and slots 4 DAC REQ bit mask */

check_DAC request _bits:
/* do not overwite contents of rl, since it is required at the end of this interrupt! */

rl = dn{rx_buf + STATUS_ADDRESS SLOT); /* Get ADC request bits fromaddress slot */

r2 =rl1 and r0; /* Mask out the AD1819 Master DRRQ and DLRQ bits */
r2 =r2 xor ro; /* Set active | ow DAC request bits to active hi */
r2 = 1shift r2 by 5; /* shift up so output tag infois bits 12 and 11 */

set _TX slot_valid_bits:

r0 = 0x8000; /* Wite tag to tx-buf ASAP before it's shifted out! */
r2 =r2or r0; /* set tx valid bits based on recei ved DAC request info */
dn(tx_buf + TAG PHASE) = r2; /* Set Valid Frane & Valid Slot bits in slot 0 tag phase */
ro = 0; /* Aear all A7 link Audio Qutput Frame slots */
dn(tx_buf + COMVAND ADDRESS SLOT) = rO0;
dr(tx_buf + COWAND DATA SLOT) = r0;
dn(tx_buf + LEFT) =rO0;
dn(tx_buf + RGHI) = rO0;
r0 = dn(rx_buf + TAG PHASE); /* get tag information to inspect for valid L/R ADC data */
DM ADC sanpl e_test) = r0; /* save for conditional ring buffer input storage */
check_AD1819_ADC | eft:
BTST r0 by M Left_ADG /* Check Master left ADC valid bit */
IF sz JUW check_AD1819_ADC ri ght; /* If valid data then save ADC sanple */
r6 = dn(rx_buf + LEFT); /* get Master 1819 left channel input sanple */
ré = Ishift r6 by 16; /* shift up to MSBs to preserve sign in 1.31 format */
dn(Left_Channel _In) = r6; /* save to data hol der for processing */
check_AD1819_ADC ri ght:
BTST r0 by MR ght_ADC /* Check Master right ADC valid bit */
I'F sz junp user_applic; /* 1f valid data then save ADC sanple */
ré = dn(rx_buf + RIGHT); /* get Master 1819 right channel input sanple */
ré = Ishift ré by 16; /* shift up to MBBs to preserve sign in 1.31 fornmat */
dn{ R ght _Channel _In) = r6; /* save to data hol der for processing */
/'k __ */
/* user_applic() - User Applications Routines */
/* *** |nsert DSP Algorithns Here *** */
1* */
/* Input L/R Data Streans - DM Left_Channel _I n) DM R ght _Channel _I n) */
1* Qutput L/R Results - DM Left_Channel _Qut) DM R ght _Channel _Qut) */
/* */
1* These left/right data hol ders are used to pipeline data through nul ti pl e nodul es, and */
/* can be renoved if the dsp progranmer needs to save instruction cycles */
1* */
/* Coding TIP: */
1* The sanpl es fromthe ADL819A are 16-bit and are in the | ower 16 bits of the the 32-bit */

/* word. They are shifted to the nmost significant bit positions in order to preserve the */

/* sign of the sanples when they are converted to floating point nunbers. The val ues are */
1* al so scaled to the range +/-1.0 with the integer to float conversion */
/* (fo =float r0 by r1). */
1* */
/* To convert between our assumed 1.31 fractional nunber and | EEE floating point math, */
1* here are sone exanpl e assenbly instructions ... */
/* */
1* rl =-31 <-- scale the sanple to the range of +-1.0 */
/* r0 = DM Left_Channel); */
1* fO =float r0O by ri; */
/* [Call F oating_Point_A gorithni */
1* rl = 31; <-- scale the result back up to MSBs */
/* r8 =fix f8 by ri; */
1* DM Left _Channel) = r8; */
/'k __ */
user _applic:

{call (pc, Audio_Agorithn;}

/* ---- DSP processing is finished, now playback results to AD1819 ---- */

call Sanple Jitter_Attenuator; /* call this routine if running at fractional sanple rates

pl ayback_audi o_dat a:
/* Transmt Left and Right Valid Data if Requested

r2=DAC Req_Left; /*
r3=r1 and r2; 1*
if ne junp bypass_|eft; /*
call (pc, left_ring_buff_out); 1*
r15 = dn{Left_Channel _Qut); /*
rl5 = Ishift ri5 by -16; 1*
dn(tx_buf + LEFT) = r15; /*
bypass_| eft:
r2=DAC Req_R ght; 1*
r3=rl and r2; /*
if ne junp bypass_right; 1*
call (pc, right_ring_buff_out); /*
r15 = dn{R ght _Channel _Qut); 1*
rl5 = Ishift r15 by -16; /*
dn(tx_buf + RGHT) = ri5; 1*
bypass_ri ght:
rO=dn(audi o_frame_timer); /*
rti(db); 1*
r0=r 0+1; /*
dr(audi o_frame_tinmer)=ro0; 1*

ratios of 48 kHz, such as 44100, 8766, 23456, etc..
ot herwi se, comnment out or renove routine entirely */

*/

Check to see if Left DAC REQ? */

DAC request is active |ow */

if it is 1, it neans we have no request, so nove on */

if DACreq set, then get processed o/p fromring buffer */
get channel 1 output result */

put back in bits 0..15 for SPCORT tx */

output right result to AD1819a Slot 3 */

Check to see if R ght DAC REQ? */
DAC request is active low */

if it is 1, it means we have no request, so nove on */
if DACreq set, then get processed o/p fromring buffer */
get channel 2 output result */

put back in bits 0..15 for SPORT tx */
output right result to AD1819a Slot 4 */

get last count */

return frominterrupt, delayed branch */
increnent count */

save updated count */

Example Ring Buffer Implementation For The 'DAC Request Bits'
Method

A e T */
/* Left/Right Channel R ng Buffers Routines, for sanple rate jitter attenuation */
/* __ */
/* These ring buffers nay be required when using the tx interrupt for audio */
/* processing and running at fractional sanple rate rations of 48 kHz usi ng */
/* the 'DAC Request Bits Method' to elinminate risk or repeating or dropping */
/* processed sanples, resulting in aloss in signal quality. */
/* */
/* This method is not the nost efficient, but only requires 1 index register */
/* for inplenentation instead of four. The user coul d al so use any four */
/* available primary or secondary index registers to inplenment the ring */
/* buffers, and then remove the nenory pointer save/restore instructions. */
/* __ */
. EXTERN Lchan_ri ng_buf f;

. EXTERN Rchan_ri ng_buf f;

. EXTERN L_input_ptr;

. EXTERN L_DAC out put _ptr;

. EXTERN R input_ptr;

. EXTERN R_DAC out put _ptr;

. EXTERN ADC sanpl e_t est;

. segnent /pm pm code;

Init_R ng_Buffers:
/* initialize the ring buffer input and output pointers */
BO = Lchan_ring_buff;
DM L_i nput_ptr) =10;

10 = Lchan_ring_buff + 3; /* start output ptr in mddl e of the buffer */
DM L_DAC out put_ptr) = 10;

BO = Rchan_ring_buff;
DMR.input_ptr) =10;

10 = Rehan_ring_buff + 3; /* start output ptr in mdd e of the buffer */
DM R _DAC out put_ptr) = 10;

LO = 6; /* both input/output L/Rring buffers are 6 words deep */
rts;

X LLELPETEL L i i e n e ik

Sanpl e_Jitter_Attenuator:

LO = 6; /* input and output ring buffers are 6 words deep */
M = 1;

r9 = DMADC sanpl e_test);

BTST r9 by M Left_ADC /* Did we process a valid left sanple in this ISR? */
I'F sz JUWP right_ring_buff_in; /* 1f we did, store result to left ring buffer input */

left_ring_buff_in:
RO = DM Left_Channel _In);
BO = Lchan_ring_buff;
10 = DM L_i nput_ptr);

DM 10, M) = Ro;
DM L_input_ptr) =10;
right_ring_buff_in:
BTST r9 by MR ght_ADGC /* Ddwe process a valid right sanple in this | SR? */
I'F sz JUW ring_done; /* 1f we did, store result to right ring buffer input */
RO = DM R ght _Channel _I n);
BO = Rchan_ri ng_buff;
10 = DM R_i nput _ptr);
DM 10, M) = RO;

DMR.input_ptr) =10;

ring_done:
rts;

left_ring_buff_out:
LO = 6;

M = 1;

BO = Lchan_ring_buff;

10 = DM L_DAC out put _ptr);
RO = DM 10, MD);

DM L_DAC out put _ptr) = 10;
DM Lef t _Channel _Qut) = RO;

rts;
right_ring_buff_out:
BO = Rchan_ring_buff;
10 = DM R_DAC out put _ptr);
RO = DM 10, MD);

DM R_DAC out put _ptr) = 10;
DM R ght _Channel _Qut) = RO;

rts;

Variable Sample Rate ISR Using Both The RX and TX Interrupt For
Processing - TX DAC Transmission Based On DAC Request Bits

[* ok ok ok ok ok ok ok ok ok ok ok ok ok ok Kok ok Kk ok ok ok ok ko ok ok ok Kok ok Kok ok ok ko ok ok o ko ok ok Kok ok ok ok ok ok ok ok ok ok ok ok ok ok Kk ok ko ok ko ok ok ok ok k ok ok k kK

AD1I819A - SPCRT1 RX & TX | NTERRUPT SERVI CE ROUTI NES

Recei ves MCL input fromthe ADL819A via SPORTO and then transnmits the audio data back out to the
AD1819A Stereo DAGs/Line Qutputs. This version supports the variable sanple rate features of the
AD1819A, testing both the ADC valid bits and DAC request bits for transmitting and receiving data
at sanple rates (selectable in 1 Hz increnments) other than 48 kHz.

hkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkk ok kkkk ko kkkkk ok kkkkkkkkkkk ok ok kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk ko k k&

Serial Port 1 Transnmit Interrupt Service Routine perforns arithmetic conputations on SPORT1 receive
data buffer (rx_buf) and sends results to SPORT1 transnmit data buffer (tx_buf)

rx_buf[5] - DSP SPCRT recieve buffer
Slot # Description

DSP Data Merory Address

0 AD1819 Tag Phase DMrx_buf + 0) = DMrx_buf + TAG PHASE)

1 Status Address Port DMrx_buf + 1) = DMrx_buf + STATUS_ADDRESS SLOT)
2 Status Data Port DMrx_buf + 2) = DMrx_buf + STATUS DATA SLOT)

3 Master PCM Capture (Record) Left Chan. DMrx_buf + 3) = DMrx_buf + LEFT)

4 Mast er POM Capture R ght Channel DM rx_buf + 4) = DMrx_buf + R GHI)

tx_buf[5] - DSP SPCRT transmit buffer

Slot # Description DSP Data Menory Address

0 ADSP-2106x Tag Phase DM tx_buf + 0) = DMtx_buf + TAG PHASE)

1 Command Address Port DM tx_buf + 1) = DMrx_buf + COMAND ADDRESS SLOT)
2 Conmand Data Port DMtx_buf + 2) = DMrx_buf + COMVAND DATA SLOT)
3 Mast er POM Pl ayback Left Channel DMtx_buf + 3) = DMrx_buf + LEFT)

4 Mast er PCM Pl ayback R ght Channel DMtx_buf + 4) = DMrx_buf + R GHI)

ko ko ok Kk ok Kk ok ok ok Kk ok Kok ok Kk ok ok ok ok ok ok ok ko Kok ok Kk ok ok ok ok ok ok ok ok ok ok ok ok ok Kk ok ok ok ok ok ok ok ok ok ok Kk ok ko ok k ok ok k ok k ok ok k ok k [

/* ADSP-21060 System Register bit definitions */

#incl ude "def21065I . h"

#incl ude "newe5Ldefs. h"

/* AD1819 TDM Timesl ot Definitions */

#defi ne TAG PHASE 0
#def i ne COMVAND_ADDRESS_SLOT 1
#defi ne COMVAND_DATA _SLOTr 2
#def i ne STATUS_ADDRESS_SLOT 1
#def i ne STATUS_DATA SLOT 2
#def i ne LEFT 3
#defi ne R GHT 4

/* Left and Rght ADC valid Bits used for testing of valid audio data in current TDMfrane */
#defi ne M Left _ADC 12
#defi ne M R ght _ADC 11
#defi ne DAC Req_Left 0x80
#defi ne DAC_Reqg_Ri ght 0x40
. GLCBAL Process_AD1819_Audi o_| nput ;

. GLCBAL Pl ayback_Audi o_Dat a;

. GLOBAL Left _Channel ;

. GLCBAL R ght _Channel ;

. GLCBAL Left _Channel _In;

. GLCBAL R ght _Channel _I n;

. GLCBAL Left _Channel _Qut;

. GLCBAL R ght _Channel _Qut;

. GLCBAL RX left_flag;

. GLCBAL RX_right_flag;

. EXTERN tx_buf;

. EXTERN rx_buf;

. EXTERN Sl apback_Echo;

. EXTERN St er eo_Doubl e_Tr acki ng;

. EXTERN effects_counter;

.segnent /dm dm codec;

/* AD1819A st er eo- channel

data hol ders and flags-used for DSP processing of received codec audio data*/

. VAR Left _Channel _In; /* Input values from AD1819A ADCs */

. VAR R ght _Channel _I n;

. VAR Left _Channel _Qut; /* Qutput values for ADL819A DAGCs */

. VAR R ght _Channel _Qut;

. VAR Left _Channel ; /* can use for intermediate results to next filter stage */

. VAR R ght _Channel ; /* can use for internediate results to next filter stage */

. VAR RX I eft_flag; /* DSP algorithmonly processed when these bits are set */

. VAR RX_right_flag;

. VAR DAC RQ /* used to pass DAC request bits info fromrx ISRto tx ISR */

/* define AG 97 audio frame counters for debug purposes */

.var rx_audio_frame_tinmer = 0; /* 48kHz audio frame tiner variable */
.var tx_audio_frane_timer = 0O; /* 48kHz audio frane tiner variable */
. endseg;

. segnent / pm pm code;

LR s R T
/ /
/* */
/* SPCRT1 RX | NTERRUPT SERVI CE RQUTI NE */
/* */

[* R KRRk Kk ok ok ok Kk Kk Kk Kk Kk kK kR Kk kK Kk K kR K kR Kk kK kR K kKK kKR k kR k kR K kR Kk kK kR K kK k kK k kK k kK ok kK

Process_AD1819_Audi o_I nput :

bit set nodel SRRFL; /* enabl e background register file */
NCP; /* 1 CYCLE LATENCY FOR WR TI NG TO MDE1 REQ SER'! */
get _DAC request _bits:
rl = dn{rx_buf + STATUS ADDRESS SLOT); /* Get ADC request bits fromaddress slot */
dn{DACRQ =r1; /* save for SPORTL TX ISR */
r0 = dn(rx_buf + TAG PHASE); /* get tag information to inspect for valid L/R ADC data */
check_AD1819_ADC | eft:
BTST r0 by M Left_ADG /* Check Master left ADC valid bit */
IF sz JUW check_AD1819_ADC ri ght; /* If valid data then save ADC sanple */
r6 = dn(rx_buf + LEFT); /* get Master 1819 left channel input sanple */
ré = Ishift r6 by 16; /* shift up to MSBs to preserve sign in 1.31 format */
dn(Left_Channel _In) = r6; /* save to data hol der for processing */
r4 = 1;
dm(RX left_flag) =r4; /* if we have a new | eft sanple, let the DSP filter routine know */

check_AD1819_ADC ri ght:

*/

BTST r0 by MR ght_ADC /* Check Master right ADC valid bit */
I'F sz junp user_applic; /* 1f valid data then save ADC sanple */

ré = dn(rx_buf + RIGHT); /* get Master 1819 right channel input sanple */

ré = Ishift ré by 16; /* shift up to MBBs to preserve sign in 1.31 fornmat */

dn{ R ght _Channel _In) = r6; /* save to data hol der for processing */

r4 = 1;

dn{RX_right_flag) = r4; /* if we have a newright sanple, let the DSP filter routine know */
/* __ */
/* user_applic() - User Applications Routines */
/* *** |nsert DSP Algorithns Here *** */
1* */
/* Input L/R Data Streans - DM Left_Channel _I n) DM R ght _Channel _I n) */
1* Qutput L/R Results - DM Left_Channel _Qut) DM R ght _Channel _Qut) */
/* */
1* These left/right data hol ders are used to pipeline data through nul ti pl e nodul es, and */
/* can be renoved if the dsp progranmer needs to save instruction cycles */
1* */
/* Coding TIP: */
1* The sanpl es fromthe ADL819A are 16-bit and are in the | ower 16 bits of the the 32-bit */
/* word. They are shifted to the nmost significant bit positions in order to preserve the */
1* sign of the sanples when they are converted to floating point nunbers. The val ues are */
/* al so scaled to the range +/-1.0 with the integer to float conversion */
1* (fo =float r0O by r1). */
/* */

/* To convert between our assuned 1.31 fractional nunber and | EEE floating point math, */
1* here are sone exanpl e assenbly instructions ... */
/* */
1* rl =-31 <-- scale the sanple to the range of +-1.0 */
/* r0 = DM Left_Channel); */
1* fO =float r0O by ri; */
/* [Call F oating_Point_A gorithni */
1* rl = 31; <-- scale the result back up to MSBs */
/* r8 = fix f8 by ri,; */
1* DM Left _Channel) = r8; */
/* __ */
user_applic:

/* since we powered down the ADCs after codec initialization, the sanples should occur in
left right pairs. Therefore, since both the left and right channels are running at the

sane fs, when we detect a left sanple, we w

call our DSP routine because we will have

both a new |l eft sanple and a new right sanple */

rd4 = dn{RX_left_flag);
r4 = pass ré4;
if eq junp rx_end;

do_audi o_processi ng:

rx_end:

1 *

if RXleft_flag = 1, then do audi o processing */

/* delay routine will clear R left_flag */
r0 = DM effects_counter);
r0 = pass r0; /* get preset node */
if eq call (pc, S apback_Echo); /* check for count == 0 */
r0O = DMeffects_counter); /* check again */
r0 = pass r0; /* still the same ? */
if eq junp rx_end; /* bypass if not stereo */
r0 =r0 - 1; /* decrenent, nust be stereo effect */
if eq call (pc, Stereo_Doubl e_Tracking); /* check for count == 1 */
/* ---- DSP processing is finished, now pl ayback results to AD1819 via TX ISR ---- */
r4 = 0x0; /* since we are not using the right flag, always clear */
dm{RX_right_flag) = r4; /* since left &right come in pairs at same fs rate, we
only need one flag */
rO=dn{rx_audi o_frame_tiner); /* get last count */
r0=r 0+1; /* increment count */
dr(rx_audi o_frame_tiner)=ro0; /* save updated count */
rti(db); /* return frominterrupt, delayed branch */
bit clr nodel SRRFL; /* switch back to primary register set */
NCP; /* 1 CYCLE LATENCY FCR WR TI NG TO MDE1 REQG SERI'! */

[* R KRR Kk Kk k ok k kKK kR K kR Kk kK kK Kk kK kKKK KKK KKKk KKk kK kR KR KKK KKK KKK KR KKK KKK KKK KKK KKK KKK KK KK K

1 *
| *
1 *

*/

SPCRT1 TX | NTERRUPT SERVI CE RQUTI NE */

*/

[* R KRR Kk Kk k ok k kKK kR K kR Kk kK kK Kk kK kKKK KKK KKKk KKk kK kR KR KKK KKK KKK KR KKK KKK KKK KKK KKK KKK KK KK K

Pl ayback_Audi o_Dat a:

/* Build Transnmit Tag Phase Slot Information */
r0 = 0x00cO;

check_DAC request _bits:
/* DAC request bits were fetched fromsptl rx ISR

rl = dn{DAC RQ;
r2 =rl and r0;
r2 =r2 xor roQ;
r2 = Ishift r2 by 5;

set_TX slot_valid_bits:

r0 = 0x8000;

r2 =r2or ro;

dr(tx_buf + TAG PHASE) = r2;

ro = 0;

dr(tx_buf + COMWAND ADDRESS SLOT) = r0;
dn(tx_buf + COMVAND DATA SLOT) = r0;
dr(tx_buf + LEFT) = r0;

dn(tx_buf + RGHI) = r0;

1 *

1 *
| *
1 *
| *

1 *
| *
1 *
| *

slots3 and slots 4 DAC REQ bit mask */

*/

Get ADC request bits fromaddress slot */

Mask out the AD1819 Master DRRQD and DLRQD bits */
Set active | ow DAC request bits to active hi */
shift up so output tag infois bits 12 and 11 */

Wite tag to tx-buf ASAP before it's shifted out! */
set tx valid bits based on received DAC request info */
Set Valid Frane & Valid Slot bits in slotO tag phase */
dear all A7 link Audio Qutput Frane slots */

/* Transmt Left and Right Valid Data if Requested

r2=DAC Req_Left; /*
r3=r1 and r2; 1*
if ne junp bypass_|eft; /*
r15 = dn{Left_Channel _Qut); /*
rl5 = Ishift ri5 by -16; 1*
dn(tx_buf + LEFT) = rl5; /*
bypass_| eft:
r2=DAC Req_R ght; 1*
r3=rl1 and r2; /*
if ne junp bypass_right; 1*
r15 = dn{R ght _Channel _Qut); 1*
r15 = Ishift r15 by -16; /*
dr(tx_buf + RIGHT) = ri5; 1*
bypass_ri ght:
rO=dn(t x_audi o_frane_ti ner); /*
rti(db); 1*
r0=r 0+1; /*
dr(tx_audi o_frame_tiner)=ro0; 1*

*/

Check to see if Left DAC REQ? */

DAC request is active |ow */

if it is 1, it neans we have no request, so nove on */
get channel 1 output result */

put back in bits 0..15 for SPORT tx */

output right result to AD1819a Slot 3 */

Check to see if Rght DAC REQ? */
DAC request is active low */
if it is 1, it means we have no request, so nove on */

get channel 2 output result */
put back in bits 0..15 for SPORT tx */
output right result to AD1819a Slot 4 */

get last count */

return frominterrupt, delayed branch */
increnent count */

save updated count */

Example RX ISR For Three Daisy-Chained AD1819As

T
/* Serial Port 1 Receive Interrupt Service Routine */
1* perforns arithnetic conputations on SPCRT1 receive data buffer (rx_buf) and */
/* sends results to SPORT1 transmt data buffer (tx_buf) */
/ *

rx_buf[9] - DSP SPCRT recieve buffer

Slot # Descri ption DSP Data Menory Address

0 AD1819A Tag Phase DM rx_buf + 0)

1 Status Address Port DM rx_buf + 1)

2 Status Data Port DM rx_buf + 2)

3 Master PCM Capture (Record) Left Channel DM rx_buf + 3)

4 Mast er PCM Capture R ght Channel DM rx_buf + 4)

5 Slave 1 POM Capture Left Channel DM rx_buf + 5)

6 Slave 1 POM Capture R ght Channel DM rx_buf + 6)

7 Slave 2 POM Capture Left Channel DM rx_buf + 7)

8 Slave 2 POM Capture R ght Channel DM rx_buf + 8)

tx_buf[9] - DSP SPORT transmt buffer

Slot # Description DSP Data Menory Address

0 ADSP-2106x Tag Phase DMt x_buf + 0)

1 Conmand Addr ess Port DMt x_buf + 1)

2 Conmand Data Port DMt x_buf + 2)

3 Master PCM Pl ayback Left Channel DMt x_buf + 3)

4 Mast er PCM Pl ayback R ght Channel DMt x_buf + 4)

5 Slave 1 POM Pl ayback Left Channel DMt x_buf + 5)

6 Slave 1 POM Pl ayback R ght Channel DMt x_buf + 6)

7 Sl ave 2 POM Pl ayback Left Channel DMt x_buf + 7)

8 Sl ave 2 POM Pl ayback R ght Channel DMt x_buf + 8) */
* *
j* __ *;

Process_AD1819_Audi o_Sanpl es:

r0 = 0x8000;
dn(tx_buf + 0) =r0;
ro = 0;

dn(tx_buf + 1) =r0;
dn(tx_buf + 2) =r0;
dn(tx_buf + 3) =r0;
dr(tx_buf + 4) =r0;
dn(tx_buf + 5) =r0;
dn(tx_buf + 6) =r0;
dn(tx_buf +7) =r0;
dn(tx_buf + 8) =r0;

Check_ADCs_For _Val i d_Dat a:
r0 = dn(rx_buf);
rl = Ox1f 80;
r2 =r0 and r1;

Set_TX Slot_Valid_Bits:
rl = dn{tx_buf + 0);
r3=r2or rl;
dr(tx_buf +0) = r3;

Check_Mast er _ADC Left:
BTST r0 by MLeft_ ADC
IF sz JUW Check_Master _ADC R ght;
ré = dn{rx_buf + 3);
r6= Ishift r6 by 16;
dn{ Mast er _Left _Channel) =r 6;

Check_Mast er _ADC R ght :
BTST r0 by MR ght_ADC
IF sz JUWP Check_S avel_ADC Left;
r6 = dn{rx_buf + 4);
ré = Ishift r6 by 16;
dn(Mast er _R ght _Channel) = r6;

Check_Sl avel ADC Left:
BTST r0 by Sl1_Left_ADG
if sz junp Check_Sl avel ADC R ght;

/* Aear all A7 link Audio Qutput Frame slots */
/* and set Valid Frane bit in slot O tag phase */

/* Get ADCvalid bits fromtag phase slot */
/* Mask other bits in tag */

/* frane/addr/data valid bits */
/* set tx valid bits based on recieve tag info */

/* Check Master left ADC valid bit */

/* 1f valid data then save ADC sanpl e */

/* get Master 1819 left channel input sanple */
/* shift up to MBBs to preserve sign */

/* save to data hol der for processing */

/* Check Master right ADC valid bit */

/* If valid data then save ADC sanple */

/* get Master 1819 right channel input sanple */
/* shift up to MSBs to preserve sign */

/* save to data hol der for processing */

/* Check Slave 1 left ADCvalid bit */
/* 1f valid data then save ADC sanple */

r6 = dn{rx_buf + 5);
ré = Ishift ré by 16;
dn(Sl avel_Left_Channel) = r6;

Check_Sl avel_ADC R ght:
BTST r0 by S1_R ght_ADC

if

sz junp Check_S ave2_ADC Left;
r6 = dn{rx_buf + 6);
ré = Ishift r6 by 16;

dn(Sl avel_R ght _Channel) = r6;

Check_Sl ave2_ADC Left:
BTST r0 by S2_Left_ADC

if

sz junp Check_Sl ave2_ADC Right;
r6 = dn(rx_buf + 7);
ré = Ishift ré by 16;

dn(Sl ave2_Left_Channel) = r6;

Check_Sl ave2_ADC R ght :
BTST r0 by S2_R ght _ADC

if

1 *

sz rti;

r6 = dn{rx_buf + 8);

ré = Ishift r6 by 16;

dn(Sl ave2_R ght _Channel) = r6;

[*
1 *
/*

1 *
/*
1 *
/*
1 *

/*
1 *
/*
1 *
/*

1 *
/*
1 *
/*
1 *

*/

/* Insert Sanpl e/ Bl ock Processing AlgorithmHere */

1 *

Loopback_Audi o_Dat a:

ri1s5
ris

dn(

ri1s5
ris

dn(

ri1s5
ris

dn(

ri1s5
ris

dn(

ri1s5
ris

dn(

ri1s5
rti

ri1s5
dn(

dn(Mast er _Left_Channel) ;
Ishift ri5 by -16;
tx_buf + 3) = r15;

= dn(Mast er _R ght _Channel);
Ishift ri5 by -16;

tx_buf + 4) = r15;

dn(Sl avel_Left_Channel);
Ishift ri5 by -16;
tx_buf + 5) = r15;

dn(Sl avel R ght _Channel);
Ishift ri5 by -16;
tx_buf + 6) = ri15;

dn(Sl ave2_Left_Channel);
Ishift ri5 by -16;
tx_buf + 7) = r15;

= dn(Sl ave2_R ght _Channel);
(db);

= Ishift ri5 by -16;

tx_buf + 8) = rli5;

*/

/*
1 *
/*

| *
1 *
| *

| *
1 *
| *

| *
1 *
| *

| *
1 *
| *

get Slave 1 1819 left channel input sanple */
shift up to MSBs to preserve sign */

save to data hol der for processing */

Check Slave 1 right ADC valid bit */
If valid data then save ADC sanple */
get Slave 1 1819 right channel input sanple */
shift up to MSBs to preserve sign */
save to data hol der for processing */

Check Slave 2 left ADCvalid bit */

If request is made save ADC sanple */

get Slave 2 1819 left channel input sanple */
shift up to MSBs to preserve sign */

save to data hol der for processing */

Check Slave 2 right ADC valid bit */
If valid data then save ADC sanple */
get Slave 2 1819 right channel input sanple */
shift up to MSBs to preserve sign */
save to data hol der for processing */

get channel
put back in
output |eft

1 output result */
bits 0..15 for SPORT tx
result to Master AD1819

*/

Sl ot */
get channel
put back in
output |eft

2 output result */
bits 0..15 for SPORT tx
result to Master AD1819

*/

Sl ot */
get channel
put back in
output left

3 output result */
bits 0..15 for SPORT tx
result to Slavel AD1819

*/

Sl ot */
get channel
put back in
output left

4 output result */
bits 0..15 for SPORT tx
result to Slavel AD1819

*/

Sl ot */
get channel
put back in
output left

5 output result */
bits 0..15 for SPORT tx
result to Slave2 AD1819

*/
Sl ot */

get channel 6 output result */

put back in bits 0..15 for SPORT tx
output left result to Slave2 AD1819

*/
Sl ot
*/

*/

ADSP-21065L Interrupt Vector Table

/* RS R R E R R R RS R R EE R R SRS R R R R R RS SRS R SRR RS EEE R RS R EEEEEEEEEE S
/*

/* ADSP- 21065L | NTERRUPT VECTCR TABLE

/*

/* For use with the 21065L EZ-LAB Eval uation Pl atform

/*

/* (JT - 10/ 23/98)

[k ok ok ok ko ok ok ko ko ok ok okt ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ko ok Kk ok ok sk ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok Sk ko ok ko kK

.EXTERN _main;
.EXTERN I nit_DSP,
.EXTERN Process_AD1819_Audi o_Sanpl es;

. SEQVENT/PM isr_tbhl;

/* 0x00 Reserved Interrupt */

/* 0x00 0x01 0x02 0x03 0x04 */
/* reserved_0: NCP; NCP; NCP; NCP; NCP; */

[* *** Reset vector *** */
/* 0x05 - reset vector starts at |ocation 0x8005 */

rst_svc: call Init_DSP
NCP;
junp _nain;

/* 0x08 - Reserved interrupt */

reserved_0x8: NCP; NCP; NCP; NCP;
/* 0xOC - Vector for status stack/loop stack overflow or PC stack full: */
sovfi_svc: RTI; RTI; RTI; RTI;

/* 0x10 - Vector for high priority timer interrupt: */
t nehi _svc: RTI ; RTI ; RTI ; RTI ;

/* 0x14 - Vectors for external interrupts: */
vrpti_svc: RTI; RTI; RTI; RTI;

/* 0x18 - IR Interrupt Service Routine (ISR */
irg2_svc: RTI ; RTI ; RTI ; RTI ;

/* 0x1C - IRQL Interrupt Service Routine (ISR */
irgl_svc: RTI; RTI; RTI; RTI;

/* *** 0x20 - IRQ Interrupt Service Routine (ISR , 4 locations max *** */
irg0_svc: RTI ; RTI ; RTI ; RTI ;

/* 0x24 - Reserved interrupt */
reserved_0x24: NCP; NCP; NCP; NCP;

/* 0x28 - Vectors for Serial Port O Receive A & B DVA channels 0/1 */
spr0_svc: RTI ; RTI ; RTI ; RTI ;

/* 0x2C - Vectors for Serial Port 1 Receive A & B DVA channels 2/3 */
spril_svc: JUWP Process_AD1819_Audi o_Sanpl es; RTI; RTI; RTI;

/* 0x30 - Vectors for Serial Port O Transnit A & B DVA channels 4/5 */
spt0_svc: RTI ; RTI ; RTI ; RTI ;

/* 0x34 - Vectors for Serial Port 1 Transmt A & B DVA channels 6/7 */
spt1_svc: RTI; RTI; RTI; RTI;

/* 0x38 - Reserved Interrupt */
reserved_0x38: RTI ; RTI ; RTI ; RTI ;

/* 0x3C - Reserved Interrupt */
reserved_0x3c: RTI; RTI; RTI; RTI;

/* 0x40 - Vector for External Port DVA channel 8 */
ep0_svc: RTI ; RTI ; RTI ; RTI ;

*/
*/
*/
*/
*/
*/
*/
*/

/* 0x44 - Vector for External Port DVA channel 9 */
epl_svc: RTI ; RTI ; RTI; RTI;

/* 0x48 - Reserved Interrupt */
reserved_0x48: RTI ; RTI ; RTI ; RTI ;

/* 0x4C - Reserved Interrupt */
reserved_O0x4c: RTI ; RTI ; RTI ; RTI ;

/* 0x50 - Reserved Interrupt */
reser ved_0x50: RTI ; RTI ; RTI ; RTI ;

/* 0x54 - Vector for DAGL buffer 7 circular buffer overflow */
cb7_svc: RTI; RTI; RTI ; RTI ;

/* 0x58 - Vector for DA@ buffer 15 circular buffer overflow */
cbh15_svc: RTI ; RTI ; RTI ; RTI ;

/* Ox5C - Vector for lower priority timer interrupt */
tnel _svc: RTI; RTI; RTI ; RTI ;

/* 0x60 - Vector for fixed-point overflow */
fix_svc: RTI ; RTI ; RTI ; RTI ;

/* 0x64 - F oating-point overflow exception */
flt0_svc: RTI ; RTI ; RTI ; RTI ;

/* 0x68 - Floating-point underflow exception */
fltu_svc: RTI ; RTI ; RTI ; RTI ;

/* Ox6C - F oating-point invalid exception */
flti_svc: RTI ; RTI ; RTI ; RTI ;

/* 0x70 - User software interrupt 0 */
sft0_svc: RTI ; RTI ; RTI ; RTI ;

/* Ox74 - User software interrupt 1 */
sftl_svc: RTI ; RTI ; RTI ; RTI ;

/* 0x78 - User software interrupt 2 */
sft2_svc: RTI ; RTI ; RTI ; RTI ;

/* Ox7C - User software interrupt 3 */
sft3_svc: RTI ; RTI ; RTI ; RTI ;

. ENDSEG

Visual DSP Tools (21065L EZ-LAB) Linker Description File

[F R Rk Kk ok ok ok ok ok ok Kk ok Kk ok Kk ok Kk ok ok kK Kk R Kk R Kk kK ok kK kR Kk kK Kk Rk kR Kk kK kR ok kR Kk kK k ok ok k ok ok k ok ok Kk ko

Il * */
I * 21065L EZ- LAB LI NKER DESCRI PTI ON FI LE */
Il * */
I * For use with the 21065L EZ-LAB Eval uation Platform The Interrupt Table is */
I * split into 2 sections- lowand high. |IRQ is renmoved, so that the UART */
I * remains functional and is not overwitten after downl oadi ng of user code */
Il * */
I * (JT - 10/23/98) */

[]k ko ok ok ko sk ok ok ok ok k ok ko ok ok ok ok ok ok Sk ok ok ko ok ko ok ok ok ok ok ok ok ok ok ok

ARCH TECTURE(ADSP- 21065L)

SEARCH DR $ADI _DSP\ 21k\lib)

/1 The 1ib060.dl b nust come before |ibc.dl b because libc.dl b has sone 21020
/1 specific code and data

$LI BRAR ES = |i b060. dI b;

/1 Libraries fromthe command |ine are included in COMWAND LI NE_CBJECTS.
$CBIECTS = $COMVAND LI NE_CBIECTS;

MAP (| oopback. nap)

/1

/1 ADSP-21065L Merory Map:

e e T TP P

11 Internal memory 0x0000 0000 to 0x0007 ffff

e e T TP P

/1 0x0000 0000 to 0x0000 00ff |CP Regs

Il 0x0000 0100 to 0x0000 01ff |CP Regs of processor |D 001

11 0x0000 0200 to 0x0000 02ff |CP Regs of processor |D 002

Il 0x0000 0300 to 0x0000 7fff Reserved (unusable)

/1

Il Bl ock 0 0x0000 8000 to 0x0000 of ff Normal Word (32/48) Addresses

11 0x0000 AO0O to 0x0000 Bfff Reserved

Il Bl ock 1 0x0000 Q000 to 0x0000 Dfff MNormal Word (32/48) Addresses

/1 0x0000 EO00 to 0x0000 ffff (Reserved)

Il Bl ock 0 0x0001 0000 to 0x0001 3fff Short Wrd address space (16-bit)

11 0x0001 4000 to 0x0001 7fff Reserved

Il Bl ock 1 0x0001 8000 to 0x0001 bfff Short Wrd (16) Addresses

/1

/1 0x0001 Q000 to 0x0001 ffff Reserved

/1

e e T TP P

11 Mul tiproc nenory 0x0000 0100 to 0x0000 02f f

e e T TP P

/1

e e T TP P

11 External mermory 0x0002 0000 to Ox03ff ffff

e e T TP P

/1

MEMORY

{

11 IRQ Interrupt 0x20 - 0x23 reserved by EZ-LAB UART Monitor Program */
isr_tabl { TYPE(PM RAM) START(0x00008005) END(0x0000807f) WDTH(48) }
pm code { TYPE(PM RAM START(0x00008100) END(0x00008bff) WDTH 48) }
pm dat a { TYPE(PM RAM) START(0x00009400) END(0x000097ff) WDTH 32) }
krnl _code { TYPE(PM RAM START(0x00009000) END(0x000097ff) WDTH 48) }
dm dat a { TYPE(DM RAM) START(0x0000c000) END(0x0000dfff) WDTH32) }
EMVAFE_addr { TYPE(DM RAM START(0x01000000) END(0x01000000) W DTH 32) }
EMAFE_dat a { TYPE(DM RAM) START(0x01000001) END(0x01000001) WDTH 32) }
UART_r egs { TYPE(DM RAM START(0x01000008) END(0x0100000F) W DTH 32) }
codec_r eset { TYPE(DM RAM) START(0x01000010) END(0x01000010) WDTH(32) }
seg_dm sdram { TYPE(DM RAM START(0x03000000) END(0x030ffeff) WDTH32) }
krnl _ext _res { TYPE(DM RAM) START(0x030fff00) END(0x030fffff) WDTH32) }

}

PROCESSCR p0

LI NK_AGAI NST(SCOMVAND_LI NE_LI NK_AGAI NST)
QUTPUT($COMMAND LI NE_QUTPUT_FI LE)

SECTI ONS
{
/] .text output section
isr_tabl
{
I NPUT_SECTI ONS($OBJECTS(i sr_t bl) $LI BRAR ES(isr_thl))
} >isr_tabl

pm code

{
I NPUT_SECTI ONS($CBIECTS(pm code) $LI BRAR ES(pm code))
} >pmcode

pm dat a

{
I NPUT_SECTI ONS($OBJECTS(pm dat a) $LI BRAR ES(pm dat a))
} >pmdata

dm dat a

{
I NPUT_SECTI ONS($CBJECTS(dm dat a dm codec) $LI BRAR ES(dm dat a))
} > dmdata

/1 EXTERNAL MEMORY SEGMENTS
/1 if you do not want to initialize SRAMarea i n executabl e, use SHT_NCBI TS

/1 exanpl e sdram SHT_NCBI TS

I {

/1l I NPUT_SECTI ONS($CBIECTS(segsdr an))
/1 } > seg_dm sdram

I e LR e LT PP

dmsdram// SHT_NOBI TS

{
I NPUT_SECTI ONS($CBJECTS(t est t one dm del ay segsdran))
} > seg_dm sdram

2

JP1L
OPEN: SINGLE AD1819
CLOSED: MASTER AD1819

JP2
OPEN: MULTIPLE CODECS
CLOSED: SINGLE AD1819

C9[0,1]=11: SINGLE AD1819
CS[0,1]=01: MASTER AD1819

JP3
OPEN: ONESLAVE
CLOSED: TWO SLAVES

CS[0,1]=00
HARDCODED FOR SLAVE #1

Cg[0,1]=10
Hi[RDkoDED FOR SLAVE #2

MAFE I/F CONNECTOR

FUNCTION

IRESET |2 o SDATA_OUT 7 ’:AxFlI)_uAG = i HLC2
SDSGK‘.KOI = SDATATN B RXDU < 53010 o
SYNC- o5 " Z74 TFS0 R A 'E
BIT CLK 16 SYNC _127d rFso 5ES0 &
- > Toc| RXCLRD 52| R g
AD1819 g1 BIT_CLH 54 TXCLKO RCLKO g ADSP-2106X
csd 45 TCLKO
MAS-FER CS: 5 NC i-_:E 1C| +5VA
CHAlN_lEq— GLE/MASTER ﬁ ;b;/v/')\
TS3/4 > CLOCK Ob-—= A C[3VA AC97 CONTROLLER
z] ZA[12V
_J 4 1 3C[12V
< < EE] TA| AGND
; ; = LTIPLE/SINGLE ICHAGND
—| T3 Ve
7 3 T3L Ve
2 i LS
24.576ME [& s StV
? 22pF NPQ 9A[DGND
22pF N YC[DGND
T7A DGND
= = T7T DGND
DGND
T DGND
2] DGND
79C_DGND

FUNCTION

IRESE
SDATA_OU

=

SDATA_|
SYN
BIT_CL]

AD1819
SLAVE?2 .5

45 NC

L
TS7/8 c OC‘S’

IN
XTAL_O

~<

|||—'* XTAL_|
K

Note: A 10-K to 20-K Ohm pulldown
resister is recommended on the ADSP-
2106x’s DTOline. TheDTOlinehasa
50K internal pullup, which can cause the
AD1819 to enter ‘Factory Test Mode'.
The pulldown is required to ensure
proper codec serial operation.

TFSO0 isleft unconnected in Multichannel

Mode!

[™ECACLIEWORKILARRY\MULTPART.SCH

""MULTIPLE AD1819 CODECS

|SIZE:
LETTER

ANALOG DEVICES; INC_;]

DRGUohn Tom, u 804 WOBURN ST

WILMINGTON, MA 01887.

RYTC
B4p4

REV:

>
>
g]
S

o
o
=
5]
2

>
4
=
<]
N

o
g
=
g
@

>
g
=
S
g

o
oo
=
I}
a

>
2
o
=
s}
3

C
o
=
S
S

MODULE DATA, MD0..15 (16x1/0)

>
2
g
=
s}
@

2
=
<]
3

>
S
H
S
g
15

>
=
z
S
g
Y

O O

= = S

=z =

922

B o E
41-SIGNAL LEADS,

>
o
z
S
=
IS

C15| MD15

o
5
s
g

>
2
z

o
o
=
9

>
9
8

C20 | MA4
£23 |MAS
C22 | MA6
A23 |MA7

MODULE REGISTER ADDR, MAO..7(8XI/P)

BIT_CLK C26 | RXCLKO.
SYNC C27] RFSO
SDATA IN C28] RXDO
A26 | TXCLKO
SYNC A27 | TFSO
SDATA_OUT _ A28 | TXDO

SERIAL COMMS PORT 0, 6 LINES

MAFE INTERFACE CONNECTOR

Ve c30] RxcLKL
cai|Rrst
c32| RxD1
A30 | TXCLKL
ASL|TFSL
A3z | TXDL

CONTROL,5LINES (41/P,10/P)

ILE:
r CACLIEWORK\LARRY\MAFEINTF.SCH

[TITLE:

MAFE INTERFACE CONNECTIONS

SIZE: DR ANALOG DEVICES, INC.,RSTC

G:
LETTER Larry Hurst |u 804 WOBURN ST

[DATE: DRW No. SHT OF REV:

11-Dec-1996 96327-03-04 3 4 A

2 | 1

WILMINGTON, MA 01887-3494

LINE

INPUT

CDROM
INPUT

PHONE

LINE
OUTPUT

FB1 R1
a1 EMI 1k c33
4 o—o s » |
3 1| ci1 c12 c13 ci4
c17 R101U 10u TANT 10u TANT
e o ! A% 10u TANT, o 10u TANT,
1 I (4 |
[\ \ Il e
FB5 R5 cs c6 c7 c8
EMI 1K c32 '_| 1 1001 = 1001;"_‘ 1002“_‘
L oo
38 42 25 26, 4 1 7 9
AVdd2 AVss2 AVddl AVssl DVssl DVddl DVs2 DVdd2
12
— PC_BEEP L
N <
24
FE?\/IZI ?kz fj’ 1 »——LINE_IN_R L
2 4 23 ﬁ
V_Eﬁj—°_° LINE_IN_L
11 E
/_Eg_ LI c18 R11 21 /RESET |——a— <
i T Pk —mic1 5 O
FB6 R6 C34 22 SDATA_OUT |[——<— e
EMI 1k 1u TRie2 8 =
SDATA_IN [——>— —
—0——0. 20 10)
CD_R SYNC f—= 5
c22 -
5 18 6 ~
an 47k cD_L BIT_CLK [—»— o
FB7 R7 C35 29 CD_GND 2
EMI 1k 1u
L = " AD1819 2
——VIDEO_L
17 L
—VIDEO R s O >
FB3 R3 =
EMI 1k 14 C0 - E <
1 A AUX_L 46 of -
3 O | . g 15 CSl —= (@] r
30 —Aux_R w
R12 = 47 o>
c19 1u CHAININ —= 7§ O 8
in EIK 13 48 =z
PHONE CLOCK_OUT |—»— F o
, |
MONO_OUT 2
=
L oo
LINE_OUT_R
LINE_OUT_L
AFILTL AFILT2 FILT.L FILTR CX3D RX3D VREFOUT VREF XTAL_IN XTAL_OUT
29| 30 31| 32 3 3 28 27 2 3
c27 n
FE‘EIi/‘IlI 5? 1u |:| 24.576MHz
N 4 c3 2.25Vdc —— ;—*
=0 — 100n D
l,—°—L c20 c1 c2 C26 C25 co c4 Cl0 mé c16
R13 I 270p NP@Q70pNPO 1u 1u 470 NPO 100n 10u TANT 22p NPO 22p NPO
47K
FB9 RO c28
EMI 1k 1u
1| FB10 e
I I 600Z r C:\CLIEWORK\LARRY\AD19MAFE.SCH
- [TITLE:
T o pum N e AD1819 SINGLE MAFE AUDIO I/0
47K CHASSI GROUND ANALOG GROUND DIGITAL GROUND €= PRG A O DEVICES BC RSTC
"\ LETTER Larry Hurst 804 WOBURN ST
WILMINGTON, MA 01887-3494
[DATE: DRW No. SHT OF REV:
11-Dec-1996 r96327—01-m 1 1 A

I 1

APPENDIX B - AD1819A Indexed Control Register Reference

Reg Name D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 DO Default
Num
00h Reset X SE4 SE3 SE2 SE1 SEO 1D9 1D8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 IDO 0400h
02h Master Volume MM X LMV [LMV |LMV [LMV |LMV [LMV X X |RMV [RMV4 | RMV3 | RMV2 [RMV1 | RMV | 8000h
5 4 3 2 1 0 5 0
04h Reserved X X X X X X X X X X X X X X X X X
06h Master Volume Mono MM X X X X X X X X X | MMV [MMV | MMV | MMV [MMV | MMV | 8000h
M 5 4 2 2 1 0
08h Reserved X X X X X X X X X X X X X X X X X
0Ah PC_BEEP Volume PCM X X X X X X X X X X PCV3 | PCV2 | PCV1 | PCVO X 8000h
0Ch Phone Volume PHM X X X X X X X X X X PHV4 | PHV | PHV PHV | PHV [8008h
3 2 1 0
OEh Mic Volume MCM X X X X X X X X M20 X MCV [MCV3 | MCV2 | MCV1 | MCV 8008h
4 0
10h LinelnVolume LM X X LLV4 | LLV3 | LLV2 [LLV1 | LLVO X X X RLV4 | RLV3 | RLV2 | RLV1 [RLVO J 8808h
12h CD Volume CVM X X |LCV4|LCV3 [LCV2 |LCV1 |LCVO X X X RCV4 [RCV3 | RCV2 | RCV1 | RCVO | 8808h
14h |VideoVolume VM X X | LVV4|LVV3 [LVV2 | LVV1 [LVVO X X X RVV4 [RVV3 | RVV2 | RVV1 | RVVO | 8808h
16h Aux Volume AM X X LAV4 | LAV3 [LAV2 | LAV1 | LAVO X X X RAV4 [RAV3 | RAV2 [RAV1 | RAVO | 8808h
18h PCM Out Vol oM X X | LOV4|LOV3|LOV2|LOV1|LOVO X X X ROV4 | ROV3 | ROV2 [ROV1 | ROVO | 8808h
1Ah Record Select X X X X X LS2 LS1 LSO X X X X X RS2 RS1 RSO 0000h
1Ch Record Gain IM X X X LIM3 | LIM2 [LIM1 | LIMO X X X X RIM3 | RIM2 | RIM1 | RIMO } 8000h
1Eh |Reserved X X X X X X X X X X X X X X X X X
20h General Purpose POP X 3D X X X MIX | MS |LPB X X X X X X X 0000h
K
22h 3D Control X X X X X X X X X X X X DP3 DP2 DP1 DPO J 0000h
24h Reserved X X X X X X X X X X X X X X X X X
26h Powerdown Cntrl/Stat X X PR5 | PR4 | PR3 [PR2 | PR1 | PRO X X X X REF [ANL | DAC | ADC J 000Xh
28h Reserved X X X X X X X X X X X X X X X X X
5Ah |Vendor Reserved X X X X X X X X X X X X X X X X X
74h Serial Configuration SLOT| REGM | REG | REGM| DRQ [DLR |DLR |DLR X X X X X DRR | DRR DRR 7000h
16 2 M1 0 EN Q2 Q1 Qo0 Q2 Q1 Qo0 7%0xh
76h Misc Control Bits DAC X X X X DLSR X ALSR| MOD | SRX1 | SRX8 X X DRSR X ARSR J 0000h
z EN oD7 D7
78h Sample Rate 0 SRO1 | SR014 | SRO1 | SR012] SRO1 [SRO1 | SRO9 [SR08 | SRO7 | SR06 | SRO5 | SR04 | SRO3 | SR0O2 [SRO1 | SROO | BB8Oh
5 3 1 0
7Ah |SampleRate 1 SR11 | SR114| SR11 | SR112 SR11 [SR11 | SR19 | SR18 | SR17 | SR16 | SR15 | SR14 | SR13 | SR12 | SR11 | SR10 | BB80Oh
5 3 1 0
7Ch |Vendor ID1 F7 F6 F5 F4 F3 F2 F1 FO S7 S6 S5 A 3 Y] S1 0 4144h
7Eh Vendor ID2 T7 T6 T5 T4 T3 T2 T1 TO REV7 | REV6 | REV5 | REV4 | REV3 | REV2 | REV1 | REVO [5300h

AD1819A Block Diagram Register Map

MIC1 0
micz | W50 0u0e %
socc
LINE Ls (@
@ GAM 0x1d 16:bit
AUX Ls (3 S Lv SA AID ¥
s E ™
cD LS (1) Ié
Ko E
Ve veo Tl e |
PHONE_IN R RIV SAAD Y
- LSRS (7) ™M
LS (5)
oo e | ceere
y e | sne
ACLINK [™™
sonTa_ouT
G=oam —°
\iATTENUAT\ON — SDATA_IN
~:7SELECTDR
! D ov 24 Ba e
L_out 3 0 [, 3 & 3 om
Movo.0ut = T ﬁ R
RouT 22 0| 2 M o]
3 - GAM Ox: .
, ; £, b
o
PC_BEEF
F_wm
MIC1 0dB/
MIC2 20dB,
LINES .
SYNTHG " »
@ .
CD 8:[> <k PCM in
p o
e THpeAal—— g
PHONE_IN o
G G G G G G
A AllAl|A]llAa]]lA
HP_OUT_L M Ml | M| [Mm[IM][m
[T Fat s G
one a
L_ouT d—@ C | control Stereo]_ g z z : ':‘/I
y
MONO_OUT a PCM out
K
Tone Fat Y ﬁ
R_OUTO Control Storeo g g . g g
® M
HP_OUT R © Q _
G=Gain
A=Attenuate
M=Mute

PC_BEEP o

MV=Master Volume

AD1819A Mixer Functional Diagram

Disclaimer

Information furnished in this document by Analog Devices, Inc., is believed to be accurate and reliable. However, no responsibility is assumed
by Analog Devices Inc., for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under the patent rights of Analog Devices. Analog Devices Inc. reserves the right to make
changes without further notice to any products and information contained in this document.

Analog Devices makes no guarantee regarding the suitability of its DSP and codec products for any particular purpose, nor does Analog
Devices assume any liability arising out of the application or use of Analog Devices DSP and codec products, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. Operating parameters, such as voltage and temperature, as
specified in Analog Devices data sheets must be validated for each application by the customer’s technical experts. Analog Device's DSP
and codec products are not designed, intended, or authorized for use for products in which the failure of the ADI part could create a situation
where personal injury or death may occur. If the Buyer/User/Designer uses Analog Devices products for any unintended or unauthorized
application, then Analog Devices cannot be held responsible.

