|
H= DALLAS Application Note

¥ SEMICONDUCTOR Using the Keil C Compiler for the DS80C400

Introduction

Since the introduction of the TINI Runtime Environment for the DS80C390, developers have clamored for a
way to use the power of TINI without using the Java language. Unfortunately, the network stack and other
features of TINI were too intertwined with the Java virtual machine and runtime environment to be used
from a C or assembly program. When the ROM for the DS80C400 was designed, it was decided that a suite
of functionality should be exposed that could be accessed from programs written in 8051 assembly, C, or
Java. Size constraints meant the functionality in the ROM could only be a subset of that included in the TINI
Runtime Environment. The ROM would therefore be a useful starting block for building C and assembly
programs, offering a proven network stack, process scheduler, and memory manager. Simple programs like
a networked speaker could easily be implemented in assembly language', while C could be used for more
complex programs, such as an HTTP server that interacts with a file system.

This application note describes how to get up and running using the Keil uVision?2 suite of tools to build
applications for the DS80C400, and demonstrates how to make use of the DS80C400's ROM functionality
by implementing a simple HTTP server. All development was done using the TINIm400 verification module
and Keil uVision2 version 2.37, which includes the C compiler 'C51' version 7.05.

Getting Started with Keil’s uVision2

This section will help you build a simple HelloWorld-style program written in C using the Keil uVision2
development suite. Follow these instructions to complete your first C application for the DS80C400.

e Select Project-->Create New Project. Enter the name of the project.

e The Select Device for Target dialog will pop up. Under Data base, select Dallas Semiconductor and
the DS80C400. Select Use Extended Linker, and then select Use Extended Assembler. Hit OK to
continue. Figure 1 shows the proper configuration for this dialog.

' The Ethernet speaker application note can be found at http:/pdfserv.maxim-ic.com/arpdf/ AppNotes/app609.pdf
1of 13 04/07/2003

Select Device for Target ‘Target 1°

CPU

Wendor: Dallas Semiconductar

Dewice: DSEOCA00 W Usze Estended Linker [L2451] inztead of EL51
F armiily: MCS-51 v Usze Estended &ssembler [8251] instead of 451
[ata base Dezcription:

-2 DSRO00FF [| a051 based High-5peed Micro with 2 DFT Rz, ROMless,

|23 Dss00aT WDOT, 2 Serial Ports, CAM Controller, 4 Timers/Counters,

-3 DSSO01FF I[EEE 802 3 Etherret Interface with TCRAR in BOM,

ey 1 Met Controller, 54 140 Lines + Address/Data Bus,

: !:] D35002FF 16 Interuptz3 Pronty Levels, 256 Bytez On-chip Rak,

-] D55240 _ 9. Bytes On-chip SRAM, 16/32-bit Math Coprocessor,

-3 DseocH0 Cptional 10-Bit Stack Faointer,

- [] DSA0C320 Addreszez upto 16k Bytes Esternal bMemary

e T IMPORTAMT =

; !:] D580C323 The PEST Profeszional Developer's Kit iz required
-3 D580C330 if pou wish to create programs that access the
-3 DSB0C400 168 Byte external addreszs space.

-3 DS87C520/D583052
-3 DS87C530
-3 DSA7CE50]

0k, | Cancel

Figure 1, Selecting the Device for a new Keil uVision2 Project

It will ask, Copy Dallas 80C390 Startup Code to Project Folder and Add File to Project? Select No.
We will supply our own startup code.

When the project window opens on the left, open up Target 1. Right click on Source Group 1, and
select Add files to group 'Source Group 1'. In the file dialog that pops up, change files of type to Asm
Source file. Add the file startup400.a51. This file can be found in the zip file
ftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/HelloWorld.zip.

Open the file startup400.a51 by double clicking on it. Find the segment declaration for
?C_CPURESET?0. Make sure this code segment is declared at 400000h.

?C_CPURESET?0 SEGMENT CODE AT 400000h
Also, there should be a “pB 'TINT'” line followed by another single DB, with a comment that

says "Target bank". This makes sure the application is built for address 400000h, which should
correspond to the beginning of the flash on the TINIm400. Make sure that line reads...

DB 40h ; Target bank

Create a new file. Save it as "main.c". Write the following in that file:

#include <stdio.h>

void main ()

{
printf ("Test 400 Program\r\n");

20f13 04/07/2003

while (1)

}

e Save the contents of this file. Right click on Source Group 1 again and add the source file main.c. It
should now be added to the project.

e Right click on Target 1 on the left, and select Options for target 'Target 1'. An option dialog will
appear. The first tab selected should be Target. Change Memory Model to Large: variables in
XDATA. Change Code Rom Size to Contiguous Mode: 16MB program. Select the check boxes
for Use On-Chip Arithmetic Accelerator, Use multiple DPTR registers, far memory type support, and
Save address extension SFR in interrupts. Under Off-chip Code memory, add the first entry with a
Start of 0x400000 and Size of 0x80000. For Off-chip XData memory, add an entry with a Start of
0x10000 and a Size of 0x4000. Figure 2 shows this dialog after it has been configured.

Options for Target ‘Target 1°
Device Target | Output | Listing | C51 | %51 | L¥51 Locate | 1451 Misc | Debug | Utilties |
[allaz Semiconductor DSE0C400
Sl [MHz) |75.0
Ml Modak ILarge: variables in =DATA :J ¥ Usze On-chip Arithmetic Acceleraton
Code Rom Size:]Enntiguuus kiode: 16MB program L] ¥ Lse muliiple DPTE registers
Operating system: | Mane ~| T Use On-chip XRAM [0xE000-04FFFF]
ff-chip Code memony = 1 Off-chip #data memon -
Skart; Size: Start: Size:
Eprom |0+40000 |0x80000 Fam |0%10000 |Dx4000
Eprom l | Fam | |
E prom l] Fam] 1
[Code Banking Start: End: v 'far' memany twpe support
. Braples: _J Baik frea | I ¥ Save addresz extension SFR in interupts

0k, I Cancel Defaults

Figure 2, Options for Target Dialog from Step 7 (note that ‘Eprom:Start’ does not display the last ‘0’ in 0x400000)

e Select the Output tab. Click on Create HEX File and select HEX-386 in the drop-down box.

e Press F7 to build the application. If everything was done right, it should build with no errors or
warnings, and a hex file should have been generated. You are now ready to load the application onto

your board.

30of13 04/07/2003

Loading the sample application onto the TINIm400 module

This section describes loading the hex file produced by the Keil compiler onto the TINIm400 verification
module using the tool JavaKit. To use JavaKit, you must have the Java Runtime Environment’ (at least
version 1.2) and the Java Communications APP installed. The JavaKit tool is included with the TINI
Software Development Kit, available at fip:/ftp.dalsemi.com/pub/tini/tinil _11.tgz. Instructions for running
JavaKit can be found in the file Running_JavaKit.txt in the docs directory of the TINI Software
Development Kit. If you encounter technical issues running JavaKit, chances are someone has already had
a similar problem and it is chronicled in the archives of the TINI Interest List. You can search the archives
for this list at http://lists.dalsemi.com/search/search.html.

Use this command line for running JavaKit to talk to the TINIm400 module.

java JavaKit -400 -flash 40

Figure 3 shows the JavaKit window.

-

?iié.]aval{it g@@
File ' Help _
|]
Faor Mame: Baud Rate;
com2 ~|[115200 ~]
CTR:
Cipen Port ESE] | & oot O

Figure 3, JavaKit Interface

Once JavaKit is running, select the serial port you will use to communicate with the TINIm400 and open the
serial port using the 'Open Port' button. Then hit the Reset' button. The loader prompt for the DS80C400
should print, and should look something like this:

* Download at http://java.sun.com/j2se/downloads.html
? Download at http://java.sun.com/products/javacomm/

4 of 13 04/07/2003

DS80C400 Silicon Software - Copyright (C) 2002 Maxim Integrated Products
Detailed product information available at http://www.maxim-ic.com

Welcome to the TINI DS80C400 Auto Boot Loader 1.0.1
>

From the 'File' menu at the top of JavaKit, select Load HEX File as TBIN. Search for the helloworld.hex file
that we just created and select it. The Load HEX File as TBIN option converts the input hex file into a TBIN
file, and then loads it. This is faster than loading it as a hex file because an ASCII hex file is more than twice
as large as a binary file for the same set of data.

There are two ways to execute your program once it is loaded. Since we loaded the program into bank 40,
you can type:

> B40
> X

To select bank 40 and execute the code that is there. You can also type:

> E

This will make the ROM search for executable code. It searches for a special tag that signifies that the
current bank has executable code. This tag consists of the text "TINI' followed by the current bank number,
and is located at address 0002 of the current bank. Our HelloWorld program declares this tag in the
startup400.a51 file, with the following lines:

?C_STARTUP: SJMP STARTUP1
DB 'TINI' ; Tag for TINI Environment 1.02c
; or later (ignored in 1.02b)
DB 40h ; Target bank

Note that the soMp sTARTUP1 statement is located at address 0000 of bank 40. It is followed by the
executable tag { "T', T\, 'N', 'T, 40h }, located at address 0002, since the s jmp statement is two bytes.

When you type 'E', the ROM starts from bank FEh and searches downward for executable code. If you type
'E" and some other code executes, it means that the ROM has found an executable tag at a higher address than
400000h, where your code was loaded. You may need to find where that tag is, and delete the contents of
that bank.

Interfacing to the ROM and the ROM libraries

The procedure for calling ROM functions is described in the High-Speed Microcontroller User’s Guide
supplement for the DS80C400*. However, calling these ROM functions from C is a little more complicated.
Parameters must be converted from the Keil C Compiler's conventions to the conventions used by the ROM.
The Keil compiler passes parameters in a combination of XDATA locations and registers. The ROM
functions accept parameters in different ways. For example, the socket functions accept parameters stored in
a single parameter buffer, and many of the utility functions accept parameters passed in special function
registers or direct memory locations. In order to translate from Keil calling conventions to the ROM’s
parameter conventions, Dallas Semiconductor has written libraries for accessing the functions of the ROM.

Using ROM functions in your C programs involves only importing the library and including a header file.
To import a library in your project, right click on Source Group 1 in your Keil project window, and select
Add Files to Group 'Source Group 1'. Change the file filter to "*.lib' and select the library you need to

* The High-Speed Micro User’s Guide Supplement for the DS80C400 can be found at http:/pdfserv.maxim-
ic.com/arpdf/Design/DS80C400UG.pdf

50f13 04/07/2003

include. Then include the header file at the top of your source, and you can use any of the library functions.
The ROM libraries include:

e ROM Initialization Routines

e DHCP Client

e Process Scheduler

e Sockets (TCP, UDP, Multicast)
e TFTP Client

e Utility functions (CRC16, random numbers)

Using the Extension Libraries

In addition to the ROM libraries, other libraries have been written (and are being written) to provide useful
functionality that has not been included in the ROM. These libraries include:

¢ File System, adapted from the TINI file system and implementing methods declared in stdio.h
e DNS client implementation

® 1-Wire, using the API defined in the Public Domain Kit at
http://www.ibutton.com/software/1 wire/wirekit.html

e 12C, implementing a design similar to the one used by TINI
¢ CAN, implementing a design similar to the one used by TINI

The C Library project (including documentation, sample applications, and release notes) for the DS80C400
can be found at ftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/index.html.

A simple application: HTTP server and SNTP client

A small application has been written to demonstrate some of the functionality of these libraries, specifically
the file system, sockets, process scheduler, and TFTP libraries. The sample application consists of an SNTP
client and an HTTP server that responds to only 'GET' requests. It uses the core Dallas Semiconductor
provided libraries to call socket and scheduler functions, and it also uses the file system to store a few web
pages. The application consists of two processes. The HTTP server is spawned off into a new process that
handles connections on port 80, and the main process sits in a loop, attempting a time synchronization
approximately every 60 seconds.

Initializing the File System

Before the HTTP server can be started, the file system must be initialized. There are 2 static files that this
demonstration program attempts to make sure are in the file system before the server starts, a home page
(index.html) and the source to the program (source.html). These files could be installed in the file system in
a number of ways. One possibility is to include the text of these files in the code data of the program, and

60of 13 04/07/2003

then write the file data to the file system on startup. This is the simplest way, and our demonstration
program has code space to spare.

This demonstration program initializes its file system is by finding the files it needs from a TFTP server.
This is a little more interesting, and shows more of the DS80C400’s built-in functionality. In our example,
we have a TFTP server running at a known IP address. The following code requests the files index.html and
source.html from the TFTP server.

void initialize_filesystem()
{
struct sockaddr address;
unsigned int 1i;
unsigned int result;
void* start = (void*)FS_START;

// initialize the file system
int x = finit (FOPEN_MAX, FS_BLOCKS, start);
printf ("Result of FS init: %d \r\n", x);

if ((x==0) && (fexists("index.html")==0) && (fexists("source.html")==0))
{

printf ("File system OK, skip TFTP init.\r\n");

return;

}

// lets get the files we want off a TFTP server
// initialize TFTP server setting
for (i=0;1<18;1i++)

address.sin_addr[i] = 0;

// since the DS80C400 supports Ipv6, the address is 16 bytes long
// however, since we are only using Ipv4 addresses, only the last
// 4 bytes are meaningful

address.sin_addr[12] = TFTP_IP_MSB;
address.sin_addr[13] = TFTP_IP_2;
address.sin_addr[14] = TFTP_IP_3;
address.sin_addr[15] = TFTP_IP_LSB;

result = settftpserver (&address, sizeof (struct sockaddr));

printf ("Set TFTP server to selected server, result: %ulr\n", result);
result = tftp_init();

printf ("Result of TFTP init: %u \r\n", result);

get_tftp_file("source.html");
get_tftp_file("index.html");

}

void get_tftp_file(char* filename)
{

unsigned int result;

unsigned char* TFTP_MSG;

FILE* file;

printf ("Free FS RAM: %$1d\r\n", getFreeFSRAM());
TEFTP_MSG = getTFTPDatal();
file = fopen(filename, "w");
result = tftp_first (filename);
if (result==0xFFFF)
{
7o0f 13 04/07/2003

printf ("Error in TFTP_FIRST...\r\n");

return;
}
printf ("Result of first segment: %ul\r\n", result);
fwrite (TFTP_MSG, 1, result, file);

while (result >= 512)

{
result = tftp_next (TFTP_MORE_DATA) ;
if (result==0xFFFF)

{
printf ("Error in TFTP_NEXT...\r\n");

return;
}
printf ("Result of next segment: %ul\r\n", result);
TFTP_MSG[result] = 0;

fwrite (TFTP_MSG, 1, result, file);

}
tftp_next (TFTP_LAST_SEGMENT) ;

fclose(file);
printf ("Done with TFTP server.\r\n");

}

Notice that the function finit must be called every time the application starts to make sure the file system is
installed and functioning properly. If the file system initializes correctly (returns a 0) and the files we want
already exist, then the function exits without trying to download the files. Otherwise it tries to read the files
from the TFTP server and write them to the file system, as shown in the function get_tftp_file.

SolarWinds provides a free TFTP server for Windows platforms that was used in the development of this
demonstration. From their website (www.solarwinds.net) follow the Downloads—Free Software menu
choice and you will find the TFTP server download. After installing, use the Configure option under the
File menu to configure which files are available to the TFTP server for download. Make sure to change the
program to use your TFTP server’s IP address (TFTP_IP_MSB, TFTP_IP_2, TFTP_IP_3, and TFTP_IP_LSB).

The simple HTTP server

The HTTP server in this application is implemented as a very simple version of an HTTP server as described
by RFC 2068. In this version, only the 'GET' method is supported, input headers are ignored, and few output
headers are given.

The server socket is created by calling Berkley-style socket functions. This makes it very easy to set up a
server socket. The following code shows how our simple HTTP server creates, binds, and accepts new
connections

struct sockaddr local;
unsigned int socket_handle, new_socket_handle, temp;

socket_handle = socket (0, SOCKET_TYPE_STREAM, O0);
local.sin_port = 80;

bind (socket_handle, &local, sizeof(local));
listen (socket_handle, 5);

printf ("Ready to accept HTTP connections...\r\n");

// here is the main loop of the HTTP server
while (1)

8of 13 04/07/2003

new_socket_handle = accept (socket_handle, &address, sizeof (address));
handleRequest (new_socket_handle);
closesocket (new_socket_handle) ;

}

Note that when a new socket is accepted, this simple application does not start a new thread or process to
handle the request, but rather handles the request in the same process. Any HTTP server of more than
demonstration-quality would handle the incoming request in a new thread, allowing multiple connections to
occur and be handled simultaneously. After the request is handled we close the socket and wait for another
incoming connection.

The handleRequest method consists of parsing the incoming request for a file name and verifying that the
method is 'GET'. No other method (not even 'POST', ' HEAD' or 'OPTIONS") is allowed. Two file names are
handled as a special case. When the file time.html is requested, the server will dynamically generate a
response consisting of the latest results from the timeserver, as well as the number of seconds that have
passed since the last instance the timeserver was queried. When the file stats.html is requested, statistics for
server uptime and number of requests are displayed.

If the file is not found, and invalid request method is given, or there is a file system failure, an HTTP error
code is reported.

The SNTP client

The second major portion of the timeserver application is a Simple Network Time Protocol client, as
described in RFC 1361. This is a simple version of the Network Time Protocol (RFC 1305). SNTP calls for
the use of UDP communication to request a time stamp from a server listening on port 123. Our timeserver
uses the following code to periodically synchronize with the server time.nist.gov. Note that at the time this
application note was written, DNS lookup was not supported, so the IP address for the server is set manually.

socket_handle socket (0, SOCKET_TYPE_DATAGRAM, O0);

// set a timeout of about 2 seconds

buffer[0] = 0x0;
buffer[1l] = 0x0;
buffer[2] = 0x8;
buffer[3] = 0x0;

setsockopt (socket_handle, 0, SO_TIMEOUT, buffer, 200);

buffer[2] = 0; // reset since we used this in call to setsockopt
buffer[0] = 0x23; // No warning/NTP Ver 4/Client
address.sin_addr[12] = TIME_NIST_GOV_IP_MSB;

address.sin_addr[13] = TIME_NIST_GOV_IP_2;

address.sin_addr[14] = TIME_NIST_GOV_IP_3;

address.sin_addr[15] = TIME_NIST_GOV_IP_LSB;

address.sin_port = NTP_PORT;

sendto (socket_handle, buffer, 48, 0, &address, sizeof (struct sockaddr));
recvfrom(socket_handle, buffer, 256, 0, &address, sizeof (struct sockaddr));

timeStamp = * (unsigned long*) (&buffer[40]);
timeStamp = timeStamp - NTP_UNIX_TIME_OFFSET;
// now we have time since Jan 1 1970

formatTimeString (timeStamp, "London", last_time_reading_1);
last_reading_seconds = getTimeSeconds();

90f13 04/07/2003

closesocket (socket_handle);

First, a datagram socket is created and given a timeout of about 2 seconds (0x800==2048 milliseconds).
This ensures that if the communication fails with our chosen server, we will not wait forever for a response.

The next line sets the options for the request. These bits are described in section 3 of RFC 1361. The value
0x23 requests no warning in case of a leap second, requests that NTP version 4 be used, and states that the
mode is ‘Client’. After we send the request and receive the reply using the common datagram functions
sendto and recvfrom, the seconds portion of the timestamp value is assigned to the variable t imeStamp,
and then adjusted to the reference epoch January 1, 1970. The function formatTimeString is used to
convert the time stamp into a readable string such as “In London it is 15:37:37 on March 31, 2003”.

The function getTimeSeconds is used to determine when the last time update was based on the DS80C400’s
internal clock. Since the program only updates about once every 60 seconds, the HTML page time. html will
use this value to report how long it has been since the last time update. Finally, the socket is closed and the
SNTP client goes to sleep for another 60 seconds.

A Note About Synchronization

Using the LARGE memory model, the Keil Compiler will pass a limited number of arguments in memory
that is safe across process swaps. This means that certain functions must not be called from multiple
processes at the same time. While efforts have been taken to develop the C Libraries for the 400 such that all
variables are passed in direct memory that is safe across process swaps, some functions are still dangerous.
For instance, adhering to the Berkeley-style socket headers required some longer method signatures that
involve passing data in unsafe memory. Therefore, there are 2 libraries for sockets.

One library (rom_sock.lib) adheres to the Berkeley-style headers. However, it is unsafe when using this
library to call a function from two processes at the same time. This may not be a problem, if one process is
using UDP functions and another is using TCP functions. For true protection against concurrent access to
unsafe memory, another socket library has been developed (rom_sock_synch.lib). The functions in this
library are similar to the Berkeley-style functions, but have fewer or rearranged arguments, such that the Keil
compiler passes parameters in safe memory areas. In all cases, please consult the documentation to see if
functions are multi-process-safe.

A Note About Passing Pointers

The Keil documentation provides ways to write your own methods in 8051 assembly that can be called from
your C programs. If you choose to do this, note that pointers as passed from a C program to 8051 assembly
are not immediately usable on the DS80C390 and DS80C400. Since the traditional 8051 architecture is 16-
bit, Keil's pointers consist of two bytes of pointer, and one byte of memory type. When using Dallas's 24-bit
8051 micros, the memory type byte is used for the high byte of the pointer, but in an altered form. In the
current version of the Keil compiler, the high pointer byte has its high bit set and is incremented by one.

The following macro from rom_offsets.inc is used in the Dallas Semiconductor libraries to correct the
altered pointers.

FIXKEILPOINTER MACRO DIRECT_DPX
LOCAL must_be_null
mov a, DIRECT_DPX
Jjz must_be_null
dec a
anl a, #7Fh

10 of 13 04/07/2003

mov DIRECT_DPX, a
must_be_null:
ENDM

The Keil compiler passes pointers either in registers r3:r2:r1 (3 being the memory type byte) or in the
XDATA memory area. This macro will work for any register or other direct memory value by passing it the
memory type byte, and returning in the same location the high pointer byte. The following code
demonstrates its use:

Keil passes pointers as r3:r2:rl...
—-——— Variable 'bufferl?972' assigned to Register 'R1/R2/R3' ————

7
7
7
7
FIXKEILPOINTER r3

7

; r3:r2:rl is now usable as a pointer wvalue.

14

7

; ...or in XDATA.

;j———— use dpxl:dphl:dpll for buffer pointer —--——-
7

mov dptr, #buffer2?1078
GETX

mov dpxl, a

inc dptr

GETX

mov dphl, a

inc dptr

GETX

mov dpll, a

FIXKEILPOINTER dpxl

; Data pointer 1 is now usable as a pointer.
Note that there is also an opposite to the FIXKEILPOINTER macro that allows functions to convert pointers
they need to return into a form that code generated by the Keil compiler can understand. In this case, use the
macro UNFIXKEILPOINTER. This macro is used in the same way as the FIXKEILPOINTER macro. One
difference is that when you return a pointer from a method written in assembly, the pointer should be stored
in registers r3, r2, and r1, with the high pointer byte in 3. Therefore, just before a function exits that
should return a pointer, it should call the macro:

UNFIXKEILPOINTER r3

ret
; End of the assembly function

Keep your Keil Installation Current

From time to time, Keil releases updates for its uVision2 tool suite. The web site
http://www.keil.com/update/ contains the latest information on the most current versions of both the C51
compiler and the uVision2 IDE. From this page you can select which downloads you would like and view
what changes have been made.

The update should be an InstallShield executable. After you run it, the application will display a window
titled Setup uVision2. Choose the Update Current Installation option to perform the update. The
program should detect your current installation directory, click Next to continue. On the next screen, select

110f13 04/07/2003

if you want to keep your previous uVision2 configuration, and click Next again. Finally, verify the options
you selected and begin installing.

Conclusion

The Keil Compiler and libraries provided by Dallas Semiconductor allow applications written in C to access
the power and functionality formerly only accessible through TINI's Java environment. Programs written in
C can access the network stack, memory manager, process scheduler, file system, and many other features of
the DS80C400. Moreover, applications written in C can choose which libraries to use and include, allowing
more space for user code and data as compared to the TINI Runtime Environment. Developers using the C
language for the DS80C400 will be able to write lean applications, giving them plenty of speed, power, and
code space to tackle any problem.

12 of 13 04/07/2003

Maxim Integrated Products /
Dallas Semiconductor Contact
Information

Company Addresses:

Maxim Integrated Products, Inc
120 San Gabriel Drive
Sunnyvale, CA 94086

Tel: 408-737-7600

Fax: 408-737-7194

Dallas Semiconductor
4401 S. Beltwood Parkway
Dallas, TX 75244

Tel: 972-371-4448

Fax: 972-371-4799

Product Literature / Samples Requests:
(800) 998 — 8800
(408) 737 - 7600

Java is a trademark of Sun Microsystems

Sales and Customer Service:

World Wide Web Site:
WWW.maxim-ic.com

Product Information:
http://www.maxim-
ic.com/MaximProducts/products.htm

Ordering Information:
http://www.maxim-ic.com/BuyMaxim/Sales.htm

FTP Site:
ftp://ftp.dalsemi.com

Internet Explorer is a trademark of Microsoft, Inc

Relevant Links

C Library Home: ftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/index.html
Keil Software Development Tools: http://www.keil.com/

Java Development Kit Download Page: http://java.sun.com/j2se/downloads.html

Java Communications API: http://java.sun.com/products/javacomm/

Ethernet speaker application note: http://pdfserv.maxim-ic.com/arpdf/ AppNotes/app609.pdf
1-Wire Public Domain Kit: http://www.ibutton.com/software/1wire/wirekit.html
DS80C400 User’s Guide: http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

SolarWinds free TFTP server: http://www.solarwinds.net

TINI Software Development Kit: http://www.maxim-ic.com/TINI/

13 0f 13 04/07/2003

