
Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 3346

Keywords: SDCC, DS80C400, MxTNI, sdcc, MxTNI C, ds80c400, mxtni, c compiler, MxTNI c

APPLICATION NOTE 3346

Using the SDCC compiler for the DS80C400
Nov 04, 2004

Abstract: The DS80C400 contains a ROM that provides a network stack, memory manager, and process
scheduler that is flexible enough to be used from applications written in Java, C and 8051 assembly.
SDCC provides a free, open-source compiler for 8051 devices that is compatible with the 24-bit
addressing mode of the DS80C400. Complicated applications written in C can be easily built using the
features of the DS80C400 ROM with the assistance of libraries provided by Dallas Semiconductor.
These libraries, along with documentation and example code, are available for download.

This application note describes how to use the SDCC tools to build applications for the DS80C400. It
begins with a HelloWorld application, and then demonstrates how to make use of the ROM libraries to
implement a simple HTTP Server. The applications here are written and built for use with the TINIm400
reference module, and must be modified for designs with other memory configurations.

Also see:
Using the IAR Compiler for the DS80C400
App Note 613: Using the Keil C Compiler for the DS80C400

Introduction
The DS80C400 contains a ROM that provides a network stack, memory manager, and process scheduler
that is flexible enough to be used from applications written in Java, C and 8051 assembly. SDCC
provides a free, open-source compiler for 8051 devices that is compatible with the 24-bit addressing
mode of the DS80C400. Complicated applications written in C can be easily built using the features of
the DS80C400 ROM with the assistance of libraries provided by Dallas Semiconductor. These libraries,
along with documentation and example code, are available for download.

This application note describes how to use the SDCC tools to build applications for the DS80C400. It
begins with a HelloWorld application, and then demonstrates how to make use of the ROM libraries to
implement a simple HTTP Server. The applications here are written and built for use with the TINIm400
reference module, and must be modified for designs with other memory configurations.

Getting Started with the SDCC Compiler
Follow these instructions to complete your first C application for the DS80C400 using the SDCC
Compiler:

1. Install SDCC compiler¹

Page 1 of 11

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/17/c/Microcontrollers#c17
ftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/sdcc/index.html
http://www.maximintegrated.com/an3550
http://www.maximintegrated.com/an613
http://files.dalsemi.com/tini/ds80c400/c_libraries/sdcc/index.html

Download the installation file for the latest SDCC compiler version from SDCC website.
Follow the instructions of setup file (possibly sdcc/doc/INSTALL.txt).

2. Create a new file "main.c" using your favorite text editor. Write the following in that file:

#include <stdio.h>
void main ()
{
 printf("Hello Universe!!!!....Welcome to SDCC Tini Test Program");

 while (1)
 {
}
 }

Make sure to save the contents of this file.
3. Copy the files startup400.a51 and reg400.inc (included in the startup code download) from the

SDCC C Library Website² to the same directory where you stored main.c. This file contains the
startup_code function that will be called on application startup to initialize the DS80C400 chip. The
startup code does the following:

Configures DS80C400 in 24-bit contiguous address mode
Configures timer 2 to generate 115200 baud rate for serial port
Initializes the data memory

4. Copy and unpack the ROM initialization library files(rominit.lib and rom400.h from the init library
download) from SDCC C library website to the same directory. The library distribution is zipped, so
use WinZip or gunzip/tar to open the package.

5. Before we compile our "Hello Universe" application, we need to make a small change in one of the
SDCC-installed support files to override the default DS80C400 support functions and use Dallas
Semiconductor's C library instead. Make the following changes:

Rename \SDCC\lib\ds400\libds400.lib file to \SDCC\lib\ds400\libds400.lib.old
Create an empty \SDCC\lib\ds400\libds400.lib file (use the touch command or create a blank
file in your favorite text editor)

6. Build the "Hello Universe" application...
To create an object file (.rel) from our startup400.a51 file, execute the following from the
command line:

asx8051 -losffgp startup400.a51

asx8051 is the assembler provided with the SDCC tools. The options provided to the
assembler are:

Option Purpose

l generates a list file

o generates an object file

s generates a symbol file

ff flag reolcatable references by mode in listing file

g make undefined symbols be global

Page 2 of 11

p disables listing pagination

The "los" option is mandatory, as the linker requires list, object and symbol files to generate
executables. The "ff" and "p" options generate a readable list file. The "g" option tells the
assembler to not generate an error if it finds an undefined symbol that is not declared as
external.

To create an object file from main.c, execute the following:

sdcc -c -mds400 --model-flat24 --stack-10bit --no-xinit-opt main.c

sdcc is the compiler. The options passed to the compiler are:

Option Purpose

-c compiles main.c and creates an object file

-mds400 generates code for the DS80C400 processor

--model-flat24 use the 24-bit contiguous memory model

--stack-10bit use the 1024-byte extended stack (10 bit stack addresses)

--no-xinit-opt don't initialize the external RAM memory area

p disables listing pagination

Note the double dashes on the last three arguments in the table.

To link the object files and build the executable, run the following:

 sdcc -mds400 --model-flat24 --stack-10bit -Wl-r --xram-loc
0x10000 --xram-size 0x3fff --code-loc 0x400000 main.rel startup400.rel
-l
rominit.lib

The new options used here are:

Option Purpose

-WI pass options through to the linker

--xram-loc external RAM start address (only RAM for SDCC variable use!)

--xram-size external RAM size (only RAM for SDCC variable use!)

--code-loc code starting address

-l include the specified libraries

p disables listing pagination

Note the double dashes on the xram-loc, xram-size, and code-loc arguments. Also note that
the RAM specified to the command will be used for SDCC variable storage, and should not
conflict with the memory range used in the init_rom function to initialize the DS80C400--that
memory is used for the network stack and memory manager.

Page 3 of 11

To compress the executable file and generate a hex file, execute the following:
packihx main.ihx>hellouniverse.hex
The packihx utility compresses the executable file by accumulating contiguous data records up
to 16 bytes.

Now that we have an executable file, we need to download the application onto the TINIm400 module
and execute it.

Loading the Sample Application onto the TINIm400 Module
This section describes loading the hex file produced by the SDCC compiler onto the TINIm400
verification module using the tool Microcontroller Tool Kit (MTK) provided by Maxim/Dallas
Semiconductor. The Current version of MTK is available only for Windows®.

If your development environment is not Windows, you will need to use the JavaKit application for
downloading and executing applications. To use JavaKit, you must have the Java Runtime Environment³
(at least version 1.2) and the Java Communications API4 installed. The JavaKit tool is included with the
MxTNI™ Software Development Kit. As of this writing, firmware version 1.13 was the most recent
firmware released. Instructions for running JavaKit can be found in the file Running_JavaKit.txt in the
docs directory of the MxTNI SDK. If you encounter technical issues running MTK or JavaKit, chances are
someone has already had a similar problem and it is chronicled in the Dallas semiconductor discussion
board. You can search the existing posts (and create new posts).

Download the most recent version of the MTK application. To install MTK, run the installation file and
follow the instructions. After a successful installation, a new menu group will be added: Start->All
Programs->Dallas Semiconductor MTK. When MTK is launched, the dialog box shown in Figure 1 will
be displayed.

Figure 1. MTK options on startup.

Select the option MxTNI to work with the TINIm400 evaluation board.

Page 4 of 11

https://files.maximintegrated.com/microcontroller/mxtni/
http://discuss.dalsemi.com/
http://discuss.dalsemi.com/
http://files.dalsemi.com/microcontroller/dev_tool_software/mtk/

After selecting MxTNI, the MTK main window will be opened. Select the serial port you will use to
communicate with the TINIm400 from Options->Configure Serial Port menu option. Then, select the Tini-
>Tini Options menu item, and the following dialog box will be displayed. Select the DSTINIm400 button
to configure MTK for communication with the TINIm400 board. Figure 2 shows this dialog with the
DSTINIm400 button.

Figure 2. Selecting the TINIm400 configuration option.

Open the serial port by selecting the Tini->Open COMx at xxx baud menu option. Then select the Tini-
>Reset option to reset the evaluation board. The loader prompt for the DS80C400 should print:

DS80C400 Silicon Software - Copyright (C) 2002 Maxim Integrated Products
Detailed product information available at http://www.maximintegrated.com

Welcome to the TINI DS80C400 Auto Boot Loader 1.0.1
>

From the File menu, select Load HEX File. Search for the hellouniverse.hex file that we just created and
select it. There are two ways to execute your program once it is loaded. Since we loaded the program
into bank 40, you can type:

> B40
> X

To select bank 40 and execute the code that is there. You can also type:

> E

This will make the ROM search for executable code. It searches for a special tag that signifies that the
current bank has executable code. This tag consists of the text 'TINI' followed by the current bank
number (or zero), and is located at address 0002h of the current bank. The SDCC Compiler inserts this
tag in generated assembly code. If you open up the main.asm source code generated for the

Page 5 of 11

hellouniverse project, you will find the following piece of code:

 .area CSEG (CODE)
interrupt_vect:
 ; DS80C400 IVT must be generated at runtime.
 sjmp __sdcc_400boot
 .ascii 'TINI' ; required signature for 400 boot loader.
 .db 0 ; selected bank or zero...
__sdcc_400boot:
 ljmp __sdcc_gsinit_startup

Note that the sjmp __sdcc_400boot statement is located at address 0000h of bank 40. It is followed by
the executable tag { 'T', 'I', 'N', 'I', 0h}, located at address 0002, since the sjmp statement is two bytes.
When you type 'E', the ROM starts from bank C0h and searches downward for executable code. If you
type 'E' and some other code executes, it means that the ROM has found an executable tag at a higher
address than 400000h, where your code was loaded. You may need to find where that tag is, and delete
the contents of that bank.

Interfacing to the ROM and SDCC ROM Libraries
The procedure for calling ROM functions from assembly is described in the High-Speed Microcontroller
User's Guide supplement for the DS80C400 . However, calling these ROM functions from C is little more
complicated. Parameters must be converted from the SDCC C Compiler's conventions to the conventions
used by the ROM. The SDCC compiler passes parameters in a combination of the hardware stack,
accumulator, and the data pointer. The ROM functions accept parameters in a number of different ways.
For example, the socket functions accept parameters stored in a single buffer of external RAM.
Conversely, many of the utility functions accept parameters passed in special function registers or direct
memory locations. In order to translate from SDCC calling conventions to the ROM's parameter
conventions, Dallas Semiconductor has written libraries for accessing the functions of the ROM.

Using ROM functions in your C programs involves only including a header file and linking with
corresponding library file. The ROM libraries for SDCC Compiler include:

ROM initialization Routines
DHCP Client
Process Scheduler
Sockets (TCP, UDP, Multicast)
TFTP Client
Utility functions (CRC16, random numbers)

The extension libraries like the File System, Mail client and HTTP Server are not available for the SDCC
compiler at the time of this writing. Watch the SDCC Library Home Page for the DS80C400 for updates
as we add libraries supported for SDCC.

A Simple Application: HTTP Server
A simple http server has been written to demonstrate how to use some of the ROM libraries functionality,
specifically the socket and process scheduler libraries. This sample occasionally updates its time from a
network timeserver, and serves that information through its web server.

The sample application consists of two modules, an HTTP server and an SNTP client. The main program

Page 6 of 11

creates a new subtask for running the http server that handles client connections on port 80. The parent
task will be trying to synchronize the current time from the time server once every 60 seconds.

The SNTP Client Module
The following piece of code covers core functionality of SNTP client module.

socket_handle = socket(0, SOCKET_TYPE_DATAGRAM, 0);

// set a timeout of about 2 seconds
for (i=0;i<256;i++)
 buffer[i] = 0;
buffer[0] = 0x0;
buffer[1] = 0x0;
buffer[2] = 0x8;
buffer[3] = 0x0;
setsockopt(socket_handle, 0, SO_TIMEOUT, buffer, 200);

buffer[2] = 0; //reset since we used this in call to setsockopt
buffer[0] = 0x23; // No warning/NTP Ver 4/Client

address.sin_addr[12] = TIME_NIST_GOV_IP_MSB;
address.sin_addr[13] = TIME_NIST_GOV_IP_2;
address.sin_addr[14] = TIME_NIST_GOV_IP_3;
address.sin_addr[15] = TIME_NIST_GOV_IP_LSB;
address.sin_port_high = (NTP_PORT/0x100); //higher byte of port number
address.sin_port_low = (NTP_PORT%0x100); //lower byte of port number

sendto(socket_handle, buffer, 48, 0, &address, sizeof(struct sockaddr));
recvfrom(socket_handle, buffer, 256, 0, &address, sizeof(struct sockaddr));

//SDCC uses little Endian for storing data, so reorganize the data before
converting it to long
buffer[0]=buffer[43];
buffer[1]=buffer[42];
buffer[2]=buffer[41];
buffer[3]=buffer[40];

timeStamp = *(unsigned long *)(&buffer[0]);

formatTimeString(timestamp - (5 * SECONDS_PER_HOUR), "Tampa, USA",
 last_time_reading_1);
formatTimeString(timeStamp - (3 * SECONDS_PER_HOUR), "Sao Paulo, Brazil",
 last_time_reading_2);
formatTimeString(timeStamp + (1 * SECONDS_PER_HOUR),"Marseille, France",
 last_time_reading_3);
formatTimeString(timeStamp + (5 * SECONDS_PER_HOUR) + (30 *
 SECONDS_PER_MINUTE), "Bangalore, India",
 last_time_reading_4);
formatTimeString(timeStamp + (8 * SECONDS_PER_HOUR), "Hsinchu, Taiwan",
 last_time_reading_5);
last_reading_seconds = getTimeSeconds();
closesocket(socket_handle);

The SNTP client module was implemented as per RFC 1361. The SNTP module communicates with
time.nist.gov using the UDP protocol to request a time stamp. Note that the IP address for time.nist.gov
is set manually as DNS support was not available for the SDCC compiler when this appnote was written.

First, a datagram socket is created and given a timeout of about 2 seconds (0x800==2048 milliseconds).
This ensures that if the communication fails with our chosen server, we will not wait forever for a
response.

The next line sets the options for the request. These bits are described in section 3 of RFC 1361. The

Page 7 of 11

value 0x23 requests no warning in case of a leap second, requests that NTP version 4 be used, and
states that the mode is "Client". After we send the request and receive the reply using the common
datagram functions sendto and recvfrom, the seconds portion of the timestamp value is assigned to the
variable timeStamp, and then adjusted to the reference epoch January 1, 1970. The function
formatTimeString is used to convert the time stamp into a readable string such as "In Marseille, France it
is 9:37:37 on September 3, 2000."

The function getTimeSeconds is used to determine when the last time update was based on the
DS80C400's internal clock. Since the program only updates about once every 60 seconds, the HTML
page time.html will use this value to report how long it has been since the last time update. Finally, the
socket is closed and the SNTP client goes to sleep for another 60 seconds.

The Simple HTTP Server
Another sub module of the timeserver application is a web server. The server in this application is
implemented as a simple version of an HTTP server as described by RFC 2068. Only the "GET" method
is supported--input headers are ignored, and few output headers are given. The File System library was
not available when this application note was written, so the sample application dynamically generates
HTML pages.

The server socket is created by calling Berkley-style socket functions. This makes it very easy to set up
a server socket. The following code shows how our simple HTTP server creates, binds, and accepts new
connections

struct sockaddr local;
unsigned int socket_handle, new_socket_handle, temp;

socket_handle = socket(0, SOCKET_TYPE_STREAM, 0);
local.sin_port = 80;
bind(socket_handle, &local, sizeof(local));
listen(socket_handle, 5);

printf("Ready to accept HTTP connections...\r
");

// here is the main loop of the HTTP server
while (1)
{
 new_socket_handle = accept(socket_handle, &address, sizeof(address));
 handleRequest(new_socket_handle);
 closesocket(new_socket_handle);
}

Note that when a new socket is accepted, this simple application does not start a new thread or process
to handle the request, but rather handles the request in the same process. Any HTTP server of more
than demonstration-quality would handle the incoming request in a new thread, allowing multiple
connections to occur and be handled simultaneously. After the request is handled we close the socket
and wait for another incoming connection.

The handleRequest method parses the incoming request for a file name and verifies that the request
method is 'GET'. No other method (not even 'POST', 'HEAD' or 'OPTIONS') is allowed.

A Note About Writing DS80C400 Assembly Functions for SDCC
Compiler

Page 8 of 11

Even though SDCC provides a rich set of library functions, sometimes we will want to write optimized
modules in assembly language, or port existing 8051 assembly modules into our application. The
following are some important points to keep in mind while writing 8051 assembly functions to be called
from C programs written using the SDCC compiler:

1. Function Parameter passing convention: The following table shows how arguments are passed for
reentrant functions

Argument position Character Integer Long Address

First argument Dpl Dph:dpl B:dpx:dph:dpl B:dpx:dph:dpl

Second argument
onwards

the values will be passed through hardware stack from right to
left

The arguments for the function void sample_func(long x, long y,int z) reentrant; will be passed as
follows.

2. Data type storing convention:
SDCC follows the Little Endian storing convention. In other words, SDCC uses the format for
storage of binary data in which the least significant byte appears first. For example, a 32-bit long
value 0xDEADBEEF will be stored as follows:

3. Address pointer size
SDCC uses four bytes for storing memory addresses. The following table shows the format of
memory address:

Page 9 of 11

Most significant byte 3rd byte 2nd Byte
Least
significant
byte

address type (possible values for
ds80c400: 0-near, 1-far, 2-code)

MSB of
address

2nd byte of
address

LSB of
address

Near address pointers use indirectly addressable, internal RAM memory (idata) for storage and its
address size is only one byte. The upper 16 bits of the raw address are unused.

Far address pointers are for access to external memory and are 24 bits.

For more information about SDCC ASx8051 assembler, see the ASxxxx assembler reference manual. All
SDCC documentation can be downloaded from http://sdcc.sourceforge.net/snap.php#Docs

Limitations and Development Issues
The following are the limitations that we observed while working with SDCC version 4.0 compiler:

1. The compiler does not support recursive functions
2. The library routines are not optimized.
3. The assembler does not support macros
4. Functions like printf and sprintf have some issues and would not work properly for some parameter

combinations. For example, the following code causes the application to hang:

char temp[50];
sprinf(temp,"%d",234234);

5. Arithmetic expression with long constants are not working properly
6. The assembly code generated for array initialization (‘int[] values={1, 2, 3, 4, 5};') does not initialize

the correct memory area.

As SDCC is always under active development, please download the latest release if you found any bug
in your current version of SDCC tools or your version is very older than the current release.

Conclusion
The DS80C400 ROM libraries for the SDCC compiler provided by Dallas Semiconductor expand the
options for embedded network application designers seeking low-cost network microcontroller solutions.
Compared to the MxTNI Java Runtime environment, developers using the C language for the DS80C400
will be able to write lean applications, giving them plenty of speed, power, and code space to tackle any
problem. Dallas Semiconductor is working on porting all the DS80C400 libraries to SDCC that currently
work for the Keil compiler. Please frequently visit the DS80C400 SDCC Library home page for updates.

Relevant Links
SDCC ROM Libraries Project Home
SDCC Software Development Tools

Page 10 of 11

http://sdcc.sourceforge.net/snap.php#Docs
http://files.dalsemi.com/tini/ds80c400/c_libraries/sdcc/index.html
http://sdcc.sourceforge.net/

Java Development Kit Download Page
Java Communications API
Ethernet speaker application note
1-Wire Public Domain Kit
DS80C400 User's Guide
MxTNI Software Development Kit
Using the Keil Compiler for the DS80C400 appnote

Notes
¹ Download the SDCC compiler
² The home page for SDCC ROM libraries
³ Java runtime environment
4 Java communications API

MxTNI is a trademark of Maxim Integrated Products, Inc.
Windows is a registered trademark and registered service mark of Microsoft Corporation.

Related Parts

DS80C400 Network Microcontroller Free Samples

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 3346: http://www.maximintegrated.com/an3346
APPLICATION NOTE 3346, AN3346, AN 3346, APP3346, Appnote3346, Appnote 3346
Copyright © by Maxim Integrated Products
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 11 of 11

http://java.sun.com/j2se/downloads.html
http://java.sun.com/products/javacomm/
http://www.maximintegrated.com/an609
http://www.maximintegrated.com/products/ibutton/software/1wire/wirekit.cfm
http://www.maximintegrated.com/products/microcontrollers/pdfs/network_microcontroller_supplement.pdf
http://www.maximintegrated.com/TINI
http://www.maximintegrated.com/an613
http://sdcc.sourceforge.net/
http://files.dalsemi.com/tini/ds80c400/c_libraries/sdcc/index.html
http://java.sun.com/j2se/downloads.html
http://java.sun.com/products/javacomm/
http://www.maximintegrated.com/datasheet/index.mvp/id/3609
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS80C400
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an3346
http://www.maximintegrated.com/legal

	maxim-ic.com
	Using the SDCC compiler for the DS80C400 - Application Note - Maxim

