

1 of 167 REV: 021704

….

TABLE OF CONTENTS
1. INTRODUCTION...6
2. ORDERING INFORMATION ..7
3. ARCHITECTURE..8

3.1 ALU..8
3.2 SPECIAL FUNCTION REGISTERS (SFRS)...8

4. PROGRAMMING MODEL ..11
4.1 MEMORY ORGANIZATION ...11

4.1.1 Memory Map ...11
4.1.2 Register Map...11

4.1.2.1 Bit-Addressable Locations .. 12
4.1.2.2 Working Registers... 12
4.1.2.3 Stack ... 12

4.2 SPECIAL FUNCTION REGISTERS ...14
4.3 INSTRUCTION TIMING...55
4.4 ADDRESSING MODES...55

4.4.1 Register Addressing..56
4.4.2 Direct Addressing..56
4.4.3 Register Indirect Addressing...57
4.4.4 Immediate Addressing ..57
4.4.5 Register Indirect with Displacement..57
4.4.6 Relative Addressing ..58
4.4.7 Page Addressing...58
4.4.8 Extended Addressing..58

4.5 PROGRAM STATUS FLAGS ...58
5. CPU TIMING...60

5.1 OSCILLATOR ...60
5.2 INSTRUCTION TIMING...61
5.3 COMPARISON TO THE 8051..68

6. MEMORY ACCESS..72
6.1 INTERNAL PROGRAM MEMORY...72
6.2 INTERNAL DATA MEMORY ..72
6.3 PROGRAM MEMORY INTERCONNECT ..74
6.4 DATA MEMORY INTERCONNECT ...75
6.5 DATA MEMORY ACCESS ..76
6.6 DATA MEMORY TIMING ..79

7. POWER MANAGEMENT ...83
7.1 POWER MANAGEMENT FEATURES..83

7.1.1 Early Warning Power-Fail Interrupt...83
7.1.2 Power-Fail Reset ..84
7.1.3 Power-On Reset ...84
7.1.4 Bandgap Select...84
7.1.5 Watchdog Wake Up ..85
7.1.6 Power Management Summary ...85

www.maxim-ic.com

High-Speed Microcontroller
User’s Guide

High-Speed Microcontroller User’s Guide

2 of 167

7.2 POWER CONSERVATION ..87
7.2.1 Idle Mode ..87
7.2.2 Stop Mode...87
7.2.3 Ring Oscillator Wake Up from Stop ..88

7.3 POWER MANAGEMENT MODES ..89
8. RESET CONDITIONS...96

8.1 RESET SOURCES ..96
8.1.1 Power-On/Fail Reset...96
8.1.2 Watchdog Timer Reset ...96
8.1.3 External Reset ..97

8.2 RESET STATE..97
8.3 NO-BATTERY RESET ...97
8.4 IN-SYSTEM DISABLE MODE..98

9. INTERRUPTS ...99
9.1 INTERRUPT OVERVIEW ..99
9.2 INTERRUPT SOURCES..100

9.2.1 External Interrupts...100
9.2.2 Timer Interrupts...101
9.2.3 Serial Communication Interrupts...101
9.2.4 Real-Time Clock ...101
9.2.5 Power-Fail Interrupt ..101

9.3 SIMULATED INTERRUPTS ...102
9.4 INTERRUPT PRIORITIES..102
9.5 INTERRUPT ACKNOWLEDGE CYCLE ..102
9.6 INTERRUPT LATENCY...103
9.7 INTERRUPT REGISTER CONFLICTS ...105

10. PARALLEL I/O ...106
10.1 PORT 0 ..106
10.2 PORT 2 ..107
10.3 PORTS 1 AND 3..108
10.4 OUTPUT FUNCTIONS ..109
10.5 CURRENT-LIMITED TRANSITIONS ..109
10.6 INPUT FUNCTIONS..109
10.7 READ-MODIFY-WRITE INSTRUCTIONS ...110
10.8 INSTRUCTION DESCRIPTION..110
10.9 I/O PORT TIMING ...110
10.10 OPTIONAL FUNCTIONS..111

11. PROGRAMMABLE TIMERS ..112
11.1 16-BIT TIMERS...112
11.2 MODE 0 ...114
11.3 MODE 1 ...115
11.4 MODE 2 ...116
11.5 MODE 3 ...117
11.6 TIMER 2...118
11.7 TIMER 2 MODES...119

11.7.1 16-Bit Timer/Counter ...119
11.7.2 16-Bit Timer with Capture ..119
11.7.3 16-Bit Auto-Reload Timer/Counter ..120
11.7.4 Up/Down Count Auto-Reload Timer/Counter ..122
11.7.5 Baud Rate Generator...122
11.7.6 Timer Output Clock Generator...123

11.8 TIMEBASE SELECTION ..124
11.9 WATCHDOG TIMER...125

High-Speed Microcontroller User’s Guide

3 of 167

12. SERIAL I/O ...129
12.1 SERIAL MODE SUMMARY..129
12.2 SERIAL PORT INITIALIZATION ..130
12.3 BAUD RATES..134
12.4 SERIAL I/O DESCRIPTION ...136
12.5 FRAMING ERROR DETECTION ...142
12.6 MULTIPROCESSOR COMMUNICATION ..144

13. TIMED-ACCESS PROTECTION ..146
13.1 PROTECTED BITS...146
13.2 PROTECTION SCHEME..146
13.3 TIMED-ACCESS PROTECTS WATCHDOG..147

14. REAL-TIME CLOCK...149
14.1 STARTING AND STOPPING THE RTC..150
14.2 SETTING AND READING THE RTC TIME REGISTERS...150
14.3 USING THE RTC ALARM ...151
14.4 USING THE DAY OF THE WEEK BITS ..152
14.5 CHOOSING AN RTC CRYSTAL...152
14.6 CALIBRATING THE RTC OSCILLATOR ..153

15. BATTERY BACKUP...154
15.1 SELECTING A BATTERY...154
15.2 LITHIUM BATTERY CONSIDERATIONS...155

16. INSTRUCTION SET DETAILS ...156
17. TROUBLESHOOTING..164

17.1 DEVICE OPERATES AT ONE-THIRD OF CRYSTAL SPEED...164
17.2 DEVICE RESETS FOR NO REASON ..164
17.3 ACCESS TO INTERNAL MOVX SRAM IS UNSUCCESSFUL ..164
17.4 REAL-TIME CLOCK DOES NOT OPERATE OR KEEP ACCURATE TIME...164
17.5 SERIAL PORT DOES NOT WORK ...165
17.6 HIGH-SPEED MICROCONTROLLER DOES NOT WORK IN EXISTING 8051 DESIGN.........................165

18. MICROCONTROLLER DEVELOPMENT SUPPORT...166
18.1 TECHNICAL SUPPORT...166
18.2 DEVELOPMENT TOOLS ...166
18.3 SOFTWARE COMPATIBILITY ..166
18.4 HIGH-LEVEL LANGUAGE COMPILERS...166

High-Speed Microcontroller User’s Guide

4 of 167

LIST OF FIGURES
Figure 4-1. Memory Map..12
Figure 4-2. Register Map ...13
Figure 4-3. Scratchpad Register Addressing ...13
Figure 5-1. Crystal Connection ..61
Figure 5-2. Clock Source Input ..61
Figure 5-3. Single-Cycle Instruction Timing ...63
Figure 5-4. Two-Cycle Instruction Timing...64
Figure 5-5. Three-Cycle Instruction Timing ..66
Figure 5-6. Four-Cycle Instruction Timing ..67
Figure 5-7. Five-Cycle Instruction Timing...68
Figure 6-1. Program Memory Interface ..75
Figure 6-2. Program Memory Signals ..76
Figure 6-3. Data Memory Interface ..76
Figure 6-4. Full-Speed MOVX Instruction ..80
Figure 6-5. Three-Cycle MOVX Instruction ..81
Figure 6-6. Four-Cycle MOVX Instruction ..82
Figure 7-1. Power Cycle Operation..85
Figure 7-2. Internal Timing Relationships in PMM1 ...91
Figure 9-1. Interrupt Functional Description ...104
Figure 10-1. Port 0 Functional Circuitry..107
Figure 10-2. Port 2 Functional Circuitry..108
Figure 10-3. I/O Port Timing for MOV Instruction...111
Figure 11-1. Timer/Counter 0 and 1, Modes 0 and 1 ...115
Figure 11-2. Timer/Counter 0 and 1, Mode 2 ...116
Figure 11-3. Timer/Counter 0 Mode 3..117
Figure 11-4. Timer/Counter 2 with Optional Capture ...120
Figure 11-5. Timer/Counter 2 Auto-Reload Mode ..121
Figure 11-6. Timer/Counter 2, Baud Rate Generator Mode...123
Figure 11-7. Timer/Counter 2, Clock Out Mode ...124
Figure 11-8. Watchdog Timer ..125
Figure 12-1. Serial Port Mode 0 ...137
Figure 12-2. Serial Port Mode 1 ...139
Figure 12-3. Serial Port Mode 2 ...141
Figure 12-4. Serial Port Mode 3 ...143
Figure 13-1. Timed Access Examples ...147

High-Speed Microcontroller User’s Guide

5 of 167

LIST OF TABLES
Table 4-A. DS80C310 SFR Locations..14
Table 4-B. DS80C310 SFR Reset Values..15
Table 4-C. DS80C320/DS80C323 SFR Locations...16
Table 4-D. DS80C320/DS80C323 SFR Reset Values...17
Table 4-E. DS83C520/DS87C520 SFR Locations ...18
Table 4-F. S83C520/DS87C520 SFR Reset Values..19
Table 4-G. DS87C530 SFR Locations ...20
Table 4-H. DS87C530 SFR Reset Values ...21
Table 4-I. Instructions That Affect Flag Settings ..59
Table 5-A. Instruction Timing Comparison ...69
Table 5-B. Instruction Speed Summary ...71
Table 6-A. Data Memory Access Control ...73
Table 6-B. ROMSIZE Register Settings ...74
Table 6-C. Data Memory Cycle Stretch Values..80
Table 7-A. Pin States in Power Saving Modes...88
Table 7-B. Crystal Vs. MIPS Comparison ..89
Table 7-C. Power Management and Status Bit Summary..90
Table 7-D. Effect of Clock Modes on Timer Operation...92
Table 7-E. Clock Control and Status Bit Summary ..94
Table 8-A. No-Battery Reset Default..98
Table 9-A. Interrupt Summary..99
Table 12-A. Serial I/O Modes...130
Table 14-A. Real-Time Clock Control and Status Bit Summary ...149
Table 15-A. Suggested Batteries for the DS87C530..154
Table 15-B. Battery-Backed SFRs ...155
Table 18-A. Product Feature Matrix ...167

High-Speed Microcontroller User’s Guide

6 of 167

1. INTRODUCTION
Dallas Semiconductor high-speed microcontrollers are 8051-compatible devices that provide improved
performance and power consumption compared to the original version. They retain instruction-set and
object-code compatibility with the 8051, yet perform the same operations in fewer clock cycles.
Consequently, more throughput is possible for the same crystal speed. As an alternative, the high-speed
microcontroller’s more efficient design allows a much slower crystal speed to get the same results as an
original 8051, using much less power.

The fundamental innovation of the high-speed microcontroller is the use of only four clocks per
instruction cycle compared with 12 for the original 8051. This results in up to three times improvement in
performance. In addition, the high-speed microcontroller is updated with several new peripherals and
features while providing all of the standard features of an 80C32. These include 256 bytes of on-chip
RAM for variables and stack, 32 I/O ports, three 16-bit timer/counters, and an on-chip UART.

In addition to improved efficiency, most devices can operate at a maximum clock rate of 33MHz or
40MHz. Combined with the three times performance, this allows for a maximum performance equivalent
to a 99MHz or 120MHz 8051. This level of computing power is comparable to many 16-bit processors,
but without the added expense.

A number of peripherals were added to the original 80C32 core. Some devices have a programmable
watchdog timer to supervise the system. It counts up to a user programmable interval and then reset the
CPU unless cleared by software. Other features such as a second, full-function UART and dual data
pointers are available to minimize external interrupts allows greater flexibility in dealing with external
events.

Some devices incorporate power management modes that allow the device to dynamically vary the
internal clock speed from 4 clocks per cycle (default) to 64 or 1024 clocks per cycle. Because power
consumption is directly proportional to clock speed, the device can reduce its operating frequency during
periods of little or no activity. This greatly reduces power consumption. The switchback feature allows
the device to quickly return in divide-by-4 mode upon receipt of an interrupt or serial port activity,
allowing the device to respond to external events while in power management mode.

Various memory configurations are available with the high-speed microcontroller family. EPROM and
Mask programmable ROM versions are available for program memory. Some versions incorporate
extended MOVX SRAM on-chip, reducing or eliminating the need for external data memory. This
memory can be made nonvolatile in the DS87C530 through the use of an external lithium battery.

Note: Information contained in specific data sheets supersedes general information found in this user’s
guide. Designers are cautioned to obtain and read carefully the data sheets, this user’s guide, and any
relevant supplements before using any Dallas Semiconductor microcontroller.

High-Speed Microcontroller User’s Guide

7 of 167

2. ORDERING INFORMATION
The high-speed microcontroller family follows the part numbering convention shown below. Note that all
combinations of devices are not currently available. Refer to individual data sheets for the available
versions.

 DS80C320-MCG
 SPEED: D 18MHz
 G 25MHz
 L 33MHz
 R 40MHz

 TEMPERATURE: C 0°C to +70°C
 N -40°C to +85°C

 PACKAGE: M PLASTIC
 Q PLCC
 E THIN PLASTIC QUAD FLAT PACK (TQFP)
 F PLASTIC QUAD FLAT PACK (QFP)
 W WINDOWED CERDIP
 K WINDOWED CERQUAD

 OPERATING VOLTAGE: 0 +5V
 3 +3V OR WIDE VOLTAGE

 MEMORY TYPE: 0 ROMless
 3 ROM

7 EPROM

High-Speed Microcontroller User’s Guide

8 of 167

3. ARCHITECTURE
The high-speed microcontroller is based on the industry-standard 80C52. The core is an accumulator-
based architecture using internal registers for data storage and peripheral control. It executes the standard
8051 instruction set. This section provides a brief description of each architecture feature. Details
concerning the programming model, instruction set, and register description are provided in Section 4.

3.1 ALU
The ALU is responsible for math functions, comparisons, and general decision making in the high-speed
microcontroller. The ALU is not explicitly used by software. Instruction decoding prepares the ALU
automatically and passes it the appropriate data. The ALU primarily uses two special function registers
(SFRs) as the source and destination for all operations. These are the Accumulator and B register. The
ALU also provides status information in the program status register. The SFRs are described below.

3.2 Special Function Registers (SFRs)
All peripherals and operations that are not explicit instructions in the high-speed microcontroller are
controlled through SFRs. All SFRs are described in Section 4. The most commonly used registers that are
basic to the architecture are also described below.

Accumulator
The Accumulator is the primary register used in the high-speed microcontroller. It is the source and
destination of most math, data movement, decisions, and other operations. Although it can be bypassed,
most high-speed instructions require the use of the accumulator (ACC) as one argument.

B Register
The B register is used as the second 8-bit argument in multiply and divide operations. When not used for
these purposes, the B register can be used as a general-purpose register.

Program Status Word
The program status word holds a selection of bit flags that include the carry flag, auxiliary carry flag,
general purpose flag, register bank select, overflow flag, and parity flag.

Data Pointer(s)
The data pointer is used to designate a memory address for the MOVX instruction. This address can point
to a MOVX RAM location, either on- or off-chip, or a memory mapped peripheral. When moving data
from one memory area to another or from memory to a memory mapped peripheral, a pointer is needed
for both the source and destination. Thus, the high-speed microcontroller offers two data pointers. The
user selects the active pointer via a dedicated SFR bit.

Stack Pointer
The microcontroller provides a stack in the scratchpad RAM area. The stack pointer denotes the register
location at the top of the stack, which is the last used value. The user can place the stack anywhere in
scratchpad RAM by setting the stack pointer to that location.

I/O Ports
The standard high-speed microcontroller offers four 8-bit I/O ports. ROM less versions use Port 0 and
Port 2 as address and data buses. In those versions, only two ports are available for general-purpose I/O.

High-Speed Microcontroller User’s Guide

9 of 167

Each I/O port is a SFR that can be written or read. The I/O port has a latch that retains the value which
software writes. In general, during a read operation, software reads the state of the external pin. Each port
is represented by a SFR location.

Timer/Counters
Three 16-bit Timer/Counters are available in the high-speed microcontroller. Each timer is contained in
two SFR locations that can be written or read by software. The timers are controlled by other SFRs
described in Section 4.

UARTs
The high-speed microcontroller provides one or two UARTs. These are controlled and accessed as SFRs.
Each UART has an address that is used to read or write the UART. Both read and write operations use the
same address. The microcontroller distinguishes between a read and a write by the instruction. Its own
SFR control register controls each UART.

Scratchpad Registers (RAM)
The high-speed core provides 256 bytes of Scratchpad RAM for general-purpose data and variable
storage. The first 128 bytes are directly available to software. The second 128 are available through
indirect addressing discussed below. Selected portions of this RAM have other optional functions.

Stack
The stack is a RAM area that the microcontroller uses to store return address information during Calls
and Interrupts. The user can also place variables on the stack when necessary. The stack pointer
mentioned above designates the RAM location that is the top of the stack. Thus, depending on the value
of the stack pointer, the stack can be located anywhere in the 256 bytes of RAM. A common location
would be in the upper 128 bytes of RAM, as these are accessible through indirect addressing only.

Working Registers
The first 32 bytes of the Scratchpad RAM can be used as four banks of eight Working Registers for high-
speed data movement. Using four banks, software can quickly change context by simply changing to a
different bank. In addition to the Accumulator, the working registers are commonly used as data source or
destination. Some of the working registers can also be used as pointers to other RAM locations (indirect
addressing).

Program Counter
The Program Counter (PC) is a 16-bit value that designates the next program address to be fetched. On-
chip hardware automatically increments the PC value to move to the next ROM location.

Address/Data Bus
The high-speed microcontroller addresses a 64kB program and 64kB data memory area. In the ROMless
versions, all memory is outside. Other versions use a combination of internal and external memory. When
external memory is accessed, Ports 0 and 2 are used as a multiplexed address and data bus. Port 2
provides the address MSB. Even versions with internal memory can use the bus on Ports 0 and 2 to
access more memory.

High-Speed Microcontroller User’s Guide

10 of 167

Watchdog Timer
The watchdog timer provides a supervisory function for applications that cannot afford to run out of
control. The watchdog timer is a programmable free-running timer. If allowed to reach the termination of
its count, if enabled, the watchdog resets the CPU. Software must prevent this by cleaning or resetting the
watchdog prior to its timeout.

Power Monitor
Some members of the high-speed microcontroller family incorporate a bandgap reference and analog
circuitry to monitor the power supply conditions. When VCC begins to drop out of tolerance, the power
monitor issues an optional early warning power-fail interrupt. If power continues to fall, the power
monitor invokes a reset condition. This remains until power returns to normal operating voltage. The
power monitor also functions on power-up, holding the microcontroller in a reset state until power is
stable.

Interrupts
The high-speed microcontroller is capable of evaluating a number of interrupt sources simultaneously.
Each version of the high-speed microcontroller provides a different number of interrupt sources. Each
interrupt has an associated interrupt vector, flag, priority, and enable. Each interrupt can be globally
enabled or disabled.

Timing Control
The high-speed microcontroller provides an on-chip oscillator for use with an external crystal. This can
be bypassed by injecting a clock source into the XTAL 1 pin. The clock source is used to create machine
cycle timing (four clocks), ALE, PSEN, watchdog timer, and serial baud rate timing. In addition, some
devices incorporate an on-chip ring oscillator which can be used to provide an approximately 2MHz to
4MHz clock source.

Real-Time Clock
The DS87C530 incorporates a real-time clock (RTC) that is accessed by the SFR locations. The RTC is
divided into hour, minute, second, and subsecond registers, and also incorporates a 65,536 day calendar.
Alarm registers allow the RTC to issue interrupts at a specific time once a day, or as a recurring alarm
every hour, minute or second. An external watch crystal and lithium power source allow the processor to
maintain timekeeping in the absence of VCC.

Feature Summary
The high-speed microcontroller family offers a combination of features and peripherals as shown in
Table 18-A. This user’s guide is designed as a comprehensive guide covering all features available in the
high-speed microcontroller family. The designer should investigate the specific data sheet to determine
which features are available on a particular device. Detailed information about newer members of the
product family may be provided in separate documents until they can be assimilated into the High-Speed
Microcontroller User’s Guide.

High-Speed Microcontroller User’s Guide

11 of 167

4. PROGRAMMING MODEL
This section provides a programmer’s overview of the high-speed microcontroller core. It includes
information on the memory map, on-chip RAM, SFRs, and instruction set. The programming model of
the high-speed microcontroller is very similar to that of the industry standard 80C52. The memory map is
identical. It uses the same instruction set, though instruction timing is improved. Several new SFRs have
been added.

4.1 Memory Organization
The high-speed microcontroller, like the 8052, uses several distant memory areas. These are registers,
program memory, and data memory. Registers serve to control on-chip peripherals and as RAM. Note
that registers (on-chip RAM) are separate from data memory. Registers are divided into three categories
including directly addressed on-chip RAM, indirectly addressed on-chip RAM, and SFRs. The program
and data memory areas are discussed under the Memory Map section. The registers are discussed in the
Register Mapsection.

4.1.1 Memory Map
The high-speed microcontroller uses a memory-addressing scheme that separates program memory
(ROM) from data memory (RAM). Each area is 64kB beginning at address 0000h and ending at FFFFh
as shown in Figure 4-1. The program and data segments can overlap since they are accessed in different
ways. Program memory is fetched by the microcontroller automatically. These addresses are never
written by software. In fact, there are no instructions that allow the ROM area to be written. There is one
instruction (MOVC) that is used to explicitly read the program area. This is commonly used to read look-
up tables. The data memory area is accessed explicitly using the MOVX instruction. This instruction
provides multiple ways of specifying the target address. It is used to access the 64kB of data memory.

The address and data range of devices with on-chip program and data memory overlap the 64k memory
space. When on-chip memory is enabled, accessing memory in the on-chip range will cause the device to
access internal memory. Memory accesses beyond the internal range will be addressed externally via
ports 0 and 2.

The ROMSIZE feature allows software to dynamically configure the maximum address of on-chip
program memory. This allows the device to act as a bootstrap loader for an external flash or NV SRAM.
Secondly, this method can also be used to increase the amount of available program memory from 64kB
to 80kB without bank switching (Section 6).

Program and data memory can also be increased beyond the 64kB limit using bank-switching techniques.
This is described in Application Note 81: Memory Expansion with the High-Speed Microcontroller
Family.

4.1.2 Register Map
The register map is illustrated in Figure 4-2. It is entirely separate from the program and data memory
areas mentioned above. A separate class of instructions is used to access the registers. There are 256
potential register location values. In practice, the high-speed microcontroller has 256 bytes of Scratchpad
RAM and up to 128 special function registers (SFRs). This is possible since the upper 128 Scratchpad
RAM locations can only be accessed indirectly. That is, the contents of a Working Register (described
below) will designate the RAM location. Thus a direct reference to one of the upper 128 locations must
be an SFR access. Direct RAM is reached at locations 0 to 7Fh (0 to 127).

High-Speed Microcontroller User’s Guide

12 of 167

SFRs are accessed directly between 80h and FFh (128 to 255). The RAM locations between 128 and 255
can be reached through an indirect reference to those locations.

Scratchpad RAM is available for general-purpose data storage. It is commonly used in place of off-chip
RAM when the total data contents are small. When off-chip RAM is needed, the Scratchpad area still
provides the fastest general-purpose access. Within the 256 bytes of RAM, there are several special
purpose areas. These are described as follows:

4.1.2.1 Bit-Addressable Locations
In addition to direct register access, some individual bits are also accessible. These are individually
addressable bits in both the RAM and SFR area. In the Scratchpad RAM area, registers 20h to 2Fh are bit
addressable. This provides 126 (16 x 8) individual bits available to software. A bit access is distinguished
from a full register access by the type of instruction. Addressing modes are discussed in Section 5. In the
SFR area, any register location ending in a 0 or 8 is bit addressable. Figure 4-3shows details of the on-
chip RAM addressing including the locations of individual RAM bits.

4.1.2.2 Working Registers
As part of the lower 128 bytes of RAM, there are four banks of Working Registers (each). The Working
registers are general-purpose RAM locations that can be addressed in a special way. They are designated
R0 through R7. Since there are four banks, the currently selected bank will be used by any instruction
using R0-R7. This allows software to change context by simply switching banks. This is controlled via
the Program Status Word register in the SFR area described below. The Working Registers also allow
their contents to be used for indirect addressing of the upper 128 bytes of RAM. Thus an instruction can
designate the value stored in R0 (for example) to address the upper RAM. This value might be the result
of another calculation.

4.1.2.3 Stack
Another use of the Scratchpad area is for the programmer’s stack. This area is selected using the Stack
Pointer (SP;81h) SFR. Whenever a call or interrupt is invoked, the return address is placed on the Stack.
It also is available to the programmer for variables, etc., and since the Stack can be moved, there is no
fixed location within the RAM designated as Stack. The Stack Pointer will default to 07h on reset. The
user can then move it as needed. A convenient location would be the upper RAM area (>7Fh) since this is
only available indirectly. The SP will point to the last used value. Therefore, the next value placed on the
Stack is put at SP + 1. Each PUSH or CALL increments the SP by the appropriate value. Each POP or
RET will decrement as well.

Figure 4-1. Memory Map

64kB FFFFh

0000h

PROGRAM
MEMORY

DATA
MEMORY

High-Speed Microcontroller User’s Guide

13 of 167

Figure 4-2. Register Map

Figure 4-3. Scratchpad Register Addressing

FFh

INDIRECT RAM

7Fh

DIRECT RAM

2Fh 7F 7E 7D 7C 7B 7A 79 78
2Eh 77 76 75 74 73 72 71 70
2Dh 6F 6E 6D 6C 6B 6A 69 68
2Ch 67 66 65 64 63 62 61 60
2Bh 5F 5E 5D 5C 5B 5A 59 58
2Ah 57 56 55 54 53 52 51 50
29h 4F 4E 4D 4C 4B 4A 49 48
28h 47 46 45 44 43 42 41 40
27h 3F 3E 3D 3C 3B 3A 39 38
26h 37 36 35 34 333 32 31 30
25h 2F 2E 2D 2C 2B 2A 29 28
24h 27 26 25 24 23 22 21 20
23h 1F 1E 1D 1C 1B 1A 19 18
22h 17 16 15 14 13 12 11 10
21h 0F 0E 0D 0C 0B 0A 09 08
20h 07 06 05 04 03 02 01 00
1Fh

BANK 3
18h
17h

BANK 2
10h
0Fh

BANK 1
08h
07h

BANK 0

00h

MSB LSB

255

128

DIRECT
SFRs

FFh
INDIRECT

RAM
7Fh

0000h

DIRECT
RAM

FFh

7Fh

High-Speed Microcontroller User’s Guide

14 of 167

4.2 Special Function Registers
The high-speed microcontroller, like the 8051, uses special function registers (SFRs) to control
peripherals and modes. In many cases, an SFR will control individual functions or report status on
individual functions. The SFRs reside in register locations 80h–FFh and are reached using direct
addressing. SFRs that end in 0 or 8 are bit addressable.

All standard SFR locations from the original 8051 are duplicated in the high-speed microcontroller, with
several additions. Following tables illustrate the locations of the SFRs for various devices. Following
each tables a description of the default-reset conditions of all SFR bits. The following information
contains detailed descriptions of each SFR.

Table 4-A. DS80C310 SFR Locations
REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS

SP 81h
DPL 82h
DPH 83h
DPL1 84h
DPH1 85h
DPS 0 0 0 0 0 0 0 SEL 86h

PCON SMOD-0 SMOD0 - - GF1 GF0 STOP IDLE 87h
TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 88h
TMOD GATE C/ T M1 M0 GATE C/ T M1 M0 89h

TL0 8Ah
TL1 8Bh
TH0 8Ch
TH1 8Dh

CKCON - - T2M T1M T0M MD2 MD1 MD0 8Eh
P1 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 90h

EXIF IE5 IE4 IE3 IE2 - - - - 91h
SCON0 SM0/FE_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 98h
SBUF0 99h

P2 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 A0h
IE EA - ET2 ES0 ET1 EX1 ET0 EX0 A8h

SADDR0 A9h
P3 P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0 B0h
IP - - PT2 PS0 PT1 PX1 PT0 PX0 B8h

SADEN0 B9h
STATUS 0 HIP LIP 1 1 1 1 1 C5h
T2CON TF2 EXF2 RCLK TCLK EXEN2 TR2 C/ T2 CP/ RL2 C8h
T2MOD - - - - - - T2OE DCEN C9h
RCAP2L CAh
RCAP2H CBh

TL2 CCh
TH2 CDh
PSW CY AC F0 RS1 RS0 OV F1 P D0h

WDCON - POR - - - - - - D8h
ACC E0h
EIE - - - - EX5 EX4 EX3 EX2 E8h
B F0h

EIP - - - - PX5 PX4 PX3 PX2 F8h

High-Speed Microcontroller User’s Guide

15 of 167

Table 4-B. DS80C310 SFR Reset Values
REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS

SP 0 0 0 0 0 1 1 1 81h
DPL 0 0 0 0 0 0 0 0 82h
DPH 0 0 0 0 0 0 0 0 83h
DPL1 0 0 0 0 0 0 0 0 84h
DPH1 0 0 0 0 0 0 0 0 85h
DPS 0 0 0 0 0 0 0 0 86h

PCON 0 0 - - 0 0 0 0 87h
TCON 0 0 0 0 0 0 0 0 88h
TMOD 0 0 0 0 0 0 0 0 89h

TL0 0 0 0 0 0 0 0 0 8Ah
TL1 0 0 0 0 0 0 0 0 8Bh
TH0 0 0 0 0 0 0 0 0 8Ch
TH1 0 0 0 0 0 0 0 0 8Dh

CKCON - - 0 0 0 0 0 1 8Eh
P1 1 1 1 1 1 1 1 1 90h

EXIF 0 0 0 0 - - - - 91h
SCON0 0 0 0 0 0 0 0 0 98h
SBUF0 0 0 0 0 0 0 0 0 99h

P2 1 1 1 1 1 1 1 1 A0h
IE 0 - 0 0 0 0 0 0 A8h

SADDR0 0 0 0 0 0 0 0 0 A9h
P3 1 1 1 1 1 1 1 1 B0h
IP - - 0 0 0 0 0 0 B8h

SADEN0 0 0 0 0 0 0 0 0 B9h
STATUS 0 0 0 1 1 1 1 1 C5h
T2CON 0 0 0 0 0 0 0 0 C8h
T2MOD - - - - - - 0 0 C9h
RCAP2L 0 0 0 0 0 0 0 0 CAh
RCAP2H 0 0 0 0 0 0 0 0 CBh

TL2 0 0 0 0 0 0 0 0 CCh
TH2 0 0 0 0 0 0 0 0 CDh
PSW 0 0 0 0 0 0 0 0 D0h

WDCON - SPECIAL - - - - - - D8h
ACC 0 0 0 0 0 0 0 0 E0h
EIE - - - - 0 0 0 0 E8h
B 0 0 0 0 0 0 0 0 F0h

EIP - - - - 0 0 0 0 F8h

High-Speed Microcontroller User’s Guide

16 of 167

Table 4-C. DS80C320/DS80C323 SFR Locations
REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS

SP 81h
DPL 82h
DPH 83h
DPL1 84h
DPH1 85h
DPS 0 0 0 0 0 0 0 SEL 86h

PCON SMOD_0 SMOD0 - - GF1 GF0 STOP IDLE 87h
TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 88h
TMOD GATE C/ T M1 M0 GATE C/ T M1 M0 89h

TL0 8Ah
TL1 8Bh
TH0 8Ch
TH1 8Dh

CKCON WD1 WD0 T2M T1M T0M MD2 MD1 MD0 8Eh
P1 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 90h

EXIF IE5 IE4 IE3 IE2 - RGMD RGSL BGS 91h
SCON0 SM0/FE_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 98h
SBUF0 99h

P2 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 A0h
IE EA ES1 ET2 ES0 ET1 EX1 ET0 EX0 A8h

SADDR0 A9h
SADDR1 AAh

P3 P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0 B0h
IP - PS1 PT2 PS0 PT1 PX1 PT- PX0 B8h

SADEN0 B9h
SADEN1 Bah
SCON1 SMO/FE_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 I1_1 R1_1 C0h
SBUF1 C1h

STATUS PIP HIP LIP 1 1 1 1 1 C5h
TA C7h

T2CON TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2 C8h
T2MOD - - - - - - T2OE DCEN C9h
RCAP2L CAh
RCAP2H CBh

TL2 CCh
TH2 CDh
PSW CY AC F0 RS1 RS0 OV F1 P D0h

WDCON SMOD_1 POR EPF1 PF1 WDIF WTRF EWT RWT D8h
ACC E0h
EIE - - - EWDI EX5 EX4 EX3 EX2 E8h
B F0h

EIP - - - PWDI PX5 PX4 PX3 PX2 F8h

Note: Shaded bits are timed-access protected.

High-Speed Microcontroller User’s Guide

17 of 167

Table 4-D. DS80C320/DS80C323 SFR Reset Values
REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS

SP 0 0 0 0 0 0 0 0 81h
DPL 0 0 0 0 0 0 0 0 82h
DPH 0 0 0 0 0 0 0 0 83h
DPL1 0 0 0 0 0 0 0 0 84h
DPH1 0 0 0 0 0 0 0 0 85h
DPS 0 0 0 0 0 0 0 0 86h

PCON 0 0 - - 0 0 0 0 87h
TCON 0 0 0 0 0 0 0 0 88h
TMOD 0 0 0 0 0 0 0 0 89h

TL0 0 0 0 0 0 0 0 0 8Ah
TL1 0 0 0 0 0 0 0 0 8Bh
TH0 0 0 0 0 0 0 0 0 8Ch
TH1 0 0 0 0 0 0 0 0 8Dh

CKCON 0 0 0 0 0 0 0 0 8Eh
P1 1 1 0 0 0 0 0 0 90h

EXIF 0 0 0 0 0 0 0 0 91h
SCON0 0 0 0 0 0 0 0 0 98h
SBUF0 0 0 0 0 0 0 0 0 99h

P2 1 1 1 1 1 1 1 1 A0h
IE 0 0 0 0 0 0 0 0 A8h

SADDR0 0 0 0 0 0 0 0 0 A9h
SADDR1 0 0 0 0 0 0 0 0 AAh

P3 1 1 1 1 1 1 1 1 B0h
IP - 0 0 0 0 0 0 0 B8h

SADEN0 0 0 0 0 0 0 0 0 B9h
SADEN1 0 0 0 0 0 0 0 0 BAh
SCON1 0 0 0 0 0 0 0 0 C0h
SBUF1 0 0 0 0 0 0 0 0 C1h

STATUS 0 0 0 1 1 1 1 1 C5h
TA 1 1 1 1 1 1 1 1 C7h

T2CON 0 0 0 0 0 0 0 0 C8h
T2MOD - - - - - - 0 0 C9h
RCAP2L 0 0 0 0 0 0 0 0 CAh
RCAP2H 0 0 0 0 0 0 0 0 CBh

TL2 0 0 0 0 0 0 0 0 CCh
TH2 0 0 0 0 0 0 0 0 CDh
PSW 0 0 0 0 0 0 0 0 D0h

WDCON 0 SPECIAL 0 SPECIAL 0 SPECIAL SPECIAL 0 D8h
ACC 0 0 0 0 0 0 0 0 E0h
EIE - - - - 0 0 0 0 E8h
B 0 0 0 0 0 0 0 0 F0h

EIP -- - - 0 0 0 0 0 F8h

High-Speed Microcontroller User’s Guide

18 of 167

Table 4-E. DS83C520/DS87C520 SFR Locations
REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS

P0 P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 80h
SP 81h

DPL 82h
DPH 83h
DPL1 84h
DPH1 85h
DPS 0 0 0 0 0 0 0 SEL 86h

PCON SMOD_0 SMOD0 - - GF1 GF0 STOP IDLE 87h
TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 88h
TMOD GATE C/ T M1 M0 GATE C/ T M1 M0 89h

TL0 8Ah
TL1 8Bh
TH0 8Ch
TH1 8Dh

CKCON WD1 WD0 T2M T1M T0M MD2 MD1 MD0 8Eh
P1 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 90h

EXIF IE5 IE4 IE3 IE2 XT/ RG RGMD RGSL BGS 91h
SCON0 SM0/FE_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 98h
SBUF0 99h

P2 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 A0h
IE EA ES1 ET2 ES0 ET1 EX1 ET0 EX0 A8h

SADDR0 A9h
SADDR1 AAh

P3 P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0 B0h
IP - PS1 PT2 PS0 PT1 PX1 PT0 PX0 B8h

SADEN0 B9h
SADEN1 BAh
SCON1 SM0/FE_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TI_1 RI_1 C0h
SBUF1 C1h

ROMSIZE - - - - - RMS2 RMS1 RMS0 C2h
PMR CD1 CD0 SWB - XTOFF ALEOFF DME1 DME0 C4h

STATUS PIP HIP LIP XTUP SPTA1 SPRA1 SPTA0 SPRA0 C5h
TA C7h

T2CON TF2 EXF2 RCLK TCLK EXEN2 TR2 C/ T2 CP/ RL2 C8h
T2MOD - - - - - - T2OE DCEN C9h
RCAP2L CAh
RCAP2H CBh

TL2 CCh
TH2 CDh
PSW CY AC F0 RS1 RS0 OV F1 P D0h

WDCON SMOD_1 POR EPFI PFI WDIF WTRF EWT RWT D8h
ACC E0h
EIE - - - EWDI EX5 EX4 EX3 EX2 E8h
B F0h

EIP - - - PWD1 PX5 PX4 PX3 PX2 F8h

Note: Shaded bits are timed-access protected.

High-Speed Microcontroller User’s Guide

19 of 167

Table 4-F. S83C520/DS87C520 SFR Reset Values
REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS

P0 1 1 1 1 1 1 1 1 80h
SP 0 0 0 0 0 1 1 1 81h

DPL 0 0 0 0 0 0 0 0 82h
DPH 0 0 0 0 0 0 0 0 83h
DPL1 0 0 0 0 0 0 0 0 84h
DPH1 0 0 0 0 0 0 0 0 85h
DPS 0 0 0 0 0 0 0 0 86h

PCON 0 0 - - 0 0 0 0 87h
TCON 0 0 0 0 0 0 0 0 88h
TMOD 0 0 0 0 0 0 0 0 89h

TL0 0 0 0 0 0 0 0 0 8Ah
TL1 0 0 0 0 0 0 0 0 8Bh
TH0 0 0 0 0 0 0 0 0 8Ch
TH1 0 0 0 0 0 0 0 0 8Dh

CKCON 0 0 0 0 0 0 0 1 8Eh
P1 1 1 1 1 1 1 1 1 90h

EXIF 0 0 0 0 SPECIAL SPECIAL SPECIAL 0 91h
SCON0 0 0 0 0 0 0 0 0 98h
SBUF0 0 0 0 0 0 0 0 0 99h

P2 1 1 1 1 1 1 1 1 A0h
IE 0 0 0 0 0 0 0 0 A8h

SADDR0 0 0 0 0 0 0 0 0 A9h
SADDR1 0 0 0 0 0 0 0 0 AAh

P3 1 1 1 1 1 1 1 1 B0h
IP - 0 0 0 0 0 0 0 B8h

SADEN0 0 0 0 0 0 0 0 0 B9h
SADEN1 0 0 0 0 0 0 0 0 BAh
SCON1 0 0 0 0 0 0 0 0 C0h
SBUF1 0 0 0 0 0 0 0 0 C1h

ROMSIZE - - - - - 1 0 1 C2h
PMR 0 1 0 - 0 0 0 0 C4h

STATUS 0 0 0 SPECIAL 0 0 0 0 C5h
TA 1 1 1 1 1 1 1 1 C7h

T2CON 0 0 0 0 0 0 0 0 C8h
T2MOD - - - - - - 0 0 C9h
RCAP2L 0 0 0 0 0 0 0 0 CAh
RCAP2H 0 0 0 0 0 0 0 0 CBh

TL2 0 0 0 0 0 0 0 0 CCh
TH2 0 0 0 0 0 0 0 0 CDh
PSW 0 0 0 0 0 0 0 0 D0h

WDCON 0 SPECIAL 0 SPECIAL 0 SPECIAL SPECIAL 0 D8h
ACC 0 0 0 0 0 0 0 0 E0h
EIE - - - 0 0 0 0 0 E8h
B 0 0 0 0 0 0 0 0 F0h

EIP - - - 0 0 0 0 0 F8h

High-Speed Microcontroller User’s Guide

20 of 167

Table 4-G. DS87C530 SFR Locations
REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS

P0 P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 80h
SP 81h

DPL 82h
DPH 83h
DPL1 84h
DPH1 85h
DPS 0 0 0 0 0 0 0 SEL 86h

PCON SMOD_0 SMOD0 - - GF1 GF0 STOP IDLE 87h
TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 88h
TMOD GATE C/ T M1 M0 GATE C/ T M1 M0 89h

TL0 8Ah
TL1 8Bh
TH0 8Ch
TH1 8Dh

CKCON WD1 WD0 T2M T1M T0M MD2 MD1 MD0 8Eh
P1 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 90h

EXIF IE5 IE4 IE3 IE2 XT/ RG RGMD RGSL BGS 91h
TRIM E4K X12/ 6 TRM2 TRM2 TRM1 TRM1 TRM0 TRM0 96h

SCON0 SM0/FE_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 98h
SBUF0 99h

P2 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 A0h
IE EA ES1 ET2 ES0 ET1 EX1 ET0 EX0 A8h

SADDR0 A9h
SADDR1 AAh

P3 P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0 B0h
IP - PS1 PT2 PS0 PT1 PX1 PT0 PX0 B8h

SADEN0 B9h
SADEN1 BAh
SCON1 SM0/FE_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TI_1 RI_1 C0h
SBUF1 C1h

ROMSIZE - - - - - RMS2 RMS1 RMS0 C2h
PMR CD1 CD0 SWB - XTOFF ALEOFF DME1 DME0 C4h

STATUS PIP HIP LIP XTUP SPTA1 SPRA1 SPTA0 SPRA0 C5h
TA C7h

T2CON TF2 EXF2 RCLK TCLK EXEN2 TR2 C/ T2 CP/ RL2 C8h
T2MOD - - - - - - T2OE DCEN C9h
RCAP2L CAh
RCAP2H CBh

TL2 CCh
TH2 CDh
PSW CY AC F0 RS1 RS0 OV F1 P D0h

WDCON SMOD_0 POR EPFI PFI WDIF WTRF EWT RWT D8h
ACC E0h
EIE - - ERTCI EWDI EX5 EX4 EX3 EX2 E8h
B F0h

RTASS F2h
RTAS 0 0 F3h
RTAM 0 0 F4h
RTAH 0 0 0 F5h

EIP - - PRTCI PWDI PX5 PX4 PX3 PX2 F8h
RTCC SSCE SCE MCE HCE RTCE RTCWE RTCIF RTCE F9h
RTCSS FAh

High-Speed Microcontroller User’s Guide

21 of 167

REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS
RTCS 0 0 FBh
RTCM 0 0 FCh
RTCH FDh

RTCD0 FEh
RTCD1 FFh

Note: Shaded bits are timed-access protected.

Table 4-H. DS87C530 SFR Reset Values

REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS
PO 1 1 1 1 1 1 1 1 80h
SP 0 0 0 0 0 1 1 1 81h

DPL 0 0 0 0 0 0 0 0 82h
DPH 0 0 0 0 0 0 0 0 83h
DPL1 0 0 0 0 0 0 0 0 84h
DPH1 0 0 0 0 0 0 0 0 85h
DPS 0 0 0 0 0 0 0 0 86h

PCON 0 0 - - 0 0 0 0 87h
TCON 0 0 0 0 0 0 0 0 88h
TMOD 0 0 0 0 0 0 0 0 89h

TL0 0 0 0 0 0 0 0 0 8Ah
TL1 0 0 0 0 0 0 0 0 8Bh
TH0 0 0 0 0 0 0 0 0 8Ch
TH1 0 0 0 0 0 0 0 0 8Dh

CKCON 0 0 0 0 0 0 0 1 8Eh
P1 1 1 1 1 1 1 1 1 90h

EXIF 0 0 0 0 SPECIAL SPECIAL SPECIAL 0 91h
TRIM SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL 96h

SCON0 0 0 0 0 0 0 0 0 98h
SBUF0 0 0 0 0 0 0 0 0 99h

P2 1 1 1 1 1 1 1 1 A0h
IE 0 0 0 0 0 0 0 0 A8h

SADDR0 0 0 0 0 0 0 0 0 A9h
SADDR1 0 0 0 0 0 0 0 0 AAh

P3 1 1 1 1 1 1 1 1 B0h
IP - 0 0 0 0 0 0 0 B8h

SADEN0 0 0 0 0 0 0 0 0 B9h
SADEN1 0 0 0 0 0 0 0 0 BAh
SCON1 0 0 0 0 0 0 0 0 C0h
SBUF1 0 0 0 0 0 0 0 0 C1h

ROMSIZE - - - - - 1 0 1 C2h
PMR 0 1 0 - 0 0 0 0 C4h

STATUS 0 0 0 SPECIAL 0 0 0 0 C5h
TA 1 1 1 1 1 1 1 1 C7h

T2CON 0 0 0 0 0 0 0 0 C8h
T2MOD - - - - - - 0 0 C9h
RCAP2L 0 0 0 0 0 0 0 0 CAh
RCAP2H 0 0 0 0 0 0 0 0 CBh

TL2 0 0 0 0 0 0 0 0 CCh
TH2 0 0 0 0 0 0 0 0 CDh
PSW 0 0 0 0 0 0 0 0 D0h

WDCON 0 SPECIAL 0 SPECIAL 0 SPECIAL SPECIAL 0 D8h
ACC 0 0 0 0 0 0 0 0 E0h
EIE - - 0 0 0 0 0 0 E8h
B 0 0 0 0 0 0 0 0 F0h

High-Speed Microcontroller User’s Guide

22 of 167

REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS
RTASS SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL F2h
RTAS 0 0 SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL F3h
RTAM 0 0 SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL F4h
RTAH 0 0 0 SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL F5h
EIP - - 0 0 0 0 0 0 F8h

RTCC SPECIAL SPECIAL SPECIAL SPECIAL 0 0 SPECIAL SPECIAL F9h
RTCSS SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL FAh
RTCS 0 0 SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL FBh
RTCM 0 0 SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL FCh
RTCH SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL FDh

RTCD0 SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL FEh
RTCD1 SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL FFh

Most of the unique features of the high-speed microcontroller family are controlled by bits in SFRs
located in unused locations in the 8051 SFR map. This allows for increased functionality while
maintaining complete instruction set compatibility.

The descriptions for each bit indicates its read and write access as well as its state after a power-on reset.
Bits that are affected by a no-battery reset are also indicated. Note that many bits and registers are unique
to specific devices, and their functions will vary between different members of the high-speed
microcontroller family.

Port 0 (P0)

 7 6 5 4 3 2 1 0
SFR 80h P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0
 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

P0.7–P0.0
Bits 7–0

Port 0. This port functions as a multiplexed address/data bus during external memory
access, and as a generalpurpose I/O port on devices which incorporate internal program
memory. During external memory cycles, this port will contain the LSB of the address
when ALE is high, and data when ALE is low.

Stack Pointer (SP)

 7 6 5 4 3 2 1 0
SFR 81h SP.7 SP.6 SP.5 SP.4 SP.3 SP.2 SP.1 SP.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-1 RW-1 RW-1

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SP.7—SP.0
Bits 7–0

Stack Pointer. This stack pointer identifies the location where the stack will begin. The
stack pointer is incremented before every PUSH operation. This register defaults to 07h
after reset.

High-Speed Microcontroller User’s Guide

23 of 167

Data Pointer Low 0 (DPL)
 7 6 5 4 3 2 1 0

SFR 82h DPL.7 DPL.6 DPL.5 DPL.4 DPL.3 DPL.2 DPL.1 DPL.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

DPL.7–DPL.0
Bits 7–0

Data Pointer Low 0. This register is the low byte of the standard 80C32 16-bit data
pointer. DPL and DPH are used to point to non-scratchpad data RAM.

Data Pointer High 0 (DPH)

 7 6 5 4 3 2 1 0
SFR 83h DPH.7 DPH.6 DPH.5 DPH.4 DPH.3 DPH.2 DPH.1 DPH.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

DPH.7–DPH.0
Bits 7–0

Data Pointer High 0. This register is the high byte of the standard 80C32 16-bit data
pointer. DPL and DPH are used to point to non-scratchpad data RAM.

Data Pointer Low 1 (DPL1)

 7 6 5 4 3 2 1 0
SFR 84h DPL1.7 DPL1.6 DPL1.5 DPL1.4 DPL1.3 DPL1.2 DPL1.1 DL1H.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

DPL1.7—DPL1.0
Bits 7–0

Data Pointer Low 1. This register is the low byte of the auxiliary 16-bit data pointer.
When the SEL bit (DPS.0) is set, DPL1 and DPH1 are used in place of DPL and DPH
during DPTR operations.

Data Pointer High 1 (DPH1)

 7 6 5 4 3 2 1 0
SFR 85h DPH1.7 DPH1.6 DPH1.5 DPH1.4 DPH1.3 DPH1.2 DPH1.1 DPH1.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

DPH1.7—DPH1.0
Bits 7–0

Data Pointer High 1. This register is the high byte of the auxiliary 16-bit data pointer.
When the SEL bit (DPS.0) is set, DPL1 and DPH1 are used in place of DPL and DPH
during DPTR operations.

High-Speed Microcontroller User’s Guide

24 of 167

Data Pointer Select (DPS)
 7 6 5 4 3 2 1 0

SFR 86h 0 0 0 0 0 0 0 SEL
 R-0 R-0 R-0 R-0 R-0 R-0 R-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

Bits 7-1 Reserved. These bits will read 0.
SEL
Bit 0

Data Pointer Select. This bit selects the active data pointer.
0 = Instructions that use the DPTR will use DPL and DPH.
1= Instructions that use the DPTR will use DPL1 and DPH1.

Power Control (PCON)

 7 6 5 4 3 2 1 0
SFR 87h SMOD_0 SMOD0 — — GF1 GF0 STOP IDLE
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SMOD_0
Bit 7

Serial Port 0 Baud Rate Doubler Enable. This bit enables/disables the serial baud rate
doubling function for Serial Port 0.
0 = Serial Port 0 baud rate will be that defined by baud rate generation equation.
1 = Serial Port 0 baud rate will be double that defined by baud rate generation equation.

SMOD0
Bit 6

Framing Error-Detection Enable. This bit selects function of the SCON0.7 and
SCON1.7 bits.
0 = SCON0.7 and SCON1.7 control the SM0 function defined for the SCON0 and
SCON1 registers.
1 = SCON0.7 and SCON1.7 are converted to the Framing Error (FE) flag for the
respective Serial Port.

Bits 5-4 Reserved. Read data is indeterminate.
GF1
Bit 3

General-Purpose User Flag 1. This is a general-purpose flag for software control.

GF0
Bit 2

General-Purpose User Flag 0. This is a general-purpose flag for software control.

STOP
Bit 1

Stop Mode Select. Setting this bit will stop program execution, halt the CPU oscillator,
and internal timers, and place the CPU in a low-power mode. This bit will always be
read as a 0. Setting this bit while the Idle bit is set will place the device in an undefined
state.

IDLE
Bit 0

Idle Mode Select. Setting this bit will stop program execution but leave the CPU
oscillator, timers, serial ports, and interrupts active. This bit will always be read as a 0.

High-Speed Microcontroller User’s Guide

25 of 167

Timer/Counter Control (TCON)
 7 6 5 4 3 2 1 0

SFR 88h TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

TF1
Bit 7

Timer 1 Overflow Flag. This bit indicates when Timer 1 overflows its maximum count
as defined by the current mode. This bit can be cleared by software and is automatically
cleared when the CPU vectors to the Timer
1 interrupt service routine.
0 = No Timer 1 overflow has been detected.
1 = Timer 1 has overflowed its maximum count.

TR1
Bit 6

Timer 1 Run Control. This bit enables/disables the operation of Timer 1.
0 = Timer 1 is halted.
1 = Timer 1 is enabled.

TF0
Bit 5

Timer 0 Overflow Flag. This bit indicates when Timer 0 overflows its maximum count
as defined by the current mode. This bit can be cleared by software and is automatically
cleared when the CPU vectors to the Timer 0 interrupt service routine or by software.
0 = No Timer 0 overflow has been detected.
1 = Timer 0 has overflowed its maximum count.

TR0
Bit 4

Timer 0 Run Control. This bit enables/disables the operation of Timer 0.
0 = Timer 0 is halted.
1 = Timer 0 is enabled.

IE1
Bit 3

Interrupt 1 Edge Detect. This bit is set when an edge/level of the type defined by IT1
is detected. If IT1=1, this bit will remain set until cleared in software or the start of the
External Interrupt 1 service routine. If IT1=0, this bit will inversely reflect the state of
the INT1 pin.

IT1
Bit 2

Interrupt 1 Type Select. This bit selects whether the INT1 pin will detect edge or level
triggered interrupts.
0 = INT1 is level triggered.
1 = INT1 is edge triggered.

IE0
Bit 1

Interrupt 0 Edge Detect. This bit is set when an edge/level of the type defined by IT0
is detected. If IT0=1, this bit will remain set until cleared in software or the start of the
External Interrupt 0 service routine. If IT0=0, this bit will inversely reflect the state of
the INT0 pin

IT0
Bit 0

Interrupt 0 Type Select. This bit selects whether the INT0 pin will detect edge or level
triggered interrupts.
0 = INT0 is level triggered.
1 = INT0 is edge triggered.

High-Speed Microcontroller User’s Guide

26 of 167

Timer Mode Control (TMOD)
 7 6 5 4 3 2 1 0

SFR 89h GATE C/ T M1 M0 GATE C/ T M1 M0

 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

GATE
Bit 7

Timer 1 Gate Control. This bit enable/disables the ability of Timer 1 to increment.
0 = Timer 1 will clock when TR1=1, regardless of the state of INT1.
1 = Timer 1 will clock only when TR1=1 and INT1 =1.

C/T
Bit 6

Timer 1 Counter/Timer Select.
0 = Timer 1 is incremented by internal clocks.
1 = Timer 1 is incremented by pulses on T1 when TR1 (TCON.6) is 1.

M1, M0
Bits 5, 4

Timer 1 Mode Select. These bits select the operating mode of Timer 1.
M1 M0 Mode
0 0 Mode 0: 8 bits with 5-bit prescale
0 1 Mode 1: 16 bits
1 0 Mode 2: 8 bits with auto-reload
1 1 Mode 3: Timer 1 is halted, but holds its count

GATE
Bit 3

Timer 0 Gate Control. This bit enables/disables that ability of Timer 0 to increment.
0 = Timer 0 will clock when TR0=1, regardless of the state of INT0 .
1 = Timer 0 will clock only when TR0=1 and INT0 =1.

C/ T
Bit 2

Timer 0 Counter/Timer Select.
0 = Timer 0 incremented by internal clocks.
1 = Timer 0 is incremented by pulses on T0 when TR0 (TCON.4) is 1.

M1, M0
Bits 1, 0

Timer 0 Mode Select. These bits select the operating mode of Timer 0. When Timer 0
is in mode 3, TL0 is started/stopped by TR0 and TH0 is started/stopped by TR1. Run
control from Timer 1 is then provided via the Timer 1 mode selection.

M1 M0 Mode
0 0 Mode 0: 8 bits with 5-bit prescale
0 1 Mode 1: 16 bits
1 0 Mode 2: 8 bits with auto-reload
1 1 Mode 3: Timer 0 is two 8-bit counters.

Timer 0 LSB (TL0)

 7 6 5 4 3 2 1 0
SFR 8Ah TL0.7 TL0.6 TL0.5 TL0.4 TL0.3 TL0.2 TL0.1 TL0.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

TL0.7–TL0.0
Bits 7–0

Timer 0 LSB. This register contains the least significant byte of Timer 0.

High-Speed Microcontroller User’s Guide

27 of 167

Timer 1 LSB (TL1)
 7 6 5 4 3 2 1 0

SFR 8Bh TL1.7 TL1.6 TL1.5 TL1.4 TL1.3 TL1.2 TL1.1 TL1.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

TL1.7–TL1.0
Bits 7–0

Timer 1 LSB. This register contains the least significant byte of Timer 1.

Timer 0 MSB (TH0)

 7 6 5 4 3 2 1 0
SFR 8Ch TH0.7 TH0.6 TH0.5 TH0.4 TH0.3 TH0.2 TH0.1 TH0.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

TH0.7–TH0.0
Bits 7–0

Timer 0 MSB. This register contains the most significant byte of Timer 0.

Timer 1 MSB (TH1)

 7 6 5 4 3 2 1 0
SFR 8Dh TH1.7 TH1.6 TH1.5 TH1.4 TH1.3 TH1.2 TH1.1 TH1.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

TH1.7–TH1.0
Bits 7–0

Timer 1 MSB. This register contains the most significant byte of Timer 1.

High-Speed Microcontroller User’s Guide

28 of 167

Clock Control (CKCON)
 7 6 5 4 3 2 1 0

SFR 8Eh WD1 WD0 T2M T1M T0M MD2 MD1 MD0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-1

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset
WD1, WD0
Bits 7, 6

Watchdog Timer Mode Select 1-0. These bits determine the watchdog timer timeout
period. The timer divides the crystal frequency by a programmable value as shown
below. The divider value is expressed in clock (crystal) cycles. The use of PMM1 or
PMM2 will further divide the clock cycle count by either 16 or 256, respectively. Note
that the reset timeout is 512 clocks longer than the interrupt, regardless of whether the
interrupt is enabled.
WD1 WD0 Interrupt Divider Reset Divider
 0 0 217 217 + 512
 0 1 220 220 + 512
 1 0 223 223 + 512
 1 1 226 226 + 512

T2M
Bit 5

Timer 2 Clock Select. This bit controls the division of the system clock that drives
Timer 2. This bit has no effect when the timer is in baud rate generator or clock output
modes. Clearing this bit to 0 maintains 80C32 compatibility. This bit has no effect on
instruction cycle timing.
0 = Timer 2 uses a divide-by-12 of the crystal frequency.
1 = Timer 2 uses a divide-by-4 of the crystal frequency.

T1M
Bit 4

Timer 1 Clock Select. This bit controls the division of the system clock that drives
Timer 1. Clearing this bit to 0 maintains 80C32 compatibility. This bit has no effect on
instruction cycle timing.
0 = Timer 1 uses a divide-by-12 of the crystal frequency.
1 = Timer 1 uses a divide-by-4 of the crystal frequency.

T0M
Bit 3

Timer 0 Clock Select. This bit controls the division of the system clock that drives
Timer 0. Clearing this bit to 0 maintains 80C32 compatibility. This bit has no effect on
instruction cycle timing. On the DS8xC520 and Ds8xC530, Timer 0 will use a divide-
by-4 of the crystal frequency if Timer 0 is configured in mode 3, regardless of the
setting of this bit. This bit functions normally if Timer 0 is configured for any mode
other than mode 3.
0 = Timer 0 uses a divide-by-12 of the crystal frequency.
1 = Timer 0 uses a divide-by-4 of the crystal frequency.

MD2, MD1, MD0
Bits 2, 1, 0

Stretch MOVX Select 2-0. These bits select the time by which external MOVX cycles
are to be stretched. This allows slower memory or peripherals to be accessed without
using ports or manual software intervention. The RD or WR strobe will be stretched by
the specified interval, which will be transparent to the software except for the increased
time to execute to MOVX instruction. All internal MOVX instructions on devices
containing MOVX SRAM are performed at the two-machine cycle rate.
MD2 MD1 MD0 Stretch Value MOVX Duration
0 0 0 0 2 Machine Cycles
0 0 1 1 3 Machine Cycles (reset default)
0 1 0 2 4 Machine Cycles
0 1 1 3 5 Machine Cycles
1 0 0 4 6 Machine Cycles
1 0 1 5 7 Machine Cycles
1 1 0 6 8 Machine Cycles
1 1 1 7 9 Machine Cycles

High-Speed Microcontroller User’s Guide

29 of 167

Port 1 (P1)
 7 6 5 4 3 2 1 0

SFR 90h P1.7
INT5

P1.6
INT4

P1.5

INT3
P1.4
INT2

P1.3
TXD1

P1.2
RXD1

P1.1
T2EX

P1.0
T2

 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

P1.7–P1.0
Bits 7–0

General-Purpose I/O Port 1. This register functions as a general purpose I/O port. In
addition, all the pins have an alternative function listed below. P1.2-7 contain functions
that are new to the 80C32 architecture. The Timer 2 functions on pins P1.1-0 are
available on the 80C32, but not the 80C31. Each of the functions is controlled by
several other SFRs. The associated Port 1 latch bit must contain a logic one before the
pin can be used in its alternate function capacity.

INT5
Bit 7

External Interrupt 5. A falling edge on this pin will cause an external interrupt 5 if
enabled.

INT4
Bit 6

External Interrupt 4. A rising edge on this pin will cause an external interrupt 4 if
enabled.

INT3
Bit 5

External Interrupt 3. A falling edge on this pin will cause an external interrupt 3 if
enabled.

INT2
Bit 4

External Interrupt 2. A rising edge on this pin will cause an external interrupt 2 if
enabled.

TXD1
Bit 3

Serial Port 1 Transmit. This pin transmits the serial port 1 data in serial port modes 1,
2, 3 and emits the synchronizing clock in serial port mode 0.

RXD1
Bit 2

Serial Port 1 Receive. This pin receives the serial port 1 data in serial port modes 1, 2,
3 and is a bi-directional data transfer pin in serial port mode 0.

T2EX
Bit 1

Timer 2 Capture/Reload Trigger. A 1-to-0 transition on this pin will cause the value
in the T2 registers to be transferred into the capture registers if enabled by EXEN2
(T2CON.3). When in auto–reload mode, a 1-to-0 transition on this pin will reload the
timer 2 registers with the value in RCAP2L and RCAP2H if enabled by EXEN2
(T2CON.3).

T2
Bit 0

Timer 2 External Input. A 1-to-0 transition on this pin will cause timer 2 increment or
decrement depending on the timer configuration.

High-Speed Microcontroller User’s Guide

30 of 167

External Interrupt Flag (EXIF)
 7 6 5 4 3 2 1 0

SFR 91h IE5 IE4 IE3 IE2 XT/ RG RGMD RGSL BGS

 RW-0 RW-0 RW-0 RW-0 RW-* R-* RW-* RT-0

R=Unrestricted Read, W=Unrestricted Write, T=Timed Access Write Only-n=Value after Reset,
*=See description

IE5
Bit 7

External Interrupt 5 Flag. This bit will be set when a falling edge is detected on INT5 .
This bit must be cleared manually by software. Setting this bit in software will cause an
interrupt if enabled.

IE4
Bit 6

External Interrupt 4 Flag. This bit will be set when a rising edge is detected on INT4.
This bit must be cleared manually by software. Setting this bit in software will cause an
interrupt if enabled.

IE3
Bit 5

External Interrupt 3 Flag. This bit will be set when a falling edge is detected on INT3 .
This bit must be cleared manually by software. Setting this bit in software will cause an
interrupt if enabled.

IE2
Bit 4

External Interrupt 2 Flag. This bit will be set when a rising edge is detected on INT2.
This bit must be cleared manually by software. Setting this bit in software will cause an
interrupt if enabled.

XT/ RG
Bit 3

Crystal/Ring Source Select. This bit selects the crystal oscillator or ring oscillator as
the desired clock source. This bit will be the inverse of RGMD except during the crystal
warm-up period when executing a ring oscillator resume from Stop. XTUP (STATUS.4)
must be set to 1 and XTOFF (PMR.3) must be cleared to 0 before this bit can be set.
Attempts to modify this bit when these conditions are not met will be ignored. This bit
must be cleared before XTOFF can be set to 1. This bit is set to 1 after a power-on reset,
and unchanged by all other forms of reset. This bit is not used on the DS80C310 or
DS80C320 and will be 1 when read.
0 = The ring oscillator is selected as the clock source. This setting is unaffected by
XTUP (STATUS.4) and XTOFF (PMR.3).
1 = The crystal oscillator is selected as the clock source. This setting is invalid unless
XTUP=1 and XTOFF=0.

RGMD
Bit 2

Ring Mode Status. This bit indicates the current clock source for the device. This
bit is cleared to 0 after a power-on reset, and unchanged by all other forms of reset.
The state of this bit will be undefined on devices that do not incorporate a ring
oscillator.
0 = Device is operating from the external crystal or oscillator.
1 = Device is operating from the ring oscillator.

RGSL
Bit 1

Ring Oscillator Select. This bit selects the clock source following a resume from Stop
mode. Using the ring oscillator to resume from Stop mode allows almost instantaneous
startup. This bit is cleared to 0 after a power-on reset, and unchanged by all other forms
of reset. The state of this bit will be undefined on devices that do not incorporate a ring
oscillator.
0 = The device will hold operation until the crystal oscillator has warmed-up.
1 = The device will begin operating from the ring oscillator, and when the crystal warm-
up is complete, will switch to the clock source indicated by the XT/ RG bit.

High-Speed Microcontroller User’s Guide

31 of 167

BGS
Bit 0

Bandgap Select. This bit enables/disables the bandgap reference during Stop mode.
Disabling the bandgap reference provides significant power savings in Stop mode, but
sacrifices the ability to perform a power-fail interrupt or power-fail reset while stopped.
This bit can only be modified with a Timed Access procedure. The state of this bit will
be undefined on devices that do not incorporate a bandgap reference.
0 = The bandgap reference is disabled in Stop mode but will function during normal
operation. VCC must fall below 0.4V to cause a reset when this bit is 0.
1 = The bandgap reference will operate in Stop mode.

RTC Trim Register (TRIM)

 7 6 5 4 3 2 1 0

SFR 96h E4K X12/ 6 TRM2 TRM2 TRM1 TRM1 TRM0 TRM0

 RT-* RT-* RT-* RT-* RT-* RT-* RT-* RT-*
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, *=See description

E4K
Bit 7

External 4096Hz RTC Signal Enable. This bit enables the output of a 4096Hz
signal on pin P1.7 derived from the RTC. Setting this bit overrides any other
function of the pin. It is used for adjusting the frequency of the 32.768kHz RTC
crystal oscillator using the trim bits. This bit is cleared to 0 after any reset,
including a no-battery reset.
0 = Calibration function disabled. P1.7 pin will function per the normal pin description.
1 = 4096Hz signal output on P1.7

X12/ 6
Bit 6

RTC Crystal Capacitance Select. This bit selects the internal loading capacitance of
the RTC crystal amplifier. This bit is set to 1 after a no-battery reset, and unchanged by
all other forms of reset.
0 = RTC loading is set for 6pF crystal.
1 = RTC loading is set for 12.5pF crystal.

TRM2
Bit 5

RTC Trim Bit 2. This bit controls the relative adjustment of the RTC internal
capacitance. It is used to calibrate the RTC oscillator frequency. This bit is set to 1 after
a no-battery reset, and unchanged by all other forms of reset.

TRM2
Bit 4

RTC Inverted Trim Bit 2. This bit controls the relative adjustment of the RTC internal
capacitance. It is used to calibrate the RTC oscillator frequency. This bit is set to 1 after
a no-battery reset, and unchanged by all other forms of reset.

TRM1
Bit 3

RTC Trim Bit 1. This bit controls the relative adjustment of the RTC internal
capacitance. It is used to calibrate the RTC oscillator frequency. This bit is set to 0 after
a no-battery reset, and unchanged by all other forms of reset.

TRM1
Bit 2

RTC Inverted Trim Bit 1. This bit must always be set to the complement of the TRM1
bit. Incorrectly writing this bit will default bits TRIM.7, TRIM.5-0 to their no-battery
reset value. This bit is cleared to 1 after a no-battery reset, and unchanged by all other
forms of reset.

TRM0
Bit 1

RTC Trim Bit 0. This bit controls the relative adjustment of the RTC internal
capacitance. It is used to calibrate the RTC oscillator frequency. This bit is set to 0 after
a no-battery reset, and unchanged by all other forms of reset.

TRM0
Bit 0

RTC Inverted Trim Bit 0. This bit must always be set to the complement of the TRM0
bit. Incorrectly writing this bit will default bits TRIM.7, TRIM.5-0 to their no-battery
reset value. This bit is cleared to 1 after a no-battery reset, and unchanged by all other
forms of reset.

High-Speed Microcontroller User’s Guide

32 of 167

Serial Port 0 Control (SCON0)
 7 6 5 4 3 2 1 0

SFR 98h SM0/FE_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SM0, SM1, SM2
Bits 7, 6, 5

Serial Port Mode, These bits control the mode of serial port 0. In addition the SM0 and
SM2_0 bits have secondary functions as shown below.

SM0 SM1 SM2 MODE FUNCTION LENGTH PERIOD

0 0 0 0 Synchronous 8 bits 12 tCLK

0 0 1 0 Synchronous 8 bits 4 tCLK

0 1 X 1 Asynchronous 10 bits Timer 1 or 2 baud rate equation

1 0 0 2 Asynchronous 11 bits
64 tCLK (SMOD=0)

32 tCLK (SMOD=1)

1 0 1 1 Asynchronous w/ Multiprocessor
communication 11 bits

64 tCLK (SMOD=0)

32 tCLK (SMOD=1)

1 1 0 3 Asynchronous 11 bits Timer 1 or 2 baud rate equation

1 1 1 3 Asynchronous w/ Multiprocessor
communication 11 bits Timer 1 or 2 baud rate equation

SM0/FE_0
Bit 7

Framing Error Flag. When SMOD0 (PCON.6)=0, this bit (SM0) is used to select the
mode for serial port 0. When SMOD0 (PCON.6)=1, this bit (FE) will be set upon
detection of an invalid stop bit. When used as FE, this bit must be cleared in software.
Once the SMOD0 bit is set, modifications to this bit will not affect the serial port mode
settings. Although accessed from the same register, internally the data for bits SM0 and
FE are stored in different locations.

SM1_0
Bit 6

No alternate function.

SM2_0
Bit 5

Multiple CPU Communications. The function of this bit is dependent on the serial
port 0 mode.
Mode 0: Selects 12 tCLK or 4 tCLK period for synchronous serial port 0 data transfers.
Mode 1: When set, reception is ignored (RI_0 is not set) if invalid stop bit received.
Mode 2/3: When this bit is set, multiprocessor communications are enabled in modes 2
and 3. This will prevent the RI_0 bit from being set, and an interrupt being asserted, if
the 9th bit received is not 1.

REN_0
Bit 4

Receiver Enable. This bit enable/disables the serial port 0 receiver shift register.
0 = Serial port 0 reception disabled.
1= Serial port 0 receiver enabled (modes 1, 2, 3). Initiate synchronous reception (mode
0).

TB8_0
Bit 3

9th Transmission Bit State. This bit defines the state of the 9th transmission bit in
serial port 0 modes 2 and 3.

High-Speed Microcontroller User’s Guide

33 of 167

RB8_0
Bit 2

9th Received Bit State. This bit identifies that state of the 9th reception bit of received
data in serial port 0 modes 2 and 3. In serial port mode 1, when SM2_0=0, RB8_0 is the
state of the stop bit. RB8_0 is not used in mode 0.

TI_0
Bit 1

Transmitter Interrupt Flag. This bit indicates that data in the serial port 0 buffer has
been completely shifted out. In serial port mode 0, TI_0 is set at the end of the 8th data
bit. In all other modes, this bit is set at the end of the last data bit. This bit must be
manually cleared by software.

RI_0
Bit 0

Receiver Interrupt Flag. This bit indicates that a byte of data has been received in the
serial port 0 buffer. In serial port mode 0, RI_0 is set at the end of the 8th bit. In serial
port mode 1, RI_0 is set after the last sample of the incoming stop bit subject to the state
of SM2_0. In modes 2 and 3, RI_0 is set after the last sample of RB8_0. This bit must
be manually cleared by software.

Serial Data Buffer 0 (SBUF0)

 7 6 5 4 3 2 1 0
SFR 99h SBUF0.7 SBUF0.6 SBUF0.5 SBUF0.4 SBUF0.3 SBUF0.2 SBUF0.1 SBUF0.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SBUF0.7—SBUF0.0
Bits 7–0

Serial Data Buffer 0. Data for serial port 0 is read from or written to this location. The
serial transmit and receive buffers are separate registers, but both are addressed at this
location.

Port 2 (P2)

 7 6 5 4 3 2 1 0
SFR A0h P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0
 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

P2.7–P2.0
Bits 7–0

Port 2. This port functions as an address bus during external memory access, and as a
general-purpose I/O port on devices that incorporate internal program memory. During
external memory cycles, this port will contain the MSB of the address. The Port 2 latch
does not control general-purpose I/O pins on the DS80C310 and DS80C320, but is still
used to hold the address MSB during register-indirect data memory operations such as
MOVX A, @R1.

High-Speed Microcontroller User’s Guide

34 of 167

Interrupt Enable (IE)
 7 6 5 4 3 2 1 0

SFR A8h EA ES1 ET2 ES0 ET1 EX1 ET0 EX0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

EA
Bit 7

Global Interrupt Enable. This bit controls the global masking of all interrupts except
Power-Fail Interrupt, which is enabled by the EPFI bit (WDCON.5).
0 = Disable all interrupt sources. This bit overrides individual interrupt mask settings.
1 = Enable all individual interrupt masks. Individual interrupts will occur if enabled.

ES1
Bit 6

Enable Serial Port 1 Interrupt. This bit controls the masking of the serial port 1
interrupt.
0 = Disable all serial port 1 interrupts.
1 = Enable interrupt requests generated by the RI_1 (SCON1.0) or TI_1 (SCON1.1)
flags.

ET2
Bit 5

Enable Timer 2 Interrupt. This bit controls the masking of the Timer 2 interrupt.
0 = Disable all Timer 2 interrupts.
1 = Enable interrupt requests generated by the TF2 flag (T2CON.7).

ES0
Bit 4

Enable Serial Port 0 Interrupt. This bit controls the masking of the serial port 0
interrupt.
0 = Disable all serial port 0 interrupts.
1 = Enable interrupt requests generated by the RI_0 (SCON0.0) or TI_0 (SCON0.1)
flags.

ET1
Bit 3

Enable Timer 1 Interrupt. This bit controls the masking of the Timer 1 interrupt.
0 = Disable all Timer 1 interrupts.
1 = Enable all interrupt requests generated by the TF1 flag (TCON.7).

EX1
Bit 2

Enable External Interrupt 1. This bit controls the masking of external interrupt 1.
0 = Disable external interrupt 1.
1 = Enable all interrupt requests generated by the INT1 pin.

ET0
Bit 1

Enable Timer 0 Interrupt. This bit controls the masking of the Timer 0 interrupt.
0 = Disable all Timer 0 interrupts.
1 = Enable all interrupt requests generated by the TF0 flag (TCON.5).

EX0
Bit 0

Enable External Interrupt 0. This bit controls the masking of external interrupt 0.
0 = Disable external interrupt 0.
1 = Enable all interrupt requests generated by the INT0 pin.

Slave Address Register 0 (SADDR0)

 7 6 5 4 3 2 1 0
SFR A9h SADDR0.7 SADDR0.6 SADDR0.5 SADDR0.4 SADDR0.3 SADDR0.2 SADDR0.1 SADDR0.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SADDR0.7–
SADDR0.0
Bits 7–0

Slave Address Register 0. This register is programmed with the given or broadcast
address assigned to serial port 0.

High-Speed Microcontroller User’s Guide

35 of 167

Slave Address Register 1 (SADDR1)
 7 6 5 4 3 2 1 0

SFR AAh SADDR1.7 SADDR1.6 SADDR1.5 SADDR1.4 SADDR1.3 SADDR1.2 SADDR1.1 SADDR1.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SADDR1.7–
SADDR1.0
Bits 7–0

Slave Address Register 1. This register is programmed with the given or broadcast
address assigned to serial port 1.

Port 3 (P3)
 7 6 5 4 3 2 1 0

SFR B0h P3.7
RD

P3.6
WR

P3.5
T1

P3.4
T0

P3.3
1INT

P3.2
0INT

P3.1
TXD0

P3.0
RXD0

 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

P3.7–P3.0
Bits 7-0

General-Purpose I/O Port 3. This register functions as a general-purpose I/O port. In
addition, all the pins have an alternative function listed below. Each of the functions is
controlled by several other SFRs. The associated Port 3 latch bit must contain a logic
one before the pin can be used in its alternate function capacity.

RD
Bit 7

External Data Memory Read Strobe. This pin provides an active-low read strobe to
an external memory device.

WR
Bit 6

External Data Memory Write Strobe. This pin provides an active-low write strobe to
an external memory device.

T1
Bit 5

Timer/Counter External Input. A 1-to-0 transition on this pin will increment Timer 1.

T0
Bit 4

Counter External Input. A 1-to-0 transition on this pin will increment Timer 0.

INT1
Bit 3

External Interrupt 1. A falling edge/low level on this pin will cause an external
interrupt 1 if enabled.

INT0
Bit 2

External Interrupt 0. A falling edge/low level on this pin will cause an external
interrupt 0 if enabled.

TXD0
Bit 1

Serial Port 0 Transmit. This pin transmits the serial port 0 data in serial port modes 1,
2, 3 and emits the synchronizing clock in serial port mode 0.

RXD0
Bit 0

Serial Port 0 Receive. This pin receives the serial port 0 data in serial port modes 1, 2,
3 and is a bidirectional data transfer pin in serial port mode 0.

High-Speed Microcontroller User’s Guide

36 of 167

Interrupt Priority (IP)
 7 6 5 4 3 2 1 0

SFR B8h — PS1 PT2 PS0 PT1 PX1 PT0 PX0
 — RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

Bit 7 Reserved. Read data is indeterminate.
PS1
Bit 6

Serial Port 1 Interrupt. This bit controls the priority of the serial port 1 interrupt.
0 = Serial port 1 priority is determined by the natural priority order.
1 = Serial port 1 is a high priority interrupt.

PT2
Bit 5

Timer 2 Interrupt. This bit controls the priority of Timer 2 interrupt.
0 = Timer 2 is determined by the natural priority order.
1 = Timer 2 is a high priority interrupt.

PS0
Bit 4

Serial Port 0 Interrupt. This bit controls the priority of the serial port 0 interrupt.
0 = Serial port 0 priority is determined by the natural priority order.
1 = Serial port 0 is a high priority interrupt.

PT1
Bit 3

Timer 1 Interrupt. This bit controls the priority of Timer 1 interrupt.
0 = Timer 1 is determined by the natural priority order.
1 = Timer 1 is a high priority interrupt.

PX1
Bit 2

External Interrupt 1. This bit controls the priority of external interrupt 1.
0 = External interrupt 1 is determined by the natural priority order.
1 = External interrupt 1 is a high priority interrupt.

PT0
Bit 1

Timer 0 Interrupt. This bit controls the priority of Timer 0 interrupt.
0 = Timer 0 is determined by the natural priority order.
1 = Timer 0 is a high priority interrupt.

PX0
Bit 0

External Interrupt 0. This bit controls the priority of external interrupt 0.
0 = External interrupt 0 is determined by the natural priority order.
1 = External interrupt 0 is a high priority interrupt.

Slave Address Mask Enable Register 0 (SADEN0)

 7 6 5 4 3 2 1 0
SFR B9h SADEN0.7 SADEN0.6 SADEN0.5 SADEN0.4 SADEN0.3 SADEN0.2 SADEN0.1 SADEN0.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SADEN0.7–
SADEN0.0
Bits 7–0

Slave Address Mask Enable Register 0. This register functions as a mask when
comparing serial port 0 addresses for automatic address recognition. When a bit in this
register is set, the corresponding bit location in the SADDR0 register will be exactly
compared with the incoming serial port 0 data to determine if a receiver interrupt should
be generated. When a bit in this register is cleared, the corresponding bit in the
SADDR0 register becomes a don’t care and is not compared against the incoming data.
All incoming data will generate a receiver interrupt when this register is cleared.

High-Speed Microcontroller User’s Guide

37 of 167

Slave Address Mask Enable Register 1 (SADEN1)
 7 6 5 4 3 2 1 0

SFR BAh SADEN1.7 SADEN1.6 SADEN1.5 SADEN1.4 SADEN1.3 SADEN1.2 SADEN1.1 SADEN1.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SADEN1.7–
SADEN1.0
Bits 7–0

Slave Address Mask Enable Register 1. This register functions as a mask when
comparing serial port 1 addresses for automatic address recognition. When a bit in this
register is set, the corresponding bit location in the SADDR1 register will be exactly
compared with the incoming serial port 1 data to determine if a receiver interrupt should
be generated. When a bit in this register is cleared, the corresponding bit in the
SADDR1 register becomes a don’t care and is not compared against the incoming data.
All incoming data will generate a receiver interrupt when this register is cleared.

Serial Port Control (SCON1)

 7 6 5 4 3 2 1 0
SFR C0h SM0/FE_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TI_1 RI_1
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SM0, SM1, SM2
Bits 7, 6, 5

Serial Port 1 Mode. These bits control the mode of serial port 1 as shown below. In
addition, the SM0 and SM2 bits have secondary functions as shown below.

SM0 SM1 SM2 MODE FUNCTION LENGTH PERIOD

0 0 0 0 Synchronous 8 bits 12tCLK

0 0 1 0 Synchronous 8 bits 4tCLK

0 1 X 1 Asynchronous 10 bits Timer 1 baud rate equation

1 0 0 2 Asynchronous 11 bits 64tCLK (SMOD=0)
32tCLK (SMOD=1)

1 0 1 2 Asynchronous w/ Multiprocessor
communication 11 bits 64tCLK (SMOD=0)

32tCLK (SMOD=1)

1 1 0 3 Asynchronous 11 bits Timer 1 baud rate equation

1 1 1 3 Asynchronous w/ Multiprocessor
communication 11 bits Timer 1 baud rate equation

SM0/FE_1
Bit 7

Framing Error Flag. When SMOD0 (PCON.6)=0, this bit (SM0) is used to select the
mode for serial port 1. When SMOD0 (PCON.6)=1, this bit (FE) will be set upon
detection of an invalid stop bit. When used as FE, this bit must be cleared in software.
Once the SMOD0 bit is set, modifications to this bit will not affect the serial port mode
settings. Although accessed from the same register, internally the data for bits SM0 and
FE are stored in different locations.

SM1_1
Bit 6

No alternate function.

SM2_1
Bit 5

Multiple CPU Communications. The function of this bit is dependent on the serial
port 1 mode.
Mode 0: Selects 12 tCLK or 4tCLK period for synchronous port 1 data transfers.

High-Speed Microcontroller User’s Guide

38 of 167

Mode 1: When this bit is set, reception is ignored (RI_1) is not set) if invalid stop bit
received.
Mode 2/3: when this bit is set, multiprocessor communications are enabled in mode 2
and 3. This will prevent RI_1 from being set, and an interrupt being asserted, if the 9th
bit received is not 1.

REN_1
Bit 4

Receive Enable. This bit enables/disables the serial port 1 receiver shift register.
0 = Serial port 1 reception disabled.
1 = Serial port 1 receiver enabled (modes 1, 2, 3). Initiate synchronous reception (mode
0).

TB8_1
Bit 3

9th Transmission Bit State. This bit defines the state of the 9th transmission bit in
serial port 1 modes 2 and 3.

RB8_1
Bit 2

9th Received Bit State. This bit identifies the state for the 9th reception bit received
data in serial pot 1 modes 2 and 3. In serial port mode 1, when SM2_1=0, RB8_1 is the
state of the stop bit. RB8_1 is not used in mode 0.

TI_1
Bit 1

Transmitter Interrupt Flag. This bit indicates that data in the serial port 1 buffer has
been completely shifted out. In serial port mode 0, TI_1 is set at the end of the 8th data
bit. In all other modes, this bit is set at the end of the last data bit. This bit must be
manually cleared by software.

RI_1
Bit 0

Transmitter Interrupt Flag. This bit indicates that a byte of data has been received in
the serial port 1 buffer. In serial port mode 1, RI_1 is set at the end of the 8th bit. In
serial port mode 1, RI_1 is set after the last sample of the incoming stop bit subject to
the state of SM2_1. In modes 2 and 3, RI_1 is set after the last sample of RB8_1. This
bit must be manually cleared by software.

Serial Data Buffer 1 (SBUF1)

 7 6 5 4 3 2 1 0
SFR C1h SBUF1.7 SBUF1.6 SBUF1.5 SBUF1.4 SBUF1.3 SBUF1.2 SBUF1.1 SBUF1.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SBUF1.7–SBUF1.0
Bits 7–0

Serial Data Buffer 1. Data for serial port 1 is read from or written to this location. The
serial transmit and receive buffers are separate registers, but both are addressed at this
location.

High-Speed Microcontroller User’s Guide

39 of 167

ROM Size Select (ROMSIZE)
 7 6 5 4 3 2 1 0

SFR C2h — — — — — RS2 RS1 RS0
 RT-1 RT-0 RT-1

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

Bits 7–3 These bits are reserved. Read data is indeterminate.
RS2, RS1, RS0
Bits 2, 1, 0

ROM Size Select 2-0. This register is used to select the maximum on-chip decoded
address for ROM. Care must be taken that the memory location of the current program
counter will be valid both before and after modification. These bits can only be
modified using a timed access procedure. The EA pin will override the function of these
bits when asserted, forcing the device to access external program memory only.
Configuring this register to a setting that exceeds the maximum amount of internal
memory may corrupt device operation. These bits will default on reset to the maximum
amount of internal program memory (i.e., 16kB for DS87C520).

RS2 RS1 RS0 MAXIMUM ON-CHIP ROM ADDRESS

0 0 0 0kB/Disable on-chip ROM

0 0 1 1kB/03FFh

0 1 0 2kB/07FFh

0 1 1 4kB/0FFFh

1 0 0 8kB/1FFFh

1 0 1 16kB/3FFFh

1 1 0 132kB/7FFFh

1 1 1 64kB/FFFFh

High-Speed Microcontroller User’s Guide

40 of 167

Power Management Register (PMR)
 7 6 5 4 3 2 1 0

SFR C4h CD1 CD0 SWB — XTOFF ALEOFF DME1 DME0
 RW-0 RW-1 RW-0 RW*-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, *=See description

CD1, CD0
Bits 7, 6

Clock Divide Control 1-0. These bits select the number of crystal oscillator clocks
required to generate one machine cycle. Switching between modes requires a transition
through the divide-by-4 mode (CD1, CD0=01). For example, to go from 64 to 1024
clocks per cycle the device must first go from 64 to 4 clocks per cycle, and then from 4
to 1024 clocks per cycle. Attempts to perform an invalid transition will be ignored. The
setting of these bits will affect the timers and serial ports as shown below.

 OSC

CYCLES
PER MACH.

CYCLE

OSC CYCLES PER
TIMER 2 CLK,

BAUD RATE GEN.

OSC CYCLES PER
SERIAL PORT
CLK, MODE 0

OSC CYCLES PER
TIMER 2 CLK,

BAUD RATE GEN.

OSC CYCLES PER
SERIAL PORT CLK,

MODE 2

CD1 CD0 TxM=0 TxM=1 T2M=0 T2M=1 SM2=0 SM2=1 SDMO=0 SMOD=1

0 0 RESERVED

0 1 4 12 4 2 2 12 4 64 32

1 0 64 192 64 32 32 194 64 1024 512

1 1 1024 3072 1024 512 512 3072 1024 16384 8192

SWB
Bit 5

Switchback Enable. This bit allows an enabled external interrupt or serial port activity
to force the Clock Divide Control bits to the divide-by-4 state (01). Upon internal
acknowledgement of an external interrupt, the device will switch modes at the start of
the jump to the interrupt service routine. Note that this means that an external interrupt
must actually be recognized (i.e., be enabled and not masked by higher priority
interrupts) for the switchback to occur. For serial port reception, the switch occurs at the
start of the instructions following the falling edge of the start bit.

Bit 4 Reserved. When modifying the PMR register, software must write a 0 to this bit. Read
data will be indeterminate.

XTOFF
Bit 3

Crystal Oscillator Disable. This bit disables the CPU crystal oscillator. It can only be
set to 1 while running the ring oscillator (XT/ RG =0). Clearing this bit restarts the
crystal amplifier, reset the crystal warm-up counter, and after 65,536 external crystal
cycles the XTUP bit will be set.
0 = Crystal oscillator is enabled.
1 = Crystal oscillator is disabled.

ALEOFF
Bit 2

ALE Disable. This bit disables the expression of the ALE signal on the device pin
during all on-board program and data memory accesses. External memory accesses will
automatically enable ALE independent of ALEOFF.
0 = ALE expression is enabled.
1 = ALE expression is disabled.

DME1, DME0
Bits 1, 0

Data Memory Enable 1-0. These bits determine the functional relationship of the first
1024 bytes of data memory. Three memory configurations are supported to allow either
external data memory access through the expanded multiplexed address/data bus of
Ports 0 and Port 2, internal SRAM data memory access, or read-only access to EPROM

High-Speed Microcontroller User’s Guide

41 of 167

programming information. Note these bits are cleared after a reset, so access to the
internal SRAM is prohibited until these bits are modified.

DME1 DME0 DATA MEMORY

ADDRESS RANGE MEMORY ACCESS

0 0 0000h – FFFFh External Data Memory (default)

0 1 0000h – 03FFh
0400h - FFFFh

Internal SRAM data Memory
External Data Memory

1 0 Reserved Reserved

1 1

0000h – 03FFh
0400h – FFFBh

FFFCh
FFFDh - FFFFh

Internal SRAM data Memory
Reserved
System Control Byte (EPROM Read Only)
Reserved

 The System Control Byte is a special EPROM location that contains nonvolatile system

information. This byte is set during EPROM programming and is not alterable by
software. This register can only be read when both Data Memory Enable bits are set.
The user must be sure that this location is programmed by a special programming utility
supplied with the programming device.

System Control Byte Description (EPROM; FFFCh)
Bits 7–3 Reserved. These bits will read 1. These bits should be set to 1 during EPROM

programming.
LB3, LB2, LB1
Bits 2, 1, 0

EPROM Program Lock Bit 3 to 1. These bits show the status of the firmware security
of the on-board EPROM. Bit combinations other than shown are illegal.

LB3 LB2 LB1 EPROM PROTECTION MODE

0 0 0 Unconditional verification, full external operation. Additional EPROM programming allowed withou
full device erasure.

0 0 1
Verification using encryption, execution of external MOVC instruction on internal program memory
is disabled. All other program execution and data memory access allowed. Device must be fully erase
before EPROM can be programmed again.

0 1 1
Verification disabled, execution of external MOVC instruction on internal program memory is
disabled, and access to internal MOVX data from external program is prohibited. All other
program execution and data memory access allowed. Device must be fully erased before EPROM
can be programmed again.

1 1 1 Verification disabled, external program execution prohibited. Device must be fully erased before
EPROM can be programmed again.

High-Speed Microcontroller User’s Guide

42 of 167

Status Register (STATUS)
 7 6 5 4 3 2 1 0

SFR C5 PIP HIP LIP XTUP SPTA1 SPRA1 SPTA0 SPRA0
 R-0 R-0 R-0 R-0* R-0 R-0 R-0 R-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, *=See description

PIP
Bit 7

Power-Fail Priority Interrupt Status. When set, this bit indicates that software is
currently servicing a power-fail interrupt. It is cleared when the program executes the
corresponding RETI instruction. This bit is indeterminate on devices that do not
incorporate the power-fail interrupt.

HIP
Bit 6

High Priority Interrupt Status. When set, this bit indicates that software is currently
servicing a high priority interrupt. It is cleared when the program executes the
corresponding RETI instruction.

LIP
Bit 5

Low Priority Interrupt Status. When set, this bit indicates that software is currently
servicing a low priority interrupt. It is cleared when the program executes the
corresponding RETI instruction.

XTUP
Bit 4

Crystal Oscillator Warm-up Status. This bit indicates whether the CPU crystal
oscillator has completed the 65,536 cycle warm-up and is ready to operate from the
external crystal or oscillator. This bit is cleared each time the crystal oscillator is
restarted following an exit from Stop mode or the XTOFF bit (PMR.3) is set. While
cleared, this bit prevents software from setting the XT/ RG bit (EXIF.3) to enable
operation from the crystal. Note that XTUP differs from the RGMD bit (EXIF.2) in that
XTUP shows the status of the crystal while RGMD shows the current clock source. This
bit is set to 1 following a power–on reset, but is unaffected by other forms of reset.

SPTA1
Bit 3

Serial Port 1 Transmit Activity Monitor. When set, this bit indicates that data is
currently being transmitted by serial port 1. It is cleared when the internal hardware sets
the TI_1 bit. Do not alter the Clock Divide Control bits (PMR.7-6) while this bit is set
or serial port data may be lost.
On the DS8xC520 and DS8xC530, this bit does not accurately indicate serial port 1
transmit activity if a character is written to SBUF1 while TI_1 is high. If software
intends to poll this bit, first clear the TI_1 bit before writing each character to SBUF1.

SPRA1
Bit 2

Serial Port 1 Receive Activity Monitor. When set, this bit indicates that data is
currently being received by serial port 1. It is cleared when the internal hardware sets
the RI_1 bit. Do not alter the Clock Divide Control bits (PMR.7–6) while this bit is set
or serial port data may be lost.

SPTA0
Bit 1

Serial Port 0 Transmit Activity Monitor. When set, this bit indicates that data is
currently being transmitted by serial port 0. It is cleared when the internal hardware sets
the TI_1 bit. Do not alter the Clock Divide Control bits (PMR.7-6) while this bit is set
or serial port data may be lost.
On the DS8xC520 and DS8xC530, this bit does not accurately indicate serial port 0
transmit activity if a character is written to SBUF0 while TI_0 is high. If software
intends to poll this bit, first clear the TI_0 bit before writing each character to SBUF0.

SPRA0
Bit 0

Serial Port 0 Receive Activity Monitor. When set, this bit indicates that data is
currently being received by serial port 0. It is cleared when the internal hardware sets
the RI_1 bit. Do not alter the Clock Divide Control bits (PMR.7-6) while this bit is set
or serial port data may be lost.

High-Speed Microcontroller User’s Guide

43 of 167

Timed Access Register (TA)
 7 6 5 4 3 2 1 0

SFR C7h TA.7 TA.6 TA.5 TA.4 TA.3 TA.2 TA.1 TA.0
 W-1 W-1 W-1 W-1 W-1 W-1 W-1 W-1

W=Unrestricted Write, -n=Value after Reset

TA.7–TA.0
Bits 7–0

Timed Access. Correctly accessing this register permits modification of timed-access
protected bits. Write AAh to this register first, followed within 3 cycles by writing 55h.
Timed-access protected bits can then be modified for a period of 3 cycles measured
from the writing of the 55h.

Timer 2 Control (T2CON)
 7 6 5 4 3 2 1 0

SFR C8h TF2 EXF2 RCLK TCLK EXEN2 TR2 C/ T2 CP/RL2

 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

TF2
Bit 7

Timer 2 Overflow Flag. This flag will be set when Timer 2 overflows from FFFFh to
0000h, or the count equal to the capture register in down count mode. It must be cleared
by software. TF2 will only be set if RCLK and TCLK are both cleared to 0.

EXF2
Bit 6

Timer 2 External Flag. A negative transition on the T2EX pin (P1.1) or timer 2
underflow/overflow will cause this flag to set based on the CP/RL2 (T2CON.0),
EXEN2 (T2CON.3), and DCEN (T2MOD.0) bits. If set by a negative transition, this
flag must be cleared to 0 by software. Setting this bit in software or detection of a
negative transition on the T2EX pin will force a timer interrupt if enabled.

CP/ RL2 EXEN2 DCEN RESULT
1 0 X Negative transitions on P1.1 will not affect this bit.
1 1 X Negative transitions on P1.1 will set this bit.
0 0 0 Negative transitions on P1.1 will not affect this bit.
0 1 0 Negative transitions on P1.1 will set this bit.

0 X 1
Bit toggles whenever timer 2 underflows/overflows and can be used
as a 17th bit of resolution. In this mode, EXF2 will not cause an
interrupt.

RCLK
Bit 5

Receive Clock Flag. This bit determines the serial port 0 timebase when receiving data
in serial modes 1 or 3.
0 = Timer 1 overflow is used to determine receiver baud rate for serial port 0.
1 = Timer 2 overflow is used to determine receiver baud rate for serial port 0.
Setting this bit will force timer 2 into baud rate generation mode. The timer
will operate from a divide-by-2 of the external clock.

TCLK
Bit 4

Transmit Clock Flag. This bit determines the serial port 0 timebase when transmitting
data in serial modes 1 or 3.
0 = Timer 1 overflow is used to determine transmitter baud rate for serial port 0.
1 = Timer 2 overflow is used to determine transmitter baud rate for serial port 0. Setting
this bit will force timer 2 into baud rate generation mode. The timer will operate from a
divide-by-2 of the external clock.

High-Speed Microcontroller User’s Guide

44 of 167

EXEN2
Bit 3

Timer 2 External Enable. This bit enables the capture/ reload function on the T2EX
pin if Timer 2 is not generating baud rates for the serial port.
0 = Timer 2 will ignore all external events at T2EX.
1 = Timer 2 will capture or reload a value if a negative transition is detected on the
T2EX pin.

TR2
Bit 2

Timer 2 Run Control. This bit enables/disables the operation of timer 2. Halting this
timer will preserve the current count in TH2, TL2.
0 = Timer 2 is halted.
1 = Timer 2 is enabled.

C/ T2
Bit 1

Counter/Timer Select. This bit determines whether timer 2 will function as a timer or
counter. Independent of this bit, timer 2 runs at 2 clocks per tick when used in either
baud rate generator or clock output mode.
0 = Timer 2 function as a timer. The speed of timer 2 is determined by the T2M bit
(CKCON.5).
1 = Timer 2 will count negative transitions on the T2 pin (P1.0).

CP/ RL2
Bit 0

Capture/Reload Select. This bit determines whether the capture or reload function will
be used for timer 2. If either RCLK or TCLK is set, this bit will not function and the
timer will function in an auto-reload mode following each overflow.
 0 = Auto-reloads will occur when timer 2 overflows or a falling edge is detected on
T2EX if EXEN2=1.
1 = Timer 2 captures will occur when a falling edge is detected on T2EX if EXEN2 = 1.

Timer 2 Mode (T2MOD)

 7 6 5 4 3 2 1 0
SFR C9h — — — — — — T2OE DCEN
 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

Bits 7–2 Reserved. Read data will be indeterminate.

T2OE
Bit 1

Timer 2 Output Enable. This bit enables/disables the clock output function of the T2
pin (P1.0).
0 = The T2 pin functions as either a standard port pin or as a counter input for timer 2.
1 = Timer 2 will drive the T2 pin with a clock output if C/ T2 =0. Also, timer 2 rollovers
will not cause interrupts.

DCEN
Bit 0

Down Count Enable. This bit, in conjunction with the T2EX pin, controls the direction
that timer 2 counts in 16-bit auto-reload mode.

DCEN T2EX DIRECTION

1 1 Up
1 0 Down
0 X Up

High-Speed Microcontroller User’s Guide

45 of 167

Timer 2 Capture LSB (RCAP2L)
 7 6 5 4 3 2 1 0

SFR CAh RCAP2L.7 RCAP2L.6 RCAP2L.5 RCAP2L.4 RCAP2L.3 RCAP2L.2 RCAP2L.1 RCAP2L.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

RCAP2L.7–
RCAP2L.0
Bits 7–0

Timer 2 Capture LSB. This register is used to capture the TL2 value when timer 2 is
configured in capture mode. RCAP2L is also used as the LSB of a 16-bit reload value
when timer 2 is configured in auto-reload mode.

Timer 2 Capture MSB (RCAP2H)

 7 6 5 4 3 2 1 0
SFR CBh RCAP2H.7 RCAP2H.6 RCAP2H.5 RCAP2H.4 RCAP2H.3 RCAP2H.2 RCAP2H.1 RCAP2H.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

RCAP2H.7–
RCAP2H.0
Bits 7–0

Timer 2 Capture MSB. This register is used to capture the TH2 value when timer 2 is
configured in capture mode. RCAP2H is also used as the MSB of a 16-bit reload value
when timer 2 is configured in auto-reload mode.

Timer 2 LSB (TL2)

 7 6 5 4 3 2 1 0

SFR CCh TL2.7 TL2.6 TL2.5 TL2.4 TL2.3 TL2.2 TL2.1 TL2.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

TL2.7–TL2.0
Bits 7–0

Timer 2 LSB. This register contains the least significant byte of Timer 2.

Timer 2 MSB (TH2)

 7 6 5 4 3 2 1 0
SFR CDh TH2.7 TH2.6 TH2.5 TH2.4 TH2.3 TH2.2 TH2.1 TH2.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

TL2.7–TL2.0
Bits 7–0

Timer 2 MSB. This register contains the least significant byte of Timer 2.

High-Speed Microcontroller User’s Guide

46 of 167

Program Status Word (PSW)
 7 6 5 4 3 2 1 0

SFR D0h CY AC F0 RS1 RS0 OV F1 PARITY
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

CY
Bit 7

Carry Flag. This bit is set when if the last arithmetic operation resulted in a carry
(during addition) or a borrow (during subtraction). Otherwise it is cleared to 0 by all
arithmetic operations.

AC
Bit 6

Auxiliary Carry Flag. This bit is set to 1 if the last arithmetic operation resulted in a
carry into (during addition), or a borrow (during subtraction) from the high order
nibble. Otherwise it is cleared to 0 by all arithmetic operations.

F0
Bit 5

User Flag 0. This is a bit-addressable, general-purpose flag for software control.

RS1, RS0
Bits 4, 3

Register Bank Select 1–0. These bits select which register bank is addressed during
register accesses.

RS1 RS0 REGISTER BANK ADDRESS
0 0 0 00h – 07h

0 1 1 08h – 0Fh

1 0 2 10h – 17h

1 1 3 18h – 1Fh

OV
Bit 2

Overflow Flag. This bit is set to 1 if the last arithmetic operation resulted in a carry
(addition), borrow (subtraction), or overflow (multiply or divide). Otherwise it is
cleared to 0 by all arithmetic operations.

F1
Bit 1

User Flag 1. This is a bit-addressable, general-purpose flag for software control.

PARITY
Bit 0

Parity Flag. This bit is set to 1 if the modulo-2 sum of the eight bits of the accumulator
is 1 (odd parity); and cleared to 0 on even parity.

High-Speed Microcontroller User’s Guide

47 of 167

Watchdog Control (WDCON)
 7 6 5 4 3 2 1 0

SFR D8h SMOD POR EPF1 PFI WDIF WTRF EWT RWT
 RW-0 RW-* RW-0 RW-* RW-0 RW-* RW-* RW-0

R=Unrestricted Read, W=Unrestricted Write, T=Timed Access Write Only, -n=Value after Reset, *=See

Description

SMOD
Bit 7

Serial Modification. This bit controls the doubling of the serial port 1 baud rate in
modes 1, 2, and 3.
0 = Serial port 1 baud rate operates at normal speed
1 = Serial port 1 baud rate is doubled.

POR
Bit 6

Power-on Reset Flag. This bit indicates whether the last reset was a power-on reset.
This bit is typically interrogated following a reset to determine if the reset was caused
by a power-on reset. It must be cleared by a Timed Access write before the next reset of
any kind or the software may erroneously determine that another power-on reset has
occurred. This bit is set following a power-on reset and unaffected by all other resets.
Note: This bit is not Timed Access protected on the DS80C310.
0 = Last reset was from a source other than a power-on reset
1 = Last reset was a power-on reset.

EPFI
Bit 5

Enable Power-Fail Interrupt. This bit enables/disables the ability of the internal
bandgap reference to generate a power-fail interrupt when VCC falls below
approximately 4.5V. While in Stop mode, both this bit and the Bandgap Select bit, BGS
(EXIF.0), must be set to enable the power-fail interrupt.
0 = Power-fail interrupt disabled.
1 = Power-fail interrupt enabled during normal operation. Power-fail interrupt enabled
in Stop mode if BGS is set.

PFI
Bit 4

Power-Fail Interrupt Flag. When set, this bit indicates that a power-fail interrupt has
occurred. This bit must be cleared in software before exiting the interrupt service
routine, or another interrupt will be generated. Setting this bit in software will generate a
power-fail interrupt, if enabled.

WDIF
Bit 3

Watchdog Interrupt Flag. This bit, in conjunction with the Watchdog Timer Interrupt
Enable bit, EWDI (EIE.4), and Enable Watchdog Timer Reset bit (WDCON.1),
indicates if a watchdog timer event has occurred and what action will be taken. This bit
must be cleared in software before exiting the interrupt service routine, or another
interrupt will be generated. Setting this bit in software will generate a watchdog
interrupt if enabled. This bit can only be modified using a Timed Access Procedure.

EWT EWDI WDIF RESULT

X X 0 No watchdog event has occurred.
0 0 1 Watchdog timeout has expired. No interrupt has been generated.
0 1 1 Watchdog interrupt has occurred.
1 0 1 Watchdog timeout has expired. No interrupt has been generated.

Watchdog timer reset will occur in 512 cycles if RWT is not strobed.
1 1 1 Watchdog interrupt has occurred. Watchdog timer reset will occur in

512 cycles if RWT is not set using a Timed Access procedure.

WTRF
Bit 2

Watchdog Timer Reset Flag. When set, this bit indicates that a watchdog timer reset
has occurred. It is typically interrogated to determine if watchdog timer reset caused a
reset. It is cleared by a power- on reset, but otherwise must be cleared by software
before the next reset of any kind or software may erroneously determine that a watchdog
timer reset has occurred. Setting this bit in software will not generate a watchdog timer
reset. If the EWT bit is cleared, the watchdog timer will have no effect on this bit.

High-Speed Microcontroller User’s Guide

48 of 167

EWT
Bit 1

Enable Watchdog Timer Reset. This bit enables/disables the ability of the watchdog
timer to reset the device. This bit has no effect on the ability of the watchdog timer to
generate a watchdog interrupt. The watchdog timer mode select bits (CKCON.7-6)
control the timeout period of the watchdog timer. Clearing this bit will disable the
ability of the watchdog timer to generate a reset, but have no affect on the timer itself, or
its ability to generate a watchdog timer interrupt. This bit can only be modified using a
Timed Access Procedure. The default power-on reset state of this bit is 0 on the
ROMless devices. If the device contains internal program memory, the default power-on
reset state of EWT is determined by the Watchdog Default POR State bit (WDPOR)
located in the System Control Byte or a mask option. This bit is unaffected by all other
resets.
0 = A timeout of the watchdog timer will not cause the device to reset.
1 = A timeout of the watchdog timer will cause the device to reset.

RWT
Bit 0

Reset Watchdog Timer. Setting this bit will reset the watchdog timer count. This bit
must be set using a Timed Access procedure before the watchdog timer expires, or a
watchdog timer reset and/or interrupt will be generated if enabled. The timeout period is
defined by the Watchdog Timer Mode Select bits (CKCON.7-6). This bit will always be
0 when read.

Accumulator (A or ACC)

 7 6 5 4 3 2 1 0
SFR E0h ACC.7 ACC.6 ACC.5 ACC.4 ACC.3 ACC.2 ACC.1 ACC.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

ACC.7–ACC.0
Bits 7–0

Accumulator. This register serves as the accumulator for arithmetic operations. It is
functionally identical to the accumulator found in the 80C32.

Extended Interrupt Enable (EIE)

 7 6 5 4 3 2 1 0
SFR E8h — — ERTCI EWDI EX5 EX4 EX3 EX2
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

Bits 7, 6 Reserved. Read data will be indeterminate.
ERTCI
Bit 5

Real-Time Clock Interrupt Enable. This bit enables/disables the real-time clock
interrupt on the DS87C530. This bit will read 0 on all other devices.
0 = Disable the real-time clock interrupt.
1 = Enable interrupt requests generated by the real-time clock.

EWDI
Bit 4

Watchdog Interrupt Enable. This bit enables/disables the watchdog interrupt.
0 = Disable the watchdog interrupt.
1 = Enable interrupt requests generated by the watchdog timer.

EX5
Bit 3

External Interrupt 5 Enable. This bit enables/disables external interrupt 5.
0 = Disable external interrupt 5.
1 = Enable interrupt requests generated by the INT5 pin.

EX4
Bit 2

External Interrupt 4 Enable. This bit enables/disables external interrupt 4.
0 = Disable external interrupt 4.
1 = Enable interrupt requests generated by the INT4 pin.

High-Speed Microcontroller User’s Guide

49 of 167

EX3
Bit 1

External Interrupt 3 Enable. This bit enables/disables external interrupt 3.
0 = Disable external interrupt 3.
1 = Enable interrupt requests generated by the INT3 pin.

EX2
Bit 0

External Interrupt 2 Enable. This bit enables/disables external interrupt 2.
0 = Disable external interrupt 2.
1 = Enable interrupt requests generated by the INT2 pin.

B Register (B)

 7 6 5 4 3 2 1 0
SFR F0h B.7 B.6 B.5 B.4 B.3 B.2 B.1 B.0
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

B.7–B.0
Bits 7–0

B Register. This register serves as a second accumulator for certain arithmetic
operations. It is functionally identical to the B register found in the 80C32.

Real-Time Alarm Subsecond Register (RTASS)

 7 6 5 4 3 2 1 0
SFR F2h RTASS.7 RTASS.6 RTASS.5 RTASS.4 RTASS.3 RTASS.2 RTASS.1 RTASS.0
 RW-* RW-* RW-* RW-* RW-* RW-* RW-* RW-*

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, * = See description

RTASS.7–RTASS.0
Bits 7–0

Real-Time Alarm Subsecond. These bits represent the subsecond alarm which will be
compared against the RTC Subsecond register (RTCSS;FAh). The ability of a match
between the two registers to cause an alarm is controlled by the RTC Subsecond
Register Compare Enable bit (RTCC.7). The contents of this register will be
indeterminate following a no-battery reset, and unchanged by all other forms of reset.

Real-Time Alarm Second Register (RTAS)

 7 6 5 4 3 2 1 0
SFR F3h 0 0 RTAS.5 RTAS.4 RTAS.3 RTAS.2 RTAS.1 RTAS.0
 RW-0 RW-0 RW-* RW-* RW-* RW-* RW-* RW-*

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, * = See description

Bits 7, 6 Reserved. These bits will be 0 when read.
RTAS.5–RTAS.0
Bits 5–0

Real-Time Alarm Second. These bits represent the second alarm that will be compared
against the RTC Second register (RTCS;FBh). The ability of a match between the two
registers to cause an alarm is controlled by the RTC Second Register Compare Enable
bit (RTCC.6). This register should only be loaded with values from 0 to 3Bh (0 to 59
seconds). The contents of this register will be indeterminate following a no-battery reset
(except bits 7, 6), and unchanged by all other forms of reset.

High-Speed Microcontroller User’s Guide

50 of 167

Real-Time Alarm Minute Register (RTAM)
 7 6 5 4 3 2 1 0

SFR F4h 0 0 RTAM.5 RTAM.4 RTAM.3 RTAM.2 RTAM.1 RTAM.0
 R-0 R-0 RW-* RW-* RW-* RW-* RW-* RW-*

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, * = See Description

Bits 7, 6 Reserved. These bits will be 0 when read.
RTAM.5–RTAM.0
Bits 5–0

Real-Time Alarm Minute. These bits represent the minute alarm that will be compared
against the RTC Minute register (RTCM;FCh). The ability of a match between the two
registers to cause an alarm is controlled by the RTC Minute Register Compare Enable
bit (RTCC.5). This register should only be loaded with values from 0 to 3Bh (0 to 59
minutes). The contents of this register will be indeterminate following a no-battery
reset (except bits 7, 6), and unchanged by all other forms of reset.

Real-Time Alarm Hour Register (RTAH)

 7 6 5 4 3 2 1 0
SFR F5h 0 0 0 RTAH.4 RTAH.3 RTAH.2 RTAH.1 RTAH.0
 R-0 R-0 R-0 RW-* RW-* RW-* RW-* RW-*

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, * = See Description

Bits 7, 6, 5 Reserved. These bits will be 0 when read.
RTAH.4–RTAH.0
Bits 4–0

Real-Time Alarm Hour. These bits represent the hour alarm which will be compared
against the RTC Hour register (RTCH;FDh). The ability of a match between the two
registers to cause an alarm is controlled by the RTC Hour Register Compare Enable bit
(RTCC.4). This register should only be loaded with values from 0 to 17h (0 to 23
hours). The day of week bits DOW2-0, located in RTCH.7-5 do not have a
corresponding alarm feature. The contents of this register will be indeterminate
following a no-battery reset (except bits 7, 6, 5), and unchanged by all other forms of
reset.

Extended Interrupt Priority (EIP)

 7 6 5 4 3 2 1 0
SFR F8h — — PRTCI PWDI PX5 PX4 PX3 PX2
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R=Unrestricted Read, W=Unrestricted Write, -n = Value after Reset

Bits 7, 6 Reserved. These bits will be 0 when read.
PRTCI
Bit 5

Real-Time Clock Interrupt Priority. This bit controls the priority of the real–time
clock interrupt on the DS87C530. This bit will read 0 on all other devices.
0 = The real-time clock interrupt is a low priority interrupt.
1 = The real-time clock interrupt is a high priority interrupt.

PWDI
Bit 4

Interrupt Priority. This bit controls the priority of the watchdog interrupt.
0 = The watchdog interrupt is a low priority interrupt.
1 = The watchdog interrupt is a high priority interrupt.

PX5
Bit 3

External Interrupt 5 Priority. This bit controls the priority of external interrupt 5.
0 = External interrupt 5 is a low priority interrupt.

High-Speed Microcontroller User’s Guide

51 of 167

1 = External interrupt 5 is a high priority interrupt.
PX4
Bit 2

External Interrupt 4 Priority. This bit controls the priority of external interrupt 4.
0 = External interrupt 4 is a low priority interrupt.
1 = External interrupt 4 is a high priority interrupt.

PX3
Bit 1

External Interrupt 3 Priority. This bit controls the priority of external interrupt 3.
0 = External interrupt 3 is a low priority interrupt.
1 = External interrupt 3 is a high priority interrupt.

PX2
Bit 0

External Interrupt 2 Priority. This bit controls the priority of external interrupt 2.
0 = External interrupt 2 is a low priority interrupt.
1 = External interrupt 2 is a high priority interrupt.

Real-Time Clock Control Register (RTCC)
 7 6 5 4 3 2 1 0

SFR F9h SSCE SCE MCE HCE RTCRE RTCWE RTCIF RTCE
 RW-* RW-* RW-* RW-* RW*-0 RT*-0 R*-* RT-*

R=Unrestricted Read, W=Unrestricted Write, T=Timed Access Write Only,

-n =Value after Reset, * = See Description

SSCE
Bit 7

RTC Subsecond Register Compare Enable. This bit enables a match Bit 7 between
the Real-Time Alarm Subsecond Register (RTASS;F2h) and the Real-Time Clock
Subsecond Register (RTCSS;FAh) to contribute to the RTC interrupt request. This bit
will be indeterminate following a no-battery reset, and is unaffected by all other resets.
0 = The subsecond value is a Don’t Care when evaluating the RTC alarm. If any other
alarm register compare bits are enabled, this will cause one interrupt per subsecond tick
(1/256 second) for as long as the other registers match.
1 = Include the subseconds along with any other registers when evaluating alarm
compare conditions.

SCE
Bit 6

RTC Second Register Compare Enable. This bit enables a match between the Real-
Time Alarm Second Register (RTAS;F3h) and the Real-Time Clock Second Register
(RTCS;FBh) to contribute to the RTC interrupt request. This bit will be indeterminate
following a no-battery reset, and is unaffected by all other resets.
0 = The second value is a Don’t Care when evaluating an RTC alarm. If any other
alarm register compare bits are enabled, this will cause one interrupt per second as long
as the other registers match.
1 = Include the second along with any other registers when evaluating alarm compare
conditions.

MCE
Bit 5

RTC Minute Register Compare Enable. This bit enables a match between Bit 5 the
Real-Time Alarm Minute Register (RTAM;F4h) and the Real-Time Clock Minute
Register (RTCM;FCh) to contribute to the RTC interrupt request. This bit will be
indeterminate following a no-battery reset, and is unaffected by all other resets.
0 = The minute value is a Don’t Care when evaluating an RTC alarm. If any other
alarm register compare bits are enabled, this will cause one interrupt per minute as long
as the other registers match.
1 = Include the minute along with any other registers when evaluating alarm compare
conditions.

HCE
Bit 4

RTC Hour Register Compare Enable. This bit enables a match between the Real-
Time Alarm Hour Register (RTAH;F5h) and the Real-Time Clock Hour Register
(RTCH;FDh) to contribute to the RTC interrupt request. This bit will be indeterminate
following a no-battery reset, and is unaffected by all other resets.
0 = The hour value is a Don’t Care when evaluating an RTC alarm. If any other alarm
register compare bits are enabled, this will cause one interrupt per hour for as long as

High-Speed Microcontroller User’s Guide

52 of 167

the other registers match.
1 = Include the hour along with any other registers when evaluating alarm compare
conditions.

RTCRE
Bit 3

RTC Read Enable. This bit temporarily halts internal updating of the RTC to allow
software to read the current time. No loss of time will occur. This bit will be cleared to
0 following any reset. Attempts to set the RTCRE and RTCWE bits simultaneously
will be ignored. When this bit is cleared, software must wait 4 machine cycles before
setting either the RTCRE or RTCWE bit again.
0 = Reads of the RTC clock registers (RTCSS;FAh, RTCS;FBh, RTCM;FCh,
RTCH;FDh, RTCD0;FEh, RTCD1;FFh) are prohibited and will return erroneous
values.
1 = Reads of the RTC clock registers are permitted during a 1 ms window starting from
the time the bit is set. Immediately after setting this bit, software must wait 4 machine
cycles to allow all time registers to synchronize. The user should clear this bit when the
desired reads are complete, although it will clear automatically within 1.95 ms if not
cleared in software.

RTCWE
Bit 2

RTC Write Enable. This bit temporarily halts the RTC to allow software to update the
current time. No loss of time will occur. This bit can only be modified using a Timed
Access procedure. Changing this bit from 1 to 0 will reset the RTCSS register to
00h.This bit will be cleared to 0 following any reset.
0 = Writes to the RTC clock registers (RTCSS;FAh, RTCS;FBh, RTCM;FCh,
RTCH;FDh, RTCD0;FEh, RTCD1;FFh) are ignored. Attempts to set the RTCRE and
RTCWE bits simultaneously will be ignored. When this bit is cleared, software must
wait 4 machine cycles before setting either the RTCRE or RTCWE bit again.
1 = Writes to the RTC clock registers are permitted during a 1 ms window starting from
the time this bit is set. Immediately after setting this bit, software must wait 4 machine
cycles to allow all time registers to synchronize. The user should clear this bit when the
desired updates are complete, although it will clear automatically after 1.95 ms if not
cleared in software.

RTCIF
Bit 1

RTC Interrupt Flag. This bit indicates that a RTC alarm match has been made
between all the enabled alarm registers and their corresponding clock registers. This bit
will generate an RTC Interrupt if the ERTCI bit (EIE.5) is set, and must be cleared by
software following an interrupt. Setting this bit cannot generate RTC interrupts.
Clearing all alarm compare enable bits (RTCC.7-4) will also clear this bit. This bit will
be indeterminate following a no–battery reset, and is unaffected by all other resets.
This bit cannot be set in software.
0 = No RTC interrupts are pending.
1 = RTC Interrupt is pending/active.

RTCE
Bit 0

RTC Enable. This bit enables/disables the RTC oscillator, halting the RTC. This bit
must be accessed using a Timed Access procedure. This bit will be indeterminate
following a no-battery reset, and is unaffected by all other resets. If RTC operation is
desired, it must be enabled following battery application.
 0 = RTC oscillator is disabled.
1 = RTC oscillator is enabled.

High-Speed Microcontroller User’s Guide

53 of 167

Real-Time Clock Subsecond Register (RTCSS)
 7 6 5 4 3 2 1 0

SFR FAh RTCSS.7 RTCSS.6 RTCSS.5 RTCSS.4 RTCSS.3 RTCSS.2 RTCSS.1 RTCSS.0
 R*-* R*-* R*-* R*-* R*-* R*-* R*-* R*-*

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, *=See Description

RTCSS.7–RTCSS.0
Bits 7–0

Real-Time Clock Subseconds. This register represents the subsecond value of the
RTC. It can be read only when the RTCRE bit is set, and writes are not permitted. It is
reset to 00h when the RTCWE bit is cleared. The register counts from 0h to FFh.

Real-Time Clock Second Register (RTCS)

 7 6 5 4 3 2 1 0
SFR FBh 0 0 RTCS.5 RTCS.4 RTCS.3 RTCS.2 RTCS.1 RTCS.0
 R*-0 R*-0 R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-*

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, *=See Description

Bits 7, 6 Reserved. These bits will be 0 when read.

RTCS.5–RTCS.0
Bits 5–0

Real-Time Clock Seconds. This register represents the second value of the RTC. This
register can be read only when the RTCRE bit is set, and can only be modified when the
RTCWE bit is set. Consult the description of the RTCWE bit for the programming
protocol for this register. This register counts from 0h to 3Bh (0 to 59 seconds), and any
writes to this register out-side of that range will generate an inaccurate count.

Real-Time Clock Minute Register (RTCM)

 7 6 5 4 3 2 1 0
SFR FCh 0 0 RTCM.5 RTCM.4 RTCM.3 RTCM.2 RTCM.1 RTCM.0
 R*-0 R*-0 R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-*

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, * = See Description

Bits 7, 6 Reserved. These bits will be 0 when read.
RTCM.5–RTCM.0
Bits 5–0

Real-Time Clock Minutes. This register represents the minute value of the RTC. This
register can be read only when the RTCRE bit is set, and can only be modified when the
RTCWE bit is set. Consult the description of the RTCWE bit for the programming
protocol for this register. This register counts from 0h to 3Bh (0 to 59 minutes), and any
writes to this register out-side of that range will generate an inaccurate count.

High-Speed Microcontroller User’s Guide

54 of 167

Real-Time Clock Hour Register (RTCH)
 7 6 5 4 3 2 1 0

SFR FDh DOW2 DOW1 DOW0 RTCH.4 RTCH.3 RTCH.2 RTCH.1 RTCH.0
 R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-*

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, *=See Description

DOW.2–DOW.0
Bits 7, 6, 5

Real-Time Clock Day of the Week. These bits represent the current day of the week.
This register can be read only when the RTCRE bit is set, and can only be modified
when the RTCWE bit is set. Consult the description of the RTCWE bit for the
programming protocol for this register. This register counts from 1h to 7h, and
increments when the hour value of the RTC (RTCH.4-0) rolls over from 17h to 0h.
Writing a 0h to these bits will disable the day of week function and the count will
remain 0. No alarm corresponds to these bits.

RTCH.4–RTCH.0
Bits 4–0

Real-Time Clock Hours. These bits represent the hour value of the RTC. This register
can be read only when the RTCRE bit is set, and can only be modified when the
RTCWE bit is set. Consult the description of the RTCWE bit for the programming
protocol for this register. This register counts from 0h to 17h (0 to 23 hours), and any
writes outside of that range will generate an inaccurate count.

Real-Time Clock Day Register 0 (RTCD0)

 7 6 5 4 3 2 1 0
SFR FEh RTCD0.7 RTCD0.6 RTCD0.5 RTCD0.4 RTCD0.3 RTCD0.2 RTCD0.1 RTCD0.0
 R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-*

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, *=See Description

RTCD0.7–RTCD.0
Bits 7-0

Real-Time Clock Day Register 0. This register contains the least significant byte of the
16-bit current day count. This is not an absolute value tied to a specific calendar date,
but rather a relative day count defined by the user. This register can be read only when
the RTCRE bit is set, and can only be modified when the RTCWE bit is set. Consult
the description of the RTCWE bit for the programming protocol for this register. The
register counts from 0h to FFh. No alarm corresponds to these bits.

Real-Time Clock Day Register 1 (RTCD1)

 7 6 5 4 3 2 1 0
SFR FFh RTCD1.7 RTCD1.6 RTCD1.5 RTCD1.4 RTCD1.3 RTCD1.2 RTCD1.1 RTCD1.0
 R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-*

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

RTCD1.7–RTCD1.0
Bits 7–0

Real-Time Clock Day Register 1. This register contains the most significant byte of
the 16-bit current day count. This is not an absolute value tied to a specific calendar
date, but rather a relative day count defined by the user. This register can be read only
when the RTCRE bit is set, and can only be modified when the RTCWE bit is set.
Consult the description of the RTCWE bit for the programming protocol for this
register. The register counts from 0h to FFh. A rollover of this register will clear
RTCD1 and RTCD0. No alarm corresponds to these bits.

High-Speed Microcontroller User’s Guide

55 of 167

4.3 Instruction Timing
All instructions in the high-speed microcontroller perform the same functions as their 80C32
counterparts. Their affect on bits, flags, and other status functions is identical. However, the timing of
each instruction is different. This applies both in absolute terms of nanoseconds for a given crystal, and
in relative terms of clocks. For absolute timing of real-time events, the timing of software loops will need
to be calculated using the data provided in Section 16, Instruction Set Details. However, timers default to
run at the older 12 clocks per timer increment and timer-based events need no modification.

The relative time of two instructions might be different in the new architecture than it was previously. For
example, both the one-byte, two-cycle “MOVX A, @DPTR” instruction and the three-byte, two-cycle
“MOV direct, direct” instruction used two cycles. In the high-speed microcontroller, the MOVX
instruction uses two cycles but the “MOV direct, direct” uses three cycles. While both are faster than their
original counterparts, they now have different execution times from each other because the high-speed
microcontroller typically uses one cycle for each byte. This is generally true for all instructions except for
MUL, DIV, MOVC, MOVX, and branch type instructions. The timing of each instruction should be
examined for familiarity with the changes. Note that a machine cycle now requires just four clocks, and
provides one ALE pulse per cycle. Many instructions require only one cycle, but some require five. In the
original architecture, all were one or two cycles except for MUL and DIV.

4.4 Addressing Modes
The high-speed microcontroller uses the standard 8051 instruction set, which a wide range of third-party
assemblers and compilers supports. Like the 8051, the high-speed microcontroller uses three memory
areas. These are program memory, data memory, and Registers. Both the program and data areas are
64kB each. They extend from 0000h to FFFFh. The register areas are located between 00h and FFh, but
do not overlap with the program and data segments. This is because the high-speed microcontroller uses
different modes of addressing to reach each memory segment. These modes are described below.

Program memory is the area from which all instructions are fetched. It is inherently read-only. This is
because the 8051 instruction set provides no instructions that write to this area. Read/write access is for
data memory and registers only. No special action is required to fetch from program memory. Each
instruction fetch will be performed automatically by the on-chip hardware. In versions that contain on-
chip memory, the hardware will decide whether the fetch is on-chip or off-chip based on the address.
Explicit addressing modes are needed for the data memory and register areas. These modes determine
which register area is accessed or if off-chip data memory is used.

The high-speed microcontroller supports eight addressing modes. They are:

Register Addressing
Direct Addressing
Register Indirect Addressing
Immediate Addressing
Register Indirect Addressing with Displacement
Relative Addressing
Page Addressing
Extended Addressing

Five of the eight are used to address operands. The remaining are used for program control and
branching. When writing assembly language instructions that use arguments, the convention is

High-Speed Microcontroller User’s Guide

56 of 167

destination, source. Each mode of addressing is summarized below. Note that many instructions (such as
ADD) have multiple addressing modes available.

4.4.1 Register Addressing
Register Addressing is used for operands that are located in one of the eight Working Registers (R7-R0).
These are the currently selected Working Register bank, which reside in the lower 32 bytes of Scratchpad
RAM. A register bank is selected using two bits in the Program Status Word (PSW;D0h). This addressing
mode is powerful, since it uses the active bank without knowing which bank is selected. Thus one
instruction can have multiple uses by simply switching banks. Register Addressing is also a high-speed
instruction, requiring only one machine cycle. Two examples of Register Addressing are provided below.

ADD A, R4 ;Add Accumulator to register R4
INC R2 ;Increment the value in register R2

In the first case, the value in R4 is the source of the operation. In the later, R2 is the destination. These
instructions do not consider the absolute address of the register. They will act on whichever bank has
been selected.

Direct Addressing, described below, may also access any Working Register. To do this, the absolute
address must be specified.

4.4.2 Direct Addressing
Direct Addressing is the mode used to access the entire lower 128 bytes of Scratchpad RAM and the SFR
area. It is commonly used to move the value in one register to another. Two examples are shown below.

MOV 72h, 74h ;Move the value in register 74 to
;register 72.

MOV 90h, 20h ;Move the value in register 20 to
;the SFR at 90h (Port 1)

Note that there is no instruction difference between a RAM access and an SFR access. The SFRs are
simply register locations above 7Fh.

Direct Addressing also extends to bit addressing. There is a group of instructions that explicitly use bits.
The address information provided to such an instruction is the bit location, rather than the register
address. Registers between 20h and 2Fh contain bits that are individually addressable. SFRs that end in
0 or 8 are bit addressable. An example of Direct Bit Addressing is as follows.

SETB 00h ;Set bit 00 in the RAM. This is the
;LSb of the register at address 20h
;as shown in Section 4.

MOV C, 0B7h ;Move the contents of bit B7 to the

;Carry flag. Bit B7 is the MSb of
;register B0 (Port 3).

High-Speed Microcontroller User’s Guide

57 of 167

4.4.3 Register Indirect Addressing
This mode is used to access the Scratchpad RAM locations above 7Fh. It can also be used to reach the
lower RAM (0h–7Fh) if needed. The address is supplied by the contents of the Working Register
specified in the instruction. Thus one instruction can be used to reach many values by altering the
contents of the designated Working Register. Note that in general, only R0 and R1 can be used as
pointers. An example of Register Indirect Addressing is as follows.

ANL A, @R0 ;Logical AND the Accumulator
;with the contents of the register
;pointed to by the value stored in R0.

This mode is also used for Stack manipulation. This is because all Stack references are directed by the
value in the Stack Pointer register. The Push and Pop instructions use this method of addressing. An
example is as follows.

PUSH A ;Saves the contents of the
;accumulator on the stack.

Register Indirect Addressing is used for all off-chip data memory accesses. These involve the MOVX
instruction. The pointer registers can be R0, R1, DPTR0 and DPTR1. Both R0 and R1 reside in the
Working Register area of the Scratchpad RAM. They can be used to reference a 256-byte area of off-
chip data memory. When using this type of addressing, the upper address byte is supplied by the value in
the Port 2 latch. This value must be selected by software prior to the MOVX instruction. An example is
as follows.

MOVX @R0, A ;Write the value in the accumulator
;to the address pointed to by R0 in
;the page pointed to by P2.

The 16-bit Data pointers (DPTRs) can be used as an absolute off-chip reference. This gives access to the
entire 64kB data memory map. An example is as follows.

MOVX @DPTR, A ;Write the value in the accumulator
;to the address referenced by the
;selected data pointer.

4.4.4 Immediate Addressing
Immediate Addressing is used when one of the operands is predetermined and coded into the software.
This mode is commonly used to initialize SFRs and to mask particular bits without affecting others. An
example is as follows.

ORL A, #40h ;Logical OR the Accumulator with 40h.

4.4.5 Register Indirect with Displacement
Register Indirect Addressing with Displacement is used to access data in lookup tables in program
memory space. The location is created using a base address with an index. The base address can be either
the PC or the DPTR. The index is the accumulator. The result is stored in the accumulator. An example
is as follows.

High-Speed Microcontroller User’s Guide

58 of 167

MOVC A, @A +DPTR ;Load the accumulator with the contents

of program memory
;pointed to by the contents of the DPTR
plus the value in
;the accumulator.

4.4.6 Relative Addressing
Relative Addressing is used to determine a destination address for Conditional branch. Each of these
instructions includes an 8-bit value that contains a two’s complement address offset (–127 to +128) which
is added to the PC to determine the destination address. This destination is branched to when the tested
condition is true. The PC points to the program memory location immediately following the branch
instruction when the offset is added. If the tested condition is not true, the next instruction is performed.
An example is as follows.

JZ $–20 ;Branch to the location (PC+2)–20
;if the contents of the accumulator = 0.

4.4.7 Page Addressing
Page Addressing is used by the Branching instructions to specify a destination address within the same
2kB block as the next contiguous instruction. The full 16-bit address is calculated by taking the five
highest order bits for the next instruction (PC+2) and concatenating them with the lowest order 11-bit
field contained in the current instruction. An example is as follows.

0870h ACALL100h ;Call to the subroutine at address 100h
plus the
;current page address.

In this example, the current page address is 800h, so the destination address is 900h.

4.4.8 Extended Addressing
Extended Addressing is used by the Branching instructions to specify a 16-bit destination address within
the 64kB address space. The destination address is fixed in software as an absolute value. An example is
as follows.

LJMP 0F732h ;Jump to address 0F732h.

4.5 Program Status Flags
All program status flags are contained in the program status word at SFR location D0h. It contains flags
that reflect the status of the CPU and the result of selected operations. The flags are summarized below.
The following bit descriptions show the instructions that affect each flag.

High-Speed Microcontroller User’s Guide

59 of 167

Bit Descriptions
PSW.7: C, Carry. Set when the previous operation resulted in a carry (during addition) or a borrow
(during subtraction), otherwise cleared.

PSW.6: AC, Auxiliary Carry. Set when the previous operation resulted in a carry (during addition) or a
borrow (during subtraction) from the high order nibble. Otherwise cleared.

PSW.2: OV, Overflow. Set when a carry was generated into the high order bit but not a carry out of the
high-order bit. OV is normally used with two’s complement arithmetic.

PSW.0: P, Parity. Set to logic 1 to indicate an odd number of ones in the accumulator (odd parity).
Cleared for an even number of ones. This produces even parity.

All of these bits are cleared to a logic 0 for all resets.

Table 4-I. Instructions That Affect Flag Settings

FLAGS FLAGS
INSTRUCTION

C OV AC
INSTRUCTION

C OV AC
ADD X X X CLR C 0
ADDC X X X CPL C X
SUBB X X X ANL C, bit X
MUL 0 X ANL C, bit X
DIV 0 X ORL C, bit X
DA X ORL C, bit X
RRC X MOV C, bit X
RLC X CJNE X
SETB C 1

Note: X indicates the modification is according to the result of the instruction.

High-Speed Microcontroller User’s Guide

60 of 167

5. CPU TIMING
The timing of the high-speed microcontroller is the area with the greatest departure from the original
8051 series. This section will briefly explain the timing and also compare it to the original.

5.1 Oscillator
The high-speed microcontroller provides an on-chip oscillator circuit that can be driven by an external
crystal or by an off-chip TTL clock source. The oscillator circuit provides the internal clocking signals to
the on-chip CPU and I/O circuits.

Figure 5-1 shows the required connections for a crystal. In most cases, a crystal will be the preferred
clock source. For very low-power applications, a low frequency ceramic resonator may also be used. The
capacitors shown in Figure 5-1are typical values. If a resonator is used, higher capacitance, such as 47pF
may be needed.

For higher frequency designs, an off-chip clock oscillator is preferred (Figure 5-2). When using an off-
chip oscillator, the duty cycle becomes important. As nearly as possible, a 50% duty cycle should be
supplied.

XTAL1
This pin is the input to an inverting high gain amplifier. It also serves as the input for an off-chip
oscillator. Note that when using an off-chip oscillator, XTAL2 is left unconnected.

XTAL2
This pin is the output of the crystal amplifier. It can be used to distribute the clock to other devices on the
same board. If using a crystal, the loading on this pin should be kept to a minimum, especially capacitive
loading.

Oscillator Characteristics
The high-speed microcontroller was designed to operate with a parallel resonant AT cut crystal. The
crystal should resonate at the desired frequency in its primary or fundamental mode. The oscillator
employs a high gain amplifier to assure a clean waveform at high frequency. Due to the high-performance
nature of the product, both clock edges are used for internal timing. Therefore, the duty cycle of the clock
source is of importance. A crystal circuit will balance itself automatically. Thus, crystal users will not
need to take extra precautions concerning duty cycle.

Crystal Selection
The high-speed microcontroller family was designed to operate with fundamental mode crystals for
improved stability. Although most high-speed (i.e., greater than 25MHz) crystals operate from their third
overtone, fundamental mode crystals are available from most major crystal suppliers. Designers are
cautioned to ensure that high-speed crystals being specified for use in their application do operate at the
rated frequency in their fundamental mode. The use of a third overtone crystal will typically result in
oscillation rates at one-third the desired speed.

High-Speed Microcontroller User’s Guide

61 of 167

Figure 5-1. Crystal Connection

Figure 5-2. Clock Source Input

5.2 Instruction Timing
The clock source, whether crystal or oscillator, supplies the internal functions with a precise time base.
The clock is used to create the basic unit of timing called a machine cycle. One machine cycle consists of
four clocks when operating in divide-by-4 mode. The use of Power Management modes will cause the
device to utilize 64 or 1024 external clock cycles per machine cycle. Within a machine cycle there are
four states called C1, C2, C3, and C4. Various operations take place during each C state. Within this
section and throughout others, an event timing will be identified by its C state. For example, ALE rises at
the beginning of the C1 time. Since the clock source is the source of nearly all timing, the electrical
specifications are given in terms of clocks. The time of a clock period is referred to as tCLCL.

Most times in the electrical specifications are specified as some number of clocks from the edge of a
signal. The signal edges were also derived from the clock source and the C states.

Due to the limited number of edges within a machine cycle, selected events must occur between edges.
The high-speed microcontroller employs sophisticated circuits to create half and quarter clock events.

TO INTERNAL
CIRCUITS

XTAL1

XTAL2

HIGH-SPEED
MICROCONTROLLER

33pF 33pF

TO INTERNAL
CIRCUITS

XTAL1

XTAL2

HIGH-SPEED MICRO

CLOCK
OSCILLATOR

High-Speed Microcontroller User’s Guide

62 of 167

That is, some events occur between clock edges. Such circuits assure that events occur as precisely as if a
clock edge were available. While being generally transparent to the user, these circuits result in the use of
fractional clocks in the electrical specifications. For example, a time can be specified as 2.5tCLCL.

As mentioned above, a machine cycle is the basic timing unit of most functions in the high-speed
microcontroller. A machine cycle of the high-speed microcontroller is the time required to execute a
single cycle instruction. Almost half the op codes of the 8051 instruction set are implemented in a single
machine cycle in the high-speed microcontroller. The remaining instructions require multiple machine
cycles.

The power management modes implemented on some devices modify the number of clock cycles needed
to execute an instruction. Instead of 4 clocks per machine cycle, power management mode 1 (PMM1) and
power management mode 2 (PMM2) use 64 and 1024 clocks per cycle respectively to conserve power. A
full description of the power management modes and their effect on CPU operation is provided in
Section 7.

All instructions are coded within an 8-bit field called an op code. This single byte must be fetched from
program memory. The CPU decodes the op code. It determines what action the microcontroller takes and
whether more information is needed from memory. If no other memory is needed, then only one byte was
required. Thus the instruction is called a one-byte instruction. In some cases, more data is needed. These
will be two- or three-byte instructions.

In most cases, the number of memory accesses (bytes) needed by an instruction is equal to the number of
machine cycles. Thus, single cycle instructions contain one byte, and two cycle instructions have two
bytes. This is true except for the special cases mentioned below.

Single-Cycle Instructions
The standard single-cycle instruction timing is shown in Figure 5-3. As previously mentioned, there are
126 op codes that are single-cycle instructions. An example of a single-cycle instruction is as follows:

DEC A 14h

Two-Cycle Instructions
All two-cycle instructions require two cycles because they involve two bytes or require two memory
accesses. The first byte is an op code that instructs the CPU. This is the instruction itself. The second byte
is normally an operand or it specifies the location of the operand. For example, the instruction “ANL A,
direct” uses two cycles and requires two bytes. Two examples are as follows:

ANL A, direct 55h

a7-0

ANL A, #data 54h

d7-d0

Note that in the first example, the first memory access is the op code. The second memory access is the
location of the operand in the register map. Since the result is stored in an internal register, this operation
does not require a memory access. The second example is very similar. Again, the first byte represents the

High-Speed Microcontroller User’s Guide

63 of 167

op code. In this example, the second byte is the operand itself. This byte is used directly by the
instruction. The timing for a two-cycle instruction is shown in Figure 5-4.

One other type of two-cycle instruction requires two cycles but only includes one byte. This is because
the second memory access is the result of the instruction. These are the MOVX instructions. An example
is as follows:

MOVX @DPTR,A F0h

The second cycle in this instruction is the write to data memory at the address pointed to by the data
pointer. Thus this instruction is a two-cycle one-byte instruction, but requires two memory accesses. The
MOVX timing is a special case, since the user can control it with the Stretch MOVX feature. The timing
for the Stretch MOVX is discussed in Section 6, Memory Access.

Figure 5-3. Single-Cycle Instruction Timing

RETURN DATA
D7-0

CLK

C3C1 C2 C4

ALE

PSEN

AD0-7

ADDRESS A15-A8PORT2

SINGLE CYCLE

*Shaded areas are held in a weak latch on the port until overdriven.

High-Speed Microcontroller User’s Guide

64 of 167

Figure 5-4. Two-Cycle Instruction Timing

Example: ANL A, direct: 55h addr7-0

Three-Cycle Instructions
Three-cycle instructions come in two varieties. The first requires three memory accesses. These are
similar to one and two cycle instructions in that the number of bytes equals the number of cycles.

The second variety is a three-cycle instruction that simply requires 12 clocks to perform the function.
This may have one or two bytes. Examples of both types are shown below.

ANL direct, #data 53h (3 bytes)

a7–a0
d7–d0

SJMP rel 80h (2 bytes)
a7–a0

INC DPTR A3h (1 byte)

In the first example, the first memory fetch is the op code. The second is the location of the destination
register. The third memory fetch is the operand that is used by the instruction. This instruction has three
memory accesses, so it requires three machine cycles. The second example has the operand in the first
byte and the jump location in the second. It requires three cycles to actually perform the jump. The third
example contains simply the op code, which is 1 byte. This instruction involves the manipulation of a 16-
bit register so it takes longer than 8-bit operations. Figure 5-5 shows the timing of all three types of three
cycle instructions.

CLK

ALE

PSEN

AD0-7

PORT2

A7-0
PIC

C3 C1 C2 C4 C3 C1 C2 C4

RETURN
DATA

ADDRESS A15-A8

INSTRUCTION FETCH
SINGLE CYCLE

OPERAND FETCH
SINGLE CYCLE

ADDRESS A15-A8

A7-0
PC+1

RETURN DATA OPER
AND ADDRESS 7-0

*Shaded areas are held in a weak latch on the port until overdriven.

High-Speed Microcontroller User’s Guide

65 of 167

Four-Cycle Instructions
All four-cycle instructions require more time than the associated number of bytes. These are all program
branching instructions that can move program control to a new location. The four-cycle instructions use
either 1 or 3 bytes as shown in the following examples. Figure 5-6 shows the timing of both four-cycle
instructions.

RET 22h

CJNE A, #data, addr B4h

d7-d0
a7-a0

Five-Cycle Instructions
There are only two five-cycle instructions in the high-speed microcontroller. They are the multiply
(MUL) and divide (DIV). These are shown below. Figure 5-7 shows the timing of five-cycle instructions.

MUL A, B A4h
DIV A, B 84h

Note that the five cycle instructions require only 1 byte. They need 5 cycles to accomplish the math
function.

High-Speed Microcontroller User’s Guide

Fi ure 5-5. Three-Cycle Instruction Timing

Ex

Ex

Ex

*Sh

P

P

g

ample 1: ANL direct, #data 53h a

ample 2: SJMP rel

ample 3: INC DPTR A3h

aded areas are held in a weak latch on the p

PSEN

SEN

SEN

PSEN
66 of 167

7–a0 d7–d0

80h a7–a0

ort until overdriven.

High-Speed Microcontroller User’s Guide

Figure 5-6. Four-Cycle Instruction Timing

Example 1: CJNE A, #data, addr

Example 2: RET

PSEN

PSEN
67 of 167

B4h d7–d0 a7–a0

22h

High-Speed Microcontroller User’s Guide

Figure 5-7. Five-Cycle Instruction Timing

Example: MUL A,B

*Shaded areas are held in a weak latch on the p

5.3 Comparison to the 80
The original 8051 had a 12-clock
were either one or two machine cy
either 12 or 24 clocks for each instr
In many cases the second fetch was

The high-speed microcontroller use
when possible, most instructions
“categories” than the original 8051
there are now one, two, three, and
however, that regardless of the num
faster than its original counterpart.
high-speed microcontroller and th
high-speed microcontroller improv
of 3.0 means that the high-speed m
8051.

Table 5-B provides a summary by i
codes. As an example, the ADD A
codes for this instruction because
both number of instructions and nu
real speed improvement seen in
immediate or direct data combined
These are two cycle, two-byte in
emphasizing short branches and in
working register). These instruct
improvements come from the sin
registers. Also, the two-cycle data
improved.

PSEN
68 of 167

A4h

ort until overdriven.

51
architecture. A machine cycle needed 12 clocks and most instructions
cles. Thus except for the MUL and DIV instructions, the 8051 used
uction. Furthermore, each cycle in the 8051 used two memory fetches.
 a dummy, and the extra clock cycles were wasted.

s 4 clocks per cycle. Since a cycle is now aligned with a memory fetch
 have the same number of cycles as bytes. This leads to more
. Where there were primarily one and two cycle instructions before,
four-cycle instructions. Multiply and Divide require five cycles. Note
ber of cycles, each instruction is at least 1.5 and most are 2 to 3 times
 Table 5-A shows each instruction, the number of clocks used in the
e number used in the 8051 for comparison. The factor by which the
es on the 8051 is shown as the Speed Advantage. A Speed Advantage
icrocontroller performs the same instruction three times faster that the

nstruction type. Note that many of the instructions provide multiple op
, Rn instruction can act on one of 8 working registers. There are 8 op
it can be used on 8 independent locations. Table 5-B shows totals for
mber of op codes. Averages are provided in the tables. However, the

any system will depend on the instruction mix. Programs that use
 with the accumulator or working registers will be improved the least.
structions. Moderate performance improvement will be gained by

structions that use only direct and immediate data (no accumulator or
ions tend to be three cycle instructions. The largest number of
gle cycle instructions involving only the accumulator and working
 movement instructions involving the working registers are greatly

High-Speed Microcontroller User’s Guide

69 of 167

Table 5-A. Instruction Timing Comparison
Note: HSM = high-speed microcontroller.

INSTRUCTION HEX
CODE

HSM
CLOCK
CYCLES

HSM TIME
at 25MHz

8051
CLOCK
CYCLES

8051 TIME
at 25MHz

HSM vs. 8051
SPEED

ADVANTAGE
ADD A, Rn 28..2F 4 160ns 12 480ns 3
ADD A, direct 25 8 320ns 12 480ns 1.5
ADD A, @Ri 26..27 4 160ns 12 480ns 3
ADD A, #data 24 8 320ns 12 480ns 1.5
ADDC A, Rn 38..3F 4 160ns 12 480ns 3
ADDC A, direct 35 8 320ns 12 480ns 1.5
ADDC A, @Ri 36..37 4 160ns 12 480ns 3
ADDC A, #data 34 8 320ns 12 480ns 1.5
SUBB A, Rn 98..9F 4 160ns 12 480ns 3
SUBB A, direct 95 8 320ns 12 480ns 1.5
SUBB A, @Ri 96..97 4 160ns 12 480ns 3
SUBB A, #data 94 8 320ns 12 480ns 1.5
INC A 04 4 160ns 12 480ns 3
INC Rn 08..0F 4 160ns 12 480ns 3
INC direct 05 8 320ns 12 480ns 1.5
INC @Ri 06..07 4 160ns 12 480ns 3
INC DPTR A3 12 480ns 24 960ns 2
DEC A 14 4 160ns 12 480ns 3
DEC Rn 18..1F 4 160ns 12 480ns 3
DEC direct 15 8 320ns 12 480ns 1.5
DEC @Ri 16..17 4 160ns 12 480ns 3
MUL AB A4 20 800ns 48 1.92µs 2.4
DIV AB 84 20 800ns 48 1.92µs 2.4
DA A D4 4 160ns 12 480ns 3
ANL A, Rn 58..5F 4 160ns 12 480ns 3
ANL A, direct 55 8 320ns 12 480ns 1.5
ANL A, @Ri 56..57 4 160ns 12 480ns 3
ANL A, #data 54 8 320ns 12 480ns 1.5
ANL direct, A 52 8 320ns 12 480ns 1.5
ANL direct, #data 53 12 480ns 24 960ns 2
ORL A, Rn 48..4F 4 160ns 12 480ns 3
ORL A, direct 45 8 320ns 12 480ns 1.5
ORL A, @Ri 46..47 4 160ns 12 480ns 3
ORL A, #data 44 8 320ns 12 480ns 1.5
ORL direct, A 42 8 320ns 12 480ns 1.5
ORL direct, #data 43 12 480ns 24 960ns 2
XRL A, Rn 68..6F 4 160ns 12 480ns 3
XRL A, direct 65 8 320ns 12 480ns 1.5
XRL A, @Ri 66..67 4 160ns 12 480ns 3
XRL A, #data 64 8 320ns 12 480ns 1.5
XRL direct, A 62 8 320ns 12 480ns 1.5
XRL direct, #data 63 12 480ns 24 960ns 2
CLR A E4 4 160ns 12 480ns 3
CPL A F4 4 160ns 12 480ns 3
RL A 23 4 160ns 12 480ns 3
RLC A 33 4 160ns 12 480ns 3

High-Speed Microcontroller User’s Guide

70 of 167

RR A 03 4 160ns 12 480ns 3
RRC A 13 4 160ns 12 480ns 3
SWAP A C4 4 160ns 12 480ns 3
MOV A, Rn E8..EF 4 160ns 12 480ns 3
MOV A, direct E5 8 320ns 12 480ns 1.5
MOV A, @Ri E6..E7 4 160ns 12 480ns 3
MOV A, #data 74 8 320ns 12 480ns 1.5
MOV Rn, A F8..FF 4 160ns 12 480ns 3
MOV Rn, direct A8..AF 8 320ns 24 960ns 3
MOV Rn, #data 78..7F 8 320ns 12 480ns 1.5
MOV direct, A F5 8 320ns 12 480ns 1.5
MOV direct, Rn 88..8F 8 320ns 24 960ns 3
MOV direct, direct 85 12 480ns 24 960ns 2
MOV direct, @Ri 86..87 8 320ns 24 960ns 3
MOV direct, #data 75 12 480ns 24 960ns 2
MOV @Ri, A F6..F7 4 160ns 12 480ns 3
MOV @Ri, direct A6..A7 8 320ns 24 960ns 3
MOV @Ri, #data 76..77 8 320ns 12 480ns 1.5
MOV DPTR, #data 16 90 12 480ns 24 960ns 2
MOVC A, @A+DPTR 93 12 480ns 24 960ns 2
MOVC A, @A+PC 83 12 480ns 24 960ns 2
MOVX A, @Ri E2..E3 8 320ns 24 960 ns 3
MOVX A, @DPTR E0 8 320ns 24 960ns 3
MOVX @Ri, A F2..F3 8 320ns 24 960ns 3
MOVX @DPTR, A F0 8 320ns 24 960ns 3
PUSH direct C0 8 320ns 24 960ns 3
POP direct D0 8 320ns 24 960ns 3
XCH A, Rn C8..CF 4 160ns 12 480ns 3
XCH A, direct C5 8 320ns 12 480ns 1.5
XCH A, @Ri C6..C7 4 160ns 12 480ns 3
XCHD A, @Ri D6..D7 4 160ns 12 480ns 3
CLR C C3 4 160ns 12 480ns 3
CLR bit C2 8 320ns 12 480ns 1.5
SETB C D3 4 160ns 12 480ns 3
SETB bit D2 8 320ns 12 480ns 1.5
CPL C B3 4 160ns 12 480ns 3
CPL bit B2 8 320ns 12 480ns 1.5
ANL C, bit 82 8 320ns 24 960ns 3
ANL C, bit B0 8 320ns 24 960ns 3
ORL C, bit 2 8 320ns 24 960ns 3
ORL C, bit A0 8 320ns 24 960ns 3
MOV C, bit A2 8 320ns 12 480ns 1.5
MOV bit, C 92 8 320ns 24 960ns 3
ACALL addr 11 Hex code
Hex codes = 11, 31, 51,
71, 91, B1, D1, or F1 Byte 1 12 480ns 24 960ns 2

LCALL addr 16 12 16 640ns 24 960ns 1.5
RET 22 16 640ns 24 960ns 1.5
RETI 32 16 640ns 24 960ns 1.5
AJMP addr 11 Hex code

High-Speed Microcontroller User’s Guide

71 of 167

Hex code = 01, 21, 41,
61, 81, A1, C1, or E1 Byte 1 12 480ns 24 960ns 2

LJMP addr 16 2 16 480ns 24 960ns 1.5
JMP @A+DPTR 73 12 480ns 24 960ns 2
SJMP rel 80 12 480ns 24 960ns 2
JZ rel 60 12 480ns 24 960ns 2
JNZ rel 70 12 480ns 24 960ns 2
JC rel 40 12 480ns 24 960ns 2
JNC rel 50 12 480ns 24 960ns 2
JB bit, rel 20 16 640ns 24 960ns 1.5
JNB bit, rel 30 16 640ns 24 960ns 1.5
JBC bit, rel 10 16 640ns 24 960ns 1.5
CJNE A, direct, rel B5 16 640ns 24 960ns 1.5
CJNE A, #data, rel B4 16 640ns 24 960ns 1.5
CJNE Rn, #data, rel B8..BF 16 640ns 24 960ns 1.5
CJNE @Ri, #data, rel B6..B7 16 640ns 24 960ns 1.5
DJNZ Rn, rel D8..DF 12 480ns 24 960ns 2
DJNZ direct, rel D5 16 640ns 24 960ns 1.5
NOP 00 4 160ns 12 480ns 3

Table 5-B. Instruction Speed Summary

INSTRUCTION CATEGORY QUANTITY SPEED ADVANTAGE
Total Instructions: One Cycle, One Byte 37 3.0
Total Instructions: Two Cycle, One Byte 4 3.0
Total Instructions: Two Cycle, Two Bytes X1.5 27 1.5
Total Instructions: Two cycle, Two Bytes X3.0 11 3.0
Total Instructions: Three Cycle, One Byte 4 2.0
Total Instructions: Three Cycle, Two Bytes 8 2.0
Total Instructions: Three Cycle, Three Bytes 7 2.0
Total Instructions: Four Cycle, One Byte 2 1.5
Total Instructions: Four Cycle, Three Bytes 9 1.5
Total Instructions: Five Cycle, One Byte 2 2.4
Average Across All Instructions 111 2.3

Total Op Codes: One Cycle, One Byte 126 3.0
Total Op Codes: Two Cycle, One Byte 6 3.0
Total Op Codes: Two Cycle, Two Bytes X1.5 35 1.5
Total Op Codes: Two Cycle, Two Bytes X3.0 27 3.0
Total Op Codes: Three Cycle, One Byte 4 2.0
Total Op Codes: Three Cycle, Two Bytes 29 2.0
Total Op Codes: Three Cycle, Three Bytes 7 2.0
Total Op Codes: Four Cycle, One Byte 2 1.5
Total Op Codes: Four Cycle, Three Bytes 17 1.5
Total Op Codes: Five Cycle, One Byte 2 2.4
Average Across All Instructions 255 2.5

High-Speed Microcontroller User’s Guide

72 of 167

6. MEMORY ACCESS
The high-speed microcontroller follows the memory interface convention established for the industry-
standard 80C51/80C31. Products in the family may vary, so refer to the specific product data sheet for
any potential differences. Like the 8051 series, the high-speed microcontroller uses two memory
segments. These are program memory and data memory. Program memory is read-only and is usually
implemented in ROM or EPROM. Data memory is read/write and is commonly implemented in SRAM.

Memory areas can be implemented either on-chip, off-chip, or by using a combination. When using
devices without internal program memory, or if the maximum address of on-chip program or data
memory is exceeded, the device will perform an external memory access using the Expanded memory bus
on ports 0 and 2. While serving as a memory bus, port 0 and port 2 do not function as I/O ports, following
the standard 8051 convention of addressing external memory. The PSEN signal goes active low to serve
as a chip enable or output enable when performing a code fetch from external memory. Products with no
on-chip program memory such as the DS80C320 always use the expanded bus. These devices have no
Port 0 latch since the port is dedicated for memory operations. Devices that incorporate on-chip MOVX
data memory operate in a similar fashion, except that the RD and WR signals serve as chip enables when
accessing an external SRAM.

Program execution begins at the reset vector, address 0000h. Any reset causes the next program fetch to
begin at this location. Subsequent branches and interrupts determine how the memory fetch deviates from
sequential addressing. Since all programs begin at 0000h, this is the beginning address of all program
execution. If on-chip program memory is present, program execution begins at internal location 0000h;
otherwise, external program memory is used.

6.1 Internal Program Memory
Some members of the high-speed microcontroller family incorporate internal EPROM or ROM for
program storage. On-chip program memory begins at address 0000h and is contiguous through the
amount of on-chip memory. Exceeding the maximum address of on-chip memory causes the device to
perform an external memory access using the Expanded memory bus on ports 0 and 2. For example, if the
on-chip program memory is 16kB, then it lies between 0000h and 3FFFh in a contiguous area. Therefore,
a fetch at data memory location 4000h would be directed to the Expanded bus. Restricting memory
operations within the on-chip memory allows ports 0 and 2 to be used for general-purpose I/O. For more
information concerning memory size for a specific device, consult the specific data sheet.

The high-speed microcontroller family was designed to be compatible with industry-standard 87C51FB
programming tools. A number of third-party device programmers are available that support Dallas
Semiconductor products. In addition, Dallas Semiconductor manufactures the DS87000 microcontroller
programmer (www.maxim-ic.com/DS87000), specifically designed for EPROM-based members of the
high-speed microcontroller family.

6.2 Internal Data Memory
Some members of the high-speed microcontroller family incorporate internal SRAM for additional data
storage. This memory is addressed via MOVX commands, and is in addition to the 256 bytes of
scratchpad memory. On-chip data memory begins at address 0000h and is contiguous through the amount
of on-chip memory. Exceeding the maximum address of on-chip memory will cause the device to
perform an external memory access using the Expanded memory bus on ports 0 and 2. For example, if the

High-Speed Microcontroller User’s Guide

73 of 167

on-chip program memory is 1kB, then it lies between 0000h and 03FFh in a contiguous area. A MOVX
instruction affecting memory location 0400h would be directed to the expanded bus.

Another advantage of internal data memory is that it guarantees a two-machine cycle data memory
access. This data can be made nonvolatile on the DS87C530 through the use of an external battery.
Restricting memory operations within the on–chip memory allows ports 0 and 2 to be used for general
purpose I/O. For more information concerning memory size for a specific device, consult the
corresponding data sheet.

Upon a power-on reset, the internal data memory area is disabled and transparent to the system map. Any
memory access between 0000h and FFFFh will be directed to the Expanded bus. This allows the device
to remain drop-in compatible with existing 87C52 designs. To enable the internal SRAM area, software
must configure the Data Memory Enable bits DME1, DME0 (PMR.1-0). The three memory
configurations shown in Table 6-A are supported to allow either external data memory access via the
expanded bus, internal data memory access, or read-only access to the EPROM System Control Byte.
Note that these bits are cleared after a reset, so access to the internal data memory is prohibited until these
bits are modified. The contents of internal data memory are not affected by the changing of the Data
Memory Enable bits.

Table 6-A. Data Memory Access Control

DME1 DME0 DATA MEMORY ADDRESS RANGE DATA MEMORY LOCATION
0 0 0000h–FFFFh External Data Memory (default)

0 1 0000h–03FFh
0400h–FFFFh

Internal Data Memory
External Data Memory

1 0 Reserved Reserved

1 1

0000h–03FFh
0400h–FFFBh
FFFCh
FFFDh–FFFFh

Internal Data Memory
Reserved
System Control Byte (Read only)
Reserved

ROMSIZE Feature
Members of the high-speed microcontroller family that incorporate internal program memory allow the
system to dynamically vary the on-chip memory size. This permits the device to reconfigure the upper
limit of on-chip memory, allowing a portion of the memory to be mapped off-chip. The size of on-chip
memory can vary from 0kB to the full range of memory, allowing the device to behave like a device with
less on-chip memory.

This feature has two primary uses. In the first instance, it allows the device to act as a bootstrap loader for
a flash memory or nonvolatile SRAM (NV SRAM). The internal program memory can contain a
bootstrap loader, which can program the external memory device. Secondly, this method can be used to
increase the amount of available program memory from 64kB to 80kB without bank switching.

The maximum amount of on-chip memory is selected by configuring the ROM Size Select register bits
RMS2, RMS1, RMS0 (ROMSIZE.2-0). The modification of the ROMSIZE register must be followed by
a two-machine cycle delay, such as executing two NOP instructions, before jumping to the new address
range. Interrupts must be disabled during this operation, because a jump to the interrupt vector during the
changing of the memory map can cause erratic results. In addition, modification of the ROMSIZE register
must be done from a location that will be valid both before and after the on-chip memory configuration.
If off-chip memory access is planned, it is recommended that ports 0 and 2 not be used as general purpose

High-Speed Microcontroller User’s Guide

74 of 167

I/O, as their state will be disturbed by the memory operations. The settings for the ROM Size Select
register are shown in Table 6-B. Note that the memory configurations shown are not available on all
devices.

Table 6-B. ROMSIZE Register Settings

RMS2 RMS1 RMS0 MAX ON-CHIP ROM
(kB)

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 4
1 0 0 8
1 0 1 16
1 1 0 32
1 1 1 64

After reset, a device with internal program memory will reset the ROMSIZE bits to their default setting.
This will be the maximum amount of on-chip memory for that device. The procedure to reconfigure the
amount of on-chip memory is as follows:

1) Jump to a location in program memory that will be unaffected by the change.
2) Disable interrupts by clearing the EA bit (IE.7).
3) Write AAh to the Timed Access Register (TA;C7h).
4) Write 55h to the Timed Access Register (TA;C7h).
5) Modify the ROM Size Select bits (RMS2-RMS0).
6) Delay 2 machine cycles (2 NOP instructions).
7) Enable interrupts by setting the EA bit (IE.7).

If the 0kB of internal program memory setting is selected, extra precautions must be taken. In this case, it
will be necessary to duplicate the interrupt vector table in external program memory. This is because the
interrupt vector table is located in the lower 1kB of memory, and the device will automatically redirect
any fetches from the interrupt vector table to external memory. Care must be exercised when assembling
or compiling the program so that all the modules are located at the correct starting address, including the
interrupt vector table.

6.3 Program Memory Interconnect
Figure 6-1 shows the program memory interconnect scheme for the high-speed microcontroller family.
This example uses the DS80C320 and one 32kB x 8 EPROM. The program store enable (PSEN) signal is
used to provide an output enable to the EPROM. It can also be used to provide a chip enable, but this
produces less favorable timing. The address LSB and data are multiplexed on port 0, and the address
MSB is provided on port 2. An external latch, shown in the diagram as a 74F373, is used to latch the
lower byte of the address to the memory device. The Address Latch Enable (ALE) signal controls the
timing of the latch so that the operation is performed in the proper sequence. The signals and relative
timing for a program access are shown in Figure 6-2.

When implementing a high-speed memory interface, the F series (or faster) logic should be used. HC
logic will have worst-case propagation delays that are too long. Specifications for all devices should be
checked. More information on memory interface timing can be found in Application Note 57: DS80C320
Memory Interface Timing and Application Note 85: High-Speed Microcontroller Interface Timing.

High-Speed Microcontroller User’s Guide

75 of 167

The first product in the family, the DS80C320, provides an extremely high-speed interface to external
ROM or EPROM. This assures that the user can use the slowest, and least expensive, memory device for
a given crystal speed. The DS80C320 provides very fast slew rates, but controls ringing and overshoot.
Fast slew rates allow the maximum possible time for memory access. In most cases, however, these
aspects will be transparent to the user. Refer to the electrical specifications for exact timing of each
product.

6.4 Data Memory Interconnect
As described in Section 4, the high-speed microcontroller provides a small amount of RAM mapped as
registers for on-chip direct access. This is not considered data memory and does not fall into the memory
map. Systems that require more RAM or memory mapped peripherals must use the data memory area.
This segment is a 64kB space located between 0000h and FFFFh. It is reached using the MOVX
instruction. Any use of this instruction automatically accesses the data area. Although, the original 8051
convention placed all data memory off-chip, many members of the high-speed microcontroller family
contain some data memory on-chip.

From a software standpoint, the physical location of the data area is not relevant because the same
instructions are used. Like the program segment, if software accesses a data address that is above the on-
chip data area, this access will automatically be routed to the expanded bus. Thus data or peripherals that
are off-chip can be used in conjunction with on-chip memory by selecting addresses that do not overlap.
As an example, if the microcontroller has 1kB of on-chip data memory, then a MOVX instruction at
location 0400h will be directed off-chip via the Expanded bus.

The physical connection of off-chip data memory is shown in Figure 6-3. This illustrates a DS80C320
with interfaced with an 8kB SRAM. The data memory map begins at address 0000h since the DS80C320
has no on-chip data memory. A similar interconnection scheme would be implemented if a device with
internal data memory, such as the DS87C520 would be used. Note that any external memory that
overlapped the range of on-chip data memory would not be used.

Figure 6-1. Program Memory Interface

DS80C320

PSEN

ALE CK

74F373
LATCH

LBS ADDRESS

DATA BUS

MSB ADDRESSPORT 2

(8)

(7)

27C256
32kB X 8
EPROM

(8)

OE

CE

High-Speed Microcontroller User’s Guide

76 of 167

Figure 6-2. Program Memory Signals

Figure 6-3. Data Memory Interface

6.5 Data Memory Access
As mentioned above, the high-speed microcontroller uses the MOVX instruction for data memory access.
This includes off-chip RAM and memory mapped peripherals needing read/write access. Several aspects
of the MOVX operation have been enhanced as compared to the original 8051. The principal
improvements are in the areas of the MOVX timing and the data pointer.

The MOVX instruction is used to generate read/write access to off-chip address locations. It has several
addressing modes. The first uses the MOVX @ Ri command to reach a 256-byte block. This instruction

DATAPORT 0

ALE

PSEN

PORT 2

XTAL1

LSB
ADDR

SINGLE CYCLE

MSB
ADDRESS

RD (P3.7)

ALE
LBS ADDRESS

OE

DATA BUS

MSB ADDRESS

(8)

(5)

8kB X 8
SRAM

(8)

CE

WR (P3.6) WE

DS80C320

74F373
LATCH

High-Speed Microcontroller User’s Guide

77 of 167

uses the value in the designated working register to address one of 256 locations. The upper byte of the
address is supplied by the value in the Port 2 latch. A second way to access data is the Data Pointer
(DPTR). This 16-bit register provides an absolute address for data memory access; 16-bits cover the
entire 64kB area, thus the DPTR serves as a pointer to memory. Using the DPTR, the relevant instruction
is MOVX @DPTR.

The original 8051 contained one DPTR. While this provides access to the entire memory area, it is
difficult to move data from one address to another. The high-speed microcontroller provides two data
pointers. Thus software can load both a source and a destination address. The MOVX instruction will use
the active pointer to direct the off-chip address.

The data pointers are called DPTR0 and DPTR1. DPTR0 is located at SFR addresses 82h and 83h. These
are the locations used by the original 8051. No modification of standard code is needed to use DPTR0.
The new DPTR is located at SFR 84h and 85h. The Data Pointer Select bit (SEL) chooses the active
pointer and is located at the LSb of the SFR location 86h. No other bits in register 86h have any effect
and are set to 0. When DPS is set to 0, the DPTR0 is active. When set to 1, DPTR1 is used.

The user switches between data pointers by toggling the SEL bit. The INC instruction is the fastest way
to accomplish this. All DPTR-related instructions use the currently selected DPTR for any activity.
Therefore only one instruction is required to switch from a source to a destination address. Using the
Dual Data Pointer saves code from needing to save source and destination addresses when doing a block
move. Once loaded, the software simply switches between DPTR0 and DPTR1. Sample code listed
below illustrates the saving from using the dual DPTR. The relevant register locations are summarized as
follows.

DPL 82h Low byte original DPTR
DPH 83h High byte original DPTR
DPL1 84h Low byte new DPTR1
DPH1 85h High byte new DPTR1
DPS 86h DPTR Select (LSb)

The example program listed below was original code written for an 8051 and requires a total of 1869
machine cycles on the DS80C320. This takes 299µs to execute at 25MHz. The new code using the Dual
DPTR requires only 1097 machine cycles taking 175.5µs. The Dual DPTR saves 772 machine cycles or
123.5µs for a 64-byte block move. Since each pass through the loop saves 12 machine cycles when
compared to the single DPTR approach, larger blocks gain more efficiency using this feature.

A typical application of the Dual Data Pointer is moving data from an external RAM to a memory-
mapped display. Another application would be to retrieve data from a stored table, process it using a
software algorithm, and store the result in a new table.

High-Speed Microcontroller User’s Guide

78 of 167

64-Byte Block Move With Dual Data Pointer
; SH and SL are high and low byte source address.
; DH and DL are high and low byte of destination address.
; DPS is the data pointer select. Reset condition DPTR0.
 # CYCLES
DPS EQU 86h ; TELL ASSEMBLER ABOUT DPS
MOV R5, #64 ; NUMBER OF BYTES TO MOVE 2
MOV DPTR, #DHDL ; LOAD DESTINATION ADDRESS 3
INC DPS ; CHANGE ACTIVE DPTR 2
MOV DPTR, #SHSL ; LOAD SOURCE ADDRESS 2

MOVE:
; THIS LOOP IS PERFORMED R5 TIMES, IN THIS EXAMPLE 64
MOVX A, @DPTR ; READ SOURCE DATA BYTE 2
INC DPS ; CHANGE DPTR TO DESTINATION 2
MOVX @DPTR, A ; WRITE DATA TO DESTINATION 2
INC DPTR ; NEXT DESTINATION ADDRESS 3
INC DPS ; CHANGE DATA POINTER TO SOURCE 2
INC DPTR ; NEXT SOURCE ADDRESS 3
DJNZ R5, MOVE ; FINISHED WITH TABLE? 3

64-Byte Block Move Without Dual Data Pointer
; SH and SL are high and low byte source address.
; DH and DL are high and low byte of destination address.

CYCLES
MOV R5, #64d ; NUMBER OF BYTES TO MOVE 2
MOV DPTR, #SHSL ; LOAD SOURCE ADDRESS 3
MOV R1, #SL ; SAVE LOW BYTE OF SOURCE 2
MOV R2, #SH ; SAVE HIGH BYTE OF SOURCE 2
MOV R3, #DL ; SAVE LOW BYTE OF DESTINATION 2
MOV R4, #DH ; SAVE HIGH BYTE OF DESTINATION 2

MOVE:
; THIS LOOP IS PERFORMED R5 TIMES, IN THIS EXAMPLE 64
MOVX A, @DPTR ; READ SOURCE DATA BYTE 2
MOV R1, DPL ; SAVE NEW SOURCE POINTER 2
MOV R2, DPH ; 2
MOV DPL, R3 ; LOAD NEW DESTINATION 2
MOV DPH, R4 ; 2
MOVX @DPTR, A ; WRITE DATA TO DESTINATION 2
INC DPTR ; NEXT DESTINATION ADDRESS 3
MOV R3, DPL ; SAVE NEW DESTINATION POINTER 2
MOV R4, DPH ; 2
MOV DPL, R1 ; GET NEW SOURCE POINTER 2
MOV DPH, R2 ; 2
INC DPTR ; NEXT SOURCE ADDRESS 3
DJNZ R5, MOVE ; FINISHED WITH TABLE? 3

High-Speed Microcontroller User’s Guide

79 of 167

6.6 Data Memory Timing
Data memory timing refers to the execution of the MOVX instruction. This instruction includes a
program fetch memory access, then a read or write memory access. The program fetch for a MOVX
instruction is no different from any other instruction. The unique timing occurs for the second memory
operation when data is accessed.

As described in Section 5, the high-speed microcontroller uses four oscillator clocks for each machine
cycle. A machine cycle involves one memory access. Generally, an instruction using two memory
accesses would be a two-machine cycle instruction (except for branches, MUL, DIV, INC DPTR,
MOVC, and MOVX). The MOVX instruction is unique in that the user determines the time allowed for a
data memory access. This feature is called the Stretch MOVX instruction.

The high-speed microcontroller allows the application software to adjust the speed of data memory
access. The microcontroller is capable of performing the MOVX in as little as two machine cycles. Since
one machine cycle is used for the program fetch, this leaves one machine cycle to perform the actual data
memory access. However, this value can be adjusted as needed so that both fast memory and slow
memory or peripherals can be accessed with no glue logic. Even in high-speed systems, it may not be
necessary to perform data memory access at full speed. In addition, there are a variety of slower memory
mapped peripherals such as LCD displays or UARTs.

When using a MOVX instruction, the user controls the time for which a read or write strobe is kept
active. Setup and hold times are also adjusted. The Stretch value will be selected to provide a long enough
memory strobe to satisfy the access time of the target device.

The Stretch MOVX is controlled by a value in a special function register described below. This allows the
user to select a stretch value between zero and seven. A Stretch of zero will result in a two-machine cycle
MOVX. This leaves one machine cycle to actually read or write data. A Stretch of seven will result in a
MOVX of nine cycles. The time is added to the middle of the memory strobe, creating a very long read or
write cycle. The Stretch value can be changed dynamically under software control depending on the type
of memory or peripheral to be accessed.

On reset, the Stretch value will default to a one, resulting in a three cycle MOVX. Therefore, data
memory access will not be performed at full speed. This is a convenience to existing designs that may not
have fast RAM in place. When maximum speed is desired, the software should select a Stretch value of
zero. Note that faster RAMs will be needed. When using very slow RAM or peripherals, a larger stretch
value can be selected. Note that this affects data memory only and the only way to slow program memory
(ROM) access is to use a slower crystal.

Using a Stretch value between one and seven results in a wider read/write strobe allowing more time for
memory/peripherals to respond. The microcontroller stretches the read/write strobe and all related timing.
The full speed access is shown in Figure 6-4. Note that this is not the reset default case. A three-cycle
MOVX is shown in Figure 6-5. This is the reset default condition. To modify the MOVX timing, the
Stretch value in the Clock Control register described below must be changed. Figure 6-6 shows the timing
for a four cycle MOVX (Stretch = 2).

Table 6-C shows the resulting strobe widths for each Stretch value. The memory stretch is implemented
using the clock control SFR at SFR location 8Eh. The stretch value is selected using bits CKCON.2-0. In
the table, these bits are referred to as M2 through M0. Note that the Stretch time can be dynamically
varied, allowing fast RAM’s but slow peripherals. The first stretch allows the use of common 120ns or

High-Speed Microcontroller User’s Guide

80 of 167

150ns RAMs without dramatically lengthening the memory access. Note that the first Stretch value does
not follow the pattern of adding four clocks to the strobe. This is because the first Stretch uses one clock
to create additional setup and one clock to create additional hold time. Systems using a Stretch cycle of
zero are presumed to be fast enough or to be running at a slower clock speed. Since the Stretch is based
on crystal timing, the resulting pulse widths must be viewed on the basis of the real system timing.

Table 6-C. Data Memory Cycle Stretch Values
CKCON.2–0 RD OR WR STROBE WIDTH

M2 M1 M0 MEMORY CYCLES IN CLOCK t at 25MHz t at 12MHz
0 0 0 2 2 80ns 167ns
0 0 1 3 (default) 4 160ns 333ns
0 1 0 4 8 320ns 667ns
0 1 1 5 12 480ns 1000ns
1 0 0 6 16 640ns 1333ns
1 0 1 7 20 800ns 1667ns
1 1 0 8 24 960ns 2000ns
1 1 1 9 28 1120ns 2333ns

Note: These numbers represent nominal values. Actual timing may vary slightly.

Figure 6-4. Full-Speed MOVX Instruction

ALE

PSEN

CLK

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Last Cycle of
Previous

Instruction

First
Machine

Cycle

Second
Machine

Cycle

MOVX Instruction

WR

Next
Instruction
Machine

Cycle

PORT 0

PORT 2

A0-A7 D0-D7 A0-A7 D0-D7 A0-A7 D0-D7 A0-A7 A0-A7

MOVX
Instruction
Address

Next
Instruction
AddressMOVX

Instruction
Next

Instruction
Read

MOVX
Data

Address
MOVX
Data

A8-A15 A8-A15 A8-A15 A8-A15

DATA MEMORY WRITE (2-CYCLE, STRETCH = 0)

High-Speed Microcontroller User’s Guide

81 of 167

Figure 6-5. Three-Cycle MOVX Instruction

AD0-AD7

ALE

PORT 2

CLK

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Last Cycle
of

Previous
Instruction

A0-A7 D0-D7 A0-A7 D0-D7 A0-A7 D0-D7 A0-A7 D0-D7

MOVX
Instruction
Address

MOVX
Instruction

MOVX
Data

A8-A15 A8-A15 A8-A15

THREE CYCLE DATA MEMORY WRITE (RESET DEFAULT)
STRETCH VALUE=1

C1 C2 C3 C4

MOVX Instruction

First
Machine

Cycle
Second
Machine

Cycle

Third
Machine

Cycle

Next
Instruction
Machine

Cycle

Next
Instruction

Read

MOVX
Data

Address

A8-A15

Next
Instruction
Address

PSEN

WR

High-Speed Microcontroller User’s Guide

82 of 167

Figure 6-6. Four-Cycle MOVX Instruction

AD0-AD7

ALE

PORT 2

CLK

D0-D7

MOVX
Instruction
Address

MOVX
Instruction

MOVX
Data

A8-A15 A8-A15 A8-A15

FOUR CYCLE DATA MEMORY WRITE
STRETCH VALUE=2

C1 C2 C3 C4

MOVX Instruction

Next
Instruction

Read

MOVX
Data

Address

A8-A15

Next
Instruction
Address

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Last Cycle of
Previous

Instruction
Third

Machine
Cycle

Fourth
Machine

Cycle

Next
Instruction
Machine

Cycle

First
Machine

Cycle
Second
Machine

Cycle

A0-A7 D0-D7 A0-A7 D0-D7 A0-A7 A0-A7 D0-D7

PSEN

WR

High-Speed Microcontroller User’s Guide

83 of 167

7. POWER MANAGEMENT
The high-speed microcontroller has several features that relate to power consumption and management.
They provide a combination of controlled operation in unreliable power applications and reduced power
consumption in portable or battery-powered applications. The range of features is shown below with
details to follow.

Power Management:
Early Warning Power-Fail Interrupt
Power-Fail/Power-On Reset
Bandgap Select
Watchdog Wake Up from Idle

Power Saving:
Idle Mode
Stop Mode
Ring Wake Up from Stop
Power Management Modes

Precision Voltage Monitor
The high-speed microcontroller uses a precision bandgap reference and other analog circuits to monitor
the state of the power supply during power-up and power-down transitions. Other microcontroller
systems would require external circuits to perform these functions. The bandgap reference provides a
precise voltage to compare with VCC. When VCC begins to drop, the power monitor compares it to its
reference. This enables the analog circuits to detect when VCC passes through predetermined thresholds,
VPFW and VRST. These are specified in the individual product data sheets.

7.1 Power Management Features

7.1.1 Early Warning Power-Fail Interrupt
Devices that incorporate the precision voltage reference have the ability to generate a power-fail interrupt
and/or reset in response to a low supply voltage. When VCC reaches the VPFW threshold, the
microcontroller can generate a power-fail interrupt. This early warning of supply voltage failure allows
the system time to save critical parameters in nonvolatile memory and put external functions in a safe
state.

The power-fail interrupt is optional and is enabled using the enable power-fail warning interrupt (EPFI)
bit at WDCON.5. If enabled, VCC dropping below VPFW will cause the device to vector to address 33h.
The power-fail Interrupt status bit, PFI (WDCON.4), will be set anytime VCC transitions below VPFW.
This flag is not cleared when VCC is above VPFW, and software should clear it immediately after reading
it. As long as the condition exists, PFI will be immediately set again by hardware.

A typical application of the PFI is to place the device into a “safe mode” when a power loss appears
imminent. When the interrupt occurs, the code vectors to location 33h. At this time, software can disable
the interrupt, save any critical data, clear PFI, and then continually poll the status of the power supply via
the PFI flag. As long as PFI is set, power is still below VPFW. If power returns to the proper level, PFI
will not be set once cleared by software. This indicates a safe operating condition. If power continues to
fall, a power-fail reset will be invoked automatically.

High-Speed Microcontroller User’s Guide

84 of 167

7.1.2 Power-Fail Reset
Devices that incorporate the power-fail reset will automatically invoke a reset when VCC drops below
VRST. This will halt device operation, and place all outputs in their reset state. This state will continue to
be held until VCC drops below the voltage necessary to power the port pins. Because VRST is lower than
VPFW, the microcontroller has the option to use the power-fail interrupt to place the device into a “safe”
state before the device halts operation with a power-fail reset. This feature is automatic on devices that
incorporate the power-fail reset feature, and cannot be disabled, except during Stop mode when the BGS
bit is 0.

7.1.3 Power-On Reset
When VCC is applied to a system using the high-speed microcontroller, the device will hold itself in reset
until power is within tolerance and stable. It requires no external circuits to accomplish this. As power
rises, the processor will stay in a reset state until VCC > VRST. As VCC rises above VRST, internal analog
circuits will detect this and activate the on-chip crystal oscillator. On-chip hardware will then count
65,536 oscillator clocks. During this count, VCC must remain above VRST or the process restarts. If an off-
chip clock source is used, clock counting still begins once VCC > VRST. This count period is used to make
certain that power is within tolerance, and that the oscillator has time to stabilize. This provides a very
controlled and predictable startup condition.

Once the 65,536 count period has elapsed, the reset condition is removed automatically, and software
execution will begin at the reset vector location of 0000h. Software will be able to detect the power-on
reset condition using the power-on reset (POR) flag. POR is located at WDCON.6. This bit will be high
to indicate that a power-on reset has occurred. It should then be cleared by software.

The complete power cycle operation is shown in Figure 7-1. Note that the interrupt threshold is fixed, but
the interrupt itself is optional. Reset thresholds are also fixed and the reset operation is transparent. It
requires no external components and no action by software to control reset operation.

7.1.4 Bandgap Select
When present, the bandgap reference will provide a precise voltage reference for the power-fail monitor
circuitry. The bandgap is normally disabled automatically upon entering Stop mode to provide the lowest
power state. Since the bandgap is inactive, there can be no power-fail interrupt and no power-fail reset,
similar to a traditional 8051.

If the use of the power-fail features are desired in Stop mode, the BGS bit (EXIF, 91h) may be used.
When set to a logic 1 by software, the bandgap reference and associated power monitor circuits will
remain active in Stop mode. The price of this feature is higher power supply current requirements.

BGS allows the user to decide whether the control circuitry and its associated power consumption are
needed. If the application is such that power will not fail while in Stop or if it does not matter that power-
fails, the BGS should be set to 0 (default). If power can fail at any time and cause problems, the BGS
should be set to 1.

High-Speed Microcontroller User’s Guide

85 of 167

Figure 7-1. Power Cycle Operation

7.1.5 Watchdog Wake Up
The watchdog wake up is more of an application than a feature. It allows a system to enter the Idle mode
for power savings, then to wake up periodically to sample the external world. Idle mode is a low power
state described below. Any of the programmable timers can perform this function, but the watchdog
allows a much longer period to be selected. At 12MHz, the maximum watchdog timeout is over 5.5
seconds. This contrasts with 0.78 seconds using the 16-bit timers. Software that uses the watchdog as a
wake up alarm should only enable the watchdog interrupt and not the reset. Note that the watchdog
cannot be used to wake the system while in Stop mode since no clocks are running. Stop mode is
described below.

7.1.6 Power Management Summary
The following is a summary of the power management bits and those that are useful or related. They are
contained in the register locations WDCON;D8h, EIE;E8h, EXIF;91h, and PCON; 87h.

WDCON.6: POR, Power-On Reset. Hardware will set this bit on a power-up condition. Software can
read it, but must clear it manually. This bit assists software in determining the cause of a reset.

WDCON.5: EPFI, Enable Power-Fail Interrupt. Setting this bit to 1 enables the power-fail interrupt.
This will occur when VCC drops to approximately 4.5V, and the processor vectors to location 33h. Setting
this bit to a 0 turns off the Power-fail Interrupt.

WDCON.4: PFI, Power-Fail Interrupt Flag. Hardware will set this bit to a 1 when a power-fail
condition occurs. Software must clear the bit manually. Writing a 1 to this bit will force an interrupt, if
enabled.

WDCON.3: WDIF, Watchdog Interrupt Flag. If the watchdog interrupt is enabled (EIE.4), hardware
will set this bit to indicate that the Watchdog Interrupt has occurred. If the interrupt is not enabled, this bit

VCC

VPFW

VRST

VSS

INTERRUPT
SERVICE ROUTINE

INTERNAL RESET

XTAL1

tPOR

tCSU

High-Speed Microcontroller User’s Guide

86 of 167

indicates that the timeout has passed. If the watchdog reset is enabled (WDCON.1), the user has 512
clocks to strobe the watchdog prior to a reset. Software or any reset can clear this flag.

WDCON.2: WTRF, Watchdog Timer-Reset Flag. Hardware will set this bit when the watchdog timer
causes a reset. Software can read it, but must clear it manually. A power-fail reset will also clear the bit.
This bit assists software in determining the cause of a reset. If EWT = 0, the watchdog timer will have no
affect on this bit.

WDCON.1: EWT, Enable Watchdog Timer Reset. Setting this bit will turn on the watchdog timer
reset function. The interrupt will not occur unless the EWDI bit in the EIE register is set. A reset will
occur according to the WD1 and WD0 bits in the CKCON register. Setting this bit to a 0 will disable the
reset but leave the timer running.

WDCON.0: RWT, Reset Watchdog Timer. This bit serves as the strobe for the watchdog function.
During the timeout period, software must set the RWT bit if the watchdog is enabled. Failing to set the
RWT will cause a reset when the timeout has elapsed. There is no need to set the RWT bit to a 0 because
it is self-clearing.

EIE.4: EWDI, Enable Watchdog Interrupt. Setting this bit in software enables the watchdog interrupt.

EXIF.0: BGS, Bandgap Select. Setting this bit to a 1 will allow the use of the bandgap voltage reference
while in Stop mode. Since this function uses as much as 50mA, the bandgap is optional in Stop mode.
Setting this bit to a 0 will turn off the bandgap while in Stop mode. When BGS=0, no power-fail interrupt
or power-fail reset will be available in Stop mode.

PCON.1: STOP. When this bit is set, the program stops execution, clocks are stopped, and the CPU
enters power-down mode.

PCON.0: IDLE. Program execution halts leaving timers, serial ports, and clocks running.

EXIF.2: RGMD, Ring Oscillator Mode. Hardware will set this status bit to a 1 when the clock source is
the ring oscillator. Hardware will set this status bit to a 0 when the crystal is the clock source. Refer to
RGSL below for operation of the ring oscillator.

EXIF.1: RGSL, Ring Oscillator Select. When set to a 1 by software, the high-speed microcontroller
will use a ring oscillator to come out of Stop mode without waiting for crystal startup. This allows an
instantaneous startup when coming out of Stop mode. It is useful if software needs to perform a short
task, then return to Stop. It is also useful if software must respond quickly to an external event. After the
crystal has performed 65,536 cycles, hardware will switch to the crystal as its clock source. The RGMD
status bit reports on this changeover. When RGSL is set to a 0, the high-speed microcontroller will delay
software execution until after the 65,536 clock crystal startup time. RGSL is only cleared by a power-on
reset and is not altered by other forms of reset.

High-Speed Microcontroller User’s Guide

87 of 167

7.2 Power Conservation
The high-speed microcontroller is implemented using full CMOS circuitry for low power operation. It is
fully static so the clock speed can be run down to DC. Like other CMOS, the power consumption is also a
function of operating frequency. Although the high-speed microcontroller is designed for maximum
performance, it also provides improved power versus work relationships compared with standard 8051
devices. These topics are discussed in detail below.

The high-speed microcontroller provides two power conservation modes. They are similar, but have
different merits and drawbacks. These modes are Idle and Stop. In the original 8051, the Stop mode is
called power-down. These modes are invoked in the same manner as the original 8051 series.

7.2.1 Idle Mode
Idle mode suspends all CPU processing by holding the program counter in a static state. No program
values are fetched and no processing occurs. This saves considerable power versus full operation. The
virtue of Idle mode is that it uses half the power of the operating state, yet reacts instantly to any interrupt
conditions. All clocks remain active so the timers, Watchdog, Serial Port, and Power Monitor functions
are all working. Since all clocks are running, the CPU can exit the Idle state using any of the interrupt
sources.

Software can invoke the Idle mode by setting the IDLE bit in the PCON register at location 87h. The bit
is located at PCON.0. The instruction that executes this step will be the last instruction prior to freezing
the program counter. Once in Idle, all resources are preserved. There are two ways to exit the Idle mode.
First, any interrupt (that is enabled) will cause an exit. This will result in a jump to the appropriate
interrupt vector. The IDLE bit in the PCON register will be cleared automatically. On returning from this
vector using the RETI instruction, the next address will be the one immediately after the instruction that
invoked the Idle state.

The Idle mode can also be removed using a reset. Any of the three reset sources can do this. On receiving
the reset stimulus, the CPU will be placed in a reset state and the Idle condition cleared. When the reset
stimulus is removed, software will begin execution as for any reset. Since all clocks are active, there will
be no delay after the reset stimulus is removed. Note that if enabled, the Watchdog Timer continues to run
during Idle and must be supported.

7.2.2 Stop Mode
Stop mode is the lowest power state that the high-speed microcontroller can enter. This is achieved by
stopping all on-chip clocks, resulting in a fully static condition. No processing is possible, timers are
stopped, and no serial communication is possible. Processor operation will halt on the instruction that sets
the STOP bit. The internal amplifier that excites the external crystal will be disabled, halting crystal
oscillation in Stop mode. Table 7-A shows the state of the processor pins in Idle and Stop modes.

Stop mode can be exited in two ways. First, like the 8052 microcontrollers, a non-clocked interrupt such
as the external interrupts or the power-fail interrupt can be used. Clocked interrupts such as the watchdog
timer, internal timers, and serial ports will not operate in Stop mode. Note that the bandgap reference
must be enabled in order to use the power-fail interrupt to exit Stop mode, which will increase Stop mode
current. Processor operation will resume with the fetching of the interrupt vector associated with the
interrupt that caused the exit from Stop mode. When the interrupt service routine is complete, an RETI
will return the program to the instruction immediately following the one that invoked the Stop mode.

High-Speed Microcontroller User’s Guide

88 of 167

A second method of exiting Stop mode is with a reset. The watchdog timer reset is not available as a reset
source because no timers are running in Stop mode. An external reset via the RST pin will
unconditionally exit the device from Stop mode. If the BGS bit is set, the device will provide a reset
while in Stop mode if VCC should drop below the VRST level. If the BGS bit is 0, then a dip in power
below VRST will not cause a reset. For example, if VCC should drop to a level of VRST -0.5V, then return to
the full level, no reset will be generated. For this reason, use of the bandgap reference is recommended if
a brownout condition is possible in Stop mode. If power-fails completely (VCC = 0V), then a power on
reset will still be performed when VCC is reapplied regardless of the state of the BGS bit. Processor
operation will resume execution from address 0000h like any other reset.

Crystal Resume from Stop Mode
If the microcontroller does not contain a ring oscillator, or if the RGSL bit is 0, a device exiting Stop
mode must restart operation using the external crystal as a clock source. The device will experience a
power-on reset delay of 65,536 external clock cycles to allow the crystal to begin oscillation and the
frequency to stabilize. Once this delay is complete, software will begin execution from either address
0000h or the appropriate interrupt vector, depending on the stimulus to exit Stop mode. The same 65,536
external clock cycle delay is performed if an external crystal oscillator is used instead of an external
crystal.

Table 7-A. Pin States in Power Saving Modes

DEVICE MODE ALE PSEN P0 (AD0–7) P1 P2 P3
DS80C310
DS80C320 Idle or Stop 1 1 Latched1 Port data2 Latched3 Port data2

All Others
Internal program
execution

Idle or Stop 1 1 Port data2 Port data2 Port data2 Port data2

All Others
External program
execution

Idle 1 1 Latched1 Port data2 Latched3 Port data2

All Others
External program
execution

Stop 1 1 Port data 2 Port data2 Port data4 Port data2

1Port exhibits op code following instruction that sets the Stop bit. Port 0 is operating in true bidirectional mode, and will drive both a logic 1 and

a logic 0.
2Port reflects data stored in corresponding Port SFR. Port 0 functions as an open-drain output in this mode.
3Port exhibits address MSB of op code following instruction that sets the Stop bit.
4Port reflects data stored in corresponding Port SFR. In this mode, the port uses weak pullups. If a bit in the P2 SFR is a 1, the corresponding

device pin will transition slowly to a high when the reset state is entered.

7.2.3 Ring Oscillator Wake Up from Stop
A typical low-power application method is to keep the processor in Stop mode most of the time.
Periodically, the system will wake up (using an external interrupt), take a reading of some condition, then
return to sleep. The duration of full power operation is as short as possible. One disadvantage to this
method is that the clock must be restarted prior to performing a meaningful operation. This startup period
is a waste of time and power since no work can be performed. The high-speed microcontroller provides
an alternative.

If the Ring Select (RGSL) is enabled, the high-speed microcontroller can exit Stop mode running from an
internal Ring Oscillator. Upon receipt of an interrupt, this oscillator can start instantaneously, allowing
software execution to begin immediately while the oscillator is stabilizing. Once 65,536 clock cycles have

High-Speed Microcontroller User’s Guide

89 of 167

been detected, the CPU will automatically switch to the normal oscillator as its clock source. Some
devices incorporate the option of continuing to run from the ring oscillator following Stop mode even
after the 65,536 clock cycle period. However, if the required interrupt response is very short, the software
can re-enter Stop mode before the crystal is even stable. In this case, Stop mode can be invoked and both
oscillators will be stopped.

Speed Reduction
The high-speed microcontroller is a fully CMOS 8051-compatible microcontroller. It can use
significantly less power than other 8051 versions because it is more efficient. As an average, software
will run 2.5 times faster on the high-speed microcontroller than on other 8051 derivatives. The same job
can be accomplished by slowing down the crystal by a factor of 2.5. For example, an existing 8051 design
that runs at 12MHz can run at approximately 4.8MHz on the high-speed microcontroller. At this reduced
speed, the high-speed microcontroller will have lower power consumption than an 8051, yet perform the
same job.

Using the 2.5x factor, Table 7-B shows the approximate speed at which the high-speed microcontroller
can accomplish the same work as an 8051. The exact improvement will vary depending on the actual
instruction mix. Available crystal speeds must also be considered. Refer to Section 16 for information on
instruction timing.

Table 7-B. Crystal vs. MIPS Comparison

ORIGINAL 8051
CRYSTAL SPEED

(MHz)
MIPS

HIGH-SPEED
MICROCONTROLLER

CRYSTAL SPEED (MHz)
3.57 0.3 1.4
7.37 0.6 2.

11.0592 0.9 4.4
14.318 1.2 5.7

16 1.3 6.4
20 1.6 8
24 2.0 9.6
33 2.7 13.2
40 3.3 16

7.3 Power Management Modes
Power consumption in CMOS microcontrollers is a function of operating frequency. The Power
Management Mode (PMM) feature, available with some members of the high-speed microcontroller
family, allows software to dynamically match operating frequency and current consumption with the need
for processing power. Instead of the default 4 clocks per machine cycle, power management mode 1
(PMM1) and power management mode 2 (PMM2) utilize 64 and 1024 clocks per cycle respectively to
conserve power.

A number of special features have been added to enhance the function of the power management modes.
The switchback feature allows the device to almost instantaneously return to divide-by-4 mode upon
acknowledgment of an external interrupt or a falling edge on a serial port receiver pin. The advantages of
this become apparent when one calculates the increased interrupt service time of a device operating in
PMM. In addition, a device operating in PMM would normally be unable to sample an incoming serial
transmission to properly receive it. The switchback feature, explained below, allows a device to return to

High-Speed Microcontroller User’s Guide

90 of 167

divide-by-4 operation in time to receive incoming serial port data and process interrupts with no loss in
performance.
The DS87C520 and DS87C530 incorporate a Status register (STATUS;C5h) to prevent the device from
accidentally reducing the clock rate during the servicing of an external interrupt or serial port activity.
This register can be interrogated to determine if a high priority, low priority, or power-fail interrupt is in
progress, or if serial port activity is occurring. Based on this information the software can delay or reject
a planned change in the clock divider rate.

In addition, the DS87C520 and DS87C530 can operate from the internal ring oscillator during normal
operation, not only during the crystal warm-up period. Table 7-C summarizes the new control bits
associated with the power management features.

Table 7-C. Power Management and Status Bit Summary

BIT NAME LOCATION FUNCTION RESET
STATE

READ/WRITE
ACCESS

CD1, CD0 PMR.7–6

Clock Divider Control
CD1 CD0 Osc Cycles per Machine Cycle
0 0 Reserved
0 1 4 (Reset Default)
1 0 64 (PMM1)
1 1 1024 (PMM2)

0,1

Write: 0,1 anytime;
1,0 & 1,1 only when

previously in 0,1
state. Unrestricted

read.

SWB PMR.5

Switchback Enable
0=Interrupts and serial port activity will not affect
clock divider control bits
1=Enabled Interrupts and serial port activity will
cause a switchback

0 Unrestricted

PIP STATUS.7
Power-fail Interrupt Status
0=No power-fail interrupt in progress
1=Power-fail interrupt in progress

0 Read Only

HIP STATUS.6
High Priority Interrupt Status
0=No high priority interrupt in progress
1=High priority interrupt in progress

0 Read Only

LIP STATUS.5
Low Priority Interrupt Status
0=No low priority interrupt in progress
1=Low priority interrupt in progress

0 Read Only

SPTA1 STATUS.3
Serial Port 1 Transmitter Activity Status
0=Serial port 1 transmitter inactive
1=Serial port 1 transmitter active

0 Read Only

SPRA1 STATUS.2
Serial Port 1 Receiver Activity Status
0=Serial port 1 receiver inactive
1=Serial port 1 receiver active

0 Read Only

SPTA0 STATUS.1
Serial Port 0 Transmitter Activity Status
0=Serial port 0 transmitter inactive
1=Serial port 0 transmitter active

0 Read Only

SPRA0 STATUS.0
Serial Port 0 Receiver Activity Status
0=Serial port 0 receiver inactive
1=Serial port 0 receiver active

0 Read Only

Power Management Mode Timing
The two power management modes reduce power consumption by internally dividing the clock signal to
the device, causing it to operate at a reduced speed. When PMM is invoked, the external crystal will
continue to operate at full speed. The difference is that the device uses 16 (PMM1) or 256 (PMM2)
external clocks to generate each internal clock cycle (C1, C2, C3 or C4) as opposed to 1 clock per internal
clock cycle in divide-by-4 mode. This translates to 64 or 1024 external clocks per machine cycle in

High-Speed Microcontroller User’s Guide

91 of 167

PMM1 or PMM2, respectively. Relative timing relationships of all signals when the device is operating in
PMM1 or PMM2 will remain the same as the 4-cycle timing. Note that all internal functions, on-board
timers (including serial port baud rate generation), watchdog timer, and software timing loops will also
run at the reduced speed. Most applications will not find it necessary to attend to this much detail, but the
information is provided for calculating critical timings. Figure 7-2 demonstrates the internal timing
relationships during PMM1.

Figure 7-2. Internal Timing Relationships in PMM1

PMM1 and PMM2 are entered and exited by setting the Clock Rate Divider bits (PMR.7-6). In addition, it
is possible use the switchback feature to affect a return to the divide-by-4 mode from either power
management mode. This allows both hardware and software to cause an exit from PMM. Entry to or exit
from either PMM must be by the divide-by-4 mode. This means that to switch from divide-by-64 to
divide-by-1024 and vice versa, one must first switch back to divide-by-4 mode. Attempts to execute an
illegal speed change will be ignored and the bits will remain unchanged. It is the responsibility of the
software to test for serial port activity before attempting to change speed, as a modification of the clock
divider bits during a serial port operation will corrupt the data.

PMM and Peripheral Functions
Timers 0, 1, and 2 will default on reset to a 12 clock per cycle operation to remain compatible with the
original 8051 timing. The timers can be individually configured to run at machine cycle timing (divide-
by-4) by setting the relevant bits in the Clock Control Register (CKCON;8Eh). Because the timers derive
their timebase from the internal clock, timers 0, 1, and 2 operate at reduced clock rates during PMM. This
will also affect the operation of the serial ports in PMM. In general, it is not possible to generate standard

INTERNAL
CLOCK
(PMM1)

SINGLE-CYCLE INSTRUCTION

ALE

SINGLE-CYCLE
INSTRUCTION

MACHINE CYCLE MACHINE CYCLE

EXTERNAL
CLOCK

MACHINE
CYCLES

64 CLOCK CYCLES

C1 C2 C3 C4 C1 C2

High-Speed Microcontroller User’s Guide

92 of 167

baud rates while in PMM, and the user is advised to avoid PMM or use the switchback feature if serial
port operation is desired. Table 7-D shows the effect of the clock divider value on timer operation.

Table 7-D. Effect of Clock Modes on Timer Operation

OSC. CYCLES
PER TIMER
0/1/2 CLOCK

OSC. CYCLES
PER TIMER 2

CLOCK, BAUD
RATE GEN.

OSC. CYCLES
PER SERIAL

PORT CLOCK
MODE 0

OSC. CYCLES PER
SERIAL PORT

CLOCK MODE 2 CD1 CD0
OSC. CYCLES

PER MACHINE
CYCLE

TxM=1 TxM=0 T2M=1 T2M=0 SM2=0 SM2=1 SMOD=0 SMOD=1
0 0 Reserved
0 1 4 4 12 2 2 12 4 64 32
0 0 64 (PMM1) 64 192 32 32 3072 64 1024 512
1 1 1024 (PMM2) 1024 3072 512 512 1024 1024 16,348 8192

Switchback
The switchback feature solves one of the most vexing dilemmas faced by power-conscious systems.
Many applications are unable to use the Stop and Idle modes because they require constant computation.
Traditionally, system designers could not reduce the operating speed below that required to process the
fastest event. This meant that system architects would be forced to operate their systems at the highest
rate of speed even when it was not required. The switchback feature allows a system to operate at a
relatively slow speed, and burst to a faster mode when required by an external event. When this feature is
enabled by setting the Switchback Enable bit, SWB, (PMR.5), a qualified interrupt or serial port reception
or transmission will cause the device to return to divide-by-4 mode. A qualified interrupt is defined as an
interrupt that has occurred and been acknowledged. This means that an interrupt must be enabled and also
not blocked by a higher priority interrupt. After the event is complete, software can manually return the
device to the appropriate PMM. The following sources can trigger a switchback:

� External interrupt 0/1/2/3/4/5
� Serial start bit detected, serial port 0/1
� Transmit buffer loaded, serial port 0/1
� Watchdog timer reset
� Power-on reset
� External reset

In the case of a serial port-initiated switchback, the switchback is not generated by the associated
interrupt. This is because a device operating in PMM will not be able to correctly receive a byte of data to
generate an interrupt. Instead, a switchback is generated by a serial port reception on the falling edge
associated with the start bit, if the associated receiver enable bit (SCON0.4 or SCON1.4) is set. For serial
port transmissions, a switchback is generated when the serial port buffer (SBUF0;99h or SBUF1;C1h) is
loaded. This ensures the device will be operating in divide-by-4 mode when the data is transmitted, and
eliminates the need for a write to the CD1, CD0 bits to exit PMM before transmitting. The switchback
feature is unaffected by the state of the serial port interrupt flags (RI_0, TI_0, RI_1, TI_1).

The timing of the switchback is dependent on the source. Interrupt-initiated switchbacks will occur at the
start of the first C1 cycle following the event initiating the switchback. In PMM, each internal Cx cycle is
16 external clock cycles for PMM1 and 256 cycles for PMM2. If the current instruction in progress is a
write to the IE, IP, EIE, or EIP registers, interrupt processing will be delayed until the completion of the
following instruction. Serial transmit-initiated switchbacks occur at the start of the instruction following
the MOV that loads SBUF0 or SBUF1. Serial reception-initiated switchbacks occur during the Cx cycle
in which the falling edge was detected. There are a few points that must be considered when using a serial

High-Speed Microcontroller User’s Guide

93 of 167

port reception to generate a switchback. Under normal circumstances, noise on the line or an aborted
transmission would cause the serial port to timeout and the data to be ignored. This presents a problem if
the switchback is used, however, because a switchback would occur but there is no indication to the
system that one has occurred. If PMM and serial port switchback functions are used in a noisy
environment, the user is advised to periodically check if the device has accidentally exited PMM. A
similar problem can occur if multiprocessor communication protocols are used in conjunction with PMM.
The high-speed microcontroller family supports both the use of the SM2 flag (SCON0.5 or SCON1.5),
and the slave address recognition registers (SADDR0;A9h, SADDR1;AAh, SADEN0;B9h,
SADEN1;BAh) for multiprocessor communications. The problem is that an invalid address that should be
ignored by a particular processor will still generate a switchback. As a result it is not recommended to use
a multiprocessor communication scheme in conjunction with PMM. If the system power considerations
will allow for an occasional erroneous switchback, a polling scheme can be used to place the device back
into PMM.

Clock Source Selection
The high-speed microcontroller family supports three different clock sources for operation. As with most
microcontrollers, the device can be clocked from an external crystal using the on-board crystal amplifier,
or a clock source can supplied by an external oscillator. In addition, some members of the high-speed
microcontroller family incorporate an on-board ring oscillator to provide a quick resumption from Stop
mode. The ring oscillator is a low power digital oscillator internal to the microcontroller. When enabled,
it provides an approximately 2MHz–4MHz clock source for device operation without external
components. The ring oscillator is not as stable as an external crystal, and software should refrain from
performing timing dependent operations, including serial port activity, while operating from the ring
oscillator.

The ring oscillator provides many advantages to the designers of microcontroller-based systems. One is
that it allows Dallas Semiconductor microcontrollers to perform a fast resume from Stop mode,
eliminating the crystal warm-up delay when restarting the device. As an added feature, the DS87C520
and DS87C530 will also support extended operation from the ring oscillator, not only during the crystal
warm-up period when resuming from Stop. All devices in the high-speed microcontroller family must
begin operation following a power-on reset from an external clock source, either an external crystal or
oscillator. Software can then disable the crystal and run from the lower power ring oscillator. The control
and status bits that support the new and/or enhanced features are shown in Table 7-E.

High-Speed Microcontroller User’s Guide

94 of 167

Table 7-E. Clock Control and Status Bit Summary
BIT LOCATION FUNCTION RESET WRITE ACCESS

XT/ RG EXIF.3

Crystal/Ring Clock Source Select. This bit is not present on
the 80C320.
1=Select crystal or external clock as clock source,
0=Select ring oscillator as clock source

1
0 anytime;

1 when XTUP = 1
and XTOFF = 0

RGMD EXIF.2
Ring Oscillator Mode Status.
1=Ring oscillator is current clock source,
0=Crystal or external clock is current clock source.

0 None

RGSL EXIF.1

Ring Oscillator Select, Stop Mode.
1=Ring oscillator will be the clock source when resuming
from Stop mode,
0=Crystal or external clock will be the clock
source when resuming from Stop mode
Note: Upon completion of crystal warm up period,
DS80C320 devices will switch to crystal.
DS87C520 and DS87C530 devices will switch to clock
source designated by XT/RG bit

 Unrestricted

XTOFF PMR.3

Crystal Oscillator Disable. Disables crystal operation
after ring mode has been selected. This bit is not present on
the 80C320.
1=Crystal amplifier is disabled.
0=Crystal amplifier is enabled. Check XTUP for status.

0
0 anytime;

1 when XT/ RG = 0

XTUP STATUS.4

Crystal Oscillator Warm Up Status. This bit is
not present on the 80C320.
1=Oscillator warm-up complete.
0=Oscillator warm-up still in progress, crystal not available.

1 None

Using the Ring Oscillator
The ring oscillator is an internal 2MHz–4MHz clock source used to quickly exit Stop mode and resume
operation without waiting for an external clock source to stabilize. Some devices feature the additional
capability of using the ring oscillator as the primary clock source during normal operation, once the
device has performed an initial power-on reset using an external clock source. Because the ring oscillator
lacks the stability of a piezoelectric-generated clock source, high-precision timing operations should be
avoided while running from the ring oscillator. This includes using the timers for pulse measurement, and
the use of the serial ports in asynchronous modes. Serial ports operating in mode 0 are unaffected by the
stability of the clock source because this mode utilizes a synchronizing clock.

If the ring oscillator select bit, RGSL (EXIF.1) is set, the device will resume operation immediately using
the internal ring oscillator as the clock source. The device will continue to run from the ring oscillator
until the crystal warm-up period of 65,536 clock cycles (measured from the external source) has
completed. At this time the device will switch to the clock source active before it entered Stop mode and
continue operation. This allows software execution to begin immediately upon resuming from Stop mode.
The ring oscillator mode bit, RGMD (EXIF.2), indicates the current clock source. In Stop mode, enabled
interrupts become true edge triggered interrupts, compared with the sampled edge detection used during
normal operation. This means that external interrupts are more sensitive to noise in Stop mode than
during normal operation. Applications should be carefully designed to ensure that noise will not cause an
erroneous exit from Stop mode.

High-Speed Microcontroller User’s Guide

95 of 167

Switching Between Clock Sources
DS87C520 and DS87C530 incorporate the ability to run the device from the ring oscillator after the
crystal warm-up period has elapsed. Immediately following a reset (including initial power-up), all
devices must operate from an external crystal or oscillator. At this point, software may switch to the ring
oscillator by clearing the XT/ RG bit (EXIF.3). If there is no expectation that the crystal oscillator will be
needed soon, the crystal oscillator can be disabled by setting the Crystal Oscillator Disable Bit, XTOFF
(PMR.3). Note that switching to the ring oscillator does not automatically disable the crystal amplifier,
and thus it is possible to be operating the device from the ring oscillator and have the external crystal
amplifier operating at the same time. In some cases this may be desired to take advantage of the low-
frequency, low-power feature of the ring oscillator but still have the capability of quickly switching back
to the external crystal to perform timing or serial port operations.

Switching from the ring oscillator to the crystal oscillator is more involved due to the startup delays
inherent in the external crystal. To prevent an accidental disabling of the device, the XTUP bit must be set
by internal hardware (indicating an enabled, stable crystal) before setting the XT/ RG bit. The procedure to
switch to the crystal oscillator when running from the ring oscillator is as follows:

1) Clear the crystal oscillator disable bit, XTOFF (PMR.3) to restart the crystal oscillator and start the

crystal warm-up period.
2) Wait for the crystal oscillator warm up status bit, XTUP (STATUS.4) to be set, indicating that the

external crystal warm up period is complete. This will take 65,536 external clock cycles.
3) Set the crystal oscillator/ring oscillator select bit, XT/ RG (EXIF.3) to select the crystal as the clock

source.

High-Speed Microcontroller User’s Guide

96 of 167

8. RESET CONDITIONS
The high-speed microcontroller provides several ways to place the CPU in a reset state. It also offers the
means for software to determine the cause of a reset. The reset state of most processor bits is not
dependent on the type of reset, but selected bits do depend on the reset source. The reset sources and the
reset state are described below.

8.1 Reset Sources
High-speed microcontrollers have three ways of entering a reset state: power-on/power-fail reset,
watchdog timer reset, and external reset.

8.1.1 Power-On/Fail Reset
Members of the high-speed microcontroller family incorporate an internal voltage reference that holds the
CPU in the power-on reset state while VCC is out of tolerance. Once VCC rises above the threshold, the
microcontroller restarts the oscillation of the external crystal and count 65,536 clock cycles. The
processor will then begin software execution at location 0000h.

The voltage at which the reset state is entered depends on the specific device. If the device does not
contain a precision voltage reference, the power-on reset threshold may be anywhere between 0.8V and
VCCMIN. If the device incorporates a precision voltage reference, the threshold will be as specified by the
VRST parameter in the data sheet. This helps the system maintain reliable operation by only permitting
processor operation when voltage is in a know-good state.

The processor will exit the reset condition automatically once the above conditions are met. This happens
automatically, needing no external components or action. Execution begins at the standard reset vector
address of 0000h. Software can determine that a power-on reset has occurred using the power-on reset
flag (POR). It is located at WDCON.6. Since all resets cause a vector to location 0000h, the POR flag
allows software to acknowledge that power-failure was the reason for a reset.

Software should clear the POR bit after reading it. When a reset occurs, software is able to determine if a
power cycle was the cause. In this way, processing may take a different course for each of the three resets
if applicable. When power-fails (drops below VRST), the power monitor invokes the reset state again. This
reset condition remains while power is below the threshold. When power returns above the reset
threshold, a full power-on reset is performed. A brownout that causes VCC to drop below VRST appears the
same as a power-up.

8.1.2 Watchdog Timer Reset
The watchdog timer is a free-running timer with a programmable interval. Software can clear the timer at
anytime, causing the interval to begin again. The watchdog supervises CPU operation by requiring
software to clear it before the timeout expires. If the timer is enabled and software fails to clear it before
this interval expires, the CPU is placed into a reset state. The reset state is maintained for two machine
cycles. Once the reset is removed, the software resumes execution at 0000h.

The watchdog timer is fully described in Section 11. Software can determine that a watchdog timeout was
the reason for the reset by using the watchdog timer reset flag (WTRF). WTRF is located at WDCON.2.
Hardware sets this bit to a logic 1 when the watchdog times out without being cleared by software if
EWT = 1. If a watchdog timer reset occurs, software should clear this flag manually. This allows software
to detect the event if it occurs again.

High-Speed Microcontroller User’s Guide

97 of 167

8.1.3 External Reset
If the RST input is taken to a logic 1, the CPU is forced into a reset state. This does not occur
instantaneously, as the condition must be detected and then clocked into the microcontroller. It requires a
minimum of two machine cycles to detect and invoke the reset state. Thus the reset is a synchronous
operation and the crystal must be running to cause an external reset.

Once the reset state is invoked, it is maintained as long as RST = 1. When the RST is removed, the CPU
will exit the reset state within two machine cycles and begin execution at address 0000h. All registers
default to their power-on reset state. There is no flag to indicate that an external reset was applied.
However, since the other two sources have associated flags, the RST pin is the default source when
neither POR nor WTRF is set.

If a RST is applied while the processor is in the Stop mode, the scenario changes slightly. As mentioned
above, the reset is synchronous and requires a clock to be running. Since the Stop mode stops all clocks,
the RST will first cause the oscillator to begin running and force the program counter to 0000h. Rather
than a two-machine cycle delay as described above, the processor applies the full power-on delay (65,536
clocks) to allow the oscillator to stabilize.

8.2 Reset State
Regardless of the source of the reset, the state of the microcontroller is the same while in reset. When in
reset, the oscillator is running, but no program execution is allowed. When the reset source is external, the
user must remove the reset stimulus. When power is applied to the device, the power-on delay removes
the stimulus automatically.

Resets do not affect the Scratchpad RAM. Thus any data stored in RAM will be preserved. The contents
of internal MOVX data memory will also remain unaffected by a reset. Note that if the power supply dips
below approximately 2V, the RAM contents may be lost. The minimum voltage required for RAM data
retention in not specified. Since it is impossible to determine if the power was lower than 2V prior to the
power-on reset, RAM must be assumed lost when POR is set.

The reset state of SFR bits are described in Section 4. Bits marked SPECIAL have conditions that can
affect their reset state. Consult the individual bit descriptions for more information. Note that the stack
pointer will also be reset. The stack is effectively lost during a reset even though the RAM contents are
not altered. Interrupts and timers are disabled. The state of the watchdog timer is dependent on the
specific device in use. Note that the watchdog time out defaults to its shortest interval on any reset. I/O
Ports are taken to a weak high state (FFh). This leaves each port pin configured with the data latch set to a
1. Ports do not go to the 1 state instantly when a reset is applied, but will be taken high within two
machine cycles of asserting a reset. When the reset stimulus is removed, program execution begins at
address 0000h.

8.3 No-Battery Reset
The battery backup feature of the DS87C530 introduces a new type of reset condition. Most SFR bits are
automatically reset to their default state upon a power-on reset. The external backup battery feature makes
some bits non-volatile, however, and these battery-backed bits will not change state when a power-on
reset is applied. Upon the loss or initial connection of battery power these bits will default to the state
shown in Table 8-A. Any bits not listed below are either unchanged or set to their default state by a
power-on reset.

High-Speed Microcontroller User’s Guide

98 of 167

Table 8-A. No-Battery Reset Default
BIT NAME LOCATION NO-BATTERY

RESET STATE BIT NAME LOCATION NO-BATTERY
RESET STATE

E4K TRIM.7 0 SSCE RTCC.7 Indeterminate
X12/6 TRIM.6 1 SCE RTCC.6 Indeterminate
TRM2 TRIM.5 1 MCE RTCC.5 Indeterminate
TRM2 TRIM.4 0 HCE RTCC.4 Indeterminate
TRM1 TRIM.3 0 RTCIF RTCC.1 Indeterminate
TRM1 TRIM.2 1 RTCE RTCC.0 Indeterminate
TRM0 TRIM.1 0 RTCSS.7–0 RTCSS.7–0 Indeterminate
TRM0 TRIM.0 1 RTCS.7–0 RTCS.7–0 Indeterminate
RTASS.7–0 RTASS.7–0 Indeterminate RTCM.7–0 RTCM.7–0 Indeterminate
RTAS.7–0 RTAS.7–0 Indeterminate RTCH.7–0 RTCH.7–0 Indeterminate
RTAM.7–0 RTAM.7–0 Indeterminate RTCD0.7–0 RTCD1.7–0 Indeterminate
RTAH.7–0 RTAH.7–0 Indeterminate RTCD1.7–0 RTCD1.7–0 Indeterminate

8.4 In-System Disable Mode
The high-speed microcontroller family supports in-circuit debugging of designs. The in-system disable
(ISD) feature allows the device to be tri-stated for in-circuit emulation or board testing. During ISD
mode, the device pins will take on the following states:

DEVICE PIN STATE DURING ISD

Port 0, 1, 2, 3 RST, EA True Tri-state

ALE, PSEN Weak Pullup (~10KΩ)
XTAL1, XTAL2 Oscillator remains active

The following procedure is used to enter ISD mode:

1) Assert reset by pulling RST high.
2) Pull ALE low and pull PSEN high.
3) Verify that P2.7, P2.6, P2.5 are not being driven low.
4) Release RST.
5) Hold ALE low and PSEN high for at least 2 machine cycles.
6) Device is now in ISD mode. Release ALE and PSEN if desired.

Note that pins P2.7, P2.6, P2.5 should not be driven low when RST is released. This will place the device
into a reserved test mode. Because these pins have a weak pullup during reset, they can be left floating.
The test mode is only sampled on the falling edge of RST, and once RST is released their state will not
affect device operation. In a similar manner, the PSEN and RST pins can be released once ISD mode is
invoked, and their state will not affect device operation. The RST pin will also be in a tri-state mode, but
asserting it in ISD mode will return the device to normal operation.

High-Speed Microcontroller User’s Guide

99 of 167

9. INTERRUPTS
The high-speed microcontroller family utilizes a three-priority interrupt system. The number of interrupts
varies according to the specific device. Each source has an independent priority bit, flag, interrupt vector,
and enable. In addition, interrupts can be globally enabled (or disabled). The system is compatible with
the original 8051 family. All of the original interrupts are available.

Several new sources have been added with new associated control and status bits, and new interrupt
vectors. Note that the interrupt vector table can extend from 0000h to 006Bh, so existing code may
require a relocation of the start address to avoid a conflict with the upper end of the vector table. A
summary of all interrupts appears in Table 9-A. Note that the DS87C550 microcontroller incorporates
several interrupt vectors whose locations differ from those used by the high-speed microcontroller family
or other 8051 derivatives.

Table 9-A. Interrupt Summary

INTERRUPT INTERRUPT
VECTOR

NATURAL
PRIORITY FLAG ENABLE PRIORITY

CONTROL
Power-Fail Indicator 33h 0 PFI (WDCON.4) EPFI (WDCON.5) N/A
External Interrupt 0 03h 1 IE0 (TCON.1)** EX0 (IE.0) PX0 (IP.0)
Timer 0 Overflow 0Bh 2 TF0 (TCON.5)* ET0 (IE.1) PT0 (IP.1)
External Interrupt 1 13h 3 IE1 (TCON.3)** EX1 (IE.2) PX1 (IP.2)
Timer 1 Overflow 1Bh 4 TF1 (TCON.7)* ET1 (IE.3) PT1 (IP.3)

Serial Port 0 23h 5 RI_0 (SCON0.0),
TI_0 (SCON0.1) ES0 (IE.4) PS0 (IP.4)

Timer 2 Overflow 2Bh 6 TF2 (T2CON.7) ET2 (IE.5) PT2 (IP.5)

Serial Port 1 3Bh 7 RI_1 (SCON1.0),
TI_1 (SCON1.1) ES1 (IE.6) PS1 (IP.6)

External Interrupt 2 43h 8 IE2 (EXIF.4) EX2 (EIE.0) PX2 (EIP.0)
External Interrupt 3 4Bh 9 IE3 (EXIF.5) EX3 (EIE.1) PX3 (EIP.1)
External Interrupt 4 53h 10 IE4 (EXIF.6) EX4 (EIE.2) PX4 (EIP.2)
External Interrupt 5 5Bh 11 IE5 (EXIF.7) EX5 (EIE.3) PX5 (EIP.3)
Watchdog Interrupt 63h 12 WDIF (WDCON.3) EWDI (EIE.4) PWDI (EIP.4)
Real-Time Clock 6Bh 13 RTCIF (RTCC.1) ERTCI (EIE.5) PRTCI (EIP.5)

Unless marked, these flags must be cleared manually by software.
*Cleared automatically by hardware when the service routine is vectored to.
**If edge triggered, cleared automatically by hardware when the service routine is vectored to. If level-triggered, flag follows the state of the pin.

9.1 Interrupt Overview
An interrupt allows the software to react to unscheduled or asynchronous events. When an interrupt
occurs, the CPU is expected to “service” the interrupt. This service takes the form of an interrupt service
routine (ISR). The ISR resides at a predetermined address as shown in Table 9-A. When the interrupt
occurs, the CPU will vector to the appropriate location. It will run the code found at this location, staying
in an interrupt service state until done with the ISR. Once an ISR has begun, it can be interrupted only by
a higher priority interrupt. The ISR is terminated by a return from interrupt instruction (RETI). When an
RETI is performed, the processor will return to the instruction that would have been next when the
interrupt occurred.

Each interrupt source has an associated vector. This is the address to which the CPU will jump when the
interrupt occurs. When the interrupt condition occurs, the processor will also indicate this by setting a flag
bit. This bit is set regardless of whether the interrupt is enabled or not. That is, the flag responds to the
condition, not the interrupt. Most flags must be cleared manually by software. However, IE0 and IE1 are
cleared automatically by hardware when the service routine is vectored to if the interrupt was edge

High-Speed Microcontroller User’s Guide

100 of 167

triggered. In level-triggered mode, the flag follows the state of the pin. Flags TF0 and TF1 are always
cleared automatically when the service routine is vectored to. Refer to the individual bit descriptions for
more details. In order for the processor to acknowledge the interrupt and vector to the ISR, the interrupt
must be enabled. Each source has an independent enable, as shown in Table 9-A.

Prior to using any source, interrupts must be globally enabled. This is done using the EA bit at location
IE.7. Setting this bit to a logic 1 allows individual interrupts to be enabled. Setting it to a logic 0 disables
all interrupts regardless of the individual interrupt enables. The only exception is the power-fail interrupt.
This is subject to its individual enable only. The EA bit has no effect on the power-fail interrupt.

9.2 Interrupt Sources
Various combinations of interrupt sources are available on different members of the high-speed
microcontroller family. These are broken into several categories: external, timer-based, serial
communication, real-time clock, and power monitor. Each type is described below. Interrupt sources are
sampled once per machine cycle. If the source goes active after the sample, it will not be registered until
the next cycle.

9.2.1 External Interrupts
The high-speed microcontroller has six external interrupt sources. These include the standard 2 interrupts
of the 8051 architecture and four new sources. The original interrupts are INT0 and INT1. These are
active low, but can be programmed to be edge- or level-sensitive. Bits IT0 and IT1 control the detection
mode, respectively. When ITx = 0, the interrupt is triggered by a logic 0 on the appropriate interrupt pin.
The interrupt condition remains in force as long as the pin is low. When ITx = 1, the interrupt is pseudo-
edge triggered. This means that if on successive samples, the pin is high then low, the interrupt is
activated.

Since the external interrupts are sampled, the pin driver of an edge-triggered interrupt should hold both
the high condition, then the low condition for at least one machine cycles (each) to ensure detection. This
means maximum sampling frequency on any interrupt pin is 1/8 of the main oscillator frequency.

It is important to note that level-sensitive interrupts are not latched. If the interrupt is level sensitive, the
condition must be present until the processor can respond to the interrupt. This is most important if other
interrupts are being used with a higher or equal priority. If the device is currently processing another
interrupt, the condition must be present until the present interrupt is complete. This is because the level-
sensitive interrupt will not be sampled until the RETI instruction is executed.

The remaining four external interrupts are similar in nature, with two differences. First, INT2 and INT4
are active high instead of active low. Second, all of the four new interrupts are edge-detect only. They do
not have level-detect modes. All associated bits and flags operate the same and have the same polarity as
the original two. A logic 1 indicates the presence of a condition, not the logic state of the pin.

If the Power Management Modes are utilized, the designer must remember that edge triggered interrupts
must be high and low for one machine cycle before being recognized. This means that in PMM1 it will
require 128 external clock cycles to recognize a level sensitive interrupt. Similarly, in PMM2 it will
require 2048 external clock cycles to recognize a level sensitive interrupt. As a result, the interrupt
latency for these interrupts will be slightly longer in PMM1 or PMM2.

High-Speed Microcontroller User’s Guide

101 of 167

9.2.2 Timer Interrupts
The high-speed microcontroller incorporates three 16-bit programmable timers, each of which can
generate an interrupt. In addition, some members of the family incorporate a programmable watchdog
timer. The three programmable timers operate in the same manner as the 80C52. Each timer has an
independent interrupt enable, flag, vector, and priority. The watchdog timer also has its own interrupt
enable, flag, and priority.

Timers 0, 1, and 2 will set their respective flags when the timer overflows from a full condition,
depending on its mode. This flag will be set regardless of the interrupt enable state. If the interrupt is
enabled, this event will also cause a jump to the corresponding interrupt vector. For timers 0 and 1, the
flags are cleared when the processor jumps to the interrupt vector. Thus these flags are not available for
use by the interrupt service routine (ISR), but are available outside of the ISR and in applications that do
not acknowledge the interrupt (i.e., jump to the vector). If the interrupt is not acknowledged, then
software must manually clear the flag bit. In timer 2, jumping to the interrupt vector does not clear the
flag, so software must always clear it manually. Timer 0 and 1 flag bits reside in the TCON register.
Timer 2 flag bit resides in the T2CON register. The interrupt enables and priorities for timers 0, 1, and 2
reside in the IE and IP registers respectively.

The watchdog interrupt usually has a different connotation than the timer interrupts. Unless the watchdog
is being used as a very long timer, the interrupt means the software has failed to reset the counter and may
be lost. The ISR can attempt to determine the system state. If the watchdog is not cleared, the CPU will
be reset in 512 clocks if EWT=1. Like other sources, the watchdog timer has a flag bit, an enable, and a
priority. It also has its own vector. These are summarized in Table 9-A.

9.2.3 Serial Communication Interrupts
Each UART is capable of generating an interrupt. The UART has its own interrupt enable, vector, and
priority. The UART differs from other sources as it has two flags. These are used by the ISR to determine
whether the interrupt comes from a received word or a transmitted one. Unlike the timers, the UART
flags are not altered when the interrupt is serviced. Software must change them manually.

When a UART finishes the transmission of a word, an interrupt will be generated (if enabled). Likewise,
the UART will generate an interrupt when a word is completely received. The CPU will not be notified
until the word is completely received or transmitted.

9.2.4 Real-Time Clock
The DS87C530 real-time clock (RTC) has the ability to assert an RTC interrupt if enabled. The alarm can
be programmed for a specific time once per day, or can be a recurring alarm once per hour, minute,
second, or subsecond. This interrupt has the lowest priority of all interrupts, but can be used to bring the
device out of Stop mode if desired. More information on this interrupt can be found in Section 14.

9.2.5 Power-Fail Interrupt
Some devices have the ability to generate an interrupt when VCC drops below a predetermined level.
These devices compare VCC against an internal reference. If VCC drops below the level VPFW , an interrupt
will result (if enabled). Note that the Power-fail Interrupt has the highest priority. The user cannot alter
the priority level, but the interrupt can be disabled if not needed. The level of VPFW is provided in the data
sheet specifications associated with each product. Note that the EPFI bit enables the power-fail interrupt.
This bit is not subject to the global interrupt enable (EA). The power-fail interrupt is a level-sensitive
interrupt and will remain set as long as VCC remains below VPFW.

High-Speed Microcontroller User’s Guide

102 of 167

9.3 Simulated Interrupts
Software can simulate any interrupt source by setting the corresponding flag bit. This forces an interrupt
condition that will be acknowledged if enabled and is otherwise indistinguishable from the real thing.
Thus an interrupt flag bit should never be set to a logic 1 by software inadvertently. Once an interrupt has
been acknowledged, software cannot prevent or end the interrupt by clearing its flag. However, if for
some reason the interrupt acknowledge is delayed, software may clear the flag and thereby prevent the
interrupt from occurring. One exception is the real-time clock interrupt flag, RTCIF, which cannot be set
in software.

9.4 Interrupt Priorities
The high-speed microcontroller has three interrupt priority levels: highest, high, and low.

The power-fail interrupt is the only source that has highest priority and this level is fixed. The remaining
sources are individually programmable to either high or low. Low priority is the default. A low priority
interrupt can be interrupted by a high (or highest) priority interrupt. A high priority interrupt can only be
interrupted by the Power-fail interrupt.

When an interrupt occurs and is serviced, its priority determines if its ISR can be interrupted. No interrupt
source of equal or lesser priority can interrupt another source. That is, an incoming interrupt must be of a
higher priority than the one currently being serviced to have priority.

If two interrupt sources of equal priority levels are requested simultaneously, the natural priority is used
to arbitrate. The natural priority is given in Table 9-A. Note that natural priority is only used to resolve
simultaneous requests. Once an interrupt of a given priority is invoked, only a source that is programmed
with a higher priority can intercede.

9.5 Interrupt Acknowledge Cycle
The process of acknowledging an interrupt requires multiple machine cycles that begin with the setting of
the associated flag. For edge-triggered external interrupts and internal interrupt sources, the interrupt flags
are set automatically by hardware. For level-sensitive external interrupts, the flags are actually under
control of the external signal, and the flag will rise and fall with the pin level. Each interrupt flag is
sampled once per machine cycle. Later in the same machine cycle, the samples are polled by hardware. If
the sample indicates a pending interrupt and the interrupt is enabled, then on the next machine cycle it
will be acknowledged by the hardware forcing an LCALL to the appropriate vector address. This LCALL
will occur unless blocked by one of the following conditions.

1) An interrupt of equal or greater priority has already been invoked and the RETI instruction has not

been issued to terminate it.
2) The current machine cycle is not the final cycle in the execution of the current instruction.
3) The instruction in progress is an RETI or a write to IP, IE, EIP, or EIE.

The individual interrupt sources and associated enable and priority bits are shown in Figure 9-1. While
the final selection of the appropriate interrupt vector address is referred to as a polling process, this
function is actually performed in a single machine cycle using combinatorial logic.

High-Speed Microcontroller User’s Guide

103 of 167

9.6 Interrupt Latency
Interrupt response will require a varying amount of time depending on the state of the microcontroller
when the interrupt occurs. If the microcontroller is performing an ISR with equal or greater priority, the
new interrupt will not be invoked. In other cases, the response time depends on the current instruction.
The fastest possible response to an interrupt is 5 machine cycles. This includes one cycle for detecting the
interrupt and four cycles to perform the LCALL that is inherent in the interrupt request. The maximum
response time (if no other interrupt is in service) occurs if the microcontroller is performing an RETI
instruction, and then executes a MUL or DIV as the next instruction. From the time an interrupt source is
activated (not detected), the longest reaction time is 13 machine cycles. This includes 1 cycle to detect the
interrupt, 3 cycles to finish the RETI, 5 to perform the MUL or DIV, then 4 for the LCALL to the ISR.

The maximum latency of 13 machine cycles is 52 clocks (13 x 4). Note that the maximum interrupt
latency of an 8051 is 96 clocks (8 machine cycles at 12 clocks per machine cycle). The maximum latency
for the high-speed microcontroller at 25MHz is about 2µs. The use of power management modes can
further increase the interrupt latency.

High-Speed Microcontroller User’s Guide

104 of 167

Figure 9-1. Interrupt Functional Description

INTERRUPT
ENABLE BITS

INTERRUPT
VECTOR

INTERRUPT
SELECTION
HARDWARE

FLAG
BITS

PFI

INT0

TF0

TF1

RI 0
TI_0

RI_1
TI 1

TF2

INT2

INT4

WATCHDOG

REAL-TIME
CLOCK

HI=1

IT1

HIGHEST
PRIORITY

LOWEST
PRIORITY

INDIVIDUAL
ENABLES

GLOBAL
ENABLE

HI=0

INT1

INT3

INT5

High-Speed Microcontroller User’s Guide

105 of 167

9.7 Interrupt Register Conflicts
During normal operation there is a small but finite probability that application software may try to read or
modify a register associated with interrupt functions at the same time that the interrupt hardware is
modifying the register. In general, these hardware/software interrupt conflicts are resolved according to
the “hardware wins” philosophy: In the event of a conflict, the hardware modification of a register will
take precedence over the software action to ensure that the interrupt event is not missed.

Software should always use read-modify-write instructions when modifying registers associated with
interrupt functions. This special class of instructions evaluates and modifies register contents in a single
instruction, preventing the hardware from accidentally modifying a bit between the time it is read and
when it is written back to the register.

One specific case involves a software write to the IP, IE, EIP or EIE registers while the internal interrupt
hardware is processing an interrupt request. Interrupt sources are normally executed (i.e., the LCALL
instruction is performed) during the instruction following their detection. If an interrupt is detected during
a write to one of the previously mentioned registers, it is possible that it will be delayed for one additional
instruction. When the instruction is processed, the interrupt will incorporate the new priority and enable
values from the previous instruction. If this situation occurs it will lengthen the interrupt latency by the
length of the instruction that modified the register.

High-Speed Microcontroller User’s Guide

106 of 167

10. PARALLEL I/O
The high-speed microcontroller method of implementing I/O ports follows the standard 8051 convention.
This provides backward compatibility with existing designs. All drive capabilities exceed or equal the
original 80C32, and voltage levels are compatible. The transitions between strong and weak drives are
similar but not identical. Differences are to accommodate higher speed timing and the associated
demands on slew rates. As with any new technology, the high-speed microcontroller should be evaluated
in a system to see how subtle differences affect operation.

From a software perspective, each port appears as SFR with a unique address. Each port register is
addressable as a byte or 8 individual bit locations. The CPU distinguishes between a bit access and a byte
access by the instruction type. Except for the special cases mentioned below, the register and port pins
have identical states. Reading or writing a port is the same as reading or writing the SFR for that port.

The microcontroller will distinguish between port and bus operations automatically. If a memory fetch is
decoded and requires external memory, Port 0 and 2 will be driven as a bus with the associated timing
and drive strengths. If either port SFR is accessed, the port pins will revert to the characteristics described
above. This includes a strong pulldown, a strong pullup for transitions, and a weak pullup for static
conditions.

ROMless versions of the high-speed microcontroller dedicate Port 0 and 2 as the memory interface bus.
The Port 0 latch does not exist on ROMless devices. The functions of these ports are described in more
detail in the specific sections.

10.1 PORT 0

General-Purpose I/O
Devices that have internal program memory have the ability to use Port 0 as a general-purpose I/O. Data
written to the port latch serves to set both level and direction of the data on the pin. ROMless devices do
not contain a Port 0 latch, because at no time can it be manipulated as a port. When used as an I/O port, it
functions as an open-drain output. More detail on the functions of these pins is provided under the
description of output and input functions in this section.

Even if internal memory is present, the use of Port 0 as general-purpose I/O pins is not recommended if
the device will be used to access external memory. This is because the state of the pins will be disturbed
during the memory access. In addition, the pullups needed to maintain a high state during the use as
general-purpose I/O will interfere with the complementary drivers employed when the device operates as
an expanded memory bus.

Multiplexed Address/Data Bus AD0-7
When used to address expanded memory, Port 0 functions as a multiplexed address/data bus. Port 0 must
function as the address/data bus on ROMless devices. Port 0 pins have extremely strong drivers that allow
the bus to move 100pF loads with the timing shown in the electrical specifications. Special circuit
protection allows these pins to achieve the maximum slew rate without ringing, eliminating excessive
noise or interface problems. Users that compare the high-speed microcontroller family to 80C32 devices
will find improved drive capability. This power is available for dynamic switching only, and should not
be used to drive heavy DC loads such as LEDs.

High-Speed Microcontroller User’s Guide

107 of 167

When used as an address bus, the AD0-7 pins will provide true drive capability for both logic levels. No
pullups are needed. In fact, pullups will degrade the memory interface timing. Members of the high-speed
microcontroller family employ a two-state drive system on AD0-7. That is, the pin is driven hard for a
period to allow the greatest possible setup or access time. Then the pin states are held in a weak latch
until forced to the next state or overwritten by an external device. This assures a smooth transition
between logic states and also allows a longer hold time. In general, the data is held (hold time) on AD0-7
until another device overwrites the bus. This latch effect is generally transparent to the user.

Figure 10-1. Port 0 Functional Circuitry

10.2 PORT 2

General-Purpose I/O
Devices that have internal program memory have the ability to use Port 2 for a general-purpose I/O. Data
written to the port latch serves to set both level and direction of the data on the pin. When used as an I/O
port, it has complementary outputs that will drive both high and low logic levels. More detail on the
functions of these pins is provided under the description of output and input functions in this section.

Even if internal memory is present, the use of Port 2 as general-purpose I/O pins is not recommended if
the device will be used to access external memory. This is because the state of the pins will be disturbed
during the memory access. It is still possible, however, to use the Port 2 latch to hold the upper address
byte for Register Indirect Addressing instructions.

ADDRESS\
DATA

EXTERNAL
ADDRESS
CONTROL

PORT
0.n

D Q

Q

INTERNAL
DATA BUS

WRITE
ENABLE

READ
ENABLE

POWER
DOWN

READ
LATCH/PIN

VCC

High-Speed Microcontroller User’s Guide

108 of 167

Most Significant Address Byte, A8-15
When used to address expanded memory, Port 2 functions as the most significant byte of the address bus.
Port 2 must function as the address bus on ROMless devices. When serving as a bus, Port 2 will be driven
with strong drivers at all times except immediately after the rising edge of PSEN (Figure 5-3 and
Figure 5-4).

Figure 10-2. Port 2 Functional Circuitry

10.3 Ports 1 and 3
Ports 1 and 3 are general-purpose I/O ports with optional special functions associated with each pin.
Enabling the special function automatically converts the I/O pin to that function. To ensure proper
operation, each alternate function pin should be programmed to a logic 1. For example, enabling the
UART converts P3.0 and P3.1 to the serial I/O functions.

The drive characteristics of these pins do not change when the pin is configured for general I/O or as the
special function associated with that pin. The exceptions are pins P3.6 and P3.7, which employ the
current-limited transition drivers described later when used as RD and WR signals. The drive
characteristics of Port 1 and Port 3 are the same as for Port 2 (non-bus mode). That is, the logic 0 is
created by a strong pulldown. The logic 1 is created by a strong transition pullup that changes to a weak
pullup.

Using one or more I/O pins of a port as special function pins will not affect the remaining port pins. An
extreme example is as follows. P3.6 has the alternate function of WR and P3.7 of RD. These strobes are
used for expanded data memory access. If a system used only the RD signal, then P3.6 would still be
available as an I/O port. This is not a practical suggestion, but it illustrates how the special functions are
independent.

ADDRESS
A8-A15

ADDRESS
CONTROL

D Q

Q

INTERNAL
DATA BUS

WRITE
ENABLE

READ
ENABLE

READ
LATCH/PIN

PORT
0.n

VCC

DELAY
=2Tclk

POWER
DOWN

VCC

VCC

High-Speed Microcontroller User’s Guide

109 of 167

A more practical application is the optional use of an interrupt. If INT0 (P3.2) is enabled, then an
externally imposed logic 0 will cause an interrupt. By then disabling the INT0, P3.2 can be used as a
general-purpose I/O pin. This allows the INT0 to be used to “wake-up” the system, but does not eliminate
another use of the pin.

10.4 Output Functions
Although 8051 I/O ports appear to be true I/O, their output characteristics are dependent on the individual
port and pin conditions. When software writes a logic 0 to the port for output, the port is pulled to ground.
When software writes a logic 1 to the port for output, Ports 1, 2, or 3 will drive weak pullups (after the
strong transition from 0 to 1). Port 0 will go tri-state. Thus as long as the port is not heavily loaded, true
logic values will be output. DC drive capability is provided in the electrical specifications. Note that the
DC current available from an I/O port pin is a function of the permissible voltage drop.

Transition current is available to help move the port pin from a 0 to a 1. Since the logic 0 driver is strong,
no additional drive current is needed in the 1 to 0 direction. The transition current is applied when the port
latch is changed from a logic 0 to a logic 1. Simply writing a logic 1 where a 1 was already in place does
not change the strength of the pullup. This transition current is applied for one-half a machine cycle. The
absolute current is not guaranteed, but is approximately 2mA at 5V.

When serving as an I/O port, the drive will vary as follows. For a logic 0, the port will invoke a strong
pulldown. For a logic 1, the port will invoke a strong pullup for two oscillator cycles to assist with the
logic transition. Then, the port will revert to a weak pullup. This weak pullup will be maintained until the
port transitions from a 1 to a 0. External circuits can overdrive the weak pullup. This allows the output 1
state to serve as the input state as well.

Substantial DC current is available in both the high and low levels. However, the power dissipation
limitations make it inadvisable to heavily load multiple pins. In general, sink and source currents should
not exceed 10mA total per port (8 bits) and 25mA total per package.

10.5 Current-Limited Transitions
The high-speed microcontroller family incorporates special circuitry to limit the current consumed by the
device when the expanded memory bus is used. These signals employ current-limited drivers that “step”
the transition from a logic 0 to a logic 1 to reduce ringing and electromagnetic interference. When
expanded memory operations are in progress, the following pins will exhibit the current-limiting feature:

Port 0
Port 2
PSEN (During program memory accesses)
ALE
RD (During data memory read cycles)
WR (During data memory write cycles)

10.6 Input Functions
The input state of the I/O ports is the same as that of the output logic 1. That is, the pin is pulled weakly
to a logic 1. This 1 state is easily overcome by external components. Thus, after software writes a 1 to the
port pin, the port is configured for input. When the port is read by software, the state of the pin will be
read. The only exception is the read-modify-write instructions described below. If the external circuit is
driving a logic 1, then the pin will be a logic 1. If the external circuit is driving a 0, then it will overcome

High-Speed Microcontroller User’s Guide

110 of 167

the internal pullup. The pin will be the same as the driven logic state. Note that the port latch is not
altered by a read operation. Therefore, if a logic 0 is driven onto a port pin from an external source, then
removed, the pin will revert to the weak pullup as determined by the internal latch.

10.7 Read-Modify-Write Instructions
The normal read instructions will read the pin state without regard to the output data latch. The only
exception is the read-modify-write category of instructions. They are listed as follows.

10.8 Instruction Description
ANL Logical AND
ORL Logical OR
XRL Logical Exclusive OR (XOR)
JBC Branch if bit set then clear bit
CPL Complement bit
INC Increment
DEC Decrement
DJNZ Decrement and branch if not zero
MOV PX.n, C Move the carry bit to bit n of port X
CLR PX.n Clear bit n of port X
SETB PX.n Set bit n of port X

The read-modify-write instructions read the state of the latch, then write back the result to the latch. Thus
the operation takes place using the value that was originally written to the SFR, without regard to the pin
state. The last three instructions listed above are read-modify-write because they read the entire port latch,
then write back the changed value. In this case, only one bit will be changed as specified by the
instruction.

10.9 I/O Port Timing
Figure 10-1 shows when port pins change in relationship to instruction timing. The example shown uses a
MOV command to change P1.0 from a logic 1 to a logic 0. This diagram is presented to aid the designer
in determining the timing relationship for very critical designs. Most designers will not need to consider
this much detail. Dummy NOP instructions are shown to illustrate subsequent instructions.

High-Speed Microcontroller User’s Guide

111 of 167

Figure 10-3. I/O Port Timing for MOV Instruction

10.10 Optional Functions
Every port pin on the high-speed microcontroller has an optional special function. These functions are
individually selectable. They can also be turned on and off dynamically to suit the application. The
optional function for each port pin is described briefly below. More information about each optional
function is available in the section dealing with that function or in the appropriate data sheet.

P0.0 AD0.0 Multiplexed Address/data bus P1.0 T2 Timer 2 output pulse
P2.0 A8 MSB Address bus P3.0 RXD0 Serial Receive UART0
P0.1 AD0.1 Multiplexed Address/data bus P1.1 T2EX Timer 2 capture/reload input
P2.1 A9 MSB Address bus P3.1 TXD0 Serial Transmit UART0
P0.2 AD0.2 Multiplexed Address/data bus P1.2 RXD1 Serial Receive UART1
P2.2 A10 MSB Address bus P3.2 INT0 External Interrupt 0 active low
P0.3 AD0.3 Multiplexed Address/data bus P1.3 TXD1 Serial Transmit UART1
P2.3 A11 MSB Address bus P3.3 INT1 External Interrupt 1 active low
P0.4 AD0.4 Multiplexed Address/data bus P1.4 INT2 External Interrupt 2 rising edge active
P2.4 A12 MSB Address bus P3.4 T0 Timer 0 input
P0.5 AD0.5 Multiplexed Address/data bus P1.5 INT3 External Int. 3 falling edge active
P2.5 A13 MSB Address bus P3.5 T1 Timer 1 input
P0.6 AD0.6 Multiplexed Address/data bus P1.6 INT4 External Interrupt 4 rising edge active
P2.6 A14 MSB Address bus P3.6 WR Write strobe
P0.7 AD0.7 Multiplexed Address/data bus P1.7 INT5 External Int. 5 falling edge active
P2.7 A15 MSB Address bus P3.7 RD Read strobe

AD0-AD7

ALE

PSEN

PORT 2

CLK

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Last Cycle of
Previous

Instr. & MOV
prefetch

MOV Cycle 1
MOV Cycle 2
& First NOP

prefetch

A0-A7 D0-D7 A0-A7 D0-D7 A0-A7 D0-D7 A0-A7 D0-D7

MOV
Op code
Address

MOV
Operand
Address

MOV
Instruction
Op code

MOV
Instruction
Operand

First NOP
Instruction
Address

A8-A15 A8-A15 A8-A15 A8-A15

P1.0

First NOP
Cycle &

Second NOP
prefetch

Second NOP
Instruction
AddressFirst NOP

Instruction
Op code

Second NOP
Instruction
Op code

High-Speed Microcontroller User’s Guide

112 of 167

11. PROGRAMMABLE TIMERS
All members of the high-speed microcontroller family incorporate three 16-bit programmable timers and
some also have a watchdog timer with a programmable interval. Because the watchdog timer is
significantly different from the other timers, it is described separately. The 16-bit timers are referred to
simply as timers.

In most modes, the timers can be used as either counters of external events or timers. When functioning
as a counter, 1-to-0 transitions on a port pin are monitored and counted. When functioning as timers, they
effectively count oscillator cycles. The time base for the timer function is the main oscillator clock
divided by either 4 or 12. This selection is described below. Because each clock pulse must be sampled
high for one machine cycle and low for one machine cycle to be recognized, this sets the maximum
sampling frequency on any timer input at 1/8 of the main oscillator frequency.

The three timers are compatible with the 80C32. That is, they offer the same controls and I/O functions
that were available in the 80C32. As mentioned above, the actual timing of these functions is user
selectable to be compatible with the machine cycle of the older generation of 8051 family (12 clocks per
tick) or the new generation (4 clocks per tick). The timing for each of the three timers can be selected
independently and can be changed dynamically. Each timer has 4 primary modes as discussed below.

The watchdog timer reset provides CPU monitoring by requiring software to clear the timer before the
user-selected interval expires. If the timer is not cleared, the watchdog resets the CPU. The watchdog
function is optional and is described below. Since the high-speed microcontroller timers have a variety of
features, the following summary table shows the capabilities.

TIMER 0 TIMER 1 TIMER 2
13-Bit Timer/Counter 13-Bit Timer/Counter 16-Bit Timer/Counter
16-Bit Timer/Counter 16-Bit Timer/Counter 16-Bit Timer With Capture
8-Bit Timer with Auto-
Reload 8-Bit Timer with Auto-Reload 16-Bit Auto-Reload Timer/Counter

Two 8-Bit Timer/Counters External Control Pulse
Timer/Counter 16-Bit Up/Down Auto-Reload

External Control Pulse
Timer/Counter Baud Rate Generator

Timer/Counter
Baud Rate Generator
Timer Output Clock Generator

11.1 16-Bit Timers
Timers 0 and 1 are nearly identical. Timer 2 has several additional features such as up/down counting,
capture values and an optional output pin that make it unique. Timers 0 and 1 are described first. Timer 2
is described separately. As mentioned above, the time base for each timer can be varied and this is also
discussed in more detail below.

Timer 0 and Timer 1 have four operating modes. They are 13-bit timer/counter, 16-bit timer/counter, 8-bit
timer/counter with auto-reload, and two 8-bit timers. The latter mode is available to Timer 0 only. These
modes are controlled by the TMOD register. Each timer can also serve as a counter of external pulses
(1-to-0 transition) on the corresponding Tn pin. This selection is controlled by the TMOD register. One
other option is to gate the timer/counter using an external control signal. This allows the timer to measure
the pulse width of external signals. Timers 0 and 1 are enabled using the TCON register, which is also the

High-Speed Microcontroller User’s Guide

113 of 167

location of their flags. The registers are described below. Following this is a detailed explanation of the
four operating modes.

Each timer consists of a 16-bit register in two bytes. These are called TL0, TH0, TL1, and TH1. As
shown, each timer is broken into low and high bytes. Software can read or write any of these locations at
any time.

TMOD REGISTER SUMMARY
Timer Mode Control, TMOD; 89h

TMOD.7: GATE, Timer 1 GATE Control. When GATE=1, Timer 1 will clock only when INT1 and TR1 =1.
When GATE=0, Timer 1 will clock only when TR1=1 irrespective of INT1 .

TMOD.6: C/ T , Counter/Timer Select. When C/ T is set to a 0, Timer 1 is incremented by internal clocks. When
C/ T is set to a 1, Timer 1 counts based on the T1 (P3.5) pin.

TMOD.5: M1, Timer 1 Mode Select Bit 1

TMOD.4: M0, Timer 1 Mode Select Bit 0

M1 M0 Mode
0 0 Mode 0: 8-bits with 5-bit prescale
0 1 Mode 1: 16-bits
1 0 Mode 2: 8-bits with auto-reload
1 1 Mode 3: Timer 1 stopped

TMOD.3: GATE, Timer 0 GATE Control. When GATE=1, Timer 0 will clock only when INT0 and TR0 =1.
When GATE=0, Timer 0 will clock only when TR0=1 irrespective of INT0 .

TMOD.2: C/ T , Counter/Timer Select. When C/ T is set to a 0, Timer 0 is incremented by internal clocks. When
C/ T is set to a 1, Timer 0 counts based on the T0 (P3.4) pin.

TMOD.1: M1, Timer 0 Mode Select Bit 1

TMOD.0: M0, Timer 0 Mode Select Bit 0

M1 M0 Mode
0 0 Mode 0: 8-bits with 5-bit prescale
0 1 Mode 1: 16-bits
1 0 Mode 2: 8-bits with auto-reload
1 1 Mode 3: Timer 0 is two 8-bit timers

High-Speed Microcontroller User’s Guide

114 of 167

TCON REGISTER SUMMARY
Timer/Counter, TCON; 88h Control

TCON.7: TF1, Timer 1 Overflow Flag. Set to 1 when Timer 1 overflows from FFh and cleared when the
processor vectors to the interrupt service routine.

TCON.6: TR1, Timer 1 Run Control. Turns on Timer 1 when this bit is set.

TCON.5: TF0, Timer 0 Overflow Flag. Set to 1 when Timer 0 overflows from FFh, and cleared when the
processor vectors to the interrupt service routine.

TCON.4: TR0, Timer 0 Run Control. Turns on Timer 0 when this bit is set to 1.

TCON.3: IE1, Interrupt 1 Edge Detect. Set by hardware when an edge/level is detected on INT1 .

TCON.2: IT1, Interrupt 1 Type Select. INT1 detects a falling edge when this bit is set to 1. INT1 detects a low
level when this bit is 0.

TCON.1: IE0, Interrupt 0 Edge Detect. Set by hardware when an edge/level is detected on INT0 .

TCON.0: IT0, Interrupt 0 Type Select. INT0 detects a falling edge when this bit is set to 1. INT0 detects a low
level when this bit is 0.

11.2 Mode 0
Mode 0 configures either Timer 0 or Timer 1 for operation as a 13-bit Timer/Counter. As shown in
Figure 11-1, bits M1 = 0 and M0 = 0 of the TMOD register select this operating mode.

When using Timer 0, TL0 uses only bits 0–4. These bits serve as the 5 LSbs of the 13-bit timer. TH0
provides the 8 MSbs of the 13-bit timer. Bit 4 of TL0 is used as a ripple out to TH0 bit 0, thereby
completely bypassing bits 5 through 7 of TL0. Once the timer is started using the TR0 (TCON.4) timer
enable, the timer will count as long as GATE (TMOD.3) is 0 or GATE is 1 and pin INT0 is 1. It will
count oscillator cycles if C/ T (TMOD.2) is set to a logic 0 and 1-to-0 transitions on T0 (P3.4) if C/ T is
set to a 1. When the 13-bit count reaches 1FFFh (all ones), the next count will cause it to roll over to
0000h. The TF0 (TCON.5) flag will be set and an interrupt will occur if enabled. The upper three bits of
TL0 will be indeterminate.

Note that when used as a timer, the timebase may be either oscillator cycles/12 or oscillator cycles/4 as
selected by bits TnM (n = 0 or 1) of the CKCON register. This feature is described in more detail below.

Mode 0 operates identically when Timer 1 is used. The same information applies to TL1 and TH1, which
form the 13-bit register. TR1 (TCON.6), INT1 (P3.3), T1 (P3.5), and the relevant C/T (TMOD.6) and
GATE (TMOD.7) bits have the same functions.

High-Speed Microcontroller User’s Guide

115 of 167

11.3 Mode 1
Mode 1 configures the timer for 16-bit operation as either a timer or counter. Figure 11-1 shows that bits
M1 = 0 and M0 = 1 of the TMOD register select this operating mode. For Timer n, all of the TLn and
THn registers are used. For example, if Timer 1 is configured in mode 1, then TL1 holds the LSB and
TH1 holds the MSB. Rollover occurs when the timer reaches transitions from FFFFh to 0000h. An
interrupt will also occur if enabled and the relevant TFn flag is set. Timebase selection, counter/timer
selection, and the gate function operate as described in mode 0.

Figure 11-1. Timer/Counter 0 and 1, Modes 0 and 1

MODE 0
 M1, M0=TMOD.1,
 TMOD.0
 (M1, M0=TMOD.5,
 TMOD.4)

OSC INPUT TO TIMER
CLK MODE TIMER INPUT
DIVIDE-BY-4 OSC/1
PMM1 OSC/16
PMM2 OSC/256

DIVIDE
BY 12

DIVIDE
BY 4

T0 = P3.4
(T1 = P3.5)

TR0 = TCON.4
(TR1 = TCON.6)

GATE = TMOD.3
(GATE = TMOD.7)

INT0 = P3.2

(INT1 = P3.3) TF0 = TCON.5
(TF1 = TCON.7)

TIMER 1 FUNCTIONS
SHOWN IN PARENTHESIS ()

INTERRUPT

TL0
(TL1)

0 4 7

00

01

0 7

TH0
(TH1)

CLK

0

1

0

1

T0M = CKCON.3
(T1M = CKCON.4)

C/ T = TMOD.2
(C/ T = TMOD.6)

High-Speed Microcontroller User’s Guide

116 of 167

11.4 Mode 2
This mode configures the timer as an 8-bit timer/counter with automatic reload of the start value. This
configuration is shown in Figure 11-2, and is selected when bits M1 and M0 of the TCON register are set
to 1 and 0 respectively. When configured in Mode 2, the timer uses TLn to count and THn to store the
reload value. Software must initialize both TLn and THn with the same starting value for the first count to
be correct. Once the TLn reaches FFh, it will be automatically loaded with the value in THn. The THn
value remains unchanged unless modified by software. Mode 2 is commonly used to generate baud rates
since it runs without continued software intervention. As in modes 0 and 1, mode 2 allows counting of
either oscillator cycles (crystal/12 or crystal/4) or pulses on pin Tn (C/T=1) when counting is enabled by
TRn and the proper setting of GATE and INTn pins.

Figure 11-2. Timer/Counter 0 and 1, Mode 2

OSC INPUT TO TIMER
CLK MODE TIMER INPUT
DIVIDE-BY-4 OSC/1
PMM1 OSC/16
2PMM2 OSC/256

DIVIDE
BY 12

DIVIDE
BY 4

T0 = P3.4
(T1 = P3.5)

TR0 = TCON.4
(TR1 = TCON.6)

GATE = TMOD.3
(GATE = TMOD.7)

TF0 = TCON.5
(TF1 = TCON.7)

TIMER 1 FUNCTIONS
SHOWN IN PARENTHESIS ()

INTERRUPT

TL0
(TL1)

0 7

0 7TH0
(TH1)

0

1
0

1

T0M = CKCON.3
(T1M = CKCON.4)

RELOAD

C/ T = TMOD.2
(C/ T = TMOD.6)

INT0 = P3.2

(INT1 = P3.3)

CLK

High-Speed Microcontroller User’s Guide

117 of 167

11.5 Mode 3
This mode provides an 8-bit timer/counter and a second 8-bit timer as indicated in Figure 11-3. In Mode
3, TL0 is an 8-bit timer/counter controlled by the normal Timer 0 bits (TR0=TCON.4 and TF0=TCON.5).
TL0 can be used to count oscillator cycles (crystal/12 or crystal/ 4) or 1-to-0 transitions on pin T0 as
determined by C/ T (TMOD.2). As in the other modes, the GATE function can use INT0 to give external
run control of the timer to an outside signal.

TH0 becomes an independent 8-bit Timer in Mode 3, however it can only count oscillator cycles (divided
by 12 or 4) as shown in the figure. In this mode, some of Timer 1’s control signals are used to manipulate
TH0. That is, TR1 (TCON.6) and TF1 (TCON.7) become the relevant control and flag bits associated
with TH0.

Figure 11-3. Timer/Counter 0 Mode 3

In Mode 3, Timer 1 stops counting and holds its value. Thus, Timer 1 has no practical application while
in Mode 3.

As mentioned above, when Timer 0 is in Mode 3, it uses some of Timer 1’s resources (i.e., TR1 and
TF1). Timer 1 can still be used in Modes 0, 1, and 2 in this situation, but its flexibility becomes somewhat
limited. While it maintains its basic functionality, its inputs and outputs are no longer available.
Therefore when Timer 0 is in Mode 3, Timer 1 can only count oscillator cycles, and it does not have an
interrupt or flag. With these limitations, baud rate generation is its most practical application, but other
time-base functions may be achieved by reading the registers.

OSC INPUT TO TIMER
CLK MODE TIMER INPUT

DIVIDE-BY-4 OSC/1
PMM1 OSC/16
PMM2 OSC/256

DIVIDE
BY 12

DIVIDE
BY 4

T0 = P3.4

TR0 = TCON.4

GATE = TMOD.3

TL0 0 7

0 7TH0

0

1

0

1

T0M = CKCON.3

TR1 = TCON.6

TF0 = TCON.5
INTERRUPT

TF1 = TCON.7

C/ T = TMOD.2

INT0 = P3.2

CLK

INTERRUPT

High-Speed Microcontroller User’s Guide

118 of 167

11.6 Timer 2
Like Timers 0 and 1, Timer 2 is a full-function timer/counter, however it has several additional
capabilities that make it more useful. Timer 2 has independent control registers in T2CON and T2MOD,
and is based on count registers TL2 and TH2. All of these registers are described in detail below.

T2CON REGISTER SUMMARY
Timer Two Control, T2CON; C8h

T2CON.7: TF2, Timer 2 Overflow Flag. Hardware will set TF2 when the Timer 2 overflows from FFFFh to
0000h, or from the count equal to the capture register in down count mode. It must be cleared to 0 by software.
TF2 will only be set to a 1 if RCLK and TCLK are both cleared to a 0.

T2CON.6: EXF2, Timer 2 External Flag. Hardware will set EXF2 when a reload or capture is caused by a falling
transition on the T2EX pin (P1.1). EXEN2 must be set for this function. This flag must be cleared to 0 by
software. Writing a one to this bit will force a timer interrupt if enabled.

T2CON.5: RCLK, Receive Clock Flag. This bit determines whether Timer 1 or 2 is used for Serial Port 0 timing
of received data in Serial Modes 1 or 3. RCLK = 1 causes Timer 2 overflow to be used as the receive clock.
RCLK = 0 causes Timer 1 overflow to be used as the receive clock.

T2CON.4: TCLK, Transmit Clock Flag. This bit determines whether Timer 1 or 2 is used for Serial Port 0
timing of Transmit data in Serial Modes 1 or 3. TCLK = 1 causes Timer 2 overflow to be used as the transmit
clock. TCLK = 0 causes Timer 1 overflow to be used as the transmit clock.

T2CON.3: EXEN2, Timer 2 External Enable. Setting this bit to a 1 allows a capture or reload to occur as a result
of a falling transition on T2EX (P1.1), if Timer 2 is not generating baud rates for the serial port. EXEN2 = 0
causes Timer 2 to ignore all external events at T2EX.

T2CON.2: TR2, Timer 2 Run. Setting this bit to a 1 starts Timer 2. Setting it to a 0 stops Timer 2.

T2CON.1: C/ T2 , Counter/Timer Select. Setting this bit to a 0 selects a timer function for Timer 2. Setting it to a
1 selects a counter of falling transitions on T2 (P1.0). Timer 2 runs at 4 clocks per tick or 12 clocks per tick as
programmed by CKCON.5. This bit will be overridden and Timer 2 directed to use a divide-by-2 clock if either
the baud–rate generator or clock output mode is used.

T2CON.0: CP/ RL2 , Capture/Reload Flag. When this bit is set to 1, Timer 2 captures will occur on 1-to-0
transitions of T2EX (P1.1) if EXEN2 = 1. When this bit is set to 0, auto–reloads will occur when Timer 2
overflows or when 1-to-0 transitions occur on T2EX if EXEN2 = 1. If either RCLK or TCLK is set to a 1 this bit
will not function and the timer will function in an auto-reload mode following each overflow.

High-Speed Microcontroller User’s Guide

119 of 167

T2MOD REGISTER SUMMARY
Timer Two Mode Control, T2MOD; C9h

T2MOD.7–2: Reserved

T2MOD.1: T2OE, Timer 2 Output Enable. Setting this bit to a 1 enables the Timer 2 to drive the T2 (P1.0) pin
with a clock output. When T2OE = 0, the T2 (P1.0) pin is used as either an input for Timer 2 or a standard port pin.

T2MOD.0: DCEN, Down Count Enable. When this bit is set to 1, the Timer 2 function counts up or down when
in 16-bit auto-reload mode depending on T2EX (P1.1). When DCEN is set to a 0, the Timer 2 counts up only.

TIMER 2 CAPTURE REGISTERS SUMMARY
Least Significant Byte Capture of Timer 2, RCAP2L; CAh

RCAP2L.7–0: This register is used to capture the TL2 value when Timer 2 is configured in capture mode.
RCAP2L is also used as the LSB of a 16-bit reload value when Timer 2 is configured in auto-reload mode.

Most Significant Byte Capture of Timer 2, RCAP2H; CBh

RCAP2H.7–0: This register is used to capture the TH2 value when Timer 2 is configured in capture mode.
RCAP2H is also used as the MSB of a 16-bit reload value when Timer 2 is configured in auto-reload mode.

11.7 Timer 2 Modes
As is seen in the register descriptions, Timer 2 has several abilities not found in Timers 0 and 1. However,
it does not offer the 13-bit and dual 8-bit modes, thus running in 16-bit mode at all times. Also note that
instead of offering an 8-bit auto-reload mode, Timer 2 has a 16-bit auto-reload mode. This mode uses the
Timer Capture registers to hold the reload values. The modes available on Timer 2 are described below.

11.7.1 16-Bit Timer/Counter
In this mode, Timer 2 performs a simple timer or counter function where it behaves similarly to mode 1
of Timers 0 and 1, but uses 16 instead of 8 bits. This mode, along with the optional capture mode
described below, is illustrated in Figure 11-4. The 16-bit count values are found in TL2 and TH2 Special
Function Registers (addresses 0CCh and 0CDh respectively). The selection of whether a Timer or
Counter function is performed is made using the bit C/ T2 (T2CON.1). When C/ T2 is set to a logic 1,
Timer 2 behaves as a counter where it counts 1-to-0 transitions at the T2 (P1.0) pin. When C/ T2 is set to
a logic 0, Timer 2 functions as a timer where it counts the oscillator cycles divided by either 12 or 4 as
determined by bit T2M (T2CON.5). Timing or counting is enabled by setting bit TR2 (T2CON.2) to 1,
and disabled by setting it to 0. When the counter rolls over from FFFFh to 0000h, the TF2 flag
(T2CON.7) is set and will cause an interrupt if Timer 2’s interrupt is enabled.

11.7.2 16-Bit Timer with Capture
A diagram of Timer 2’s Capture Mode is shown in Figure 11-4. In this mode, the timer performs basically
the same 16-bit timer/counter function described above. However, a 1-to-0 transition on T2EX (pin P1.1)
causes the value in Timer 2 to be transferred into the capture registers if enabled by EXEN2 (T2CON.3).
The capture registers, RCAP2L and RCAP2H, correspond to TL2 and TH2 respectively. The capture

High-Speed Microcontroller User’s Guide

120 of 167

function is enabled by the CP/ RL2 (T2CON.0) bit. When set to logic 1, the timer is in capture mode as
described. When set to logic 0, the timer is in auto-reload mode described later. As was possible with
Timers 0 and 1, the timebase for Timer 2 can be selected to be oscillator cycles divided by either 12 or 4
when in this mode.

Figure 11-4. Timer/Counter 2 with Optional Capture

11.7.3 16-Bit Auto-Reload Timer/Counter
This mode is illustrated in Figure 11-5. When Timer 2 reaches an overflow state, i.e., rolls over from
FFFFh to 0000h, it will set the TF2 Flag. This flag can generate an interrupt if enabled. In addition, the
timer will restore its starting value and begin timing (or counting) again. The starting value is preloaded
by software into the capture registers RCAP2L and RCAP2H. These registers cannot be used for capture
functions while also performing auto-reload, so these modes are mutually exclusive. Auto-reload is
invoked by the CP/ RL2 (T2CON.0) bit. When set to logic 0, the timer is in auto-reload mode. When
CP/ RL2 is set to a logic 1, the timer is in capture mode described above. If the oscillator timebase is used
(C/ T2 = T2CON.1 = 0), the timer’s input may be selected to be oscillator cycles divided by either 12 or 4
as determined by T2M (CKCON.5). Otherwise, pulses on pin T2 (P1.0) are counted when C/ T2 = 1. As
in other modes, Counting or timing is enabled or disabled with TR2 (T2CON.2).

When in auto-reload mode, Timer 2 can also be forced to reload with the T2EX (P1.1) pin. A 1-to-0
transition will force a reload if enabled by the EXEN2 (T2CON.3) bit. If EXEN2 is set to logic 1, then a
1-to-0 transition on T2EX will cause a reload. Otherwise, the T2EX pin will be ignored.

C/T2 = T2CON.1

CLK

OSC INPUT TO TIMER
CLK MODE TIMER INPUT
DIVIDE-BY-4 OSC/1
PMM1 OSC/16
PMM2 OSC/256

DIVIDE
BY 12

DIVIDE
BY 4

T2 = P1.0
TR2 = T2CON.2

EXEN2 = T2CON.3 EXF2 =
T2CON.6

CAPTURE
TIMER 2

INTERRUPT

0

1

0

1

T2M = CKCON.5

TL2
0 7

TH2
8 15 TF2 =

T2CON.7

0 7 8 15
RCAP2L RCAP2H

T2EX = P1.1

High-Speed Microcontroller User’s Guide

121 of 167

Figure 11-5. Timer/Counter 2 Auto-Reload Mode

(a) DCEN = 0

OSC INPUT TO TIMER
CLK MODE TIMER INPUT
DIVIDE-BY-4 OSC/1
PMM1 OSC/16
PMM2 OSC/256

DIVIDE
BY 12

DIVIDE
BY 4

T2 = P1.0
TR2 = T2CON.2

EXEN2 = T2CON.3
EXF2 =

T2CON.6

TIMER 2
INTERRUPT

0

1

0

1

T2M = CKCON.5

TL2
0 7

TH2
8 15 TF2 =

T2CON.7

0 7 8 15
RCAP2L RCAP2H

T2EX = P1.1

C/T2 = T2CON.1

CLK

OSC INPUT TO TIMER
CLK MODE TIMER INPUT
DIVIDE-BY-4 OSC/1
PMM1 OSC/16
PMM2 OSC/256

DIVIDE
BY 12

DIVIDE
BY 4

T2 = P1.0
TR2 = T2CON.2

0

1

0

1

T2M = CKCON.5

RCAP2L RCAP2H

(b) DCEN = 1

0FFH 0FFH

0 7 8 15
TL2 TH2

(DOWN COUNTING RELOAD VALUE)

0 7 8 15

T2EX = P1.1

(UP COUNTING RELOAD VALUE)

TF2 =
T2CON.7

TIMER 2
INTERRUPT

EXF2 =
T2CON.6

COUNT DIRECTION
(1 = UP, 0 = DOWN)

C/T2 = T2CON.1

CLK

High-Speed Microcontroller User’s Guide

122 of 167

11.7.4 Up/Down Count Auto-Reload Timer/Counter
The up/down auto-reload counter option is selected by the DCEN (T2MOD.0) bit, and is illustrated in
Figure 11-5. When DCEN is set to a logic 1, Timer 2 will count up or down as controlled by the state of
pin T2EX (P1.1). T2EX will cause upward counting when a logic 1 is applied and down counting when a
logic 0 is applied. When DCEN = 0, Timer 2 only counts up.

When an upward counting overflow occurs, the value in RCAP2L and RCAP2H will load into T2L and
T2H. In the down count direction, an underflow occurs when T2L and T2H match the values in RCAP2L
and RCAP2H, respectively. When an underflow occurs, FFFFh is loaded into T2L and T2H and counting
continues.

Note that in this mode, the overflow/underflow output of the timer is provided to an edge detection circuit
as well as to the TF2 bit (T2CON.7). This edge detection circuit toggles the EXF2 bit (T2CON.6) on
every overflow or underflow. Therefore, the EXF2 bit behaves as a 17th bit of the counter, and may be
used as such.

11.7.5 Baud Rate Generator
Timer 2 can be used to generate baud rates for Serial Port 0 in serial modes 1 or 3. Baud rate generator
mode is invoked by setting either the RCLK or TCLK bit in the T2CON register to a logic 1, as illustrated
in Figure 11-6. In this mode, the timer continues to function in auto-reload mode, but instead of setting
the interrupt flag T2F (T2CON.7) and potentially causing an interrupt, the overflow generates the shift
clock for the serial port function. As in normal auto-reload mode, an overflow causes RCAP2L and
RCAP2H to be transferred into T2L and T2H, respectively. Note that when RCLK or TCLK is set to 1,
the Timer 2 is forced into 16-bit auto-reload mode regardless of the CP/ RL2 bit.

As explained above, the timer itself cannot set the T2F interrupt flag and therefore cannot generate an
interrupt. However if EXEN2 (T2CON.3) is set to 1, a 1-to-0 transition on the T2EX (P1.1) pin will cause
the EXF2 (T2CON.6) interrupt flag to be set. If enabled, this will cause a Timer 2 Interrupt to occur.
Therefore in this mode, the T2EX pin may be used as an additional external interrupt if desired.

Another feature of the baud rate generator mode is that the crystal derived timebase for the timer is the
crystal frequency divided by 2. No other crystal divider selection is possible. If a different timebase is
desired, bit C/ T2 (T2CON.1) may be set to a 1 sourcing the timebase from an external clock source
supplied by the user on pin T2 (P1.0). Software should not access TL2 or TH2 while the timer is running
(TR2=1) in baud rate generator mode. In this mode the timer is clocking so fast that a software read of or
write to the TL2 and TH2 registers may corrupt the timer. The RCAP registers may be read, but not
modified, while TR2 = 1. Stop the timer (TR2 = 0) to modify these registers.

High-Speed Microcontroller User’s Guide

123 of 167

Figure 11-6. Timer/Counter 2, Baud Rate Generator Mode

11.7.6 Timer Output Clock Generator
Timer 2 can also be configured to drive a clock output on port pin P1.0 (T2) as shown in Figure 11-7. To
configure Timer 2 for this mode, first it must be set to 16-bit auto-reload timer mode (CP/ RL2 = 0,
C/ T2 = 0). Next, the T2OE (T2MOD.1) bit must be set to a logic 1. TR2 (T2CON.2) must also be set to a
logic 1 to enable the timer.

This mode will produce a 50% duty cycle square-wave output. The frequency of the square wave is given
by the formula in the figure. Each timer overflow causes an edge transition on the pin, i.e., the state of the
pin toggles.

Note that this mode has two somewhat unique features in common with the baud rate generation mode.
First, the timebase is the crystal frequency divided by 2, and no other divider selection is possible.
Second, the timer itself will not generate an interrupt, but if needed, an additional external interrupt may
be caused using T2EX as described above. Because of the two mode’s similarities, the timer can be used
to generate both an external clock and a baud rate clock simultaneously. Once the clock-out mode is
established, either TCLK or RCLK is set to 1, and the RCAP2 registers are loaded, the timer will provide
a clock to both functions.

OSC INPUT TO TIMER
CLK MODE TIMER INPUT
DIVIDE-BY-4 OSC/2
PMM1 OSC/82
PMM2 OSC/512

DIVIDE
BY 2

T2 = P1.0
TR2 = T2CON.2

EXEN2 = T2CON.3
EXF2 =

T2CON.6
TIMER 2
INTERRUPT

0

1

TL2
0 7

TH2
8 15

RCLK =
T2CON.5

0 7 8 15
RCAP2L RCAP2HT2EX = P1.1

Tx
CLOCK

DIVIDE
BY 16

Rx
CLOCK

DIVIDE
BY 16

SMOD =
WDCON.7

TCLK =
T2CON.4

1 0

1 0

0 1

TIMER 1
OVERFLOW

C/T2 = T2COD.1

CLK

High-Speed Microcontroller User’s Guide

124 of 167

Figure 11-7. Timer/Counter 2, Clock-Out Mode

11.8 Timebase Selection
The high-speed microcontroller allows the user to select either 4 or 12 clocks as the time-base for each
timer independently. When using the 16-bit Timer/Counters in timer mode, the timer/counter counts the
oscillator cycles divided by a predetermined number. In the standard 8051, the 8051 timers count the
oscillator divided by 12, which is the standard 8051-machine cycle timing. The high-speed
microcontroller allows the option of setting the timers to operate from a divide-by-4 of the input clock to
allow higher precision timing and faster baud rates. This selection has no effect on CPU timing, only on
the timers. Following a reset, the timers default to 12 clocks as the time-base to remain drop-in
compatible with the original 8051.

The 4 or 12 clock decision is independent for each timer and the default is 12 clocks per timer tick. As an
example, a user might select both the baud rate generator timer and one other timer to run at 12 clocks per
timer tick with the third timer at 4 clocks per tick. This allows one timer to measure higher speed events
or to gain better resolution. The control bits for the time-base selection are located in the Clock Control
register (CKCON;8Eh). Timer 2 will function at 2 clocks per tick when set for baud rate generation or
clock output as described above. When the time-base is derived from an external source (i.e., the T0, T1
or T2 pins), the timer operates at the frequency of the external source and is not affected by the setting of
the T0M, T1M, or T2M bits. The only limitation is that the external source frequency can be no faster
than 1/8 of the main oscillator frequency.

The use of power management modes will affect the input clock to the timer as shown in the illustrations.
In general, they will divide the input clock by either 16 or 256 for PMM1 and PMM2, respectively. Timer
2, when operating in Baud Rate Generator or Clock Out mode normally uses the input clock frequency
divided by 2, but when PMM1 and PMM2 are used, it will operate from a timebase of the input clock
divided by 32 and 512, respectively.

OSC INPUT TO TIMER
CLK MODE TIMER INPUT
DIVIDE-BY-4 OSC/2
PMM1 OSC/32
PMM2 OSC/512

EXF2 =
T2CON.6

DIVIDE
BY 2

T2EX = P1.1

EXEN2 = T2CON.3

RCAP2L RCAP2H

0 15
TL2 TH2

0 7 8 15T2 = P1.0

7 8

C/T2 =
T2CON.1

= 0
TR2 =

T2CON.2

T2OE =
T2MOD.1

TIMER 2
INTERRUPT

F_OUT=
OSC INPUT
TO TIMER
(4*(65536-
RCAP2H,
RCAP2L))

High-Speed Microcontroller User’s Guide

125 of 167

11.9 Watchdog Timer
The watchdog timer is a user-programmable clock counter that can serve as a timebase generator, an
event timer, or a system supervisor. As can be seen in the diagram of Figure 11-8, the main system clock
drives the timer that is supplied to a series of dividers. The divider output is selectable and determines the
interval between timeouts. When the timeout is reached, an interrupt flag will be set, and if enabled, a
reset will occur. The interrupt flag will cause an interrupt to occur if its individual enable bit is set and the
global interrupt enable is set. The reset and interrupt are completely discrete functions that may be
acknowledged or ignored, together or separately for various applications.

Figure 11-8. Watchdog Timer

The watchdog timer-reset function works as follows: After initializing the correct timeout interval
(discussed below), software first restarts the watchdog using RWT (WDCON.0) and then enables the
reset mode by setting the enable watchdog timer reset (EWT = WDCON.1) bit. At any time prior to
reaching its user selected terminal value, software can set the reset watchdog timer (RWT = WDCON.0)
bit. If RWT is set before the timeout is reached, the timer will start over. If the timeout is reached without
RWT being set, the watchdog will reset the CPU. Hardware will automatically clear RWT after software
sets it. When the reset occurs, the watchdog timer reset flag (WTRF = WDCON.2) will automatically be
set to indicate the cause of the reset, however software must clear this bit manually.

The watchdog timer is a free-running timer. When used as a simple timer with both the reset and interrupt
functions disabled (EWT = 0 and EWDI = 0), the timer will continue to set the watchdog interrupt flag
each time the timer completes the selected timer interval as programmed by WD1 (CKCON.7) and WD0

DIVIDE BY
217

DIVIDE BY
23

DIVIDE BY
23

DIVIDE BY
23

RWT (WDCON.0
(Reset Watchdog)

WD1 (CKCON.7)
WD0 (CKCON.6)

TIMEOUT

XTAL1

XTAL2
DIVIDE BY
1/16/256

CLOCK DIVIDE CONTROL
CD1 CD0 DIVISOR
No PMR register 1
0 X 1
1 0 16
1 1 256

TIMEOUT
SELECTOR

WDIF
(WDCON.3)

EWDI (EIE.4)
(Enable Watchdog Interrupt)

WATCHDOG
INTERRUPT

RESET

WTRF
(WDCON.2)

512 CLOCK
DELAY

EWT (WDCON.1)
(Enable Watchdog Timer Reset)

217 220 223 226

High-Speed Microcontroller User’s Guide

126 of 167

(CKCON.6). Restarting the timer using the RWT (WDCON.0) bit, allows software to use the timer in a
polled timeout mode. The WDIF bit is cleared by software or any reset.

The watchdog interrupt is also available for applications that do not need a true watchdog reset but simply
a very long timer. The interrupt is enabled using the enable watchdog timer interrupt (EWDI = EIE.4) bit.
When the timeout occurs, the watchdog timer will set the WDIF bit (WDCON.3), and an interrupt will
occur if the global interrupt enable (EA = IE.7) is set. Note that WDIF is set 512 clocks before a potential
watchdog reset. The watchdog interrupt flag will indicate the source of the interrupt, and must be cleared
by software.

Using the watchdog interrupt during software development can allow the user to select ideal watchdog
reset locations. Code is first developed without enabling the watchdog interrupt or reset functions. Once
the program is complete, the watchdog Interrupt function is enabled to identify the required locations in
code to set the RWT (WDCON.0) bit. Incrementally adding instructions to reset the watchdog timer prior
to each address location (identified by the watchdog interrupt) will allow the code to eventually run
without receiving a watchdog interrupt. At this point the watchdog timer reset can be enabled without the
potential of generating unwanted resets. At the same time the watchdog interrupt may also be disabled.
Proper use of the watchdog interrupt with the watchdog reset allows interrupt software to survey the
system for errant conditions.

When using the watchdog timer as a system monitor, the watchdog-reset function should be used. If the
Interrupt function were used, the purpose of the watchdog would be defeated. For example, assume the
system is executing errant code prior to the watchdog interrupt. The interrupt would temporarily force the
system back into control by vectoring the CPU to the interrupt service routine. Restarting the watchdog
and exiting by an RETI or RET, would return the processor to the lost position prior to the interrupt. By
using the watchdog reset function, the processor is restarted from the beginning of the program, and
therefore placed into a known state.

The watchdog has four timeout selections based on the input crystal frequency as shown in the following
table. The selections are a preselected number of clocks. Therefore, the actual timeout interval is
dependent on the crystal frequency. Shown below are the four timeouts with some example periods for
different crystal speeds. Note that the time period shown is for the interrupt event. The reset, when
enabled, will occur 512 clocks later regardless of whether the interrupt is used. Therefore, the actual
watchdog timeout period is the number shown below plus 512 clocks. Watchdog-generated resets will
last for two machine cycles.

WD1 WD0 WATCHDOG
INTERVAL

NUMBER
OF

CLOCKS

TIME AT
1.8432MHz

(ms)

TIME AT
11.0592MHz

(ms)

TIME AT
16MHz

(ms)

TIME AT
20MHz

(ms)

TIME AT
25MHz

(ms)
0 0 217 131,072 71.11 11.85 8.19 6.55 5.24
0 1 220 1,048,576 568.89 94.81 65.54 52.43 41.94
1 0 223 8,388,608 4551.11 758.52 524.29 419.43 335.54
1 1 226 67,108,864 36408.88 6068.15 4194.30 3355.44 2684.35

The watchdog timeout selection is made using bits WD1 (CKCON.7) and WD0 (CKCON.6) as shown in
the table. The timeout selections possible are shown in the bit descriptions that follow. The watchdog
timeout period is affected by the use of power management modes. The slower clock rate, either divide-
by-64 or divide-by-1024 is used as the input source for the watchdog timer. This allows the watchdog
period to remain synchronized with device operation.

High-Speed Microcontroller User’s Guide

127 of 167

As discussed, the watchdog timer has several SFR bits that contribute to its operation. It can be enabled to
function as either a reset source, interrupt source, software polled timer or any combination of the three.
Both the reset and interrupt have status flags. The watchdog also has a bit that restarts the timer. A
summary table showing the bit locations is below. A description follows.

NAME DESCRIPTION REGISTER LOCATION BIT POSITION
EWT Enable Watchdog Timer Reset WDCON–D8h WDCON.1
RWT Reset Watchdog Timer WDCON–D8h WDCON.0
WD1 Watchdog Interval 1 CKCON–8Eh CKCON.7
WD0 Watchdog Interval 0 CKCON–8Eh CKCON.6

WTRF Watchdog Timer Reset Flag WDCON–D8h WDCON.2
EWDI Enable Watchdog Timer Interrupt EIE–E8h EIE.4
WDIF Watchdog Interrupt Flag WDCON–D8h WDCON.3

The watchdog timer is a free-running timer and will be disabled by a power-fail reset. A watchdog
timeout reset will not disable the watchdog timer but will restart the timer. In general, software should set
the watchdog to whichever state is desired, just to be certain of its state. Control bits that support
watchdog operation are described below.

WDCON REGISTER SUMMARY
Watchdog Control, WDCON; D8h

WDCON.3: WDIF, Watchdog Interrupt Flag. If the watchdog interrupt is enabled (EIE.4), hardware will set
this bit to indicate that the watchdog interrupt has occurred. If the interrupt is not enabled, this bit indicates that the
timeout has passed. If the watchdog reset is enabled (WDCON.1), the user has 512 clocks to strobe the watchdog
prior to a reset. Software or any reset can clear this flag.

WDCON.2: WTRF, Watchdog Timer Reset Flag. Hardware will set this bit when the watchdog timer causes a
reset. Software can read it, but must clear it manually. A power-fail reset will also clear the bit. This bit assists
software in determining the cause of a reset. If EWT = 0, the watchdog timer will have no affect on this bit.

WDCON.1: EWT, Enable Watchdog Timer Reset. Setting this bit will turn on the watchdog timer reset
function. The interrupt will not occur unless the EWDI bit in the EIE register is set. A reset will occur according to
the WD1 and WD0 bits in the CKCON register. Setting this bit to a 0 will disable the reset but leave the timer
running.

WDCON.0: RWT, Reset Watchdog Timer. This bit serves as the strobe for the watchdog function. During the
timeout period, software must set the RWT bit if the watchdog is enabled. Failing to set the RWT will cause a reset
when the timeout has elapsed. There is no need to set the RWT bit to a 0 because it is self-clearing.

Read/Write Access: All bits have unrestricted read access. POR, EWT, WDIF, and RWT require a timed-access
write. The remaining bits have unrestricted write access.

High-Speed Microcontroller User’s Guide

128 of 167

Clock Control, CKCON; 8Eh

CKCON.7: WD1, Watchdog Timer Mode Select Bit 1. See table below for operation.

CKCON.6: WD0, Watchdog Timer Mode Select Bit 0. See table below for operation. The WD select bits
determine the timeout period of the watchdog timer. The timer divides the crystal frequency by a programmable
value as shown below. The divider value is expressed in number of clock (crystal) cycles. Note that the reset
timeout is 512 clocks longer than the interrupt, regardless of whether the interrupt is enabled.

WD1 WD0 Interrupt Divider Reset Divider
0 0 217 217 + 512
0 1 220 220 + 512

1 0 223 223 + 512

1 1 226 226 + 512

The default watchdog timeout is the shortest one (WD1 = WD0 = 0). Software can change this value easily, so this
should cause no inconvenience. However, the EWT, WDIF, and RWT bits are protected under the timed-access
procedure. This prevents software from accidentally enabling or disabling the watchdog. Most importantly, it
prevents errant code from accidentally clearing and restarting the watchdog. More details are discussed in the
section on timed access.

High-Speed Microcontroller User’s Guide

129 of 167

12. SERIAL I/O
The high-speed microcontroller serial communication is compatible with the 80C32. This includes
framing error detection and automatic address recognition. The high-speed microcontroller provides two
fully independent UARTs (serial ports) for simultaneous communication over two channels. The UARTs
can be operated in identical or different modes and communication speeds. In this documentation, all
descriptions apply to both UARTs unless stated otherwise.

Each serial port is capable of both synchronous and asynchronous modes. In the synchronous mode, the
microcontroller generates the clock and operates in a half-duplex mode. In the asynchronous mode, full
duplex operation is available. Receive data is buffered in a holding register. This allows the UART to
receive an incoming word before software has read the previous value. Each UART has an associated
control register (SCON0, SCON1) and each has a transmit/receive register (SBUF0, SBUF1). The SFR
locations are: SCON0;98h; SBUF0; 99h; SCON1;C0h; SBUF1;C1h. The SBUF location provides access
to both transmit and receive registers. Reads are directed to the receive buffer and writes to the transmit
buffer automatically.

12.1 Serial Mode Summary
Each port provides four operating modes. These offer different communication protocols and baud rates.
These modes are summarized briefly as follows. Detailed descriptions are provided later in this section.

The use of power management modes, if supported, will affect the internal clock rate and baud rate as
shown in Table 7-D. The following descriptions assume that power management modes are not in use.

Mode 0
This mode provides synchronous communication with external devices. It is commonly used to
communicate with serial peripherals. Serial I/O occurs on the RXD pin. The shift clock is provided on the
TXD pin. Note that whether transmitting or receiving, the high-speed microcontroller generates the serial
clock. Thus, any device on the serial port in Mode 0 must accept the microcontroller as the master.

The baud rate in Mode 0 is a function of the oscillator input. It will be the clock input divided by either 12
or 4. This is selected by the SM2 bit (SCON0.5 or SCON1.5) as described below. When set to a logic 0,
the serial port runs at a divide-by-12. When set to a logic 1, the serial port runs at a divide-by-4. With the
exception of the additional new divide-by-4 of the oscillator (supported by SM2), Mode 0 operation is
identical to the 80C32.

Mode 1
This mode provides standard full-duplex asynchronous communication. A total of 10 bits is transmitted
including 1 start bit, 8 data bits, and 1 stop bit. The received stop bit is stored in bit location RB8 in the
relevant SCON register.

In Mode 1, the baud rate is a function of timer overflow. This makes the baud rate programmable by the
user. Mode 1 has a difference for the two UARTs. Serial Port 0 can use either Timer 1 or 2 to generate
baud rates. Serial Port 1 can use only Timer 1. Note that if both serial ports use the same timer, they will
be running at the same baud rate. If they use different timers (or different modes), they can run at
different rates. Baud rates are discussed in more detail below. Mode 1 operation is identical to the
standard 80C32 when Timers 1 or 2 use the default divide-by-12 of the oscillator.

High-Speed Microcontroller User’s Guide

130 of 167

Mode 2
This mode is an asynchronous mode that transmits a total of 11 bits. These include 1 start bit, 8 data bits,
a programmable ninth bit, and 1 stop bit. The ninth bit is determined by the value in TB8 (SCON0.3 or
SCON1.3) for transmission. When the ninth bit is received, it is stored in RB8 (SCON0.2 or SCON1.2).
The ninth bit can be a parity value by moving the P bit (PSW.0) to TB8.

The baud rate for Mode 2 is a function of the oscillator frequency. It is either the oscillator input divided
by 32 or 64 as programmed by the SMOD bit in the PCON register. Mode 2 operation is identical to the
standard 80C32.

Mode 3
This mode has the same functionality as Mode 2, but generates baud rates like Mode 1. That is, this mode
transmits 11 bits, but generates baud rates via the timers. Like Mode 1, either Timer 1 or 2 can be used for
Serial Port 0 and Timer 1 can be used for Serial Port 1. Mode 3 operation is identical to the standard
80C32 when Timers 1 or 2 use the default divide-by-12 of the oscillator.

12.2 Serial Port Initialization
In order to use the UART function(s), the serial port must be initialized. This involves selecting the mode
and timebase, then initializing the baud rate generator if necessary. Serial communication is then
available. Once the baud rate generator is running, the UART can receive data.

In Mode 0, the high-speed microcontroller provides the clock. Serial reception is initiated by setting the
RI bit to a logic 0 and REN to a logic 1. This will generate a clock on the TXD pin and shift in the 8 bits
on the RXD pin. In the other modes, setting the REN bit to logic 1 will allow serial reception. The
external device must actually initiate it by sending a start bit. In any mode, serial transmission is initiated
by writing to either the SBUF0 or SBUF1 location.

Most of the serial port controls are provided by the SCON0 and SCON1 registers. For convenience, these
are provided in Table 12-A. In addition, other control bits that influence the Serial Port operation are also
summarized below.

Table 12-A. Serial I/O Modes

MODE SYNCH/ASYNCH BAUD
CLOCK†

DATA
BITS START/STOP 9TH BIT FUNCTION

0 Synch 4 or 12 tCLK 8 None None
1 Asynch Timer 1 or 2* 8 1 start, 1 stop None
2 Asynch 32 or 64 tCLK 9 1 start, 1 stop 0, 1, parity
3 Asynch Timer 1 or 2* 9 1 start, 1 stop 0, 1, parity

*Timer 2 available for Serial Port 0 only.
†The use of PMM1 or PMM2 will affect the baud clock.

High-Speed Microcontroller User’s Guide

131 of 167

Serial Port Control 0, SCON0; 98h
This is the standard 80C32 serial port. The new serial port is designated Serial Port 1 and is documented below.

SCON0.7: SM0/FE_0, Serial Port 0 Mode Bit 0 or Framing Error Flag. PCON.6 (SMOD0) determines
whether this bit functions as SM0 or FE. The operation of SM0 (SMOD0 = 0) is described in the table below.
When SMOD0 = 1, the serial port will set FE to indicate an invalid stop bit. When used as FE, this bit must be
cleared in software.

SCON0.6: SM1_0, Serial Port 0 Mode Select 1. The operation of SM1 is described in the table below.

SCON0.5: SM2_0, Multiple MCU Communication. Setting this bit to 1 enables multiprocessor communication
in Modes 2 or 3. If the ninth bit is 0, the RI_0 will not be set. In Mode 1, setting the SM2_0 bit to a one causes the
RI_0 bit not to be set if a valid stop bit is not received. In the high-speed microcontroller, SM2_0 also has a new
function. In mode 0, the SM2_0 bit controls whether the serial port clock runs at a divide-by-4 or a divide-by-12 of
the oscillator when not in PMM. When set to a logic 0, the serial port runs at a divide-by-12. When set to a logic
one, the serial port runs at a divide-by-4. This results in much faster synchronous serial communication.

SCON0.4: REN_0, Receive Enable. When set to a 1, the receive shift register will be enabled.

SCON0.3: TB8_0. Set/clear to define the state of the ninth transmission data bit in modes 2 and 3.

SCON0.2: RB8_0. Indicates the state of an incoming ninth bit when in modes 2 and 3. In mode 1, when SM2 = 0,
RB8_0 is the state of the stop bit received. RB8_0 is not used in mode 0.

SCON0.1: TI_0. Flag that indicates the transmitted word has been completely shifted out. In mode 0, TI_0 is set at
the end of the eighth data bit. In all other modes, this bit is set at the end of the last data bit. It must be cleared
manually by software.

SCON0.0: RI_0. Flag that indicates a serial word has been received. In mode 0, RI_0 is set at the end of the 8th
bit. In mode 1, it is set after the last sample of the incoming stop bit subject to the state of SM2_0. In modes 2 and
3, RI_0 is set after the last sample of RB8_0. It must be cleared manually by software.

SM0/FE_0 SM1_0 Mode Function Length (bits) Period
0 0 0 Sync 8 4/12 tCLK (see SM2)
0 1 1 Asynch 10 Timer 1 or 2
1 0 2 Asynch 11 64/32 tCLK
1 1 3 Asynch 11 Timer 1 or 2

Initialization: SCON is set to 00h on a reset.

Read/Write Access: Unrestricted

High-Speed Microcontroller User’s Guide

132 of 167

Serial Port Control 1, SCON1; C0h
Serial Port 1 performs identically to the standard Serial Port 0 on an 80C32 with one exception. The baud rate
generation from Timer 2 is not available in Modes 1 and 3. Timer 1 is used. The port is located at P1.3 and P1.2 for
TXD1 and RXD1, respectively.

SCON1.7: SM0/FE_1, Serial Port 1 Mode Bit 0 or Framing Error Flag. PCON.6 (SMOD0) determines
whether this bit functions as SM0 or FE. The operation of SM0 (SMOD0 = 0) is described in the table below.
When SMOD0 = 1, the serial port will set FE to indicate an invalid stop bit. When used as FE, this bit must be
cleared in software.

SCON1.6: SM1_1, Serial Port 1 Mode Select 1. The operation of SM1_1 is described in the table below.

SCON1.5: SM2_1, Multiple MCU Communication. Setting this bit to a one enables multiprocessor
communication in Modes 2 or 3. If the ninth bit is 0, the RI_1 will not be set. In Mode 1, setting the SM2_1 bit to
a one causes the RI_1 bit not to be set if a valid stop bit is not received. In the high-speed microcontroller, SM2_1
also has a new function. In mode 0, the SM2_1 bit controls whether the serial port clock runs at a divide-by-4 or a
divide-by-12 of the oscillator when not in PMM. When set to logic 0, the serial port runs at a divide-by-12. When
set to logic 1, the serial port runs at a divide-by-4. This results in much faster synchronous serial communication.

SCON1.4: REN_1, Receive Enable. When set to 1, the receive shift register will be enabled.

SCON1.3: TB8_1. Set/clear to define the state of the ninth transmission data bit in modes 2 and 3.

SCON1.2: RB8_1. Indicates the state of an incoming ninth bit when in modes 2 and 3. In mode 1, when SM2 = 0,
RB8 is the state of the stop bit received. RB8 is not used in mode 0.

SCON1.1: TI_1. Flag that indicates the transmitted word has been completely shifted out. In mode 0, TI is set at
the end of the eighth data bit. In all other modes, this bit is set at the end of the last data bit. It must be cleared
manually by software.

SCON1.0: RI_1. Flag that indicates a serial word has been received. In mode 0, RI_1 is set at the end of the eighth
bit. In mode 1, it is set after the last sample of the incoming stop bit subject to the state of SM2_1. In modes 2 and
3, RI_1 is set after the last sample of RB8_1. It must be cleared manually by software.

SM0/FE_0 SM1_0 Mode Function Length (bits) Period
0 0 0 Sync 8 4/12 tCLK (see SM2)
0 1 1 Asynch 10 Timer 1
1 0 2 Asynch 11 64/32 tCLK
1 1 3 Asynch 11 Timer 1

Initialization: SCON1 is set to 00h on a reset.

Read/Write Access: Unrestricted

High-Speed Microcontroller User’s Guide

133 of 167

Power Control, PCON; 87h

PCON.7: SMOD_0. Doubles the serial baud rate in modes 1, 2, and 3 for Serial Port 0 (the standard port) when
SMOD = 1.

PCON.6: SMOD0, Framing Error-Detection Enable. When SMOD0 is set to 1, SCON0.7 and SCON1.7 are
converted to the FE flag for the respective serial port. When SMOD0 is 0, then SCON0.7 and SCON1.7 are the
SM0 function as defined for the serial port.

Watchdog Control, WDCON; D8h

WDCON.7: SMOD_1, Serial Modification. When set to logic 1, this bit doubles the baud rate of Serial Port 1. It
works identically to PCON.7.

Timer Two Control, T2CON; C8h

T2CON.5: RCLK, Receive Clock Flag. This bit determines whether Timer 1 or 2 is used for Serial Port 0 timing
of received data in Serial Modes 1 or 3. RCLK = 1 causes Timer 2 overflow to be used as the receive clock.
RCLK = 0 causes Timer 1 overflow to be used as the receive clock.

T2CON.4: TCLK, Transmit Clock Flag. This bit determines whether Timer 1 or 2 is used for Serial Port 0
timing of Transmit data in Serial Modes 1 or 3. TCLK = 1 causes Timer 2 overflow to be used as the transmit
clock. TCLK = 0 causes Timer 1 overflow to be used as the transmit clock.

High-Speed Microcontroller User’s Guide

134 of 167

12.3 Baud Rates
Each mode has a baud rate generator associated with it. This generator is generally the same for each
UART. Several of the baud rate generation techniques have options and these options are independent for
the two UARTs. The baud rate descriptions given below are separated by mode.

Mode 0
Baud rates for this mode are driven directly from the crystal speed divided by either 12 or 4. Mode 0 is
synchronous so that the shift clock output frequency will be the baud rate. The formula is simply as
follows:

Oscillator Frequency
 Mode 0 Baud Rate = 12

or
 Oscillator Frequency
 Mode 0 Baud Rate = 4

The default case is divide-by-12. The user can select by using the SM2 bit in the associated SCON
register. For Serial Port 0, the SM2_0 bit is SCON0.5. For Serial Port 1, the SM2_0 bit is SCON1.5.
When SM2 is set to logic 0, the baud rate is generated using a divide-by-12 of the oscillator input. When
SM2 is set to logic 1, the baud rate is generated using divide-by-4. Note that this use of SM2 differs from
a standard 80C32. In that device, SM2 had no valid use when the UART was in Mode 0. Since it was
generally set to a 0, for the divide-by-12, there is no compatibility problem.

Mode 2
In this asynchronous mode, baud rates are also generated from the oscillator input. This mode works
identically to the original 8051 family. The baud rate is given by the following formula.

 2SMOD_x Oscillator Frequency
Mode 1, 3 Baud Rate = 64 12 x (256 - TH1)

The result of this formula generates a baud rate of either1/32 x oscillator frequency or 1/64 x oscillator
frequency. In the formula, the numerator is expressed as two to the power of SMOD, where SMOD is
either a 0 or 1. When 0, the numerator is a 1 and when SMOD = 1, the numerator is a 2.

SMOD is a bit that effectively doubles the baud rate when set to logic 1. For Serial Port 0, SMOD_0
resides at PCON.7. This is the original location in the 8051 family. For Serial port 1, SMOD_1 resides in
WDCON.7. The SMOD bits are set to a logic 0 on reset, which gives the lower speed baud rate.

If the application determines that Mode 0 or 2 must be used, then the oscillator or crystal frequency must
be selected to generate the correct baud rates since each mode offers two selections for a given frequency.

Mode 1 or 3
These asynchronous modes are commonly used for communication with PCs, modems, and other similar
interfaces. The baud rates are programmable using the oscillator input and 16-bit Timer 2 or 8-bit Timer
1. The respective timer is placed in auto-reload mode. Each time the timer reaches its rollover condition
(FFFFh→0000h—Timer 2 or FFh→00h—Timer 1), a clock is sent to the baud rate circuit. This clock is

x

High-Speed Microcontroller User’s Guide

135 of 167

then divided by 16 to generate the exact baud rate. For Serial Port 0, either Timer 1 or 2 can be used to
generate baud rates. Note that there are differences between the timers when used as baud rate generators.
Serial Port 1 can use Timer 1 as a baud rate generator. Thus in Mode 1 or 3, the two serial ports can run at
the same frequency if Timer 1 is used for both, but different frequencies if both timers are used.

Also note that the user can determine the speed at which Timer 1 runs (4 clocks or 12 clocks). In most
cases, 12 clocks will be used for baud rate generation. Timer 2 runs from a two-clock scheme when used
for baud rate generation. This is compatible with the 80C32.

The baud rates for Mode 1 or 3 are given by these formulas.

Serial Port 0 or 1

 2 SMOD_x
Mode 1, 3 Baud Rate = 32 Timer 1 Overflow

Serial Port 0

Timer 2 Overflow
Mode 1, 3 Baud Rate = 16

To use Timer 1 as the baud rate generator, it is commonly put into the 8-bit auto-reload mode. In this
way, the CPU is not involved in baud rate generation. Note that the timer interrupt should not be enabled.
In the 8-bit auto-reload mode (Timer 1 Mode 2), the reload value is stored in TH1. Thus the combination
of crystal frequency and TH1 determine the baud rate. The complete formula is as follows.

 2 SMOD_x Oscillator Frequency
Mode 1, 3 Baud Rate = 32 12 x (256 - TH1)

Note that the 12 in the denominator can be changed to a 4 as determined by the timer selection
(T1M;CKCON.4). This formula provides the derived baud rate for a given TH1 and crystal. Most users
already know what baud rate is desired and want the timer reload value. Thus the equation solves as
follows, when T1M = 0.

2 SMOD_x x Oscillator Frequency
TH1 = 256 - 32 x 12 x Baud Rate

Note that the most common application is to use Timer 1 in 8-bit auto-reload mode as a timer. It can
actually be used in any mode and can also be configured as a counter.

To use Timer 2 as baud rate generator for Serial Port 0, the Timer is configured in auto-reload mode.
Then either TCLK or RCLK bit (or both) are set to a logic 1. TCLK = 1 selects Timer 2 as the baud rate
generator for the transmitter and RCLK = 1 selects Timer 2 for the receiver. Thus, Serial Port 0 can have
the transmit and receive operating at different baud rates by choosing 1 for one data direction and Timer 2
for the other. Setting either RCLK or TCLK to a logic 1 selects Timer 2 for baud rate generation. RCLK
and TCLK reside in T2CON.4 and TCON.5 respectively.

When using Timer 2 to generate baud rates, the formula will be as follows. Note that the reload value is a
16-bit number as compared with Timer 1, which uses only 8 bits.

x

x

High-Speed Microcontroller User’s Guide

136 of 167

o

Mode 1, 3 Baud Rate =
RCAP2L)RCAP2H,(65536*32

FrequencyOscillator
−

Note that the 32 in the denominator is a result of the timer being run at a divide-by-2, combined with the
divide-by-16 applied to timer overflows as mentioned above. Timer 2 normally runs at a divide by either
12 or 4 in auto-reload mode. Setting RCLK or TCLK causes the divide-by-2 operation.

This formula provides the derived baud rate for a given RCAP2H, RCAP2L and crystal. Most users
already know what baud rate is desired and want the timer reload value. Thus the equation solves as
follows.

 RCAP2H, RCAP2L = 65536 –
BaudRate*32

FrequencyOscillator

The Timer 2 interrupt is automatically disabled when either RCLK or TCLK is set. Also, the TF2
(TCON.7) flag will not be set on a timer rollover. The manual reload pin [T2EX (P1.1)] will not cause a
reload either.

12.4 Serial I/O Description
A detailed description of each serial mode is given below. A description of framing error detection and
multiprocessor communication follows this section.

Mode 0
This mode is used to communicate in synchronous, half–duplex format with devices that accept the high-
speed microcontroller as a master. A functional block diagram and basic timing of this mode are shown in
Figure 12-1. As can be seen, there is one bidirectional data line (RXD) and one shift clock line (TXD)
used for communication. The shift clock is used to shift data into and out of the microcontroller and the
remote device. Mode 0 requires that the microcontroller is the master because the microcontroller
generates the serial shift clocks for both directions. As described above, the shift clock may be selected to
be either divide-by-12 or divide-by-4 of the oscillator as determined by the SM2 (SCON0.5 or SCON1.5)
bit.

High-Speed Microcontroller User’s Guide

137 of 167

Figure 12-1. Serial Port Mode 0

DIVIDE
BY 12

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

LO
A

D

C
LO

C
K

OUTPUT SHIFT REGISTER

S0 P3.0
LATCH

RXD
PIN

RECEIVE DATA BUFFER WRRD

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

C
LO

C
K

RECEIVE SHIFT REGISTER

SI

READ
SERIAL
BUFFERBAUD

CLOCK

LOAD
SERIAL
BUFFER

RECEIVE
BUFFER
LOADDATA

CLOCK IN
TS

SE
R

IA
L

I/O

C
O

N
TR

O
L

SHIFT

R1
FLAG =

SCONx.0

T1
FLAG =

SCONx.1

SERIAL
INTERRUPT

DIVIDE
BY 4

LDSBUF

RDSBUF

TRANSMIT TIMING
LDSBUF
SHIFT

WRITE TO SBUF

RXD
(DATA OUT) D0 D1 D2 D3 D4 D5 D6 D7

TXD
(DATA CLOCK)

TI

RECEIVE TIMING
RDSBUF
SHIFT

WRITE TO SCON (CLEAR RI)

RXD
(DATA IN)
TXD
(DATA CLOCK)

RI

D0 D1 D2 D3 D4 D5 D6 D7

SBUF

OSC

0 1

DATA BUS

SM2=
SCONx.5

TXD
PIN

High-Speed Microcontroller User’s Guide

138 of 167

The RXD signal is used for both transmission and reception. TXD provides the shift clock. Data bits enter
and exit LSb first. The baud rate is equal to the shift clock frequency. This can be either oscillator divided
by 4 or oscillator divided by 12. The relevant UART will begin transmitting when any instruction writes
to SBUF0 or SBUF1 (hex address 99h or C1h). The internal shift register will then begin to shift data out.
The clock will be activated and will transfer data until the 8-bit value is complete. Data will be presented
one oscillator cycle prior to the falling edge of the shift clock (TXD), and an external device can latch the
data using the rising edge.

The UART will begin to receive data when the REN bit in the SCON register (SCON0.4 or SCON1.4) is
set to logic 1 and the corresponding RI bit (SCON0.0 or SCON1.0) is set to a logic 0. This condition tells
the UART that there is data to be shifted in. The shift clock (TXD) will activate and the UART will latch
incoming data on the rising edge. The external device should therefore present data on the falling edge.
This process will continue until 8 bits have been received. The RI bit will automatically be set to logic 1,
one machine cycle following the last rising edge of the shift clock on TXD. This will cause reception to
stop until the SBUF has been read, and the RI bit cleared. When RI is cleared, another byte will be shifted
in.

Mode 1
This mode is asynchronous and full duplex, using a total of 10 bits. The 10 bits consist of a start bit (logic
0), 8 data bits, and 1 stop bit (logic 1) as illustrated in Figure 12-2. The data is transferred LSb first. As
described above, the baud rates for Mode 1 are generated by either a divide-by-16 of Timer 1 rollover, a
divide-by-16 of the Timer 2 rollover, or a divide-by-16 of (Timer 1 rollover)/2. The UART begins
transmission 5 oscillator cycles after the first rollover of the divide-by-16 counter following a software
write to SBUF. Transmission takes place on the TXD pin. It begins by the start bit being placed on the
pin. Data is then shifted out onto the pin, LSb first. The stop bit follows. The TI bit is set two oscillator
cycles after the stop bit is placed on the pin. All bits are shifted out at the rate determined by the baud rate
generator.

Once the baud rate generator is active, reception can begin at any time. The REN bit (SCON0.4 or
SCON1.4) must be set to logic 1 to allow reception. The falling edge of a start bit on the RXD pin will
begin the reception process. Data is shifted in at the selected baud rate. At the middle of the stop bit time,
certain conditions must be met to load SBUF with the received data:

1) RI must = 0, and either
2) If SM2 = 0, the state of the stop bit does not matter, or
3) If SM2 = 1, the state of the stop bit must=1.

If these conditions are true, then SBUF (hex address 99h or C1h) will be loaded with the received byte,
the RB8 bit (SCON0.2 or SCON1.2) will be loaded with the stop bit, and the RI bit (SCON0.0 or
SCON1.0) will be set. If these conditions are false, then the received data will be lost (SBUF and RB8 not
loaded) and RI will not be set. Regardless of the receive word status, after the middle of the stop bit time,
the receiver will go back to looking for a 1-to-0 transition on the RXD pin.

Each data bit received is sampled on the 7th, 8th, and 9th clock used by the divide-by-16 counter. Using
majority voting, two equal samples out of the three, determines the logic level for each received bit. If the
start bit was determined to be invalid (=1), then the receiver goes back to looking for a 1-to-0 transition
on the RXD pin in order to start the reception of data.

High-Speed Microcontroller User’s Guide

139 of 167

Figure 12-2. Serial Port Mode 1

SBUF

DIVIDE
BY 2

D
7 LO

A
D

C

LO
C

K

TRANSMIT SHIFT REGISTER

S0 P3.1
LATCH

TXD
PIN

RECEIVE DATA BUFFER WRRD

C
LO

C
K

RECEIVE SHIFT REGISTER

SI

READ
SERIAL

BUFFERBAUD
CLOCK

LOAD
SERIAL
BUFFER

LOAD

IN
TS

SE
R

IA
L

I/O

C
O

N
TR

O
L

SHIFT

T1
FLAG =

SCONx.1

RXD
PIN

SERIAL
INTERRUPT

LDSBUF
RDSBUF

S
TO

P

S
TA

R
T

1 0

S
TO

P

S
TA

R
T

RB8=
SCONx.2

R1
FLAG =

SCONx.0

DIVIDE
BY
16

BIT
DETECTION

DATA BUS

SBUF

RESET

DIVIDE
BY 16

SMOD_0=
PCON.7
OR
SMOD_1=
WDCON.7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

D
7

D
5

D
4

D
3

D
2

D
1

D
0

D
6

TIMER 2
OVERFLOW TIMER 1

OVERFLOW
A

V
A

IL
A

B
LE

 T
O

 S
E

R
IA

L
P

O
R

T
0

O
N

LY

1 0

1 0

1 0

TCLK =
T2CON.4

RCLK =
T2CON.5

RECEIVE TIMING

BIT DETECTOR
SAMPLING

SHIFT

RI

RXD
D0 D1 D2 D3 D4 D5 D6 D7

STOPSTART

TRANSMIT TIMING
LDSBUF

SHIFT

TI

TXD
D0 D1 D2 D3 D4 D5 D6 D7 STOPSTART

High-Speed Microcontroller User’s Guide

140 of 167

Mode 2
This mode uses a total of 11 bits in asynchronous full-duplex communication as illustrated in Figure 12-3.
The 11 bits consist of one start bit (a logic 0), 8 data bits, a programmable 9th bit, and one stop bit (a
logic 1). Like Mode 1, the transmissions occur on the TXD signal pin and receptions on RXD. For
transmission purposes, the 9th bit can be stuffed as logic 0 or 1. A common use is to put the parity bit in
this location. The 9th bit is transferred from the TB8 bit position in the SCON register (SCON0.3 or
SCON1.3) during the write to SBUF. Baud rates are generated as a fixed function of the crystal frequency
as described above. Like Mode 1, Mode 2’s transmission begins 5 oscillator cycles after the first rollover
of the divide-by-16 counter following a software write to SBUF. It begins by the start bit being placed on
the TXD pin. The data is then shifted out onto the pin LSb first, followed by the 9th bit, and finally the
stop bit. The TI bit (SCON0.1 or SCON1.1) is set when the stop bit is placed on the pin.

High-Speed Microcontroller User’s Guide

141 of 167

Figure 12-3. Serial Port Mode 2

SBUF

DIVIDE
BY 2

D
7 LO

A
D

C

LO
C

K

TRANSMIT SHIFT REGISTER

S0 P3.1
LATCH

TXD
PIN

RECEIVE DATA BUFFER WRRD

C
LO

C
K

RECEIVE SHIFT REGISTER

SI

READ
SERIAL

BUFFERSHIFT
CLOCK

LOAD
SERIAL
BUFFER

LOAD

IN
TS

S
E

R
IA

L
I/O

C

O
N

TR
O

L

SHIFT

T1
FLAG =

SCONx.1

RXD
PIN

SERIAL
INTERRUPT

LDSBUF
RDSBUF

S
TO

P

S
TA

R
T

1 0

S
TO

P

S
TA

R
T

RB8=
SCONx.2

R1
FLAG =

SCONx.0

DIVIDE
BY
16

BIT
DETECTION

DATA BUS

SBUF

RESET

DIVIDE
BY 16

SMOD_0=
PCON.7
OR
SMOD_1=
WDCON.7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

D
7

D
5

D
4

D
3

D
2

D
1

D
0

D
6

OSC/2=
CRYSTAL/2

1 0

D
8

TB8 =
SCONx.3

D
8

TRANSMIT TIMING
LDSBUF

SHIFT

RECEIVE TIMING

BIT DETECTOR
SAMPLING

SHIFT

TI

RI

TXD
D0 D1 D2 D3 D4 D5 D6 D7 STOPSTART

RXD
D0 D1 D2 D3 D4 D5 D6 D7 START STOP

TB8

RB8

High-Speed Microcontroller User’s Guide

142 of 167

Reception begins when a falling edge is detected as part of the incoming start bit on the RXD pin. The
RXD pin is then sampled according to the baud rate speed. The 9th bit is placed in the RB8 bit location in
SCON (SCON0.2 or SCON1.2). When a stop bit has been received, the data value will be transferred to
the SBUF receive register (hex address 99h or C1h). The RI bit (SCON0.0 or SCON1.0) will be set to
indicate that a byte has been received. At this time, the UART can receive another byte.

Once the baud rate generator is active, reception can begin at any time. The REN bit (SCON0.4 or
SCON1.4) must be set to logic 1 to allow reception. The falling edge of a start bit on the RXD pin will
begin the reception process. Data must be shifted in at the selected baud rate. At the middle of the 9th bit
time, certain conditions must be met to load SBUF with the received data.

1) RI must = 0, and either
2) If SM2 = 0, the state of the 9th bit does not matter, or
3) If SM2 = 1, the state of the 9th bit must = 1.

If these conditions are true, then SBUF will be loaded with the received byte, RB8 will be loaded with the
9th bit, and RI will be set. If these conditions are false, then the received data will be lost (SBUF and RB8
not loaded) and RI will not be set. Regardless of the receive word status, after the middle of the stop bit
time, the receiver will go back to looking for a 1-to-0 transition on RXD.

Data is sampled in a similar fashion to Mode 1 with the majority voting on three consecutive samples.
Mode 2 uses the sample divide-by-16 counter with either the oscillator divided by 2 or 4.

Mode 3
This mode has the same operation as Mode 2, except for the baud rate source. As shown in Figure 12-4,
Mode 3 can use Timer 1 or 2 for Serial Port 0 and Timer 1 for Serial Port 1. The bit shifting and protocol
are the same.

12.5 Framing Error Detection
A framing error occurs when a valid stop bit is not detected. This results in the possible improper
reception of the serial word. The UART can detect a framing error and notify the software. Typical
causes of framing errors are noise and contention. The Framing Error condition is reported in the SCON
register for the corresponding UART.

The Framing Error bit, FE, is located in SCON0.7 or SCON1.7. Note that this bit normally serves as SM0
and is described as SM0/FE_0 or SM0/FE_1 in the register description. Framing Error information is
made accessible by the Framing Error Detection Enable bit. It is SMOD0 located at PCON.6. When
SMOD0 is set to logic 1, the framing error information is shown in SM0/FE (SCON0.7 or SCON1.7).
When SMOD0 is set to logic 0, the SM0 function is accessible. The information for bits SM0 and FE is
actually stored in different registers. Changing SMOD0 only changes which register is accessed; not the
contents of either.

The FE bit will be set to a 1 when a framing error occurs. It must be cleared by software. Note that the
SMOD0 state must be 1 while reading or writing the FE bit. Also note that receiving a properly framed
serial word will not clear the FE bit. This must be done in software.

High-Speed Microcontroller User’s Guide

143 of 167

Figure 12-4. Serial Port Mode 3

SBUF

DIVIDE
BY 2

D
7 LO

A
D

C

LO
C

K

TRANSMIT SHIFT REGISTER

S0 P3.1
LATCH

TXD
PIN

RECEIVE DATA BUFFER WRRD

C
LO

C
K

RECEIVE SHIFT REGISTER

SI

READ
SERIAL

BUFFERBAUD
CLOCK

LOAD
SERIAL
BUFFER

LOAD

IN
TS

S
E

R
IA

L
I/O

C

O
N

TR
O

L

SHIFT

T1
FLAG =

SCONx.1

RXD
PIN

SERIAL
INTERRUPT

LDSBUF
RDSBUF

S
TO

P

S
TA

R
T

1 0

S
TO

P

S
TA

R
T

RB8=
SCONx.3

R1
FLAG =

SCONx.0

DIVIDE
BY
16

BIT
DETECTION

DATA BUS

SBUF

RESET

DIVIDE
BY 16

SMOD_0=
PCON.7
OR
SMOD_1=
WDCON.7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

D
7

D
5

D
4

D
3

D
2

D
1

D
0

D
6

TIMER 2
OVERFLOW TIMER 1

OVERFLOW
A

V
A

IL
A

B
LE

 T
O

 S
E

R
IA

L
P

O
R

T
0

O
N

LY

1 0

1 0

1 0

TCLK =
T2CON.4

RCLK =
T2CON.5

D
8

TB8=
SCONx.3

D
8

TRANSMIT TIMING

LDSBUF

SHIFT

RECEIVE TIMING

BIT DETECTOR
SAMPLING

SHIFT

TI

RI

TXD
D0 D1 D2 D3 D4 D5 D6 D7 STOPSTART

RXD
D0 D1 D2 D3 D4 D5 D6 D7 START STOP

TB8

RB8

High-Speed Microcontroller User’s Guide

144 of 167

12.6 Multiprocessor Communication
Multiprocessor communication mode makes special use of the 9th data bit in Modes 2 and 3. In the
original 8051, the 9th bit was restricted to a 0 or 1 condition, but had no special purpose. In the 80C32
and the high-speed microcontroller, it can be used to signify that the incoming byte is an address. This
allows the processor to be interrupted only if the correct address appears. The receive interrupt, if
enabled, will only occur when a recognized address is received.

When a serial word is received with the 9th bit set and the appropriate SM2=1, the byte will be assumed
to be an address. The address will be compared to an internally stored address. If it matches, a receive
interrupt will occur. The internal address is derived from the contents of two registers. The first register
specifies an absolute address. This is the user-specified address of the device. The second register tells
the comparator which address bit(s) to actually use in the comparison. This allows broadcast
transmissions that reach groups of microcontrollers or all microcontrollers on a serial port. The user
defines this protocol.

There are two SFRs that support multiprocessor communication for each UART. These are independent,
so that different addresses can be used in each. The registers are SADDR0 or SADDR1 (hex address A9h
or AAh) and SADEN0 or SADEN1 (hex address B9h or BAh). The SADDR register specifies the
individual processor’s address. The SADEN identifies address bits that should be ignored in matching
addresses.

Software will write an 8-bit address to the SADDR register. This is the microcontroller’s individual
address. Any bit in SADEN that contains logic 0 will cause the corresponding bit in SADDR to be
ignored in comparison. Thus, logic 0 bits in SADEN create don’t care bit states for address comparisons.

When an address is received, each address bit that is not masked by a don’t care will be compared to the
SADDR. The microcontroller will interrupt on any address that matches this comparison. Any address
that meets this comparison is called a given address. The following example shows how one address can
be directed to an individual processor, or two out of three.

Micro 1
 SADDR 11110000
 SADEN 11111010
 –––––––––––––––––––––––––
 Given 11110x0x

Micro 2

SADDR 11110001
SADEN 11111001
–––––––––––––––––––––––––
Given 11110xx1

Micro 3
SADDR 11110010
SADEN 11111010
–––––––––––––––––––––––––
Given 11110x1x

Note that an address of 11110000 reaches only microcontroller 1. An address of 11110001 reaches
microcontroller 1 and microcontroller 2. An address of 11110010 reaches only microcontroller 3. The
microcontroller also matches on any address that corresponds to the broadcast address. This is the logical
OR of the SADDR and SADEN registers, with any zeros defined as don’t cares. In most cases, the
broadcast address will be FFh. The broadcast address feature is not available on the DS8xC520 or the
DS8xC530.

High-Speed Microcontroller User’s Guide

145 of 167

The multiprocessor communication is always enabled. However, the SADEN registers default to 00h,
which means all address bits are don’t care, so all match. Thus, if no multiprocessor communication is
used, these registers can be ignored.

High-Speed Microcontroller User’s Guide

146 of 167

13. TIMED-ACCESS PROTECTION
The high-speed microcontroller uses a protection feature called timed access to prevent accidental writes
to critical SFR bits. These bits could cause a system failure or prevent the watchdog timer from doing its
job if improperly written. The timed access involves opening a timing window during which the protected
bit can be modified. If the window is opened correctly, it remains open long enough to alter one protected
bit. This section explains which bits are protected, why, and how to use the timed-access feature.

13.1 Protected Bits
Bits that are protected by the timed-access feature are shown below. Only critical function bits that are
unique to the high-speed microcontroller family are protected, assuring code compatibility with the
original 80C51 or 80C52. A full description of the function of each bit is provided in Section 4.

EXIF.0 BGS Bandgap Select
WDCON.6 POR Power-on Reset Flag
WDCON.1 EWT Watchdog Reset Enable
WDCON.0 RWT Reset Watchdog Timer
WDCON.3 WDIF Watchdog Interrupt Flag
TRIM.7 E4K 4096Hz RTC Output
TRIM.6 X12/ 6 12pF/6pF Crystal Select
TRIM.5 TRM2 Capacitance Trim Bit 2
TRIM.4 TRM2 Inverse Capacitance Trim Bit 2
TRIM.3 TRM1 Capacitance Trim Bit 1
TRIM.2 TRM1 Inverse Capacitance Trim Bit 1
TRIM.1 TRM0 Capacitance Trim Bit 0
TRIM.0 TRM0 Inverse Capacitance Trim Bit 0
ROMSIZE.2 RMS2 ROM Size Select Bit 2
ROMSIZE.1 RMS1 ROM Size Select Bit 1
ROMSIZE.0 RMS0 ROM Size Select Bit 0
RTCC.2 RTCWE RTC Write Enable
RTCC.0 RTCE RTC Enable

13.2 Protection Scheme
Each bit mentioned above is protected against an accidental write by requiring the software to perform a
procedure before writing the bit. Timed access requires the software to write two specific values to the
timed-access register during two consecutive instruction cycles. The values AAh, then 55h, must be
written in consecutive instructions to the TA register at SFR location C7h. If the writes are performed
correctly, the write access window will open for three machine cycles. During this window, the software
may modify a protected bit. The suggested code to open a timed-access window is:

MOV 0C7h, #0AAh
MOV 0C7h, #55h

The procedure to modify a timed-accessprotected bit begins by writing the value AAh to the timed-access
register (TA;C7h). The value 55h must then be written to the timed-access register within three machine
cycles of writing AAh. This opens a three-machine cycle window, after the write of 55h, during which
any timed-access protected bits may be modified. Failure to complete any of the required steps will also
require the procedure to begin again, starting with the write of AAh to the timed-access register. Attempts

High-Speed Microcontroller User’s Guide

147 of 167

to modify timed-access protected bits after the window has closed will be ignored. This is regardless of
whether any bits were modified. Figure 13-1 illustrates a number of examples of correct and incorrect use
of the timed-access procedure.

Figure 13-1. Timed-Access Examples

three machine cycles three machine cycles three machine cycles
 MOV 0C7h, #0AAh MOV 0C7h, #55h SETB EWT

three machine cycles three machine cycles one machine cycle two machine cycles
 MOV 0C7h, #0AAh MOV 0C7h, #55h NOP SETB EWT

three machine cycles three machine cycles three machine cycles
 MOV 0C7h, #0AAh MOV 0C7h, #55h MOV WDCON, #02h

VALID TIMED-ACCESS PROCEDURES

three machine cycles one machine cycles three machine cycle two machine cycles

MOV 0C7h, #0AAh NOP MOV 0C7h, #55H SETB EWT

*Second write to TA register does not occur within 3 cycles of first write.

three machine cycles three machine cycles one machine cycle three machine cycles
 MOV 0C7h, #0AAh MOV 0C7h, #55H NOP MOV WDCON, #02h

*Modification of protected bit did not occur with 3 cycles of second write to TA register.

three machine cycles three machine cycles two machine cycle two machine cycles
 MOV 0C7h, #0AAh MOV 0C7h, #55h SETB EWT SETB EWT

*Modification of second protected bit did not complete within 3 cycles of second write to TA register.

INVALID TIMED-ACCESS PROCEDURES

13.3 Timed-Access Protects Watchdog
Any microcontroller-based system can be faced with environmental conditions that are beyond its
designed abilities. These include external signal transients due to component failure, fluctuating power
conditions, massive electrostatic discharge (ESD), and other unexpected system events. When a
microcontroller is exposed to such conditions, program execution can become corrupted. Members of the
high-speed microcontroller family that incorporate a watchdog timer can initiate a reset to recover from
these conditions. The primary function of the timed-access feature is to protect against accidental
disabling of the watchdog timer by an “out-of-control” device. This allows the watchdog timer to reset
the system in the event of program execution failure.

The following hypothetical example demonstrates how a single bit change can corrupt program
execution. The timed-access procedure protects against an accidental write to the EWT bit by the errant
code, allowing the watchdog timer reset function to reset the device. While this is a purely fictitious
example, it illustrates how the watchdog timer and timed-access feature make the high-speed
microcontroller minimize the effect of accidental code corruption. Note: Timed access is not optional

High-Speed Microcontroller User’s Guide

148 of 167

and must be supported if the protected bits are used. This example simply helps explain the category of
problem that the timed access prevents.

EXAMPLE: A TRANSIENT CAUSES THE WATCHDOG TO BE DISABLED

TABLE_READ:
C2D2 90 0A 00 MOV DPTR, 0A00H ;LOAD TABLE POINTER
C2D5 79 FF MOV R1, #0FFH ;LOAD COUNTER
C2D7 78 90 MOV R0, #90H ;DESTINATION POINTER

 LOOP:
C2D9 E0 MOVX A, @DPTR ;READ DATA BYTE
C2DA F6 MOV @R0, A ;STORE IT IN RAM
C2DB 06 INC R0 ;NEXT TABLE LOCATION
C2DC A3 INC DPTR ;NEXT DATA VALUE
C2DD D9 C2 D9 DJNZ R1, LOOP ;NEXT BYTE OR DONE ?

A transient occurs while the op code is being fetched for the first instruction. The transient causes one bit
of the op code in the first instruction to be read as a 0 instead of 1. The resulting program is what the
microcontroller would actually execute:

TABLE_READ:

C2D2 80 0A 00 SJMP 0BH ;RELATIVE JUMP BY 10 LOCATIONS
C2D5 79 FF MOV R1, #0FFH ;LOAD COUNTER
C2D7 78 90 MOV R0, #90H ;DESTINATION POINTER

LOOP:
C2D9 E0 MOVX A, @DPTR ;READ DATA BYTE
C2DA F6 MOV @R0, A ;STORE IT IN RAM
C2DB 06 INC R0 ;NEXT TABLE LOCATION
C2DC A3 INC DPTR ;NEXT DATA VALUE
C2DD D9 C2 D9 DJNZ R1, LOOP ;NEXT BYTE OR DONE ?

The resulting jump is to address C2DE. This is not even a real op code, but would be treated as such. The
resulting fetch is the value C2 D9. This is the op code for CLR D9h. The bit addressable location D9h
corresponds to the EWT. If the timed-access procedure did not prevent it, this errant instruction would
disable the watchdog. Note that now, the program execution is completely lost. Real op codes are being
replaced by operands, data, and garbage. In the high-speed microcontroller, the watchdog will recover
from this state as soon as it times out since it could not have been disabled in this way.

In the high-speed microcontroller it is very hard to contrive a situation that will accidentally disable the
watchdog. Note that the timed access prevents accidentally writing a bit. It cannot prevent accidentally
calling the correct code that writes a bit. This is much more unlikely however.

High-Speed Microcontroller User’s Guide

149 of 167

14. REAL-TIME CLOCK
The DS87C530 incorporates a real-time clock (RTC) onto the high-speed microcontroller family core.
This allows the device to perform real-time related functions such as data logging and time-stamping
without an external timer. In addition, the RTC includes an alarm function that can execute a software
interrupt or resume operation from Stop mode at a specified time. The RTC features are controlled by 12
new SFRs. These registers as well as two new interrupt control bits are shown in Table 14-A.

Table 14-A. Real-Time Clock Control and Status Bit Summary

NAME LOCATION FUNCTION RANGE RESET READ/WRITE ACCESS
ERTCI EIE.5 RTC Interrupt Enable 0 Unrestricted
PRTCI EIP.5 RTC Interrupt Priority 0 Unrestricted
RTASS.7–0 RTASS RTC Alarm Subsecond 0–FFh Unchanged Unrestricted
RTAS.5–0 RTAS RTC Alarm Second 0–3Bh Unchanged Unrestricted
RTAM.5–0 RTAM RTC Alarm Minute 0–3Bh Unchanged Unrestricted
RTAH.4–0 RTAH RTC Alarm Hour 0–17H Unchanged Unrestricted

RTCSS.7–0 RTCSS RTC Subsecond 0–FFh Unchanged
Read: only if RTCRE = 1.
Cannot be written. Cleared when
RTCWE 1 ≥ 0.

RTCS.5–0 RTCS RTC Second 0–3Bh Unchanged
RTCM.5–0 RTCM RTC Minute 0–3Bh Unchanged
RTCH.4–0 RTCH.4–0 RTC Hour 0–17h Unchanged
DOW.2–0 RTCH.7–5 RTC Day of Week 0–7h Unchanged
RTCD1.7–0
RTCD0.7–0

RTCD1, (MSB)
RTCD0, (LSB) RTC Day 0–FFFFh Unchanged

Read: only if RTCRE = 1.
Write: only if RTCWE = 1.
1.95ms Read/Write window

SRCE RTCC.7 RTC Subsecond
Compare Enable Unchanged Unrestricted

SCE RTCC.6 RTC Second Compare
Enable Unchanged Unrestricted

MCE RTCC.5 RTC Minute Compare
Enable Unchanged Unrestricted

HCE RTCC.4 RTC Hour Compare
Enable Unchanged Unrestricted

RTCRE RTCC.3 RTC Read Enable 0 Unrestricted

RTCWE RTCC.2 RTC Write Enable 0 Read: Unrestricted
Write: Timed Access

RTCIF RTCC.1 RTC Interrupt Flag Unchanged Unrestricted
RTCE RTCC.0 RTC Enable Unchanged

E4K TRIM.7 External 4096Hz RTC
Signal Enable 0

X12/6 TRIM.6 RTC Crystal
Capacitance Select Unchanged

Read: Unrestricted
Write: Timed Access

TRM2–0
TRIM.5
TRIM.3
TRIM.1

RTC Trim Bit 2–0 Unchanged Read: Unrestricted
Write: Timed Access

The RTC control and status registers can be subdivided into four groups: RTC time registers
(RTCSS;FAh, RTCS;FBh, RTCM;FCh, RTCH;FDh, RTCD0;FEh, RTCD1;FFh), RTC alarm registers
(RTASS;F2h, RTAS;F3h, RTAM;F4h, RTAH;F5h), RTC calibration (TRIM;96h), and RTC control
(RTCC;F9h).

High-Speed Microcontroller User’s Guide

150 of 167

14.1 Starting and Stopping the RTC
Setting the RTC enable bit, RTCE (RTCC.0), to 1 enables RTC operation. This starts the RTC crystal
amplifier and begins clocking the RTC. Like all crystal oscillators, the RTC crystal oscillator has a crystal
warm-up period. Software should allow a minimum of 1 second between setting the RTCE bit to 1 and
initializing the time. This allows the clock to be guaranteed stable when timekeeping begins. Although it
may be desired to program the RTC time registers and then start the oscillator, this sequence is not
recommended because of the delay incurred by the RTC crystal warm-up period.

There are two situations where the RTC will be started. The first is the case where the RTC has been
intentionally halted following normal operation. When the RTCE bit is set, the time registers will
continue their count from the last setting when the clock was stopped. The RTC time value will be
inaccurate, although the settings of the RTC alarm registers and the RTCC register will remain intact.

The second case is following the application of battery power. Most of the registers associated with the
RTC are nonvolatile, so that they will maintain their state while VCC is removed. When battery power is
applied to the device, however, the battery backed registers and bits associated with the RTC will be in an
indeterminate state and will need to be reinitialized. This includes the RTC Interrupt Flag, RTCIF
(RTCC.1), which should be cleared before setting the RTC interrupt-enable bit (EIE.5).

Clearing the RTCE bit to 0 halts the RTC. This will immediately halt the RTC and will freeze all the time
registers at their current value and preserve all the RTC settings. If RTC functions are not desired, this
can be used to reduce the power consumption of the device while in battery-backed mode.

14.2 Setting and Reading the RTC Time Registers
Access to the RTC time registers (RTCSS, RTCS, RTCM, RTCH, RTCD0, and RTCD1) is enabled by
the RTCRE (RTCC.3) and RTCWE (RTCC.2) bits. Both user software and the internal clock directly
write and read the RTC time. To prevent the possibility of both user software and the internal timer
accessing the same register simultaneously, the DS87C530 incorporates a register locking mechanism.
Updates to the RTC time registers by the internal timer are temporarily suspended for up to 1.95ms
during software read or write operations. If a subsecond timer tick should occur during the 1.95ms
window, it will be processed immediately as soon as either the RTCWE or RTCRE bit is cleared.
Because the subsecond timer tick interval is 3.906ms, the 1.95ms window allows sufficient time to
complete any operations and process suspended timer ticks before the next timer tick occurs. In this way,
no timer ticks can be lost, and accessing the time registers will not affect the accuracy of the RTC. To
allow any pending timer ticks to propagate through the RTC circuitry, software must wait 4 machine
cycles after setting the RTCWE or RTCRE bits before accessing any of the RTC time registers. The first
timer tick following the clearing of the RTWCE bit will be approximately 1.95ms. All following timer
ticks will be 3.90625ms.

Reading the current time from any or all of the RTC time registers is accomplished by the following
procedure:

1) Disable all interrupts by clearing the EA bit (IE.7),
2) Set the RTCRE bit (RTCC.3),
3) Wait 4 machine cycles,
4) Read the appropriate register(s) within 1ms of RTCRE being set,
5) Clear the RTCRE bit (RTCC.3),
6) Enable interrupts by setting the EA bit (IE.7).

High-Speed Microcontroller User’s Guide

151 of 167

Writing to the clock registers sets the time on the DS87C530. The second, minute, hour, day of the week,
and day count can be set by writing to the respective registers. It is not possible to set the subsecond RTC
register (RTCS;FAh). This register is automatically reset to 00h when the RTCWE bit is cleared, either
through software or the automatic timeout of the 1.95ms write window. Writing an invalid time to these
registers (loading the RTCM register with 3Dh or 61 minutes, for example) will result in an inaccurate
count by the RTC. It is the responsibility of the software to ensure that only valid times are written to
these registers.

The procedure for setting an RTC time register is as follows:

1) Disable all interrupts by clearing the EA bit (IE.7),
2) Perform a timed-access procedure,
3) Set the RTCWE bit (RTCC.2),
4) Wait 4 machine cycles,
5) Write the appropriate register(s) within 1.95ms of RTCWE being set,
6) Perform a timed-access procedure,
7) Clear the RTCWE bit (RTCC.2),
8) Enable interrupts by setting the EA bit (IE.7).

14.3 Using the RTC Alarm
The RTC alarm function is used to generate an interrupt when the RTC value matches selected alarm
register values. An alarm can be triggered by a match on one or more of the following alarm registers:
subsecond (RTASS;F2h), second (RTAS;F3h), minute (RTAM;F4h), and hour (RTAH;F5h). Note that
there is no alarm register associated with the RTC day count or day of week registers. If an alarm is
desired on a specific date, an alarm can be executed once a day and user software can compare the current
date against the day register. It is not necessary to set the RTC write-enable bit, RTCWE, when setting
the alarm registers.

The alarm can be set to occur on a match with any or all of the alarm registers. An alarm can occur on a
unique time of day, or a recurring alarm can be programmed every subsecond, second, minute, or hour.
Alarms can occur synchronously, when the clock rolls over to match the alarm condition, or
asynchronously, if the alarm registers are set to a value that matches the current time. Note that only one
alarm may occur per subsecond tick. This means that if a synchronous alarm has already occurred during
the current subsecond, software cannot cause an asynchronous alarm in the same subsecond.

The specific alarm registers to be compared are selected by setting or clearing the corresponding
compare-enable bits (RTCC.7-4). Any compare bit that is cleared will result in that register being treated
as a don’t care when evaluating alarm conditions. Clearing all the compare enable bits will disable the
ability of the RTC to cause an interrupt, and will immediately clear the RTC interrupt flag (RTCC.1).
Unlike some interrupts, the RTC flag is not cleared by exiting the RTC interrupt service routine and must
be explicitly cleared in software.

The general procedure for setting the RTC alarm registers to cause a RTC interrupt is as follows:

1) Clear the ERTCI enable bit (EIE.5),
2) Clear all RTC alarm compare-enable bits (ANL RTCC, #0Fh),
3) Write one or more RTC alarm registers,
4) Set the desired RTC alarm compare-enable bits,
5) Set the ERTCI enable bit (EIE.5).

High-Speed Microcontroller User’s Guide

152 of 167

Setting the alarm to cause an interrupt once during a 24-hour period is done by setting all the alarm
registers to the desired value and enabling all compare bits. A recurring alarm is enabled by clearing the
compare-enable bits associated with one or more alarm registers. For example, to specify an alarm to
occur once a minute, the SSCE and SCE bits would be set. In general, a recurring alarm is set using the
next lower time increment than the desired interrupt period. For example, if an alarm was desired once an
hour, on the hour, a compare on the real-time alarm minute register would be performed, because the real-
time clock minute register will match the corresponding alarm register only once an hour. The RTASS,
RTAS, and RTAM registers would be cleared to 00h, and the SSCE, SCE, and MCE bits would all be set
to 1 to match on the time xx:00:00:00. Writing an invalid time to these registers (loading the RTAM
register with 3Dh or 61 minutes, for example) will never cause a match by the RTC. It is the
responsibility of the software to ensure that only valid times are written to these registers.

It is important to remember that any RTC register whose corresponding compare enable bit is cleared to 0
will always be treated as a match. The alarm registers are interrogated once per subsecond tick to check
for an alarm condition. If the SSCE bit was set to a don’t care (cleared to 0) in the above example, a
match (and interrupt) would occur during every subsecond of the minute in which the real-time alarm
minute register matched.

If an alarm occurs while in data retention state (VCC < VBAT), the RTCIF flag will be set and the interrupt
will remain pending. When power is reapplied to the device, the device will execute an RTC interrupt as
soon as interrupts are enabled.

14.4 Using the Day of the Week Bits
The DS87C530 contains three day of the week bits: DOW.2-0 located in the upper 3 bits of the real-time
clock hour register (RTCH;FDh). These allow the processor to count from 1 to 7. The day of the week
bits will increment anytime the hour register changes from 17h to 00h, indicating a new day. When the
day of the week register reaches a count of 111b, it will roll over to 001b.

If the day of the week feature is not needed, writing 000b to the bits will disable the ability of an hour
register rollover to change the day of the week. The bits will remain at 000b. This is very convenient from
a software standpoint, as it is not necessary to zero out the high-order bits when determining the hour
from the RTC hour register.

14.5 Choosing an RTC Crystal
The RTC clock source is provided by an external 32.768kHz crystal attached to the RTCX1 and RTCX2
leads of the DS87C530. The device can be programmed to operate with a crystal rated for either a 6pF or
12.5pF load capacitance. The RTC crystal capacitance select bit (TRIM.6) determines the crystal
selection. The default state of this bit after a no-battery reset is for a 12.5pF crystal.

In general, a lower capacitance crystal will consume less power, but will be more susceptible to noise.
Unlike the processor crystal inputs (X1, X2), the RTC crystal does not require external load capacitors.
Placing load capacitors on the RTC crystal input pins will cause the RTC to keep incorrect time. To
prevent system noise from affecting the RTC, the RTCX1 and RTCX2 pins should be guard-ringed with
the GND2 signal.

High-Speed Microcontroller User’s Guide

153 of 167

14.6 Calibrating the RTC Oscillator
Although the DS87C530 RTC accuracy is guaranteed for ±2 minutes per month, users may occasionally
require greater accuracy. The RTC incorporates the ability to adjust the internal capacitance of the crystal
amplifier via the RTC Trim Bits (TRM2-0 and 0-TRM2). This allows the user to more accurately match
the capacitance of the crystal amplifier to the crystal. Note that under most circumstances no adjustment
of the RTC crystal capacitance is necessary, as it will default to a minimum accuracy of ±2 minutes per
month.

All of the crystal capacitance controls are located in the RTC trim register (TRIM;96h). Setting the E4K
bit will enable the output of a 4096Hz signal on P1.7. This signal is derived from a divide-by-8 of the
32.768kHz crystal. Because this is directly generated from the RTC, it can be used to determine the actual
frequency of the RTC. By adjusting the value of the TRMx bits, the internal capacitance of the RTC can
be varied, slightly slowing or speeding up the RTC frequency. The combination of TRMx bits
(TRIM.5–0) that causes the output on pin P1.7 to most closely approximate 4096Hz provides the most
accurate setting of RTC capacitance.

As a precaution against accidental corruption of the oscillator trim bit settings, the TRMx bits must be
programmed in the same instruction to the inverse of their respective TRMx bits. For example, if a trim
bit setting of 5 (101) was desired, the TRMx bits should be set to 2 (010). An illegal combination will
automatically reset the TRIM register to 0x100101b. This will disable the E4K signal on P1.7, but leave
the X12/6 bit unmodified.

Refer to Application Note 79: Using the DS87C530 Real-Time Clock for more information about
calibrating the RTC oscillator for improved accuracy.

High-Speed Microcontroller User’s Guide

154 of 167

15. BATTERY BACKUP
The DS87C530 incorporates a feature that can maintain timekeeping and on-chip SRAM contents in the
absence of VCC. An external energy source such as a lithium battery or 0.47F super cap can be connected
to the VBAT pin. The nominal battery voltage should be 3V. For proper operation, the battery voltage must
always be at least a diode drop (0.7V) below VCC, and is recommended to be below VRST.

The DS87C530 automatically enters data retention mode when VCC < VBAT. When in data retention
mode, the RTC and SRAM contents are powered from the energy source connected to the VBAT pin and
electrically isolated from the rest of the device. This means that writes to battery-backed SFRs and
SRAM are ignored and reads return erroneous data while in data retention mode. The DS87C530 data
sheet contains a functional diagram of the internal battery switching circuitry.

The data retention switch voltage, the point at which the device switches into data retention mode, is a
function of the battery voltage, not an absolute reference. Care must be taken when selecting a battery so
that its voltage stays below VCC during normal operation to prevent an unplanned lockout of the RTC and
SRAM. Although it is unlikely that such a situation would occur, it could become an issue if a relatively
high-voltage battery is used. For example, suppose a 4.5V battery is used with a device operating at a VCC
of 5.0V. During normal operation, VCC is above VBAT, so no problem occurs. Suppose that a loss of
power occurs, and VCC begins to drop. Under normal circumstances, the device continues to operate until
it reaches VRST (4.0V to 4.25V), at which time device operation halts. If VBAT is higher than VRST,
however, RTC and SRAM access are prohibited before the device enters reset. This means that there may
be a short period of time before reset when the device is operating but could read erroneous data from the
RTC or SRAM or fail to write to them. One solution would be to use the power-fail interrupt to halt reads
or writes to the RTC or SRAM when VCC is dropping. The best approach is to carefully select battery
voltages to avoid the problem entirely.

15.1 Selecting a Battery
There are a number of battery chemistries and brands that are suitable for use with battery-backed
members of the high-speed microcontroller family. The use of lithium chemistry batteries, such as
Lithium Manganese Dioxide, is preferred as their nominal voltage is approximately 3.0V. Coin cells are
particularly suited for use with the high-speed microcontroller family because of their capacity, low
profile, and small diameter. Many are available with PC mount tabs attached for automated assembly.
Table 15-A shows a list of some common batteries and their capacities. This list is by no means
exhaustive, and the inclusion or exclusion of any vendor from this list is in no way a comment on the
suitability of a specific battery in a customer’s application.

Table 15-A. Suggested Batteries for the DS87C530

MANUFACTURER MODEL NUMBER TYPE NOMINAL
VOLTAGE (V)

CAPACITY
(mAh)

CR1620 Lithium/Manganese Dioxide 3 70
CR1616 Lithium/Manganese Dioxide 3 50
CR1220 Lithium/Manganese Dioxide 3 35
BR1616 Lithium/Polycarbon Monofluoride 3 48

Panasonic
(www.panasonic.com)

BR1225 Lithium/Polycarbon Monofluoride 3 38

Battery life can be calculated by dividing the rated battery capacity by the IBAT current specified on the
device specific data sheet. Note that this determines the minimum battery life; while VCC is applied to the
device, it draws negligible current from the battery, and so battery life will be lengthened accordingly.

http://www.panasonic.com/

High-Speed Microcontroller User’s Guide

155 of 167

Backup current is a function of temperature, and therefore battery life is dependent on the operating
environment.

The registers shown in Table 15-B are battery-backed, and one or more bits will be indeterminate
following a no-battery reset. They should be initialized as part of a no-battery reset procedure.

Table 15-B. Battery-Backed SFRs

REGISTER NAME LOCATION
TRIM 96h

RTASS F2h
RTAS F3h
RTAM F4h
RTAH F5h
RTCC F9h
RTCSS FAh
RTCS FBh
RTCM FCh
RTCH FDh

RTCD0 FEh
RTCD1 FFh

15.2 Lithium Battery Considerations
Lithium primary (nonrechargeable) batteries can fail and/or rupture if subjected to reverse current from
the device they are powering. The battery-switching circuitry inside the DS87C530 was designed to
reduce or eliminate the need for external hardware required to meet battery safety regulations. As shown
in the DS87C530 data sheet, a current-limiting resistor is always in series with a switching field-effect
transistor, regardless of whether the DS87C530 is drawing current from VCC or VBAT pins. This satisfies
the two-mechanism requirement of most safety codes.

High-Speed Microcontroller User’s Guide

156 of 167

16. INSTRUCTION SET DETAILS
Details of flags modified by each instruction are located in Section 4.

INSTRUCTION CODE
MNEMONIC D7 D6 D5 D4 D3 D2 D1 D0

HEX

BYTE

CYCLE

EXPLANATION

ADD A, Rn 0 0 1 0 1 n2 n1 n0 28-2F 1 1 (A) = (A) + (Rn)
ADD A, direct 0

a7
0
a6

1
a5

0
a4

0
a3

1
a2

0
a1

1
a0

25
Byte 2

2 2 (A) = (A) + (direct)

ADD A, @Ri 0 0 1 0 0 1 1 i 26-27 1 1 (A) = (A) + ((Ri))
ADD A, #data 0

d7
0
d6

1
d5

0
d4

0
d3

1
d2

0
d1

0
d0

24
Byte 2

2 2 (A) = (A) + #data

ADDC A, Rn 0 0 1 1 1 n2 n1 n0 38-3F 1 1 (A) = (A)+(C)+(Rn)
ADDC A,
direct

0
a7

0
a6

1
a5

1
a4

0
a3

1
a2

0
a1

1
a0

35
Byte 2

2 2 (A) = (A)+(C)+(direct)

ADDC A, @Ri 0 0 1 1 0 1 1 i 36-37 1 1 (A) = (A)+(C)+((Ri))
ADDC
A,#data

0
d7

0
d6

1
d5

1
d4

0
d3

1
d2

0
d1

0
d0

34
Byte 2

2 2 (A) = (A)+(C)+#data

SUBB A, Rn 1 0 0 1 1 n2 n1 n0 98-9F 1 1 (A) = (A)-(C)-(Rn)
SUBB A,
direct

1
a7

0
a6

0
a5

1
a4

0
a3

1
a2

0
a1

1
a0

95
Byte 2

2 2 (A) = (A)-(C)-(direct)

SUBB A, @Ri 1 0 0 1 0 1 1 i 96-97 1 1 (A) = (A)-(C)-((Ri))
SUBB A,
#data

1
d7

0
d6

0
d5

1
d4

0
d3

1
d2

0
d1

0
d0

94
Byte 2

2 2 (A) = (A)-(C)-#data

INC A 0 0 0 0 0 1 0 0 04 1 1 (A) = (A) + 1
INC Rn 0 0 0 0 1 n2 n1 n0 08-0F 1 1 (Rn) = (Rn) + 1
INC direct 0

a7
0
a6

0
a5

0
a4

0
a3

1
a2

0
a1

1
a0

05
Byte 2

2 2 (direct) = (direct)+1

INC @Ri 0 0 0 0 0 1 1 i 06-07 1 1 ((Ri)) = ((Ri)) + 1
INC DPTR 1 0 1 0 0 0 1 1 A3 1 3 (DPTR)=(DPTR)+1
DEC A 0 0 0 1 0 1 0 0 14 1 1 (A) = (A) - 1
DEC Rn 0 0 0 1 1 n2 n1 n0 18-1F 1 1 (Rn) = (Rn) - 1
DEC direct 0

a7
0
a6

0
a5

1
a4

0
a3

1
a2

0
a1

1
a0

15
Byte 2

2 2 (direct) = (direct)-1

DEC @Ri 0 0 0 1 0 1 1 i 16-17 1 1 ((Ri)) = ((Ri)) - 1
MUL AB 1 0 1 0 0 1 0 0 A4 1 5 (B15–8), (A7–0)

= (A) X (B)

A
R

IT
H

M
E

T
IC

 O
PE

R
A

T
IO

N

DIV AB 1 0 0 0 0 1 0 0 84 1 5 (A15–8), (A7–0)
= (A) ÷ (B)

High-Speed Microcontroller User’s Guide

157 of 167

INSTRUCTION CODE

MNEMONIC D7 D6 D5 D4 D3 D2 D1 D0

HEX

BYTE

CYCLE

EXPLANATION

A
R

IT
H

M
E

T
IC

 O
PE

R
. DA A

1 1 0 1 0 1 0 0 D4 1 1 Contents of Accumulator

are BCD,
IF [[(A3-0) > 9] OR
[(AC) = 1]] THEN
(A3-0) = (A3-0) + 6
AND
IF [[(A7-4) > 9] OR
[(C) = 1]] THEN
(A7-4) = (A7-4) + 6

ANL A, Rn 0 1 0 1 1 n2 n1 n0 58-5F 1 1 (A) = (A) AND (Rn)
ANL A, direct 0

a7
1
a6

0
a5

1
a4

0
a3

1
a2

0
a1

i
a0

55
Byte 2

2 2 (A) = (A) AND (direct)

ANL A, @Ri 0 1 0 1 0 1 1 i 56-57 1 1 (A) = (A) AND ((Ri))
ANL A, #data 0

d7
1
d6

0
d5

1
d4

0
d3

1
d2

0
d1

0
d0

54
Byte 2

2 2 (A)=(A) AND #data

ANL direct, A 0
a7

1
a6

0
a5

1
a4

0
a3

0
a2

1
a1

0
a0

52
Byte 2

2 2 (direct) =
(direct) AND A

ANL direct,
#data

0
a7
d7

1
a6
d6

0
a5
d5

1
a4
d4

0
a3
d3

0
a2
d2

1
a1
d1

1
a0
d0

53
Byte 2
Byte 3

3 3 (direct) =
(direct) AND #data

ORL A, Rn 0 1 0 0 1 n2 n1 n0 48-4F 1 1 (A) = (A) OR (Rn)
ORL A, direct 0

a7
1
a6

0
a5

0
a4

0
a3

1
a2

1
a1

I
a0

45
Byte 2

2 2 (A) =
(A) OR (direct)

ORL A, @Ri 0 1 0 0 0 1 1 i 46-47 1 1 (A) = (A) OR ((Ri))
ORL A, #data 0

d7
1
d6

0
d5

0
d4

0
d3

1
d2

0
d1

0
d0

44
Byte 2

2 2 (A) = (A) OR #data

ORL direct, A 0 1 0 0 0 0 1 0 42
Byte 2

2 2 (direct) =
(direct) OR (A)

ORL direct,
#data

0
a7
d7

1
a6
d6

0
a5
d5

0
a4
d4

0
a3
d3

0
a2
d2

1
a1
d1

1
a0
d0

43
Byte 2
Byte 3

3 3 (direct) =
(direct) OR #data

XRL A, Rn 0 1 1 0 1 n2 n1 n0 68-6F 1 1 (A) = (A) XOR (Rn)
XRL A, direct 0

a7
1
a6

1
a5

0
a4

0
a3

1
a2

0
a1

1
a0

65
Byte 2

2 2 (A) =
(A) XOR (direct)

XRL A, @ Ri 0 1 1 0 0 1 1 i 66-67 1 1 (A) = (A) XOR ((Ri))
XRL A, #data 0 1 1 0 0 1 0 0 64

Byte 2
2 2 (direct) =

(A) XOR #data
XRL direct, A 0 1 1 0 0 0 1 0 62

Byte 2
2 2 (direct) =

(direct) XOR (A)
XRL direct,
#data

0
a7
d7

1
a6
d6

1
a5
d5

0
a4
d4

0
a3
d3

0
a2
d2

1
a1
d1

1
a0
d0

63
Byte 2
Byte 3

3 3 (direct) =
(direct) XOR #data

CLR A 1 1 1 0 0 1 0 0 E4 1 1 (A) = 0

L
O

G
IC

A
L

 O
PE

R
A

T
IO

N

CPL A 1 1 1 1 0 1 0 0 F4 1 1 (A) = (A)

High-Speed Microcontroller User’s Guide

158 of 167

INSTRUCTION CODE

MNEMONIC D7 D6 D5 D4 D3 D2 D1 D0

HEX

BYTE

CYCLE

EXPLANATION

 RL A

0 0 1 0 0 0 1 1 23 1 1
 A7 A6 A5 A4 A3 A2 A1 A0

 The contents of the
accumulator are rotated left

by one bit.
RLC A 0 0 1 1 0 0 1 1 33 1 1

 C A7 A6 A5 A4 A3 A2 A0 A1

 The contents of the
accumulator are rotated

right by one bit.
RR A 0 0 0 0 0 0 1 1 03 1 1

 A7 A6 A5 A4 A3 A2 A0 A1

The contents of the
accumulator are rotated

right by one bit.
RRC A 0 0 0 1 0 0 1 1 13 1 1

 C A7 A6 A5 A4 A3 A2 A0 A1

 The contents of the
accumulator are rotated

right by one bit.

L
O

G
IC

A
L

 O
PE

R
A

T
IO

N

SWAP A 1 1 0 0 0 1 0 0 C4 1 1 (A3-0) ↔ (A7-4)
MOV A, Rn 1 1 1 0 1 n2 n1 n0 E8-EF 1 1 (A) = (Rn)
MOV A,
direct

1
a7

1
a6

1
a5

0
a5

0
a3

1
a2

0
a1

1
a0

E5
Byte 2

2 2 (A) = (direct)

MOV A, @Ri 1 1 1 0 0 1 1 i E6-E7 1 1 (A) = ((Ri))
MOV A,
#data

0
d7

1
d6

1
d5

1
d4

0
d3

1
d2

0
d1

0
d0

74
Byte 2

2 2 (A) = #data

MOV Rn, A 1 1 1 1 1 n2 n1 n0 F8-FF 1 1 (Rn) = (A)
MOV Rn,
direct

1
a7

0
a6

1
a5

0
a5

1
a3

n2
a2

n1
a1

n0
a0

A8-AF
Byte 2

2 2 (Rn) = (direct)

MOV Rn,
#data

0
d7

1
d6

1
d5

1
d4

1
d3

n2
d2

n1
d1

n0
d0

78-7F
Byte 2

2 2 (Rn) = #data

MOV direct,
A

1
a7

1
a6

1
a5

1
a4

0
a3

1
a2

0
a1

1
a0

F5
Byte 2

2 2 (direct) = (A)

MOV direct,
Rn

1
a7

0
a6

0
a5

0
a4

1
a3

n2
a2

n1
a1

n0
a0

88-8F
Byte 2

2 2 (direct) = (Rn)

MOVdirect1,
direct2

1
a7
a7

0
a6
a6

0
a5
a5

0
a4
a4

0
a3
a3

1
a2
a2

0
a1
a1

1
a0
a0

85
Byte 2
Byte 3

3 3 (direct1) = (direct2)
(source)
(destination)

D
A

T
A

 T
R

A
N

SF
E

R

MOV direct,
@Ri

1
a7

0
a6

0
a5

0
a4

0
a3

1
a2

1
a1

i
a0

86-87
Byte 2

2 2 (direct) = ((Ri))

High-Speed Microcontroller User’s Guide

159 of 167

INSTRUCTION CODE

 MNEMONIC
D7 D6 D5 D4 D3 D2 D1 D0

HEX BYTE CYCLE EXPLANATION

MOV direct,
#data

0
a7
d7

1
a6
d6

1
a5
d5

1
a4
d4

0
a3
d3

1
a2
d2

0
a1
d1

1
a0
d0

75
Byte 2
Byte 3

3 3 (direct) = #data

MOV @Ri, A 1 1 1 1 0 1 1 i F6-F7 1 1 ((Ri)) = A
MOV @Ri,
direct

1
a7

0
a6

1
a5

0
a4

0
a3

1
a2

1
a1

i
a0

A6-A7
Byte 2

2 2 ((Ri)) = (direct)

MOV @Ri,
#data

0
d7

1
d6

1
d5

1
d4

0
d3

1
d2

1
d1

i
d0

76-77
Byte 2

2 2 ((Ri)) = #data

MOV DPTR,
#data16

1
d7
d7

0
d6
d6

0
d5
d5

1
d4
d4

0
d3
d3

0
d2
d2

0
d1
d1

0
d0
d0

90
Byte 2
Byte 3

3 3 (DPTR) = #data15-0
(DPH) = #data15-8
(DPL) = #data7-0

MOVC A,
@A + DPTR

1 0 0 1 0 0 1 1 93 1 3 (A)=((A) + (DPTR))

MOVC A,
@A + PC

1 0 0 0 0 0 1 1 83 1 3 (A) = ((A) + (PC))

MOVX A,
@Ri

1 1 1 0 0 0 1 i E2-E3 1 2-9 (A) = ((Ri))

MOVX
@DPTR,

1 1 1 0 0 0 0 0 E0 1 2-9 (A) = ((DPTR))

MOVX @Ri,
A

1 1 1 1 0 0 1 i F2-F3 1 2-9 ((Ri)) = (A)

MOVX
@DPTR,A

1 1 1 1 0 0 0 0 F0 1 2-9 ((DPTR)) = (A)

PUSH direct 1
a7

1
a6

0
a5

0
a4

0
a3

0
a2

0
a1

0
a0

C0
Byte 2

2 2 (SP) = (SP) + 1
((SP)) = (direct)

POP direct 1
a7

1
a6

0
a5

1
a4

0
a3

0
a2

0
a1

0
a0

D0
Byte 2

2 2 (direct) = ((SP))
(SP) = (SP) - 1

XCH A, Rn 1 1 0 0 1 n2 n1 n0 C8-CF 1 1 (A) = (Rn)
XCH A,
direct

1
a7

1
a6

0
a5

0
a4

0
a3

1
a2

0
a1

1
a0

C5
Byte 2

2 2 (A) = (direct)

XCH A, @Ri 1 1 0 0 0 1 1 i C6-C7 1 1 (A) = ((Ri))

D
A

T
A

 T
R

A
N

SF
E

R

XCHD A,
@Ri

1 1 0 1 0 1 1 i D6-D7 1 1 (A3-0) = ((Ri3-0))

High-Speed Microcontroller User’s Guide

160 of 167

INSTRUCTION CODE

MNEMONIC D7 D6 D5 D4 D3 D2 D1 D0

HEX

BYTE

CYCLE

EXPLANATION
CLR C 1 1 0 0 0 0 1 1 C3 1 1 (C) = 0
CLR bit 1

b7
1
b6

0
b5

0
b4

0
b3

0
b2

1
b1

0
b0

C2
Byte 2

2 2 (bit) = 0

SETB C 1 1 0 1 0 0 1 1 D3 1 1 (C) = 1
SETB bit 1

b7
1
b6

0
b5

1
b4

0
b3

0
b2

1
b1

0
b0

D2
Byte 2

2 2 (bit) = 1

CPL C 1 0 1 1 0 0 1 1 B3 1 1 (C) = (C)
CPL bit 1

b7
0
b6

1
b5

1
b4

0
b3

0
b2

1
b1

0
b0

B2
Byte 2

2 2 (bit) = (bit)

ANL C, bit 1
b7

0
b6

0
b5

0
b4

0
b3

0
b2

1
b1

0
b0

82
Byte 2

2 2 (C) = (C) AND (bit)

ANL C, bit 1
b7

0
b6

1
b5

1
b4

0
b3

0
b2

0
b1

0
b0

B0
Byte 2

2 2 (C) = (C) AND (bit)

ORL C, bit 1
b7

1
b6

1
b5

1
b4

0
b3

0
b2

1
b1

0
b0

72
Byte 2

2 2 (C) = (C) OR (bit)

ORL C, bit 1
b7

0
b6

1
b5

0
b4

0
b3

0
b2

0
b1

0
b0

A0
Byte 2

2 2 (C) = (C) OR (bit)

MOV C, bit 1
b7

0
b6

1
b5

0
b4

0
b3

0
b2

1
b1

0
b0

A2
Byte 2

2 2 (C) = (bit)

B
O

O
L

E
A

N
 V

A
R

IA
B

L
E

 M
A

N
IP

U
L

A
T

IO
N

MOV bit, C 1
b7

0
b6

0
b5

1
b4

0
b3

0
b2

1
b1

0
b0

92
Byte 2

2 2 (bit) = (C)

High-Speed Microcontroller User’s Guide

161 of 167

INSTRUCTION CODE

MNEMONIC D7 D6 D5 D4 D3 D2 D1 D0

HEX

BYTE

CYCLE

EXPLANATION
ACALL addr
11

a10
a7

a9
a6

a8
a5

1
a8

0
a3

0
a2

0
a1

1
a0

Byte 1
Byte 2

2 3 (PC) = (PC) + 2
(SP) = (SP) + 1
((SP)) = (PC7-0)
(SP) = (SP) + 1
((SP)) = (PC15-8)
(PC)=page address

LCALL addr
16

0
a15
a7

0
a14
a6

0
a13
a5

1
a12
a5

0
a11
a3

0
a10
a2

1
a9
a1

0
a8
a0

12
Byte 2
Byte 3

3 4 (PC) = (PC) + 3
(SP) = (SP) + 1
((SP)) = (PC7-0)
(SP) = (SP) + 1
((SP)) = (PC15-8)
(PC) = addr15-0

RET 0 0 1 0 0 0 1 0 22 1 4 (PC15-8) = ((SP))
(SP) = (SP) - 1
(PC7-0) = ((SP))
(SP) = (SP) - 1

RETI 0 0 1 1 0 0 1 0 32 1 4 (PC15-8) = ((SP))
(SP) = (SP) - 1
(PC7-0) = ((SP))
(SP) = (SP) - 1

AJMP addr
11

a10
a7

a9
a6

a8
a5

0
a4

0
a3

0
a2

0
a1

1
a0

Byte 1
Byte 2

2 3 (PC) = (PC) + 2
(PC10-0) = page addr

LJMP addr
16

0
a15
a7

0
a14
a6

0
a13
a5

0
a12
a4

0
a11
a3

0
a10
a2

1
a9
a1

0
a8
a0

02
Byte 2
Byte 3

3 4 (PC) = addr15-0

SJMP rel 1
r7

0
r6

0
r5

0
r4

0
r3

0
r2

0
r1

0
r0

80
Byte 2

2 3 (PC) = (PC) + 2
(PC) = (PC) + rel

JMP @A +
DPTR

0 1 1 1 0 0 1 1 73 1 3 (PC) = (A) + (DPTR)

JZ rel 1
r7

0
r6

0
r5

0
r4

0
r3

0
r2

0
r1

0
r0

60
Byte 2

2 3 (PC) = (PC) + 2
IF (A) = 0 THEN
(PC) = (PC) + rel

PR
O

G
R

A
M

 B
R

A
N

C
H

IN
G

JNZ rel 1
r7

0
r6

0
r5

0
r4

0
r3

0
r2

0
r1

0
r0

70
Byte 2

2 3 (PC) = (PC) + 2
IF (A) ≠ 0 THEN
(PC) = (PC) + rel

High-Speed Microcontroller User’s Guide

162 of 167

INSTRUCTION CODE

MNEMONIC D7 D6 D5 D4 D3 D2 D1 D0

HEX

BYTE

CYCLE

EXPLANATION
JC rel 0

r7
1
r6

0
r5

0
r4

0
r3

0
r2

0
r1

0
r0

40
Byte 2

2 3 (PC) = (PC) + 2
IF (C) = 1 THEN
(PC) = (PC) + rel

JNC rel 0
r7

1
r6

0
r5

1
r4

0
r3

0
r2

0
r1

0
r0

50
Byte 2

2 3 (PC) = (PC) + 2
IF (C) ≠ 0 THEN
(PC) = (PC) + rel

JB bit, rel 0
b7
r7

0
b6
r6

1
b5
r5

0
b4
r4

0
b3
r3

0
b2
r2

0
b1
r1

0
b0
r0

20
Byte 2
Byte 3

3 4 (PC) = (PC) + 3
IF (bit) = 1 THEN
(PC) = (PC) + rel

JNB bit, rel 0
b7
r7

0
b6
r6

0
b5
r5

1
b4
r4

0
b3
r3

0
b2
r2

0
b1
r1

0
b0
r0

30
Byte 2
Byte 3

3 4 (PC) = (PC) + 3
IF (bit) = 0 THEN
(PC) = (PC) + rel

JBC bit, rel 0
b7
r7

0
b6
r6

0
b5
r5

1
b4
r4

0
b3
r3

0
b2
r2

0
b1
r1

0
b0
r0

10
Byte 2
Byte 3

3 4 (PC) = (PC) + 3
IF (bit) = 1 THEN
(bit) = 0 (PC) =
(PC) + rel

CJNE A,
direct, rel

0
a7
r7

0
a6
r6

0
a5
r5

1
a4
r4

0
a3
r3

0
a2
r2

0
a1
r1

0
a0
r0

B5
Byte 2
Byte 3

3 4 (PC) = (PC) + 3
IF (direct) < (A)
THEN (PC) = (PC)
+ rel and (C) = 0
OR
IF (direct) > (A)
THEN (PC) = (PC)
+ rel and (C) = 1

CJNE A,
#data, rel

1
d7
r7

0
d6
r6

1
d5
r5

1
d4
r4

0
d3
r3

1
d2
r2

0
d1
r1

0
d0
r0

B4
Byte 2
Byte 3

3 4 (PC) = (PC) + 3
IF #data < (A)
THEN (PC) = (PC)
+ rel and (C) = 0
OR
IF #data > (A)
THEN (PC) = (PC)
+ rel and (C) = 1

CJNE Rn,
#data, rel

1
d7
r7

0
d6
r6

1
d5
r5

1
d4
r4

1
d3
r3

n2
d2
r2

n1
d1
r1

n0
d0
r0

B8-BF
Byte 2
Byte 3

3 4 (PC) = (PC) + 3
IF #data < (Rn)
THEN (PC) = (PC)
+ rel and (C) = 0
OR
IF #data > (Rn)
THEN (PC) = (PC)
+ rel and (C) = 1

PR
O

G
R

A
M

 B
R

A
N

C
H

IN
G

CJNE @Ri,
#data, rel

1
d7
r7

0
d6
r6

1
d5
r5

1
d4
r4

0
d3
r3

1
d2
r2

1
d1
r1

i
d0
r0

B6-B7
Byte 2
Byte 3

3 4 (PC) = (PC) + 3
IF #data < ((Ri))
THEN (PC) = (PC)
+ rel and (C) = 0
OR
IF #data > ((Ri))
THEN (PC) = (PC)
+ rel and (C) = 1

High-Speed Microcontroller User’s Guide

163 of 167

INSTRUCTION CODE MNEMONIC

D7 D6 D5 D4 D3 D2 D1 D0
HEX BYTE CYCLE EXPLANATION

DJNZ Rn, rel 1
r7

1
r6

0
r5

1
r4

1
r3

n2
r2

n1
r1

n0
r0

D8-Df
Byte 2

2 3 (PC) = (PC) + 2
(Rn) = (Rn) - 1
IF (Rn) ≠ 0 THEN
(PC) = (PC) + rel

DJNZ direct,rel 1
a7
r7

1
a6
r6

0
a5
r5

1
a4
r4

0
a3
r3

1
a2
r2

0
a1
r1

1
a0
r0

D5
Byte 2
Byte 3

3 4 (PC) = (PC) + 3
(direct) = (direct) - 1
IF (direct) ≠ 0 THEN
(PC) = (PC) + rel

NOP 0 0 0 0 0 0 0 0 00 1 1 (PC) = (PC) + 1

High-Speed Microcontroller User’s Guide

164 of 167

17. TROUBLESHOOTING

17.1 Device Operates at One-Third the Crystal Speed
The high-speed microcontroller family operates from the primary or fundamental mode of the external
crystal. Many off-the-shelf high-frequency crystals are specified to operate from their third overtone.
When used with a high-speed microcontroller, these crystals will resonate in their primary mode, which
appear to be one-third of the rated crystal speed. Make sure that any crystals used operate at their rated
speed in primary mode.

17.2 Device Resets for No Reason
During the debugging process, it may be necessary to isolate the cause of an unexpected device reset.
Because resets are initiated by a limited number of sources, it is relatively easy to determine their source
by interrogating a few bits. These bits should be interrogated early in the code following a reset to
determine its source. As a debug tool, software could set the state of one or more port pins to indicate the
type of reset to the designer. Note that power-supply problems or glitches appear as unplanned power-on
resets.

SOURCE POR BIT
WDCON.6

WTRF BIT
WDCON.3

Power-On Reset 1 0
Watchdog Reset 0 1
External Reset 0 0

17.3 Access to Internal MOVX SRAM Is Unsuccessful
The internal MOVX SRAM available on some members of the high-speed microcontroller family is
disabled after any reset. To enable the on-chip SRAM, the software should configure the data memory
enable bits (PMR.1–0) as needed.

When VCC drops below VBAT, access to the SRAM is disabled to prevent corruption of the data. If the
battery voltage is greater than VRST, this means that the processor can continue to operate while SRAM
access is denied. Make sure that the battery voltage remains below the minimum VRST.

17.4 Real-Time Clock Does Not Operate or Keep Accurate Time

The state of the RTC used on the DS87C530 is undefined following a no-battery reset or battery attach.
For the RTC to work, the RTC oscillator must be enabled by setting the RTCE bit (RTCC.0).

The RTC is guaranteed to a minimum accuracy of ±2 minutes per month over the rated temperature and
voltage specifications. If the time is found to be less accurate than this, it is most likely due to the
selection of crystal. Make sure that the RTC crystal is 32.768kHz, and either 12.5pF or 6pF capacitance.
The 12/6-bit (TRIM.6) setting should correspond to the crystal in use. Unlike other crystals, external load
capacitors should not be used with the RTC. These will seriously distort the accuracy of the clock.
Additional information on design considerations with the RTC can be found in Application Note 79:
Using the DS87C530 Real-Time Clock.

High-Speed Microcontroller User’s Guide

165 of 167

17.5 Serial Port Does Not Work
The serial port is not a complicated peripheral, but there are many elements that need to be initialized.
The following checklist is provided to help in debugging.

1) Have the appropriate port latch bits (P3.0, P3.1, P1.2, or P1.3) been set to 1 to enable the serial port

functions?
2) Has the correct timebase been selected? (4 clocks per tick or 12 clocks per tick)
3) Is the appropriate timer-reload value loaded?
4) Is the appropriate timer mode selected?
5) Is the appropriate timer running by setting TR0, TR1, or TR2 bits?
6) Is the correct serial port mode selected?
7) If desired, is the serial port doubler bit, SMOD, set? (PCON.7 or WDCON.7)
8) If desired, is the receive-enable bit (REN_0 or REN_1) set?
9) Is the serial port interrupt enabled?
10) Is the global interrupt-enable bit set?

17.6 High-Speed Microcontroller Does Not Work in Existing 8051 Design
Although the high-speed microcontroller family was designed as a drop-in replacement for the 8051
family, a developer may occasionally notice problems when inserting into an existing design. Often these
problems are related to slow memory interfaces that cannot keep up with the increased throughput of the
faster microcontroller. In addition, software-timing loops run faster, possibly changing program
operation. These and other effects are described in Application Note 56: The DS80C320 as a Drop-In
Replacement for the 8032 and Application Note 57:DS80C320 Memory Interface Timing.

Application Note 89: High-Speed Micro Memory Interface Timing discusses interfacing other members of
the high-speed microcontroller family to external memory.

High-Speed Microcontroller User’s Guide

166 of 167

18. MICROCONTROLLER DEVELOPMENT SUPPORT

18.1 Technical Support
Dallas Semiconductor has a wide range of services designed to support its customers. Microcontroller
applications engineers are available Monday through Friday (excluding December 25 and January 1) to
provide technical support from 8AM to 5PM Central Standard Time.

Application Support: 1-972-371-4448
Email: micro.support@dalsemi.com

Dallas Semiconductor maintains a presence on the Internet with its World Wide Web home page and an
anonymous FTP site. Data sheets are subject to revision, and these services contain the most current data
sheet information available. The home page has access to company information, data sheets, application
notes, and product information. The ftp server hosts software examples and development tool software.

Website: www.maxim-ic.com
Microcontroller Products Home Page: www.maxim-ic.com/microcontrollers
Anonymous FTP Site: ftp.dalsemi.com/pub/microcontroller

18.2 Development Tools
Because the high-speed microcontroller family was designed for maximum compatibility with existing
8051 microcontrollers, users find that most of their existing 8051 tools work with our products.

To aid our customers, Dallas Semiconductor maintains a list of development tool vendors on its website
at www.maxim-ic.com/MicroDevTools.htm. This page is very useful when attempting to locate
commonly used microcontroller aids such as compilers, test clips, sockets, programmers, programming
adapters, reference books, emulators, crystals and development boards.

18.3 Software Compatibility
Dallas Semiconductor microcontrollers execute the 8051 instruction set and are object code compatible
with other 8051-based products. The special features of Dallas Semiconductor microcontrollers are
accessed via SFRs unique to our products, but the devices do not use any new instructions. The new SFRs
can be easily defined in the user’s software with EQUATE statements or in a setup file. Once defined,
these new SFRs receive the same treatment as any of the original 8051 registers. This means that Dallas
Semiconductor microcontrollers are compatible with almost every 8051-based software tool available.

18.4 High-Level Language Compilers
Like assemblers, compilers must be informed of the existence and location of the SFRs unique to Dallas
Semiconductor microcontrollers. When using C, it is commonly necessary to identify the starting address
for various read/write segments such as XDATA and Stack. In addition, it is recommended that the large
memory model be used in conjunction with C compilers. This places the stack in off-chip SRAM.
Microcontroller systems usually have an abundance of such SRAM compared to ROM-based systems.
While off-chip stack results in slower execution time, the stack size becomes virtually unlimited.

mailto:micro.support@dalsemi.com
http://www.maxim-ic.com/
http://www.maxim-ic.com/microcontrollers
ftp://ftp.dalsemi.com/pub/microcontroller
http://www.maxim-ic.com/MicroDevTools.htm

High-Speed Microcontroller User’s Guide

Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product. No circuit patent licenses are implied. Maxim/Dallas
Semiconductor reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products , 120 San Gabrie l Dr ive , Sunnyvale , CA 94086 408-737-7600

© 2004 Maxim Integrated Products • Printed USA

167 of 167

Table 18-A. Product Feature Matrix
FEATURE DS80C310 DS80C320 DS80C323 DS83C520 DS87C520 DS87C530 DS87C550

Internal Program ROM 16kB Mask
ROM 16kB EPROM 16kB EPROM 8kB EPROM

Internal Scratchpad RAM 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes
Internal MOVX SRAM 1kB SRAM 1kB SRAM 1kB SRAM
Serial Ports 1 2 2 2 2 2 2
External Interrupts 6 6 6 6 6 6 6
16-Bit Timers 3 3 3 3 3 3 3
Watchdog Timer √ √ √ √ √ √
Power-Fail/Precision Reset √ √ √ √ √ √
Power-Fail Interrupt √ √ √ √ √ √
Data Pointers 2 2 2 2 2 2 2
Data Pointer Decrement √
Power Management Modes √ √ √ √
Ring Oscillator √ √ √ √ √ √
EMI Reduction Mode √ √ √ √
Real-Time Clock √
NV SRAM √

Pulse-Width Modulation 4/8 bit or 2/16
bit

A/D Converter 8 channels, 10
bit

Operating Voltage 4.5V to 5.5V 4.5V to 5.5V 2.7V to 5.5V 4.5V to 5.5V 4.5V to 5.5V 4.5V to 5.5V 4.5V to 5.5V

	INTRODUCTION
	ORDERING INFORMATION
	ARCHITECTURE
	ALU
	Special Function Registers (SFRs)

	PROGRAMMING MODEL
	Memory Organization
	Memory Map
	Register Map
	Bit-Addressable Locations
	Working Registers
	Stack

	Special Function Registers
	Instruction Timing
	Addressing Modes
	Register Addressing
	Direct Addressing
	Register Indirect Addressing
	Immediate Addressing
	Register Indirect with Displacement
	Relative Addressing
	Page Addressing
	Extended Addressing

	Program Status Flags

	CPU TIMING
	Oscillator
	Instruction Timing
	Comparison to the 8051

	MEMORY ACCESS
	Internal Program Memory
	Internal Data Memory
	Program Memory Interconnect
	Data Memory Interconnect
	Data Memory Access
	Data Memory Timing

	POWER MANAGEMENT
	Power Management Features
	Early Warning Power-Fail Interrupt
	Power-Fail Reset
	Power-On Reset
	Bandgap Select
	Watchdog Wake Up
	Power Management Summary

	Power Conservation
	Idle Mode
	Stop Mode
	Ring Oscillator Wake Up from Stop

	Power Management Modes

	RESET CONDITIONS
	Reset Sources
	Power-On/Fail Reset
	Watchdog Timer Reset
	External Reset

	Reset State
	No-Battery Reset
	In-System Disable Mode

	INTERRUPTS
	Interrupt Overview
	Interrupt Sources
	External Interrupts
	Timer Interrupts
	Serial Communication Interrupts
	Real-Time Clock
	Power-Fail Interrupt

	Simulated Interrupts
	Interrupt Priorities
	Interrupt Acknowledge Cycle
	Interrupt Latency
	Interrupt Register Conflicts

	PARALLEL I/O
	PORT 0
	PORT 2
	Ports 1 and 3
	Output Functions
	Current-Limited Transitions
	Input Functions
	Read-Modify-Write Instructions
	Instruction Description
	I/O Port Timing
	Optional Functions

	PROGRAMMABLE TIMERS
	16-Bit Timers
	Mode 0
	Mode 1
	Mode 2
	Mode 3
	Timer 2
	Timer 2 Modes
	16-Bit Timer/Counter
	16-Bit Timer with Capture
	16-Bit Auto-Reload Timer/Counter
	Up/Down Count Auto-Reload Timer/Counter
	Baud Rate Generator
	Timer Output Clock Generator

	Timebase Selection
	Watchdog Timer

	SERIAL I/O
	Serial Mode Summary
	Serial Port Initialization
	Baud Rates
	Serial I/O Description
	Framing Error Detection
	Multiprocessor Communication

	TIMED-ACCESS PROTECTION
	Protected Bits
	Protection Scheme
	Timed-Access Protects Watchdog

	REAL-TIME CLOCK
	Starting and Stopping the RTC
	Setting and Reading the RTC Time Registers
	Using the RTC Alarm
	Using the Day of the Week Bits
	Choosing an RTC Crystal
	Calibrating the RTC Oscillator

	BATTERY BACKUP
	Selecting a Battery
	Lithium Battery Considerations

	INSTRUCTION SET DETAILS
	TROUBLESHOOTING
	Device Operates at One-Third the Crystal Speed
	Device Resets for No Reason
	Access to Internal MOVX SRAM Is Unsuccessful
	Real-Time Clock Does Not Operate or Keep Accurate Time
	Serial Port Does Not Work
	High-Speed Microcontroller Does Not Work in Existing 8051 Design

	MICROCONTROLLER DEVELOPMENT SUPPORT
	Technical Support
	Development Tools
	Software Compatibility
	High-Level Language Compilers

