
 
1 of 167 REV: 021704 

…. 
 
 
 
 

 
 
 
 

TABLE OF CONTENTS 
1. INTRODUCTION.................................................................................................................6 
2. ORDERING INFORMATION ..............................................................................................7 
3. ARCHITECTURE................................................................................................................8 

3.1 ALU................................................................................................................................................8 
3.2 SPECIAL FUNCTION REGISTERS (SFRS)...........................................................................................8 

4. PROGRAMMING MODEL ................................................................................................11 
4.1 MEMORY ORGANIZATION ...............................................................................................................11 

4.1.1 Memory Map .........................................................................................................................11 
4.1.2 Register Map.........................................................................................................................11 

4.1.2.1 Bit-Addressable Locations ............................................................................................................ 12 
4.1.2.2 Working Registers......................................................................................................................... 12 
4.1.2.3 Stack ............................................................................................................................................. 12 

4.2 SPECIAL FUNCTION REGISTERS .....................................................................................................14 
4.3 INSTRUCTION TIMING.....................................................................................................................55 
4.4 ADDRESSING MODES.....................................................................................................................55 

4.4.1 Register Addressing..............................................................................................................56 
4.4.2 Direct Addressing..................................................................................................................56 
4.4.3 Register Indirect Addressing.................................................................................................57 
4.4.4 Immediate Addressing ..........................................................................................................57 
4.4.5 Register Indirect with Displacement......................................................................................57 
4.4.6 Relative Addressing ..............................................................................................................58 
4.4.7 Page Addressing...................................................................................................................58 
4.4.8 Extended Addressing............................................................................................................58 

4.5 PROGRAM STATUS FLAGS .............................................................................................................58 
5. CPU TIMING.....................................................................................................................60 

5.1 OSCILLATOR .................................................................................................................................60 
5.2 INSTRUCTION TIMING.....................................................................................................................61 
5.3 COMPARISON TO THE 8051............................................................................................................68 

6. MEMORY ACCESS..........................................................................................................72 
6.1 INTERNAL PROGRAM MEMORY.......................................................................................................72 
6.2 INTERNAL DATA MEMORY ..............................................................................................................72 
6.3 PROGRAM MEMORY INTERCONNECT ..............................................................................................74 
6.4 DATA MEMORY INTERCONNECT .....................................................................................................75 
6.5 DATA MEMORY ACCESS ................................................................................................................76 
6.6 DATA MEMORY TIMING ..................................................................................................................79 

7. POWER MANAGEMENT .................................................................................................83 
7.1 POWER MANAGEMENT FEATURES..................................................................................................83 

7.1.1 Early Warning Power-Fail Interrupt.......................................................................................83 
7.1.2 Power-Fail Reset ..................................................................................................................84 
7.1.3 Power-On Reset ...................................................................................................................84 
7.1.4 Bandgap Select.....................................................................................................................84 
7.1.5 Watchdog Wake Up ..............................................................................................................85 
7.1.6 Power Management Summary .............................................................................................85 

www.maxim-ic.com 

High-Speed Microcontroller
User’s Guide



High-Speed Microcontroller User’s Guide 
 

2 of 167 

7.2 POWER CONSERVATION ................................................................................................................87 
7.2.1 Idle Mode ..............................................................................................................................87 
7.2.2 Stop Mode.............................................................................................................................87 
7.2.3 Ring Oscillator Wake Up from Stop ......................................................................................88 

7.3 POWER MANAGEMENT MODES ......................................................................................................89 
8. RESET CONDITIONS.......................................................................................................96 

8.1 RESET SOURCES ..........................................................................................................................96 
8.1.1 Power-On/Fail Reset.............................................................................................................96 
8.1.2 Watchdog Timer Reset .........................................................................................................96 
8.1.3 External Reset ......................................................................................................................97 

8.2 RESET STATE................................................................................................................................97 
8.3 NO-BATTERY RESET .....................................................................................................................97 
8.4 IN-SYSTEM DISABLE MODE............................................................................................................98 

9. INTERRUPTS ...................................................................................................................99 
9.1 INTERRUPT OVERVIEW ..................................................................................................................99 
9.2 INTERRUPT SOURCES..................................................................................................................100 

9.2.1 External Interrupts...............................................................................................................100 
9.2.2 Timer Interrupts...................................................................................................................101 
9.2.3 Serial Communication Interrupts.........................................................................................101 
9.2.4 Real-Time Clock .................................................................................................................101 
9.2.5 Power-Fail Interrupt ............................................................................................................101 

9.3 SIMULATED INTERRUPTS .............................................................................................................102 
9.4 INTERRUPT PRIORITIES................................................................................................................102 
9.5 INTERRUPT ACKNOWLEDGE CYCLE ..............................................................................................102 
9.6 INTERRUPT LATENCY...................................................................................................................103 
9.7 INTERRUPT REGISTER CONFLICTS ...............................................................................................105 

10. PARALLEL I/O ...............................................................................................................106 
10.1 PORT 0 ..................................................................................................................................106 
10.2 PORT 2 ..................................................................................................................................107 
10.3 PORTS 1 AND 3........................................................................................................................108 
10.4 OUTPUT FUNCTIONS ................................................................................................................109 
10.5 CURRENT-LIMITED TRANSITIONS ..............................................................................................109 
10.6 INPUT FUNCTIONS....................................................................................................................109 
10.7 READ-MODIFY-WRITE INSTRUCTIONS .......................................................................................110 
10.8 INSTRUCTION DESCRIPTION......................................................................................................110 
10.9 I/O PORT TIMING .....................................................................................................................110 
10.10 OPTIONAL FUNCTIONS..............................................................................................................111 

11. PROGRAMMABLE TIMERS ..........................................................................................112 
11.1 16-BIT TIMERS.........................................................................................................................112 
11.2 MODE 0 ...................................................................................................................................114 
11.3 MODE 1 ...................................................................................................................................115 
11.4 MODE 2 ...................................................................................................................................116 
11.5 MODE 3 ...................................................................................................................................117 
11.6 TIMER 2...................................................................................................................................118 
11.7 TIMER 2 MODES...................................................................................................................119 

11.7.1 16-Bit Timer/Counter .......................................................................................................119 
11.7.2 16-Bit Timer with Capture ................................................................................................119 
11.7.3 16-Bit Auto-Reload Timer/Counter ..................................................................................120 
11.7.4 Up/Down Count Auto-Reload Timer/Counter ..................................................................122 
11.7.5 Baud Rate Generator.......................................................................................................122 
11.7.6 Timer Output Clock Generator.........................................................................................123 

11.8 TIMEBASE SELECTION ..............................................................................................................124 
11.9 WATCHDOG TIMER...................................................................................................................125 



High-Speed Microcontroller User’s Guide 
 

3 of 167 

12. SERIAL I/O .....................................................................................................................129 
12.1 SERIAL MODE SUMMARY..........................................................................................................129 
12.2 SERIAL PORT INITIALIZATION ....................................................................................................130 
12.3 BAUD RATES............................................................................................................................134 
12.4 SERIAL I/O DESCRIPTION .........................................................................................................136 
12.5 FRAMING ERROR DETECTION ...................................................................................................142 
12.6 MULTIPROCESSOR COMMUNICATION ........................................................................................144 

13. TIMED-ACCESS PROTECTION ....................................................................................146 
13.1 PROTECTED BITS.....................................................................................................................146 
13.2 PROTECTION SCHEME..............................................................................................................146 
13.3 TIMED-ACCESS PROTECTS WATCHDOG....................................................................................147 

14. REAL-TIME CLOCK.......................................................................................................149 
14.1 STARTING AND STOPPING THE RTC..........................................................................................150 
14.2 SETTING AND READING THE RTC TIME REGISTERS...................................................................150 
14.3 USING THE RTC ALARM ...........................................................................................................151 
14.4 USING THE DAY OF THE WEEK BITS ..........................................................................................152 
14.5 CHOOSING AN RTC CRYSTAL...................................................................................................152 
14.6 CALIBRATING THE RTC OSCILLATOR ........................................................................................153 

15. BATTERY BACKUP.......................................................................................................154 
15.1 SELECTING A BATTERY.............................................................................................................154 
15.2 LITHIUM BATTERY CONSIDERATIONS.........................................................................................155 

16. INSTRUCTION SET DETAILS .......................................................................................156 
17. TROUBLESHOOTING....................................................................................................164 

17.1 DEVICE OPERATES AT ONE-THIRD OF CRYSTAL SPEED.............................................................164 
17.2 DEVICE RESETS FOR NO REASON ............................................................................................164 
17.3 ACCESS TO INTERNAL MOVX SRAM IS UNSUCCESSFUL ..........................................................164 
17.4 REAL-TIME CLOCK DOES NOT OPERATE OR KEEP ACCURATE TIME...........................................164 
17.5 SERIAL PORT DOES NOT WORK ...............................................................................................165 
17.6 HIGH-SPEED MICROCONTROLLER DOES NOT WORK IN EXISTING 8051 DESIGN.........................165 

18. MICROCONTROLLER DEVELOPMENT SUPPORT.....................................................166 
18.1 TECHNICAL SUPPORT...............................................................................................................166 
18.2 DEVELOPMENT TOOLS .............................................................................................................166 
18.3 SOFTWARE COMPATIBILITY ......................................................................................................166 
18.4 HIGH-LEVEL LANGUAGE COMPILERS.........................................................................................166 

 



High-Speed Microcontroller User’s Guide 
 

4 of 167 

LIST OF FIGURES 
Figure 4-1. Memory Map............................................................................................................12 
Figure 4-2. Register Map ...........................................................................................................13 
Figure 4-3. Scratchpad Register Addressing .............................................................................13 
Figure 5-1. Crystal Connection ..................................................................................................61 
Figure 5-2. Clock Source Input ..................................................................................................61 
Figure 5-3. Single-Cycle Instruction Timing ...............................................................................63 
Figure 5-4. Two-Cycle Instruction Timing...................................................................................64 
Figure 5-5. Three-Cycle Instruction Timing ................................................................................66 
Figure 5-6. Four-Cycle Instruction Timing ..................................................................................67 
Figure 5-7. Five-Cycle Instruction Timing...................................................................................68 
Figure 6-1. Program Memory Interface ......................................................................................75 
Figure 6-2. Program Memory Signals ........................................................................................76 
Figure 6-3. Data Memory Interface ............................................................................................76 
Figure 6-4. Full-Speed MOVX Instruction ..................................................................................80 
Figure 6-5. Three-Cycle MOVX Instruction ................................................................................81 
Figure 6-6. Four-Cycle MOVX Instruction ..................................................................................82 
Figure 7-1. Power Cycle Operation............................................................................................85 
Figure 7-2. Internal Timing Relationships in PMM1 ...................................................................91 
Figure 9-1. Interrupt Functional Description .............................................................................104 
Figure 10-1. Port 0 Functional Circuitry....................................................................................107 
Figure 10-2. Port 2 Functional Circuitry....................................................................................108 
Figure 10-3. I/O Port Timing for MOV Instruction.....................................................................111 
Figure 11-1. Timer/Counter 0 and 1, Modes 0 and 1 ...............................................................115 
Figure 11-2. Timer/Counter 0 and 1, Mode 2 ...........................................................................116 
Figure 11-3. Timer/Counter 0 Mode 3......................................................................................117 
Figure 11-4. Timer/Counter 2 with Optional Capture ...............................................................120 
Figure 11-5. Timer/Counter 2 Auto-Reload Mode ....................................................................121 
Figure 11-6. Timer/Counter 2, Baud Rate Generator Mode.....................................................123 
Figure 11-7. Timer/Counter 2, Clock Out Mode .......................................................................124 
Figure 11-8. Watchdog Timer ..................................................................................................125 
Figure 12-1. Serial Port Mode 0 ...............................................................................................137 
Figure 12-2. Serial Port Mode 1 ...............................................................................................139 
Figure 12-3. Serial Port Mode 2 ...............................................................................................141 
Figure 12-4. Serial Port Mode 3 ...............................................................................................143 
Figure 13-1. Timed Access Examples .....................................................................................147 
 
 



High-Speed Microcontroller User’s Guide 
 

5 of 167 

LIST OF TABLES 
Table 4-A. DS80C310 SFR Locations........................................................................................14 
Table 4-B. DS80C310 SFR Reset Values..................................................................................15 
Table 4-C. DS80C320/DS80C323 SFR Locations.....................................................................16 
Table 4-D. DS80C320/DS80C323 SFR Reset Values...............................................................17 
Table 4-E. DS83C520/DS87C520 SFR Locations .....................................................................18 
Table 4-F. S83C520/DS87C520 SFR Reset Values..................................................................19 
Table 4-G. DS87C530 SFR Locations .......................................................................................20 
Table 4-H. DS87C530 SFR Reset Values .................................................................................21 
Table 4-I. Instructions That Affect Flag Settings ........................................................................59 
Table 5-A. Instruction Timing Comparison .................................................................................69 
Table 5-B. Instruction Speed Summary .....................................................................................71 
Table 6-A. Data Memory Access Control ...................................................................................73 
Table 6-B. ROMSIZE Register Settings .....................................................................................74 
Table 6-C. Data Memory Cycle Stretch Values..........................................................................80 
Table 7-A. Pin States in Power Saving Modes...........................................................................88 
Table 7-B. Crystal Vs. MIPS Comparison ..................................................................................89 
Table 7-C. Power Management and Status Bit Summary..........................................................90 
Table 7-D. Effect of Clock Modes on Timer Operation...............................................................92 
Table 7-E. Clock Control and Status Bit Summary ....................................................................94 
Table 8-A. No-Battery Reset Default..........................................................................................98 
Table 9-A. Interrupt Summary....................................................................................................99 
Table 12-A. Serial I/O Modes...................................................................................................130 
Table 14-A. Real-Time Clock Control and Status Bit Summary ...............................................149 
Table 15-A. Suggested Batteries for the DS87C530................................................................154 
Table 15-B. Battery-Backed SFRs ...........................................................................................155 
Table 18-A. Product Feature Matrix .........................................................................................167 
 



High-Speed Microcontroller User’s Guide 
 

6 of 167 

1. INTRODUCTION 
Dallas Semiconductor high-speed microcontrollers are 8051-compatible devices that provide improved 
performance and power consumption compared to the original version. They retain instruction-set and 
object-code compatibility with the 8051, yet perform the same operations in fewer clock cycles. 
Consequently, more throughput is possible for the same crystal speed. As an alternative, the high-speed 
microcontroller’s more efficient design allows a much slower crystal speed to get the same results as an 
original 8051, using much less power. 
 
The fundamental innovation of the high-speed microcontroller is the use of only four clocks per 
instruction cycle compared with 12 for the original 8051. This results in up to three times improvement in 
performance. In addition, the high-speed microcontroller is updated with several new peripherals and 
features while providing all of the standard features of an 80C32. These include 256 bytes of on-chip 
RAM for variables and stack, 32 I/O ports, three 16-bit timer/counters, and an on-chip UART. 
 
In addition to improved efficiency, most devices can operate at a maximum clock rate of 33MHz or 
40MHz. Combined with the three times performance, this allows for a maximum performance equivalent 
to a 99MHz or 120MHz 8051. This level of computing power is comparable to many 16-bit processors, 
but without the added expense. 
 
A number of peripherals were added to the original 80C32 core. Some devices have a programmable 
watchdog timer to supervise the system. It counts up to a user programmable interval and then reset the 
CPU unless cleared by software. Other features such as a second, full-function UART and dual data 
pointers are available to minimize external interrupts allows greater flexibility in dealing with external 
events. 
 
Some devices incorporate power management modes that allow the device to dynamically vary the 
internal clock speed from 4 clocks per cycle (default) to 64 or 1024 clocks per cycle. Because power 
consumption is directly proportional to clock speed, the device can reduce its operating frequency during 
periods of little or no activity. This greatly reduces power consumption. The switchback feature allows 
the device to quickly return in divide-by-4 mode upon receipt of an interrupt or serial port activity, 
allowing the device to respond to external events while in power management mode.  
 
Various memory configurations are available with the high-speed microcontroller family. EPROM and 
Mask programmable ROM versions are available for program memory. Some versions incorporate 
extended MOVX SRAM on-chip, reducing or eliminating the need for external data memory. This 
memory can be made nonvolatile in the DS87C530 through the use of an external lithium battery. 
 
Note: Information contained in specific data sheets supersedes general information found in this user’s 
guide. Designers are cautioned to obtain and read carefully the data sheets, this user’s guide, and any 
relevant supplements before using any Dallas Semiconductor microcontroller. 
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2. ORDERING INFORMATION 
The high-speed microcontroller family follows the part numbering convention shown below. Note that all 
combinations of devices are not currently available. Refer to individual data sheets for the available 
versions. 
 
 DS80C320-MCG 
                                                                  SPEED:    D 18MHz 
  G 25MHz 
  L 33MHz 
  R 40MHz 
 
                                                 TEMPERATURE: C 0°C to +70°C 
  N -40°C to +85°C 
 
                                                           PACKAGE: M PLASTIC 
  Q PLCC 
  E THIN PLASTIC QUAD FLAT PACK (TQFP) 
  F PLASTIC QUAD FLAT PACK (QFP) 
  W WINDOWED CERDIP 
  K WINDOWED CERQUAD 
 
                                   OPERATING VOLTAGE: 0 +5V 
  3 +3V OR WIDE VOLTAGE 
 
                                                 MEMORY TYPE: 0 ROMless 
  3 ROM 

7 EPROM 
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3. ARCHITECTURE 
The high-speed microcontroller is based on the industry-standard 80C52. The core is an accumulator-
based architecture using internal registers for data storage and peripheral control. It executes the standard 
8051 instruction set. This section provides a brief description of each architecture feature. Details 
concerning the programming model, instruction set, and register description are provided in Section 4. 
 
3.1 ALU 
The ALU is responsible for math functions, comparisons, and general decision making in the high-speed 
microcontroller. The ALU is not explicitly used by software. Instruction decoding prepares the ALU 
automatically and passes it the appropriate data. The ALU primarily uses two special function registers 
(SFRs) as the source and destination for all operations. These are the Accumulator and B register. The 
ALU also provides status information in the program status register. The SFRs are described below. 
 
3.2 Special Function Registers (SFRs) 
All peripherals and operations that are not explicit instructions in the high-speed microcontroller are 
controlled through SFRs. All SFRs are described in Section 4. The most commonly used registers that are 
basic to the architecture are also described below. 
 
Accumulator 
The Accumulator is the primary register used in the high-speed microcontroller. It is the source and 
destination of most math, data movement, decisions, and other operations. Although it can be bypassed, 
most high-speed instructions require the use of the accumulator (ACC) as one argument. 
 
B Register 
The B register is used as the second 8-bit argument in multiply and divide operations. When not used for 
these purposes, the B register can be used as a general-purpose register. 
 
Program Status Word 
The program status word holds a selection of bit flags that include the carry flag, auxiliary carry flag, 
general purpose flag, register bank select, overflow flag, and parity flag. 
 
Data Pointer(s) 
The data pointer is used to designate a memory address for the MOVX instruction. This address can point 
to a MOVX RAM location, either on- or off-chip, or a memory mapped peripheral. When moving data 
from one memory area to another or from memory to a memory mapped peripheral, a pointer is needed 
for both the source and destination. Thus, the high-speed microcontroller offers two data pointers. The 
user selects the active pointer via a dedicated SFR bit. 
 
Stack Pointer 
The microcontroller provides a stack in the scratchpad RAM area. The stack pointer denotes the register 
location at the top of the stack, which is the last used value. The user can place the stack anywhere in 
scratchpad RAM by setting the stack pointer to that location. 
 
I/O Ports 
The standard high-speed microcontroller offers four 8-bit I/O ports. ROM less versions use Port 0 and 
Port 2 as address and data buses. In those versions, only two ports are available for general-purpose I/O. 
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Each I/O port is a SFR that can be written or read. The I/O port has a latch that retains the value which 
software writes. In general, during a read operation, software reads the state of the external pin. Each port 
is represented by a SFR location. 
 
Timer/Counters 
Three 16-bit Timer/Counters are available in the high-speed microcontroller. Each timer is contained in 
two SFR locations that can be written or read by software. The timers are controlled by other SFRs 
described in Section 4. 
 
UARTs 
The high-speed microcontroller provides one or two UARTs. These are controlled and accessed as SFRs. 
Each UART has an address that is used to read or write the UART. Both read and write operations use the 
same address. The microcontroller distinguishes between a read and a write by the instruction. Its own 
SFR control register controls each UART. 
 
Scratchpad Registers (RAM) 
The high-speed core provides 256 bytes of Scratchpad RAM for general-purpose data and variable 
storage. The first 128 bytes are directly available to software. The second 128 are available through 
indirect addressing discussed below. Selected portions of this RAM have other optional functions. 
 
Stack 
The stack is a RAM area that the microcontroller uses to store return address information during Calls 
and Interrupts. The user can also place variables on the stack when necessary. The stack pointer 
mentioned above designates the RAM location that is the top of the stack. Thus, depending on the value 
of the stack pointer, the stack can be located anywhere in the 256 bytes of RAM. A common location 
would be in the upper 128 bytes of RAM, as these are accessible through indirect addressing only. 
 
Working Registers 
The first 32 bytes of the Scratchpad RAM can be used as four banks of eight Working Registers for high-
speed data movement. Using four banks, software can quickly change context by simply changing to a 
different bank. In addition to the Accumulator, the working registers are commonly used as data source or 
destination. Some of the working registers can also be used as pointers to other RAM locations (indirect 
addressing). 
 
Program Counter 
The Program Counter (PC) is a 16-bit value that designates the next program address to be fetched. On-
chip hardware automatically increments the PC value to move to the next ROM location. 
 
Address/Data Bus 
The high-speed microcontroller addresses a 64kB program and 64kB data memory area. In the ROMless 
versions, all memory is outside. Other versions use a combination of internal and external memory. When 
external memory is accessed, Ports 0 and 2 are used as a multiplexed address and data bus. Port 2 
provides the address MSB. Even versions with internal memory can use the bus on Ports 0 and 2 to 
access more memory. 
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Watchdog Timer 
The watchdog timer provides a supervisory function for applications that cannot afford to run out of 
control. The watchdog timer is a programmable free-running timer. If allowed to reach the termination of 
its count, if enabled, the watchdog resets the CPU. Software must prevent this by cleaning or resetting the 
watchdog prior to its timeout. 
 
Power Monitor 
Some members of the high-speed microcontroller family incorporate a bandgap reference and analog 
circuitry to monitor the power supply conditions. When VCC begins to drop out of tolerance, the power 
monitor issues an optional early warning power-fail interrupt. If power continues to fall, the power 
monitor invokes a reset condition. This remains until power returns to normal operating voltage. The 
power monitor also functions on power-up, holding the microcontroller in a reset state until power is 
stable. 
 
Interrupts 
The high-speed microcontroller is capable of evaluating a number of interrupt sources simultaneously. 
Each version of the high-speed microcontroller provides a different number of interrupt sources. Each 
interrupt has an associated interrupt vector, flag, priority, and enable. Each interrupt can be globally 
enabled or disabled.  
 
Timing Control 
The high-speed microcontroller provides an on-chip oscillator for use with an external crystal. This can 
be bypassed by injecting a clock source into the XTAL 1 pin. The clock source is used to create machine 
cycle timing (four clocks), ALE, PSEN, watchdog timer, and serial baud rate timing. In addition, some 
devices incorporate an on-chip ring oscillator which can be used to provide an approximately 2MHz to 
4MHz clock source. 
 
Real-Time Clock 
The DS87C530 incorporates a real-time clock (RTC) that is accessed by the SFR locations. The RTC is 
divided into hour, minute, second, and subsecond registers, and also incorporates a 65,536 day calendar. 
Alarm registers allow the RTC to issue interrupts at a specific time once a day, or as a recurring alarm 
every hour, minute or second. An external watch crystal and lithium power source allow the processor to 
maintain timekeeping in the absence of VCC. 
 
Feature Summary 
The high-speed microcontroller family offers a combination of features and peripherals as shown in 
Table 18-A. This user’s guide is designed as a comprehensive guide covering all features available in the 
high-speed microcontroller family. The designer should investigate the specific data sheet to determine 
which features are available on a particular device. Detailed information about newer members of the 
product family may be provided in separate documents until they can be assimilated into the High-Speed 
Microcontroller User’s Guide. 
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4. PROGRAMMING MODEL 
This section provides a programmer’s overview of the high-speed microcontroller core. It includes 
information on the memory map, on-chip RAM, SFRs, and instruction set. The programming model of 
the high-speed microcontroller is very similar to that of the industry standard 80C52. The memory map is 
identical. It uses the same instruction set, though instruction timing is improved. Several new SFRs have 
been added. 
 
4.1 Memory Organization 
The high-speed microcontroller, like the 8052, uses several distant memory areas. These are registers, 
program memory, and data memory. Registers serve to control on-chip peripherals and as RAM. Note 
that registers (on-chip RAM) are separate from data memory. Registers are divided into three categories 
including directly addressed on-chip RAM, indirectly addressed on-chip RAM, and SFRs. The program 
and data memory areas are discussed under the Memory Map section. The registers are discussed in the 
Register Mapsection. 
 
4.1.1 Memory Map 
The high-speed microcontroller uses a memory-addressing scheme that separates program memory 
(ROM) from data memory (RAM). Each area is 64kB beginning at address 0000h and ending at FFFFh 
as shown in Figure 4-1. The program and data segments can overlap since they are accessed in different 
ways. Program memory is fetched by the microcontroller automatically. These addresses are never 
written by software. In fact, there are no instructions that allow the ROM area to be written. There is one 
instruction (MOVC) that is used to explicitly read the program area. This is commonly used to read look-
up tables. The data memory area is accessed explicitly using the MOVX instruction. This instruction 
provides multiple ways of specifying the target address. It is used to access the 64kB of data memory. 
 
The address and data range of devices with on-chip program and data memory overlap the 64k memory 
space. When on-chip memory is enabled, accessing memory in the on-chip range will cause the device to 
access internal memory. Memory accesses beyond the internal range will be addressed externally via 
ports 0 and 2. 
 
The ROMSIZE feature allows software to dynamically configure the maximum address of on-chip 
program memory. This allows the device to act as a bootstrap loader for an external flash or NV SRAM. 
Secondly, this method can also be used to increase the amount of available program memory from 64kB 
to 80kB without bank switching (Section 6). 
 
Program and data memory can also be increased beyond the 64kB limit using bank-switching techniques. 
This is described in Application Note 81: Memory Expansion with the High-Speed Microcontroller 
Family. 
 
4.1.2 Register Map 
The register map is illustrated in Figure 4-2. It is entirely separate from the program and data memory 
areas mentioned above. A separate class of instructions is used to access the registers. There are 256 
potential register location values. In practice, the high-speed microcontroller has 256 bytes of Scratchpad 
RAM and up to 128 special function registers (SFRs). This is possible since the upper 128 Scratchpad 
RAM locations can only be accessed indirectly. That is, the contents of a Working Register (described 
below) will designate the RAM location. Thus a direct reference to one of the upper 128 locations must 
be an SFR access. Direct RAM is reached at locations 0 to 7Fh (0 to 127).  
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SFRs are accessed directly between 80h and FFh (128 to 255). The RAM locations between 128 and 255 
can be reached through an indirect reference to those locations. 
 
Scratchpad RAM is available for general-purpose data storage. It is commonly used in place of off-chip 
RAM when the total data contents are small. When off-chip RAM is needed, the Scratchpad area still 
provides the fastest general-purpose access. Within the 256 bytes of RAM, there are several special 
purpose areas. These are described as follows: 
 
4.1.2.1 Bit-Addressable Locations 
In addition to direct register access, some individual bits are also accessible. These are individually 
addressable bits in both the RAM and SFR area. In the Scratchpad RAM area, registers 20h to 2Fh are bit 
addressable. This provides 126 (16 x 8) individual bits available to software. A bit access is distinguished 
from a full register access by the type of instruction. Addressing modes are discussed in Section 5. In the 
SFR area, any register location ending in a 0 or 8 is bit addressable. Figure 4-3shows details of the on-
chip RAM addressing including the locations of individual RAM bits. 
 
4.1.2.2 Working Registers 
As part of the lower 128 bytes of RAM, there are four banks of Working Registers (each). The Working 
registers are general-purpose RAM locations that can be addressed in a special way. They are designated 
R0 through R7. Since there are four banks, the currently selected bank will be used by any instruction 
using R0-R7. This allows software to change context by simply switching banks. This is controlled via 
the Program Status Word register in the SFR area described below. The Working Registers also allow 
their contents to be used for indirect addressing of the upper 128 bytes of RAM. Thus an instruction can 
designate the value stored in R0 (for example) to address the upper RAM. This value might be the result 
of another calculation. 
 
4.1.2.3 Stack 
Another use of the Scratchpad area is for the programmer’s stack. This area is selected using the Stack 
Pointer (SP;81h) SFR. Whenever a call or interrupt is invoked, the return address is placed on the Stack. 
It also is available to the programmer for variables, etc., and since the Stack can be moved, there is no 
fixed location within the RAM designated as Stack. The Stack Pointer will default to 07h on reset. The 
user can then move it as needed. A convenient location would be the upper RAM area (>7Fh) since this is 
only available indirectly. The SP will point to the last used value. Therefore, the next value placed on the 
Stack is put at SP + 1. Each PUSH or CALL increments the SP by the appropriate value. Each POP or 
RET will decrement as well. 
 
Figure 4-1. Memory Map 
 
 
 
 
 
 
 
 
 
 
 

64kB FFFFh 

0000h 

PROGRAM 
MEMORY 

DATA 
MEMORY 



High-Speed Microcontroller User’s Guide 
 

13 of 167 

Figure 4-2. Register Map 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-3. Scratchpad Register Addressing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FFh 
 
 

INDIRECT RAM 
 
 
 
7Fh 
 
 

DIRECT RAM 
 
 
2Fh 7F 7E 7D 7C 7B 7A 79 78 
2Eh 77 76 75 74 73 72 71 70 
2Dh 6F 6E 6D 6C 6B 6A 69 68 
2Ch 67 66 65 64 63 62 61 60 
2Bh 5F 5E 5D 5C 5B 5A 59 58 
2Ah 57 56 55 54 53 52 51 50 
29h 4F 4E 4D 4C 4B 4A 49 48 
28h 47 46 45 44 43 42 41 40 
27h 3F 3E 3D 3C 3B 3A 39 38 
26h 37 36 35 34 333 32 31 30 
25h 2F 2E 2D 2C 2B 2A 29 28 
24h 27 26 25 24 23 22 21 20 
23h 1F 1E 1D 1C 1B 1A 19 18 
22h 17 16 15 14 13 12 11 10 
21h 0F 0E 0D 0C 0B 0A 09 08 
20h 07 06 05 04 03 02 01 00 
1Fh 

BANK 3 
18h 
17h 

BANK 2 
10h 
0Fh 

BANK 1 
08h 
07h 

BANK 0 
 

00h 
  

 

MSB LSB 

255 

128 

DIRECT 
SFRs 

FFh 
INDIRECT 

RAM 
7Fh 

0000h 

DIRECT 
RAM 

FFh 

7Fh 



High-Speed Microcontroller User’s Guide 
 

14 of 167 

4.2 Special Function Registers 
The high-speed microcontroller, like the 8051, uses special function registers (SFRs) to control 
peripherals and modes. In many cases, an SFR will control individual functions or report status on 
individual functions. The SFRs reside in register locations 80h–FFh and are reached using direct 
addressing. SFRs that end in 0 or 8 are bit addressable. 
 
All standard SFR locations from the original 8051 are duplicated in the high-speed microcontroller, with 
several additions. Following tables illustrate the locations of the SFRs for various devices. Following 
each tables a description of the default-reset conditions of all SFR bits. The following information 
contains detailed descriptions of each SFR. 
 

Table 4-A. DS80C310 SFR Locations  
REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS 

SP         81h 
DPL         82h 
DPH         83h 
DPL1         84h 
DPH1         85h 
DPS 0 0 0 0 0 0 0 SEL 86h 

PCON SMOD-0 SMOD0 - - GF1 GF0 STOP IDLE 87h 
TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 88h 
TMOD GATE C/ T  M1 M0 GATE C/ T  M1 M0 89h 

TL0         8Ah 
TL1         8Bh 
TH0         8Ch 
TH1         8Dh 

CKCON - - T2M T1M T0M MD2 MD1 MD0 8Eh 
P1 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 90h 

EXIF IE5 IE4 IE3 IE2 - - - - 91h 
SCON0 SM0/FE_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 98h 
SBUF0         99h 

P2 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 A0h 
IE EA - ET2 ES0 ET1 EX1 ET0 EX0 A8h 

SADDR0         A9h 
P3 P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0 B0h 
IP - - PT2 PS0 PT1 PX1 PT0 PX0 B8h 

SADEN0         B9h 
STATUS 0 HIP LIP 1 1 1 1 1 C5h 
T2CON TF2 EXF2 RCLK TCLK EXEN2 TR2 C/ T2  CP/ RL2  C8h 
T2MOD - - - - - - T2OE DCEN C9h 
RCAP2L         CAh 
RCAP2H         CBh 

TL2         CCh 
TH2         CDh 
PSW CY AC F0 RS1 RS0 OV F1 P D0h 

WDCON - POR - - - - - - D8h 
ACC         E0h 
EIE - - - - EX5 EX4 EX3 EX2 E8h 
B         F0h 

EIP - - - - PX5 PX4 PX3 PX2 F8h 
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Table 4-B. DS80C310 SFR Reset Values  
REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS 

SP 0 0 0 0 0 1 1 1 81h 
DPL 0 0 0 0 0 0 0 0 82h 
DPH 0 0 0 0 0 0 0 0 83h 
DPL1 0 0 0 0 0 0 0 0 84h 
DPH1 0 0 0 0 0 0 0 0 85h 
DPS 0 0 0 0 0 0 0 0 86h 

PCON 0 0 - - 0 0 0 0 87h 
TCON 0 0 0 0 0 0 0 0 88h 
TMOD 0 0 0 0 0 0 0 0 89h 

TL0 0 0 0 0 0 0 0 0 8Ah 
TL1 0 0 0 0 0 0 0 0 8Bh 
TH0 0 0 0 0 0 0 0 0 8Ch 
TH1 0 0 0 0 0 0 0 0 8Dh 

CKCON - - 0 0 0 0 0 1 8Eh 
P1 1 1 1 1 1 1 1 1 90h 

EXIF 0 0 0 0 - - - - 91h 
SCON0 0 0 0 0 0 0 0 0 98h 
SBUF0 0 0 0 0 0 0 0 0 99h 

P2 1 1 1 1 1 1 1 1 A0h 
IE 0 - 0 0 0 0 0 0 A8h 

SADDR0 0 0 0 0 0 0 0 0 A9h 
P3 1 1 1 1 1 1 1 1 B0h 
IP - - 0 0 0 0 0 0 B8h 

SADEN0 0 0 0 0 0 0 0 0 B9h 
STATUS 0 0 0 1 1 1 1 1 C5h 
T2CON 0 0 0 0 0 0 0 0 C8h 
T2MOD - - - - - - 0 0 C9h 
RCAP2L 0 0 0 0 0 0 0 0 CAh 
RCAP2H 0 0 0 0 0 0 0 0 CBh 

TL2 0 0 0 0 0 0 0 0 CCh 
TH2 0 0 0 0 0 0 0 0 CDh 
PSW 0 0 0 0 0 0 0 0 D0h 

WDCON - SPECIAL - - - - - - D8h 
ACC 0 0 0 0 0 0 0 0 E0h 
EIE - - - - 0 0 0 0 E8h 
B 0 0 0 0 0 0 0 0 F0h 

EIP - - - - 0 0 0 0 F8h 
 



High-Speed Microcontroller User’s Guide 
 

16 of 167 

Table 4-C. DS80C320/DS80C323 SFR Locations 
REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS 

SP         81h 
DPL         82h 
DPH         83h 
DPL1         84h 
DPH1         85h 
DPS 0 0 0 0 0 0 0 SEL 86h 

PCON SMOD_0 SMOD0 - - GF1 GF0 STOP IDLE 87h 
TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 88h 
TMOD GATE C/ T  M1 M0 GATE C/ T  M1 M0 89h 

TL0         8Ah 
TL1         8Bh 
TH0         8Ch 
TH1         8Dh 

CKCON WD1 WD0 T2M T1M T0M MD2 MD1 MD0 8Eh 
P1 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 90h 

EXIF IE5 IE4 IE3 IE2 - RGMD RGSL BGS 91h 
SCON0 SM0/FE_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 98h 
SBUF0         99h 

P2 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 A0h 
IE EA ES1 ET2 ES0 ET1 EX1 ET0 EX0 A8h 

SADDR0         A9h 
SADDR1         AAh 

P3 P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0 B0h 
IP - PS1 PT2 PS0 PT1 PX1 PT- PX0 B8h 

SADEN0         B9h 
SADEN1         Bah 
SCON1 SMO/FE_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 I1_1 R1_1 C0h 
SBUF1         C1h 

STATUS PIP HIP LIP 1 1 1 1 1 C5h 
TA         C7h 

T2CON TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2  CP/RL2  C8h 
T2MOD - - - - - - T2OE DCEN C9h 
RCAP2L         CAh 
RCAP2H         CBh 

TL2         CCh 
TH2         CDh 
PSW CY AC F0 RS1 RS0 OV F1 P D0h 

WDCON SMOD_1 POR EPF1 PF1 WDIF WTRF EWT RWT D8h 
ACC         E0h 
EIE - - - EWDI EX5 EX4 EX3 EX2 E8h 
B         F0h 

EIP - - - PWDI PX5 PX4 PX3 PX2 F8h 
 

Note: Shaded bits are timed-access protected. 
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Table 4-D. DS80C320/DS80C323 SFR Reset Values 
REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS 

SP 0 0 0 0 0 0 0 0 81h 
DPL 0 0 0 0 0 0 0 0 82h 
DPH 0 0 0 0 0 0 0 0 83h 
DPL1 0 0 0 0 0 0 0 0 84h 
DPH1 0 0 0 0 0 0 0 0 85h 
DPS 0 0 0 0 0 0 0 0 86h 

PCON 0 0 - - 0 0 0 0 87h 
TCON 0 0 0 0 0 0 0 0 88h 
TMOD 0 0 0 0 0 0 0 0 89h 

TL0 0 0 0 0 0 0 0 0 8Ah 
TL1 0 0 0 0 0 0 0 0 8Bh 
TH0 0 0 0 0 0 0 0 0 8Ch 
TH1 0 0 0 0 0 0 0 0 8Dh 

CKCON 0 0 0 0 0 0 0 0 8Eh 
P1 1 1 0 0 0 0 0 0 90h 

EXIF 0 0 0 0 0 0 0 0 91h 
SCON0 0 0 0 0 0 0 0 0 98h 
SBUF0 0 0 0 0 0 0 0 0 99h 

P2 1 1 1 1 1 1 1 1 A0h 
IE 0 0 0 0 0 0 0 0 A8h 

SADDR0 0 0 0 0 0 0 0 0 A9h 
SADDR1 0 0 0 0 0 0 0 0 AAh 

P3 1 1 1 1 1 1 1 1 B0h 
IP - 0 0 0 0 0 0 0 B8h 

SADEN0 0 0 0 0 0 0 0 0 B9h 
SADEN1 0 0 0 0 0 0 0 0 BAh 
SCON1 0 0 0 0 0 0 0 0 C0h 
SBUF1 0 0 0 0 0 0 0 0 C1h 

STATUS 0 0 0 1 1 1 1 1 C5h 
TA 1 1 1 1 1 1 1 1 C7h 

T2CON 0 0 0 0 0 0 0 0 C8h 
T2MOD - - - - - - 0 0 C9h 
RCAP2L 0 0 0 0 0 0 0 0 CAh 
RCAP2H 0 0 0 0 0 0 0 0 CBh 

TL2 0 0 0 0 0 0 0 0 CCh 
TH2 0 0 0 0 0 0 0 0 CDh 
PSW 0 0 0 0 0 0 0 0 D0h 

WDCON 0 SPECIAL 0 SPECIAL 0 SPECIAL SPECIAL 0 D8h 
ACC 0 0 0 0 0 0 0 0 E0h 
EIE - - - - 0 0 0 0 E8h 
B 0 0 0 0 0 0 0 0 F0h 

EIP -- - - 0 0 0 0 0 F8h 
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Table 4-E. DS83C520/DS87C520 SFR Locations 
REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS 

P0 P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 80h 
SP         81h 

DPL         82h 
DPH         83h 
DPL1         84h 
DPH1         85h 
DPS 0 0 0 0 0 0 0 SEL 86h 

PCON SMOD_0 SMOD0 - - GF1 GF0 STOP IDLE 87h 
TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 88h 
TMOD GATE C/ T  M1 M0 GATE C/ T  M1 M0 89h 

TL0         8Ah 
TL1         8Bh 
TH0         8Ch 
TH1         8Dh 

CKCON WD1 WD0 T2M T1M T0M MD2 MD1 MD0 8Eh 
P1 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 90h 

EXIF IE5 IE4 IE3 IE2 XT/ RG RGMD RGSL BGS 91h 
SCON0 SM0/FE_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 98h 
SBUF0         99h 

P2 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 A0h 
IE EA ES1 ET2 ES0 ET1 EX1 ET0 EX0 A8h 

SADDR0         A9h 
SADDR1         AAh 

P3 P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0 B0h 
IP - PS1 PT2 PS0 PT1 PX1 PT0 PX0 B8h 

SADEN0         B9h 
SADEN1         BAh 
SCON1 SM0/FE_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TI_1 RI_1 C0h 
SBUF1         C1h 

ROMSIZE - - - - - RMS2 RMS1 RMS0 C2h 
PMR CD1 CD0 SWB - XTOFF ALEOFF DME1 DME0 C4h 

STATUS PIP HIP LIP XTUP SPTA1 SPRA1 SPTA0 SPRA0 C5h 
TA         C7h 

T2CON TF2 EXF2 RCLK TCLK EXEN2 TR2 C/ T2  CP/ RL2  C8h 
T2MOD - - - - - - T2OE DCEN C9h 
RCAP2L         CAh 
RCAP2H         CBh 

TL2         CCh 
TH2         CDh 
PSW CY AC F0 RS1 RS0 OV F1 P D0h 

WDCON SMOD_1 POR EPFI PFI WDIF WTRF EWT RWT D8h 
ACC         E0h 
EIE - - - EWDI EX5 EX4 EX3 EX2 E8h 
B         F0h 

EIP - - - PWD1 PX5 PX4 PX3 PX2 F8h 
 
Note: Shaded bits are timed-access protected. 



High-Speed Microcontroller User’s Guide 
 

19 of 167 

Table 4-F. S83C520/DS87C520 SFR Reset Values 
REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS 

P0 1 1 1 1 1 1 1 1 80h 
SP 0 0 0 0 0 1 1 1 81h 

DPL 0 0 0 0 0 0 0 0 82h 
DPH 0 0 0 0 0 0 0 0 83h 
DPL1 0 0 0 0 0 0 0 0 84h 
DPH1 0 0 0 0 0 0 0 0 85h 
DPS 0 0 0 0 0 0 0 0 86h 

PCON 0 0 - - 0 0 0 0 87h 
TCON 0 0 0 0 0 0 0 0 88h 
TMOD 0 0 0 0 0 0 0 0 89h 

TL0 0 0 0 0 0 0 0 0 8Ah 
TL1 0 0 0 0 0 0 0 0 8Bh 
TH0 0 0 0 0 0 0 0 0 8Ch 
TH1 0 0 0 0 0 0 0 0 8Dh 

CKCON 0 0 0 0 0 0 0 1 8Eh 
P1 1 1 1 1 1 1 1 1 90h 

EXIF 0 0 0 0 SPECIAL SPECIAL SPECIAL 0 91h 
SCON0 0 0 0 0 0 0 0 0 98h 
SBUF0 0 0 0 0 0 0 0 0 99h 

P2 1 1 1 1 1 1 1 1 A0h 
IE 0 0 0 0 0 0 0 0 A8h 

SADDR0 0 0 0 0 0 0 0 0 A9h 
SADDR1 0 0 0 0 0 0 0 0 AAh 

P3 1 1 1 1 1 1 1 1 B0h 
IP - 0 0 0 0 0 0 0 B8h 

SADEN0 0 0 0 0 0 0 0 0 B9h 
SADEN1 0 0 0 0 0 0 0 0 BAh 
SCON1 0 0 0 0 0 0 0 0 C0h 
SBUF1 0 0 0 0 0 0 0 0 C1h 

ROMSIZE - - - - - 1 0 1 C2h 
PMR 0 1 0 - 0 0 0 0 C4h 

STATUS 0 0 0 SPECIAL 0 0 0 0 C5h 
TA 1 1 1 1 1 1 1 1 C7h 

T2CON 0 0 0 0 0 0 0 0 C8h 
T2MOD - - - - - - 0 0 C9h 
RCAP2L 0 0 0 0 0 0 0 0 CAh 
RCAP2H 0 0 0 0 0 0 0 0 CBh 

TL2 0 0 0 0 0 0 0 0 CCh 
TH2 0 0 0 0 0 0 0 0 CDh 
PSW 0 0 0 0 0 0 0 0 D0h 

WDCON 0 SPECIAL 0 SPECIAL 0 SPECIAL SPECIAL 0 D8h 
ACC 0 0 0 0 0 0 0 0 E0h 
EIE - - - 0 0 0 0 0 E8h 
B 0 0 0 0 0 0 0 0 F0h 

EIP - - - 0 0 0 0 0 F8h 
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Table 4-G. DS87C530 SFR Locations  
REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS 

P0 P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 80h 
SP         81h 

DPL         82h 
DPH         83h 
DPL1         84h 
DPH1         85h 
DPS 0 0 0 0 0 0 0 SEL 86h 

PCON SMOD_0 SMOD0 - - GF1 GF0 STOP IDLE 87h 
TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 88h 
TMOD GATE C/ T M1 M0 GATE C/ T  M1 M0 89h 

TL0         8Ah 
TL1         8Bh 
TH0         8Ch 
TH1         8Dh 

CKCON WD1 WD0 T2M T1M T0M MD2 MD1 MD0 8Eh 
P1 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 90h 

EXIF IE5 IE4 IE3 IE2 XT/ RG  RGMD RGSL BGS 91h 
TRIM E4K X12/ 6  TRM2 TRM2  TRM1 TRM1  TRM0 TRM0  96h 

SCON0 SM0/FE_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 98h 
SBUF0         99h 

P2 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 A0h 
IE EA ES1 ET2 ES0 ET1 EX1 ET0 EX0 A8h 

SADDR0         A9h 
SADDR1         AAh 

P3 P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0 B0h 
IP - PS1 PT2 PS0 PT1 PX1 PT0 PX0 B8h 

SADEN0         B9h 
SADEN1         BAh 
SCON1 SM0/FE_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TI_1 RI_1 C0h 
SBUF1         C1h 

ROMSIZE - - - - - RMS2 RMS1 RMS0 C2h 
PMR CD1 CD0 SWB - XTOFF ALEOFF DME1 DME0 C4h 

STATUS PIP HIP LIP XTUP SPTA1 SPRA1 SPTA0 SPRA0 C5h 
TA         C7h 

T2CON TF2 EXF2 RCLK TCLK EXEN2 TR2 C/ T2  CP/ RL2  C8h 
T2MOD - - - - - - T2OE DCEN C9h 
RCAP2L         CAh 
RCAP2H         CBh 

TL2         CCh 
TH2         CDh 
PSW CY AC F0 RS1 RS0 OV F1 P D0h 

WDCON SMOD_0 POR EPFI PFI WDIF WTRF EWT RWT D8h 
ACC         E0h 
EIE - - ERTCI EWDI EX5 EX4 EX3 EX2 E8h 
B         F0h 

RTASS         F2h 
RTAS 0 0       F3h 
RTAM 0 0       F4h 
RTAH 0 0 0      F5h 

EIP - - PRTCI PWDI PX5 PX4 PX3 PX2 F8h 
RTCC SSCE SCE MCE HCE RTCE RTCWE RTCIF RTCE F9h 
RTCSS         FAh 
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REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS 
RTCS 0 0       FBh 
RTCM 0 0       FCh 
RTCH         FDh 

RTCD0         FEh 
RTCD1         FFh 

 

Note: Shaded bits are timed-access protected. 
 
Table 4-H. DS87C530 SFR Reset Values  

REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS 
PO 1 1 1 1 1 1 1 1 80h 
SP 0 0 0 0 0 1 1 1 81h 

DPL 0 0 0 0 0 0 0 0 82h 
DPH 0 0 0 0 0 0 0 0 83h 
DPL1 0 0 0 0 0 0 0 0 84h 
DPH1 0 0 0 0 0 0 0 0 85h 
DPS 0 0 0 0 0 0 0 0 86h 

PCON 0 0 - - 0 0 0 0 87h 
TCON 0 0 0 0 0 0 0 0 88h 
TMOD 0 0 0 0 0 0 0 0 89h 

TL0 0 0 0 0 0 0 0 0 8Ah 
TL1 0 0 0 0 0 0 0 0 8Bh 
TH0 0 0 0 0 0 0 0 0 8Ch 
TH1 0 0 0 0 0 0 0 0 8Dh 

CKCON 0 0 0 0 0 0 0 1 8Eh 
P1 1 1 1 1 1 1 1 1 90h 

EXIF 0 0 0 0 SPECIAL SPECIAL SPECIAL 0 91h 
TRIM SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL 96h 

SCON0 0 0 0 0 0 0 0 0 98h 
SBUF0 0 0 0 0 0 0 0 0 99h 

P2 1 1 1 1 1 1 1 1 A0h 
IE 0 0 0 0 0 0 0 0 A8h 

SADDR0 0 0 0 0 0 0 0 0 A9h 
SADDR1 0 0 0 0 0 0 0 0 AAh 

P3 1 1 1 1 1 1 1 1 B0h 
IP - 0 0 0 0 0 0 0 B8h 

SADEN0 0 0 0 0 0 0 0 0 B9h 
SADEN1 0 0 0 0 0 0 0 0 BAh 
SCON1 0 0 0 0 0 0 0 0 C0h 
SBUF1 0 0 0 0 0 0 0 0 C1h 

ROMSIZE - - - - - 1 0 1 C2h 
PMR 0 1 0 - 0 0 0 0 C4h 

STATUS 0 0 0 SPECIAL 0 0 0 0 C5h 
TA 1 1 1 1 1 1 1 1 C7h 

T2CON 0 0 0 0 0 0 0 0 C8h 
T2MOD - - - - - - 0 0 C9h 
RCAP2L 0 0 0 0 0 0 0 0 CAh 
RCAP2H 0 0 0 0 0 0 0 0 CBh 

TL2 0 0 0 0 0 0 0 0 CCh 
TH2 0 0 0 0 0 0 0 0 CDh 
PSW 0 0 0 0 0 0 0 0 D0h 

WDCON 0 SPECIAL 0 SPECIAL 0 SPECIAL SPECIAL 0 D8h 
ACC 0 0 0 0 0 0 0 0 E0h 
EIE - - 0 0 0 0 0 0 E8h 
B 0 0 0 0 0 0 0 0 F0h 
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REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS 
RTASS SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL F2h 
RTAS 0 0 SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL F3h 
RTAM 0 0 SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL F4h 
RTAH 0 0 0 SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL F5h 
EIP - - 0 0 0 0 0 0 F8h 

RTCC SPECIAL SPECIAL SPECIAL SPECIAL 0 0 SPECIAL SPECIAL F9h 
RTCSS SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL FAh 
RTCS 0 0 SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL FBh 
RTCM 0 0 SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL FCh 
RTCH SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL FDh 

RTCD0 SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL FEh 
RTCD1 SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL SPECIAL FFh 

 
Most of the unique features of the high-speed microcontroller family are controlled by bits in SFRs 
located in unused locations in the 8051 SFR map. This allows for increased functionality while 
maintaining complete instruction set compatibility. 
 
The descriptions for each bit indicates its read and write access as well as its state after a power-on reset. 
Bits that are affected by a no-battery reset are also indicated. Note that many bits and registers are unique 
to specific devices, and their functions will vary between different members of the high-speed 
microcontroller family. 
 
Port 0 (P0)  

 7 6 5 4 3 2 1 0 
SFR 80h P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 
 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

P0.7–P0.0 
Bits 7–0 

Port 0. This port functions as a multiplexed address/data bus during external memory 
access, and as a generalpurpose I/O port on devices which incorporate internal program 
memory. During external memory cycles, this port will contain the LSB of the address 
when ALE is high, and data when ALE is low. 

 
Stack Pointer (SP) 

 7 6 5 4 3 2 1 0 
SFR 81h SP.7 SP.6 SP.5 SP.4 SP.3 SP.2 SP.1 SP.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-1 RW-1 RW-1 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

SP.7—SP.0 
Bits 7–0 

Stack Pointer. This stack pointer identifies the location where the stack will begin. The 
stack pointer is incremented before every PUSH operation. This register defaults to 07h 
after reset. 
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Data Pointer Low 0 (DPL) 
 7 6 5 4 3 2 1 0 

SFR 82h DPL.7 DPL.6 DPL.5 DPL.4 DPL.3 DPL.2 DPL.1 DPL.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

DPL.7–DPL.0 
Bits 7–0 

Data Pointer Low 0. This register is the low byte of the standard 80C32 16-bit data 
pointer. DPL and DPH are used to point to non-scratchpad data RAM. 

 
Data Pointer High 0 (DPH) 

 7 6 5 4 3 2 1 0 
SFR 83h DPH.7 DPH.6 DPH.5 DPH.4 DPH.3 DPH.2 DPH.1 DPH.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

DPH.7–DPH.0 
Bits 7–0 

Data Pointer High 0. This register is the high byte of the standard 80C32 16-bit data 
pointer. DPL and DPH are used to point to non-scratchpad data RAM. 

 
Data Pointer Low 1 (DPL1) 

 7 6 5 4 3 2 1 0 
SFR 84h DPL1.7 DPL1.6 DPL1.5 DPL1.4 DPL1.3 DPL1.2 DPL1.1 DL1H.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

DPL1.7—DPL1.0 
Bits 7–0 

Data Pointer Low 1. This register is the low byte of the auxiliary 16-bit data pointer. 
When the SEL bit (DPS.0) is set, DPL1 and DPH1 are used in place of DPL and DPH 
during DPTR operations. 

 
Data Pointer High 1 (DPH1) 

 7 6 5 4 3 2 1 0 
SFR 85h DPH1.7  DPH1.6 DPH1.5 DPH1.4 DPH1.3 DPH1.2 DPH1.1 DPH1.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

DPH1.7—DPH1.0 
Bits 7–0 

Data Pointer High 1. This register is the high byte of the auxiliary 16-bit data pointer. 
When the SEL bit (DPS.0) is set, DPL1 and DPH1 are used in place of DPL and DPH 
during DPTR operations. 
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Data Pointer Select (DPS) 
 7 6 5 4 3 2 1 0 

SFR 86h 0 0 0 0 0 0 0 SEL 
 R-0 R-0 R-0 R-0 R-0 R-0 R-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

Bits 7-1 Reserved. These bits will read 0. 
SEL 
Bit 0 

Data Pointer Select. This bit selects the active data pointer.  
0 = Instructions that use the DPTR will use DPL and DPH. 
1= Instructions that use the DPTR will use DPL1 and DPH1. 

 
Power Control (PCON) 

 7 6 5 4 3 2 1 0 
SFR 87h SMOD_0 SMOD0 — — GF1 GF0 STOP IDLE 
 RW-0 RW-0   RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

SMOD_0 
Bit 7 

Serial Port 0 Baud Rate Doubler Enable. This bit enables/disables the serial baud rate 
doubling function for Serial Port 0. 
0 = Serial Port 0 baud rate will be that defined by baud rate generation equation. 
1 = Serial Port 0 baud rate will be double that defined by baud rate generation equation. 

SMOD0 
Bit 6 

Framing Error-Detection Enable. This bit selects function of the SCON0.7 and 
SCON1.7 bits. 
0 = SCON0.7 and SCON1.7 control the SM0 function defined for the SCON0 and 
SCON1 registers. 
1 = SCON0.7 and SCON1.7 are converted to the Framing Error (FE) flag for the 
respective Serial Port. 

Bits 5-4 Reserved. Read data is indeterminate. 
GF1 
Bit 3 

General-Purpose User Flag 1. This is a general-purpose flag for software control. 

GF0 
Bit 2 

General-Purpose User Flag 0. This is a general-purpose flag for software control. 

STOP 
Bit 1 

Stop Mode Select. Setting this bit will stop program execution, halt the CPU oscillator, 
and internal timers, and place the CPU in a low-power mode. This bit will always be 
read as a 0. Setting this bit while the Idle bit is set will place the device in an undefined 
state. 

IDLE 
Bit 0 

Idle Mode Select. Setting this bit will stop program execution but leave the CPU 
oscillator, timers, serial ports, and interrupts active. This bit will always be read as a 0. 
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Timer/Counter Control (TCON) 
 7 6 5 4 3 2 1 0 

SFR 88h TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

TF1 
Bit 7 

Timer 1 Overflow Flag. This bit indicates when Timer 1 overflows its maximum count 
as defined by the current mode. This bit can be cleared by software and is automatically 
cleared when the CPU vectors to the Timer  
1 interrupt service routine. 
0 = No Timer 1 overflow has been detected. 
1 = Timer 1 has overflowed its maximum count. 

TR1 
Bit 6 

Timer 1 Run Control. This bit enables/disables the operation of Timer 1. 
0 = Timer 1 is halted. 
1 = Timer 1 is enabled. 

TF0 
Bit 5 

Timer 0 Overflow Flag. This bit indicates when Timer 0 overflows its maximum count 
as defined by the current mode. This bit can be cleared by software and is automatically 
cleared when the CPU vectors to the Timer 0 interrupt service routine or by software.  
0 = No Timer 0 overflow has been detected.  
1 = Timer 0 has overflowed its maximum count. 

TR0 
Bit 4 

Timer 0 Run Control. This bit enables/disables the operation of Timer 0.  
0 = Timer 0 is halted.  
1 = Timer 0 is enabled. 

IE1 
Bit 3 

Interrupt 1 Edge Detect. This bit is set when an edge/level of the type defined by IT1 
is detected. If IT1=1, this bit will remain set until cleared in software or the start of the 
External Interrupt 1 service routine. If IT1=0, this bit will inversely reflect the state of 
the INT1  pin. 

IT1 
Bit 2 

Interrupt 1 Type Select. This bit selects whether the INT1  pin will detect edge or level 
triggered interrupts.  
0 = INT1  is level triggered.  
1 = INT1  is edge triggered. 

IE0 
Bit 1 

Interrupt 0 Edge Detect. This bit is set when an edge/level of the type defined by IT0 
is detected. If IT0=1, this bit will remain set until cleared in software or the start of the 
External Interrupt 0 service routine. If IT0=0, this bit will inversely reflect the state of 
the INT0  pin 

IT0 
Bit 0 

Interrupt 0 Type Select. This bit selects whether the INT0  pin will detect edge or level 
triggered interrupts.  
0 = INT0  is level triggered.  
1 = INT0  is edge triggered. 



High-Speed Microcontroller User’s Guide 
 

26 of 167 

Timer Mode Control (TMOD) 
 7 6 5 4 3 2 1 0 

SFR 89h GATE C/ T  M1 M0 GATE C/ T  M1 M0 

 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 
 

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

GATE 
Bit 7 

Timer 1 Gate Control. This bit enable/disables the ability of Timer 1 to increment.   
0 = Timer 1 will clock when TR1=1, regardless of the state of INT1.  
1 = Timer 1 will clock only when TR1=1 and INT1 =1. 

C/T 
Bit 6 

Timer 1 Counter/Timer Select.  
0 = Timer 1 is incremented by internal clocks.  
1 = Timer 1 is incremented by pulses on T1 when TR1 (TCON.6) is 1. 

M1, M0 
Bits 5, 4 

Timer 1 Mode Select. These bits select the operating mode of Timer 1. 
M1   M0 Mode 
0       0 Mode 0: 8 bits with 5-bit prescale 
0       1 Mode 1: 16 bits 
1       0 Mode 2: 8 bits with auto-reload 
1       1 Mode 3: Timer 1 is halted, but holds its count 

GATE 
Bit 3 

Timer 0 Gate Control. This bit enables/disables that ability of Timer 0 to increment.  
0 = Timer 0 will clock when TR0=1, regardless of the state of INT0 .  
1 = Timer 0 will clock only when TR0=1 and INT0 =1. 

C/ T  
Bit 2 

Timer 0 Counter/Timer Select.  
0 = Timer 0 incremented by internal clocks.  
1 = Timer 0 is incremented by pulses on T0 when TR0 (TCON.4) is 1. 

M1, M0 
Bits 1, 0 

Timer 0 Mode Select. These bits select the operating mode of Timer 0. When Timer 0 
is in mode 3, TL0 is started/stopped by TR0 and TH0 is started/stopped by TR1. Run 
control from Timer 1 is then provided via the Timer 1 mode selection. 
 
M1 M0 Mode 
0 0 Mode 0: 8 bits with 5-bit prescale 
0 1 Mode 1: 16 bits 
1 0 Mode 2: 8 bits with auto-reload 
1 1 Mode 3: Timer 0 is two 8-bit counters. 

 
Timer 0 LSB (TL0) 

 7 6 5 4 3 2 1 0 
SFR 8Ah TL0.7 TL0.6 TL0.5 TL0.4 TL0.3 TL0.2 TL0.1 TL0.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

TL0.7–TL0.0 
Bits 7–0 

Timer 0 LSB. This register contains the least significant byte of Timer 0. 
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Timer 1 LSB (TL1)  
 7 6 5 4 3 2 1 0 

SFR 8Bh TL1.7 TL1.6 TL1.5 TL1.4 TL1.3 TL1.2 TL1.1 TL1.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

TL1.7–TL1.0 
Bits 7–0 

Timer 1 LSB. This register contains the least significant byte of Timer 1. 

 
Timer 0 MSB (TH0)  

 7 6 5 4 3 2 1 0 
SFR 8Ch TH0.7 TH0.6 TH0.5 TH0.4 TH0.3 TH0.2 TH0.1 TH0.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

TH0.7–TH0.0 
Bits 7–0 

Timer 0 MSB. This register contains the most significant byte of Timer 0. 

 
Timer 1 MSB (TH1)  

 7 6 5 4 3 2 1 0 
SFR 8Dh TH1.7 TH1.6 TH1.5 TH1.4 TH1.3 TH1.2 TH1.1 TH1.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

TH1.7–TH1.0 
Bits 7–0 

Timer 1 MSB. This register contains the most significant byte of Timer 1. 
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Clock Control (CKCON)  
 7 6 5 4 3 2 1 0 

SFR 8Eh WD1 WD0 T2M T1M T0M MD2 MD1 MD0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-1 

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
WD1, WD0 
Bits 7, 6 

Watchdog Timer Mode Select 1-0. These bits determine the watchdog timer timeout 
period. The timer divides the crystal frequency by a programmable value as shown 
below. The divider value is expressed in clock (crystal) cycles. The use of PMM1 or 
PMM2 will further divide the clock cycle count by either 16 or 256, respectively. Note 
that the reset timeout is 512 clocks longer than the interrupt, regardless of whether the 
interrupt is enabled. 
WD1 WD0 Interrupt Divider Reset Divider 
 0 0 217 217 + 512 
 0 1 220 220 + 512 
 1 0 223 223 + 512 
 1 1 226 226 + 512 

T2M 
Bit 5 

Timer 2 Clock Select. This bit controls the division of the system clock that drives 
Timer 2. This bit has no effect when the timer is in baud rate generator or clock output 
modes. Clearing this bit to 0 maintains 80C32 compatibility. This bit has no effect on 
instruction cycle timing.  
0 = Timer 2 uses a divide-by-12 of the crystal frequency.   
1 = Timer 2 uses a divide-by-4 of the crystal frequency. 

T1M 
Bit 4 

Timer 1 Clock Select. This bit controls the division of the system clock that drives 
Timer 1. Clearing this bit to 0 maintains 80C32 compatibility. This bit has no effect on 
instruction cycle timing.  
0 = Timer 1 uses a divide-by-12 of the crystal frequency.   
1 = Timer 1 uses a divide-by-4 of the crystal frequency. 

T0M 
Bit 3 

Timer 0 Clock Select. This bit controls the division of the system clock that drives 
Timer 0. Clearing this bit to 0 maintains 80C32 compatibility. This bit has no effect on 
instruction cycle timing. On the DS8xC520 and Ds8xC530, Timer 0 will use a divide-
by-4 of the crystal frequency if Timer 0 is configured in mode 3, regardless of the 
setting of this bit. This bit functions normally if Timer 0 is configured for any mode 
other than mode 3. 
0 = Timer 0 uses a divide-by-12 of the crystal frequency.   
1 = Timer 0 uses a divide-by-4 of the crystal frequency. 

MD2, MD1, MD0 
Bits 2, 1, 0 

Stretch MOVX Select 2-0. These bits select the time by which external MOVX cycles 
are to be stretched. This allows slower memory or peripherals to be accessed without 
using ports or manual software intervention. The RD or WR strobe will be stretched by 
the specified interval, which will be transparent to the software except for the increased 
time to execute to MOVX instruction. All internal MOVX instructions on devices 
containing MOVX SRAM are performed at the two-machine cycle rate. 
MD2 MD1 MD0 Stretch Value MOVX Duration 
0 0 0 0  2 Machine Cycles 
0 0 1 1  3 Machine Cycles (reset default) 
0 1 0 2  4 Machine Cycles 
0 1 1 3  5 Machine Cycles 
1 0 0 4  6 Machine Cycles 
1 0 1 5  7 Machine Cycles 
1 1 0 6  8 Machine Cycles 
1 1 1 7  9 Machine Cycles 



High-Speed Microcontroller User’s Guide 
 

29 of 167 

Port 1 (P1)    
 7 6 5 4 3 2 1 0 

SFR 90h P1.7 
INT5  

P1.6 
INT4 

P1.5 

INT3  
P1.4 
INT2 

P1.3 
TXD1 

P1.2 
RXD1 

P1.1 
T2EX 

P1.0 
T2 

 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 
 

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

P1.7–P1.0 
Bits 7–0 

General-Purpose I/O Port 1.  This register functions as a general purpose I/O port. In 
addition, all the pins have an alternative function listed below. P1.2-7 contain functions 
that are new to the 80C32 architecture. The Timer 2 functions on pins P1.1-0 are 
available on the 80C32, but not the 80C31. Each of the functions is controlled by 
several other SFRs. The associated Port 1 latch bit must contain a logic one before the 
pin can be used in its alternate function capacity. 

INT5  
Bit 7 

External Interrupt 5. A falling edge on this pin will cause an external interrupt 5 if 
enabled. 

INT4 
Bit 6 

External Interrupt 4. A rising edge on this pin will cause an external interrupt 4 if 
enabled. 

INT3  
Bit 5 

External Interrupt 3. A falling edge on this pin will cause an external interrupt 3 if 
enabled. 

INT2 
Bit 4 

External Interrupt 2. A rising edge on this pin will cause an external interrupt 2 if 
enabled. 

TXD1 
Bit 3 

Serial Port 1 Transmit. This pin transmits the serial port 1 data in serial port modes 1, 
2, 3 and emits the synchronizing clock in serial port mode 0. 

RXD1 
Bit 2 

Serial Port 1 Receive. This pin receives the serial port 1 data in serial port modes 1, 2, 
3 and is a bi-directional data transfer pin in serial port mode 0. 

T2EX 
Bit 1 

Timer 2 Capture/Reload Trigger. A 1-to-0 transition on this pin will cause the value 
in the T2 registers to be transferred into the capture registers if enabled by EXEN2 
(T2CON.3). When in auto–reload mode, a 1-to-0 transition on this pin will reload the 
timer 2 registers with the value in RCAP2L and RCAP2H if enabled by EXEN2 
(T2CON.3). 

T2 
Bit 0 

Timer 2 External Input. A 1-to-0 transition on this pin will cause timer 2 increment or 
decrement depending on the timer configuration. 
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External Interrupt Flag (EXIF) 
 7 6 5 4 3 2 1 0 

SFR 91h IE5 IE4 IE3 IE2 XT/ RG  RGMD RGSL BGS 

 RW-0 RW-0 RW-0 RW-0 RW-* R-* RW-* RT-0 
 

R=Unrestricted Read, W=Unrestricted Write, T=Timed Access Write Only-n=Value after Reset, 
*=See description 

 
IE5 
Bit 7 

External Interrupt 5 Flag. This bit will be set when a falling edge is detected on INT5 . 
This bit must be cleared manually by software. Setting this bit in software will cause an 
interrupt if enabled. 

IE4 
Bit 6 

External Interrupt 4 Flag. This bit will be set when a rising edge is detected on INT4. 
This bit must be cleared manually by software. Setting this bit in software will cause an 
interrupt if enabled. 

IE3 
Bit 5 

External Interrupt 3 Flag. This bit will be set when a falling edge is detected on INT3 . 
This bit must be cleared manually by software. Setting this bit in software will cause an 
interrupt if enabled. 

IE2 
Bit 4 

External Interrupt 2 Flag. This bit will be set when a rising edge is detected on INT2. 
This bit must be cleared manually by software. Setting this bit in software will cause an 
interrupt if enabled. 

XT/ RG  
Bit 3 

Crystal/Ring Source Select. This bit selects the crystal oscillator or ring oscillator as 
the desired clock source. This bit will be the inverse of RGMD except during the crystal 
warm-up period when executing a ring oscillator resume from Stop. XTUP (STATUS.4) 
must be set to 1 and XTOFF (PMR.3) must be cleared to 0 before this bit can be set. 
Attempts to modify this bit when these conditions are not met will be ignored. This bit 
must be cleared before XTOFF can be set to 1. This bit is set to 1 after a power-on reset, 
and unchanged by all other forms of reset. This bit is not used on the DS80C310 or 
DS80C320 and will be 1 when read.  
0 = The ring oscillator is selected as the clock source. This setting is unaffected by 
XTUP (STATUS.4) and XTOFF (PMR.3).  
1 = The crystal oscillator is selected as the clock source. This setting is invalid unless 
XTUP=1 and XTOFF=0. 

RGMD 
Bit 2 

Ring Mode Status. This bit indicates the current clock source for the device. This 
bit is cleared to 0 after a power-on reset, and unchanged by all other forms of reset. 
The state of this bit will be undefined on devices that do not incorporate a ring 
oscillator. 
0 = Device is operating from the external crystal or oscillator.  
1 = Device is operating from the ring oscillator. 

RGSL 
Bit 1 

Ring Oscillator Select. This bit selects the clock source following a resume from Stop 
mode. Using the ring oscillator to resume from Stop mode allows almost instantaneous 
startup. This bit is cleared to 0 after a power-on reset, and unchanged by all other forms 
of reset. The state of this bit will be undefined on devices that do not incorporate a ring 
oscillator.  
0 = The device will hold operation until the crystal oscillator has warmed-up.  
1 = The device will begin operating from the ring oscillator, and when the crystal warm-
up is complete, will switch to the clock source indicated by the XT/ RG  bit. 
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BGS 
Bit 0 

Bandgap Select. This bit enables/disables the bandgap reference during Stop mode. 
Disabling the bandgap reference provides significant power savings in Stop mode, but 
sacrifices the ability to perform a power-fail interrupt or power-fail reset while stopped. 
This bit can only be modified with a Timed Access procedure. The state of this bit will 
be undefined on devices that do not incorporate a bandgap reference.   
0 = The bandgap reference is disabled in Stop mode but will function during normal 
operation. VCC must fall below 0.4V to cause a reset when this bit is 0.  
1 = The bandgap reference will operate in Stop mode. 

 
RTC Trim Register (TRIM)  

 7 6 5 4 3 2 1 0 

SFR 96h E4K X12/ 6  TRM2 TRM2  TRM1 TRM1 TRM0 TRM0  

 RT-* RT-* RT-* RT-* RT-* RT-* RT-* RT-* 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, *=See description 

 
E4K 
Bit 7 

External 4096Hz RTC Signal Enable. This bit enables the output of a 4096Hz 
signal on pin P1.7 derived from the RTC. Setting this bit overrides any other 
function of the pin. It is used for adjusting the frequency of the 32.768kHz RTC 
crystal oscillator using the trim bits. This bit is cleared to 0 after any reset, 
including a no-battery reset. 
0 = Calibration function disabled. P1.7 pin will function per the normal pin description.  
1 = 4096Hz signal output on P1.7 

X12/ 6  
Bit 6 

RTC Crystal Capacitance Select. This bit selects the internal loading capacitance of 
the RTC crystal amplifier. This bit is set to 1 after a no-battery reset, and unchanged by 
all other forms of reset.  
0 = RTC loading is set for 6pF crystal.  
1 = RTC loading is set for 12.5pF crystal. 

TRM2 
Bit 5 

RTC Trim Bit 2. This bit controls the relative adjustment of the RTC internal 
capacitance. It is used to calibrate the RTC oscillator frequency. This bit is set to 1 after 
a no-battery reset, and unchanged by all other forms of reset. 

TRM2  
Bit 4 

RTC Inverted Trim Bit 2. This bit controls the relative adjustment of the RTC internal 
capacitance. It is used to calibrate the RTC oscillator frequency. This bit is set to 1 after 
a no-battery reset, and unchanged by all other forms of reset. 

TRM1 
Bit 3 

RTC Trim Bit 1. This bit controls the relative adjustment of the RTC internal 
capacitance. It is used to calibrate the RTC oscillator frequency. This bit is set to 0 after 
a no-battery reset, and unchanged by all other forms of reset. 

TRM1  
Bit 2 

RTC Inverted Trim Bit 1. This bit must always be set to the complement of the TRM1 
bit. Incorrectly writing this bit will default bits TRIM.7, TRIM.5-0 to their no-battery 
reset value. This bit is cleared to 1 after a no-battery reset, and unchanged by all other 
forms of reset. 

TRM0 
Bit 1 

RTC Trim Bit 0. This bit controls the relative adjustment of the RTC internal 
capacitance. It is used to calibrate the RTC oscillator frequency. This bit is set to 0 after 
a no-battery reset, and unchanged by all other forms of reset. 

TRM0  
Bit 0 

RTC Inverted Trim Bit 0. This bit must always be set to the complement of the TRM0 
bit. Incorrectly writing this bit will default bits TRIM.7, TRIM.5-0 to their no-battery 
reset value. This bit is cleared to 1 after a no-battery reset, and unchanged by all other 
forms of reset. 
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Serial Port 0 Control (SCON0)  
 7 6 5 4 3 2 1 0 

SFR 98h SM0/FE_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

SM0, SM1, SM2 
Bits 7, 6, 5 

Serial Port Mode, These bits control the mode of serial port 0. In addition the SM0 and 
SM2_0 bits have secondary functions as shown below. 

   
SM0 SM1 SM2 MODE FUNCTION LENGTH PERIOD 

0 0 0 0 Synchronous 8 bits 12 tCLK 

0 0 1 0 Synchronous 8 bits 4 tCLK 

0 1 X 1 Asynchronous 10 bits Timer 1 or 2 baud rate equation 

1 0 0 2 Asynchronous 11 bits 
64 tCLK (SMOD=0) 

32 tCLK (SMOD=1) 

1 0 1 1 Asynchronous w/ Multiprocessor 
communication 11 bits 

64 tCLK (SMOD=0) 

32 tCLK (SMOD=1) 

1 1 0 3 Asynchronous 11 bits Timer 1 or 2 baud rate equation 

1 1 1 3 Asynchronous w/ Multiprocessor 
communication 11 bits Timer 1 or 2 baud rate equation 

 

SM0/FE_0 
Bit 7 

Framing Error Flag. When SMOD0 (PCON.6)=0, this bit (SM0) is used to select the 
mode for serial port 0. When SMOD0 (PCON.6)=1, this bit (FE) will be set upon 
detection of an invalid stop bit. When used as FE, this bit must be cleared in software. 
Once the SMOD0 bit is set, modifications to this bit will not affect the serial port mode 
settings. Although accessed from the same register, internally the data for bits SM0 and 
FE are stored in different locations. 

SM1_0 
Bit 6 

No alternate function. 

SM2_0 
Bit 5 

Multiple CPU Communications. The function of this bit is dependent on the serial 
port 0 mode. 
Mode 0: Selects 12 tCLK or 4 tCLK period for synchronous serial port 0 data transfers.  
Mode 1: When set, reception is ignored (RI_0 is not set) if invalid stop bit received.  
Mode 2/3: When this bit is set, multiprocessor communications are enabled in modes 2 
and 3. This will prevent the RI_0 bit from being set, and an interrupt being asserted, if 
the 9th bit received is not 1. 

REN_0 
Bit 4 

Receiver Enable. This bit enable/disables the serial port 0 receiver shift register.  
0 = Serial port 0 reception disabled.  
1= Serial port 0 receiver enabled (modes 1, 2, 3). Initiate synchronous reception (mode 
0). 

TB8_0 
Bit 3 

9th Transmission Bit State. This bit defines the state of the 9th transmission bit in 
serial port 0 modes 2 and 3. 
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RB8_0 
Bit 2 

9th Received Bit State. This bit identifies that state of the 9th reception bit of received 
data in serial port 0 modes 2 and 3. In serial port mode 1, when SM2_0=0, RB8_0 is the 
state of the stop bit. RB8_0 is not used in mode 0. 

TI_0 
Bit 1 

Transmitter Interrupt Flag. This bit indicates that data in the serial port 0 buffer has 
been completely shifted out. In serial port mode 0, TI_0 is set at the end of the 8th data 
bit. In all other modes, this bit is set at the end of the last data bit. This bit must be 
manually cleared by software. 

RI_0 
Bit 0 

Receiver Interrupt Flag. This bit indicates that a byte of data has been received in the 
serial port 0 buffer. In serial port mode 0, RI_0 is set at the end of the 8th bit. In serial 
port mode 1, RI_0 is set after the last sample of the incoming stop bit subject to the state 
of SM2_0. In modes 2 and 3, RI_0 is set after the last sample of RB8_0. This bit must 
be manually cleared by software. 

 
Serial Data Buffer 0 (SBUF0)   

 7 6 5 4 3 2 1 0 
SFR 99h SBUF0.7 SBUF0.6 SBUF0.5 SBUF0.4 SBUF0.3 SBUF0.2 SBUF0.1 SBUF0.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 

 
SBUF0.7—SBUF0.0 
Bits 7–0 

Serial Data Buffer 0. Data for serial port 0 is read from or written to this location. The 
serial transmit and receive buffers are separate registers, but both are addressed at this 
location. 

 
Port 2 (P2)   

 7 6 5 4 3 2 1 0 
SFR A0h P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 
 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

P2.7–P2.0 
Bits 7–0 

Port 2. This port functions as an address bus during external memory access, and as a 
general-purpose I/O port on devices that incorporate internal program memory. During 
external memory cycles, this port will contain the MSB of the address. The Port 2 latch 
does not control general-purpose I/O pins on the DS80C310 and DS80C320, but is still 
used to hold the address MSB during register-indirect data memory operations such as 
MOVX A, @R1. 
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Interrupt Enable (IE)   
 7 6 5 4 3 2 1 0 

SFR A8h EA ES1 ET2 ES0 ET1 EX1 ET0 EX0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

EA 
Bit 7 

Global Interrupt Enable. This bit controls the global masking of all interrupts except 
Power-Fail Interrupt, which is enabled by the EPFI bit (WDCON.5).  
0 = Disable all interrupt sources. This bit overrides individual interrupt mask settings. 
1 = Enable all individual interrupt masks. Individual interrupts will occur if enabled. 

ES1 
Bit 6 

Enable Serial Port 1 Interrupt. This bit controls the masking of the serial port 1 
interrupt.   
0 = Disable all serial port 1 interrupts.  
1 = Enable interrupt requests generated by the RI_1 (SCON1.0) or TI_1 (SCON1.1) 
flags. 

ET2 
Bit 5 

Enable Timer 2 Interrupt. This bit controls the masking of the Timer 2 interrupt.  
0 = Disable all Timer 2 interrupts.  
1 = Enable interrupt requests generated by the TF2 flag (T2CON.7). 

ES0 
Bit 4 

Enable Serial Port 0 Interrupt. This bit controls the masking of the serial port 0 
interrupt.  
0 = Disable all serial port 0 interrupts.  
1 = Enable interrupt requests generated by the RI_0 (SCON0.0) or TI_0 (SCON0.1) 
flags. 

ET1 
Bit 3 

Enable Timer 1 Interrupt. This bit controls the masking of the Timer 1 interrupt.  
0 = Disable all Timer 1 interrupts.  
1 = Enable all interrupt requests generated by the TF1 flag (TCON.7). 

EX1 
Bit 2 

Enable External Interrupt 1. This bit controls the masking of external interrupt 1. 
0 = Disable external interrupt 1.  
1 = Enable all interrupt requests generated by the INT1 pin. 

ET0 
Bit 1 

Enable Timer 0 Interrupt. This bit controls the masking of the Timer 0 interrupt.  
0 = Disable all Timer 0 interrupts. 
1 = Enable all interrupt requests generated by the TF0 flag (TCON.5). 

EX0 
Bit 0 

Enable External Interrupt 0. This bit controls the masking of external interrupt 0.  
0 = Disable external interrupt 0. 
1 = Enable all interrupt requests generated by the INT0  pin. 

 
Slave Address Register 0 (SADDR0)  

 7 6 5 4 3 2 1 0 
SFR A9h SADDR0.7 SADDR0.6 SADDR0.5 SADDR0.4 SADDR0.3 SADDR0.2 SADDR0.1 SADDR0.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

SADDR0.7–
SADDR0.0 
Bits 7–0 

Slave Address Register 0. This register is programmed with the given or broadcast 
address assigned to serial port 0. 
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Slave Address Register 1 (SADDR1) 
 7 6 5 4 3 2 1 0 

SFR AAh SADDR1.7 SADDR1.6 SADDR1.5 SADDR1.4 SADDR1.3 SADDR1.2 SADDR1.1 SADDR1.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 
 

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

SADDR1.7–
SADDR1.0 
Bits 7–0 

Slave Address Register 1. This register is programmed with the given or broadcast 
address assigned to serial port 1. 

  

Port 3 (P3)  
 7 6 5 4 3 2 1 0 

SFR B0h P3.7 
RD  

P3.6 
WR 

P3.5 
T1 

P3.4 
T0 

P3.3 
1INT  

P3.2 
0INT  

P3.1 
TXD0 

P3.0 
RXD0 

 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 
 

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

P3.7–P3.0 
Bits 7-0 

General-Purpose I/O Port 3. This register functions as a general-purpose I/O port. In 
addition, all the pins have an alternative function listed below. Each of the functions is 
controlled by several other SFRs. The associated Port 3 latch bit must contain a logic 
one before the pin can be used in its alternate function capacity. 

RD  
Bit 7 

External Data Memory Read Strobe. This pin provides an active-low read strobe to 
an external memory device. 

WR  
Bit 6 

External Data Memory Write Strobe. This pin provides an active-low write strobe to 
an external memory device. 

T1 
Bit 5 

Timer/Counter External Input. A 1-to-0 transition on this pin will increment Timer 1. 

T0 
Bit 4 

Counter External Input. A 1-to-0 transition on this pin will increment Timer 0. 

INT1  
Bit 3 

External Interrupt 1. A falling edge/low level on this pin will cause an external 
interrupt 1 if enabled. 

INT0  
Bit 2 

External Interrupt 0. A falling edge/low level on this pin will cause an external 
interrupt 0 if enabled. 

TXD0 
Bit 1 

Serial Port 0 Transmit. This pin transmits the serial port 0 data in serial port modes 1, 
2, 3 and emits the synchronizing clock in serial port mode 0. 

RXD0 
Bit 0 

Serial Port 0 Receive. This pin receives the serial port 0 data in serial port modes 1, 2, 
3 and is a bidirectional data transfer pin in serial port mode 0. 
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Interrupt Priority (IP) 
 7 6 5 4 3 2 1 0 

SFR B8h — PS1 PT2 PS0 PT1 PX1 PT0 PX0 
 — RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

Bit 7 Reserved. Read data is indeterminate. 
PS1 
Bit 6 

Serial Port 1 Interrupt. This bit controls the priority of the serial port 1 interrupt.  
0 = Serial port 1 priority is determined by the natural priority order.  
1 = Serial port 1 is a high priority interrupt. 

PT2 
Bit 5 

Timer 2 Interrupt. This bit controls the priority of Timer 2 interrupt. 
0 = Timer 2 is determined by the natural priority order.  
1 = Timer 2 is a high priority interrupt. 

PS0 
Bit 4 

Serial Port 0 Interrupt. This bit controls the priority of the serial port 0 interrupt.  
0 = Serial port 0 priority is determined by the natural priority order.  
1 = Serial port 0 is a high priority interrupt. 

PT1 
Bit 3 

Timer 1 Interrupt. This bit controls the priority of Timer 1 interrupt. 
0 = Timer 1 is determined by the natural priority order.  
1 = Timer 1 is a high priority interrupt. 

PX1 
Bit 2 

External Interrupt 1. This bit controls the priority of external interrupt 1. 
0 = External interrupt 1 is determined by the natural priority order.  
1 = External interrupt 1 is a high priority interrupt. 

PT0 
Bit 1 

Timer 0 Interrupt. This bit controls the priority of Timer 0 interrupt.  
0 = Timer 0 is determined by the natural priority order.  
1 = Timer 0 is a high priority interrupt. 

PX0 
Bit 0 

External Interrupt 0. This bit controls the priority of external interrupt 0. 
0 = External interrupt 0 is determined by the natural priority order.  
1 = External interrupt 0 is a high priority interrupt. 

 
Slave Address Mask Enable Register 0 (SADEN0) 

 7 6 5 4 3 2 1 0 
SFR B9h SADEN0.7 SADEN0.6 SADEN0.5 SADEN0.4 SADEN0.3 SADEN0.2 SADEN0.1 SADEN0.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

SADEN0.7–
SADEN0.0 
Bits 7–0 

Slave Address Mask Enable Register 0. This register functions as a mask when 
comparing serial port 0 addresses for automatic address recognition. When a bit in this 
register is set, the corresponding bit location in the SADDR0 register will be exactly 
compared with the incoming serial port 0 data to determine if a receiver interrupt should 
be generated. When a bit in this register is cleared, the corresponding bit in the 
SADDR0 register becomes a don’t care and is not compared against the incoming data. 
All incoming data will generate a receiver interrupt when this register is cleared. 
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Slave Address Mask Enable Register 1 (SADEN1) 
 7 6 5 4 3 2 1 0 

SFR BAh SADEN1.7 SADEN1.6 SADEN1.5 SADEN1.4 SADEN1.3 SADEN1.2 SADEN1.1 SADEN1.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

SADEN1.7–
SADEN1.0 
Bits 7–0 

Slave Address Mask Enable Register 1. This register functions as a mask when 
comparing serial port 1 addresses for automatic address recognition. When a bit in this 
register is set, the corresponding bit location in the SADDR1 register will be exactly 
compared with the incoming serial port 1 data to determine if a receiver interrupt should 
be generated. When a bit in this register is cleared, the corresponding bit in the 
SADDR1 register becomes a don’t care and is not compared against the incoming data. 
All incoming data will generate a receiver interrupt when this register is cleared. 

 
Serial Port Control (SCON1) 

 7 6 5 4 3 2 1 0 
SFR C0h SM0/FE_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TI_1 RI_1 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

SM0, SM1, SM2 
Bits 7, 6, 5 

Serial Port 1 Mode. These bits control the mode of serial port 1 as shown below. In 
addition, the SM0 and SM2 bits have secondary functions as shown below. 

 
SM0 SM1 SM2 MODE FUNCTION LENGTH PERIOD 

0 0 0 0 Synchronous 8 bits 12tCLK 

0 0 1 0 Synchronous 8 bits 4tCLK 

0 1 X 1 Asynchronous 10 bits Timer 1 baud rate equation 

1 0 0 2 Asynchronous 11 bits 64tCLK (SMOD=0) 
32tCLK  (SMOD=1) 

1 0 1 2 Asynchronous w/ Multiprocessor 
communication 11 bits 64tCLK (SMOD=0) 

32tCLK (SMOD=1) 

1 1 0 3 Asynchronous 11 bits Timer 1 baud rate equation 

1 1 1 3 Asynchronous w/ Multiprocessor 
communication 11 bits Timer 1 baud rate equation 

 
SM0/FE_1 
Bit 7 

Framing Error Flag. When SMOD0 (PCON.6)=0, this bit (SM0) is used to select the 
mode for serial port 1. When SMOD0 (PCON.6)=1, this bit (FE) will be set upon 
detection of an invalid stop bit. When used as FE, this bit must be cleared in software. 
Once the SMOD0 bit is set, modifications to this bit will not affect the serial port mode 
settings. Although accessed from the same register, internally the data for bits SM0 and 
FE are stored in different locations. 

SM1_1 
Bit 6 

No alternate function. 

SM2_1 
Bit 5 

Multiple CPU Communications. The function of this bit is dependent on the serial 
port 1 mode.  
Mode 0: Selects 12 tCLK or 4tCLK period for synchronous port 1 data transfers. 
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Mode 1: When this bit is set, reception is ignored (RI_1) is not set) if invalid stop bit 
received.  
Mode 2/3: when this bit is set, multiprocessor communications are enabled in mode 2 
and 3. This will prevent RI_1 from being set, and an interrupt being asserted, if the 9th 
bit received is not 1. 

REN_1 
Bit 4 

Receive Enable. This bit enables/disables the serial port 1 receiver shift register. 
0 = Serial port 1 reception disabled.  
1 = Serial port 1 receiver enabled (modes 1, 2, 3). Initiate synchronous reception (mode 
0). 

TB8_1 
Bit 3 

9th Transmission Bit State. This bit defines the state of the 9th transmission bit in 
serial port 1 modes 2 and 3. 

RB8_1 
Bit 2 

9th Received Bit State. This bit identifies the state for the 9th reception bit received 
data in serial pot 1 modes 2 and 3. In serial port mode 1, when SM2_1=0, RB8_1 is the 
state of the stop bit. RB8_1 is not used in mode 0. 

TI_1 
Bit 1 

Transmitter Interrupt Flag. This bit indicates that data in the serial port 1 buffer has 
been completely shifted out. In serial port mode 0, TI_1 is set at the end of the 8th data 
bit. In all other modes, this bit is set at the end of the last data bit. This bit must be 
manually cleared by software. 

RI_1 
Bit 0 

Transmitter Interrupt Flag. This bit indicates that a byte of data has been received in 
the serial port 1 buffer. In serial port mode 1, RI_1 is set at the end of the 8th bit. In 
serial port mode 1, RI_1 is set after the last sample of the incoming stop bit subject to 
the state of SM2_1. In modes 2 and 3, RI_1 is set after the last sample of RB8_1. This 
bit must be manually cleared by software. 

 
Serial Data Buffer 1 (SBUF1) 

 7 6 5 4 3 2 1 0 
SFR C1h SBUF1.7 SBUF1.6 SBUF1.5 SBUF1.4 SBUF1.3 SBUF1.2 SBUF1.1 SBUF1.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

SBUF1.7–SBUF1.0 
Bits 7–0 

Serial Data Buffer 1. Data for serial port 1 is read from or written to this location. The 
serial transmit and receive buffers are separate registers, but both are addressed at this 
location. 
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ROM Size Select (ROMSIZE) 
 7 6 5 4 3 2 1 0 

SFR C2h — — — — — RS2 RS1 RS0 
      RT-1 RT-0 RT-1 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

Bits 7–3 These bits are reserved. Read data is indeterminate. 
RS2, RS1, RS0 
Bits 2, 1, 0 

ROM Size Select 2-0. This register is used to select the maximum on-chip decoded 
address for ROM. Care must be taken that the memory location of the current program 
counter will be valid both before and after modification. These bits can only be 
modified using a timed access procedure. The EA pin will override the function of these 
bits when asserted, forcing the device to access external program memory only. 
Configuring this register to a setting that exceeds the maximum amount of internal 
memory may corrupt device operation. These bits will default on reset to the maximum 
amount of internal program memory (i.e., 16kB for DS87C520). 

 

RS2 RS1 RS0 MAXIMUM ON-CHIP ROM ADDRESS 

0 0 0 0kB/Disable on-chip ROM 

0 0 1 1kB/03FFh 

0 1 0 2kB/07FFh 

0 1 1 4kB/0FFFh 

1 0 0 8kB/1FFFh 

1 0 1 16kB/3FFFh 

1 1 0 132kB/7FFFh 

1 1 1 64kB/FFFFh 
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Power Management Register (PMR) 
 7 6 5 4 3 2 1 0 

SFR C4h CD1 CD0 SWB — XTOFF ALEOFF DME1 DME0 
 RW-0 RW-1 RW-0  RW*-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, *=See description 

 
CD1, CD0 
Bits 7, 6 

Clock Divide Control 1-0. These bits select the number of crystal oscillator clocks 
required to generate one machine cycle. Switching between modes requires a transition 
through the divide-by-4 mode (CD1, CD0=01). For example, to go from 64 to 1024 
clocks per cycle the device must first go from 64 to 4 clocks per cycle, and then from 4 
to 1024 clocks per cycle. Attempts to perform an invalid transition will be ignored. The 
setting of these bits will affect the timers and serial ports as shown below. 

  
  OSC 

CYCLES 
PER MACH. 

CYCLE 

OSC CYCLES PER 
TIMER 2 CLK, 

BAUD RATE GEN. 

OSC CYCLES PER 
SERIAL PORT 
CLK, MODE 0 

OSC CYCLES PER 
TIMER 2 CLK, 

BAUD RATE GEN. 

OSC CYCLES PER 
SERIAL PORT CLK, 

MODE 2 

CD1 CD0  TxM=0 TxM=1 T2M=0 T2M=1 SM2=0 SM2=1 SDMO=0 SMOD=1 

0 0 RESERVED 

0 1 4 12 4 2 2 12 4 64 32 

1 0 64 192 64 32 32 194 64 1024 512 

1 1 1024 3072 1024 512 512 3072 1024 16384 8192 

 
SWB 
Bit 5 

Switchback Enable. This bit allows an enabled external interrupt or serial port activity 
to force the Clock Divide Control bits to the divide-by-4 state (01). Upon internal 
acknowledgement of an external interrupt, the device will switch modes at the start of 
the jump to the interrupt service routine. Note that this means that an external interrupt 
must actually be recognized (i.e., be enabled and not masked by higher priority 
interrupts) for the switchback to occur. For serial port reception, the switch occurs at the 
start of the instructions following the falling edge of the start bit. 

Bit 4 Reserved. When modifying the PMR register, software must write a 0 to this bit. Read 
data will be indeterminate. 

XTOFF 
Bit 3 

Crystal Oscillator Disable. This bit disables the CPU crystal oscillator. It can only be 
set to 1 while running the ring oscillator (XT/ RG =0). Clearing this bit restarts the 
crystal amplifier, reset the crystal warm-up counter, and after 65,536 external crystal 
cycles the XTUP bit will be set. 
0 = Crystal oscillator is enabled. 
1 = Crystal oscillator is disabled. 

ALEOFF 
Bit 2 

ALE Disable. This bit disables the expression of the ALE signal on the device pin 
during all on-board program and data memory accesses. External memory accesses will 
automatically enable ALE independent of ALEOFF. 
0 = ALE expression is enabled. 
1 = ALE expression is disabled. 

DME1, DME0 
Bits 1, 0 

Data Memory Enable 1-0. These bits determine the functional relationship of the first 
1024 bytes of data memory. Three memory configurations are supported to allow either 
external data memory access through the expanded multiplexed address/data bus of 
Ports 0 and Port 2, internal SRAM data memory access, or read-only access to EPROM 
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programming information. Note these bits are cleared after a reset, so access to the 
internal SRAM is prohibited until these bits are modified. 

 
DME1 DME0 DATA MEMORY 

ADDRESS RANGE MEMORY ACCESS 

0 0 0000h – FFFFh External Data Memory (default) 

0 1 0000h – 03FFh 
0400h - FFFFh 

Internal SRAM data Memory 
External Data Memory 

1 0 Reserved Reserved 

1 1 

0000h – 03FFh 
0400h – FFFBh 

FFFCh 
FFFDh - FFFFh 

Internal SRAM data Memory 
Reserved 
System Control Byte (EPROM Read Only) 
Reserved 

 
 The System Control Byte is a special EPROM location that contains nonvolatile system 

information. This byte is set during EPROM programming and is not alterable by 
software. This register can only be read when both Data Memory Enable bits are set. 
The user must be sure that this location is programmed by a special programming utility 
supplied with the programming device. 

 
System Control Byte Description (EPROM; FFFCh)  
Bits 7–3 Reserved. These bits will read 1. These bits should be set to 1 during EPROM 

programming. 
LB3, LB2, LB1 
Bits 2, 1, 0 

EPROM Program Lock Bit 3 to 1. These bits show the status of the firmware security 
of the on-board EPROM. Bit combinations other than shown are illegal. 

 

LB3 LB2 LB1 EPROM PROTECTION MODE 

0 0 0 Unconditional verification, full external operation. Additional EPROM programming allowed withou
full device erasure. 

0 0 1 
Verification using encryption, execution of external MOVC instruction on internal   program memory
is disabled. All other program execution and data memory access allowed. Device must be fully erase
before EPROM can be programmed again. 

0 1 1 
Verification disabled, execution of external MOVC instruction on internal program memory is 
disabled, and access to internal MOVX data from external program is prohibited. All other 
program execution and data memory access allowed. Device must be fully erased before EPROM 
can be programmed again. 

1 1 1 Verification disabled, external program execution prohibited. Device must be fully   erased before 
EPROM can be programmed again. 
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Status Register (STATUS) 
 7 6 5 4 3 2 1 0 

SFR C5 PIP HIP LIP XTUP SPTA1 SPRA1 SPTA0 SPRA0 
 R-0 R-0 R-0 R-0* R-0 R-0 R-0 R-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, *=See description 
 

PIP 
Bit 7 

Power-Fail Priority Interrupt Status. When set, this bit indicates that software is 
currently servicing a power-fail interrupt. It is cleared when the program executes the 
corresponding RETI instruction. This bit is indeterminate on devices that do not 
incorporate the power-fail interrupt. 

HIP 
Bit 6 

High Priority Interrupt Status. When set, this bit indicates that software is currently 
servicing a high priority interrupt. It is cleared when the program executes the 
corresponding RETI instruction. 

LIP 
Bit 5 

Low Priority Interrupt Status. When set, this bit indicates that software is currently 
servicing a low priority interrupt. It is cleared when the program executes the 
corresponding RETI instruction. 

XTUP 
Bit 4 

Crystal Oscillator Warm-up Status. This bit indicates whether the CPU crystal 
oscillator has completed the 65,536 cycle warm-up and is ready to operate from the 
external crystal or oscillator. This bit is cleared each time the crystal oscillator is 
restarted following an exit from Stop mode or the XTOFF bit (PMR.3) is set. While 
cleared, this bit prevents software from setting the XT/ RG  bit (EXIF.3) to enable 
operation from the crystal. Note that XTUP differs from the RGMD bit (EXIF.2) in that 
XTUP shows the status of the crystal while RGMD shows the current clock source. This 
bit is set to 1 following a power–on reset, but is unaffected by other forms of reset. 

SPTA1 
Bit 3 

Serial Port 1 Transmit Activity Monitor. When set, this bit indicates that data is 
currently being transmitted by serial port 1. It is cleared when the internal hardware sets 
the TI_1 bit. Do not alter the Clock Divide Control bits (PMR.7-6) while this bit is set 
or serial port data may be lost.  
On the DS8xC520 and DS8xC530, this bit does not accurately indicate serial port 1 
transmit activity if a character is written to SBUF1 while TI_1 is high. If software 
intends to poll this bit, first clear the TI_1 bit before writing each character to SBUF1. 

SPRA1 
Bit 2 

Serial Port 1 Receive Activity Monitor. When set, this bit indicates that data is 
currently being received by serial port 1. It is cleared when the internal hardware sets 
the RI_1 bit. Do not alter the Clock Divide Control bits (PMR.7–6) while this bit is set 
or serial port data may be lost. 

SPTA0 
Bit 1 

Serial Port 0 Transmit Activity Monitor. When set, this bit indicates that data is 
currently being transmitted by serial port 0. It is cleared when the internal hardware sets 
the TI_1 bit. Do not alter the Clock Divide Control bits (PMR.7-6) while this bit is set 
or serial port data may be lost.  
On the DS8xC520 and DS8xC530, this bit does not accurately indicate serial port 0 
transmit activity if a character is written to SBUF0 while TI_0 is high. If software 
intends to poll this bit, first clear the TI_0 bit before writing each character to SBUF0. 

SPRA0 
Bit 0 

Serial Port 0 Receive Activity Monitor. When set, this bit indicates that data is 
currently being received by serial port 0. It is cleared when the internal hardware sets 
the RI_1 bit. Do not alter the Clock Divide Control bits (PMR.7-6) while this bit is set 
or serial port data may be lost. 
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Timed Access Register (TA)    
 7 6 5 4 3 2 1 0 

SFR C7h TA.7 TA.6 TA.5 TA.4 TA.3 TA.2 TA.1 TA.0 
 W-1 W-1 W-1 W-1 W-1 W-1 W-1 W-1 

 
W=Unrestricted Write, -n=Value after Reset 
 

TA.7–TA.0 
Bits 7–0 

Timed Access. Correctly accessing this register permits modification of timed-access 
protected bits. Write AAh to this register first, followed within 3 cycles by writing 55h. 
Timed-access protected bits can then be modified for a period of 3 cycles measured 
from the writing of the 55h. 

 

Timer 2 Control (T2CON) 
 7 6 5 4 3 2 1 0 

SFR C8h TF2 EXF2 RCLK TCLK EXEN2 TR2 C/ T2  CP/RL2 

 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 
 

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

TF2 
Bit 7 

Timer 2 Overflow Flag. This flag will be set when Timer 2 overflows from FFFFh to 
0000h, or the count equal to the capture register in down count mode. It must be cleared 
by software. TF2 will only be set if RCLK and TCLK are both cleared to 0. 

EXF2 
Bit 6 

Timer 2 External Flag. A negative transition on the T2EX pin (P1.1) or timer 2 
underflow/overflow will cause this flag to set based on the CP/RL2 (T2CON.0), 
EXEN2 (T2CON.3), and DCEN (T2MOD.0) bits. If set by a negative transition, this 
flag must be cleared to 0 by software. Setting this bit in software or detection of a 
negative transition on the T2EX pin will force a timer interrupt if enabled. 

 

CP/ RL2  EXEN2 DCEN RESULT 
1 0 X Negative transitions on P1.1 will not affect this bit. 
1 1 X Negative transitions on P1.1 will set this bit. 
0 0 0 Negative transitions on P1.1 will not affect this bit. 
0 1 0 Negative transitions on P1.1 will set this bit. 

0 X 1 
Bit toggles whenever timer 2 underflows/overflows and can be used 
as a 17th bit of resolution. In this mode, EXF2 will not cause an 
interrupt. 

 
RCLK 
Bit 5 

Receive Clock Flag. This bit determines the serial port 0 timebase when receiving data 
in serial modes 1 or 3. 
0 = Timer 1 overflow is used to determine receiver baud rate for serial port 0. 
1 = Timer 2 overflow is used to determine receiver baud rate for serial port 0. 
Setting this bit will force timer 2 into baud rate generation mode. The timer 
will operate from a divide-by-2 of the external clock. 

TCLK 
Bit 4 

Transmit Clock Flag. This bit determines the serial port 0 timebase when transmitting 
data in serial modes 1 or 3. 
0 = Timer 1 overflow is used to determine transmitter baud rate for serial port 0. 
1 = Timer 2 overflow is used to determine transmitter baud rate for serial port 0. Setting 
this bit will force timer 2 into baud rate generation mode. The timer will operate from a 
divide-by-2 of the external clock. 
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EXEN2 
Bit 3 

Timer 2 External Enable. This bit enables the capture/ reload function on the T2EX 
pin if Timer 2 is not generating baud rates for the serial port.  
0 = Timer 2 will ignore all external events at T2EX.   
1 = Timer 2 will capture or reload a value if a negative transition is detected on the 
T2EX pin. 

TR2 
Bit 2 

Timer 2 Run Control. This bit enables/disables the operation of timer 2. Halting this 
timer will preserve the current count in TH2, TL2.  
0 = Timer 2 is halted.  
1 = Timer 2 is enabled. 

C/ T2  
Bit 1 

Counter/Timer Select. This bit determines whether timer 2 will function as a timer or 
counter. Independent of this bit, timer 2 runs at 2 clocks per tick when used in either 
baud rate generator or clock output mode.  
0 = Timer 2 function as a timer. The speed of timer 2 is determined by the T2M bit 
(CKCON.5).  
1 = Timer 2 will count negative transitions on the T2 pin (P1.0). 

CP/ RL2  
Bit 0 

Capture/Reload Select. This bit determines whether the capture or reload function will 
be used for timer 2. If either RCLK or TCLK is set, this bit will not function and the 
timer will function in an auto-reload mode following each overflow.  
 0 = Auto-reloads will occur when timer 2 overflows or a falling edge is detected on 
T2EX if EXEN2=1.  
1 = Timer 2 captures will occur when a falling edge is detected on T2EX if EXEN2 = 1. 

 
Timer 2 Mode (T2MOD) 

 7 6 5 4 3 2 1 0 
SFR C9h — — — — — — T2OE DCEN 
       RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

Bits 7–2 Reserved. Read data will be indeterminate. 

T2OE 
Bit 1 

Timer 2 Output Enable. This bit enables/disables the clock output function of the T2 
pin (P1.0). 
0 = The T2 pin functions as either a standard port pin or as a counter input for timer 2.
1 = Timer 2 will drive the T2 pin with a clock output if C/ T2 =0. Also, timer 2 rollovers 
will not cause interrupts. 

DCEN 
Bit 0 

Down Count Enable. This bit, in conjunction with the T2EX pin, controls the direction 
that timer 2 counts in 16-bit auto-reload mode. 

 
DCEN T2EX DIRECTION 

1 1 Up 
1 0 Down 
0 X Up 
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Timer 2 Capture LSB (RCAP2L) 
 7 6 5 4 3 2 1 0 

SFR CAh RCAP2L.7 RCAP2L.6 RCAP2L.5 RCAP2L.4 RCAP2L.3 RCAP2L.2 RCAP2L.1 RCAP2L.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

RCAP2L.7–
RCAP2L.0 
Bits 7–0 

Timer 2 Capture LSB. This register is used to capture the TL2 value when timer 2 is 
configured in capture mode. RCAP2L is also used as the LSB of a 16-bit reload value 
when timer 2 is configured in auto-reload mode. 

 
Timer 2 Capture MSB (RCAP2H) 

 7 6 5 4 3 2 1 0 
SFR CBh  RCAP2H.7 RCAP2H.6 RCAP2H.5 RCAP2H.4 RCAP2H.3 RCAP2H.2 RCAP2H.1 RCAP2H.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

RCAP2H.7–
RCAP2H.0 
Bits 7–0 

Timer 2 Capture MSB. This register is used to capture the TH2 value when timer 2 is 
configured in capture mode. RCAP2H is also used as the MSB of a 16-bit reload value 
when timer 2 is configured in auto-reload mode. 

 
Timer 2 LSB (TL2) 

 7 6 5 4 3 2 1 0 

SFR CCh TL2.7 TL2.6 TL2.5 TL2.4 TL2.3 TL2.2 TL2.1 TL2.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

TL2.7–TL2.0 
Bits 7–0 

Timer 2 LSB. This register contains the least significant byte of Timer 2. 

 
Timer 2 MSB (TH2) 

 7 6 5 4 3 2 1 0 
SFR CDh TH2.7 TH2.6 TH2.5 TH2.4 TH2.3 TH2.2 TH2.1 TH2.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

TL2.7–TL2.0 
Bits 7–0 

Timer 2 MSB. This register contains the least significant byte of Timer 2. 
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Program Status Word (PSW)   
 7 6 5 4 3 2 1 0 

SFR D0h CY AC F0 RS1 RS0 OV F1 PARITY 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

CY 
Bit 7 

Carry Flag. This bit is set when if the last arithmetic operation resulted in a carry 
(during addition) or a borrow (during subtraction). Otherwise it is cleared to 0 by all 
arithmetic operations. 

AC 
Bit 6 

Auxiliary Carry Flag. This bit is set to 1 if the last arithmetic operation resulted in a 
carry into (during addition), or a borrow (during subtraction) from the high order 
nibble. Otherwise it is cleared to 0 by all arithmetic operations. 

F0 
Bit 5 

User Flag 0. This is a bit-addressable, general-purpose flag for software control. 
 

RS1, RS0 
Bits 4, 3 

Register Bank Select 1–0. These bits select which register bank is addressed during 
register accesses. 

 

RS1 RS0 REGISTER BANK ADDRESS 
0 0 0 00h – 07h 

0 1 1 08h – 0Fh 

1 0 2 10h – 17h 

1 1 3 18h – 1Fh 

 

OV 
Bit 2 

Overflow Flag. This bit is set to 1 if the last arithmetic operation resulted in a carry 
(addition), borrow (subtraction), or overflow (multiply or divide). Otherwise it is 
cleared to 0 by all arithmetic operations. 

F1 
Bit 1 

User Flag 1. This is a bit-addressable, general-purpose flag for software control. 

PARITY 
Bit 0 

Parity Flag. This bit is set to 1 if the modulo-2 sum of the eight bits of the accumulator 
is 1 (odd parity); and cleared to 0 on even parity. 
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Watchdog Control (WDCON)    
 7 6 5 4 3 2 1 0 

SFR D8h SMOD POR EPF1 PFI WDIF WTRF EWT RWT 
 RW-0 RW-* RW-0 RW-* RW-0 RW-* RW-* RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, T=Timed Access Write Only, -n=Value after Reset, *=See 

Description 
 

SMOD 
Bit 7 

Serial Modification. This bit controls the doubling of the serial port 1 baud rate in 
modes 1, 2, and 3. 
0 = Serial port 1 baud rate operates at normal speed  
1 = Serial port 1 baud rate is doubled. 

POR 
Bit 6 

Power-on Reset Flag. This bit indicates whether the last reset was a power-on reset. 
This bit is typically interrogated following a reset to determine if the reset was caused 
by a power-on reset. It must be cleared by a Timed Access write before the next reset of 
any kind or the software may erroneously determine that another power-on reset has 
occurred. This bit is set following a power-on reset and unaffected by all other resets. 
Note: This bit is not Timed Access protected on the DS80C310.  
0 = Last reset was from a source other than a power-on reset  
1 = Last reset was a power-on reset. 

EPFI 
Bit 5 

Enable Power-Fail Interrupt. This bit enables/disables the ability of the internal 
bandgap reference to generate a power-fail interrupt when VCC falls below 
approximately 4.5V. While in Stop mode, both this bit and the Bandgap Select bit, BGS 
(EXIF.0), must be set to enable the power-fail interrupt. 
0 = Power-fail interrupt disabled.  
1 = Power-fail interrupt enabled during normal operation. Power-fail interrupt enabled 
in Stop mode if BGS is set. 

PFI 
Bit 4 

Power-Fail Interrupt Flag. When set, this bit indicates that a power-fail interrupt has 
occurred. This bit must be cleared in software before exiting the interrupt service 
routine, or another interrupt will be generated. Setting this bit in software will generate a 
power-fail interrupt, if enabled. 

WDIF 
Bit 3 

Watchdog Interrupt Flag. This bit, in conjunction with the Watchdog Timer Interrupt 
Enable bit, EWDI (EIE.4), and Enable Watchdog Timer Reset bit (WDCON.1), 
indicates if a watchdog timer event has occurred and what action will be taken. This bit 
must be cleared in software before exiting the interrupt service routine, or another 
interrupt will be generated. Setting this bit in software will generate a watchdog 
interrupt if enabled. This bit can only be modified using a Timed Access Procedure. 

 
EWT EWDI WDIF RESULT 

X X 0 No watchdog event has occurred. 
0 0 1 Watchdog timeout has expired.  No interrupt has been generated. 
0 1 1 Watchdog interrupt has occurred. 
1 0 1 Watchdog timeout has expired.  No interrupt has been generated.  

Watchdog timer reset will occur in 512 cycles if RWT is not strobed. 
1 1 1 Watchdog interrupt has occurred.  Watchdog timer reset will occur in 

512 cycles if RWT is not set using a Timed Access procedure. 

 
WTRF 
Bit 2 

Watchdog Timer Reset Flag. When set, this bit indicates that a watchdog timer reset 
has occurred. It is typically interrogated to determine if watchdog timer reset caused a 
reset. It is cleared by a power- on reset, but otherwise must be cleared by software 
before the next reset of any kind or software may erroneously determine that a watchdog 
timer reset has occurred. Setting this bit in software will not generate a watchdog timer 
reset. If the EWT bit is cleared, the watchdog timer will have no effect on this bit. 
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EWT 
Bit 1 

Enable Watchdog Timer Reset. This bit enables/disables the ability of the watchdog 
timer to reset the device. This bit has no effect on the ability of the watchdog timer to 
generate a watchdog interrupt. The watchdog timer mode select bits (CKCON.7-6) 
control the timeout period of the watchdog timer. Clearing this bit will disable the 
ability of the watchdog timer to generate a reset, but have no affect on the timer itself, or 
its ability to generate a watchdog timer interrupt. This bit can only be modified using a 
Timed Access Procedure. The default power-on reset state of this bit is 0 on the 
ROMless devices. If the device contains internal program memory, the default power-on 
reset state of EWT is determined by the Watchdog Default POR State bit (WDPOR) 
located in the System Control Byte or a mask option.  This bit is unaffected by all other 
resets.  
0 = A timeout of the watchdog timer will not cause the device to reset.  
1 = A timeout of the watchdog timer will cause the device to reset. 

RWT 
Bit 0 

Reset Watchdog Timer. Setting this bit will reset the watchdog timer count.  This bit 
must be set using a Timed Access procedure before the watchdog timer expires, or a 
watchdog timer reset and/or interrupt will be generated if enabled. The timeout period is 
defined by the Watchdog Timer Mode Select bits (CKCON.7-6). This bit will always be 
0 when read. 

 
Accumulator (A or ACC) 

 7 6 5 4 3 2 1 0 
SFR E0h ACC.7 ACC.6 ACC.5 ACC.4 ACC.3 ACC.2 ACC.1 ACC.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

ACC.7–ACC.0 
Bits 7–0 

Accumulator. This register serves as the accumulator for arithmetic operations. It is 
functionally identical to the accumulator found in the 80C32. 

 
Extended Interrupt Enable (EIE)    

 7 6 5 4 3 2 1 0 
SFR E8h — — ERTCI EWDI EX5 EX4 EX3 EX2 
   RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

Bits 7, 6 Reserved. Read data will be indeterminate. 
ERTCI 
Bit 5 

Real-Time Clock Interrupt Enable. This bit enables/disables the real-time clock 
interrupt on the DS87C530. This bit will read 0 on all other devices.  
0 = Disable the real-time clock interrupt.  
1 = Enable interrupt requests generated by the real-time clock. 

EWDI 
Bit 4 

Watchdog Interrupt Enable. This bit enables/disables the watchdog interrupt.  
0 = Disable the watchdog interrupt.  
1 = Enable interrupt requests generated by the watchdog timer. 

EX5 
Bit 3 

External Interrupt 5 Enable. This bit enables/disables external interrupt 5.   
0 = Disable external interrupt 5.   
1 = Enable interrupt requests generated by the INT5  pin. 

EX4 
Bit 2 

External Interrupt 4 Enable. This bit enables/disables external interrupt 4.   
0 = Disable external interrupt 4.  
1 = Enable interrupt requests generated by the INT4 pin. 
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EX3 
Bit 1 

External Interrupt 3 Enable. This bit enables/disables external interrupt 3.   
0 = Disable external interrupt 3. 
1 = Enable interrupt requests generated by the INT3  pin. 

EX2 
Bit 0 

External Interrupt 2 Enable. This bit enables/disables external interrupt 2.   
0 = Disable external interrupt 2.   
1 = Enable interrupt requests generated by the INT2 pin. 

 
B Register (B)    

 7 6 5 4 3 2 1 0 
SFR F0h B.7 B.6 B.5 B.4 B.3 B.2 B.1 B.0 
 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

B.7–B.0 
Bits 7–0 

B Register. This register serves as a second accumulator for certain arithmetic 
operations. It is functionally identical to the B register found in the 80C32. 

 
Real-Time Alarm Subsecond Register (RTASS)   

 7 6 5 4 3 2 1 0 
SFR F2h RTASS.7 RTASS.6 RTASS.5 RTASS.4 RTASS.3 RTASS.2 RTASS.1 RTASS.0 
 RW-* RW-* RW-* RW-* RW-* RW-* RW-* RW-* 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, * = See description 
 

RTASS.7–RTASS.0 
Bits 7–0 

Real-Time Alarm Subsecond.  These bits represent the subsecond alarm which will be 
compared against the RTC Subsecond register (RTCSS;FAh).  The ability of a match 
between the two registers to cause an alarm is controlled by the RTC Subsecond 
Register Compare Enable bit (RTCC.7).  The contents of this register will be 
indeterminate following a no-battery reset, and unchanged by all other forms of reset. 

 
Real-Time Alarm Second Register (RTAS)  

 7 6 5 4 3 2 1 0 
SFR F3h 0 0 RTAS.5 RTAS.4 RTAS.3 RTAS.2 RTAS.1 RTAS.0 
 RW-0 RW-0 RW-* RW-* RW-* RW-* RW-* RW-* 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, * = See description 
 

Bits 7, 6 Reserved. These bits will be 0 when read. 
RTAS.5–RTAS.0 
Bits 5–0 

Real-Time Alarm Second. These bits represent the second alarm that will be compared 
against the RTC Second register (RTCS;FBh).  The ability of a match between the two 
registers to cause an alarm is controlled by the RTC Second Register Compare Enable 
bit (RTCC.6).  This register should only be loaded with values from 0 to 3Bh (0 to 59 
seconds).  The contents of this register will be indeterminate following a no-battery reset 
(except bits 7, 6), and unchanged by all other forms of reset. 
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Real-Time Alarm Minute Register (RTAM)      
 7 6 5 4 3 2 1 0 

SFR F4h 0 0 RTAM.5 RTAM.4 RTAM.3 RTAM.2 RTAM.1 RTAM.0 
 R-0 R-0 RW-* RW-* RW-* RW-* RW-* RW-* 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, * = See Description 

 
Bits 7, 6 Reserved. These bits will be 0 when read. 
RTAM.5–RTAM.0 
Bits 5–0 

Real-Time Alarm Minute. These bits represent the minute alarm that will be compared 
against the RTC Minute register (RTCM;FCh).  The ability of a match between the two 
registers to cause an alarm is controlled by the RTC Minute Register Compare Enable 
bit (RTCC.5).  This register should only be loaded with values from 0 to 3Bh (0 to 59 
minutes).  The contents of this register will be indeterminate following a no-battery 
reset (except bits 7, 6), and unchanged by all other forms of reset. 

 
Real-Time Alarm Hour Register (RTAH)    

 7 6 5 4 3 2 1 0 
SFR F5h 0 0 0 RTAH.4 RTAH.3 RTAH.2 RTAH.1 RTAH.0 
 R-0 R-0 R-0 RW-* RW-* RW-* RW-* RW-* 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, * = See Description 
 

Bits 7, 6, 5 Reserved. These bits will be 0 when read. 
RTAH.4–RTAH.0 
Bits 4–0 

Real-Time Alarm Hour. These bits represent the hour alarm which will be compared 
against the RTC Hour register (RTCH;FDh).  The ability of a match between the two 
registers to cause an alarm is controlled by the RTC Hour Register Compare Enable bit 
(RTCC.4).  This register should only be loaded with values from 0 to 17h (0 to 23 
hours).  The day of week bits DOW2-0, located in RTCH.7-5 do not have a 
corresponding alarm feature.  The contents of this register will be indeterminate 
following a no-battery reset (except bits 7, 6, 5), and unchanged by all other forms of 
reset. 

 
Extended Interrupt Priority (EIP)    

 7 6 5 4 3 2 1 0 
SFR F8h — — PRTCI PWDI PX5 PX4 PX3 PX2 
   RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 

 
R=Unrestricted Read, W=Unrestricted Write, -n = Value after Reset 
 

Bits 7, 6 Reserved. These bits will be 0 when read. 
PRTCI 
Bit 5 

Real-Time Clock Interrupt Priority. This bit controls the priority of the real–time 
clock interrupt on the DS87C530.  This bit will read 0 on all other devices.   
0 = The real-time clock interrupt is a low priority interrupt.   
1 = The real-time clock interrupt is a high priority interrupt. 

PWDI 
Bit 4 

Interrupt Priority. This bit controls the priority of the watchdog interrupt.   
0 = The watchdog interrupt is a low priority interrupt.  
1 = The watchdog interrupt is a high priority interrupt. 

PX5 
Bit 3 

External Interrupt 5 Priority. This bit controls the priority of external interrupt 5.  
0 = External interrupt 5 is a low priority interrupt.   
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1 = External interrupt 5 is a high priority interrupt. 
PX4 
Bit 2 

External Interrupt 4 Priority. This bit controls the priority of external interrupt 4.   
0 = External interrupt 4 is a low priority interrupt.   
1 = External interrupt 4 is a high priority interrupt. 

PX3 
Bit 1 

External Interrupt 3 Priority. This bit controls the priority of external interrupt 3.   
0 = External interrupt 3 is a low priority interrupt.   
1 = External interrupt 3 is a high priority interrupt. 

PX2 
Bit 0 

External Interrupt 2 Priority. This bit controls the priority of external interrupt 2.   
0 = External interrupt 2 is a low priority interrupt.   
1 = External interrupt 2 is a high priority interrupt. 

 

Real-Time Clock Control Register (RTCC)   
 7 6 5 4 3 2 1 0 

SFR F9h SSCE SCE MCE HCE RTCRE RTCWE RTCIF RTCE 
 RW-* RW-* RW-* RW-* RW*-0 RT*-0 R*-* RT-* 

 
R=Unrestricted Read, W=Unrestricted Write, T=Timed Access Write Only, 

-n =Value after Reset, * = See Description 
 

SSCE 
Bit 7 

RTC Subsecond Register Compare Enable. This bit enables a match Bit 7 between 
the Real-Time Alarm Subsecond Register (RTASS;F2h) and the Real-Time Clock 
Subsecond Register (RTCSS;FAh) to contribute to the RTC interrupt request.  This bit 
will be indeterminate following a no-battery reset, and is unaffected by all other resets.   
0 = The subsecond value is a Don’t Care when evaluating the RTC alarm.  If any other 
alarm register compare bits are enabled, this will cause one interrupt per subsecond tick 
(1/256 second) for as long as the other registers match.   
1 = Include the subseconds along with any other registers when evaluating alarm 
compare conditions. 

SCE 
Bit 6 

RTC Second Register Compare Enable. This bit enables a match between the Real-
Time Alarm Second Register (RTAS;F3h) and the Real-Time Clock Second Register 
(RTCS;FBh) to contribute to the RTC interrupt request.  This bit will be indeterminate 
following a no-battery reset, and is unaffected by all other resets.   
0 = The second value is a Don’t Care when evaluating an RTC alarm.  If any other 
alarm register compare bits are enabled, this will cause one interrupt per second as long 
as the other registers match.   
1 = Include the second along with any other registers when evaluating alarm compare 
conditions. 

MCE 
Bit 5 

RTC Minute Register Compare Enable. This bit enables a match between Bit 5 the 
Real-Time Alarm Minute Register (RTAM;F4h) and the Real-Time Clock Minute 
Register (RTCM;FCh) to contribute to the RTC interrupt request.  This bit will be 
indeterminate following a no-battery reset, and is unaffected by all other resets.   
0 = The minute value is a Don’t Care when evaluating an RTC alarm.  If any other 
alarm register compare bits are enabled, this will cause one interrupt per minute as long 
as the other registers match.  
1 = Include the minute along with any other registers when evaluating alarm compare 
conditions. 

HCE 
Bit 4 

RTC Hour Register Compare Enable. This bit enables a match between the Real-
Time Alarm Hour Register (RTAH;F5h) and the Real-Time Clock Hour Register 
(RTCH;FDh) to contribute to the RTC interrupt request.  This bit will be indeterminate 
following a no-battery reset, and is unaffected by all other resets.   
0 = The hour value is a Don’t Care when evaluating an RTC alarm.  If any other alarm 
register compare bits are enabled, this will cause one interrupt per hour for as long as 
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the other registers match.   
1 = Include the hour along with any other registers when evaluating alarm compare 
conditions. 

RTCRE 
Bit 3 

RTC Read Enable. This bit temporarily halts internal updating of the RTC to allow 
software to read the current time.  No loss of time will occur.  This bit will be cleared to 
0 following any reset.  Attempts to set the RTCRE and RTCWE bits simultaneously 
will be ignored.  When this bit is cleared, software must wait 4 machine cycles before 
setting either the RTCRE or RTCWE bit again.   
0 = Reads of the RTC clock registers (RTCSS;FAh, RTCS;FBh, RTCM;FCh, 
RTCH;FDh, RTCD0;FEh, RTCD1;FFh) are prohibited and will return erroneous 
values.   
1 = Reads of the RTC clock registers are permitted during a 1 ms window starting from 
the time the bit is set.  Immediately after setting this bit, software must wait 4 machine 
cycles to allow all time registers to synchronize.  The user should clear this bit when the 
desired reads are complete, although it will clear automatically within 1.95 ms if not 
cleared in software. 

RTCWE 
Bit 2 

RTC Write Enable. This bit temporarily halts the RTC to allow software to update the 
current time.  No loss of time will occur.  This bit can only be modified using a Timed 
Access procedure.  Changing this bit from 1 to 0 will reset the RTCSS register to 
00h.This bit will be cleared to 0 following any reset.   
0 = Writes to the RTC clock registers (RTCSS;FAh, RTCS;FBh, RTCM;FCh, 
RTCH;FDh, RTCD0;FEh, RTCD1;FFh) are ignored. Attempts to set the RTCRE and 
RTCWE bits simultaneously will be ignored.  When this bit is cleared, software must 
wait 4 machine cycles before setting either the RTCRE or RTCWE bit again.   
1 = Writes to the RTC clock registers are permitted during a 1 ms window starting from 
the time this bit is set.  Immediately after setting this bit, software must wait 4 machine 
cycles to allow all time registers to synchronize.  The user should clear this bit when the 
desired updates are complete, although it will clear automatically after 1.95 ms if not 
cleared in software. 

RTCIF 
Bit 1 

RTC Interrupt Flag. This bit indicates that a RTC alarm match has been made 
between all the enabled alarm registers and their corresponding clock registers.  This bit 
will generate an RTC Interrupt if the ERTCI bit (EIE.5) is set, and must be cleared by 
software following an interrupt.  Setting this bit cannot generate RTC interrupts.  
Clearing all alarm compare enable bits (RTCC.7-4) will also clear this bit.  This bit will 
be indeterminate following a no–battery reset, and is unaffected by all other resets.  
This bit cannot be set in software.   
0 = No RTC interrupts are pending.   
1 = RTC Interrupt is pending/active. 

RTCE 
Bit 0 

RTC Enable. This bit enables/disables the RTC oscillator, halting the RTC.  This bit 
must be accessed using a Timed Access procedure.  This bit will be indeterminate 
following a no-battery reset, and is unaffected by all other resets.  If RTC operation is 
desired, it must be enabled following battery application.  
 0 = RTC oscillator is disabled.   
1 = RTC oscillator is enabled. 
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Real-Time Clock Subsecond Register (RTCSS)    
 7 6 5 4 3 2 1 0 

SFR FAh RTCSS.7 RTCSS.6 RTCSS.5 RTCSS.4 RTCSS.3 RTCSS.2 RTCSS.1 RTCSS.0 
 R*-* R*-* R*-* R*-* R*-* R*-* R*-* R*-* 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, *=See Description 
 

RTCSS.7–RTCSS.0 
Bits 7–0 

Real-Time Clock Subseconds. This register represents the subsecond value of the 
RTC. It can be read only when the RTCRE bit is set, and writes are not permitted.  It is 
reset to 00h when the RTCWE bit is cleared. The register counts from 0h to FFh. 

 
Real-Time Clock Second Register (RTCS)        

 7 6 5 4 3 2 1 0 
SFR FBh 0 0 RTCS.5 RTCS.4 RTCS.3 RTCS.2 RTCS.1 RTCS.0 
 R*-0 R*-0 R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, *=See Description 
 

Bits 7, 6 Reserved. These bits will be 0 when read. 

RTCS.5–RTCS.0 
Bits 5–0 

Real-Time Clock Seconds. This register represents the second value of the RTC.  This 
register can be read only when the RTCRE bit is set, and can only be modified when the 
RTCWE bit is set.  Consult the description of the RTCWE bit for the programming 
protocol for this register.  This register counts from 0h to 3Bh (0 to 59 seconds), and any 
writes to this register out-side of that range will generate an inaccurate count. 

 
Real-Time Clock Minute Register (RTCM)    

 7 6 5 4 3 2 1 0 
SFR FCh 0 0 RTCM.5 RTCM.4 RTCM.3 RTCM.2 RTCM.1 RTCM.0 
 R*-0 R*-0 R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, *  = See Description 
 

Bits 7, 6 Reserved. These bits will be 0 when read. 
RTCM.5–RTCM.0 
Bits 5–0 

Real-Time Clock Minutes. This register represents the minute value of the RTC.  This 
register can be read only when the RTCRE bit is set, and can only be modified when the 
RTCWE bit is set.  Consult the description of the RTCWE bit for the programming 
protocol for this register.  This register counts from 0h to 3Bh (0 to 59 minutes), and any 
writes to this register out-side of that range will generate an inaccurate count. 
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Real-Time Clock Hour Register (RTCH)    
 7 6 5 4 3 2 1 0 

SFR FDh DOW2 DOW1 DOW0 RTCH.4 RTCH.3 RTCH.2 RTCH.1 RTCH.0 
 R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, *=See Description 
 

DOW.2–DOW.0 
Bits 7, 6, 5 

Real-Time Clock Day of the Week. These bits represent the current day of the week.  
This register can be read only when the RTCRE bit is set, and can only be modified 
when the RTCWE bit is set. Consult the description of the RTCWE bit for the 
programming protocol for this register. This register counts from 1h to 7h, and 
increments when the hour value of the RTC (RTCH.4-0) rolls over from 17h to 0h.  
Writing a 0h to these bits will disable the day of week function and the count will 
remain 0.  No alarm corresponds to these bits. 

RTCH.4–RTCH.0 
Bits 4–0 

Real-Time Clock Hours. These bits represent the hour value of the RTC.  This register 
can be read only when the RTCRE bit is set, and can only be modified when the 
RTCWE bit is set. Consult the description of the RTCWE bit for the programming 
protocol for this register. This register counts from 0h to 17h (0 to 23 hours), and any 
writes outside of that range will generate an inaccurate count. 

 
Real-Time Clock Day Register 0 (RTCD0)    

 7 6 5 4 3 2 1 0 
SFR FEh RTCD0.7 RTCD0.6 RTCD0.5 RTCD0.4 RTCD0.3 RTCD0.2 RTCD0.1 RTCD0.0 
 R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset, *=See Description 
 

RTCD0.7–RTCD.0 
Bits 7-0 

Real-Time Clock Day Register 0. This register contains the least significant byte of the 
16-bit current day count.  This is not an absolute value tied to a specific calendar date, 
but rather a relative day count defined by the user.  This register can be read only when 
the RTCRE bit is set, and can only be modified when the RTCWE bit is set.  Consult 
the description of the RTCWE bit for the programming protocol for this register.  The 
register counts from 0h to FFh. No alarm corresponds to these bits. 

 
Real-Time Clock Day Register 1 (RTCD1)   

 7 6 5 4 3 2 1 0 
SFR FFh RTCD1.7 RTCD1.6 RTCD1.5 RTCD1.4 RTCD1.3 RTCD1.2 RTCD1.1 RTCD1.0 
 R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* R*W*-* 

 
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset 
 

RTCD1.7–RTCD1.0 
Bits 7–0 

Real-Time Clock Day Register 1. This register contains the most significant byte of 
the 16-bit current day count.  This is not an absolute value tied to a specific calendar 
date, but rather a relative day count defined by the user.  This register can be read only 
when the RTCRE bit is set, and can only be modified when the RTCWE bit is set.  
Consult the description of the RTCWE bit for the programming protocol for this 
register.  The register counts from 0h to FFh.  A rollover of this register will clear 
RTCD1 and RTCD0.  No alarm corresponds to these bits. 
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4.3 Instruction Timing 
All instructions in the high-speed microcontroller perform the same functions as their 80C32 
counterparts.  Their affect on bits, flags, and other status functions is identical. However, the timing of 
each instruction is different.  This applies both in absolute terms of nanoseconds for a given crystal, and 
in relative terms of clocks. For absolute timing of real-time events, the timing of software loops will need 
to be calculated using the data provided in Section 16, Instruction Set Details. However, timers default to 
run at the older 12 clocks per timer increment and timer-based events need no modification. 
 
The relative time of two instructions might be different in the new architecture than it was previously. For 
example, both the one-byte, two-cycle “MOVX A, @DPTR” instruction and the three-byte, two-cycle 
“MOV direct, direct” instruction used two cycles. In the high-speed microcontroller, the MOVX 
instruction uses two cycles but the “MOV direct, direct” uses three cycles. While both are faster than their 
original counterparts, they now have different execution times from each other because the high-speed 
microcontroller typically uses one cycle for each byte. This is generally true for all instructions except for 
MUL, DIV, MOVC, MOVX, and branch type instructions. The timing of each instruction should be 
examined for familiarity with the changes. Note that a machine cycle now requires just four clocks, and 
provides one ALE pulse per cycle. Many instructions require only one cycle, but some require five. In the 
original architecture, all were one or two cycles except for MUL and DIV. 
 
4.4 Addressing Modes 
The high-speed microcontroller uses the standard 8051 instruction set, which a wide range of third-party 
assemblers and compilers supports. Like the 8051, the high-speed microcontroller uses three memory 
areas. These are program memory, data memory, and Registers. Both the program and data areas are 
64kB each. They extend from 0000h to FFFFh. The register areas are located between 00h and FFh, but 
do not overlap with the program and data segments. This is because the high-speed microcontroller uses 
different modes of addressing to reach each memory segment. These modes are described below. 
 
Program memory is the area from which all instructions are fetched. It is inherently read-only. This is 
because the 8051 instruction set provides no instructions that write to this area. Read/write access is for 
data memory and registers only. No special action is required to fetch from program memory. Each 
instruction fetch will be performed automatically by the on-chip hardware. In versions that contain on-
chip memory, the hardware will decide whether the fetch is on-chip or off-chip based on the address. 
Explicit addressing modes are needed for the data memory and register areas. These modes determine 
which register area is accessed or if off-chip data memory is used. 
 
The high-speed microcontroller supports eight addressing modes. They are: 
 

Register Addressing 
Direct Addressing 
Register Indirect Addressing 
Immediate Addressing 
Register Indirect Addressing with Displacement 
Relative Addressing 
Page Addressing 
Extended Addressing 

 
Five of the eight are used to address operands. The remaining are used for program control and 
branching. When writing assembly language instructions that use arguments, the convention is 
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destination, source. Each mode of addressing is summarized below.  Note that many instructions (such as 
ADD) have multiple addressing modes available. 
 
4.4.1 Register Addressing 
Register Addressing is used for operands that are located in one of the eight Working Registers (R7-R0). 
These are the currently selected Working Register bank, which reside in the lower 32 bytes of Scratchpad 
RAM. A register bank is selected using two bits in the Program Status Word (PSW;D0h). This addressing 
mode is powerful, since it uses the active bank without knowing which bank is selected. Thus one 
instruction can have multiple uses by simply switching banks. Register Addressing is also a high-speed 
instruction, requiring only one machine cycle. Two examples of Register Addressing are provided below. 
 

ADD   A, R4 ;Add Accumulator to register R4 
INC   R2  ;Increment the value in register R2 

 
In the first case, the value in R4 is the source of the operation.  In the later, R2 is the destination.  These 
instructions do not consider the absolute address of the register.  They will act on whichever bank has 
been selected. 
 
Direct Addressing, described below, may also access any Working Register.  To do this, the absolute 
address must be specified. 
 
4.4.2 Direct Addressing 
Direct Addressing is the mode used to access the entire lower 128 bytes of Scratchpad RAM and the SFR 
area.  It is commonly used to move the value in one register to another.  Two examples are shown below. 
 

MOV   72h, 74h ;Move the value in register 74 to 
;register 72. 

MOV   90h, 20h ;Move the value in register 20 to 
;the SFR at 90h (Port 1) 

 
Note that there is no instruction difference between a RAM access and an SFR access.  The SFRs are 
simply register locations above 7Fh. 
 
Direct Addressing also extends to bit addressing.  There is a group of instructions that explicitly use bits.  
The address information provided to such an instruction is the bit location, rather than the register 
address.  Registers between 20h and 2Fh contain bits that are individually addressable.  SFRs that end in 
0 or 8 are bit addressable.  An example of Direct Bit Addressing is as follows. 
 

SETB  00h  ;Set bit 00 in the RAM. This is the 
;LSb of the register at address 20h 
;as shown in Section 4. 

 
MOV   C, 0B7h ;Move the contents of bit B7 to the 

;Carry flag. Bit B7 is the MSb of 
;register B0 (Port 3). 
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4.4.3 Register Indirect Addressing 
This mode is used to access the Scratchpad RAM locations above 7Fh.  It can also be used to reach the 
lower RAM (0h–7Fh) if needed.  The address is supplied by the contents of the Working Register 
specified in the instruction.  Thus one instruction can be used to reach many values by altering the 
contents of the designated Working Register.  Note that in general, only R0 and R1 can be used as 
pointers.  An example of Register Indirect Addressing is as follows. 
 

ANL   A, @R0 ;Logical AND the Accumulator 
;with the contents of the register 
;pointed to by the value stored in R0. 

 
This mode is also used for Stack manipulation.  This is because all Stack references are directed by the 
value in the Stack Pointer register.  The Push and Pop instructions use this method of addressing.  An 
example is as follows. 
 

PUSH  A  ;Saves the contents of the 
;accumulator on the stack. 

 
Register Indirect Addressing is used for all off-chip data memory accesses.  These involve the MOVX 
instruction.  The pointer registers can be R0, R1, DPTR0 and DPTR1.  Both R0 and R1 reside in the 
Working Register area of the Scratchpad RAM.  They can be used to reference a 256-byte area of off-
chip data memory.  When using this type of addressing, the upper address byte is supplied by the value in 
the Port 2 latch.  This value must be selected by software prior to the MOVX instruction.  An example is 
as follows. 
 

MOVX  @R0, A ;Write the value in the accumulator 
;to the address pointed to by R0 in 
;the page pointed to by P2. 

 
The 16-bit Data pointers (DPTRs) can be used as an absolute off-chip reference.  This gives access to the 
entire 64kB data memory map.  An example is as follows. 
 

MOVX  @DPTR, A ;Write the value in the accumulator 
;to the address referenced by the 
;selected data pointer. 

 
4.4.4 Immediate Addressing 
Immediate Addressing is used when one of the operands is predetermined and coded into the software.  
This mode is commonly used to initialize SFRs and to mask particular bits without affecting others.  An 
example is as follows. 
 

ORL   A, #40h ;Logical OR the Accumulator with 40h. 
 

4.4.5 Register Indirect with Displacement 
Register Indirect Addressing with Displacement is used to access data in lookup tables in program 
memory space.  The location is created using a base address with an index. The base address can be either 
the PC or the DPTR.  The index is the accumulator. The result is stored in the accumulator. An example 
is as follows. 
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MOVC  A, @A +DPTR ;Load the accumulator with the contents 

of program memory 
;pointed to by the contents of the DPTR 
plus the value in 
;the accumulator. 

 
4.4.6 Relative Addressing 
Relative Addressing is used to determine a destination address for Conditional branch.  Each of these 
instructions includes an 8-bit value that contains a two’s complement address offset (–127 to +128) which 
is added to the PC to determine the destination address.  This destination is branched to when the tested 
condition is true.  The PC points to the program memory location immediately following the branch 
instruction when the offset is added.  If the tested condition is not true, the next instruction is performed.  
An example is as follows.  
 

JZ   $–20  ;Branch to the location (PC+2)–20 
;if the contents of the accumulator = 0. 

 
4.4.7 Page Addressing 
Page Addressing is used by the Branching instructions to specify a destination address within the same 
2kB block as the next contiguous instruction.  The full 16-bit address is calculated by taking the five 
highest order bits for the next instruction (PC+2) and concatenating them with the lowest order 11-bit 
field contained in the current instruction.  An example is as follows. 
 

0870h   ACALL100h ;Call to the subroutine at address 100h 
plus the 
;current page address. 

 
In this example, the current page address is 800h, so the destination address is 900h. 
 
4.4.8 Extended Addressing 
Extended Addressing is used by the Branching instructions to specify a 16-bit destination address within 
the 64kB address space.  The destination address is fixed in software as an absolute value.  An example is 
as follows. 
 

LJMP   0F732h ;Jump to address 0F732h. 
 
4.5 Program Status Flags 
All program status flags are contained in the program status word at SFR location D0h. It contains flags 
that reflect the status of the CPU and the result of selected operations. The flags are summarized below. 
The following bit descriptions show the instructions that affect each flag. 
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Bit Descriptions 
PSW.7: C, Carry. Set when the previous operation resulted in a carry (during addition) or a borrow 
(during subtraction), otherwise cleared. 
 
PSW.6: AC, Auxiliary Carry. Set when the previous operation resulted in a carry (during addition) or a 
borrow (during subtraction) from the high order nibble. Otherwise cleared. 
 
PSW.2: OV, Overflow. Set when a carry was generated into the high order bit but not a carry out of the 
high-order bit. OV is normally used with two’s complement arithmetic. 

 
PSW.0: P, Parity. Set to logic 1 to indicate an odd number of ones in the accumulator (odd parity). 
Cleared for an even number of ones. This produces even parity. 

 
All of these bits are cleared to a logic 0 for all resets. 
 
Table 4-I. Instructions That Affect Flag Settings 
 

FLAGS FLAGS 
INSTRUCTION 

C OV AC 
INSTRUCTION 

C OV AC 
ADD X X X CLR C 0   
ADDC X X X CPL C X   
SUBB X X X ANL C, bit X   
MUL 0 X  ANL C, bit  X   
DIV 0 X  ORL C, bit X   
DA X   ORL C, bit  X   
RRC X   MOV C, bit X   
RLC X   CJNE X   
SETB C 1       

 

Note: X indicates the modification is according to the result of the instruction. 
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5. CPU TIMING 
The timing of the high-speed microcontroller is the area with the greatest departure from the original 
8051 series. This section will briefly explain the timing and also compare it to the original. 
 

5.1 Oscillator 
The high-speed microcontroller provides an on-chip oscillator circuit that can be driven by an external 
crystal or by an off-chip TTL clock source. The oscillator circuit provides the internal clocking signals to 
the on-chip CPU and I/O circuits. 
 
Figure 5-1 shows the required connections for a crystal. In most cases, a crystal will be the preferred 
clock source. For very low-power applications, a low frequency ceramic resonator may also be used. The 
capacitors shown in Figure 5-1are typical values. If a resonator is used, higher capacitance, such as 47pF 
may be needed. 
 
For higher frequency designs, an off-chip clock oscillator is preferred (Figure 5-2). When using an off-
chip oscillator, the duty cycle becomes important. As nearly as possible, a 50% duty cycle should be 
supplied. 
 
XTAL1 
This pin is the input to an inverting high gain amplifier. It also serves as the input for an off-chip 
oscillator. Note that when using an off-chip oscillator, XTAL2 is left unconnected. 
 
XTAL2 
This pin is the output of the crystal amplifier. It can be used to distribute the clock to other devices on the 
same board. If using a crystal, the loading on this pin should be kept to a minimum, especially capacitive 
loading. 
 
Oscillator Characteristics 
The high-speed microcontroller was designed to operate with a parallel resonant AT cut crystal. The 
crystal should resonate at the desired frequency in its primary or fundamental mode. The oscillator 
employs a high gain amplifier to assure a clean waveform at high frequency. Due to the high-performance 
nature of the product, both clock edges are used for internal timing. Therefore, the duty cycle of the clock 
source is of importance. A crystal circuit will balance itself automatically. Thus, crystal users will not 
need to take extra precautions concerning duty cycle. 
 
Crystal Selection 
The high-speed microcontroller family was designed to operate with fundamental mode crystals for 
improved stability. Although most high-speed (i.e., greater than 25MHz) crystals operate from their third 
overtone, fundamental mode crystals are available from most major crystal suppliers. Designers are 
cautioned to ensure that high-speed crystals being specified for use in their application do operate at the 
rated frequency in their fundamental mode. The use of a third overtone crystal will typically result in 
oscillation rates at one-third the desired speed. 
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Figure 5-1. Crystal Connection  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-2. Clock Source Input  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.2 Instruction Timing 
The clock source, whether crystal or oscillator, supplies the internal functions with a precise time base. 
The clock is used to create the basic unit of timing called a machine cycle. One machine cycle consists of 
four clocks when operating in divide-by-4 mode. The use of Power Management modes will cause the 
device to utilize 64 or 1024 external clock cycles per machine cycle. Within a machine cycle there are 
four states called C1, C2, C3, and C4. Various operations take place during each C state. Within this 
section and throughout others, an event timing will be identified by its C state. For example, ALE rises at 
the beginning of the C1 time. Since the clock source is the source of nearly all timing, the electrical 
specifications are given in terms of clocks. The time of a clock period is referred to as tCLCL. 
 
Most times in the electrical specifications are specified as some number of clocks from the edge of a 
signal. The signal edges were also derived from the clock source and the C states. 
 
Due to the limited number of edges within a machine cycle, selected events must occur between edges. 
The high-speed microcontroller employs sophisticated circuits to create half and quarter clock events. 
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That is, some events occur between clock edges. Such circuits assure that events occur as precisely as if a 
clock edge were available. While being generally transparent to the user, these circuits result in the use of 
fractional clocks in the electrical specifications. For example, a time can be specified as 2.5tCLCL. 
 
As mentioned above, a machine cycle is the basic timing unit of most functions in the high-speed 
microcontroller. A machine cycle of the high-speed microcontroller is the time required to execute a 
single cycle instruction. Almost half the op codes of the 8051 instruction set are implemented in a single 
machine cycle in the high-speed microcontroller. The remaining instructions require multiple machine 
cycles. 
 
The power management modes implemented on some devices modify the number of clock cycles needed 
to execute an instruction. Instead of 4 clocks per machine cycle, power management mode 1 (PMM1) and 
power management mode 2 (PMM2) use 64 and 1024 clocks per cycle respectively to conserve power. A 
full description of the power management modes and their effect on CPU operation is provided in  
Section 7. 
 
All instructions are coded within an 8-bit field called an op code. This single byte must be fetched from 
program memory. The CPU decodes the op code. It determines what action the microcontroller takes and 
whether more information is needed from memory. If no other memory is needed, then only one byte was 
required. Thus the instruction is called a one-byte instruction. In some cases, more data is needed. These 
will be two- or three-byte instructions. 
 
In most cases, the number of memory accesses (bytes) needed by an instruction is equal to the number of 
machine cycles. Thus, single cycle instructions contain one byte, and two cycle instructions have two 
bytes.  This is true except for the special cases mentioned below. 
 
Single-Cycle Instructions 
The standard single-cycle instruction timing is shown in Figure 5-3. As previously mentioned, there are 
126 op codes that are single-cycle instructions. An example of a single-cycle instruction is as follows: 
 
DEC   A  14h 
 
Two-Cycle Instructions 
All two-cycle instructions require two cycles because they involve two bytes or require two memory 
accesses. The first byte is an op code that instructs the CPU. This is the instruction itself. The second byte 
is normally an operand or it specifies the location of the operand. For example, the instruction “ANL A, 
direct” uses two cycles and requires two bytes. Two examples are as follows: 
 
ANL A, direct  55h 

a7-0 
 
ANL A, #data  54h 

d7-d0 
 
Note that in the first example, the first memory access is the op code. The second memory access is the 
location of the operand in the register map. Since the result is stored in an internal register, this operation 
does not require a memory access. The second example is very similar. Again, the first byte represents the 
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op code. In this example, the second byte is the operand itself. This byte is used directly by the 
instruction. The timing for a two-cycle instruction is shown in Figure 5-4. 
 
One other type of two-cycle instruction requires two cycles but only includes one byte. This is because 
the second memory access is the result of the instruction. These are the MOVX instructions. An example 
is as follows: 
 
MOVX   @DPTR,A  F0h 
 
The second cycle in this instruction is the write to data memory at the address pointed to by the data 
pointer.  Thus this instruction is a two-cycle one-byte instruction, but requires two memory accesses. The 
MOVX timing is a special case, since the user can control it with the Stretch MOVX feature. The timing 
for the Stretch MOVX is discussed in Section 6, Memory Access. 
 
Figure 5-3. Single-Cycle Instruction Timing  
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*Shaded areas are held in a weak latch on the port until overdriven.
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Figure 5-4. Two-Cycle Instruction Timing  
 
Example: ANL A, direct: 55h addr7-0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Three-Cycle Instructions 
Three-cycle instructions come in two varieties. The first requires three memory accesses. These are 
similar to one and two cycle instructions in that the number of bytes equals the number of cycles. 
 
The second variety is a three-cycle instruction that simply requires 12 clocks to perform the function. 
This may have one or two bytes. Examples of both types are shown below. 
 
ANL direct, #data 53h  (3 bytes) 

a7–a0 
d7–d0 
 

SJMP rel   80h  (2 bytes) 
a7–a0 
 

INC DPTR   A3h  (1 byte) 
 
In the first example, the first memory fetch is the op code. The second is the location of the destination 
register. The third memory fetch is the operand that is used by the instruction. This instruction has three 
memory accesses, so it requires three machine cycles. The second example has the operand in the first 
byte and the jump location in the second. It requires three cycles to actually perform the jump. The third 
example contains simply the op code, which is 1 byte. This instruction involves the manipulation of a 16-
bit register so it takes longer than 8-bit operations. Figure 5-5 shows the timing of all three types of three 
cycle instructions. 
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Four-Cycle Instructions 
All four-cycle instructions require more time than the associated number of bytes. These are all program 
branching instructions that can move program control to a new location. The four-cycle instructions use 
either 1 or 3 bytes as shown in the following examples. Figure 5-6 shows the timing of both four-cycle 
instructions. 
 
RET      22h 
 
CJNE  A, #data, addr  B4h 

d7-d0 
a7-a0 

 
Five-Cycle Instructions 
There are only two five-cycle instructions in the high-speed microcontroller. They are the multiply 
(MUL) and divide (DIV). These are shown below. Figure 5-7 shows the timing of five-cycle instructions. 
 
MUL A, B    A4h 
DIV A, B    84h 
 
Note that the five cycle instructions require only 1 byte. They need 5 cycles to accomplish the math 
function. 
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ort until overdriven. 

51 
architecture. A machine cycle needed 12 clocks and most instructions 
cles. Thus except for the MUL and DIV instructions, the 8051 used 
uction. Furthermore, each cycle in the 8051 used two memory fetches. 
 a dummy, and the extra clock cycles were wasted. 

s 4 clocks per cycle. Since a cycle is now aligned with a memory fetch 
 have the same number of cycles as bytes. This leads to more 
. Where there were primarily one and two cycle instructions before, 
four-cycle instructions. Multiply and Divide require five cycles. Note 
ber of cycles, each instruction is at least 1.5 and most are 2 to 3 times 
 Table 5-A shows each instruction, the number of clocks used in the 
e number used in the 8051 for comparison. The factor by which the 
es on the 8051 is shown as the Speed Advantage. A Speed Advantage 
icrocontroller performs the same instruction three times faster that the 

nstruction type. Note that many of the instructions provide multiple op 
, Rn instruction can act on one of 8 working registers. There are 8 op 
it can be used on 8 independent locations. Table 5-B shows totals for 
mber of op codes. Averages are provided in the tables. However, the 

any system will depend on the instruction mix. Programs that use 
 with the accumulator or working registers will be improved the least. 
structions. Moderate performance improvement will be gained by 

structions that use only direct and immediate data (no accumulator or 
ions tend to be three cycle instructions. The largest number of 
gle cycle instructions involving only the accumulator and working 
 movement instructions involving the working registers are greatly 
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Table 5-A. Instruction Timing Comparison 
Note: HSM = high-speed microcontroller. 

INSTRUCTION HEX 
CODE 

HSM 
CLOCK 
CYCLES

HSM TIME 
at 25MHz 

8051 
CLOCK 
CYCLES

8051 TIME 
at 25MHz 

HSM vs. 8051 
SPEED 

ADVANTAGE 
ADD A, Rn 28..2F 4 160ns 12 480ns 3 
ADD A, direct 25 8 320ns 12 480ns 1.5 
ADD A, @Ri 26..27 4 160ns 12 480ns 3 
ADD A, #data 24 8 320ns 12 480ns 1.5 
ADDC A, Rn 38..3F 4 160ns 12 480ns 3 
ADDC A, direct 35 8 320ns 12 480ns 1.5 
ADDC A, @Ri 36..37 4 160ns 12 480ns 3 
ADDC A, #data 34 8 320ns 12 480ns 1.5 
SUBB A, Rn 98..9F 4 160ns 12 480ns 3 
SUBB A, direct 95 8 320ns 12 480ns 1.5 
SUBB A, @Ri 96..97 4 160ns 12 480ns 3 
SUBB A, #data 94 8 320ns 12 480ns 1.5 
INC A 04 4 160ns 12 480ns 3 
INC Rn 08..0F 4 160ns 12 480ns 3 
INC direct 05 8 320ns 12 480ns 1.5 
INC @Ri 06..07 4 160ns 12 480ns 3 
INC DPTR A3 12 480ns 24 960ns 2 
DEC A 14 4 160ns 12 480ns 3 
DEC Rn 18..1F 4 160ns 12 480ns 3 
DEC direct 15 8 320ns 12 480ns 1.5 
DEC @Ri 16..17 4 160ns 12 480ns 3 
MUL AB A4 20 800ns 48 1.92µs 2.4 
DIV AB  84 20 800ns 48 1.92µs 2.4 
DA A  D4 4 160ns 12 480ns 3 
ANL A, Rn  58..5F 4 160ns 12 480ns 3 
ANL A, direct  55 8 320ns 12 480ns 1.5 
ANL A, @Ri  56..57 4 160ns 12 480ns 3 
ANL A, #data  54 8 320ns 12 480ns 1.5 
ANL direct, A  52 8 320ns 12 480ns 1.5 
ANL direct, #data  53 12 480ns 24 960ns 2 
ORL A, Rn  48..4F 4 160ns 12 480ns 3 
ORL A, direct  45 8 320ns 12 480ns 1.5 
ORL A, @Ri  46..47 4 160ns 12 480ns 3 
ORL A, #data  44 8 320ns 12 480ns 1.5 
ORL direct, A  42 8 320ns 12 480ns 1.5 
ORL direct, #data  43 12 480ns 24 960ns 2 
XRL A, Rn  68..6F 4 160ns 12 480ns 3 
XRL A, direct  65 8 320ns 12 480ns 1.5 
XRL A, @Ri  66..67 4 160ns 12 480ns 3 
XRL A, #data  64 8 320ns 12 480ns 1.5 
XRL direct, A  62 8 320ns 12 480ns 1.5 
XRL direct, #data  63 12 480ns 24 960ns 2 
CLR A  E4 4 160ns 12 480ns 3 
CPL A  F4 4 160ns 12 480ns 3 
RL A  23 4 160ns 12 480ns 3 
RLC A  33 4 160ns 12 480ns 3 
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RR A  03 4 160ns 12 480ns 3 
RRC A  13 4 160ns 12 480ns 3 
SWAP A  C4 4 160ns 12 480ns 3 
MOV A, Rn  E8..EF 4 160ns 12 480ns 3 
MOV A, direct  E5 8 320ns 12 480ns 1.5 
MOV A, @Ri  E6..E7 4 160ns 12 480ns 3 
MOV A, #data  74 8 320ns 12 480ns 1.5 
MOV Rn, A  F8..FF 4 160ns 12 480ns 3 
MOV Rn, direct  A8..AF 8 320ns 24 960ns 3 
MOV Rn, #data  78..7F 8 320ns 12 480ns 1.5 
MOV direct, A  F5 8 320ns 12 480ns 1.5 
MOV direct, Rn  88..8F 8 320ns 24 960ns 3 
MOV direct, direct  85 12 480ns 24 960ns 2 
MOV direct, @Ri  86..87 8 320ns 24 960ns 3 
MOV direct, #data  75 12 480ns 24 960ns 2 
MOV @Ri, A  F6..F7 4 160ns 12 480ns 3 
MOV @Ri, direct  A6..A7 8 320ns 24 960ns 3 
MOV @Ri, #data  76..77 8 320ns 12 480ns 1.5 
MOV DPTR, #data 16 90 12 480ns 24 960ns 2 
MOVC A, @A+DPTR  93 12 480ns 24 960ns 2 
MOVC A, @A+PC 83 12 480ns 24 960ns 2 
MOVX A, @Ri  E2..E3 8 320ns 24 960 ns 3 
MOVX A, @DPTR  E0 8 320ns 24 960ns 3 
MOVX @Ri, A  F2..F3 8 320ns 24 960ns 3 
MOVX @DPTR, A  F0 8 320ns 24 960ns 3 
PUSH direct  C0 8 320ns 24 960ns 3 
POP direct  D0 8 320ns 24 960ns 3 
XCH A, Rn  C8..CF 4 160ns 12 480ns 3 
XCH A, direct  C5 8 320ns 12 480ns 1.5 
XCH A, @Ri  C6..C7 4 160ns 12 480ns 3 
XCHD A, @Ri  D6..D7 4 160ns 12 480ns 3 
CLR C  C3 4 160ns 12 480ns 3 
CLR bit  C2 8 320ns 12 480ns 1.5 
SETB C  D3 4 160ns 12 480ns 3 
SETB bit  D2 8 320ns 12 480ns 1.5 
CPL C  B3 4 160ns 12 480ns 3 
CPL bit  B2 8 320ns 12 480ns 1.5 
ANL C, bit  82 8 320ns 24 960ns 3 
ANL C, bit  B0 8 320ns 24 960ns 3 
ORL C, bit  2 8 320ns 24 960ns 3 
ORL C, bit A0 8 320ns 24 960ns 3 
MOV C, bit  A2 8 320ns 12 480ns 1.5 
MOV bit, C  92 8 320ns 24 960ns 3 
ACALL addr 11  Hex code      
Hex codes = 11, 31, 51, 
71, 91, B1, D1, or F1 Byte 1 12 480ns 24 960ns 2 

LCALL addr 16  12 16 640ns 24 960ns 1.5 
RET  22 16 640ns 24 960ns 1.5 
RETI  32 16 640ns 24 960ns 1.5 
AJMP addr 11  Hex code      
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Hex code = 01, 21, 41, 
61, 81, A1, C1, or E1 Byte 1 12 480ns 24 960ns 2 

LJMP addr 16  2 16 480ns 24 960ns 1.5 
JMP @A+DPTR  73 12 480ns 24 960ns 2 
SJMP rel  80 12 480ns 24 960ns 2 
JZ rel  60 12 480ns 24 960ns 2 
JNZ rel  70 12 480ns 24 960ns 2 
JC rel  40 12 480ns 24 960ns 2 
JNC rel  50 12 480ns 24 960ns 2 
JB bit, rel  20 16 640ns 24 960ns 1.5 
JNB bit, rel  30 16 640ns 24 960ns 1.5 
JBC bit, rel  10 16 640ns 24 960ns 1.5 
CJNE A, direct, rel  B5 16 640ns 24 960ns 1.5 
CJNE A, #data, rel  B4 16 640ns 24 960ns 1.5 
CJNE Rn, #data, rel  B8..BF 16 640ns 24 960ns 1.5 
CJNE @Ri, #data, rel  B6..B7 16 640ns 24 960ns 1.5 
DJNZ Rn, rel  D8..DF 12 480ns 24 960ns 2 
DJNZ direct, rel  D5 16 640ns 24 960ns 1.5 
NOP  00 4 160ns 12 480ns 3 
 
 
Table 5-B. Instruction Speed Summary  

INSTRUCTION CATEGORY QUANTITY SPEED ADVANTAGE 
Total Instructions: One Cycle, One Byte   37 3.0 
Total Instructions: Two Cycle, One Byte   4 3.0 
Total Instructions: Two Cycle, Two Bytes X1.5   27 1.5 
Total Instructions: Two cycle, Two Bytes X3.0   11 3.0 
Total Instructions: Three Cycle, One Byte   4 2.0 
Total Instructions: Three Cycle, Two Bytes   8 2.0 
Total Instructions: Three Cycle, Three Bytes   7 2.0 
Total Instructions: Four Cycle, One Byte   2 1.5 
Total Instructions: Four Cycle, Three Bytes   9 1.5 
Total Instructions: Five Cycle, One Byte   2 2.4 
Average Across All Instructions 111 2.3 
   
Total Op Codes: One Cycle, One Byte   126 3.0 
Total Op Codes: Two Cycle, One Byte   6 3.0 
Total Op Codes: Two Cycle, Two Bytes X1.5   35 1.5 
Total Op Codes: Two Cycle, Two Bytes X3.0   27 3.0 
Total Op Codes: Three Cycle, One Byte   4 2.0 
Total Op Codes: Three Cycle, Two Bytes   29 2.0 
Total Op Codes: Three Cycle, Three Bytes   7 2.0 
Total Op Codes: Four Cycle, One Byte   2 1.5 
Total Op Codes: Four Cycle, Three Bytes   17 1.5 
Total Op Codes: Five Cycle, One Byte   2 2.4 
Average Across All Instructions   255 2.5 
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6. MEMORY ACCESS 
The high-speed microcontroller follows the memory interface convention established for the industry-
standard 80C51/80C31. Products in the family may vary, so refer to the specific product data sheet for 
any potential differences. Like the 8051 series, the high-speed microcontroller uses two memory 
segments. These are program memory and data memory. Program memory is read-only and is usually 
implemented in ROM or EPROM. Data memory is read/write and is commonly implemented in SRAM. 
 
Memory areas can be implemented either on-chip, off-chip, or by using a combination. When using 
devices without internal program memory, or if the maximum address of on-chip program or data 
memory is exceeded, the device will perform an external memory access using the Expanded memory bus 
on ports 0 and 2. While serving as a memory bus, port 0 and port 2 do not function as I/O ports, following 
the standard 8051 convention of addressing external memory. The PSEN  signal goes active low to serve 
as a chip enable or output enable when performing a code fetch from external memory. Products with no 
on-chip program memory such as the DS80C320 always use the expanded bus. These devices have no 
Port 0 latch since the port is dedicated for memory operations. Devices that incorporate on-chip MOVX 
data memory operate in a similar fashion, except that the RD  and WR  signals serve as chip enables when 
accessing an external SRAM. 
 
Program execution begins at the reset vector, address 0000h. Any reset causes the next program fetch to 
begin at this location. Subsequent branches and interrupts determine how the memory fetch deviates from 
sequential addressing. Since all programs begin at 0000h, this is the beginning address of all program 
execution. If on-chip program memory is present, program execution begins at internal location 0000h; 
otherwise, external program memory is used. 
 
6.1 Internal Program Memory 
Some members of the high-speed microcontroller family incorporate internal EPROM or ROM for 
program storage. On-chip program memory begins at address 0000h and is contiguous through the 
amount of on-chip memory. Exceeding the maximum address of on-chip memory causes the device to 
perform an external memory access using the Expanded memory bus on ports 0 and 2. For example, if the 
on-chip program memory is 16kB, then it lies between 0000h and 3FFFh in a contiguous area.  Therefore, 
a fetch at data memory location 4000h would be directed to the Expanded bus. Restricting memory 
operations within the on-chip memory allows ports 0 and 2 to be used for general-purpose I/O. For more 
information concerning memory size for a specific device, consult the specific data sheet. 
 
The high-speed microcontroller family was designed to be compatible with industry-standard 87C51FB 
programming tools. A number of third-party device programmers are available that support Dallas 
Semiconductor products. In addition, Dallas Semiconductor manufactures the DS87000 microcontroller 
programmer (www.maxim-ic.com/DS87000), specifically designed for EPROM-based members of the 
high-speed microcontroller family. 
 
6.2 Internal Data Memory 
Some members of the high-speed microcontroller family incorporate internal SRAM for additional data 
storage. This memory is addressed via MOVX commands, and is in addition to the 256 bytes of 
scratchpad memory. On-chip data memory begins at address 0000h and is contiguous through the amount 
of on-chip memory. Exceeding the maximum address of on-chip memory will cause the device to 
perform an external memory access using the Expanded memory bus on ports 0 and 2. For example, if the 
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on-chip program memory is 1kB, then it lies between 0000h and 03FFh in a contiguous area. A MOVX 
instruction affecting memory location 0400h would be directed to the expanded bus. 
 
Another advantage of internal data memory is that it guarantees a two-machine cycle data memory 
access.  This data can be made nonvolatile on the DS87C530 through the use of an external battery.  
Restricting memory operations within the on–chip memory allows ports 0 and 2 to be used for general 
purpose I/O.  For more information concerning memory size for a specific device, consult the 
corresponding data sheet. 
 
Upon a power-on reset, the internal data memory area is disabled and transparent to the system map.  Any 
memory access between 0000h and FFFFh will be directed to the Expanded bus.  This allows the device 
to remain drop-in compatible with existing 87C52 designs.  To enable the internal SRAM area, software 
must configure the Data Memory Enable bits DME1, DME0 (PMR.1-0).  The three memory 
configurations shown in Table 6-A are supported to allow either external data memory access via the 
expanded bus, internal data memory access, or read-only access to the EPROM System Control Byte. 
Note that these bits are cleared after a reset, so access to the internal data memory is prohibited until these 
bits are modified. The contents of internal data memory are not affected by the changing of the Data 
Memory Enable bits. 
 
Table 6-A. Data Memory Access Control 

DME1 DME0 DATA MEMORY ADDRESS RANGE DATA MEMORY LOCATION 
0 0 0000h–FFFFh External Data Memory (default) 

0 1 0000h–03FFh 
0400h–FFFFh 

Internal Data Memory 
External Data Memory 

1 0 Reserved Reserved 

1 1 

0000h–03FFh 
0400h–FFFBh 
FFFCh 
FFFDh–FFFFh 

Internal Data Memory 
Reserved 
System Control Byte (Read only) 
Reserved 

 
ROMSIZE Feature 
Members of the high-speed microcontroller family that incorporate internal program memory allow the 
system to dynamically vary the on-chip memory size. This permits the device to reconfigure the upper 
limit of on-chip memory, allowing a portion of the memory to be mapped off-chip. The size of on-chip 
memory can vary from 0kB to the full range of memory, allowing the device to behave like a device with 
less on-chip memory. 
 
This feature has two primary uses. In the first instance, it allows the device to act as a bootstrap loader for 
a flash memory or nonvolatile SRAM (NV SRAM). The internal program memory can contain a 
bootstrap loader, which can program the external memory device. Secondly, this method can be used to 
increase the amount of available program memory from 64kB to 80kB without bank switching. 
 
The maximum amount of on-chip memory is selected by configuring the ROM Size Select register bits 
RMS2, RMS1, RMS0 (ROMSIZE.2-0). The modification of the ROMSIZE register must be followed by 
a two-machine cycle delay, such as executing two NOP instructions, before jumping to the new address 
range. Interrupts must be disabled during this operation, because a jump to the interrupt vector during the 
changing of the memory map can cause erratic results. In addition, modification of the ROMSIZE register 
must be done from a location that will be valid both before and after the on-chip memory configuration.  
If off-chip memory access is planned, it is recommended that ports 0 and 2 not be used as general purpose 
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I/O, as their state will be disturbed by the memory operations. The settings for the ROM Size Select 
register are shown in Table 6-B. Note that the memory configurations shown are not available on all 
devices. 
 
Table 6-B. ROMSIZE Register Settings 

RMS2 RMS1 RMS0 MAX ON-CHIP ROM 
(kB) 

0 0 0 0 
0 0 1 1 
0 1 0 2 
0 1 1 4 
1 0 0 8 
1 0 1 16 
1 1 0 32 
1 1 1 64 

 
After reset, a device with internal program memory will reset the ROMSIZE bits to their default setting. 
This will be the maximum amount of on-chip memory for that device. The procedure to reconfigure the 
amount of on-chip memory is as follows: 
 
1) Jump to a location in program memory that will be unaffected by the change. 
2) Disable interrupts by clearing the EA bit (IE.7). 
3) Write AAh to the Timed Access Register (TA;C7h). 
4) Write 55h to the Timed Access Register (TA;C7h). 
5) Modify the ROM Size Select bits (RMS2-RMS0). 
6) Delay 2 machine cycles (2 NOP instructions). 
7) Enable interrupts by setting the EA bit (IE.7). 
 
If the 0kB of internal program memory setting is selected, extra precautions must be taken. In this case, it 
will be necessary to duplicate the interrupt vector table in external program memory. This is because the 
interrupt vector table is located in the lower 1kB of memory, and the device will automatically redirect 
any fetches from the interrupt vector table to external memory. Care must be exercised when assembling 
or compiling the program so that all the modules are located at the correct starting address, including the 
interrupt vector table. 
 
6.3 Program Memory Interconnect 
Figure 6-1 shows the program memory interconnect scheme for the high-speed microcontroller family. 
This example uses the DS80C320 and one 32kB x 8 EPROM. The program store enable (PSEN) signal is 
used to provide an output enable to the EPROM. It can also be used to provide a chip enable, but this 
produces less favorable timing. The address LSB and data are multiplexed on port 0, and the address 
MSB is provided on port 2. An external latch, shown in the diagram as a 74F373, is used to latch the 
lower byte of the address to the memory device. The Address Latch Enable (ALE) signal controls the 
timing of the latch so that the operation is performed in the proper sequence. The signals and relative 
timing for a program access are shown in Figure 6-2. 
 
When implementing a high-speed memory interface, the F series (or faster) logic should be used. HC 
logic will have worst-case propagation delays that are too long. Specifications for all devices should be 
checked. More information on memory interface timing can be found in Application Note 57: DS80C320 
Memory Interface Timing and Application Note 85: High-Speed Microcontroller Interface Timing. 
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The first product in the family, the DS80C320, provides an extremely high-speed interface to external 
ROM or EPROM. This assures that the user can use the slowest, and least expensive, memory device for 
a given crystal speed. The DS80C320 provides very fast slew rates, but controls ringing and overshoot. 
Fast slew rates allow the maximum possible time for memory access. In most cases, however, these 
aspects will be transparent to the user. Refer to the electrical specifications for exact timing of each 
product. 
 
6.4 Data Memory Interconnect 
As described in Section 4, the high-speed microcontroller provides a small amount of RAM mapped as 
registers for on-chip direct access. This is not considered data memory and does not fall into the memory 
map. Systems that require more RAM or memory mapped peripherals must use the data memory area. 
This segment is a 64kB space located between 0000h and FFFFh. It is reached using the MOVX 
instruction.  Any use of this instruction automatically accesses the data area.  Although, the original 8051 
convention placed all data memory off-chip, many members of the high-speed microcontroller family 
contain some data memory on-chip. 
 
From a software standpoint, the physical location of the data area is not relevant because the same 
instructions are used. Like the program segment, if software accesses a data address that is above the on-
chip data area, this access will automatically be routed to the expanded bus. Thus data or peripherals that 
are off-chip can be used in conjunction with on-chip memory by selecting addresses that do not overlap.  
As an example, if the microcontroller has 1kB of on-chip data memory, then a MOVX instruction at 
location 0400h will be directed off-chip via the Expanded bus. 
 
The physical connection of off-chip data memory is shown in Figure 6-3. This illustrates a DS80C320 
with interfaced with an 8kB SRAM. The data memory map begins at address 0000h since the DS80C320 
has no on-chip data memory. A similar interconnection scheme would be implemented if a device with 
internal data memory, such as the DS87C520 would be used. Note that any external memory that 
overlapped the range of on-chip data memory would not be used. 
 
Figure 6-1. Program Memory Interface  
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Figure 6-2. Program Memory Signals  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6-3. Data Memory Interface  
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uses the value in the designated working register to address one of 256 locations. The upper byte of the 
address is supplied by the value in the Port 2 latch. A second way to access data is the Data Pointer 
(DPTR). This 16-bit register provides an absolute address for data memory access; 16-bits cover the 
entire 64kB area, thus the DPTR serves as a pointer to memory. Using the DPTR, the relevant instruction 
is MOVX @DPTR. 
 
The original 8051 contained one DPTR. While this provides access to the entire memory area, it is 
difficult to move data from one address to another. The high-speed microcontroller provides two data 
pointers. Thus software can load both a source and a destination address. The MOVX instruction will use 
the active pointer to direct the off-chip address.  
 
The data pointers are called DPTR0 and DPTR1. DPTR0 is located at SFR addresses 82h and 83h. These 
are the locations used by the original 8051. No modification of standard code is needed to use DPTR0.  
The new DPTR is located at SFR 84h and 85h. The Data Pointer Select bit (SEL) chooses the active 
pointer and is located at the LSb of the SFR location 86h. No other bits in register 86h have any effect 
and are set to 0.  When DPS is set to 0, the DPTR0 is active. When set to 1, DPTR1 is used. 
 
The user switches between data pointers by toggling the SEL bit.  The INC instruction is the fastest way 
to accomplish this.  All DPTR-related instructions use the currently selected DPTR for any activity.  
Therefore only one instruction is required to switch from a source to a destination address.  Using the 
Dual Data Pointer saves code from needing to save source and destination addresses when doing a block 
move.  Once loaded, the software simply switches between DPTR0 and DPTR1.  Sample code listed 
below illustrates the saving from using the dual DPTR. The relevant register locations are summarized as 
follows. 
 
DPL 82h Low byte original DPTR 
DPH 83h High byte original DPTR 
DPL1 84h Low byte new DPTR1 
DPH1 85h High byte new DPTR1 
DPS 86h DPTR Select (LSb) 
 
The example program listed below was original code written for an 8051 and requires a total of 1869 
machine cycles on the DS80C320. This takes 299µs to execute at 25MHz. The new code using the Dual 
DPTR requires only 1097 machine cycles taking 175.5µs. The Dual DPTR saves 772 machine cycles or 
123.5µs for a 64-byte block move. Since each pass through the loop saves 12 machine cycles when 
compared to the single DPTR approach, larger blocks gain more efficiency using this feature. 
 
A typical application of the Dual Data Pointer is moving data from an external RAM to a memory-
mapped display. Another application would be to retrieve data from a stored table, process it using a 
software algorithm, and store the result in a new table. 
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64-Byte Block Move With Dual Data Pointer 
; SH and SL are high and low byte source address. 
; DH and DL are high and low byte of destination address. 
; DPS is the data pointer select. Reset condition DPTR0. 
   # CYCLES 
DPS  EQU 86h  ; TELL ASSEMBLER ABOUT DPS 
MOV   R5, #64   ; NUMBER OF BYTES TO MOVE   2 
MOV   DPTR, #DHDL  ; LOAD DESTINATION ADDRESS   3 
INC   DPS    ; CHANGE ACTIVE DPTR    2 
MOV   DPTR, #SHSL  ; LOAD SOURCE ADDRESS    2 
 
MOVE: 
; THIS LOOP IS PERFORMED R5 TIMES, IN THIS EXAMPLE 64 
MOVX  A, @DPTR   ; READ SOURCE DATA BYTE    2 
INC   DPS    ; CHANGE DPTR TO DESTINATION   2 
MOVX  @DPTR, A   ; WRITE DATA TO DESTINATION   2 
INC   DPTR   ; NEXT DESTINATION ADDRESS   3 
INC   DPS    ; CHANGE DATA POINTER TO SOURCE  2 
INC   DPTR   ; NEXT SOURCE ADDRESS    3 
DJNZ  R5, MOVE   ; FINISHED WITH TABLE?    3 
 
 
64-Byte Block Move Without Dual Data Pointer 
; SH and SL are high and low byte source address. 
; DH and DL are high and low byte of destination address. 

# CYCLES 
MOV   R5, #64d   ; NUMBER OF BYTES TO MOVE   2 
MOV   DPTR, #SHSL  ; LOAD SOURCE ADDRESS    3 
MOV   R1, #SL   ; SAVE LOW BYTE OF SOURCE   2 
MOV   R2, #SH   ; SAVE HIGH BYTE OF SOURCE   2 
MOV   R3, #DL   ; SAVE LOW BYTE OF DESTINATION  2 
MOV   R4, #DH   ; SAVE HIGH BYTE OF DESTINATION  2 
 
MOVE: 
; THIS LOOP IS PERFORMED R5 TIMES, IN THIS EXAMPLE 64 
MOVX  A, @DPTR   ; READ SOURCE DATA BYTE    2 
MOV   R1, DPL   ; SAVE NEW SOURCE POINTER   2 
MOV   R2, DPH   ;        2 
MOV   DPL, R3   ; LOAD NEW DESTINATION    2 
MOV   DPH, R4   ;        2 
MOVX  @DPTR, A   ; WRITE DATA TO DESTINATION   2 
INC   DPTR   ; NEXT DESTINATION ADDRESS   3 
MOV   R3, DPL   ; SAVE NEW DESTINATION POINTER  2 
MOV   R4, DPH   ;        2 
MOV   DPL, R1   ; GET NEW SOURCE POINTER   2 
MOV   DPH, R2   ;        2 
INC   DPTR   ; NEXT SOURCE ADDRESS    3 
DJNZ  R5, MOVE   ; FINISHED WITH TABLE?    3 
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6.6 Data Memory Timing 
Data memory timing refers to the execution of the MOVX instruction. This instruction includes a 
program fetch memory access, then a read or write memory access. The program fetch for a MOVX 
instruction is no different from any other instruction. The unique timing occurs for the second memory 
operation when data is accessed. 
 
As described in Section 5, the high-speed microcontroller uses four oscillator clocks for each machine 
cycle. A machine cycle involves one memory access. Generally, an instruction using two memory 
accesses would be a two-machine cycle instruction (except for branches, MUL, DIV, INC DPTR, 
MOVC, and MOVX). The MOVX instruction is unique in that the user determines the time allowed for a 
data memory access. This feature is called the Stretch MOVX instruction. 
 
The high-speed microcontroller allows the application software to adjust the speed of data memory 
access. The microcontroller is capable of performing the MOVX in as little as two machine cycles. Since 
one machine cycle is used for the program fetch, this leaves one machine cycle to perform the actual data 
memory access. However, this value can be adjusted as needed so that both fast memory and slow 
memory or peripherals can be accessed with no glue logic. Even in high-speed systems, it may not be 
necessary to perform data memory access at full speed. In addition, there are a variety of slower memory 
mapped peripherals such as LCD displays or UARTs. 
 
When using a MOVX instruction, the user controls the time for which a read or write strobe is kept 
active. Setup and hold times are also adjusted. The Stretch value will be selected to provide a long enough 
memory strobe to satisfy the access time of the target device. 
 
The Stretch MOVX is controlled by a value in a special function register described below. This allows the 
user to select a stretch value between zero and seven. A Stretch of zero will result in a two-machine cycle 
MOVX.  This leaves one machine cycle to actually read or write data. A Stretch of seven will result in a 
MOVX of nine cycles. The time is added to the middle of the memory strobe, creating a very long read or 
write cycle. The Stretch value can be changed dynamically under software control depending on the type 
of memory or peripheral to be accessed. 
 
On reset, the Stretch value will default to a one, resulting in a three cycle MOVX. Therefore, data 
memory access will not be performed at full speed. This is a convenience to existing designs that may not 
have fast RAM in place. When maximum speed is desired, the software should select a Stretch value of 
zero. Note that faster RAMs will be needed. When using very slow RAM or peripherals, a larger stretch 
value can be selected. Note that this affects data memory only and the only way to slow program memory 
(ROM) access is to use a slower crystal. 
 
Using a Stretch value between one and seven results in a wider read/write strobe allowing more time for 
memory/peripherals to respond. The microcontroller stretches the read/write strobe and all related timing. 
The full speed access is shown in Figure 6-4. Note that this is not the reset default case. A three-cycle 
MOVX is shown in Figure 6-5. This is the reset default condition. To modify the MOVX timing, the 
Stretch value in the Clock Control register described below must be changed. Figure 6-6 shows the timing 
for a four cycle MOVX (Stretch = 2). 
 
Table 6-C shows the resulting strobe widths for each Stretch value. The memory stretch is implemented 
using the clock control SFR at SFR location 8Eh. The stretch value is selected using bits CKCON.2-0. In 
the table, these bits are referred to as M2 through M0. Note that the Stretch time can be dynamically 
varied, allowing fast RAM’s but slow peripherals. The first stretch allows the use of common 120ns or 
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150ns RAMs without dramatically lengthening the memory access. Note that the first Stretch value does 
not follow the pattern of adding four clocks to the strobe. This is because the first Stretch uses one clock 
to create additional setup and one clock to create additional hold time. Systems using a Stretch cycle of 
zero are presumed to be fast enough or to be running at a slower clock speed. Since the Stretch is based 
on crystal timing, the resulting pulse widths must be viewed on the basis of the real system timing. 
 

Table 6-C. Data Memory Cycle Stretch Values  
CKCON.2–0 RD OR WR STROBE WIDTH 

M2 M1 M0 MEMORY CYCLES IN CLOCK t at 25MHz t at 12MHz 
0 0 0 2 2 80ns 167ns 
0 0 1 3 (default) 4 160ns 333ns 
0 1 0 4 8 320ns 667ns 
0 1 1 5 12 480ns 1000ns 
1 0 0 6 16 640ns 1333ns 
1 0 1 7 20 800ns 1667ns 
1 1 0 8 24 960ns 2000ns 
1 1 1 9 28 1120ns 2333ns 

 
Note: These numbers represent nominal values. Actual timing may vary slightly. 
 

Figure 6-4. Full-Speed MOVX Instruction  
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Figure 6-5. Three-Cycle MOVX Instruction  
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Figure 6-6. Four-Cycle MOVX Instruction  
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7. POWER MANAGEMENT 
The high-speed microcontroller has several features that relate to power consumption and management. 
They provide a combination of controlled operation in unreliable power applications and reduced power 
consumption in portable or battery-powered applications. The range of features is shown below with 
details to follow. 
 
Power Management: 
Early Warning Power-Fail Interrupt 
Power-Fail/Power-On Reset 
Bandgap Select 
Watchdog Wake Up from Idle 
 
Power Saving: 
Idle Mode 
Stop Mode 
Ring Wake Up from Stop 
Power Management Modes 
 
Precision Voltage Monitor 
The high-speed microcontroller uses a precision bandgap reference and other analog circuits to monitor 
the state of the power supply during power-up and power-down transitions. Other microcontroller 
systems would require external circuits to perform these functions. The bandgap reference provides a 
precise voltage to compare with VCC. When VCC begins to drop, the power monitor compares it to its 
reference. This enables the analog circuits to detect when VCC passes through predetermined thresholds, 
VPFW and VRST. These are specified in the individual product data sheets. 
 
7.1 Power Management Features 
 
7.1.1 Early Warning Power-Fail Interrupt 
Devices that incorporate the precision voltage reference have the ability to generate a power-fail interrupt 
and/or reset in response to a low supply voltage. When VCC reaches the VPFW threshold, the 
microcontroller can generate a power-fail interrupt. This early warning of supply voltage failure allows 
the system time to save critical parameters in nonvolatile memory and put external functions in a safe 
state. 
 
The power-fail interrupt is optional and is enabled using the enable power-fail warning interrupt (EPFI) 
bit at WDCON.5. If enabled, VCC dropping below VPFW will cause the device to vector to address 33h. 
The power-fail Interrupt status bit, PFI (WDCON.4), will be set anytime VCC transitions below VPFW. 
This flag is not cleared when VCC is above VPFW, and software should clear it immediately after reading 
it. As long as the condition exists, PFI will be immediately set again by hardware. 
 
A typical application of the PFI is to place the device into a “safe mode” when a power loss appears 
imminent. When the interrupt occurs, the code vectors to location 33h. At this time, software can disable 
the interrupt, save any critical data, clear PFI, and then continually poll the status of the power supply via 
the PFI flag.  As long as PFI is set, power is still below VPFW. If power returns to the proper level, PFI 
will not be set once cleared by software. This indicates a safe operating condition. If power continues to 
fall, a power-fail reset will be invoked automatically. 
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7.1.2 Power-Fail Reset 
Devices that incorporate the power-fail reset will automatically invoke a reset when VCC drops below 
VRST. This will halt device operation, and place all outputs in their reset state. This state will continue to 
be held until VCC drops below the voltage necessary to power the port pins. Because VRST is lower than 
VPFW, the microcontroller has the option to use the power-fail interrupt to place the device into a “safe” 
state before the device halts operation with a power-fail reset. This feature is automatic on devices that 
incorporate the power-fail reset feature, and cannot be disabled, except during Stop mode when the BGS 
bit is 0. 
 
7.1.3 Power-On Reset 
When VCC is applied to a system using the high-speed microcontroller, the device will hold itself in reset 
until power is within tolerance and stable. It requires no external circuits to accomplish this. As power 
rises, the processor will stay in a reset state until VCC > VRST. As VCC rises above VRST, internal analog 
circuits will detect this and activate the on-chip crystal oscillator. On-chip hardware will then count 
65,536 oscillator clocks. During this count, VCC must remain above VRST or the process restarts. If an off-
chip clock source is used, clock counting still begins once VCC > VRST. This count period is used to make 
certain that power is within tolerance, and that the oscillator has time to stabilize.  This provides a very 
controlled and predictable startup condition. 
 
Once the 65,536 count period has elapsed, the reset condition is removed automatically, and software 
execution will begin at the reset vector location of 0000h. Software will be able to detect the power-on 
reset condition using the power-on reset (POR) flag. POR is located at WDCON.6. This bit will be high 
to indicate that a power-on reset has occurred. It should then be cleared by software. 
 
The complete power cycle operation is shown in Figure 7-1. Note that the interrupt threshold is fixed, but 
the interrupt itself is optional. Reset thresholds are also fixed and the reset operation is transparent. It 
requires no external components and no action by software to control reset operation. 
 
7.1.4 Bandgap Select 
When present, the bandgap reference will provide a precise voltage reference for the power-fail monitor 
circuitry. The bandgap is normally disabled automatically upon entering Stop mode to provide the lowest 
power state. Since the bandgap is inactive, there can be no power-fail interrupt and no power-fail reset, 
similar to a traditional 8051. 
 
If the use of the power-fail features are desired in Stop mode, the BGS bit (EXIF, 91h) may be used. 
When set to a logic 1 by software, the bandgap reference and associated power monitor circuits will 
remain active in Stop mode. The price of this feature is higher power supply current requirements. 
 
BGS allows the user to decide whether the control circuitry and its associated power consumption are 
needed. If the application is such that power will not fail while in Stop or if it does not matter that power-
fails, the BGS should be set to 0 (default). If power can fail at any time and cause problems, the BGS 
should be set to 1. 
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Figure 7-1. Power Cycle Operation  
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indicates that the timeout has passed. If the watchdog reset is enabled (WDCON.1), the user has 512 
clocks to strobe the watchdog prior to a reset.  Software or any reset can clear this flag. 
 
WDCON.2: WTRF, Watchdog Timer-Reset Flag. Hardware will set this bit when the watchdog timer 
causes a reset. Software can read it, but must clear it manually. A power-fail reset will also clear the bit. 
This bit assists software in determining the cause of a reset. If EWT = 0, the watchdog timer will have no 
affect on this bit. 
 
WDCON.1: EWT, Enable Watchdog Timer Reset. Setting this bit will turn on the watchdog timer 
reset function. The interrupt will not occur unless the EWDI bit in the EIE register is set. A reset will 
occur according to the WD1 and WD0 bits in the CKCON register. Setting this bit to a 0 will disable the 
reset but leave the timer running. 
 
WDCON.0: RWT, Reset Watchdog Timer. This bit serves as the strobe for the watchdog function. 
During the timeout period, software must set the RWT bit if the watchdog is enabled. Failing to set the 
RWT will cause a reset when the timeout has elapsed. There is no need to set the RWT bit to a 0 because 
it is self-clearing. 
 
EIE.4: EWDI, Enable Watchdog Interrupt. Setting this bit in software enables the watchdog interrupt. 
 
EXIF.0: BGS, Bandgap Select. Setting this bit to a 1 will allow the use of the bandgap voltage reference 
while in Stop mode. Since this function uses as much as 50mA, the bandgap is optional in Stop mode. 
Setting this bit to a 0 will turn off the bandgap while in Stop mode. When BGS=0, no power-fail interrupt 
or power-fail reset will be available in Stop mode. 
 
PCON.1: STOP. When this bit is set, the program stops execution, clocks are stopped, and the CPU 
enters power-down mode. 
 
PCON.0: IDLE. Program execution halts leaving timers, serial ports, and clocks running. 
 
EXIF.2: RGMD, Ring Oscillator Mode. Hardware will set this status bit to a 1 when the clock source is 
the ring oscillator. Hardware will set this status bit to a 0 when the crystal is the clock source. Refer to 
RGSL below for operation of the ring oscillator. 
 
EXIF.1: RGSL, Ring Oscillator Select. When set to a 1 by software, the high-speed microcontroller 
will use a ring oscillator to come out of Stop mode without waiting for crystal startup. This allows an 
instantaneous startup when coming out of Stop mode. It is useful if software needs to perform a short 
task, then return to Stop. It is also useful if software must respond quickly to an external event. After the 
crystal has performed 65,536 cycles, hardware will switch to the crystal as its clock source. The RGMD 
status bit reports on this changeover. When RGSL is set to a 0, the high-speed microcontroller will delay 
software execution until after the 65,536 clock crystal startup time. RGSL is only cleared by a power-on 
reset and is not altered by other forms of reset. 
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7.2 Power Conservation 
The high-speed microcontroller is implemented using full CMOS circuitry for low power operation. It is 
fully static so the clock speed can be run down to DC. Like other CMOS, the power consumption is also a 
function of operating frequency. Although the high-speed microcontroller is designed for maximum 
performance, it also provides improved power versus work relationships compared with standard 8051 
devices. These topics are discussed in detail below. 
 
The high-speed microcontroller provides two power conservation modes. They are similar, but have 
different merits and drawbacks. These modes are Idle and Stop. In the original 8051, the Stop mode is 
called power-down. These modes are invoked in the same manner as the original 8051 series. 
 

7.2.1 Idle Mode 
Idle mode suspends all CPU processing by holding the program counter in a static state. No program 
values are fetched and no processing occurs. This saves considerable power versus full operation. The 
virtue of Idle mode is that it uses half the power of the operating state, yet reacts instantly to any interrupt 
conditions. All clocks remain active so the timers, Watchdog, Serial Port, and Power Monitor functions 
are all working. Since all clocks are running, the CPU can exit the Idle state using any of the interrupt 
sources. 
 
Software can invoke the Idle mode by setting the IDLE bit in the PCON register at location 87h. The bit 
is located at PCON.0. The instruction that executes this step will be the last instruction prior to freezing 
the program counter. Once in Idle, all resources are preserved. There are two ways to exit the Idle mode. 
First, any interrupt (that is enabled) will cause an exit. This will result in a jump to the appropriate 
interrupt vector. The IDLE bit in the PCON register will be cleared automatically. On returning from this 
vector using the RETI instruction, the next address will be the one immediately after the instruction that 
invoked the Idle state. 
 
The Idle mode can also be removed using a reset. Any of the three reset sources can do this. On receiving 
the reset stimulus, the CPU will be placed in a reset state and the Idle condition cleared. When the reset 
stimulus is removed, software will begin execution as for any reset. Since all clocks are active, there will 
be no delay after the reset stimulus is removed. Note that if enabled, the Watchdog Timer continues to run 
during Idle and must be supported. 
 
7.2.2 Stop Mode 
Stop mode is the lowest power state that the high-speed microcontroller can enter. This is achieved by 
stopping all on-chip clocks, resulting in a fully static condition. No processing is possible, timers are 
stopped, and no serial communication is possible. Processor operation will halt on the instruction that sets 
the STOP bit. The internal amplifier that excites the external crystal will be disabled, halting crystal 
oscillation in Stop mode. Table 7-A shows the state of the processor pins in Idle and Stop modes. 
 
Stop mode can be exited in two ways. First, like the 8052 microcontrollers, a non-clocked interrupt such 
as the external interrupts or the power-fail interrupt can be used. Clocked interrupts such as the watchdog 
timer, internal timers, and serial ports will not operate in Stop mode. Note that the bandgap reference 
must be enabled in order to use the power-fail interrupt to exit Stop mode, which will increase Stop mode 
current. Processor operation will resume with the fetching of the interrupt vector associated with the 
interrupt that caused the exit from Stop mode. When the interrupt service routine is complete, an RETI 
will return the program to the instruction immediately following the one that invoked the Stop mode. 
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A second method of exiting Stop mode is with a reset. The watchdog timer reset is not available as a reset 
source because no timers are running in Stop mode. An external reset via the RST pin will 
unconditionally exit the device from Stop mode. If the BGS bit is set, the device will provide a reset 
while in Stop mode if VCC should drop below the VRST level. If the BGS bit is 0, then a dip in power 
below VRST will not cause a reset. For example, if VCC should drop to a level of VRST -0.5V, then return to 
the full level, no reset will be generated. For this reason, use of the bandgap reference is recommended if 
a brownout condition is possible in Stop mode. If power-fails completely (VCC = 0V), then a power on 
reset will still be performed when VCC is reapplied regardless of the state of the BGS bit. Processor 
operation will resume execution from address 0000h like any other reset. 
 
Crystal Resume from Stop Mode 
If the microcontroller does not contain a ring oscillator, or if the RGSL bit is 0, a device exiting Stop 
mode must restart operation using the external crystal as a clock source. The device will experience a 
power-on reset delay of 65,536 external clock cycles to allow the crystal to begin oscillation and the 
frequency to stabilize. Once this delay is complete, software will begin execution from either address 
0000h or the appropriate interrupt vector, depending on the stimulus to exit Stop mode. The same 65,536 
external clock cycle delay is performed if an external crystal oscillator is used instead of an external 
crystal. 
 
Table 7-A. Pin States in Power Saving Modes  

DEVICE MODE ALE PSEN P0 (AD0–7) P1 P2 P3 
DS80C310 
DS80C320 Idle or Stop 1 1 Latched1 Port data2 Latched3 Port data2 

All Others 
Internal program 
execution 

Idle or Stop 1 1 Port data2 Port data2 Port data2 Port data2 

All Others 
External program 
execution 

Idle 1 1 Latched1 Port data2 Latched3 Port data2 

All Others 
External program 
execution 

Stop 1 1 Port data 2 Port data2 Port data4 Port data2 

 
1Port exhibits op code following instruction that sets the Stop bit.  Port 0 is operating in true bidirectional mode, and will drive both a logic 1 and 

a logic 0. 
2Port reflects data stored in corresponding Port SFR. Port 0 functions as an open-drain output in this mode. 
3Port exhibits address MSB of op code following instruction that sets the Stop bit. 
4Port reflects data stored in corresponding Port SFR. In this mode, the port uses weak pullups. If a bit in the P2 SFR is a 1, the corresponding 

device pin will transition slowly to a high when the reset state is entered. 
 
7.2.3 Ring Oscillator Wake Up from Stop 
A typical low-power application method is to keep the processor in Stop mode most of the time. 
Periodically, the system will wake up (using an external interrupt), take a reading of some condition, then 
return to sleep. The duration of full power operation is as short as possible. One disadvantage to this 
method is that the clock must be restarted prior to performing a meaningful operation. This startup period 
is a waste of time and power since no work can be performed. The high-speed microcontroller provides 
an alternative. 
 
If the Ring Select (RGSL) is enabled, the high-speed microcontroller can exit Stop mode running from an 
internal Ring Oscillator. Upon receipt of an interrupt, this oscillator can start instantaneously, allowing 
software execution to begin immediately while the oscillator is stabilizing. Once 65,536 clock cycles have 
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been detected, the CPU will automatically switch to the normal oscillator as its clock source. Some 
devices incorporate the option of continuing to run from the ring oscillator following Stop mode even 
after the 65,536 clock cycle period. However, if the required interrupt response is very short, the software 
can re-enter Stop mode before the crystal is even stable. In this case, Stop mode can be invoked and both 
oscillators will be stopped. 
 
Speed Reduction 
The high-speed microcontroller is a fully CMOS 8051-compatible microcontroller. It can use 
significantly less power than other 8051 versions because it is more efficient. As an average, software 
will run 2.5 times faster on the high-speed microcontroller than on other 8051 derivatives. The same job 
can be accomplished by slowing down the crystal by a factor of 2.5. For example, an existing 8051 design 
that runs at 12MHz can run at approximately 4.8MHz on the high-speed microcontroller. At this reduced 
speed, the high-speed microcontroller will have lower power consumption than an 8051, yet perform the 
same job. 
 
Using the 2.5x factor, Table 7-B shows the approximate speed at which the high-speed microcontroller 
can accomplish the same work as an 8051. The exact improvement will vary depending on the actual 
instruction mix. Available crystal speeds must also be considered. Refer to Section 16 for information on 
instruction timing. 
 
Table 7-B. Crystal vs. MIPS Comparison  

ORIGINAL 8051 
CRYSTAL SPEED 

(MHz) 
MIPS 

HIGH-SPEED 
MICROCONTROLLER 

CRYSTAL SPEED (MHz) 
3.57 0.3 1.4 
7.37 0.6 2. 

11.0592 0.9 4.4 
14.318 1.2 5.7 

16 1.3 6.4 
20 1.6 8 
24 2.0 9.6 
33 2.7 13.2 
40 3.3 16 

 
7.3 Power Management Modes 
Power consumption in CMOS microcontrollers is a function of operating frequency. The Power 
Management Mode (PMM) feature, available with some members of the high-speed microcontroller 
family, allows software to dynamically match operating frequency and current consumption with the need 
for processing power. Instead of the default 4 clocks per machine cycle, power management mode 1 
(PMM1) and power management mode 2 (PMM2) utilize 64 and 1024 clocks per cycle respectively to 
conserve power. 
 
A number of special features have been added to enhance the function of the power management modes. 
The switchback feature allows the device to almost instantaneously return to divide-by-4 mode upon 
acknowledgment of an external interrupt or a falling edge on a serial port receiver pin. The advantages of 
this become apparent when one calculates the increased interrupt service time of a device operating in 
PMM. In addition, a device operating in PMM would normally be unable to sample an incoming serial 
transmission to properly receive it.  The switchback feature, explained below, allows a device to return to 
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divide-by-4 operation in time to receive incoming serial port data and process interrupts with no loss in 
performance. 
The DS87C520 and DS87C530 incorporate a Status register (STATUS;C5h) to prevent the device from 
accidentally reducing the clock rate during the servicing of an external interrupt or serial port activity.  
This register can be interrogated to determine if a high priority, low priority, or power-fail interrupt is in 
progress, or if serial port activity is occurring.  Based on this information the software can delay or reject 
a planned change in the clock divider rate. 
 
In addition, the DS87C520 and DS87C530 can operate from the internal ring oscillator during normal 
operation, not only during the crystal warm-up period. Table 7-C summarizes the new control bits 
associated with the power management features. 
 
Table 7-C. Power Management and Status Bit Summary  

BIT NAME LOCATION FUNCTION RESET 
STATE 

READ/WRITE 
ACCESS 

CD1, CD0 PMR.7–6 

Clock Divider Control 
CD1 CD0 Osc Cycles per Machine Cycle 
0 0 Reserved 
0 1 4 (Reset Default) 
1 0 64 (PMM1) 
1 1 1024 (PMM2) 

0,1 

Write: 0,1 anytime; 
1,0 & 1,1 only when 

previously in 0,1 
state.  Unrestricted 

read. 

SWB PMR.5 

Switchback Enable 
0=Interrupts and serial port activity will  not affect 
clock divider control bits 
1=Enabled Interrupts and serial port  activity will 
cause a switchback 

0 Unrestricted 

PIP STATUS.7 
Power-fail Interrupt Status 
0=No power-fail interrupt in progress 
1=Power-fail interrupt in progress 

0 Read Only 

HIP STATUS.6 
High Priority Interrupt Status 
0=No high priority interrupt in progress 
1=High priority interrupt in progress 

0 Read Only 

LIP STATUS.5 
Low Priority Interrupt Status 
0=No low priority interrupt in progress 
1=Low priority interrupt in progress 

0 Read Only 

SPTA1 STATUS.3 
Serial Port 1 Transmitter Activity Status 
0=Serial port 1 transmitter inactive 
1=Serial port 1 transmitter active 

0 Read Only 

SPRA1 STATUS.2 
Serial Port 1 Receiver Activity Status 
0=Serial port 1 receiver inactive 
1=Serial port 1 receiver active 

0 Read Only 

SPTA0 STATUS.1 
Serial Port 0 Transmitter Activity Status 
0=Serial port 0 transmitter inactive 
1=Serial port 0 transmitter active 

0 Read Only 

SPRA0 STATUS.0 
Serial Port 0 Receiver Activity Status 
0=Serial port 0 receiver inactive 
1=Serial port 0 receiver active 

0 Read Only 

 
Power Management Mode Timing 
The two power management modes reduce power consumption by internally dividing the clock signal to 
the device, causing it to operate at a reduced speed. When PMM is invoked, the external crystal will 
continue to operate at full speed. The difference is that the device uses 16 (PMM1) or 256 (PMM2) 
external clocks to generate each internal clock cycle (C1, C2, C3 or C4) as opposed to 1 clock per internal 
clock cycle in divide-by-4 mode. This translates to 64 or 1024 external clocks per machine cycle in 
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PMM1 or PMM2, respectively. Relative timing relationships of all signals when the device is operating in 
PMM1 or PMM2 will remain the same as the 4-cycle timing. Note that all internal functions, on-board 
timers (including serial port baud rate generation), watchdog timer, and software timing loops will also 
run at the reduced speed. Most applications will not find it necessary to attend to this much detail, but the 
information is provided for calculating critical timings. Figure 7-2 demonstrates the internal timing 
relationships during PMM1. 
 
Figure 7-2. Internal Timing Relationships in PMM1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PMM1 and PMM2 are entered and exited by setting the Clock Rate Divider bits (PMR.7-6). In addition, it 
is possible use the switchback feature to affect a return to the divide-by-4 mode from either power 
management mode. This allows both hardware and software to cause an exit from PMM. Entry to or exit 
from either PMM must be by the divide-by-4 mode. This means that to switch from divide-by-64 to 
divide-by-1024 and vice versa, one must first switch back to divide-by-4 mode. Attempts to execute an 
illegal speed change will be ignored and the bits will remain unchanged. It is the responsibility of the 
software to test for serial port activity before attempting to change speed, as a modification of the clock 
divider bits during a serial port operation will corrupt the data. 
 
PMM and Peripheral Functions 
Timers 0, 1, and 2 will default on reset to a 12 clock per cycle operation to remain compatible with the 
original 8051 timing. The timers can be individually configured to run at machine cycle timing (divide-
by-4) by setting the relevant bits in the Clock Control Register (CKCON;8Eh). Because the timers derive 
their timebase from the internal clock, timers 0, 1, and 2 operate at reduced clock rates during PMM. This 
will also affect the operation of the serial ports in PMM.  In general, it is not possible to generate standard 
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baud rates while in PMM, and the user is advised to avoid PMM or use the switchback feature if serial 
port operation is desired. Table 7-D shows the effect of the clock divider value on timer operation. 
 
Table 7-D. Effect of Clock Modes on Timer Operation  

OSC. CYCLES 
PER TIMER 
0/1/2 CLOCK 

OSC. CYCLES 
PER TIMER 2 

CLOCK, BAUD 
RATE GEN. 

OSC. CYCLES 
PER SERIAL 

PORT CLOCK 
MODE 0 

OSC. CYCLES PER 
SERIAL PORT 

CLOCK MODE 2 CD1 CD0 
OSC. CYCLES 

PER MACHINE
CYCLE 

TxM=1 TxM=0 T2M=1 T2M=0 SM2=0 SM2=1 SMOD=0 SMOD=1 
0 0 Reserved         
0 1 4 4 12 2 2 12 4 64 32 
0 0 64 (PMM1) 64 192 32 32 3072 64 1024 512 
1 1 1024 (PMM2) 1024 3072 512 512 1024 1024 16,348 8192 

 
Switchback 
The switchback feature solves one of the most vexing dilemmas faced by power-conscious systems. 
Many applications are unable to use the Stop and Idle modes because they require constant computation. 
Traditionally, system designers could not reduce the operating speed below that required to process the 
fastest event. This meant that system architects would be forced to operate their systems at the highest 
rate of speed even when it was not required. The switchback feature allows a system to operate at a 
relatively slow speed, and burst to a faster mode when required by an external event. When this feature is 
enabled by setting the Switchback Enable bit, SWB, (PMR.5), a qualified interrupt or serial port reception 
or transmission will cause the device to return to divide-by-4 mode. A qualified interrupt is defined as an 
interrupt that has occurred and been acknowledged. This means that an interrupt must be enabled and also 
not blocked by a higher priority interrupt. After the event is complete, software can manually return the 
device to the appropriate PMM. The following sources can trigger a switchback: 
 
� External interrupt 0/1/2/3/4/5 
� Serial start bit detected, serial port 0/1 
� Transmit buffer loaded, serial port 0/1 
� Watchdog timer reset 
� Power-on reset 
� External reset 
 
In the case of a serial port-initiated switchback, the switchback is not generated by the associated 
interrupt. This is because a device operating in PMM will not be able to correctly receive a byte of data to 
generate an interrupt. Instead, a switchback is generated by a serial port reception on the falling edge 
associated with the start bit, if the associated receiver enable bit (SCON0.4 or SCON1.4) is set. For serial 
port transmissions, a switchback is generated when the serial port buffer (SBUF0;99h or SBUF1;C1h) is 
loaded. This ensures the device will be operating in divide-by-4 mode when the data is transmitted, and 
eliminates the need for a write to the CD1, CD0 bits to exit PMM before transmitting. The switchback 
feature is unaffected by the state of the serial port interrupt flags (RI_0, TI_0, RI_1, TI_1). 
 
The timing of the switchback is dependent on the source. Interrupt-initiated switchbacks will occur at the 
start of the first C1 cycle following the event initiating the switchback. In PMM, each internal Cx cycle is 
16 external clock cycles for PMM1 and 256 cycles for PMM2. If the current instruction in progress is a 
write to the IE, IP, EIE, or EIP registers, interrupt processing will be delayed until the completion of the 
following instruction. Serial transmit-initiated switchbacks occur at the start of the instruction following 
the MOV that loads SBUF0 or SBUF1. Serial reception-initiated switchbacks occur during the Cx cycle 
in which the falling edge was detected. There are a few points that must be considered when using a serial 
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port reception to generate a switchback.  Under normal circumstances, noise on the line or an aborted 
transmission would cause the serial port to timeout and the data to be ignored. This presents a problem if 
the switchback is used, however, because a switchback would occur but there is no indication to the 
system that one has occurred. If PMM and serial port switchback functions are used in a noisy 
environment, the user is advised to periodically check if the device has accidentally exited PMM. A 
similar problem can occur if multiprocessor communication protocols are used in conjunction with PMM. 
The high-speed microcontroller family supports both the use of the SM2 flag (SCON0.5 or SCON1.5), 
and the slave address recognition registers (SADDR0;A9h, SADDR1;AAh, SADEN0;B9h, 
SADEN1;BAh) for multiprocessor communications. The problem is that an invalid address that should be 
ignored by a particular processor will still generate a switchback. As a result it is not recommended to use 
a multiprocessor communication scheme in conjunction with PMM. If the system power considerations 
will allow for an occasional erroneous switchback, a polling scheme can be used to place the device back 
into PMM. 
 
Clock Source Selection 
The high-speed microcontroller family supports three different clock sources for operation. As with most 
microcontrollers, the device can be clocked from an external crystal using the on-board crystal amplifier, 
or a clock source can supplied by an external oscillator. In addition, some members of the high-speed 
microcontroller family incorporate an on-board ring oscillator to provide a quick resumption from Stop 
mode.  The ring oscillator is a low power digital oscillator internal to the microcontroller. When enabled, 
it provides an approximately 2MHz–4MHz clock source for device operation without external 
components. The ring oscillator is not as stable as an external crystal, and software should refrain from 
performing timing dependent operations, including serial port activity, while operating from the ring 
oscillator. 
 
The ring oscillator provides many advantages to the designers of microcontroller-based systems. One is 
that it allows Dallas Semiconductor microcontrollers to perform a fast resume from Stop mode, 
eliminating the crystal warm-up delay when restarting the device. As an added feature, the DS87C520 
and DS87C530 will also support extended operation from the ring oscillator, not only during the crystal 
warm-up period when resuming from Stop. All devices in the high-speed microcontroller family must 
begin operation following a power-on reset from an external clock source, either an external crystal or 
oscillator. Software can then disable the crystal and run from the lower power ring oscillator. The control 
and status bits that support the new and/or enhanced features are shown in Table 7-E. 
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Table 7-E. Clock Control and Status Bit Summary  
BIT LOCATION FUNCTION RESET WRITE ACCESS 

XT/ RG  EXIF.3 

Crystal/Ring Clock Source Select. This bit is not present on 
the 80C320. 
1=Select crystal or external clock as clock source, 
0=Select ring oscillator as clock source 

1 
0 anytime; 

1 when XTUP = 1 
and XTOFF = 0 

RGMD EXIF.2 
Ring Oscillator Mode Status. 
1=Ring oscillator is current clock source, 
0=Crystal or external clock is current clock source. 

0 None 

RGSL EXIF.1 

Ring Oscillator Select, Stop Mode. 
1=Ring oscillator will be the clock source when resuming 
from Stop mode, 
0=Crystal or external clock will be the clock 
source when resuming from Stop mode 
Note: Upon completion of crystal warm up period, 
DS80C320 devices will switch to crystal. 
DS87C520 and DS87C530 devices will switch to clock 
source designated by XT/RG bit 

 Unrestricted 

XTOFF PMR.3 

Crystal Oscillator Disable. Disables crystal operation 
after ring mode has been selected. This bit is not present on 
the 80C320. 
1=Crystal amplifier is disabled. 
0=Crystal amplifier is enabled. Check XTUP for status. 

0 
0 anytime; 

1 when XT/ RG  = 0 

XTUP STATUS.4 

Crystal Oscillator Warm Up Status. This bit is 
not present on the 80C320. 
1=Oscillator warm-up complete. 
0=Oscillator warm-up still in progress, crystal not available. 

1 None 

 
Using the Ring Oscillator  
The ring oscillator is an internal 2MHz–4MHz clock source used to quickly exit Stop mode and resume 
operation without waiting for an external clock source to stabilize. Some devices feature the additional 
capability of using the ring oscillator as the primary clock source during normal operation, once the 
device has performed an initial power-on reset using an external clock source. Because the ring oscillator 
lacks the stability of a piezoelectric-generated clock source, high-precision timing operations should be 
avoided while running from the ring oscillator. This includes using the timers for pulse measurement, and 
the use of the serial ports in asynchronous modes. Serial ports operating in mode 0 are unaffected by the 
stability of the clock source because this mode utilizes a synchronizing clock. 
 
If the ring oscillator select bit, RGSL (EXIF.1) is set, the device will resume operation immediately using 
the internal ring oscillator as the clock source. The device will continue to run from the ring oscillator 
until the crystal warm-up period of 65,536 clock cycles (measured from the external source) has 
completed. At this time the device will switch to the clock source active before it entered Stop mode and 
continue operation. This allows software execution to begin immediately upon resuming from Stop mode. 
The ring oscillator mode bit, RGMD (EXIF.2), indicates the current clock source. In Stop mode, enabled 
interrupts become true edge triggered interrupts, compared with the sampled edge detection used during 
normal operation. This means that external interrupts are more sensitive to noise in Stop mode than 
during normal operation. Applications should be carefully designed to ensure that noise will not cause an 
erroneous exit from Stop mode. 
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Switching Between Clock Sources 
DS87C520 and DS87C530 incorporate the ability to run the device from the ring oscillator after the 
crystal warm-up period has elapsed. Immediately following a reset (including initial power-up), all 
devices must operate from an external crystal or oscillator. At this point, software may switch to the ring 
oscillator by clearing the XT/ RG  bit (EXIF.3). If there is no expectation that the crystal oscillator will be 
needed soon, the crystal oscillator can be disabled by setting the Crystal Oscillator Disable Bit, XTOFF 
(PMR.3). Note that switching to the ring oscillator does not automatically disable the crystal amplifier, 
and thus it is possible to be operating the device from the ring oscillator and have the external crystal 
amplifier operating at the same time. In some cases this may be desired to take advantage of the low-
frequency, low-power feature of the ring oscillator but still have the capability of quickly switching back 
to the external crystal to perform timing or serial port operations. 
 
Switching from the ring oscillator to the crystal oscillator is more involved due to the startup delays 
inherent in the external crystal. To prevent an accidental disabling of the device, the XTUP bit must be set 
by internal hardware (indicating an enabled, stable crystal) before setting the XT/ RG bit. The procedure to 
switch to the crystal oscillator when running from the ring oscillator is as follows:  
 
1) Clear the crystal oscillator disable bit, XTOFF (PMR.3) to restart the crystal oscillator and start the 

crystal warm-up period. 
2) Wait for the crystal oscillator warm up status bit, XTUP (STATUS.4) to be set, indicating that the 

external crystal warm up period is complete. This will take 65,536 external clock cycles. 
3) Set the crystal oscillator/ring oscillator select bit, XT/ RG  (EXIF.3) to select the crystal as the clock 

source. 
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8. RESET CONDITIONS 
The high-speed microcontroller provides several ways to place the CPU in a reset state. It also offers the 
means for software to determine the cause of a reset. The reset state of most processor bits is not 
dependent on the type of reset, but selected bits do depend on the reset source. The reset sources and the 
reset state are described below. 
 
8.1 Reset Sources 
High-speed microcontrollers have three ways of entering a reset state: power-on/power-fail reset, 
watchdog timer reset, and external reset. 
 
8.1.1 Power-On/Fail Reset 
Members of the high-speed microcontroller family incorporate an internal voltage reference that holds the 
CPU in the power-on reset state while VCC is out of tolerance. Once VCC rises above the threshold, the 
microcontroller restarts the oscillation of the external crystal and count 65,536 clock cycles. The 
processor will then begin software execution at location 0000h. 
 
The voltage at which the reset state is entered depends on the specific device. If the device does not 
contain a precision voltage reference, the power-on reset threshold may be anywhere between 0.8V and 
VCCMIN. If the device incorporates a precision voltage reference, the threshold will be as specified by the 
VRST parameter in the data sheet. This helps the system maintain reliable operation by only permitting 
processor operation when voltage is in a know-good state. 
 
The processor will exit the reset condition automatically once the above conditions are met. This happens 
automatically, needing no external components or action. Execution begins at the standard reset vector 
address of 0000h. Software can determine that a power-on reset has occurred using the power-on reset 
flag (POR). It is located at WDCON.6. Since all resets cause a vector to location 0000h, the POR flag 
allows software to acknowledge that power-failure was the reason for a reset. 
 
Software should clear the POR bit after reading it. When a reset occurs, software is able to determine if a 
power cycle was the cause. In this way, processing may take a different course for each of the three resets 
if applicable. When power-fails (drops below VRST), the power monitor invokes the reset state again. This 
reset condition remains while power is below the threshold. When power returns above the reset 
threshold, a full power-on reset is performed. A brownout that causes VCC to drop below VRST appears the 
same as a power-up. 
 
8.1.2 Watchdog Timer Reset 
The watchdog timer is a free-running timer with a programmable interval. Software can clear the timer at 
anytime, causing the interval to begin again. The watchdog supervises CPU operation by requiring 
software to clear it before the timeout expires. If the timer is enabled and software fails to clear it before 
this interval expires, the CPU is placed into a reset state. The reset state is maintained for two machine 
cycles. Once the reset is removed, the software resumes execution at 0000h. 
 
The watchdog timer is fully described in Section 11. Software can determine that a watchdog timeout was 
the reason for the reset by using the watchdog timer reset flag (WTRF). WTRF is located at WDCON.2. 
Hardware sets this bit to a logic 1 when the watchdog times out without being cleared by software if 
EWT = 1. If a watchdog timer reset occurs, software should clear this flag manually. This allows software 
to detect the event if it occurs again. 
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8.1.3 External Reset 
If the RST input is taken to a logic 1, the CPU is forced into a reset state. This does not occur 
instantaneously, as the condition must be detected and then clocked into the microcontroller. It requires a 
minimum of two machine cycles to detect and invoke the reset state. Thus the reset is a synchronous 
operation and the crystal must be running to cause an external reset. 
 
Once the reset state is invoked, it is maintained as long as RST = 1. When the RST is removed, the CPU 
will exit the reset state within two machine cycles and begin execution at address 0000h. All registers 
default to their power-on reset state. There is no flag to indicate that an external reset was applied. 
However, since the other two sources have associated flags, the RST pin is the default source when 
neither POR nor WTRF is set. 
 
If a RST is applied while the processor is in the Stop mode, the scenario changes slightly. As mentioned 
above, the reset is synchronous and requires a clock to be running. Since the Stop mode stops all clocks, 
the RST will first cause the oscillator to begin running and force the program counter to 0000h. Rather 
than a two-machine cycle delay as described above, the processor applies the full power-on delay (65,536 
clocks) to allow the oscillator to stabilize. 
 
8.2 Reset State 
Regardless of the source of the reset, the state of the microcontroller is the same while in reset. When in 
reset, the oscillator is running, but no program execution is allowed. When the reset source is external, the 
user must remove the reset stimulus. When power is applied to the device, the power-on delay removes 
the stimulus automatically. 
 
Resets do not affect the Scratchpad RAM. Thus any data stored in RAM will be preserved. The contents 
of internal MOVX data memory will also remain unaffected by a reset. Note that if the power supply dips 
below approximately 2V, the RAM contents may be lost. The minimum voltage required for RAM data 
retention in not specified. Since it is impossible to determine if the power was lower than 2V prior to the 
power-on reset, RAM must be assumed lost when POR is set. 
 
The reset state of SFR bits are described in Section 4. Bits marked SPECIAL have conditions that can 
affect their reset state. Consult the individual bit descriptions for more information. Note that the stack 
pointer will also be reset. The stack is effectively lost during a reset even though the RAM contents are 
not altered. Interrupts and timers are disabled. The state of the watchdog timer is dependent on the 
specific device in use. Note that the watchdog time out defaults to its shortest interval on any reset. I/O 
Ports are taken to a weak high state (FFh). This leaves each port pin configured with the data latch set to a 
1. Ports do not go to the 1 state instantly when a reset is applied, but will be taken high within two 
machine cycles of asserting a reset. When the reset stimulus is removed, program execution begins at 
address 0000h. 
 
8.3 No-Battery Reset 
The battery backup feature of the DS87C530 introduces a new type of reset condition. Most SFR bits are 
automatically reset to their default state upon a power-on reset. The external backup battery feature makes 
some bits non-volatile, however, and these battery-backed bits will not change state when a power-on 
reset is applied. Upon the loss or initial connection of battery power these bits will default to the state 
shown in Table 8-A. Any bits not listed below are either unchanged or set to their default state by a 
power-on reset. 
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Table 8-A. No-Battery Reset Default  
BIT NAME LOCATION NO-BATTERY 

RESET STATE BIT NAME LOCATION NO-BATTERY 
RESET STATE 

E4K TRIM.7 0 SSCE RTCC.7 Indeterminate 
X12/6 TRIM.6 1 SCE RTCC.6 Indeterminate 
TRM2 TRIM.5 1 MCE RTCC.5  Indeterminate 
TRM2 TRIM.4 0 HCE RTCC.4 Indeterminate 
TRM1 TRIM.3 0 RTCIF RTCC.1 Indeterminate 
TRM1 TRIM.2 1 RTCE RTCC.0 Indeterminate 
TRM0 TRIM.1 0 RTCSS.7–0 RTCSS.7–0 Indeterminate 
TRM0 TRIM.0 1 RTCS.7–0 RTCS.7–0 Indeterminate 
RTASS.7–0 RTASS.7–0 Indeterminate RTCM.7–0 RTCM.7–0 Indeterminate 
RTAS.7–0 RTAS.7–0 Indeterminate RTCH.7–0 RTCH.7–0 Indeterminate 
RTAM.7–0 RTAM.7–0 Indeterminate RTCD0.7–0 RTCD1.7–0 Indeterminate 
RTAH.7–0 RTAH.7–0 Indeterminate RTCD1.7–0 RTCD1.7–0 Indeterminate 

 
8.4 In-System Disable Mode 
The high-speed microcontroller family supports in-circuit debugging of designs. The in-system disable 
(ISD) feature allows the device to be tri-stated for in-circuit emulation or board testing. During ISD 
mode, the device pins will take on the following states: 
 

DEVICE PIN STATE DURING ISD 

Port 0, 1, 2, 3 RST, EA  True Tri-state 

ALE, PSEN  Weak Pullup (~10KΩ) 
XTAL1, XTAL2 Oscillator remains active 

 
The following procedure is used to enter ISD mode: 
 
1) Assert reset by pulling RST high. 
2) Pull ALE low and pull PSEN high. 
3) Verify that P2.7, P2.6, P2.5 are not being driven low. 
4) Release RST. 
5) Hold ALE low and PSEN high for at least 2 machine cycles. 
6) Device is now in ISD mode. Release ALE and PSEN if desired. 
 
Note that pins P2.7, P2.6, P2.5 should not be driven low when RST is released. This will place the device 
into a reserved test mode. Because these pins have a weak pullup during reset, they can be left floating. 
The test mode is only sampled on the falling edge of RST, and once RST is released their state will not 
affect device operation. In a similar manner, the PSEN  and RST pins can be released once ISD mode is 
invoked, and their state will not affect device operation. The RST pin will also be in a tri-state mode, but 
asserting it in ISD mode will return the device to normal operation. 
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9. INTERRUPTS 
The high-speed microcontroller family utilizes a three-priority interrupt system. The number of interrupts 
varies according to the specific device. Each source has an independent priority bit, flag, interrupt vector, 
and enable. In addition, interrupts can be globally enabled (or disabled). The system is compatible with 
the original 8051 family. All of the original interrupts are available. 
 
Several new sources have been added with new associated control and status bits, and new interrupt 
vectors. Note that the interrupt vector table can extend from 0000h to 006Bh, so existing code may 
require a relocation of the start address to avoid a conflict with the upper end of the vector table. A 
summary of all interrupts appears in Table 9-A. Note that the DS87C550 microcontroller incorporates 
several interrupt vectors whose locations differ from those used by the high-speed microcontroller family 
or other 8051 derivatives. 
 
Table 9-A. Interrupt Summary  

INTERRUPT INTERRUPT 
VECTOR 

NATURAL 
PRIORITY FLAG ENABLE PRIORITY 

CONTROL 
Power-Fail Indicator 33h 0 PFI (WDCON.4) EPFI (WDCON.5) N/A 
External Interrupt 0 03h 1 IE0 (TCON.1)** EX0 (IE.0) PX0 (IP.0) 
Timer 0 Overflow 0Bh 2 TF0 (TCON.5)* ET0 (IE.1) PT0 (IP.1) 
External Interrupt 1 13h 3 IE1 (TCON.3)** EX1 (IE.2) PX1 (IP.2) 
Timer 1 Overflow 1Bh 4 TF1 (TCON.7)* ET1 (IE.3) PT1 (IP.3) 

Serial Port 0 23h 5 RI_0 (SCON0.0), 
TI_0 (SCON0.1) ES0 (IE.4) PS0 (IP.4) 

Timer 2 Overflow 2Bh 6 TF2 (T2CON.7) ET2 (IE.5) PT2 (IP.5) 

Serial Port 1 3Bh 7 RI_1 (SCON1.0),  
TI_1 (SCON1.1) ES1 (IE.6) PS1 (IP.6) 

External Interrupt 2 43h 8 IE2 (EXIF.4) EX2 (EIE.0) PX2 (EIP.0) 
External Interrupt 3 4Bh 9 IE3 (EXIF.5) EX3 (EIE.1) PX3 (EIP.1) 
External Interrupt 4 53h 10 IE4 (EXIF.6) EX4 (EIE.2) PX4 (EIP.2) 
External Interrupt 5 5Bh 11 IE5 (EXIF.7) EX5 (EIE.3) PX5 (EIP.3) 
Watchdog Interrupt 63h 12 WDIF (WDCON.3) EWDI (EIE.4) PWDI (EIP.4) 
Real-Time Clock 6Bh 13 RTCIF (RTCC.1) ERTCI (EIE.5) PRTCI (EIP.5) 

 

Unless marked, these flags must be cleared manually by software. 
*Cleared automatically by hardware when the service routine is vectored to. 
**If edge triggered, cleared automatically by hardware when the service routine is vectored to. If level-triggered, flag follows the state of the pin. 
 
9.1 Interrupt Overview 
An interrupt allows the software to react to unscheduled or asynchronous events. When an interrupt 
occurs, the CPU is expected to “service” the interrupt. This service takes the form of an interrupt service 
routine (ISR). The ISR resides at a predetermined address as shown in Table 9-A. When the interrupt 
occurs, the CPU will vector to the appropriate location. It will run the code found at this location, staying 
in an interrupt service state until done with the ISR. Once an ISR has begun, it can be interrupted only by 
a higher priority interrupt. The ISR is terminated by a return from interrupt instruction (RETI). When an 
RETI is performed, the processor will return to the instruction that would have been next when the 
interrupt occurred. 
 
Each interrupt source has an associated vector. This is the address to which the CPU will jump when the 
interrupt occurs. When the interrupt condition occurs, the processor will also indicate this by setting a flag 
bit. This bit is set regardless of whether the interrupt is enabled or not. That is, the flag responds to the 
condition, not the interrupt. Most flags must be cleared manually by software. However, IE0 and IE1 are 
cleared automatically by hardware when the service routine is vectored to if the interrupt was edge 
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triggered. In level-triggered mode, the flag follows the state of the pin. Flags TF0 and TF1 are always 
cleared automatically when the service routine is vectored to. Refer to the individual bit descriptions for 
more details. In order for the processor to acknowledge the interrupt and vector to the ISR, the interrupt 
must be enabled. Each source has an independent enable, as shown in Table 9-A. 
 
Prior to using any source, interrupts must be globally enabled. This is done using the EA bit at location 
IE.7. Setting this bit to a logic 1 allows individual interrupts to be enabled. Setting it to a logic 0 disables 
all interrupts regardless of the individual interrupt enables. The only exception is the power-fail interrupt. 
This is subject to its individual enable only. The EA bit has no effect on the power-fail interrupt. 
 
9.2 Interrupt Sources 
Various combinations of interrupt sources are available on different members of the high-speed 
microcontroller family. These are broken into several categories: external, timer-based, serial 
communication, real-time clock, and power monitor. Each type is described below. Interrupt sources are 
sampled once per machine cycle. If the source goes active after the sample, it will not be registered until 
the next cycle. 
 
9.2.1 External Interrupts 
The high-speed microcontroller has six external interrupt sources. These include the standard 2 interrupts 
of the 8051 architecture and four new sources. The original interrupts are INT0 and INT1. These are 
active low, but can be programmed to be edge- or level-sensitive. Bits IT0 and IT1 control the detection 
mode, respectively. When ITx = 0, the interrupt is triggered by a logic 0 on the appropriate interrupt pin. 
The interrupt condition remains in force as long as the pin is low. When ITx = 1, the interrupt is pseudo-
edge triggered. This means that if on successive samples, the pin is high then low, the interrupt is 
activated. 
 
Since the external interrupts are sampled, the pin driver of an edge-triggered interrupt should hold both 
the high condition, then the low condition for at least one machine cycles (each) to ensure detection. This 
means maximum sampling frequency on any interrupt pin is 1/8 of the main oscillator frequency. 
 
It is important to note that level-sensitive interrupts are not latched. If the interrupt is level sensitive, the 
condition must be present until the processor can respond to the interrupt. This is most important if other 
interrupts are being used with a higher or equal priority. If the device is currently processing another 
interrupt, the condition must be present until the present interrupt is complete. This is because the level-
sensitive interrupt will not be sampled until the RETI instruction is executed. 
 
The remaining four external interrupts are similar in nature, with two differences. First, INT2 and INT4 
are active high instead of active low. Second, all of the four new interrupts are edge-detect only. They do 
not have level-detect modes. All associated bits and flags operate the same and have the same polarity as 
the original two. A logic 1 indicates the presence of a condition, not the logic state of the pin. 
 
If the Power Management Modes are utilized, the designer must remember that edge triggered interrupts 
must be high and low for one machine cycle before being recognized. This means that in PMM1 it will 
require 128 external clock cycles to recognize a level sensitive interrupt. Similarly, in PMM2 it will 
require 2048 external clock cycles to recognize a level sensitive interrupt. As a result, the interrupt 
latency for these interrupts will be slightly longer in PMM1 or PMM2. 
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9.2.2 Timer Interrupts 
The high-speed microcontroller incorporates three 16-bit programmable timers, each of which can 
generate an interrupt. In addition, some members of the family incorporate a programmable watchdog 
timer. The three programmable timers operate in the same manner as the 80C52. Each timer has an 
independent interrupt enable, flag, vector, and priority. The watchdog timer also has its own interrupt 
enable, flag, and priority. 
 
Timers 0, 1, and 2 will set their respective flags when the timer overflows from a full condition, 
depending on its mode. This flag will be set regardless of the interrupt enable state. If the interrupt is 
enabled, this event will also cause a jump to the corresponding interrupt vector. For timers 0 and 1, the 
flags are cleared when the processor jumps to the interrupt vector. Thus these flags are not available for 
use by the interrupt service routine (ISR), but are available outside of the ISR and in applications that do 
not acknowledge the interrupt (i.e., jump to the vector). If the interrupt is not acknowledged, then 
software must manually clear the flag bit. In timer 2, jumping to the interrupt vector does not clear the 
flag, so software must always clear it manually. Timer 0 and 1 flag bits reside in the TCON register. 
Timer 2 flag bit resides in the T2CON register. The interrupt enables and priorities for timers 0, 1, and 2 
reside in the IE and IP registers respectively. 
 
The watchdog interrupt usually has a different connotation than the timer interrupts. Unless the watchdog 
is being used as a very long timer, the interrupt means the software has failed to reset the counter and may 
be lost. The ISR can attempt to determine the system state. If the watchdog is not cleared, the CPU will 
be reset in 512 clocks if EWT=1. Like other sources, the watchdog timer has a flag bit, an enable, and a 
priority. It also has its own vector. These are summarized in Table 9-A. 
 
9.2.3 Serial Communication Interrupts 
Each UART is capable of generating an interrupt. The UART has its own interrupt enable, vector, and 
priority. The UART differs from other sources as it has two flags. These are used by the ISR to determine 
whether the interrupt comes from a received word or a transmitted one. Unlike the timers, the UART 
flags are not altered when the interrupt is serviced. Software must change them manually. 
 
When a UART finishes the transmission of a word, an interrupt will be generated (if enabled). Likewise, 
the UART will generate an interrupt when a word is completely received. The CPU will not be notified 
until the word is completely received or transmitted. 
 
9.2.4 Real-Time Clock 
The DS87C530 real-time clock (RTC) has the ability to assert an RTC interrupt if enabled. The alarm can 
be programmed for a specific time once per day, or can be a recurring alarm once per hour, minute, 
second, or subsecond. This interrupt has the lowest priority of all interrupts, but can be used to bring the 
device out of Stop mode if desired. More information on this interrupt can be found in Section 14. 
 
9.2.5 Power-Fail Interrupt 
Some devices have the ability to generate an interrupt when VCC drops below a predetermined level. 
These devices compare VCC against an internal reference. If VCC drops below the level VPFW , an interrupt 
will result (if enabled). Note that the Power-fail Interrupt has the highest priority. The user cannot alter 
the priority level, but the interrupt can be disabled if not needed. The level of VPFW is provided in the data 
sheet specifications associated with each product. Note that the EPFI bit enables the power-fail interrupt. 
This bit is not subject to the global interrupt enable (EA). The power-fail interrupt is a level-sensitive 
interrupt and will remain set as long as VCC remains below VPFW. 
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9.3 Simulated Interrupts 
Software can simulate any interrupt source by setting the corresponding flag bit. This forces an interrupt 
condition that will be acknowledged if enabled and is otherwise indistinguishable from the real thing. 
Thus an interrupt flag bit should never be set to a logic 1 by software inadvertently. Once an interrupt has 
been acknowledged, software cannot prevent or end the interrupt by clearing its flag. However, if for 
some reason the interrupt acknowledge is delayed, software may clear the flag and thereby prevent the 
interrupt from occurring. One exception is the real-time clock interrupt flag, RTCIF, which cannot be set 
in software. 
 
9.4 Interrupt Priorities 
The high-speed microcontroller has three interrupt priority levels: highest, high, and low.  
 
The power-fail interrupt is the only source that has highest priority and this level is fixed. The remaining 
sources are individually programmable to either high or low. Low priority is the default. A low priority 
interrupt can be interrupted by a high (or highest) priority interrupt. A high priority interrupt can only be 
interrupted by the Power-fail interrupt. 
 
When an interrupt occurs and is serviced, its priority determines if its ISR can be interrupted. No interrupt 
source of equal or lesser priority can interrupt another source. That is, an incoming interrupt must be of a 
higher priority than the one currently being serviced to have priority. 
 
If two interrupt sources of equal priority levels are requested simultaneously, the natural priority is used 
to arbitrate. The natural priority is given in Table 9-A. Note that natural priority is only used to resolve 
simultaneous requests. Once an interrupt of a given priority is invoked, only a source that is programmed 
with a higher priority can intercede. 
 
9.5 Interrupt Acknowledge Cycle 
The process of acknowledging an interrupt requires multiple machine cycles that begin with the setting of 
the associated flag. For edge-triggered external interrupts and internal interrupt sources, the interrupt flags 
are set automatically by hardware. For level-sensitive external interrupts, the flags are actually under 
control of the external signal, and the flag will rise and fall with the pin level. Each interrupt flag is 
sampled once per machine cycle. Later in the same machine cycle, the samples are polled by hardware. If 
the sample indicates a pending interrupt and the interrupt is enabled, then on the next machine cycle it 
will be acknowledged by the hardware forcing an LCALL to the appropriate vector address. This LCALL 
will occur unless blocked by one of the following conditions. 
 
1) An interrupt of equal or greater priority has already been invoked and the RETI instruction has not 

been issued to terminate it. 
2) The current machine cycle is not the final cycle in the execution of the current instruction. 
3) The instruction in progress is an RETI or a write to IP, IE, EIP, or EIE. 
 
The individual interrupt sources and associated enable and priority bits are shown in Figure 9-1. While 
the final selection of the appropriate interrupt vector address is referred to as a polling process, this 
function is actually performed in a single machine cycle using combinatorial logic. 
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9.6 Interrupt Latency 
Interrupt response will require a varying amount of time depending on the state of the microcontroller 
when the interrupt occurs. If the microcontroller is performing an ISR with equal or greater priority, the 
new interrupt will not be invoked. In other cases, the response time depends on the current instruction. 
The fastest possible response to an interrupt is 5 machine cycles. This includes one cycle for detecting the 
interrupt and four cycles to perform the LCALL that is inherent in the interrupt request. The maximum 
response time (if no other interrupt is in service) occurs if the microcontroller is performing an RETI 
instruction, and then executes a MUL or DIV as the next instruction. From the time an interrupt source is 
activated (not detected), the longest reaction time is 13 machine cycles. This includes 1 cycle to detect the 
interrupt, 3 cycles to finish the RETI, 5 to perform the MUL or DIV, then 4 for the LCALL to the ISR. 
 
The maximum latency of 13 machine cycles is 52 clocks (13 x 4). Note that the maximum interrupt 
latency of an 8051 is 96 clocks (8 machine cycles at 12 clocks per machine cycle). The maximum latency 
for the high-speed microcontroller at 25MHz is about 2µs. The use of power management modes can 
further increase the interrupt latency. 
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Figure 9-1. Interrupt Functional Description  
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9.7 Interrupt Register Conflicts 
During normal operation there is a small but finite probability that application software may try to read or 
modify a register associated with interrupt functions at the same time that the interrupt hardware is 
modifying the register. In general, these hardware/software interrupt conflicts are resolved according to 
the “hardware wins” philosophy: In the event of a conflict, the hardware modification of a register will 
take precedence over the software action to ensure that the interrupt event is not missed. 
 
Software should always use read-modify-write instructions when modifying registers associated with 
interrupt functions. This special class of instructions evaluates and modifies register contents in a single 
instruction, preventing the hardware from accidentally modifying a bit between the time it is read and 
when it is written back to the register. 
 
One specific case involves a software write to the IP, IE, EIP or EIE registers while the internal interrupt 
hardware is processing an interrupt request. Interrupt sources are normally executed (i.e., the LCALL 
instruction is performed) during the instruction following their detection. If an interrupt is detected during 
a write to one of the previously mentioned registers, it is possible that it will be delayed for one additional 
instruction. When the instruction is processed, the interrupt will incorporate the new priority and enable 
values from the previous instruction. If this situation occurs it will lengthen the interrupt latency by the 
length of the instruction that modified the register. 
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10. PARALLEL I/O 
The high-speed microcontroller method of implementing I/O ports follows the standard 8051 convention. 
This provides backward compatibility with existing designs. All drive capabilities exceed or equal the 
original 80C32, and voltage levels are compatible. The transitions between strong and weak drives are 
similar but not identical. Differences are to accommodate higher speed timing and the associated 
demands on slew rates. As with any new technology, the high-speed microcontroller should be evaluated 
in a system to see how subtle differences affect operation. 
 
From a software perspective, each port appears as SFR with a unique address. Each port register is 
addressable as a byte or 8 individual bit locations. The CPU distinguishes between a bit access and a byte 
access by the instruction type. Except for the special cases mentioned below, the register and port pins 
have identical states. Reading or writing a port is the same as reading or writing the SFR for that port. 
 
The microcontroller will distinguish between port and bus operations automatically. If a memory fetch is 
decoded and requires external memory, Port 0 and 2 will be driven as a bus with the associated timing 
and drive strengths. If either port SFR is accessed, the port pins will revert to the characteristics described 
above. This includes a strong pulldown, a strong pullup for transitions, and a weak pullup for static 
conditions. 
 
ROMless versions of the high-speed microcontroller dedicate Port 0 and 2 as the memory interface bus. 
The Port 0 latch does not exist on ROMless devices. The functions of these ports are described in more 
detail in the specific sections. 
 
10.1 PORT 0 
 
General-Purpose I/O 
Devices that have internal program memory have the ability to use Port 0 as a general-purpose I/O.  Data 
written to the port latch serves to set both level and direction of the data on the pin. ROMless devices do 
not contain a Port 0 latch, because at no time can it be manipulated as a port. When used as an I/O port, it 
functions as an open-drain output. More detail on the functions of these pins is provided under the 
description of output and input functions in this section. 
 
Even if internal memory is present, the use of Port 0 as general-purpose I/O pins is not recommended if 
the device will be used to access external memory. This is because the state of the pins will be disturbed 
during the memory access. In addition, the pullups needed to maintain a high state during the use as 
general-purpose I/O will interfere with the complementary drivers employed when the device operates as 
an expanded memory bus. 
 
Multiplexed Address/Data Bus AD0-7 
When used to address expanded memory, Port 0 functions as a multiplexed address/data bus. Port 0 must 
function as the address/data bus on ROMless devices. Port 0 pins have extremely strong drivers that allow 
the bus to move 100pF loads with the timing shown in the electrical specifications. Special circuit 
protection allows these pins to achieve the maximum slew rate without ringing, eliminating excessive 
noise or interface problems. Users that compare the high-speed microcontroller family to 80C32 devices 
will find improved drive capability. This power is available for dynamic switching only, and should not 
be used to drive heavy DC loads such as LEDs. 
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When used as an address bus, the AD0-7 pins will provide true drive capability for both logic levels. No 
pullups are needed. In fact, pullups will degrade the memory interface timing. Members of the high-speed 
microcontroller family employ a two-state drive system on AD0-7. That is, the pin is driven hard for a 
period to allow the greatest possible setup or access time. Then the pin states are held in a weak latch 
until forced to the next state or overwritten by an external device. This assures a smooth transition 
between logic states and also allows a longer hold time. In general, the data is held (hold time) on AD0-7 
until another device overwrites the bus. This latch effect is generally transparent to the user. 
 
Figure 10-1. Port 0 Functional Circuitry  
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Most Significant Address Byte, A8-15 
When used to address expanded memory, Port 2 functions as the most significant byte of the address bus. 
Port 2 must function as the address bus on ROMless devices. When serving as a bus, Port 2 will be driven 
with strong drivers at all times except immediately after the rising edge of PSEN (Figure 5-3 and  
Figure 5-4). 
 
Figure 10-2. Port 2 Functional Circuitry  
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A more practical application is the optional use of an interrupt. If INT0 (P3.2) is enabled, then an 
externally imposed logic 0 will cause an interrupt. By then disabling the INT0, P3.2 can be used as a 
general-purpose I/O pin. This allows the INT0 to be used to “wake-up” the system, but does not eliminate 
another use of the pin. 
 
10.4 Output Functions 
Although 8051 I/O ports appear to be true I/O, their output characteristics are dependent on the individual 
port and pin conditions. When software writes a logic 0 to the port for output, the port is pulled to ground. 
When software writes a logic 1 to the port for output, Ports 1, 2, or 3 will drive weak pullups (after the 
strong transition from 0 to 1). Port 0 will go tri-state. Thus as long as the port is not heavily loaded, true 
logic values will be output. DC drive capability is provided in the electrical specifications. Note that the 
DC current available from an I/O port pin is a function of the permissible voltage drop. 
 
Transition current is available to help move the port pin from a 0 to a 1.  Since the logic 0 driver is strong, 
no additional drive current is needed in the 1 to 0 direction. The transition current is applied when the port 
latch is changed from a logic 0 to a logic 1. Simply writing a logic 1 where a 1 was already in place does 
not change the strength of the pullup. This transition current is applied for one-half a machine cycle.  The 
absolute current is not guaranteed, but is approximately 2mA at 5V. 
 
When serving as an I/O port, the drive will vary as follows. For a logic 0, the port will invoke a strong 
pulldown. For a logic 1, the port will invoke a strong pullup for two oscillator cycles to assist with the 
logic transition. Then, the port will revert to a weak pullup. This weak pullup will be maintained until the 
port transitions from a 1 to a 0. External circuits can overdrive the weak pullup. This allows the output 1 
state to serve as the input state as well. 
 
Substantial DC current is available in both the high and low levels. However, the power dissipation 
limitations make it inadvisable to heavily load multiple pins. In general, sink and source currents should 
not exceed 10mA total per port (8 bits) and 25mA total per package. 
 

10.5 Current-Limited Transitions 
The high-speed microcontroller family incorporates special circuitry to limit the current consumed by the 
device when the expanded memory bus is used. These signals employ current-limited drivers that “step” 
the transition from a logic 0 to a logic 1 to reduce ringing and electromagnetic interference. When 
expanded memory operations are in progress, the following pins will exhibit the current-limiting feature: 
 
Port 0 
Port 2 
PSEN (During program memory accesses) 
ALE 
RD (During data memory read cycles) 
WR (During data memory write cycles) 
 

10.6 Input Functions 
The input state of the I/O ports is the same as that of the output logic 1. That is, the pin is pulled weakly 
to a logic 1. This 1 state is easily overcome by external components. Thus, after software writes a 1 to the 
port pin, the port is configured for input. When the port is read by software, the state of the pin will be 
read. The only exception is the read-modify-write instructions described below. If the external circuit is 
driving a logic 1, then the pin will be a logic 1. If the external circuit is driving a 0, then it will overcome 
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the internal pullup. The pin will be the same as the driven logic state. Note that the port latch is not 
altered by a read operation. Therefore, if a logic 0 is driven onto a port pin from an external source, then 
removed, the pin will revert to the weak pullup as determined by the internal latch. 
 
10.7 Read-Modify-Write Instructions 
The normal read instructions will read the pin state without regard to the output data latch. The only 
exception is the read-modify-write category of instructions. They are listed as follows.  
 
10.8 Instruction Description 
ANL Logical AND 
ORL  Logical OR 
XRL Logical Exclusive OR (XOR) 
JBC Branch if bit set then clear bit 
CPL Complement bit 
INC Increment 
DEC Decrement 
DJNZ Decrement and branch if not zero 
MOV PX.n, C Move the carry bit to bit n of port X 
CLR PX.n Clear bit n of port X 
SETB PX.n Set bit n of port X 
 
The read-modify-write instructions read the state of the latch, then write back the result to the latch. Thus 
the operation takes place using the value that was originally written to the SFR, without regard to the pin 
state. The last three instructions listed above are read-modify-write because they read the entire port latch, 
then write back the changed value. In this case, only one bit will be changed as specified by the 
instruction. 
 
10.9 I/O Port Timing 
Figure 10-1 shows when port pins change in relationship to instruction timing. The example shown uses a 
MOV command to change P1.0 from a logic 1 to a logic 0. This diagram is presented to aid the designer 
in determining the timing relationship for very critical designs. Most designers will not need to consider 
this much detail. Dummy NOP instructions are shown to illustrate subsequent instructions. 
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Figure 10-3. I/O Port Timing for MOV Instruction  
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11. PROGRAMMABLE TIMERS 
All members of the high-speed microcontroller family incorporate three 16-bit programmable timers and 
some also have a watchdog timer with a programmable interval. Because the watchdog timer is 
significantly different from the other timers, it is described separately. The 16-bit timers are referred to 
simply as timers. 
 
In most modes, the timers can be used as either counters of external events or timers. When functioning 
as a counter, 1-to-0 transitions on a port pin are monitored and counted. When functioning as timers, they 
effectively count oscillator cycles. The time base for the timer function is the main oscillator clock 
divided by either 4 or 12. This selection is described below. Because each clock pulse must be sampled 
high for one machine cycle and low for one machine cycle to be recognized, this sets the maximum 
sampling frequency on any timer input at 1/8 of the main oscillator frequency. 
 
The three timers are compatible with the 80C32. That is, they offer the same controls and I/O functions 
that were available in the 80C32. As mentioned above, the actual timing of these functions is user 
selectable to be compatible with the machine cycle of the older generation of 8051 family (12 clocks per 
tick) or the new generation (4 clocks per tick). The timing for each of the three timers can be selected 
independently and can be changed dynamically. Each timer has 4 primary modes as discussed below. 
 
The watchdog timer reset provides CPU monitoring by requiring software to clear the timer before the 
user-selected interval expires. If the timer is not cleared, the watchdog resets the CPU. The watchdog 
function is optional and is described below. Since the high-speed microcontroller timers have a variety of 
features, the following summary table shows the capabilities. 
 

TIMER 0 TIMER 1 TIMER 2 
13-Bit Timer/Counter 13-Bit Timer/Counter 16-Bit Timer/Counter 
16-Bit Timer/Counter 16-Bit Timer/Counter 16-Bit Timer With Capture 
8-Bit Timer with Auto-
Reload 8-Bit Timer with Auto-Reload 16-Bit Auto-Reload Timer/Counter

Two 8-Bit Timer/Counters External Control Pulse 
Timer/Counter 16-Bit Up/Down Auto-Reload 

External Control Pulse 
Timer/Counter Baud Rate Generator 

Timer/Counter 
Baud Rate Generator 
Timer Output Clock Generator 

 
11.1 16-Bit Timers 
Timers 0 and 1 are nearly identical. Timer 2 has several additional features such as up/down counting, 
capture values and an optional output pin that make it unique. Timers 0 and 1 are described first. Timer 2 
is described separately. As mentioned above, the time base for each timer can be varied and this is also 
discussed in more detail below. 
 
Timer 0 and Timer 1 have four operating modes. They are 13-bit timer/counter, 16-bit timer/counter, 8-bit 
timer/counter with auto-reload, and two 8-bit timers. The latter mode is available to Timer 0 only. These 
modes are controlled by the TMOD register. Each timer can also serve as a counter of external pulses  
(1-to-0 transition) on the corresponding Tn pin. This selection is controlled by the TMOD register. One 
other option is to gate the timer/counter using an external control signal. This allows the timer to measure 
the pulse width of external signals. Timers 0 and 1 are enabled using the TCON register, which is also the 
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location of their flags. The registers are described below. Following this is a detailed explanation of the 
four operating modes. 
 
Each timer consists of a 16-bit register in two bytes. These are called TL0, TH0, TL1, and TH1. As 
shown, each timer is broken into low and high bytes. Software can read or write any of these locations at 
any time. 
 
TMOD REGISTER SUMMARY 
Timer Mode Control, TMOD; 89h 
 
TMOD.7: GATE, Timer 1 GATE Control. When GATE=1, Timer 1 will clock only when INT1  and TR1 =1. 
When GATE=0, Timer 1 will clock only when TR1=1 irrespective of INT1 . 
 
TMOD.6: C/ T , Counter/Timer Select. When C/ T  is set to a 0, Timer 1 is incremented by internal clocks. When 
C/ T  is set to a 1, Timer 1 counts based on the T1 (P3.5) pin. 
 
TMOD.5: M1, Timer 1 Mode Select Bit 1 
 
TMOD.4: M0, Timer 1 Mode Select Bit 0 
 

M1 M0 Mode 
0 0 Mode 0: 8-bits with 5-bit prescale 
0 1 Mode 1: 16-bits 
1 0 Mode 2: 8-bits with auto-reload 
1 1 Mode 3: Timer 1 stopped 

 
TMOD.3: GATE, Timer 0 GATE Control. When GATE=1, Timer 0 will clock only when INT0  and TR0 =1.  
When GATE=0, Timer 0 will clock only when TR0=1 irrespective of INT0 . 
 
TMOD.2: C/ T , Counter/Timer Select. When C/ T  is set to a 0, Timer 0 is incremented by internal clocks. When 
C/ T  is set to a 1, Timer 0 counts based on the T0 (P3.4) pin. 

 
TMOD.1: M1, Timer 0 Mode Select Bit 1 
 
TMOD.0: M0, Timer 0 Mode Select Bit 0 
 

M1 M0 Mode 
0 0 Mode 0: 8-bits with 5-bit prescale 
0 1 Mode 1: 16-bits 
1 0 Mode 2: 8-bits with auto-reload 
1 1 Mode 3: Timer 0 is two 8-bit timers 
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TCON REGISTER SUMMARY 
Timer/Counter, TCON; 88h Control 
 
TCON.7: TF1, Timer 1 Overflow Flag. Set to 1 when Timer 1 overflows from FFh and cleared when the 
processor vectors to the interrupt service routine. 
 
TCON.6: TR1, Timer 1 Run Control. Turns on Timer 1 when this bit is set. 
 
TCON.5: TF0, Timer 0 Overflow Flag. Set to 1 when Timer 0 overflows from FFh, and cleared when the 
processor vectors to the interrupt service routine. 
 
TCON.4: TR0, Timer 0 Run Control. Turns on Timer 0 when this bit is set to 1. 
 
TCON.3: IE1, Interrupt 1 Edge Detect. Set by hardware when an edge/level is detected on INT1 . 
 
TCON.2: IT1, Interrupt 1 Type Select. INT1  detects a falling edge when this bit is set to 1. INT1  detects a low 
level when this bit is 0. 
 
TCON.1: IE0, Interrupt 0 Edge Detect. Set by hardware when an edge/level is detected on INT0 . 
 
TCON.0: IT0, Interrupt 0 Type Select. INT0  detects a falling edge when this bit is set to 1. INT0  detects a low 
level when this bit is 0. 
 
 
11.2 Mode 0 
Mode 0 configures either Timer 0 or Timer 1 for operation as a 13-bit Timer/Counter. As shown in  
Figure 11-1, bits M1 = 0 and M0 = 0 of the TMOD register select this operating mode. 
 
When using Timer 0, TL0 uses only bits 0–4. These bits serve as the 5 LSbs of the 13-bit timer. TH0 
provides the 8 MSbs of the 13-bit timer. Bit 4 of TL0 is used as a ripple out to TH0 bit 0, thereby 
completely bypassing bits 5 through 7 of TL0. Once the timer is started using the TR0 (TCON.4) timer 
enable, the timer will count as long as GATE (TMOD.3) is 0 or GATE is 1 and pin INT0  is 1. It will 
count oscillator cycles if C/ T  (TMOD.2) is set to a logic 0 and 1-to-0 transitions on T0 (P3.4) if C/ T  is 
set to a 1. When the 13-bit count reaches 1FFFh (all ones), the next count will cause it to roll over to 
0000h. The TF0 (TCON.5) flag will be set and an interrupt will occur if enabled. The upper three bits of  
TL0 will be indeterminate. 
 
Note that when used as a timer, the timebase may be either oscillator cycles/12 or oscillator cycles/4 as 
selected by bits TnM (n = 0 or 1) of the CKCON register. This feature is described in more detail below. 
 
Mode 0 operates identically when Timer 1 is used. The same information applies to TL1 and TH1, which 
form the 13-bit register. TR1 (TCON.6), INT1  (P3.3), T1 (P3.5), and the relevant C/T (TMOD.6) and 
GATE (TMOD.7) bits have the same functions. 
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11.3 Mode 1 
Mode 1 configures the timer for 16-bit operation as either a timer or counter. Figure 11-1 shows that bits 
M1 = 0 and M0 = 1 of the TMOD register select this operating mode. For Timer n, all of the TLn and 
THn registers are used. For example, if Timer 1 is configured in mode 1, then TL1 holds the LSB and 
TH1 holds the MSB. Rollover occurs when the timer reaches transitions from FFFFh to 0000h. An 
interrupt will also occur if enabled and the relevant TFn flag is set. Timebase selection, counter/timer 
selection, and the gate function operate as described in mode 0. 
 
Figure 11-1. Timer/Counter 0 and 1, Modes 0 and 1  
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11.4 Mode 2 
This mode configures the timer as an 8-bit timer/counter with automatic reload of the start value. This 
configuration is shown in Figure 11-2, and is selected when bits M1 and M0 of the TCON register are set 
to 1 and 0 respectively. When configured in Mode 2, the timer uses TLn to count and THn to store the 
reload value. Software must initialize both TLn and THn with the same starting value for the first count to 
be correct. Once the TLn reaches FFh, it will be automatically loaded with the value in THn. The THn 
value remains unchanged unless modified by software. Mode 2 is commonly used to generate baud rates 
since it runs without continued software intervention. As in modes 0 and 1, mode 2 allows counting of 
either oscillator cycles (crystal/12 or crystal/4) or pulses on pin Tn (C/T=1) when counting is enabled by 
TRn and the proper setting of GATE and INTn  pins. 
 
Figure 11-2. Timer/Counter 0 and 1, Mode 2  
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11.5 Mode 3 
This mode provides an 8-bit timer/counter and a second 8-bit timer as indicated in Figure 11-3. In Mode 
3, TL0 is an 8-bit timer/counter controlled by the normal Timer 0 bits (TR0=TCON.4 and TF0=TCON.5). 
TL0 can be used to count oscillator cycles (crystal/12 or crystal/ 4) or 1-to-0 transitions on pin T0 as 
determined by C/ T  (TMOD.2).  As in the other modes, the GATE function can use INT0  to give external 
run control of the timer to an outside signal. 
 
TH0 becomes an independent 8-bit Timer in Mode 3, however it can only count oscillator cycles (divided 
by 12 or 4) as shown in the figure. In this mode, some of Timer 1’s control signals are used to manipulate 
TH0. That is, TR1 (TCON.6) and TF1 (TCON.7) become the relevant control and flag bits associated 
with TH0. 
 
 
Figure 11-3. Timer/Counter 0 Mode 3 
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11.6 Timer 2 
Like Timers 0 and 1, Timer 2 is a full-function timer/counter, however it has several additional 
capabilities that make it more useful. Timer 2 has independent control registers in T2CON and T2MOD, 
and is based on count registers TL2 and TH2. All of these registers are described in detail below. 
 
T2CON REGISTER SUMMARY 
Timer Two Control, T2CON; C8h 
 
T2CON.7: TF2, Timer 2 Overflow Flag. Hardware will set TF2 when the Timer 2 overflows from FFFFh to 
0000h, or from the count equal to the capture register in down count mode.  It must be cleared to 0 by software.  
TF2 will only be set to a 1 if RCLK and TCLK are both cleared to a 0. 
 
T2CON.6: EXF2, Timer 2 External Flag. Hardware will set EXF2 when a reload or capture is caused by a falling 
transition on the T2EX pin (P1.1).  EXEN2 must be set for this function. This flag must be cleared to 0 by 
software.  Writing a one to this bit will force a timer interrupt if enabled. 
 
T2CON.5: RCLK, Receive Clock Flag. This bit determines whether Timer 1 or 2 is used for Serial Port 0 timing 
of received data in Serial Modes 1 or 3.  RCLK = 1 causes Timer 2 overflow to be used as the receive clock.  
RCLK = 0 causes Timer 1 overflow to be used as the receive clock. 
 
T2CON.4: TCLK, Transmit Clock Flag. This bit determines whether Timer 1 or 2 is used for Serial Port 0 
timing of Transmit data in Serial Modes 1 or 3.  TCLK = 1 causes Timer 2 overflow to be used as the transmit 
clock.  TCLK = 0 causes Timer 1 overflow to be used as the transmit clock. 
 
T2CON.3: EXEN2, Timer 2 External Enable. Setting this bit to a 1 allows a capture or reload to occur as a result 
of a falling transition on T2EX (P1.1), if Timer 2 is not generating baud rates for the serial port.  EXEN2 = 0 
causes Timer 2 to ignore all external events at T2EX. 
 
T2CON.2: TR2, Timer 2 Run. Setting this bit to a 1 starts Timer 2.  Setting it to a 0 stops Timer 2. 
 
T2CON.1: C/ T2 , Counter/Timer Select. Setting this bit to a 0 selects a timer function for Timer 2.  Setting it to a 
1 selects a counter of falling transitions on T2 (P1.0).  Timer 2 runs at 4 clocks per tick or 12 clocks per tick as 
programmed by CKCON.5.  This bit will be overridden and Timer 2 directed to use a divide-by-2 clock if either 
the baud–rate generator or clock output mode is used. 
 
T2CON.0: CP/ RL2 , Capture/Reload Flag. When this bit is set to 1, Timer 2 captures will occur on 1-to-0 
transitions of T2EX (P1.1) if EXEN2 = 1.  When this bit is set to 0, auto–reloads will occur when Timer 2 
overflows or when 1-to-0 transitions occur on T2EX if EXEN2 = 1.  If either RCLK or TCLK is set to a 1 this bit 
will not function and the timer will function in an auto-reload mode following each overflow. 
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T2MOD REGISTER SUMMARY 
Timer Two Mode Control, T2MOD; C9h 
 
T2MOD.7–2: Reserved 
 
T2MOD.1: T2OE, Timer 2 Output Enable. Setting this bit to a 1 enables the Timer 2 to drive the T2 (P1.0) pin 
with a clock output. When T2OE = 0, the T2 (P1.0) pin is used as either an input for Timer 2 or a standard port pin. 
 
T2MOD.0: DCEN, Down Count Enable. When this bit is set to 1, the Timer 2 function counts up or down when 
in 16-bit auto-reload mode depending on T2EX (P1.1). When DCEN is set to a 0, the Timer 2 counts up only. 
 
 
TIMER 2 CAPTURE REGISTERS SUMMARY 
Least Significant Byte Capture of Timer 2, RCAP2L; CAh 
 
RCAP2L.7–0: This register is used to capture the TL2 value when Timer 2 is configured in capture mode. 
RCAP2L is also used as the LSB of a 16-bit reload value when Timer 2 is configured in auto-reload mode. 
 
Most Significant Byte Capture of Timer 2, RCAP2H; CBh 
 
RCAP2H.7–0: This register is used to capture the TH2 value when Timer 2 is configured in capture mode. 
RCAP2H is also used as the MSB of a 16-bit reload value when Timer 2 is configured in auto-reload mode. 
 
 
11.7 Timer 2 Modes 
As is seen in the register descriptions, Timer 2 has several abilities not found in Timers 0 and 1. However, 
it does not offer the 13-bit and dual 8-bit modes, thus running in 16-bit mode at all times. Also note that 
instead of offering an 8-bit auto-reload mode, Timer 2 has a 16-bit auto-reload mode. This mode uses the 
Timer Capture registers to hold the reload values. The modes available on Timer 2 are described below. 
 
11.7.1 16-Bit Timer/Counter 
In this mode, Timer 2 performs a simple timer or counter function where it behaves similarly to mode 1 
of Timers 0 and 1, but uses 16 instead of 8 bits. This mode, along with the optional capture mode 
described below, is illustrated in Figure 11-4. The 16-bit count values are found in TL2 and TH2 Special 
Function Registers (addresses 0CCh and 0CDh respectively). The selection of whether a Timer or 
Counter function is performed is made using the bit C/ T2  (T2CON.1). When C/ T2  is set to a logic 1, 
Timer 2 behaves as a counter where it counts 1-to-0 transitions at the T2 (P1.0) pin.  When C/ T2  is set to 
a logic 0, Timer 2 functions as a timer where it counts the oscillator cycles divided by either 12 or 4 as 
determined by bit T2M (T2CON.5). Timing or counting is enabled by setting bit TR2 (T2CON.2) to 1, 
and disabled by setting it to 0. When the counter rolls over from FFFFh to 0000h, the TF2 flag 
(T2CON.7) is set and will cause an interrupt if Timer 2’s interrupt is enabled. 
 
11.7.2 16-Bit Timer with Capture 
A diagram of Timer 2’s Capture Mode is shown in Figure 11-4. In this mode, the timer performs basically 
the same 16-bit timer/counter function described above. However, a 1-to-0 transition on T2EX (pin P1.1) 
causes the value in Timer 2 to be transferred into the capture registers if enabled by EXEN2 (T2CON.3). 
The capture registers, RCAP2L and RCAP2H, correspond to TL2 and TH2 respectively. The capture 
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function is enabled by the CP/ RL2  (T2CON.0) bit. When set to logic 1, the timer is in capture mode as 
described. When set to logic 0, the timer is in auto-reload mode described later. As was possible with 
Timers 0 and 1, the timebase for Timer 2 can be selected to be oscillator cycles divided by either 12 or 4 
when in this mode. 
 
Figure 11-4. Timer/Counter 2 with Optional Capture  
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Figure 11-5. Timer/Counter 2 Auto-Reload Mode  
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11.7.4 Up/Down Count Auto-Reload Timer/Counter 
The up/down auto-reload counter option is selected by the DCEN (T2MOD.0) bit, and is illustrated in 
Figure 11-5. When DCEN is set to a logic 1, Timer 2 will count up or down as controlled by the state of 
pin T2EX (P1.1). T2EX will cause upward counting when a logic 1 is applied and down counting when a 
logic 0 is applied. When DCEN = 0, Timer 2 only counts up. 
 
When an upward counting overflow occurs, the value in RCAP2L and RCAP2H will load into T2L and 
T2H. In the down count direction, an underflow occurs when T2L and T2H match the values in RCAP2L 
and RCAP2H, respectively. When an underflow occurs, FFFFh is loaded into T2L and T2H and counting 
continues. 
 
Note that in this mode, the overflow/underflow output of the timer is provided to an edge detection circuit 
as well as to the TF2 bit (T2CON.7). This edge detection circuit toggles the EXF2 bit (T2CON.6) on 
every overflow or underflow. Therefore, the EXF2 bit behaves as a 17th bit of the counter, and may be 
used as such. 
 
11.7.5 Baud Rate Generator 
Timer 2 can be used to generate baud rates for Serial Port 0 in serial modes 1 or 3. Baud rate generator 
mode is invoked by setting either the RCLK or TCLK bit in the T2CON register to a logic 1, as illustrated 
in Figure 11-6. In this mode, the timer continues to function in auto-reload mode, but instead of setting 
the interrupt flag T2F (T2CON.7) and potentially causing an interrupt, the overflow generates the shift 
clock for the serial port function. As in normal auto-reload mode, an overflow causes RCAP2L and 
RCAP2H to be transferred into T2L and T2H, respectively. Note that when RCLK or TCLK is set to 1, 
the Timer 2 is forced into 16-bit auto-reload mode regardless of the CP/ RL2  bit. 
 
As explained above, the timer itself cannot set the T2F interrupt flag and therefore cannot generate an 
interrupt. However if EXEN2 (T2CON.3) is set to 1, a 1-to-0 transition on the T2EX (P1.1) pin will cause 
the EXF2 (T2CON.6) interrupt flag to be set. If enabled, this will cause a Timer 2 Interrupt to occur. 
Therefore in this mode, the T2EX pin may be used as an additional external interrupt if desired. 
 
Another feature of the baud rate generator mode is that the crystal derived timebase for the timer is the 
crystal frequency divided by 2. No other crystal divider selection is possible.  If a different timebase is 
desired, bit C/ T2  (T2CON.1) may be set to a 1 sourcing the timebase from an external clock source 
supplied by the user on pin T2 (P1.0). Software should not access TL2 or TH2 while the timer is running 
(TR2=1) in baud rate generator mode. In this mode the timer is clocking so fast that a software read of or 
write to the TL2 and TH2 registers may corrupt the timer. The RCAP registers may be read, but not 
modified, while TR2 = 1.  Stop the timer (TR2 = 0) to modify these registers. 
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Figure 11-6. Timer/Counter 2, Baud Rate Generator Mode  
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Figure 11-7. Timer/Counter 2, Clock-Out Mode  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11.8 Timebase Selection 
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11.9 Watchdog Timer 
The watchdog timer is a user-programmable clock counter that can serve as a timebase generator, an 
event timer, or a system supervisor. As can be seen in the diagram of Figure 11-8, the main system clock 
drives the timer that is supplied to a series of dividers. The divider output is selectable and determines the 
interval between timeouts. When the timeout is reached, an interrupt flag will be set, and if enabled, a 
reset will occur. The interrupt flag will cause an interrupt to occur if its individual enable bit is set and the 
global interrupt enable is set. The reset and interrupt are completely discrete functions that may be 
acknowledged or ignored, together or separately for various applications. 
 
Figure 11-8. Watchdog Timer 
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(CKCON.6).  Restarting the timer using the RWT (WDCON.0) bit, allows software to use the timer in a 
polled timeout mode.  The WDIF bit is cleared by software or any reset. 
 
The watchdog interrupt is also available for applications that do not need a true watchdog reset but simply 
a very long timer. The interrupt is enabled using the enable watchdog timer interrupt (EWDI = EIE.4) bit. 
When the timeout occurs, the watchdog timer will set the WDIF bit (WDCON.3), and an interrupt will 
occur if the global interrupt enable (EA = IE.7) is set. Note that WDIF is set 512 clocks before a potential 
watchdog reset. The watchdog interrupt flag will indicate the source of the interrupt, and must be cleared 
by software. 
 
Using the watchdog interrupt during software development can allow the user to select ideal watchdog 
reset locations. Code is first developed without enabling the watchdog interrupt or reset functions. Once 
the program is complete, the watchdog Interrupt function is enabled to identify the required locations in 
code to set the RWT (WDCON.0) bit. Incrementally adding instructions to reset the watchdog timer prior 
to each address location (identified by the watchdog interrupt) will allow the code to eventually run 
without receiving a watchdog interrupt. At this point the watchdog timer reset can be enabled without the 
potential of generating unwanted resets. At the same time the watchdog interrupt may also be disabled. 
Proper use of the watchdog interrupt with the watchdog reset allows interrupt software to survey the 
system for errant conditions. 
 
When using the watchdog timer as a system monitor, the watchdog-reset function should be used. If the 
Interrupt function were used, the purpose of the watchdog would be defeated. For example, assume the 
system is executing errant code prior to the watchdog interrupt. The interrupt would temporarily force the 
system back into control by vectoring the CPU to the interrupt service routine. Restarting the watchdog 
and exiting by an RETI or RET, would return the processor to the lost position prior to the interrupt. By 
using the watchdog reset function, the processor is restarted from the beginning of the program, and 
therefore placed into a known state. 
 
The watchdog has four timeout selections based on the input crystal frequency as shown in the following 
table. The selections are a preselected number of clocks. Therefore, the actual timeout interval is 
dependent on the crystal frequency. Shown below are the four timeouts with some example periods for 
different crystal speeds.  Note that the time period shown is for the interrupt event. The reset, when 
enabled, will occur 512 clocks later regardless of whether the interrupt is used. Therefore, the actual 
watchdog timeout period is the number shown below plus 512 clocks. Watchdog-generated resets will 
last for two machine cycles. 
 

WD1 WD0 WATCHDOG 
INTERVAL 

NUMBER 
OF 

CLOCKS 

TIME AT 
1.8432MHz 

(ms) 

TIME AT 
11.0592MHz 

(ms) 

TIME AT 
16MHz 

(ms) 

TIME AT 
20MHz 

(ms) 

TIME AT 
25MHz 

(ms) 
0 0 217 131,072 71.11 11.85 8.19 6.55 5.24 
0 1 220 1,048,576 568.89 94.81 65.54 52.43 41.94 
1 0 223 8,388,608 4551.11 758.52 524.29 419.43 335.54 
1 1 226 67,108,864 36408.88 6068.15 4194.30 3355.44 2684.35 

 
The watchdog timeout selection is made using bits WD1 (CKCON.7) and WD0 (CKCON.6) as shown in 
the table. The timeout selections possible are shown in the bit descriptions that follow. The watchdog 
timeout period is affected by the use of power management modes. The slower clock rate, either divide-
by-64 or divide-by-1024 is used as the input source for the watchdog timer. This allows the watchdog 
period to remain synchronized with device operation. 
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As discussed, the watchdog timer has several SFR bits that contribute to its operation. It can be enabled to 
function as either a reset source, interrupt source, software polled timer or any combination of the three. 
Both the reset and interrupt have status flags. The watchdog also has a bit that restarts the timer. A 
summary table showing the bit locations is below. A description follows. 
 

NAME DESCRIPTION REGISTER LOCATION BIT POSITION 
EWT Enable Watchdog Timer Reset WDCON–D8h WDCON.1 
RWT Reset Watchdog Timer WDCON–D8h WDCON.0 
WD1 Watchdog Interval 1 CKCON–8Eh CKCON.7 
WD0 Watchdog Interval 0 CKCON–8Eh CKCON.6 

WTRF Watchdog Timer Reset Flag WDCON–D8h WDCON.2 
EWDI Enable Watchdog Timer Interrupt EIE–E8h EIE.4 
WDIF Watchdog Interrupt Flag WDCON–D8h WDCON.3 

 
The watchdog timer is a free-running timer and will be disabled by a power-fail reset. A watchdog 
timeout reset will not disable the watchdog timer but will restart the timer. In general, software should set 
the watchdog to whichever state is desired, just to be certain of its state. Control bits that support 
watchdog operation are described below. 
 
 
WDCON REGISTER SUMMARY 
Watchdog Control, WDCON; D8h 
 
WDCON.3: WDIF, Watchdog Interrupt Flag. If the watchdog interrupt is enabled (EIE.4), hardware will set 
this bit to indicate that the watchdog interrupt has occurred. If the interrupt is not enabled, this bit indicates that the 
timeout has passed. If the watchdog reset is enabled (WDCON.1), the user has 512 clocks to strobe the watchdog 
prior to a reset. Software or any reset can clear this flag. 
 
WDCON.2: WTRF, Watchdog Timer Reset Flag. Hardware will set this bit when the watchdog timer causes a 
reset. Software can read it, but must clear it manually. A power-fail reset will also clear the bit. This bit assists 
software in determining the cause of a reset. If EWT = 0, the watchdog timer will have no affect on this bit. 
 
WDCON.1: EWT, Enable Watchdog Timer Reset. Setting this bit will turn on the watchdog timer reset 
function. The interrupt will not occur unless the EWDI bit in the EIE register is set. A reset will occur according to 
the WD1 and WD0 bits in the CKCON register. Setting this bit to a 0 will disable the reset but leave the timer 
running. 
 
WDCON.0: RWT, Reset Watchdog Timer. This bit serves as the strobe for the watchdog function. During the 
timeout period, software must set the RWT bit if the watchdog is enabled. Failing to set the RWT will cause a reset 
when the timeout has elapsed. There is no need to set the RWT bit to a 0 because it is self-clearing. 
 
Read/Write Access: All bits have unrestricted read access. POR, EWT, WDIF, and RWT require a timed-access 
write. The remaining bits have unrestricted write access. 
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Clock Control, CKCON; 8Eh 
 
CKCON.7: WD1, Watchdog Timer Mode Select Bit 1. See table below for operation. 
 
CKCON.6: WD0, Watchdog Timer Mode Select Bit 0. See table below for operation. The WD select bits 
determine the timeout period of the watchdog timer. The timer divides the crystal frequency by a programmable 
value as shown below. The divider value is expressed in number of clock (crystal) cycles. Note that the reset 
timeout is 512 clocks longer than the interrupt, regardless of whether the interrupt is enabled. 
 

WD1 WD0 Interrupt Divider Reset Divider 
0 0 217 217 + 512 
0 1 220 220 + 512 

1 0 223 223 + 512 

1 1 226 226 + 512 
 
The default watchdog timeout is the shortest one (WD1 = WD0 = 0). Software can change this value easily, so this 
should cause no inconvenience. However, the EWT, WDIF, and RWT bits are protected under the timed-access 
procedure. This prevents software from accidentally enabling or disabling the watchdog. Most importantly, it 
prevents errant code from accidentally clearing and restarting the watchdog. More details are discussed in the 
section on timed access. 
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12. SERIAL I/O 
The high-speed microcontroller serial communication is compatible with the 80C32. This includes 
framing error detection and automatic address recognition. The high-speed microcontroller provides two 
fully independent UARTs (serial ports) for simultaneous communication over two channels. The UARTs 
can be operated in identical or different modes and communication speeds. In this documentation, all 
descriptions apply to both UARTs unless stated otherwise. 
 
Each serial port is capable of both synchronous and asynchronous modes. In the synchronous mode, the 
microcontroller generates the clock and operates in a half-duplex mode. In the asynchronous mode, full 
duplex operation is available. Receive data is buffered in a holding register. This allows the UART to 
receive an incoming word before software has read the previous value. Each UART has an associated 
control register (SCON0, SCON1) and each has a transmit/receive register (SBUF0, SBUF1). The SFR 
locations are: SCON0;98h; SBUF0; 99h; SCON1;C0h; SBUF1;C1h. The SBUF location provides access 
to both transmit and receive registers.  Reads are directed to the receive buffer and writes to the transmit 
buffer automatically. 
 
12.1 Serial Mode Summary 
Each port provides four operating modes. These offer different communication protocols and baud rates. 
These modes are summarized briefly as follows. Detailed descriptions are provided later in this section. 
 
The use of power management modes, if supported, will affect the internal clock rate and baud rate as 
shown in Table 7-D. The following descriptions assume that power management modes are not in use. 
 
Mode 0 
This mode provides synchronous communication with external devices. It is commonly used to 
communicate with serial peripherals. Serial I/O occurs on the RXD pin. The shift clock is provided on the 
TXD pin. Note that whether transmitting or receiving, the high-speed microcontroller generates the serial 
clock. Thus, any device on the serial port in Mode 0 must accept the microcontroller as the master. 
 
The baud rate in Mode 0 is a function of the oscillator input. It will be the clock input divided by either 12 
or 4. This is selected by the SM2 bit (SCON0.5 or SCON1.5) as described below. When set to a logic 0, 
the serial port runs at a divide-by-12.  When set to a logic 1, the serial port runs at a divide-by-4. With the 
exception of the additional new divide-by-4 of the oscillator (supported by SM2), Mode 0 operation is 
identical to the 80C32. 
 
Mode 1 
This mode provides standard full-duplex asynchronous communication. A total of 10 bits is transmitted 
including 1 start bit, 8 data bits, and 1 stop bit. The received stop bit is stored in bit location RB8 in the 
relevant SCON register. 
 
In Mode 1, the baud rate is a function of timer overflow. This makes the baud rate programmable by the 
user. Mode 1 has a difference for the two UARTs. Serial Port 0 can use either Timer 1 or 2 to generate 
baud rates. Serial Port 1 can use only Timer 1. Note that if both serial ports use the same timer, they will 
be running at the same baud rate. If they use different timers (or different modes), they can run at 
different rates. Baud rates are discussed in more detail below. Mode 1 operation is identical to the 
standard 80C32 when Timers 1 or 2 use the default divide-by-12 of the oscillator. 
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Mode 2 
This mode is an asynchronous mode that transmits a total of 11 bits. These include 1 start bit, 8 data bits, 
a programmable ninth bit, and 1 stop bit. The ninth bit is determined by the value in TB8 (SCON0.3 or 
SCON1.3) for transmission. When the ninth bit is received, it is stored in RB8 (SCON0.2 or SCON1.2). 
The ninth bit can be a parity value by moving the P bit (PSW.0) to TB8. 
 
The baud rate for Mode 2 is a function of the oscillator frequency. It is either the oscillator input divided 
by 32 or 64 as programmed by the SMOD bit in the PCON register. Mode 2 operation is identical to the 
standard 80C32. 
 
Mode 3 
This mode has the same functionality as Mode 2, but generates baud rates like Mode 1. That is, this mode 
transmits 11 bits, but generates baud rates via the timers. Like Mode 1, either Timer 1 or 2 can be used for 
Serial Port 0 and Timer 1 can be used for Serial Port 1. Mode 3 operation is identical to the standard 
80C32 when Timers 1 or 2 use the default divide-by-12 of the oscillator. 
 
12.2 Serial Port Initialization 
In order to use the UART function(s), the serial port must be initialized. This involves selecting the mode 
and timebase, then initializing the baud rate generator if necessary. Serial communication is then 
available. Once the baud rate generator is running, the UART can receive data. 
 
In Mode 0, the high-speed microcontroller provides the clock. Serial reception is initiated by setting the 
RI bit to a logic 0 and REN to a logic 1. This will generate a clock on the TXD pin and shift in the 8 bits 
on the RXD pin. In the other modes, setting the REN bit to logic 1 will allow serial reception. The 
external device must actually initiate it by sending a start bit. In any mode, serial transmission is initiated 
by writing to either the SBUF0 or SBUF1 location. 
 
Most of the serial port controls are provided by the SCON0 and SCON1 registers. For convenience, these 
are provided in Table 12-A. In addition, other control bits that influence the Serial Port operation are also 
summarized below. 
 
Table 12-A. Serial I/O Modes 

MODE SYNCH/ASYNCH BAUD 
CLOCK† 

DATA 
BITS START/STOP 9TH BIT FUNCTION 

0 Synch 4 or 12 tCLK 8 None None 
1 Asynch Timer 1 or 2* 8 1 start, 1 stop None 
2 Asynch 32 or 64 tCLK 9 1 start, 1 stop 0, 1, parity 
3 Asynch Timer 1 or 2* 9 1 start, 1 stop 0, 1, parity 

 
*Timer 2 available for Serial Port 0 only. 
†The use of PMM1 or PMM2 will affect the baud clock. 
 



High-Speed Microcontroller User’s Guide 
 

131 of 167 

Serial Port Control 0, SCON0; 98h 
This is the standard 80C32 serial port. The new serial port is designated Serial Port 1 and is documented below. 
 
SCON0.7: SM0/FE_0, Serial Port 0 Mode Bit 0 or Framing Error Flag. PCON.6 (SMOD0) determines 
whether this bit functions as SM0 or FE. The operation of SM0 (SMOD0 = 0) is described in the table below. 
When SMOD0 = 1, the serial port will set FE to indicate an invalid stop bit. When used as FE, this bit must be 
cleared in software.  
 
SCON0.6: SM1_0, Serial Port 0 Mode Select 1. The operation of SM1 is described in the table below. 
 
SCON0.5: SM2_0, Multiple MCU Communication. Setting this bit to 1 enables multiprocessor communication 
in Modes 2 or 3. If the ninth bit is 0, the RI_0 will not be set. In Mode 1, setting the SM2_0 bit to a one causes the 
RI_0 bit not to be set if a valid stop bit is not received. In the high-speed microcontroller, SM2_0 also has a new 
function.  In mode 0, the SM2_0 bit controls whether the serial port clock runs at a divide-by-4 or a divide-by-12 of 
the oscillator when not in PMM. When set to a logic 0, the serial port runs at a divide-by-12. When set to a logic 
one, the serial port runs at a divide-by-4. This results in much faster synchronous serial communication. 
 
SCON0.4: REN_0, Receive Enable. When set to a 1, the receive shift register will be enabled. 
 
SCON0.3: TB8_0. Set/clear to define the state of the ninth transmission data bit in modes 2 and 3. 
 
SCON0.2: RB8_0. Indicates the state of an incoming ninth bit when in modes 2 and 3.  In mode 1, when SM2  = 0, 
RB8_0 is the state of the stop bit received. RB8_0 is not used in mode 0. 
 
SCON0.1: TI_0. Flag that indicates the transmitted word has been completely shifted out. In mode 0, TI_0 is set at 
the end of the eighth data bit. In all other modes, this bit is set at the end of the last data bit. It must be cleared 
manually by software. 
 
SCON0.0: RI_0. Flag that indicates a serial word has been received. In mode 0, RI_0 is set at the end of the 8th 
bit. In mode 1, it is set after the last sample of the incoming stop bit subject to the state of SM2_0. In modes 2 and 
3, RI_0 is set after the last sample of RB8_0. It must be cleared manually by software. 
 

SM0/FE_0 SM1_0 Mode Function Length (bits) Period 
0 0 0 Sync 8 4/12 tCLK (see SM2) 
0 1 1 Asynch 10 Timer 1 or 2 
1 0 2 Asynch 11 64/32 tCLK 
1 1 3 Asynch 11 Timer 1 or 2 

 
Initialization: SCON is set to 00h on a reset. 
 
Read/Write Access: Unrestricted 
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Serial Port Control 1, SCON1; C0h 
Serial Port 1 performs identically to the standard Serial Port 0 on an 80C32 with one exception. The baud rate 
generation from Timer 2 is not available in Modes 1 and 3. Timer 1 is used. The port is located at P1.3 and P1.2 for 
TXD1 and RXD1, respectively. 
 
SCON1.7: SM0/FE_1, Serial Port 1 Mode Bit 0 or Framing Error Flag. PCON.6 (SMOD0) determines 
whether this bit functions as SM0 or FE. The operation of SM0 (SMOD0 = 0) is described in the table below. 
When SMOD0 = 1, the serial port will set FE to indicate an invalid stop bit. When used as FE, this bit must be 
cleared in software. 
 
SCON1.6: SM1_1, Serial Port 1 Mode Select 1. The operation of SM1_1 is described in the table below. 
 
SCON1.5: SM2_1, Multiple MCU Communication. Setting this bit to a one enables multiprocessor 
communication in Modes 2 or 3.  If the ninth bit is 0, the RI_1 will not be set. In Mode 1, setting the SM2_1 bit to 
a one causes the RI_1 bit not to be set if a valid stop bit is not received. In the high-speed microcontroller, SM2_1 
also has a new function. In mode 0, the SM2_1 bit controls whether the serial port clock runs at a divide-by-4 or a 
divide-by-12 of the oscillator when not in PMM. When set to logic 0, the serial port runs at a divide-by-12. When 
set to logic 1, the serial port runs at a divide-by-4. This results in much faster synchronous serial communication. 
 
SCON1.4: REN_1, Receive Enable. When set to 1, the receive shift register will be enabled. 
 
SCON1.3: TB8_1. Set/clear to define the state of the ninth transmission data bit in modes 2 and 3. 
 
SCON1.2: RB8_1. Indicates the state of an incoming ninth bit when in modes 2 and 3. In mode 1, when SM2 = 0, 
RB8 is the state of the stop bit received. RB8 is not used in mode 0. 
 
SCON1.1: TI_1. Flag that indicates the transmitted word has been completely shifted out. In mode 0, TI is set at 
the end of the eighth data bit. In all other modes, this bit is set at the end of the last data bit. It must be cleared 
manually by software. 
 
SCON1.0: RI_1. Flag that indicates a serial word has been received. In mode 0, RI_1 is set at the end of the eighth 
bit. In mode 1, it is set after the last sample of the incoming stop bit subject to the state of SM2_1. In modes 2 and 
3, RI_1 is set after the last sample of RB8_1. It must be cleared manually by software. 
 

SM0/FE_0 SM1_0 Mode Function Length (bits) Period 
0 0 0 Sync 8 4/12 tCLK (see SM2) 
0 1 1 Asynch 10 Timer 1 
1 0 2 Asynch 11 64/32 tCLK 
1 1 3 Asynch 11 Timer 1  

 
Initialization: SCON1 is set to 00h on a reset. 
 
Read/Write Access: Unrestricted 
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Power Control, PCON; 87h 
 
PCON.7: SMOD_0. Doubles the serial baud rate in modes 1, 2, and 3 for Serial Port 0 (the standard port) when 
SMOD = 1. 
 
PCON.6: SMOD0, Framing Error-Detection Enable. When SMOD0 is set to 1, SCON0.7 and SCON1.7 are 
converted to the FE flag for the respective serial port. When SMOD0 is 0, then SCON0.7 and SCON1.7 are the 
SM0 function as defined for the serial port. 
 
 
Watchdog Control, WDCON; D8h 
 
WDCON.7: SMOD_1, Serial Modification. When set to logic 1, this bit doubles the baud rate of Serial Port 1.  It 
works identically to PCON.7. 
 
 
Timer Two Control, T2CON; C8h 
 
T2CON.5: RCLK, Receive Clock Flag. This bit determines whether Timer 1 or 2 is used for Serial Port 0 timing 
of received data in Serial Modes 1 or 3. RCLK = 1 causes Timer 2 overflow to be used as the receive clock.  
RCLK = 0 causes Timer 1 overflow to be used as the receive clock. 
 
T2CON.4: TCLK, Transmit Clock Flag. This bit determines whether Timer 1 or 2 is used for Serial Port 0 
timing of Transmit data in Serial Modes 1 or 3. TCLK = 1 causes Timer 2 overflow to be used as the transmit 
clock. TCLK = 0 causes Timer 1 overflow to be used as the transmit clock. 
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12.3 Baud Rates 
Each mode has a baud rate generator associated with it. This generator is generally the same for each 
UART. Several of the baud rate generation techniques have options and these options are independent for 
the two UARTs. The baud rate descriptions given below are separated by mode. 
 
Mode 0 
Baud rates for this mode are driven directly from the crystal speed divided by either 12 or 4.  Mode 0 is 
synchronous so that the shift clock output frequency will be the baud rate.  The formula is simply as 
follows: 
 

Oscillator Frequency 
 Mode 0 Baud Rate =  12 
 
or 
    Oscillator Frequency 
 Mode 0 Baud Rate = 4 
 
The default case is divide-by-12. The user can select by using the SM2 bit in the associated SCON 
register. For Serial Port 0, the SM2_0 bit is SCON0.5.  For Serial Port 1, the SM2_0 bit is SCON1.5. 
When SM2 is set to logic 0, the baud rate is generated using a divide-by-12 of the oscillator input. When 
SM2 is set to logic 1, the baud rate is generated using divide-by-4. Note that this use of SM2 differs from 
a standard 80C32. In that device, SM2 had no valid use when the UART was in Mode 0. Since it was 
generally set to a 0, for the divide-by-12, there is no compatibility problem. 
 
Mode 2 
In this asynchronous mode, baud rates are also generated from the oscillator input. This mode works 
identically to the original 8051 family.  The baud rate is given by the following formula. 
 

  2SMOD_x Oscillator Frequency 
Mode 1, 3 Baud Rate = 64 12 x (256 - TH1) 

 
 
The result of this formula generates a baud rate of either1/32 x oscillator frequency or 1/64 x oscillator 
frequency. In the formula, the numerator is expressed as two to the power of SMOD, where SMOD is 
either a 0 or 1. When 0, the numerator is a 1 and when SMOD = 1, the numerator is a 2. 
 
SMOD is a bit that effectively doubles the baud rate when set to logic 1. For Serial Port 0, SMOD_0 
resides at PCON.7. This is the original location in the 8051 family. For Serial port 1, SMOD_1 resides in 
WDCON.7. The SMOD bits are set to a logic 0 on reset, which gives the lower speed baud rate. 
 
If the application determines that Mode 0 or 2 must be used, then the oscillator or crystal frequency must 
be selected to generate the correct baud rates since each mode offers two selections for a given frequency. 
 
Mode 1 or 3 
These asynchronous modes are commonly used for communication with PCs, modems, and other similar 
interfaces. The baud rates are programmable using the oscillator input and 16-bit Timer 2 or 8-bit Timer 
1.  The respective timer is placed in auto-reload mode. Each time the timer reaches its rollover condition 
(FFFFh→0000h—Timer 2 or FFh→00h—Timer 1), a clock is sent to the baud rate circuit. This clock is 

x



High-Speed Microcontroller User’s Guide 
 

135 of 167 

then divided by 16 to generate the exact baud rate. For Serial Port 0, either Timer 1 or 2 can be used to 
generate baud rates. Note that there are differences between the timers when used as baud rate generators. 
Serial Port 1 can use Timer 1 as a baud rate generator. Thus in Mode 1 or 3, the two serial ports can run at 
the same frequency if Timer 1 is used for both, but different frequencies if both timers are used. 
 
Also note that the user can determine the speed at which Timer 1 runs (4 clocks or 12 clocks). In most 
cases, 12 clocks will be used for baud rate generation. Timer 2 runs from a two-clock scheme when used 
for baud rate generation.  This is compatible with the 80C32. 
 
The baud rates for Mode 1 or 3 are given by these formulas. 
 
Serial Port 0 or 1 

  2 SMOD_x 
Mode 1, 3 Baud Rate = 32  Timer 1 Overflow 

 
Serial Port 0 

Timer 2 Overflow 
Mode 1, 3 Baud Rate = 16   

 
To use Timer 1 as the baud rate generator, it is commonly put into the 8-bit auto-reload mode. In this 
way, the CPU is not involved in baud rate generation.  Note that the timer interrupt should not be enabled. 
In the 8-bit auto-reload mode (Timer 1 Mode 2), the reload value is stored in TH1. Thus the combination 
of crystal frequency and TH1 determine the baud rate. The complete formula is as follows. 
 

   2 SMOD_x  Oscillator Frequency 
Mode 1, 3 Baud Rate = 32 12 x (256 - TH1) 

 
 
Note that the 12 in the denominator can be changed to a 4 as determined by the timer selection 
(T1M;CKCON.4). This formula provides the derived baud rate for a given TH1 and crystal. Most users 
already know what baud rate is desired and want the timer reload value. Thus the equation solves as 
follows, when T1M = 0. 
 

2 SMOD_x x Oscillator Frequency 
TH1 = 256 -                   32 x 12 x Baud Rate 

 
 
Note that the most common application is to use Timer 1 in 8-bit auto-reload mode as a timer. It can 
actually be used in any mode and can also be configured as a counter. 
 
To use Timer 2 as baud rate generator for Serial Port 0, the Timer is configured in auto-reload mode. 
Then either TCLK or RCLK bit (or both) are set to a logic 1. TCLK = 1 selects Timer 2 as the baud rate 
generator for the transmitter and RCLK = 1 selects Timer 2 for the receiver. Thus, Serial Port 0 can have 
the transmit and receive operating at different baud rates by choosing 1 for one data direction and Timer 2 
for the other. Setting either RCLK or TCLK to a logic 1 selects Timer 2 for baud rate generation. RCLK 
and TCLK reside in T2CON.4 and TCON.5 respectively. 
 
When using Timer 2 to generate baud rates, the formula will be as follows. Note that the reload value is a 
16-bit number as compared with Timer 1, which uses only 8 bits. 

x

x
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o 

Mode 1, 3 Baud Rate = 
RCAP2L)RCAP2H,(65536*32

FrequencyOscillator
−

 

 
Note that the 32 in the denominator is a result of the timer being run at a divide-by-2, combined with the 
divide-by-16 applied to timer overflows as mentioned above. Timer 2 normally runs at a divide by either 
12 or 4 in auto-reload mode. Setting RCLK or TCLK causes the divide-by-2 operation. 
 
This formula provides the derived baud rate for a given RCAP2H, RCAP2L and crystal. Most users 
already know what baud rate is desired and want the timer reload value. Thus the equation solves as 
follows. 
 

 

                     RCAP2H, RCAP2L = 65536 –
BaudRate*32

FrequencyOscillator   

 
The Timer 2 interrupt is automatically disabled when either RCLK or TCLK is set. Also, the TF2 
(TCON.7) flag will not be set on a timer rollover. The manual reload pin [T2EX (P1.1)] will not cause a 
reload either. 
 
12.4 Serial I/O Description 
A detailed description of each serial mode is given below. A description of framing error detection and 
multiprocessor communication follows this section. 
 
Mode 0 
This mode is used to communicate in synchronous, half–duplex format with devices that accept the high-
speed microcontroller as a master. A functional block diagram and basic timing of this mode are shown in 
Figure 12-1. As can be seen, there is one bidirectional data line (RXD) and one shift clock line (TXD) 
used for communication. The shift clock is used to shift data into and out of the microcontroller and the 
remote device. Mode 0 requires that the microcontroller is the master because the microcontroller 
generates the serial shift clocks for both directions. As described above, the shift clock may be selected to 
be either divide-by-12 or divide-by-4 of the oscillator as determined by the SM2 (SCON0.5 or SCON1.5) 
bit. 
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Figure 12-1. Serial Port Mode 0  
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The RXD signal is used for both transmission and reception. TXD provides the shift clock. Data bits enter 
and exit LSb first. The baud rate is equal to the shift clock frequency. This can be either oscillator divided 
by 4 or oscillator divided by 12. The relevant UART will begin transmitting when any instruction writes 
to SBUF0 or SBUF1 (hex address 99h or C1h). The internal shift register will then begin to shift data out. 
The clock will be activated and will transfer data until the 8-bit value is complete. Data will be presented 
one oscillator cycle prior to the falling edge of the shift clock (TXD), and an external device can latch the 
data using the rising edge. 
 
The UART will begin to receive data when the REN bit in the SCON register (SCON0.4 or SCON1.4) is 
set to logic 1 and the corresponding RI bit (SCON0.0 or SCON1.0) is set to a logic 0. This condition tells 
the UART that there is data to be shifted in. The shift clock (TXD) will activate and the UART will latch 
incoming data on the rising edge. The external device should therefore present data on the falling edge. 
This process will continue until 8 bits have been received. The RI bit will automatically be set to logic 1, 
one machine cycle following the last rising edge of the shift clock on TXD. This will cause reception to 
stop until the SBUF has been read, and the RI bit cleared. When RI is cleared, another byte will be shifted 
in. 
 
Mode 1 
This mode is asynchronous and full duplex, using a total of 10 bits. The 10 bits consist of a start bit (logic 
0), 8 data bits, and 1 stop bit (logic 1) as illustrated in Figure 12-2. The data is transferred LSb first. As 
described above, the baud rates for Mode 1 are generated by either a divide-by-16 of Timer 1 rollover, a 
divide-by-16 of the Timer 2 rollover, or a divide-by-16 of (Timer 1 rollover)/2. The UART begins 
transmission 5 oscillator cycles after the first rollover of the divide-by-16 counter following a software 
write to SBUF. Transmission takes place on the TXD pin. It begins by the start bit being placed on the 
pin. Data is then shifted out onto the pin, LSb first. The stop bit follows. The TI bit is set two oscillator 
cycles after the stop bit is placed on the pin. All bits are shifted out at the rate determined by the baud rate 
generator. 
 
Once the baud rate generator is active, reception can begin at any time. The REN bit (SCON0.4 or 
SCON1.4) must be set to logic 1 to allow reception. The falling edge of a start bit on the RXD pin will 
begin the reception process. Data is shifted in at the selected baud rate. At the middle of the stop bit time, 
certain conditions must be met to load SBUF with the received data: 
 
1) RI must = 0, and either 
2) If SM2 = 0, the state of the stop bit does not matter, or 
3) If SM2 = 1, the state of the stop bit must=1. 
 
If these conditions are true, then SBUF (hex address 99h or C1h) will be loaded with the received byte, 
the RB8 bit (SCON0.2 or SCON1.2) will be loaded with the stop bit, and the RI bit (SCON0.0 or 
SCON1.0) will be set. If these conditions are false, then the received data will be lost (SBUF and RB8 not 
loaded) and RI will not be set.  Regardless of the receive word status, after the middle of the stop bit time, 
the receiver will go back to looking for a 1-to-0 transition on the RXD pin. 
 
Each data bit received is sampled on the 7th, 8th, and 9th clock used by the divide-by-16 counter. Using 
majority voting, two equal samples out of the three, determines the logic level for each received bit. If the 
start bit was determined to be invalid (=1), then the receiver goes back to looking for a 1-to-0 transition 
on the RXD pin in order to start the reception of data. 
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Figure 12-2. Serial Port Mode 1 
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Mode 2 
This mode uses a total of 11 bits in asynchronous full-duplex communication as illustrated in Figure 12-3. 
The 11 bits consist of one start bit (a logic 0), 8 data bits, a programmable 9th bit, and one stop bit (a 
logic 1). Like Mode 1, the transmissions occur on the TXD signal pin and receptions on RXD. For 
transmission purposes, the 9th bit can be stuffed as logic 0 or 1. A common use is to put the parity bit in 
this location. The 9th bit is transferred from the TB8 bit position in the SCON register (SCON0.3 or 
SCON1.3) during the write to SBUF. Baud rates are generated as a fixed function of the crystal frequency 
as described above. Like Mode 1, Mode 2’s transmission begins 5 oscillator cycles after the first rollover 
of the divide-by-16 counter following a software write to SBUF. It begins by the start bit being placed on 
the TXD pin. The data is then shifted out onto the pin LSb first, followed by the 9th bit, and finally the 
stop bit. The TI bit (SCON0.1 or SCON1.1) is set when the stop bit is placed on the pin. 
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Figure 12-3. Serial Port Mode 2  
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Reception begins when a falling edge is detected as part of the incoming start bit on the RXD pin. The 
RXD pin is then sampled according to the baud rate speed. The 9th bit is placed in the RB8 bit location in 
SCON (SCON0.2 or SCON1.2). When a stop bit has been received, the data value will be transferred to 
the SBUF receive register (hex address 99h or C1h). The RI bit (SCON0.0 or SCON1.0) will be set to 
indicate that a byte has been received.  At this time, the UART can receive another byte. 
 
Once the baud rate generator is active, reception can begin at any time. The REN bit (SCON0.4 or 
SCON1.4) must be set to logic 1 to allow reception. The falling edge of a start bit on the RXD pin will 
begin the reception process. Data must be shifted in at the selected baud rate. At the middle of the 9th bit 
time, certain conditions must be met to load SBUF with the received data. 
 
1) RI must = 0, and either 
2) If SM2 = 0, the state of the 9th bit does not matter, or 
3) If SM2 = 1, the state of the 9th bit must = 1. 
 
If these conditions are true, then SBUF will be loaded with the received byte, RB8 will be loaded with the 
9th bit, and RI will be set. If these conditions are false, then the received data will be lost (SBUF and RB8 
not loaded) and RI will not be set. Regardless of the receive word status, after the middle of the stop bit 
time, the receiver will go back to looking for a 1-to-0 transition on RXD. 
 
Data is sampled in a similar fashion to Mode 1 with the majority voting on three consecutive samples. 
Mode 2 uses the sample divide-by-16 counter with either the oscillator divided by 2 or 4. 
 
Mode 3 
This mode has the same operation as Mode 2, except for the baud rate source. As shown in Figure 12-4, 
Mode 3 can use Timer 1 or 2 for Serial Port 0 and Timer 1 for Serial Port 1. The bit shifting and protocol 
are the same. 
 
12.5 Framing Error Detection 
A framing error occurs when a valid stop bit is not detected. This results in the possible improper 
reception of the serial word. The UART can detect a framing error and notify the software. Typical 
causes of framing errors are noise and contention. The Framing Error condition is reported in the SCON 
register for the corresponding UART. 
 
The Framing Error bit, FE, is located in SCON0.7 or SCON1.7. Note that this bit normally serves as SM0 
and is described as SM0/FE_0 or SM0/FE_1 in the register description. Framing Error information is 
made accessible by the Framing Error Detection Enable bit. It is SMOD0 located at PCON.6. When 
SMOD0 is set to logic 1, the framing error information is shown in SM0/FE (SCON0.7 or SCON1.7). 
When SMOD0 is set to logic 0, the SM0 function is accessible. The information for bits SM0 and FE is 
actually stored in different registers. Changing SMOD0 only changes which register is accessed; not the 
contents of either. 
 
The FE bit will be set to a 1 when a framing error occurs. It must be cleared by software. Note that the 
SMOD0 state must be 1 while reading or writing the FE bit. Also note that receiving a properly framed 
serial word will not clear the FE bit. This must be done in software. 
 



High-Speed Microcontroller User’s Guide 
 

143 of 167 

Figure 12-4. Serial Port Mode 3  
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12.6 Multiprocessor Communication 
Multiprocessor communication mode makes special use of the 9th data bit in Modes 2 and 3. In the 
original 8051, the 9th bit was restricted to a 0 or 1 condition, but had no special purpose. In the 80C32 
and the high-speed microcontroller, it can be used to signify that the incoming byte is an address. This 
allows the processor to be interrupted only if the correct address appears. The receive interrupt, if 
enabled, will only occur when a recognized address is received. 
 
When a serial word is received with the 9th bit set and the appropriate SM2=1, the byte will be assumed 
to be an address. The address will be compared to an internally stored address. If it matches, a receive 
interrupt will occur. The internal address is derived from the contents of two registers. The first register 
specifies an absolute address.  This is the user-specified address of the device. The second register tells 
the comparator which address bit(s) to actually use in the comparison. This allows broadcast 
transmissions that reach groups of microcontrollers or all microcontrollers on a serial port. The user 
defines this protocol. 
 
There are two SFRs that support multiprocessor communication for each UART. These are independent, 
so that different addresses can be used in each. The registers are SADDR0 or SADDR1 (hex address A9h 
or AAh) and SADEN0 or SADEN1 (hex  address B9h or BAh). The SADDR register specifies the 
individual processor’s address. The SADEN identifies address bits that should be ignored in matching 
addresses. 
 
Software will write an 8-bit address to the SADDR register. This is the microcontroller’s individual 
address. Any bit in SADEN that contains logic 0 will cause the corresponding bit in SADDR to be 
ignored in comparison. Thus, logic 0 bits in SADEN create don’t care bit states for address comparisons. 
 
When an address is received, each address bit that is not masked by a don’t care will be compared to the 
SADDR. The microcontroller will interrupt on any address that matches this comparison. Any address 
that meets this comparison is called a given address. The following example shows how one address can 
be directed to an individual processor, or two out of three. 
 
Micro 1 
 SADDR 11110000 
 SADEN 11111010 
 ––––––––––––––––––––––––– 
 Given 11110x0x 
 
Micro 2 

SADDR 11110001 
SADEN 11111001 
––––––––––––––––––––––––– 
Given 11110xx1 
 

Micro 3 
SADDR 11110010 
SADEN 11111010 
––––––––––––––––––––––––– 
Given 11110x1x 

 
Note that an address of 11110000 reaches only microcontroller 1. An address of 11110001 reaches 
microcontroller 1 and microcontroller 2. An address of 11110010 reaches only microcontroller 3. The 
microcontroller also matches on any address that corresponds to the broadcast address. This is the logical 
OR of the SADDR and SADEN registers, with any zeros defined as don’t cares. In most cases, the 
broadcast address will be FFh. The broadcast address feature is not available on the DS8xC520 or the 
DS8xC530. 
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The multiprocessor communication is always enabled. However, the SADEN registers default to 00h, 
which means all address bits are don’t care, so all match. Thus, if no multiprocessor communication is 
used, these registers can be ignored. 
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13. TIMED-ACCESS PROTECTION 
The high-speed microcontroller uses a protection feature called timed access to prevent accidental writes 
to critical SFR bits. These bits could cause a system failure or prevent the watchdog timer from doing its 
job if improperly written. The timed access involves opening a timing window during which the protected 
bit can be modified. If the window is opened correctly, it remains open long enough to alter one protected 
bit. This section explains which bits are protected, why, and how to use the timed-access feature. 
 
13.1 Protected Bits 
Bits that are protected by the timed-access feature are shown below. Only critical function bits that are 
unique to the high-speed microcontroller family are protected, assuring code compatibility with the 
original 80C51 or 80C52. A full description of the function of each bit is provided in Section 4. 
 
EXIF.0  BGS  Bandgap Select 
WDCON.6 POR Power-on Reset Flag 
WDCON.1 EWT Watchdog Reset Enable 
WDCON.0 RWT Reset Watchdog Timer 
WDCON.3 WDIF Watchdog Interrupt Flag 
TRIM.7 E4K 4096Hz RTC Output 
TRIM.6 X12/ 6  12pF/6pF Crystal Select 
TRIM.5 TRM2 Capacitance Trim Bit 2 
TRIM.4 TRM2  Inverse Capacitance Trim Bit 2 
TRIM.3 TRM1 Capacitance Trim Bit 1 
TRIM.2 TRM1  Inverse Capacitance Trim Bit 1 
TRIM.1 TRM0 Capacitance Trim Bit 0 
TRIM.0 TRM0  Inverse Capacitance Trim Bit 0 
ROMSIZE.2  RMS2  ROM Size Select Bit 2 
ROMSIZE.1  RMS1  ROM Size Select Bit 1 
ROMSIZE.0 RMS0  ROM Size Select Bit 0 
RTCC.2  RTCWE  RTC Write Enable 
RTCC.0  RTCE  RTC Enable 
 
13.2 Protection Scheme 
Each bit mentioned above is protected against an accidental write by requiring the software to perform a 
procedure before writing the bit. Timed access requires the software to write two specific values to the 
timed-access register during two consecutive instruction cycles. The values AAh, then 55h, must be 
written in consecutive instructions to the TA register at SFR location C7h. If the writes are performed 
correctly, the write access window will open for three machine cycles. During this window, the software 
may modify a protected bit. The suggested code to open a timed-access window is: 
 
MOV 0C7h, #0AAh 
MOV 0C7h, #55h 
 
The procedure to modify a timed-accessprotected bit begins by writing the value AAh to the timed-access 
register (TA;C7h). The value 55h must then be written to the timed-access register within three machine 
cycles of writing AAh. This opens a three-machine cycle window, after the write of 55h, during which 
any timed-access protected bits may be modified. Failure to complete any of the required steps will also 
require the procedure to begin again, starting with the write of AAh to the timed-access register. Attempts 
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to modify timed-access protected bits after the window has closed will be ignored. This is regardless of 
whether any bits were modified. Figure 13-1 illustrates a number of examples of correct and incorrect use 
of the timed-access procedure. 
 
Figure 13-1. Timed-Access Examples  
 

three machine cycles three machine cycles three machine cycles 
 MOV 0C7h, #0AAh MOV 0C7h, #55h   SETB EWT 
 

three machine cycles three machine cycles one machine cycle two machine cycles 
 MOV 0C7h, #0AAh MOV 0C7h, #55h  NOP    SETB EWT  
 

three machine cycles three machine cycles three machine cycles 
 MOV 0C7h, #0AAh MOV 0C7h, #55h MOV WDCON, #02h 

 
VALID TIMED-ACCESS PROCEDURES 

 
three machine cycles one machine cycles three machine cycle two machine cycles 

MOV 0C7h, #0AAh    NOP   MOV 0C7h, #55H SETB EWT 
 
*Second write to TA register does not occur within 3 cycles of first write. 
 

three machine cycles three machine cycles one machine cycle three machine cycles 
 MOV 0C7h, #0AAh  MOV 0C7h, #55H   NOP   MOV WDCON, #02h  
 
*Modification of protected bit did not occur with 3 cycles of second write to TA register. 
 

three machine cycles three machine cycles two machine cycle two machine cycles 
 MOV 0C7h, #0AAh  MOV 0C7h, #55h   SETB EWT  SETB EWT  
 
*Modification of second protected bit did not complete within 3 cycles of second write to TA register. 
 

INVALID TIMED-ACCESS PROCEDURES 
 
 
13.3 Timed-Access Protects Watchdog 
Any microcontroller-based system can be faced with environmental conditions that are beyond its 
designed abilities. These include external signal transients due to component failure, fluctuating power 
conditions, massive electrostatic discharge (ESD), and other unexpected system events. When a 
microcontroller is exposed to such conditions, program execution can become corrupted. Members of the 
high-speed microcontroller family that incorporate a watchdog timer can initiate a reset to recover from 
these conditions. The primary function of the timed-access feature is to protect against accidental 
disabling of the watchdog timer by an “out-of-control” device. This allows the watchdog timer to reset 
the system in the event of program execution failure. 
 
The following hypothetical example demonstrates how a single bit change can corrupt program 
execution. The timed-access procedure protects against an accidental write to the EWT bit by the errant 
code, allowing the watchdog timer reset function to reset the device. While this is a purely fictitious 
example, it illustrates how the watchdog timer and timed-access feature make the high-speed 
microcontroller minimize the effect of accidental code corruption. Note: Timed access is not optional 
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and must be supported if the protected bits are used. This example simply helps explain the category of 
problem that the timed access prevents. 
 
EXAMPLE: A TRANSIENT CAUSES THE WATCHDOG TO BE DISABLED 
 
TABLE_READ: 
C2D2  90 0A 00  MOV  DPTR, 0A00H  ;LOAD TABLE POINTER 
C2D5  79 FF  MOV  R1, #0FFH  ;LOAD COUNTER 
C2D7  78 90  MOV  R0, #90H  ;DESTINATION POINTER 
 
  LOOP: 
C2D9  E0  MOVX  A, @DPTR  ;READ DATA BYTE 
C2DA  F6  MOV  @R0, A  ;STORE IT IN RAM 
C2DB  06  INC  R0  ;NEXT TABLE LOCATION 
C2DC  A3  INC  DPTR  ;NEXT DATA VALUE 
C2DD  D9 C2 D9  DJNZ  R1, LOOP  ;NEXT BYTE OR DONE ? 
 
A transient occurs while the op code is being fetched for the first instruction. The transient causes one bit 
of the op code in the first instruction to be read as a 0 instead of 1. The resulting program is what the 
microcontroller would actually execute: 
 
TABLE_READ:  

 
C2D2  80 0A 00   SJMP   0BH   ;RELATIVE JUMP BY 10 LOCATIONS 
C2D5  79 FF    MOV   R1, #0FFH  ;LOAD COUNTER 
C2D7  78 90   MOV   R0, #90H  ;DESTINATION POINTER 
 

LOOP: 
C2D9  E0    MOVX  A, @DPTR  ;READ DATA BYTE 
C2DA  F6    MOV   @R0, A  ;STORE IT IN RAM 
C2DB  06    INC  R0   ;NEXT TABLE LOCATION 
C2DC  A3    INC   DPTR   ;NEXT DATA VALUE 
C2DD  D9 C2 D9   DJNZ   R1, LOOP  ;NEXT BYTE OR DONE ? 
 
The resulting jump is to address C2DE. This is not even a real op code, but would be treated as such.  The 
resulting fetch is the value C2 D9. This is the op code for CLR D9h. The bit addressable location D9h 
corresponds to the EWT. If the timed-access procedure did not prevent it, this errant instruction would 
disable the watchdog. Note that now, the program execution is completely lost. Real op codes are being 
replaced by operands, data, and garbage. In the high-speed microcontroller, the watchdog will recover 
from this state as soon as it times out since it could not have been disabled in this way. 
 
In the high-speed microcontroller it is very hard to contrive a situation that will accidentally disable the 
watchdog. Note that the timed access prevents accidentally writing a bit. It cannot prevent accidentally 
calling the correct code that writes a bit. This is much more unlikely however. 
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14. REAL-TIME CLOCK 
The DS87C530 incorporates a real-time clock (RTC) onto the high-speed microcontroller family core. 
This allows the device to perform real-time related functions such as data logging and time-stamping 
without an external timer. In addition, the RTC includes an alarm function that can execute a software 
interrupt or resume operation from Stop mode at a specified time. The RTC features are controlled by 12 
new SFRs. These registers as well as two new interrupt control bits are shown in Table 14-A. 
 
Table 14-A. Real-Time Clock Control and Status Bit Summary  

NAME LOCATION FUNCTION RANGE RESET READ/WRITE ACCESS 
ERTCI EIE.5 RTC Interrupt Enable  0 Unrestricted 
PRTCI EIP.5 RTC Interrupt Priority  0 Unrestricted 
RTASS.7–0 RTASS RTC Alarm Subsecond 0–FFh Unchanged Unrestricted 
RTAS.5–0 RTAS RTC Alarm Second 0–3Bh Unchanged Unrestricted 
RTAM.5–0 RTAM RTC Alarm Minute 0–3Bh Unchanged Unrestricted 
RTAH.4–0 RTAH RTC Alarm Hour 0–17H Unchanged Unrestricted 

RTCSS.7–0 RTCSS RTC Subsecond 0–FFh Unchanged 
Read: only if RTCRE = 1. 
Cannot be written. Cleared when 
RTCWE 1 ≥ 0. 

RTCS.5–0 RTCS RTC Second 0–3Bh Unchanged 
RTCM.5–0 RTCM RTC Minute 0–3Bh Unchanged 
RTCH.4–0 RTCH.4–0 RTC Hour 0–17h Unchanged 
DOW.2–0 RTCH.7–5 RTC Day of Week 0–7h Unchanged 
RTCD1.7–0 
RTCD0.7–0 

RTCD1, (MSB) 
RTCD0, (LSB) RTC Day 0–FFFFh Unchanged 

Read: only if RTCRE = 1. 
Write: only if RTCWE = 1. 
1.95ms Read/Write window 
 

SRCE RTCC.7 RTC Subsecond 
Compare Enable  Unchanged Unrestricted 

SCE RTCC.6 RTC Second Compare 
Enable  Unchanged Unrestricted 

MCE RTCC.5 RTC Minute Compare 
Enable  Unchanged Unrestricted 

HCE RTCC.4 RTC Hour Compare 
Enable  Unchanged Unrestricted 

RTCRE RTCC.3 RTC Read Enable  0 Unrestricted 

RTCWE RTCC.2 RTC Write Enable  0 Read: Unrestricted 
Write: Timed Access 

RTCIF RTCC.1 RTC Interrupt Flag  Unchanged Unrestricted 
RTCE RTCC.0 RTC Enable  Unchanged 

E4K TRIM.7 External 4096Hz RTC 
Signal Enable  0 

X12/6 TRIM.6 RTC Crystal 
Capacitance Select  Unchanged 

Read: Unrestricted 
Write: Timed Access 

TRM2–0 
TRIM.5 
TRIM.3 
TRIM.1 

RTC Trim Bit 2–0  Unchanged Read: Unrestricted 
Write: Timed Access 

 
The RTC control and status registers can be subdivided into four groups: RTC time registers 
(RTCSS;FAh, RTCS;FBh, RTCM;FCh, RTCH;FDh, RTCD0;FEh, RTCD1;FFh), RTC alarm registers 
(RTASS;F2h, RTAS;F3h, RTAM;F4h, RTAH;F5h), RTC calibration (TRIM;96h), and RTC control 
(RTCC;F9h). 
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14.1 Starting and Stopping the RTC 
Setting the RTC enable bit, RTCE (RTCC.0), to 1 enables RTC operation. This starts the RTC crystal 
amplifier and begins clocking the RTC. Like all crystal oscillators, the RTC crystal oscillator has a crystal 
warm-up period. Software should allow a minimum of 1 second between setting the RTCE bit to 1 and 
initializing the time. This allows the clock to be guaranteed stable when timekeeping begins. Although it 
may be desired to program the RTC time registers and then start the oscillator, this sequence is not 
recommended because of the delay incurred by the RTC crystal warm-up period. 
 
There are two situations where the RTC will be started. The first is the case where the RTC has been 
intentionally halted following normal operation. When the RTCE bit is set, the time registers will 
continue their count from the last setting when the clock was stopped. The RTC time value will be 
inaccurate, although the settings of the RTC alarm registers and the RTCC register will remain intact. 
 
The second case is following the application of battery power. Most of the registers associated with the 
RTC are nonvolatile, so that they will maintain their state while VCC is removed. When battery power is 
applied to the device, however, the battery backed registers and bits associated with the RTC will be in an 
indeterminate state and will need to be reinitialized. This includes the RTC Interrupt Flag, RTCIF 
(RTCC.1), which should be cleared before setting the RTC interrupt-enable bit (EIE.5). 
 
Clearing the RTCE bit to 0 halts the RTC. This will immediately halt the RTC and will freeze all the time 
registers at their current value and preserve all the RTC settings. If RTC functions are not desired, this 
can be used to reduce the power consumption of the device while in battery-backed mode. 
 
14.2 Setting and Reading the RTC Time Registers 
Access to the RTC time registers (RTCSS, RTCS, RTCM, RTCH, RTCD0, and RTCD1) is enabled by 
the RTCRE (RTCC.3) and RTCWE (RTCC.2) bits. Both user software and the internal clock directly 
write and read the RTC time. To prevent the possibility of both user software and the internal timer 
accessing the same register simultaneously, the DS87C530 incorporates a register locking mechanism. 
Updates to the RTC time registers by the internal timer are temporarily suspended for up to 1.95ms 
during software read or write operations. If a subsecond timer tick should occur during the 1.95ms 
window, it will be processed immediately as soon as either the RTCWE or RTCRE bit is cleared. 
Because the subsecond timer tick interval is 3.906ms, the 1.95ms window allows sufficient time to 
complete any operations and process suspended timer ticks before the next timer tick occurs. In this way, 
no timer ticks can be lost, and accessing the time registers will not affect the accuracy of the RTC. To 
allow any pending timer ticks to propagate through the RTC circuitry, software must wait 4 machine 
cycles after setting the RTCWE or RTCRE bits before accessing any of the RTC time registers. The first 
timer tick following the clearing of the RTWCE bit will be approximately 1.95ms. All following timer 
ticks will be 3.90625ms. 
 
Reading the current time from any or all of the RTC time registers is accomplished by the following 
procedure: 
 
1) Disable all interrupts by clearing the EA bit (IE.7), 
2) Set the RTCRE bit (RTCC.3), 
3) Wait 4 machine cycles, 
4) Read the appropriate register(s) within 1ms of RTCRE being set, 
5) Clear the RTCRE bit (RTCC.3), 
6) Enable interrupts by setting the EA bit (IE.7). 
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Writing to the clock registers sets the time on the DS87C530. The second, minute, hour, day of the week, 
and day count can be set by writing to the respective registers. It is not possible to set the subsecond RTC 
register (RTCS;FAh). This register is automatically reset to 00h when the RTCWE bit is cleared, either 
through software or the automatic timeout of the 1.95ms write window. Writing an invalid time to these 
registers (loading the RTCM register with 3Dh or 61 minutes, for example) will result in an inaccurate 
count by the RTC. It is the responsibility of the software to ensure that only valid times are written to 
these registers. 
 
The procedure for setting an RTC time register is as follows: 
 
1) Disable all interrupts by clearing the EA bit (IE.7), 
2) Perform a timed-access procedure, 
3) Set the RTCWE bit (RTCC.2), 
4) Wait 4 machine cycles, 
5) Write the appropriate register(s) within 1.95ms of RTCWE being set, 
6) Perform a timed-access procedure, 
7) Clear the RTCWE bit (RTCC.2), 
8) Enable interrupts by setting the EA bit (IE.7). 
 
14.3 Using the RTC Alarm 
The RTC alarm function is used to generate an interrupt when the RTC value matches selected alarm 
register values. An alarm can be triggered by a match on one or more of the following alarm registers: 
subsecond (RTASS;F2h), second (RTAS;F3h), minute (RTAM;F4h), and hour (RTAH;F5h). Note that 
there is no alarm register associated with the RTC day count or day of week registers. If an alarm is 
desired on a specific date, an alarm can be executed once a day and user software can compare the current 
date against the day register. It is not necessary to set the RTC write-enable bit, RTCWE, when setting 
the alarm registers. 
 
The alarm can be set to occur on a match with any or all of the alarm registers. An alarm can occur on a 
unique time of day, or a recurring alarm can be programmed every subsecond, second, minute, or hour. 
Alarms can occur synchronously, when the clock rolls over to match the alarm condition, or 
asynchronously, if the alarm registers are set to a value that matches the current time. Note that only one 
alarm may occur per subsecond tick. This means that if a synchronous alarm has already occurred during 
the current subsecond, software cannot cause an asynchronous alarm in the same subsecond. 
 
The specific alarm registers to be compared are selected by setting or clearing the corresponding 
compare-enable bits (RTCC.7-4). Any compare bit that is cleared will result in that register being treated 
as a don’t care when evaluating alarm conditions. Clearing all the compare enable bits will disable the 
ability of the RTC to cause an interrupt, and will immediately clear the RTC interrupt flag (RTCC.1). 
Unlike some interrupts, the RTC flag is not cleared by exiting the RTC interrupt service routine and must 
be explicitly cleared in software. 
 
The general procedure for setting the RTC alarm registers to cause a RTC interrupt is as follows: 
 
1) Clear the ERTCI enable bit (EIE.5), 
2) Clear all RTC alarm compare-enable bits (ANL RTCC, #0Fh), 
3) Write one or more RTC alarm registers, 
4) Set the desired RTC alarm compare-enable bits, 
5) Set the ERTCI enable bit (EIE.5). 
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Setting the alarm to cause an interrupt once during a 24-hour period is done by setting all the alarm 
registers to the desired value and enabling all compare bits. A recurring alarm is enabled by clearing the 
compare-enable bits associated with one or more alarm registers. For example, to specify an alarm to 
occur once a minute, the SSCE and SCE bits would be set. In general, a recurring alarm is set using the 
next lower time increment than the desired interrupt period. For example, if an alarm was desired once an 
hour, on the hour, a compare on the real-time alarm minute register would be performed, because the real-
time clock minute register will match the corresponding alarm register only once an hour. The RTASS, 
RTAS, and RTAM registers would be cleared to 00h, and the SSCE, SCE, and MCE bits would all be set 
to 1 to match on the time xx:00:00:00. Writing an invalid time to these registers (loading the RTAM 
register with 3Dh or 61 minutes, for example) will never cause a match by the RTC. It is the 
responsibility of the software to ensure that only valid times are written to these registers. 
 
It is important to remember that any RTC register whose corresponding compare enable bit is cleared to 0 
will always be treated as a match. The alarm registers are interrogated once per subsecond tick to check 
for an alarm condition. If the SSCE bit was set to a don’t care (cleared to 0) in the above example, a 
match (and interrupt) would occur during every subsecond of the minute in which the real-time alarm 
minute register matched. 
 
If an alarm occurs while in data retention state (VCC < VBAT ), the RTCIF flag will be set and the interrupt 
will remain pending. When power is reapplied to the device, the device will execute an RTC interrupt as 
soon as interrupts are enabled. 
 
14.4 Using the Day of the Week Bits 
The DS87C530 contains three day of the week bits: DOW.2-0 located in the upper 3 bits of the real-time 
clock hour register (RTCH;FDh). These allow the processor to count from 1 to 7. The day of the week 
bits will increment anytime the hour register changes from 17h to 00h, indicating a new day. When the 
day of the week register reaches a count of 111b, it will roll over to 001b. 
 
If the day of the week feature is not needed, writing 000b to the bits will disable the ability of an hour 
register rollover to change the day of the week. The bits will remain at 000b. This is very convenient from 
a software standpoint, as it is not necessary to zero out the high-order bits when determining the hour 
from the RTC hour register. 
 
14.5 Choosing an RTC Crystal 
The RTC clock source is provided by an external 32.768kHz crystal attached to the RTCX1 and RTCX2 
leads of the DS87C530. The device can be programmed to operate with a crystal rated for either a 6pF or 
12.5pF load capacitance. The RTC crystal capacitance select bit (TRIM.6) determines the crystal 
selection. The default state of this bit after a no-battery reset is for a 12.5pF crystal. 
 
In general, a lower capacitance crystal will consume less power, but will be more susceptible to noise. 
Unlike the processor crystal inputs (X1, X2), the RTC crystal does not require external load capacitors. 
Placing load capacitors on the RTC crystal input pins will cause the RTC to keep incorrect time. To 
prevent system noise from affecting the RTC, the RTCX1 and RTCX2 pins should be guard-ringed with 
the GND2 signal. 
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14.6 Calibrating the RTC Oscillator 
Although the DS87C530 RTC accuracy is guaranteed for ±2 minutes per month, users may occasionally 
require greater accuracy. The RTC incorporates the ability to adjust the internal capacitance of the crystal 
amplifier via the RTC Trim Bits (TRM2-0 and 0-TRM2 ). This allows the user to more accurately match 
the capacitance of the crystal amplifier to the crystal. Note that under most circumstances no adjustment 
of the RTC crystal capacitance is necessary, as it will default to a minimum accuracy of ±2 minutes per 
month. 
 
All of the crystal capacitance controls are located in the RTC trim register (TRIM;96h). Setting the E4K 
bit will enable the output of a 4096Hz signal on P1.7. This signal is derived from a divide-by-8 of the 
32.768kHz crystal. Because this is directly generated from the RTC, it can be used to determine the actual 
frequency of the RTC. By adjusting the value of the TRMx bits, the internal capacitance of the RTC can 
be varied, slightly slowing or speeding up the RTC frequency. The combination of TRMx bits  
(TRIM.5–0) that causes the output on pin P1.7 to most closely approximate 4096Hz provides the most 
accurate setting of RTC capacitance. 
 
As a precaution against accidental corruption of the oscillator trim bit settings, the TRMx  bits must be 
programmed in the same instruction to the inverse of their respective TRMx bits. For example, if a trim 
bit setting of 5 (101) was desired, the TRMx  bits should be set to 2 (010). An illegal combination will 
automatically reset the TRIM register to 0x100101b. This will disable the E4K signal on P1.7, but leave 
the X12/6 bit unmodified. 
 
Refer to Application Note 79: Using the DS87C530 Real-Time Clock for more information about 
calibrating the RTC oscillator for improved accuracy. 
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15. BATTERY BACKUP 
The DS87C530 incorporates a feature that can maintain timekeeping and on-chip SRAM contents in the 
absence of VCC. An external energy source such as a lithium battery or 0.47F super cap can be connected 
to the VBAT pin. The nominal battery voltage should be 3V. For proper operation, the battery voltage must 
always be at least a diode drop (0.7V) below VCC, and is recommended to be below VRST. 
 
The DS87C530 automatically enters data retention mode when VCC < VBAT. When in data retention 
mode, the RTC and SRAM contents are powered from the energy source connected to the VBAT pin and 
electrically isolated from the rest of the device. This means that writes to battery-backed SFRs and 
SRAM are ignored and reads return erroneous data while in data retention mode. The DS87C530 data 
sheet contains a functional diagram of the internal battery switching circuitry. 
 
The data retention switch voltage, the point at which the device switches into data retention mode, is a 
function of the battery voltage, not an absolute reference. Care must be taken when selecting a battery so 
that its voltage stays below VCC during normal operation to prevent an unplanned lockout of the RTC and 
SRAM. Although it is unlikely that such a situation would occur, it could become an issue if a relatively 
high-voltage battery is used. For example, suppose a 4.5V battery is used with a device operating at a VCC 
of 5.0V. During normal operation, VCC is above VBAT, so no problem occurs. Suppose that a loss of 
power occurs, and VCC begins to drop. Under normal circumstances, the device continues to operate until 
it reaches VRST (4.0V to 4.25V), at which time device operation halts. If VBAT is higher than VRST, 
however, RTC and SRAM access are prohibited before the device enters reset. This means that there may 
be a short period of time before reset when the device is operating but could read erroneous data from the 
RTC or SRAM or fail to write to them. One solution would be to use the power-fail interrupt to halt reads 
or writes to the RTC or SRAM when VCC is dropping. The best approach is to carefully select battery 
voltages to avoid the problem entirely. 
 
15.1 Selecting a Battery 
There are a number of battery chemistries and brands that are suitable for use with battery-backed 
members of the high-speed microcontroller family. The use of lithium chemistry batteries, such as 
Lithium Manganese Dioxide, is preferred as their nominal voltage is approximately 3.0V. Coin cells are 
particularly suited for use with the high-speed microcontroller family because of their capacity, low 
profile, and small diameter. Many are available with PC mount tabs attached for automated assembly. 
Table 15-A shows a list of some common batteries and their capacities. This list is by no means 
exhaustive, and the inclusion or exclusion of any vendor from this list is in no way a comment on the 
suitability of a specific battery in a customer’s application. 
 
Table 15-A. Suggested Batteries for the DS87C530  

MANUFACTURER MODEL NUMBER TYPE NOMINAL 
VOLTAGE (V) 

CAPACITY 
(mAh) 

CR1620 Lithium/Manganese Dioxide 3 70 
CR1616 Lithium/Manganese Dioxide 3 50 
CR1220 Lithium/Manganese Dioxide 3 35 
BR1616 Lithium/Polycarbon Monofluoride 3 48 

Panasonic 
(www.panasonic.com) 

BR1225 Lithium/Polycarbon Monofluoride 3 38 
 
Battery life can be calculated by dividing the rated battery capacity by the IBAT current specified on the 
device specific data sheet. Note that this determines the minimum battery life; while VCC is applied to the 
device, it draws negligible current from the battery, and so battery life will be lengthened accordingly. 

http://www.panasonic.com/
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Backup current is a function of temperature, and therefore battery life is dependent on the operating 
environment. 
 
The registers shown in Table 15-B are battery-backed, and one or more bits will be indeterminate 
following a no-battery reset. They should be initialized as part of a no-battery reset procedure. 
 
Table 15-B. Battery-Backed SFRs  

REGISTER NAME LOCATION 
TRIM 96h 

RTASS F2h 
RTAS F3h 
RTAM F4h 
RTAH F5h 
RTCC F9h 
RTCSS FAh 
RTCS FBh 
RTCM FCh 
RTCH FDh 

RTCD0 FEh 
RTCD1 FFh 

 
 
15.2 Lithium Battery Considerations 
Lithium primary (nonrechargeable) batteries can fail and/or rupture if subjected to reverse current from 
the device they are powering. The battery-switching circuitry inside the DS87C530 was designed to 
reduce or eliminate the need for external hardware required to meet battery safety regulations. As shown 
in the DS87C530 data sheet, a current-limiting resistor is always in series with a switching field-effect 
transistor, regardless of whether the DS87C530 is drawing current from VCC or VBAT pins. This satisfies 
the two-mechanism requirement of most safety codes. 
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16. INSTRUCTION SET DETAILS 
Details of flags modified by each instruction are located in Section 4. 
 
 

INSTRUCTION CODE   
MNEMONIC D7 D6 D5 D4 D3 D2 D1 D0 

 
HEX 

 
BYTE 

 
CYCLE 

 
EXPLANATION 

ADD A, Rn 0 0 1 0 1 n2 n1 n0 28-2F 1 1 (A) = (A) + (Rn) 
ADD A, direct 0 

a7 
0 
a6 

1 
a5 

0 
a4 

0 
a3 

1 
a2 

0 
a1 

1 
a0 

25 
Byte 2 

2 2 (A) = (A) + (direct) 

ADD A, @Ri 0 0 1 0 0 1 1 i 26-27 1 1 (A) = (A) + ((Ri)) 
ADD A, #data 0 

d7 
0 
d6 

1 
d5 

0 
d4 

0 
d3 

1 
d2 

0 
d1 

0 
d0 

24 
Byte 2 

2 2 (A) = (A) + #data 

ADDC A, Rn 0 0 1 1 1 n2 n1 n0 38-3F 1 1 (A) = (A)+(C)+(Rn) 
ADDC A, 
direct 

0 
a7 

0 
a6 

1 
a5 

1 
a4 

0 
a3 

1 
a2 

0 
a1 

1 
a0 

35 
Byte 2 

2 2 (A) = (A)+(C)+(direct) 

ADDC A, @Ri 0 0 1 1 0 1 1 i 36-37 1 1 (A) = (A)+(C)+((Ri)) 
ADDC 
A,#data 

0 
d7 

0 
d6 

1 
d5 

1 
d4 

0 
d3 

1 
d2 

0 
d1 

0 
d0 

34 
Byte 2 

2 2 (A) = (A)+(C)+#data 

SUBB A, Rn 1 0 0 1 1 n2 n1 n0 98-9F 1 1 (A) = (A)-(C)-(Rn) 
SUBB A, 
direct 

1 
a7 

0 
a6 

0 
a5 

1 
a4 

0 
a3 

1 
a2 

0 
a1 

1 
a0 

95 
Byte 2 

2 2 (A) = (A)-(C)-(direct) 

SUBB A, @Ri 1 0 0 1 0 1 1 i 96-97 1 1 (A) = (A)-(C)-((Ri)) 
SUBB A, 
#data 

1 
d7 

0 
d6 

0 
d5 

1 
d4 

0 
d3 

1 
d2 

0 
d1 

0 
d0 

94 
Byte 2 

2 2 (A) = (A)-(C)-#data 

INC A 0 0 0 0 0 1 0 0 04 1 1 (A) = (A) + 1 
INC Rn 0 0 0 0 1 n2 n1 n0 08-0F 1 1 (Rn) = (Rn) + 1 
INC direct 0 

a7 
0 
a6 

0 
a5 

0 
a4 

0 
a3 

1 
a2 

0 
a1 

1 
a0 

05 
Byte 2 

2 2 (direct) = (direct)+1 

INC @Ri 0 0 0 0 0 1 1 i 06-07 1 1 ((Ri)) = ((Ri)) + 1 
INC DPTR 1 0 1 0 0 0 1 1 A3 1 3 (DPTR)=(DPTR)+1 
DEC A 0 0 0 1 0 1 0 0 14 1 1 (A) = (A) - 1 
DEC Rn 0 0 0 1 1 n2 n1 n0 18-1F 1 1 (Rn) = (Rn) - 1 
DEC direct 0 

a7 
0 
a6 

0 
a5 

1 
a4 

0 
a3 

1 
a2 

0 
a1 

1 
a0 

15 
Byte 2 

2 2 (direct) = (direct)-1 

DEC @Ri 0 0 0 1 0 1 1 i 16-17 1 1 ((Ri)) = ((Ri)) - 1 
MUL AB 1 0 1 0 0 1 0 0 A4 1 5 (B15–8 ), (A7–0) 

= (A) X (B) 

A
R

IT
H

M
E

T
IC

 O
PE

R
A

T
IO

N
 

DIV AB 1 0 0 0 0 1 0 0 84 1 5 (A15–8 ), (A7–0 ) 
= (A) ÷ (B) 
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INSTRUCTION CODE   

MNEMONIC D7 D6 D5 D4 D3 D2 D1 D0 
 

HEX 
 

BYTE 
 

CYCLE 
 

EXPLANATION 

A
R

IT
H

M
E

T
IC

 O
PE

R
. DA A 

 
1 1 0 1 0 1 0 0 D4 1 1 Contents of Accumulator 

are BCD, 
IF [[(A3-0 ) > 9] OR 
[(AC) = 1]] THEN 
(A3-0 ) = (A3-0 ) + 6 
AND 
IF [[(A7-4 ) > 9] OR 
[(C) = 1]] THEN 
(A7-4 ) = (A7-4 ) + 6 
 

ANL A, Rn 0 1 0 1 1 n2 n1 n0 58-5F 1 1 (A) = (A) AND (Rn) 
ANL A, direct 0 

a7 
1 
a6  

0 
a5 

1 
a4 

0 
a3 

1 
a2 

0 
a1 

i 
a0 

55 
Byte 2 

2 2 (A) = (A) AND (direct) 

ANL A, @Ri 0 1 0 1 0 1 1 i 56-57 1 1 (A) = (A) AND ((Ri)) 
ANL A, #data 0 

d7 
1 
d6 

0 
d5 

1 
d4 

0 
d3 

1 
d2 

0 
d1 

0 
d0 

54 
Byte 2 

2 2 (A)=(A) AND #data 

ANL direct, A 0 
a7 

1 
a6 

0 
a5 

1 
a4 

0 
a3 

0 
a2 

1 
a1 

0 
a0 

52 
Byte 2 

2 2 (direct) = 
(direct) AND A 

ANL direct, 
#data 

0 
a7 
d7 

1 
a6 
d6 

0 
a5 
d5 

1 
a4 
d4 

0 
a3 
d3 

0 
a2 
d2 

1 
a1 
d1 

1 
a0 
d0 

53 
Byte 2 
Byte 3 

3 3 (direct) = 
(direct) AND #data 

ORL A, Rn 0 1 0 0 1 n2 n1 n0 48-4F 1 1 (A) = (A) OR (Rn) 
ORL A, direct 0 

a7 
1 
a6 

0 
a5 

0 
a4 

0 
a3 

1 
a2 

1 
a1 

I 
a0 

45 
Byte 2 

2 2 (A) = 
(A) OR (direct) 

ORL A, @Ri 0 1 0 0 0 1 1 i 46-47 1 1 (A) = (A) OR ((Ri)) 
ORL A, #data 0 

d7 
1 
d6 

0 
d5 

0 
d4 

0 
d3 

1 
d2 

0 
d1 

0 
d0 

44 
Byte 2 

2 2 (A) = (A) OR #data 

ORL direct, A 0 1 0 0 0 0 1 0 42 
Byte 2 

2 2 (direct) = 
(direct) OR (A) 

ORL direct, 
#data 

0 
a7 
d7 

1 
a6 
d6 

0 
a5 
d5 

0 
a4 
d4 

0 
a3 
d3 

0 
a2 
d2 

1 
a1 
d1 

1 
a0 
d0 

43 
Byte 2 
Byte 3 

3 3 (direct) = 
(direct) OR #data 

XRL A, Rn 0 1 1 0 1 n2 n1 n0 68-6F 1 1 (A) = (A) XOR (Rn) 
XRL A, direct 0 

a7 
1 
a6 

1 
a5 

0 
a4 

0 
a3 

1 
a2 

0 
a1 

1 
a0 

65 
Byte 2 

2 2 (A) = 
(A) XOR (direct) 

XRL A, @ Ri 0 1 1 0 0 1 1 i 66-67 1 1 (A) = (A) XOR ((Ri)) 
XRL A, #data 0 1 1 0 0 1 0 0 64 

Byte 2 
2 2 (direct) = 

(A) XOR #data 
XRL direct, A 0 1 1 0 0 0 1 0 62 

Byte 2 
2 2 (direct) = 

(direct) XOR (A) 
XRL direct, 
#data 

0 
a7 
d7 

1 
a6 
d6 

1 
a5 
d5 

0 
a4 
d4 

0 
a3 
d3 

0 
a2 
d2 

1 
a1
d1 

1 
a0 
d0 

63 
Byte 2 
Byte 3 

3 3 (direct) = 
(direct) XOR #data 

CLR A 1 1 1 0 0 1 0 0 E4 1 1 (A) = 0 

L
O

G
IC

A
L

 O
PE

R
A

T
IO

N
 

CPL A 1 1 1 1 0 1 0 0 F4 1 1 (A) = ( A ) 
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INSTRUCTION CODE   

MNEMONIC D7 D6 D5 D4 D3 D2 D1 D0 
 

HEX 
 

BYTE 
 

CYCLE 
 

EXPLANATION 

 RL A 
 

0 0 1 0 0 0 1 1 23 1 1  
    A7  A6  A5  A4  A3  A2  A1  A0 

            The contents of the 
accumulator are rotated left 

by one bit. 
RLC A 0 0 1 1 0 0 1 1 33 1 1  

 
 C        A7  A6  A5  A4  A3  A2  A0  A1 

            The contents of the 
accumulator are rotated 

right by one bit. 
RR A 0 0 0 0 0 0 1 1 03 1 1  

       A7  A6  A5  A4  A3  A2  A0  A1 
             

The contents of the 
accumulator are rotated 

right by one bit. 
RRC A 0 0 0 1 0 0 1 1 13 1 1  

 
 C       A7  A6  A5  A4  A3  A2  A0  A1 

            The contents of the 
accumulator are rotated 

right by one bit. 

L
O

G
IC

A
L

 O
PE

R
A

T
IO

N
 

SWAP A 1 1 0 0 0 1 0 0 C4 1 1 (A3-0 ) ↔ (A7-4 ) 
MOV A, Rn 1 1 1 0 1 n2 n1 n0 E8-EF 1 1 (A) = (Rn) 
MOV A, 
direct 

1 
a7 

1 
a6 

1 
a5 

0 
a5 

0 
a3 

1 
a2 

0 
a1 

1 
a0 

E5 
Byte 2 

2 2 (A) = (direct) 

MOV A, @Ri 1 1 1 0 0 1 1 i E6-E7 1 1 (A) = ((Ri)) 
MOV A, 
#data 

0 
d7 

1 
d6 

1 
d5 

1 
d4 

0 
d3 

1 
d2 

0 
d1 

0 
d0 

74 
Byte 2 

2 2 (A) = #data 

MOV Rn, A 1 1 1 1 1 n2 n1 n0 F8-FF 1 1 (Rn) = (A) 
MOV Rn, 
direct 

1 
a7 

0 
a6 

1 
a5 

0 
a5 

1 
a3 

n2 
a2 

n1 
a1 

n0 
a0 

A8-AF 
Byte 2 

2 2 (Rn) = (direct) 

MOV Rn, 
#data 

0 
d7 

1 
d6 

1 
d5 

1 
d4 

1 
d3 

n2 
d2 

n1 
d1 

n0 
d0 

78-7F 
Byte 2 

2 2 (Rn) = #data 

MOV direct, 
A 

1 
a7 

1 
a6 

1 
a5 

1 
a4 

0 
a3 

1 
a2 

0 
a1 

1 
a0 

F5 
Byte 2 

2 2 (direct) = (A) 

MOV direct, 
Rn 

1 
a7 

0 
a6 

0 
a5 

0 
a4 

1 
a3 

n2 
a2 

n1 
a1 

n0 
a0 

88-8F 
Byte 2 

2 2 (direct) = (Rn) 

MOVdirect1, 
direct2 

1 
a7 
a7 

0 
a6 
a6 

0 
a5 
a5 

0 
a4 
a4 

0 
a3 
a3 

1 
a2 
a2 

0 
a1 
a1 

1 
a0 
a0 

85 
Byte 2 
Byte 3 

3 3 (direct1) = (direct2) 
(source) 
(destination) 

D
A

T
A

 T
R

A
N

SF
E

R
 

MOV direct, 
@Ri 

1 
a7 

0 
a6 

0 
a5 

0 
a4 

0 
a3 

1 
a2 

1 
a1 

i 
a0 

86-87 
Byte 2 

2 2 (direct) = ((Ri)) 
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INSTRUCTION CODE  

 MNEMONIC 
D7 D6 D5 D4 D3 D2 D1 D0 

HEX BYTE CYCLE EXPLANATION 

MOV direct, 
#data 

0 
a7 
d7 

1 
a6 
d6 

1 
a5 
d5 

1 
a4 
d4 

0 
a3 
d3 

1 
a2 
d2 

0 
a1 
d1 

1 
a0 
d0 

75 
Byte 2 
Byte 3 

3 3 (direct) = #data 

MOV @Ri, A 1 1 1 1 0 1 1 i F6-F7 1 1 ((Ri)) = A 
MOV @Ri, 
direct 

1 
a7 

0 
a6 

1 
a5 

0 
a4 

0 
a3 

1 
a2 

1 
a1 

i 
a0 

A6-A7 
Byte 2 

2 2 ((Ri)) = (direct) 

MOV @Ri, 
#data 

0 
d7 

1 
d6 

1 
d5 

1 
d4 

0 
d3 

1 
d2 

1 
d1 

i 
d0 

76-77 
Byte 2 

2 2 ((Ri)) = #data 

MOV DPTR, 
#data16 

1 
d7 
d7 

0 
d6 
d6 

0 
d5 
d5 

1 
d4 
d4 

0 
d3 
d3 

0 
d2 
d2 

0 
d1 
d1 

0 
d0 
d0 

90 
Byte 2 
Byte 3 

3 3 (DPTR) = #data15-0 
(DPH) = #data15-8 
(DPL) = #data7-0 

MOVC A, 
@A + DPTR 

1 0 0 1 0 0 1 1 93 1 3 (A)=((A) + (DPTR)) 

MOVC A, 
@A + PC 

1 0 0 0 0 0 1 1 83 1 3 (A) = ((A) + (PC)) 

MOVX A, 
@Ri 

1 1 1 0 0 0 1 i E2-E3 1 2-9 (A) = ((Ri)) 

MOVX 
@DPTR, 

1 1 1 0 0 0 0 0 E0 1 2-9 (A) = ((DPTR)) 

MOVX @Ri, 
A 

1 1 1 1 0 0 1 i F2-F3 1 2-9 ((Ri)) = (A) 

MOVX 
@DPTR,A 

1 1 1 1 0 0 0 0 F0 1 2-9 ((DPTR)) = (A) 

PUSH direct  1 
a7 

1 
a6 

0 
a5 

0 
a4 

0 
a3 

0 
a2 

0 
a1 

0 
a0 

C0 
Byte 2 

2 2 (SP) = (SP) + 1 
((SP)) = (direct) 

POP direct 1 
a7 

1 
a6 

0 
a5 

1 
a4 

0 
a3 

0 
a2 

0 
a1 

0 
a0 

D0 
Byte 2 

2 2 (direct) = ((SP)) 
(SP) = (SP) - 1 

XCH A, Rn 1 1 0 0 1 n2 n1 n0 C8-CF 1 1 (A) = (Rn) 
XCH A, 
direct 

1 
a7 

1 
a6 

0 
a5 

0 
a4 

0 
a3 

1 
a2 

0 
a1 

1 
a0 

C5 
Byte 2 

2 2 (A) = (direct) 

XCH A, @Ri 1 1 0 0 0 1 1 i C6-C7 1 1 (A) = ((Ri)) 

D
A

T
A

 T
R

A
N

SF
E

R
 

XCHD A, 
@Ri 

1 1 0 1 0 1 1 i D6-D7 1 1 (A3-0) = ((Ri3-0 )) 
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INSTRUCTION CODE  

MNEMONIC D7 D6 D5 D4 D3 D2 D1 D0 
 

HEX 
 

BYTE 
 

CYCLE 
 

EXPLANATION 
CLR C 1 1 0 0 0 0 1 1 C3 1 1 (C) = 0 
CLR bit 1 

b7 
1 
b6 

0 
b5 

0 
b4 

0 
b3 

0 
b2 

1 
b1 

0 
b0 

C2 
Byte 2 

2 2 (bit) = 0 

SETB C 1 1 0 1 0 0 1 1 D3 1 1 (C) = 1 
SETB bit 1 

b7 
1 
b6 

0 
b5 

1 
b4 

0 
b3 

0 
b2 

1 
b1 

0 
b0 

D2 
Byte 2 

2 2 (bit) = 1 

CPL C 1 0 1 1 0 0 1 1 B3 1 1 (C) = ( C ) 
CPL bit 1 

b7 
0 
b6 

1 
b5 

1 
b4 

0 
b3 

0 
b2 

1 
b1 

0 
b0 

B2 
Byte 2 

2 2 (bit) = ( bit ) 

ANL C, bit 1 
b7 

0 
b6 

0 
b5 

0 
b4 

0 
b3 

0 
b2 

1 
b1 

0 
b0 

82 
Byte 2 

2 2 (C) = (C) AND (bit) 

ANL C, bit  1 
b7 

0 
b6 

1 
b5 

1 
b4 

0 
b3 

0 
b2 

0 
b1 

0 
b0 

B0 
Byte 2 

2 2 (C) = (C) AND ( bit ) 

ORL C, bit 1 
b7 

1 
b6 

1 
b5 

1 
b4 

0 
b3 

0 
b2 

1 
b1 

0 
b0 

72 
Byte 2 

2 2 (C) = (C) OR (bit) 

ORL C, bit  1 
b7 

0 
b6 

1 
b5 

0 
b4 

0 
b3 

0 
b2 

0 
b1 

0 
b0 

A0 
Byte 2 

2 2 (C) = (C) OR ( bit ) 

MOV C, bit 1 
b7 

0 
b6 

1 
b5 

0 
b4 

0 
b3 

0 
b2 

1 
b1 

0 
b0 

A2 
Byte 2 

2 2 (C) = (bit) 

B
O

O
L

E
A

N
 V

A
R

IA
B

L
E

 M
A

N
IP

U
L

A
T

IO
N

 

MOV bit, C 1 
b7 

0 
b6 

0 
b5 

1 
b4 

0 
b3 

0 
b2 

1 
b1 

0 
b0 

92 
Byte 2 

2 2 (bit) = (C) 
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INSTRUCTION CODE  

MNEMONIC D7 D6 D5 D4 D3 D2 D1 D0 
 

HEX 
 

BYTE 
 

CYCLE 
 

EXPLANATION 
ACALL addr 
11 

a10 
a7 

a9 
a6 

a8 
a5 

1 
a8 
 

0 
a3 

0 
a2 

0 
a1 

1 
a0 

Byte 1 
Byte 2 

2 3 (PC) = (PC) + 2 
(SP) = (SP) + 1 
((SP)) = (PC7-0 ) 
(SP) = (SP) + 1 
((SP)) = (PC15-8 ) 
(PC)=page address 

LCALL addr 
16 

0 
a15 
a7 
 

0 
a14 
a6 
 

0 
a13 
a5 

1 
a12 
a5 

0 
a11 
a3 

0 
a10 
a2 

1 
a9 
a1 

0 
a8 
a0 

12 
Byte 2 
Byte 3 

3 4 (PC) = (PC) + 3 
(SP) = (SP) + 1 
((SP)) = (PC7-0 ) 
(SP) = (SP) + 1 
((SP)) = (PC15-8 ) 
(PC) = addr15-0 

RET 0 0 1 0 0 0 1 0 22 1 4 (PC15-8 ) = ((SP)) 
(SP) = (SP) - 1 
(PC7-0 ) = ((SP)) 
(SP) = (SP) - 1 

RETI 0 0 1 1 0 0 1 0 32 1 4 (PC15-8 ) = ((SP)) 
(SP) = (SP) - 1 
(PC7-0 ) = ((SP)) 
(SP) = (SP) - 1 

AJMP addr 
11 

a10 
a7 

a9 
a6 

a8 
a5 

0 
a4 

0 
a3 

0 
a2 

0 
a1 

1 
a0 

Byte 1 
Byte 2 

2 3 (PC) = (PC) + 2 
(PC10-0 ) = page addr 

LJMP addr 
16 

0 
a15 
a7 

0 
a14 
a6 

0 
a13 
a5 

0 
a12 
a4 

0 
a11 
a3 

0 
a10 
a2 

1 
a9 
a1 

0 
a8 
a0 

02 
Byte 2 
Byte 3 

3 4 (PC) = addr15-0 

SJMP rel 1 
r7 

0 
r6 

0 
r5 

0 
r4 

0 
r3 

0 
r2 

0 
r1 

0 
r0 

80 
Byte 2 

2 3 (PC) = (PC) + 2 
(PC) = (PC) + rel 

JMP @A + 
DPTR 

0 1 1 1 0 0 1 1 73 1 3 (PC) = (A) + (DPTR) 

JZ rel 1 
r7 

0 
r6 

0 
r5 

0 
r4 

0 
r3 

0 
r2 

0 
r1 

0 
r0 

60 
Byte 2 

2 3 (PC) = (PC) + 2 
IF (A) = 0 THEN 
(PC) = (PC) + rel 

PR
O

G
R

A
M

 B
R

A
N

C
H

IN
G

 

JNZ rel 1 
r7 

0 
r6 

0 
r5 

0 
r4 

0 
r3 

0 
r2 

0 
r1 

0 
r0 

70 
Byte 2 

2 3 (PC) = (PC) + 2 
IF (A) ≠ 0 THEN 
(PC) = (PC) + rel 
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INSTRUCTION CODE  

MNEMONIC D7 D6 D5 D4 D3 D2 D1 D0 
 

HEX 
 

BYTE 
 

CYCLE 
 

EXPLANATION 
JC rel 0 

r7 
1 
r6 

0 
r5 

0 
r4 

0 
r3 

0 
r2 

0 
r1 

0 
r0 

40 
Byte 2 

2 3 (PC) = (PC) + 2 
IF (C) = 1 THEN 
(PC) = (PC) + rel 

JNC rel 0 
r7 

1 
r6 

0 
r5 

1 
r4 

0 
r3 

0 
r2 

0 
r1 

0 
r0 

50 
Byte 2 

2 3 (PC) = (PC) + 2 
IF (C) ≠  0 THEN 
(PC) = (PC) + rel 

JB bit, rel 0 
b7 
r7 

0 
b6 
r6 

1 
b5 
r5 

0 
b4 
r4 

0 
b3 
r3 

0 
b2 
r2 

0 
b1 
r1 

0 
b0 
r0 

20 
Byte 2 
Byte 3 

3 4 (PC) = (PC) + 3 
IF (bit) = 1 THEN 
(PC) = (PC) + rel 

JNB bit, rel 0 
b7 
r7 

0 
b6 
r6 

0 
b5 
r5 

1 
b4 
r4 

0 
b3 
r3 

0 
b2 
r2 

0 
b1 
r1 

0 
b0 
r0 

30 
Byte 2 
Byte 3 

3 4 (PC) = (PC) + 3 
IF (bit) = 0 THEN 
(PC) = (PC) + rel 

JBC bit, rel 0 
b7 
r7 

0 
b6 
r6 

0 
b5 
r5 

1 
b4 
r4 

0 
b3 
r3 

0 
b2 
r2 

0 
b1 
r1 

0 
b0 
r0 

10 
Byte 2 
Byte 3 

3 4 (PC) = (PC) + 3 
IF (bit) = 1 THEN 
(bit) = 0 (PC) = 
(PC) + rel 

CJNE A, 
direct, rel 

0 
a7 
r7 

0 
a6 
r6 

0 
a5 
r5 

1 
a4 
r4 

0 
a3 
r3 

0 
a2 
r2 

0 
a1 
r1 

0 
a0 
r0 

B5 
Byte 2 
Byte 3 

3 4 (PC) = (PC) + 3 
IF (direct) < (A) 
THEN (PC) = (PC) 
+ rel and (C) = 0 
OR 
IF (direct) > (A) 
THEN (PC) = (PC) 
+ rel and (C) = 1 

CJNE A, 
#data, rel 

1 
d7 
r7 

0 
d6 
r6 

1 
d5 
r5 

1 
d4 
r4 

0 
d3 
r3 

1 
d2 
r2 

0 
d1 
r1 

0 
d0 
r0 

B4 
Byte 2 
Byte 3 

3 4 (PC) = (PC) + 3 
IF #data < (A) 
THEN (PC) = (PC) 
+ rel and (C) = 0 
OR 
IF #data > (A) 
THEN (PC) = (PC) 
+ rel and (C) = 1 

CJNE Rn, 
#data, rel 

1 
d7 
r7 

0 
d6 
r6 

1 
d5 
r5 

1 
d4 
r4 

1 
d3 
r3 

n2 
d2 
r2 

n1 
d1 
r1 

n0 
d0 
r0 

B8-BF 
Byte 2 
Byte 3 

3 4 (PC) = (PC) + 3 
IF #data < (Rn) 
THEN (PC) = (PC) 
+ rel and (C) = 0 
OR 
IF #data > (Rn) 
THEN (PC) = (PC) 
+ rel and (C) = 1 

PR
O

G
R

A
M

 B
R

A
N

C
H

IN
G

 

CJNE @Ri, 
#data, rel 

1 
d7 
r7 

0 
d6 
r6 

1 
d5 
r5 

1 
d4 
r4 

0 
d3 
r3 

1 
d2 
r2 

1 
d1 
r1 

i 
d0 
r0 

B6-B7 
Byte 2 
Byte 3 

3 4 (PC) = (PC) + 3 
IF #data < ((Ri)) 
THEN (PC) = (PC) 
+ rel and (C) = 0 
OR 
IF #data > ((Ri)) 
THEN (PC) = (PC) 
+ rel and (C) = 1 
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INSTRUCTION CODE MNEMONIC 

D7 D6 D5 D4 D3 D2 D1 D0 
HEX BYTE CYCLE EXPLANATION 

DJNZ Rn, rel 1 
r7 

1 
r6 

0 
r5 

1 
r4 

1 
r3 

n2 
r2 

n1 
r1 

n0 
r0 

D8-Df 
Byte 2 

2 3 (PC) = (PC) + 2 
(Rn) = (Rn) - 1 
IF (Rn) ≠ 0 THEN 
(PC) = (PC) + rel 

DJNZ direct,rel 1 
a7 
r7 

1 
a6 
r6 

0 
a5 
r5 

1 
a4 
r4 

0 
a3 
r3 

1 
a2 
r2 

0 
a1 
r1 

1 
a0 
r0 

D5 
Byte 2 
Byte 3 

3 4 (PC) = (PC) + 3 
(direct) = (direct) - 1 
IF (direct) ≠  0 THEN 
(PC) = (PC) + rel 

 

NOP 0 0 0 0 0 0 0 0 00 1 1 (PC) = (PC) + 1 
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17. TROUBLESHOOTING 
 
17.1 Device Operates at One-Third the Crystal Speed 
The high-speed microcontroller family operates from the primary or fundamental mode of the external 
crystal. Many off-the-shelf high-frequency crystals are specified to operate from their third overtone. 
When used with a high-speed microcontroller, these crystals will resonate in their primary mode, which 
appear to be one-third of the rated crystal speed. Make sure that any crystals used operate at their rated 
speed in primary mode. 
 
17.2 Device Resets for No Reason 
During the debugging process, it may be necessary to isolate the cause of an unexpected device reset. 
Because resets are initiated by a limited number of sources, it is relatively easy to determine their source 
by interrogating a few bits. These bits should be interrogated early in the code following a reset to 
determine its source. As a debug tool, software could set the state of one or more port pins to indicate the 
type of reset to the designer. Note that power-supply problems or glitches appear as unplanned power-on 
resets. 
 

SOURCE POR BIT 
WDCON.6 

WTRF BIT 
WDCON.3 

Power-On Reset 1 0 
Watchdog Reset 0 1 
External Reset 0 0 

 
17.3 Access to Internal MOVX SRAM Is Unsuccessful 
The internal MOVX SRAM available on some members of the high-speed microcontroller family is 
disabled after any reset. To enable the on-chip SRAM, the software should configure the data memory 
enable bits (PMR.1–0) as needed. 
 
When VCC drops below VBAT, access to the SRAM is disabled to prevent corruption of the data. If the 
battery voltage is greater than VRST, this means that the processor can continue to operate while SRAM 
access is denied. Make sure that the battery voltage remains below the minimum VRST. 
 
17.4 Real-Time Clock Does Not Operate or Keep Accurate Time 

The state of the RTC used on the DS87C530 is undefined following a no-battery reset or battery attach. 
For the RTC to work, the RTC oscillator must be enabled by setting the RTCE bit (RTCC.0). 
 
The RTC is guaranteed to a minimum accuracy of ±2 minutes per month over the rated temperature and 
voltage specifications. If the time is found to be less accurate than this, it is most likely due to the 
selection of crystal. Make sure that the RTC crystal is 32.768kHz, and either 12.5pF or 6pF capacitance. 
The 12/6-bit (TRIM.6) setting should correspond to the crystal in use. Unlike other crystals, external load 
capacitors should not be used with the RTC. These will seriously distort the accuracy of the clock. 
Additional information on design considerations with the RTC can be found in Application Note 79: 
Using the DS87C530 Real-Time Clock. 
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17.5 Serial Port Does Not Work 
The serial port is not a complicated peripheral, but there are many elements that need to be initialized. 
The following checklist is provided to help in debugging. 
 
1) Have the appropriate port latch bits (P3.0, P3.1, P1.2, or P1.3) been set to 1 to enable the serial port 

functions? 
2) Has the correct timebase been selected? (4 clocks per tick or 12 clocks per tick) 
3) Is the appropriate timer-reload value loaded? 
4) Is the appropriate timer mode selected? 
5) Is the appropriate timer running by setting TR0, TR1, or TR2 bits? 
6) Is the correct serial port mode selected? 
7) If desired, is the serial port doubler bit, SMOD, set?  (PCON.7 or WDCON.7) 
8) If desired, is the receive-enable bit (REN_0 or REN_1) set? 
9) Is the serial port interrupt enabled? 
10) Is the global interrupt-enable bit set? 
 
17.6 High-Speed Microcontroller Does Not Work in Existing 8051 Design 
Although the high-speed microcontroller family was designed as a drop-in replacement for the 8051 
family, a developer may occasionally notice problems when inserting into an existing design. Often these 
problems are related to slow memory interfaces that cannot keep up with the increased throughput of the 
faster microcontroller. In addition, software-timing loops run faster, possibly changing program 
operation. These and other effects are described in Application Note 56: The DS80C320 as a Drop-In 
Replacement for the 8032 and Application Note 57:DS80C320 Memory Interface Timing. 
 
Application Note 89: High-Speed Micro Memory Interface Timing discusses interfacing other members of 
the high-speed microcontroller family to external memory. 
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18. MICROCONTROLLER DEVELOPMENT SUPPORT 
 

18.1 Technical Support 
Dallas Semiconductor has a wide range of services designed to support its customers. Microcontroller 
applications engineers are available Monday through Friday (excluding December 25 and January 1) to 
provide technical support from 8AM to 5PM Central Standard Time. 

Application Support: 1-972-371-4448 
Email:   micro.support@dalsemi.com 

Dallas Semiconductor maintains a presence on the Internet with its World Wide Web home page and an 
anonymous FTP site. Data sheets are subject to revision, and these services contain the most current data 
sheet information available. The home page has access to company information, data sheets, application 
notes, and product information. The ftp server hosts software examples and development tool software. 

Website:   www.maxim-ic.com 
Microcontroller Products Home Page: www.maxim-ic.com/microcontrollers 
Anonymous FTP Site:   ftp.dalsemi.com/pub/microcontroller 
 
18.2 Development Tools 
Because the high-speed microcontroller family was designed for maximum compatibility with existing 
8051 microcontrollers, users find that most of their existing 8051 tools work with our products. 

To aid our customers, Dallas Semiconductor maintains a list of development tool vendors on its website 
at www.maxim-ic.com/MicroDevTools.htm. This page is very useful when attempting to locate 
commonly used microcontroller aids such as compilers, test clips, sockets, programmers, programming 
adapters, reference books, emulators, crystals and development boards. 
 
18.3 Software Compatibility 
Dallas Semiconductor microcontrollers execute the 8051 instruction set and are object code compatible 
with other 8051-based products. The special features of Dallas Semiconductor microcontrollers are 
accessed via SFRs unique to our products, but the devices do not use any new instructions. The new SFRs 
can be easily defined in the user’s software with EQUATE statements or in a setup file. Once defined, 
these new SFRs receive the same treatment as any of the original 8051 registers. This means that Dallas 
Semiconductor microcontrollers are compatible with almost every 8051-based software tool available. 
 

18.4 High-Level Language Compilers 
Like assemblers, compilers must be informed of the existence and location of the SFRs unique to Dallas 
Semiconductor microcontrollers. When using C, it is commonly necessary to identify the starting address 
for various read/write segments such as XDATA and Stack. In addition, it is recommended that the large 
memory model be used in conjunction with C compilers. This places the stack in off-chip SRAM. 
Microcontroller systems usually have an abundance of such SRAM compared to ROM-based systems. 
While off-chip stack results in slower execution time, the stack size becomes virtually unlimited. 
 
 
 
 

mailto:micro.support@dalsemi.com
http://www.maxim-ic.com/
http://www.maxim-ic.com/microcontrollers
ftp://ftp.dalsemi.com/pub/microcontroller
http://www.maxim-ic.com/MicroDevTools.htm
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Table 18-A. Product Feature Matrix 
FEATURE DS80C310 DS80C320 DS80C323 DS83C520 DS87C520 DS87C530 DS87C550 

Internal Program ROM    16kB Mask 
ROM 16kB EPROM 16kB EPROM 8kB EPROM 

Internal Scratchpad RAM 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes 
Internal MOVX SRAM     1kB SRAM 1kB SRAM 1kB SRAM 
Serial Ports 1 2 2 2 2 2 2 
External Interrupts 6 6 6 6 6 6 6 
16-Bit Timers 3 3 3 3 3 3 3 
Watchdog Timer  √ √ √ √ √ √ 
Power-Fail/Precision Reset  √ √ √ √ √ √ 
Power-Fail Interrupt  √ √ √ √ √ √ 
Data Pointers 2 2 2 2 2 2 2 
Data Pointer Decrement       √ 
Power Management Modes    √ √ √ √ 
Ring Oscillator  √ √ √ √ √ √ 
EMI Reduction Mode    √ √ √ √ 
Real-Time Clock      √  
NV SRAM      √  

Pulse-Width Modulation       4/8 bit or 2/16 
bit 

A/D Converter       8 channels, 10 
bit 

Operating Voltage 4.5V to 5.5V 4.5V to 5.5V 2.7V to 5.5V 4.5V to 5.5V 4.5V to 5.5V 4.5V to 5.5V 4.5V to 5.5V 
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