[1] [] 1 [Generated on Wed Jan 31 11:09:59 2007 for DS80C400CLibraries by Doxy-
gen] []Generated on Wed Jan 31 11:09:59 2007 for DS80C400CLibraries by Doxygen

[1] [] 1 [Generated on Wed Jan 31 11:09:59 2007 for DS80C400CLibraries by Doxygen
] []Generated on Wed Jan 31 11:09:59 2007 for DS80C400CLibraries by Doxygen

DS80C400CLibraries Reference Manual
1

Generated by Doxygen 1.4.3

Wed Jan 31 11:09:59 2007

Contents

1 DSB80C400CLibraries Module Index

2 DS80C400CLibraries Directory Hierarchy

3 DS80C400CLibraries Data Structure Index

4 DSB80C400CLibraries File Index

5 DS80C400CLibraries Module Documentation

6 DS80C400CLibraries Directory Documentation

7 DSB80C400CLibraries Data Structure Documentation

8 DSB80C400CLibraries File Documentation

1 DS80C400CLibraries Module Index

1.1 DS80C400CLibraries Modules

Here is a list of all modules:
Initialization module
Configuration module

Data Access module

2 DS80C400CLibraries Directory Hierarchy

2.1 DS80C400CLibraries Directories

This directory hierarchy is sorted roughly, but not completely, alphabetically:

canbus

crypt

25

31

60

21

25

25

debugport
dhcp
dirent
dns

err
filesystem_lib
flash
ftpclient
http

i2c

isr

kmem
mem
mime
netif
netstat
ntlm
onewire_raw
pop3

rarp
rominit
rtc

smtp

sock

spi

25

25

25

26

26

26

26

26

27

27

27

27

27

28

28

28

28

28

29

29

29

29

29

30

30

task

tftp

time
useriopoll
util
xnetboot

xnetstack

3 DS80C400CLibraries Data Structure Index

3.1 DS80C400CLibraries Data Structures

Here are the data structures with brief descriptions:
_hostinfo
_http_request
_http_response
_http_session
_http_variable
_mail
_mailheader
__maillist
_pop3_session
_sbufhdr
_typelmsg
_typelmsghdr
_type2msg

_type2msghdr

30

30

30

31

31

31

31

31

32

33

34

35

35

36

38

38

39

39

40

41

41

_type3msg 42
_type3msghdr 43
_userheader 44

CanFrame (CAN Frame structure. Denotes the structure of a Transmitted

or received CAN frame) 45
dirent 46
FARPTR 46
file_structure a7
hostent 47
in6_addr 48
in_addr 49
kmem_memory 49
mailhostent 50

MCConfig (CAN Message center configuration structure. Used for config-

uration of receive parameters of Message Centers) 50
netstat_arp_entry 51
netstat_tcp_socket 52
netstat_udp_entry 55
pingdata 56
sockaddr 56
sockaddr_in 57
TCB 58
TIME 59
tm 59

4 DS80C400CLibraries File Index

4.1 DS80C400CLibraries File List

Here is a list of all documented files with brief descriptions:
dirent.h (Functions for directory listing) 60
rom400_dhcp.h(DHCP functions in the DS80C400 ROM) 65
rom400_err.h (Error codes used by functions in the DS80C400 ROM) 73
rom400_flash.h(Flash programming functions for the TINIm400 module) 75
rom400_http.h (Http Server functions in the DS80C400 ROM) 77
rom400_init.h (ROM Initialization functions in the DS80C400 ROM) 96

rom400_kmem.h (Kernel Memory initialization functions for the
DS80C400 ROM) 110

rom400_mem.h(Memory management functions in the DS80C400 ROM)14

rom400_netif.h (Network interface library for the DS80C400) 118
rom400_netstat.h(Network statistics library for the DS80C400) 121
rom400_ow.h(Raw 1-Wire functions in the DS80C400 ROM) 127
rom400_rarp.h (RARP library for the DS80C400) 130
rom400_sock.h(Socket functions in the DS80C400 ROM) 132

rom400_task.h(Process scheduler functions in the DS80C400 ROM) 174

rom400_tftp.h (TFTP Client functions in the DS80C400 ROM) 191

rom400_useriopoll.h(User 10 Poll registration routines for the DS80C400
ROM) 195

rom400_util.h (Utility functions in the DS80C400 ROM) 199

rom400_xnetstack.h(Enhanced network stack for the DS80C400 ROM) 209
stdio.h (File and other IO functions) 216

tini400_canbus.h(CAN Bus Interrupt Driver for DS80C390 / 400) 244

tini400_crypt.h (SHA-1 and MD4 functions for the DS80C400) 251

tini400_debugport.h (Functions supporting the debug port on the TI-

NIs400 module) 253
tini400_dns.h(DNS Client functions for the DS80C400 ROM) 255
tini400_ftpclient.h (FTP Client functions for DS80C400) 261
tini400_isr.h (Interrupt Service Routine installation functions) 271

tini400_mime.h (MIME Library functions for DS80C400 processor) 278
tini400_ntlim.h (NTLM Library functions for DS80C400 processor) 280
tini400_pop3.h(Pop3 Library functions for DS80C400 processor) 284

tini400_smtp.h (SMTP Library functions for DS80C400 processor) 292

tini400_spi.h (SPI library for the TINIm400 module) 300
tini400_time.h (Date/Time utilities, tailored for the DS80C400 C Libraries

) 304
tini400_xnetboot.h(External NetBoot library for the DS80C400) 307
tini_i2c.h (12C function library) 309
tini_rtc.h (RTC function library) 313

5 DS80C400CLibraries Module Documentation

5.1

Initialization module

Functions

e uintl6_tcan_versior{void)

Returns the version number of this CAN library. this function is safe to be called from
multiple processes at the same time.

« void can_init(void)

Initializes CAN library.

5.1.1 Function Documentation

5.1.1.1 void can_init (void)
Initializes CAN library.

Initializes CAN library. This function has to be called as first function from application
before calling other serial library functions. If this function is not called, all other APIs
will return errorCAN_ERROR_NOT _INITIALIZED

5.1.1.2 uintl6_t can_version (void)

Returns the version number of this CAN library. this function is safe to be called from
multiple processes at the same time.

Returns:
Version number of this CAN library.
5.2 Configuration module

Functions

 int8_tcan_resetcontrollduint8_tCAN_No)
Resets CAN controller.

« int8_tcan_setsiestamodeint8_tCAN_No)
Puts the CAN Controller in SIESTA (low power) mode.

« int8_tcan_disablecontrollguint8_tCAN_NO)
Disables the CAN controller.

¢ int8_tcan_enablecontroll€uint8_tCAN_No)
Enables the CAN controller.

¢ int8_tcan_enablecontrollerpassi@nt8_tCAN_No)
Enables the CAN controller, but doesn’t connect CAN transmit to the bus.

< int8_tcan_setrxwriteoverenab(aint8_tCAN_No, boolearwriteover)
Sets the state of write over in the receiver buffer.

¢ int8_tcan_setllbitglobalidmagkint8 tCAN_No,uint32_txmask)
Sets the 11 bit Standard Global Id Mask.

¢ int8_tcan_set29bitglobalidmagkint8 tCAN_No, uint32_txmask)

Sets the 29 bit Standard Global Id Mask.

int8_t can_setllbitmessagecenterl5idmagkint8 t CAN_No, uint32_t
xmask)

Sets the global 11 Bit Message Center 15 ID Mask.

int8_t can_set29bitmessagecenterl5idmaégkint8_t CAN_No, uint32_t
xmask)

Sets the global 29 Bit Message Center 15 ID Mask.

int8_tcan_setmediaidmagkint8 tCAN_No, uint16_tmask)
Sets the global media ID mask.

int8_tcan_setmediaidarbitratiqmint8_tCAN_No, uint16_tvalue)
Sets the global media ID arbitration.

int8_tcan_setbaudrateprescaleint8_ tCAN_No, uint1l6_tprescaler)
Sets the basic time quantum (tqu) necessary for CAN communication.

int8_t can_setsynchronizationjumpwidtfuint8_t CAN_No, uint8 t jump-
Width)

Sets the Synchronization Jump Width necessary for adjusting TSEG1 and TSEG2.

int8_tcan_setsamplerataint8_tCAN_No, uint8_tsampleRate)

Sets the sample rate which is whether to use one or three samples per bit time during
CAN communication.

int8_tcan_settseg@int8 tCAN_No,uint8_ttsegl)
Sets Timing Segment 1 to a specified number of time quanta.

int8_tcan_settseg@int8 tCAN_No, uint8_ttseg?)

Sets Timing Segment 1 to a specified number of time quanta.

int8_tcan_enablemessagecer(t@nt8_tCAN_No, uint8_tmessageCenter)
Puts the message center into Active mode if disabled.

int8_tcan_disablemessagecen(@nt8 tCAN_No, uint8_tmessageCenter)
Puts the message center into Disabled mode if active.

int8_tcan_freemessagecen{amt8_tCAN_No, uint8_tmessageCenter)
Returns the message center to the free pool.

int8_tcan_setmessagecenteftint8 tCAN_No, uint8_tmessageCenter)

Sets Tx/Rx bit of a specific message center to 1 (transmit).

¢ int8_tcan_setmessagecentefuint8 tCAN_No, uint8_tmessageCenter)
Sets Tx/Rx bit of a specific message center to 1 (receive).

« int8_t can_setllbitmessagecenterarbitration(wint8 t CAN_No, uint8_-
t messageCentarjnt32_t«ID)

Sets the 11 bit Arbitration ID.

* int8_t can_set29bitmessagecenterarbitration(wint8 t CAN_No, uint8 -
t messageCentarjnt32_txID)

Sets the 29 bit Arbitration ID.

¢ int8_t can_setmessagecentermessageidmaske(abt8 t CAN_No, uint8_-
t messageCentdrpolearmaskEnable)

Enables or disables Message ID Masking for a specific message center.

¢ int8_t can_setmessagecentermediaidmaskenébiet8 t CAN_No, uint8_-
t messageCentdspoleanmaskEnable)

Enables or disables Media ID Masking for a specific message center.

5.2.1 Function Documentation

5.2.1.1 int8 _t can_disablecontroller (iint8_t CAN_No)
Disables the CAN controller.

Disables the CAN controller so that the controller is disconnected from the bus pre-

venting any transmissions, or receptions. This is essential to change timing, global
masks and other communication critical parameters. Message centers, transmit & re-
ceive buffers and message center allotments remain intact.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).

5.2.1.2 int8 t can_disablemessagecentenifit8 t CAN_Nqg uint8_t message-
Centel

Puts the message center into Disabled mode if active.

Puts the message center into Disabled mode if Active. i.e, If the message center is
in MC_RX_ACTIVE mode, then it is put into MC_RX_DISABLED mode, and if the
message center is in MC_AARFR_ACTIVE mode, then it is put into MC_AARFR_-
DISABLED mode. If the message center is in MC_TX_ACTIVE mode, then it is not
put into MC_TX_DISABLED mode, but is made as MC_IDLE.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter Message Center number (1 to 15).

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).

5.2.1.3 int8_t can_enablecontroller int8_t CAN_No
Enables the CAN controller.

Starts up the CAN controller, and connects to the bus. All critical timing parameters
and global masks must already be set. Message centers, transmit & receive buffers and
message center allotments remain intact.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_INVALID_TSEG- TSEG1 or TSEG2 not initialized

5.2.1.4 int8_t can_enablecontrollerpassiveyint8_t CAN_NoO)
Enables the CAN controller, but doesn’t connect CAN transmit to the bus.

Starts up the CAN controller, but doesn’t connect CAN transmit to the bus Becomes a
quiet listener on the bus. All critical timing parameters and global masks must already
be set. Message centers, transmit & receive buffers and message centre allotments
remain intact.

10

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT _INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_INVALID_TSEG- TSEG1 or TSEG2 not initialized

5.2.1.5 int8_t can_enablemessagecenteniit8_t CAN_Nqg uint8 t message-
Centel

Puts the message center into Active mode if disabled.

Puts the message center into Active mode if disabled. i.e, If the message center is
in MC_RX_DISABLED mode, then it is put into MC_RX_ACTIVE mode. If the
message center is in MC_TX_DISABLED mode, theniitis putinto MC_TX_ACTIVE
mode, and If the message center is in MC_AARFR_DISABLED mode, then it is put
into MC_AARFR_ACTIVE mode. All Message Center settings & changes must be
complete before this function is called.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter Message Center number (1 to 15).

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT _INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_GENERIC if message center is not in disabled mode.

5.2.1.6 int8_t can_freemessagecentenint8_t CAN_Nq uint8_t messageCentgr

Returns the message center to the free pool.

Returns the message center to the free pool. The Message Centre will have to be
disabled before it can be freed. Else it will return eil@¥N_ERROR_MC_ACTIVE

In case of Transmit Message centres, it will get disabled as soon as the transmission
(of one CAN frame) is completed. In case of Receive Message Centres, it will have to
be explicitly disabled (to prevent further reception) using can_disableMessageCenter
before it can be freed.

11

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter Message Center number (1 to 15).

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT _INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_MC_ACTIVE- if Message Centre is in active transmit or receive
mode

5.2.1.7 int8_t can_resetcontroller (int8_t CAN_No)
Resets CAN controller.

Resets the CAN controller to it's power on default state. But it retains the Tx and Rx
buffer contents.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).

5.2.1.8 int8_t can_setllbitglobalidmask(int8_t CAN_No, uint32_t « mask
Sets the 11 bit Standard Global Id Mask.

Sets the 11 bit Standard Global Id Mask. The Global ID Mask is used to denote which
bits to match in the incoming frame ID. This function requires the CAN port to be
disabled else will return errafAN_ERROR_PORT_ENABLED

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

mask - pointer to mask value

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT _INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_PORT_ENABLED if CAN port enabled (if SWINT is not set)

12

5.2.1.9 int8 t can_setllbitmessagecenterl5idmaskifit8 t CAN_No uint32_t x
mask

Sets the global 11 Bit Message Center 15 ID Mask.

Sets the global 11 Bit Message Center 15 ID Mask. Message Center 15 has it's own ID
Mask, which is used to denote which bits to match in the Message Center 15 ID. This
function requires the CAN port to be disabled else will return eBAN_ERROR_ -
PORT_ENABLED

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

mask - pointer to mask value

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_PORT_ENABLED if CAN port enabled (if SWINT is not set)

5.2.1.10 int8 t can_setllbitmessagecenterarbitrationid yint8 t CAN_Ng
uint8_t messageCenteuint32_t * ID)

Sets the 11 bit Arbitration ID.

Sets the 11 bit Arbitration ID. When this value matches an incoming frame 1D subject
to the Global ID Mask or Message Center 15 Mask, the incoming frame will be re-
ceived. This function will also change the specified message center to standard mode,
to only respond to 11 bit messages. The Message Centre must be either disabled or free
before this function is called, else it will return e@AN_ERROR_MC_ACTIVE

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter Message Center number (1 to 15).
«ID - pointer to the 11 bit arbitration id.

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_MC_ACTIVE- if Message Centre is not disabled.

13

5.2.1.11 int8 t can_set29bitglobalidmask @int8_t CAN_Ng, uint32_t * mask
Sets the 29 bit Standard Global Id Mask.

Sets the 29 bit Standard Global Id Mask. The Global ID Mask is used to denote which
bits to match in the incoming frame ID. This function requires the CAN port to be
disabled else will return errafAN_ERROR_PORT_ENABLED

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

mask - pointer to mask value

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_PORT_ENABLED if CAN port enabled (if SWINT is not set)

5.2.1.12 int8_t can_set29bitmessagecenterl5idmaskit8_t CAN_Nq uint32_t
x mask

Sets the global 29 Bit Message Center 15 ID Mask.

Sets the global 29 Bit Message Center 15 ID Mask. Message Center 15 has it's own ID
Mask, which is used to denote which bits to match in the Message Center 15 ID. This
function requires the CAN port to be disabled else will return eBAN_ERROR_ -
PORT_ENABLED

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

mask - pointer to mask value

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT _INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_PORT_ENABLED if CAN port enabled (if SWINT is not set)

5.2.1.13 int8 t can_set29bitmessagecenterarbitrationid yint8 t CAN_No
uint8_t messageCenteuint32_t x ID)

Sets the 29 bit Arbitration ID.

14

Sets the 29 bit Arbitration ID. When this value matches an incoming frame ID subject
to the Global ID Mask or Message Center 15 Mask, the incoming frame will be re-
ceived. This function will also change the specified message center to extended mode,
to only respond to 29 bit messages. The Message Centre must be either disabled or free
before this function is called, else it will return erl@dAN_ERROR_MC_ACTIVE

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter Message Center number (1 to 15).
xID - pointer to the 29 bit arbitration id.

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT _INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_MC_ACTIVE- if Message Centre is in active transmit or receive
mode.

5.2.1.14 int8_t can_setbaudrateprescalerint8 _t CAN_No, uint16_t prescale)

Sets the basic time quantum (tqu) necessary for CAN communication.

Sets the basic time quantum (tqu) necessary for CAN communication. It sets the baud
rate prescaler from the CPU crystal. The divisor divides straight off the external crystal
on the processor. For instance, at 18.432MHz, a divisor of 7 will give you a tqu of
379.774ns. i.e tqu = ¥ 1/18.432MHz. This function requires the CAN port to be
disabled else will return erra&fAN_ERROR_PORT_ENABLED

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

prescaler - Prescaler divisor value. Valid range is 1 to 256.

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_PORT_ENABLED if CAN port enabled (if SWINT is not set)

15

5.2.1.15 int8_t can_setmediaidarbitration uint8_t CAN_No, uint16_t value)
Sets the global media ID arbitration.

Sets sets the global media ID arbitration value which matches bits in the first two bytes
of the incoming frame data area. MSB is First Data byte, and LSB is second data
byte. This function requires the CAN port to be disabled else will return €#£d_-
ERROR_PORT_ENABLED

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

value - media id arbitration value

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_PORT_ENABLED if CAN port enabled (if SWINT is not set)

5.2.1.16 int8_t can_setmediaidmaskint8_t CAN_Nog, uint16_t mask
Sets the global media ID mask.

Sets the global media ID mask which determines what bits to match in the first two
bytes of the incoming frame data area. MSB of mask is First Data byte, and LSB is
second data byte. This function requires the CAN port to be disabled else will return
errorCAN_ERROR_PORT_ENABLED

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

mask - mask value

Returns:
CAN_ERROR_NOERRORf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT _INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_PORT_ENABLED if CAN port enabled (if SWINT is not set)

5.2.1.17 int8 t can_setmessagecentermediaidmaskenablaiir(t8_t CAN_Nq
uint8_t messageCentebooleanmaskEnabl¢

Enables or disables Media ID Masking for a specific message center.

16

Enables or disables Media ID Masking for a specific message center. If masking is
disabled, no checks will occur on the first two data bytes. The Message Centre must
be either disabled or free before this function is called, else it will return &#Ad_-
ERROR_MC_ACTIVE

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter Message Center number (1 to 15).
maskEnable - 0 to require exact match of ID, non-zero to enable Media ID mask.

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT _INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_MC_ACTIVE- if Message Centre is in active transmit or receive
mode.

5.2.1.18 int8_t can_setmessagecentermessageidmaskenahlént8 t CAN_No
uint8_t messageCentebooleanmaskEnabl¢

Enables or disables Message ID Masking for a specific message center.

Enables or disables Message ID Masking for a specific message center. If masking is
disabled, the message center ID must match ALL bits of incoming ID. The Message
Centre must be either disabled or free before this function is called, else it will return
error CAN_ERROR_MC_ACTIVE

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter Message Center number (1 to 15).
maskEnable - 0 to require exact match of ID, non-zero to enable global mask.

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT _INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_MC_ACTIVE- if Message Centre is in active transmit or receive
mode.

17

5.2.1.19 int8 t can_setmessagecenterrxu(nt8_ t CAN_Ng uint8_t message-
Centel

Sets Tx/Rx bit of a specific message center to 1 (receive).

Sets Tx/Rx bit of a specific message center to 0 (receive). It doesn’t affect the mode
of the Message Center. The Message Centre must be either disabled or free before this
function is called, else it will return the err@AN_ERROR_MC_ACTIVE

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter Message Center number (1 to 15).

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_MC_ACTIVE- if Message Centre is not disabled.

5.2.1.20 int8_t can_setmessagecentertxuint8_t CAN_Ng, uint8_t message-
Centel

Sets Tx/Rx bit of a specific message center to 1 (transmit).

Sets Tx/Rx bit of a specific message center to 1 (transmit). It doesn'’t affect the mode
of the Message Center. The Message Centre must be either disabled or free before this
function is called, else it will return the err@AN_ERROR_MC_ACTIVE Message
Center 15 can'’t be set to transmit mode.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter Message Center number (1 to 15).

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_MC_ACTIVE- if Message Centre is not disabled.

5.2.1.21 int8 t can_setrxwriteoverenable (¢int8 t CAN_No, booleanwriteovel)

Sets the state of write over in the receiver buffer.

18

Sets the state of write over in the receiver buffer. If writeover is set to 0, the latest
message will be discarded in case of receive buffer overflow. If set to 1, the oldest
message in the receive buffer will be discarded.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

writeover - 1 for enable & O for disable

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT _INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).

5.2.1.22 int8_t can_setsamplerate{int8 t CAN_Ng uint8_t sampleRatg

Sets the sample rate which is whether to use one or three samples per bit time during
CAN communication.

Sets SMP (Sample Rate) which is whether to use one or three samples per bit time
during CAN communication. This function requires the CAN port to be disabled else
will return errorCAN_ERROR_PORT_ENABLED

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

sampleRate- Sample Rate. Valid values are 1 and 3.

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT _INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_PORT_ENABLED if CAN port enabled (if SWINT is not set)

5.2.1.23 int8 t can_setsiestamodeufnt8_t CAN_No)
Puts the CAN Controller in SIESTA (low power) mode.

Puts the CAN Controller in SIESTA (low power) mode. When Bus activity is detected,
the controller will wake up and participate on the bus.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

19

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).

5.2.1.24 int8_t can_setsynchronizationjumpwidth @int8_t CAN_Nqg uint8 t
jumpWidth)

Sets the Synchronization Jump Width necessary for adjusting TSEG1 and TSEG2.

Sets the SIJW (Synchronization Jump Width) necessary for adjusting TSEG1 and
TSEG2 to compensate for sync problems during CAN communication. This function
requires the CAN port to be disabled else will return el@&N_ERROR_PORT_-
ENABLED.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

jumpWidth - SJW. valid range is 1 to 4 (1tqu to 4tqu).

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT _INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_PORT_ENABLED if CAN port enabled (if SWINT is not set)

5.2.1.25 int8 t can_settseglyint8 t CAN_Ng, uint8_t tsegl
Sets Timing Segment 1 to a specified number of time quanta.

Sets TSEG1 (Timing Segment 1 = PROP_SEG + PHASE_SEG1) to a specified number
of time quanta. This is the timing segment before the bit sample. This function requires
the CAN port to be disabled else will return er@AN_ERROR_PORT_ENABLED

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

tsegl - Time quanta. Valid range is 2 to 16 (2tqu to 16tqu).

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_PORT_ENABLED if CAN port enabled (if SWINT is not set)

20

5.2.1.26 int8 t can_settseg2yint8 t CAN_Ng, uint8_t tseg3d
Sets Timing Segment 1 to a specified number of time quanta.

Sets TSEG2 (Timing Segment 2 = PHASE_SEG?2) to a specified number of time
guanta. This is the timing segment before the bit sample. This function requires the
CAN port to be disabled else will return err@AN_ERROR_PORT_ENABLED

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

tseg2 - Time quanta. Valid range is 2 to 16 (2tqu to 16tqu).

Returns:
CAN_ERROR_NOERRORf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT _INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_PORT_ENABLED if CAN port enabled (if SWINT is not set)

5.3 Data Access module

Functions

« int8_tcan_sendfram@int8_tCAN_No, CanFrameframe)
Transmits a data or RFR frame.

« int8_tcan_getrxmessagecen{amt8_tCAN_No, MCConfig xconfig)
Gets the first available message centre and configure it for reception.

« int8_tcan_receiveframesavailali@nt8 tCAN_No)
Gets the number of frames rending in the receive buffer.

« int8_tcan_receivefram@int8_tCAN_No, CanFrame:frame)
Gets a frame from the receive buffer.

« int8_t can_getautoanswerrfrmessagecenteint8 t CAN_No, CanFrame
«frame)

Gets the first available message centre and configure it for Auto-answering Remote
RFRs.

¢ intl6_tcan_gettxerrorcour{tiint8_tCAN_NOo)
Gets the transmitter error count.

e intl6_tcan_getrxerrorcourfiint8 tCAN_No)
Gets the receiver error count.

21

5.3.1 Function Documentation

5.3.1.1 int8_t can_getautoanswerrfrmessagecenter uint8_ t CAN_Nog Can-
Frame x frame)

Gets the first available message centre and configure it for Auto-answering Remote
RFRs.

Gets the first available message centre and configure it for Auto-answering Remote
RFRs. Once enabled, that message center keeps waiting for incoming messages match-
ing the configuration and auto-responds. If the user needs to enable MEME or MDME,
then it will have to be done manually after disabling the message center, doing the
changes and then re-enabling it. This function returns the Message center number. If
there is no free message center, then it returns & ERROR_NOFREEMC

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

frame - Pointer to frame that has to be sent as response.

Returns:
Message center number 1 to 14 - if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_NOFREEMC if free message center is available.

5.3.1.2 intl6_t can_getrxerrorcount (uint8_t CAN_NOQ
Gets the receiver error count.
Gets the receiver error count.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).

5.3.1.3 int8_t can_getrxmessagecenteu{nt8_t CAN_No MCConfig * config)

Gets the first available message centre and configure it for reception.

22

Gets the first available message centre and configure it for reception according to the
parameters specified by the config. Then that message center keeps waiting for in-
coming messages matching the configuration, which will then be put into the Receive
buffer. This function returns the Message center number. If there is no free message
center, then it returns err@@AN_ERROR_NOFREEMC

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

config - Pointer toMCConfigstructure.

Returns:
Message center number 1 to 14 - if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_NOFREEMEG if free message center is available.

5.3.1.4 intl6_t can_gettxerrorcount (uUint8_t CAN_No
Gets the transmitter error count.
Gets the transmitter error count.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT _INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).

5.3.1.5 int8_t can_receiveframe (int8_t CAN_Ng, CanFrame x frame)
Gets a frame from the receive buffer.

Gets a frame from the receive buffer. Retu®AN_ERROR_BUFEMPTYif the
receive buffer doesn’t contain any frames. Even if it retu@AN_ERROR_-
FRAMESDROPPEDIt returns the valid frame from the receive buffer.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

frame - Pointer toCanFramestructure to hold the received frame.

23

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_BUFEMPTY- if receive buffer is empty.
CAN_ERROR_FRAMESDROPPEDBIf one or more frames had been dropped.

5.3.1.6 int8_t can_receiveframesavailableyint8 t CAN_No
Gets the number of frames rending in the receive buffer.

Gets the number of frames rending in the receive buffer. Returns Zero if no message is
pending.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

Returns:
Number of frames in the receive queue - if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).

5.3.1.7 int8_t can_sendframe (int8_t CAN_No, CanFrame x frame)
Transmits a data or RFR frame.

Transmits a data or RFR frame through the first available message center. If no message
center is available, it then enqueues the frame into the Transmit buffer. If buffer if full,
then it returnsCAN_ERROR_BUFFULL If a previous transmission has an error, then

it returns the appropriate error codes.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

frame - Pointer toCanFramestructure to be transmitted.

Returns:
CAN_ERROR_NOERRORIf successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT _INITIALIZED- if CAN controller is not initialized ¢an_-
init() has not been called).
CAN_ERROR_PORT_DISABLED If the CAN port is not enabled.
CAN_ERROR_BUFFULL- if transmit buffer is full.
transmit error code - if transmit error has occured.

24

6 DSB80C400CLibraries Directory Documentation

6.1 canbus/ Directory Reference

Files

« file tini400_canbus.h
CAN Bus Interrupt Driver for DS80C390 / 400.

6.2 crypt/ Directory Reference
Files

« file tini400_crypt.h
SHA-1 and MD4 functions for the DS80C400.

6.3 debugport/ Directory Reference
Files

« file tini400_debugport.h
Functions supporting the debug port on the TINIs400 module.

6.4 dhcp/ Directory Reference

Files

« file rom400_dhcp.h
DHCP functions in the DS80C400 ROM.

6.5 dirent/ Directory Reference
Files

« file dirent.h
Functions for directory listing.

25

6.6 dns/ Directory Reference

Files

« file tini400_dns.h
DNS Client functions for the DS80C400 ROM.

6.7 err/ Directory Reference
Files

« file rom400_err.h
Error codes used by functions in the DS80C400 ROM.

6.8 filesystem_lib/ Directory Reference
Files

« file stdio.h
File and other IO functions.

6.9 flash/ Directory Reference

Files

« file rom400_flash.h
Flash programming functions for the TINIm400 module.

6.10 ftpclient/ Directory Reference
Files

« file tini400_ftpclient.h
FTP Client functions for DS80C400.

26

6.11 http/ Directory Reference
Files

« file rom400_http.h
Http Server functions in the DS80C400 ROM.

6.12 i2c/ Directory Reference

Files

« file tini_i2c.h
I2C function library.

6.13 isr/ Directory Reference

Files

« file tini400 _isr.h
Interrupt Service Routine installation functions.

6.14 kmem/ Directory Reference
Files

« file rom400_kmem.h
Kernel Memory initialization functions for the DS80C400 ROM.

6.15 mem/ Directory Reference
Files

« file rom400_mem.h
Memory management functions in the DS80C400 ROM.

27

6.16 mime/ Directory Reference
Files

« file tini400_mime.h
MIME Library functions for DS80C400 processor.

6.17 netif/ Directory Reference

Files

« file rom400_netif.h
Network interface library for the DS80C400.

6.18 netstat/ Directory Reference

Files

« file rom400_netstat.h
Network statistics library for the DS80C400.

6.19 ntlm/ Directory Reference
Files

« file tini400_ntlm.h
NTLM Library functions for DS80C400 processor.

6.20 onewire_raw/ Directory Reference
Files

« file rom400_ow.h
Raw 1-Wire functions in the DS80C400 ROM.

28

6.21 pop3/ Directory Reference
Files

« file tini400_pop3.h
Pop3 Library functions for DS80C400 processor.

6.22 rarp/ Directory Reference
Files

« file rom400_rarp.h
RARP library for the DS80C400.

6.23 rominit/ Directory Reference
Files

¢ file rom400 _init.h
ROM Initialization functions in the DS80C400 ROM.

6.24 rtc/ Directory Reference
Files

« file tini_rtc.h
RTC function library.

6.25 smtp/ Directory Reference
Files

« file tini400_smtp.h
SMTP Library functions for DS80C400 processor.

29

6.26 sock/ Directory Reference
Files

« file rom400_sock.h
Socket functions in the DS80C400 ROM.

6.27 spi/ Directory Reference

Files

« file tini400_spi.h
SPI library for the TINIm400 module.

6.28 task/ Directory Reference
Files

« file rom400_task.h
Process scheduler functions in the DS80C400 ROM.

6.29 tftp/ Directory Reference
Files

« file rom400_tftp.h
TFTP Client functions in the DS80C400 ROM.

6.30 time/ Directory Reference
Files

« file tini400_time.h
Date/Time utilities, tailored for the DS80C400 C Libraries.

30

6.31 useriopoll/ Directory Reference
Files

« file rom400_useriopoll.h
User 10 Poll registration routines for the DS80C400 ROM.

6.32 util/ Directory Reference

Files

« file rom400_util.h
Utility functions in the DS80C400 ROM.

6.33 xnetboot/ Directory Reference

Files

« file tini400_xnetboot.h
External NetBoot library for the DS80C400.

6.34 xnetstack/ Directory Reference

Files

« file rom400_xnetstack.h
Enhanced network stack for the DS80C400 ROM.

7 DS80C400CLibraries Data Structure Documenta-
tion

7.1 _hostinfo Struct Reference

#include <tini400_smtp.h >

31

7.1.1 Detailed Description

Structure for host configuration information that has to be registered with smtp library

Data Fields

¢ longdns_primary_address

primary dns server |P address

¢ longdns_secondary_address

secondary dns server IP address

 longdns_timeout

dns server response timeout

¢ long mailqueue_timeinterval
interval time before resend queued mails

longsmtp_host

IP address of SMTP host,if IP address is zero, smtp library look for IP address through
DNS library calls.

charx* localhostname

char pointer that holds local host name value

The documentation for this struct was generated from the following file:

* tini400_smtp.h

7.2 _http_request Struct Reference

#include <rom400_http.h >

7.2.1 Detailed Description

Structure for http request

32

Data Fields

e charpath[HTTP_MAX_URL]
URL path name.

¢ charrequest_method
Request method flag.

e charx query_string
Query string value passed in http request.

e charx req_headers
String holds http request headers.

e charx message_body

Message body value passed in http request.

* long contentlength

Contains content length value passed in http request.

* http_variablex varlist
Http variable list.

The documentation for this struct was generated from the following file:

¢ rom400_http.h

7.3 _http_response Struct Reference

#include <rom400_http.h >

7.3.1 Detailed Description

Structure for http response

Data Fields

e charx res_headers
String holds http response headers.

33

e charrespons¢gHTTP_MAX_ BUFSIZE]
Response code and string.

e charcontent_typgHTTP_MAX_ BUFSIZE]

Content type of response message.

« int contentlength
Length of response message body.

The documentation for this struct was generated from the following file:

¢ rom400_http.h

7.4 _http_session Struct Reference

#include <rom400_http.h >

7.4.1 Detailed Description

Structure for http session

Data Fields

« int sock_handler
socket handler for client connection

sockaddiaddress
client socket address

¢ http_requestequest
http request

 http_responsessponse
http response

The documentation for this struct was generated from the following file:

e rom400_http.h

34

7.5 _http_variable Struct Reference

#include <rom400_http.h >

7.5.1 Detailed Description

Structure for http variable names and values

Data Fields

» charx var_name
Http variable name.

* charx value

Http variable value.

* http_variablex next
Next http variable node address, NULL value to indicate end of the list.

The documentation for this struct was generated from the following file:

¢ rom400_http.h

7.6 _mail Struct Reference

#include <tini400_pop3.h >

7.6.1 Detailed Description

Structure for mail that contains standard mail header, user mail header, message and
attachment filename list

Data Fields

¢ _mailheademailhdr
standard mailheader structure contains standard mail header values

e _userheadanserhdr
user mailheader structure contains user defined mail header name list and value list

35

e charx msg

string holds mail message

« charx attachmentlisfPOP3_MAXATTACHMENTSIZE]

array of string contains attachment file list

The documentation for this struct was generated from the following file:

« tini400_pop3.h

7.7 _mailheader Struct Reference

#include <tini400_pop3.h >

7.7.1 Detailed Description

Structure for standard mail header holds standard mail header values

Data Fields

e charx from_id

string contains from id mailheader value

* charx sendername

string contains sendername mailheader value

e charxto_id

string contains to id mailheader value

¢ charx recipientname
string contains recipientname mailheader value

» charx* subject

string contains subject mailheader value

e charx reply_to_id
string contains reply_to_id mailheader value

 charx cc_id

string contains cc_id mailheader value

36

 charx* bcc_id
string contains bcc_id mailheader value

e charx errors_to_id
string contains errors_to_id mailheader value

e charx date
string contains date mailheader value

 charx from_id
string contains from id mailheader value

e charx sendername
string contains sendername mailheader value

e charxto_id
string contains to_id mailheader value

« charx recipientname
string contains recipientname mailheader value

 charx* subject
string contains subject mailheader value

e charx reply_to_id
string contains reply_to_id mailheader value

e charx cc_id
string contains cc_id mailheader value

 charx* bcc_id
string contains bcc_id mailheader value

e charx errors_to_id
string contains errors_to_id mailheader value

e charx date
string contains date mailheader value

The documentation for this struct was generated from the following files:

* tini400_pop3.h
« tini400_smtp.h

37

7.8 _maillist Struct Reference

#include <tini400_pop3.h >

7.8.1 Detailed Description

Structure for maillist

Data Fields

¢ int numberofmails
number of mails value

* int x mailnumberlist
array of integers with mail number list

* int x mailsizelist
array of integers with size of each mail

The documentation for this struct was generated from the following file:

« tini400_pop3.h

7.9 _pop3_session Struct Reference

#include <tini400_pop3.h >

7.9.1 Detailed Description

Structure for pop3_session

Data Fields

¢ unsigned inhandle
socket handler

¢ charx user
username value

e charx pass

38

password value

* int status
status of pop3 session

« int(x pop3_authenticatiol()
address of pop3 authentication callback function

The documentation for this struct was generated from the following file:

* tini400_pop3.h

7.10 _sbufhdr Struct Reference

#include <tini400_ntim.h >

7.10.1 Detailed Description

Structure for security buffer header

Data Fields

¢ unsigned inten
length of the data

« unsigned inbuflen
length of the security buffer

« unsigned longstart_loc

starting address of the data

The documentation for this struct was generated from the following file:

¢ tini400_ntlm.h

7.11 _typelmsg Struct Reference

#include <tini400_ntim.h >

39

7.11.1 Detailed Description

Structure for typel message

Data Fields

e typelmsghdtlhdr

type 1 message header

 unsigned chabuf [1024]
security buffer

 unsigned inbuf_index
security buffer length

The documentation for this struct was generated from the following file:

¢ tini400_ntlm.h

7.12 _typelmsghdr Struct Reference

#include <tini400_ntim.h >

7.12.1 Detailed Description

Structure for typel message header

Data Fields

 charsignaturg8]
char array to store NTLM signature

¢ unsigned longnsgtype
NTLM Message Type.

¢ unsigned londlags
The NTLM flags.

¢ sbufhdrusr

user name security buffer header

40

* sbufhdrdomain

domain name security buffer header

The documentation for this struct was generated from the following file:

¢ tini400_ntlm.h

7.13 _type2msg Struct Reference

#include <tini400_ntim.h >

7.13.1 Detailed Description

Structure for type2 message

Data Fields

e type2msghdt2hdr
char array to store NTLM signature

« unsigned chabuf [1024]
security buffer

¢ unsigned inbuf_index
security buffer length

The documentation for this struct was generated from the following file:

¢ tini400_ntim.h

7.14 _type2msghdr Struct Reference

#include <tini400_ntim.h >

7.14.1 Detailed Description

Structure for type2 message header

41

Data Fields

 charsignaturg8]
char array to store NTLM signature

¢ unsigned longnsgtype
The NTLM message type.

¢ sbufhdrdomain

domain name security buffer header

 unsigned londlags
The NTLM flags.

 unsigned chachallengd8]
the 8 byte server challenge

 unsigned chacontext[8]
reserved for future use

« shufhdrtargetinfo
target information.

The documentation for this struct was generated from the following file:

¢ tini400_ntlm.h

7.15 _type3msg Struct Reference

#include <tini400_ntim.h >

7.15.1 Detailed Description

Structure for type3 message

Data Fields

¢ type3msghdt3hdr
char array to store NTLM signature

42

 unsigned chabuf [1024]
security buffer

 unsigned inbuf_index
security buffer length

The documentation for this struct was generated from the following file:

¢ tini400_ntlm.h

7.16 _type3msghdr Struct Reference

#include <tini400_ntim.h >

7.16.1 Detailed Description

Structure for type3 message header

Data Fields

 charsignaturg8]
char array to store NTLM signature

¢ unsigned longnsgtype
The NTLM message type.

¢ sbufhdrimresponse
lan manager response

¢ sbufhdrntimresponse
network lan manager response

¢ sbufhdrdomain

domain name buffer header

« sbufhdrusr

user name buffer header

« sbufhdrworkstation
workstation name buffer header

43

* sbufhdrsession
session buffer header.

 unsigned londlags
The NTLM flags.

The documentation for this struct was generated from the following file:

* tini400_ntlm.h

7.17 _userheader Struct Reference

#include <tini400_pop3.h >

7.17.1 Detailed Description

Structure for user defined mail header contains user header name list and user header
value list
Data Fields

* charx headernameligPOP3_MAXUSERHEADERSIZE]
array of string contains user mail header name list

¢ charx headervalueligiPOP3_MAXUSERHEADERSIZE]
array of string contains user mail header value list

¢ charx headernameligSMTP_MAXUSERHEADERSIZE]
array of string contains user mail header name list

¢ charx headervaluelisiSMTP_MAXUSERHEADERSIZE]
array of string contains user mail header value list

The documentation for this struct was generated from the following files:

* tini400_pop3.h
« tini400_smtp.h

44

7.18 CanFrame Struct Reference

#include <tini400_canbus.h >

7.18.1 Detailed Description

CAN Frame structure. Denotes the structure of a Transmitted or received CAN frame.

Data Fields

¢ booleanRemoteFrameRequest
* booleanExtendedID

uint32_tID

uint8_tLength

charData[8]

7.18.2 Field Documentation

7.18.2.1 charCanFrame::Data[8]

Array containing the transmitted/received data

7.18.2.2 booleanCanFrame::ExtendedID

Flag indicates whether the identifier is in Standard or Extended format

7.18.2.3 uint32_t CanFrame::ID

Common for 11-bit (standard) and 29-bit (extended) Arbitration IDs, selectable by the
ExtendedID flag (1 = Extended, 0 = Standard)

7.18.2.4 uint8_t CanFrame::Length

Number of bytes contained in the frame

7.18.2.5 booleanCanFrame::RemoteFrameRequest

Flag denotes to transmit a RFR in case of frame to be transmitted, and EXTRQ (RFR
received) in case of Received frame

The documentation for this struct was generated from the following file:

« tini400_canbus.h

45

7.19 dirent Struct Reference

#include <dirent.h >

7.19.1 Detailed Description

Structure used to return the name of a directory listing entry.

Data Fields

* unsigned longl_ino
File serial number.

e chard_namg256]

Name of the file.

The documentation for this struct was generated from the following file:

e dirent.h

7.20 FARPTR Struct Reference

#include <rom400 task.h >

7.20.1 Detailed Description

Structure that defines a raw 24-bit memory pointer. Unlike void, fdnis pointer can-
not be directly used in Keil C. To convert it into a far pointer, increase the highest byte
by 1 and set the top bit depending on the memory space.

Data Fields

* unsigned chamsb
Most significant (raw) byte of the memory address.

* unsigned shonbffset
Offset within the 64KB segment of msb.

The documentation for this struct was generated from the following file:

¢ rom400_task.h

46

7.21 file_structure Struct Reference

#include <stdio.h >

7.21.1 Detailed Description

Structure for FILE object. Includes file flags, last error code, file type, and a pointer to
the file descriptor.

Data Fields

int flags
Flags for the file. Can denote the EOF is reached, or that file is temporary.

e int error
Last error code for the file.

* int type
File type. currently on th&ILE_TYPE_TINIFSs supported.

* void x fd
Pointer to the file descriptor, used internally by the TINI File System.

« unsigned chax fname_copy
Copy of the name of the file used internally. Destroyefttose

The documentation for this struct was generated from the following file:

« stdio.h

7.22 hostent Struct Reference

#include <tini400_dns.h >

7.22.1 Detailed Description

Structure for host information that will be returned by the DNS client functions.

47

Data Fields

e charx h_name
String with the official name of the host.

e charxx h_aliases

String with alternative host names.

L]

int h_addrtype
Address typeAF_INET or AF_INET6).

int h_length
Length of the address.

» chars h_addr_list

List of network addresses, eachioflengthbytes. The list is null-terminated.

The documentation for this struct was generated from the following file:

¢ tini400_dns.h

7.23 in6_addr Struct Reference

#include <rom400_sock.h >

7.23.1 Detailed Description

Structure representing a 16 byte IPv6 address.

Data Fields

* unsigned chas6_add(16]
IPv6 compatible address.

The documentation for this struct was generated from the following file:

¢ rom400_sock.h

48

7.24 in_addr Struct Reference

#include <rom400_sock.h >

7.24.1 Detailed Description

Structure representing a 4 byte IPv4 address, for use witbableaddr_irstructure.

Data Fields

e unsigned long_addr
Address as an unsigned long (32 bits).

The documentation for this struct was generated from the following file:

* rom400_sock.h

7.25 kmem_memory Struct Reference

#include <rom400_kmem.h >

7.25.1 Detailed Description

Structure for storing kernel memory size and count.

Data Fields

« unsigned chasize 90
Count of blocks of size 90 bytes.

¢ unsigned chasize_256
Count of blocks of size 256 bytes.

* unsigned chasize_512
Count of blocks of size 512 bytes.

¢ unsigned chasize 768
Count of blocks of size 768 bytes.

¢ unsigned chasize 1024

49

Count of blocks of size 1024 bytes.

« unsigned chasize 1280
Count of blocks of size 1280 bytes.

 unsigned chasize 1600
Count of blocks of size 1600 bytes.

The documentation for this struct was generated from the following file:

¢ rom400_kmem.h

7.26 mailhostent Struct Reference

#include <tini400_dns.h >

7.26.1 Detailed Description
Structure for host information requested with an MX record type.

See also:
dns_getmx

Data Fields

e charx h_name
String with the name of a mail host.

« int preference
Preference value reported by the DNS query.

The documentation for this struct was generated from the following file:

¢ tini400_dns.h

7.27 MCConfig Struct Reference

#include <tini400_canbus.h >

50

7.27.1 Detailed Description

CAN Message center configuration structure. Used for configuration of receive para-
meters of Message Centers.
Data Fields

¢ booleanExtendedID
e uint32_tID

¢ booleanMemeEnable
¢ booleanMdmeEnable

7.27.2 Field Documentation
7.27.2.1 booleanMCConfig::ExtendedID

Flag indicates whether the identifier is in Standard or Extended format

7.27.2.2 uint32_t MCConfig::ID

Common for 11-bit (standard) and 29-bit (extended) Arbitration IDs, selectable by the
ExtendedID flag (1 = Extended, 0 = Standard)

7.27.2.3 booleanMCConfig::MdmeEnable

Flag indicates whether Media identification masking is enabled or disabled

7.27.2.4 booleanMCConfig::MemeEnable
Flag indicates whether Message identification masking is enabled or disabled

The documentation for this struct was generated from the following file:

« tini400_canbus.h

7.28 netstat_arp_entry Struct Reference

#include <rom400_netstat.h >

7.28.1 Detailed Description
Structure for a single ARP entry. The netstat_get_arp_table function returns a pointer

to a table that contains all system ARP entries. Each entry maps an Ethernet MAC
address to an IPv4 address.

51

Data Fields

¢ unsigned chaflags

Flags: NETSTAT_ARP_USED, NETSTAT_ARP_REPLYPENDING or NETSTAT_-
ARP_STATIC.

¢ unsigned chattl
Time to live for this entry (in ticks).

¢ unsigned chamac[6]

MAC address associated with this entry.

unsigned chaip [4]
IPv4 address for the MAC address.

The documentation for this struct was generated from the following file:

¢ rom400_netstat.h

7.29 netstat_tcp_socket Struct Reference

#include <rom400_netstat.h >

7.29.1 Detailed Description

Structure for a TCP socket. The netstat_get tcp_socket function returns a pointer to
this structure for a given socket number (UpNBTSTAT_TCP_MAXSOCKET$

Data Fields

¢ unsigned chaflags

Flags: NETSTAT_TCP_OUTPUT NEEDED MASK NETSTAT TCP_SEND_-
FIN_MASK

* unsigned chastate

Socket state — see NETSTAT_TCP_STATE_xxx (N&ETSTAT_TCP_STATE_-
CLOSED.

« unsigned chaserver_sock
Server socket number (only valid for server).

52

unsigned chaack_timer
Timer for delayed ACKs.

unsigned shontemote_port

Remote port (if not a server socket).

unsigned charemote_addf16]
Remote IP address (if not a server socket).

unsigned shortocal_port
Local port.

unsigned chalocal_addi{16]
Local IP address (may be the wildcard address 0).

unsigned longequence_num
Current TCP sequence number.

unsigned longck_num
Last ACK number.

unsigned shorinput_retrieve_ptr
Tail pointer to input queue.

unsigned shorinput_store_ptr
Head pointer to input queue.

unsigned chainput_buffer _hpg5]
Input queue.

unsigned shorbutput_retrieve_ptr
Tail pointer to output queue.

unsigned shomutput_store_ptr
Head pointer to output queue.

unsigned chaoutput_buffer_hpf5]
Output queue.

unsigned shonteceiver_win_size
Receiver's TCP windows size.

53

unsigned shorsender_win_size
Sender’'s TCP window size.

unsigned shonteceiver_mss
Maximum segment size of receiver.

unsigned shorsock
Socket number.

unsigned londast_ack received
Largest (usually last) ACK.

unsigned shormutput_ack_ptr
Pointer to last acknowledged byte.

unsigned chareload_retry_min
Lower bound on the retry timer reload.

unsigned charetry_timer[2]
Retry timer (one byte counter with overflow bit).

unsigned charetry flags
(Reserved/unused)

unsigned charetry _count
Number of times the last segment has been retried.

unsigned charetry timer_reload
Start value for the retry timer reload.

unsigned shorteath_timer
Time until a forced close of the connection.

unsigned chaoptions

TCP option flags — see NETSTAT_TCP_OPTION_xxx (eNETSTAT_TCP_-
OPTION_NAGLE_ENABLED_MASK

unsigned chaunacked_segs
Number of unacknowledged segments.

unsigned chamax_unacked_segs
Maximum number of unacknowledged segments.

54

« unsigned chapersist_timer
TCP persist timer.

« unsigned chapersist_timer_cap

Current cap for TCP persist timer.

* unsigned shorsend_mss
Maximum segment size for sending.

The documentation for this struct was generated from the following file:

¢ rom400_netstat.h

7.30 netstat_udp_entry Struct Reference

#include <rom400_netstat.h >

7.30.1 Detailed Description

Structure for a single UDP port table entry. The netstat_get_udp_table function returns
a pointer to a table that contaiNETSTAT _UDP_ENTRIES(f this structure.

Data Fields

¢ unsigned chaflags
Flags: NETSTAT_UDP_USED.

¢ unsigned shonport
Port number for this entry.

« unsigned chagueue_hpp5]
Incoming packet queue for this port.

* unsigned chareserved

(Reserved)

The documentation for this struct was generated from the following file:

¢ rom400_netstat.h

55

7.31 pingdata Struct Reference

#include <rom400_sock.h >

7.31.1 Detailed Description

The ping return data structure

Data Fields

¢ unsigned chareserved3]
Reserved field.

 unsigned chaip_headef20]
The IP header of the return packet.

¢ unsigned chaicmp_headef8]
icmp_header - The ICMP header of the return packet

* unsigned chaicmp_datg32]
icmp_data - The ICMP data portion of the return packet (should be
0x20,0x21,0x22,...,0x3f)

The documentation for this struct was generated from the following file:

¢ rom400_sock.h

7.32 sockaddr Struct Reference

#include <rom400_sock.h >

7.32.1 Detailed Description
Structure for an IP address. For a normal, IPv4 (4 byte) address, set the address in

sin_addr[12,13,14,15], with the most significant byte at sin_addr[12]. Notice the 3
bytereservedo deal with the TNI native interface overhead.

56

Data Fields

« unsigned chareserved3]
Overhead for TNI native interface.

¢ unsigned chasin_addf{16]
IP address. IPv4 address is in sin_addr[12-15] with MSB at sin_addr[12].

 unsigned shorsin_port
16 bit port number for the socket.

¢ unsigned chasin_family
Ignored by DS80C400 implementation.

The documentation for this struct was generated from the following file:

¢ rom400_sock.h

7.33 sockaddr_in Struct Reference

#include <rom400_sock.h >

7.33.1 Detailed Description
Alternate structure for an IP address. For a normal, IPv4 (4 byte) address, set the

address in sin_addr.s_addr, and set sin_zero to all 0's. Notice the 3esgtwvedto
deal with the TNI native interface overhead.

Data Fields

« unsigned chareserved3]
Overhead for TNI native interface.

* unsigned chasin_zerd12]
Zeroes in IP address due to IPv6 support.

 in_addrsin_addr
IPv4 address structure.

¢ unsigned shorsin_port
16 bit port number for the socket.

57

* unsigned chasin_family
Ignored by DS80C400 implementation.

The documentation for this struct was generated from the following file:

¢ rom400_sock.h

7.34 TCB Struct Reference

#include <rom400_task.h >

7.34.1 Detailed Description

Task control buffer.

Data Fields

* unsigned chaPriority
Priority of the task.

¢ unsigned chalD
ID of the task.

¢ FARPTRNext
Next task in the queue.

¢ unsigned shomlemHandle
KMalloc handle for this TCB.

¢ unsigned chaFlags
Flags for the task.

¢ TIME WakeupTime

Time that the task is scheduled to wake from a sleep.

« unsigned shorgtateSize
Size of the saved state for the task.

« FARPTRStatePtr

58

Pointer to the saved state for the task.

The documentation for this struct was generated from the following file:

¢ rom400_task.h

7.35 TIME Struct Reference

#include <rom400_task.h >

7.35.1 Detailed Description
Structure to be used when handling the DS80C400’s 5 byte time values.

See also:
task_gettimemillis

Data Fields

 unsigned chamsb
Most significant byte of the time stamp. The Keil compiler does not have data types
longer than 4 bytes.

¢ unsigned longnillis
The lower 4 bytes of a DS80C400 time stamp (in milliseconds). This will cover up to
49.7 days.

The documentation for this struct was generated from the following file:

¢ rom400_task.h

7.36 tm Struct Reference

#include <tini400_time.h >

7.36.1 Detailed Description

Structure for calendar time. Note that the computation of these values depends on the
time base year set by thiene_settimebasiinction.

59

Data Fields

e inttm_sec
Seconds after the minute (0..59).

e inttm_min
Minutes after the hour (0..59).

e inttm_hour
Hours since midnight (0..23).

e inttm_mday
Day of the month (1..31).

e inttm_mon
Months since January (0..11).

e inttm_year
Year.

* inttm_wday
Days since Sunday (0..6).

e inttm_yday
Days since January 1 (0..365).

e inttm_isdst
Daylight savings time flag, currently not supported.

The documentation for this struct was generated from the following file:

* tini400_time.h

8 DS80C400CLibraries File Documentation

8.1 dirent.h File Reference
8.1.1 Detailed Description

Functions for directory listing.

60

This library contains functions that allow applications to list the contents of a directory.
To use this library, the file system must also be installed and initialized.

Note that not all of the traditionalirent functions are implemented.

For detailed information on the DS80C400 please see lIthigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
Some functions in this library aldOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Data Structures

« structdirent

Defines

» #defineROM400_DIRENT_VERSION?

Typedefs

« typedef unsigned charDIR

Functions

« int closedir(DIR xdir)
Close a directory stream.

DIR x opendir(const chakname)
Open a directory stream.

direntx readdir(DIR *dir)
Read a directory entry from a directory stream.

void rewinddir (DIR x*dir)
Resets the directory stream.

void seekdir(DIR xdir, long int ptr)
Sets the directory stream location.

61

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

¢ long inttelldir (DIR xdir)
Returns the current location in the directory stream.

 unsigned indirent_versior(void)
Returns the version number of this DIRENT library.

8.1.2 Define Documentation

8.1.2.1 #define ROM400_DIRENT_VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thairent_versiorfunction.

See also:
dirent_version

8.1.3 Typedef Documentation

8.1.3.1 typedef unsigned charDIR

Type definition for a directory structure. This object must not be altered by the appli-
cation during use. Make sure to call tblesedirfunction when finished with any DIR
object.

8.1.4 Function Documentation

8.1.4.1 int closedir DIR x dir)
Close a directory stream.

Closes the directory streadir , and frees the resources allocated to it.

Parameters:
dir Directory resource to free.

Returns:
0 on success, non-zero if the directory could not be closed.

See also:
opendir

62

8.1.4.2 unsigned int dirent_version (void)
Returns the version number of this DIRENT library.

Returns:
Version number of this DIRENT library.

8.1.4.3 DIRx opendir (const charx hame
Open a directory stream.

Opens a directory stream for the directargme The argumenhame should not
have leading or trailing slashes. To open the root directory, use the empty string
(opendir(™);).

Parameters:
name Name of the directory to open

Returns:
Pointer to a directory stream object, or NULL if the directory could not be found.

See also:
closedir

8.1.4.4 structdirent* readdir (DIR x dir)
Read a directory entry from a directory stream.

Reads the current directory entry from the directory strefam This function also
increments the internal stream counter, so the next cataddir will read the next
directory entry.

Before using the returned file name, daktiststo make sure the file still exists. It could
have been deleted between the time the directory stream was opened and now, which
would yield an invalid result.

Parameters:
dir Directory stream to read an entry from.

Returns:
Pointer to a directory entry, or NULL if the end of the directory stream has been
reached.

See also:
rewinddir
seekdir
telldir

63

8.1.4.5 void rewinddir (DIR x dir)
Resets the directory stream.

Resets the directory stream to the beginning, so the first directory entry is read again.

Parameters:
dir Directory stream to be reset.

See also:
seekdir
telldir

8.1.4.6 void seekdir DIR « dir, long int ptr)
Sets the directory stream location.

Sets the current 'pointer’ into the directory stream to the vaitre Internally, the
directory stream is simply an array of file pointers. This function sets the current index
into that array. Ifptr is beyond the bounds of the array, the next caltetaddir will

return NULL,;

Parameters:
dir Directory stream to set location

ptr Location to point to in stream

See also:
readdir
telldir

8.1.4.7 long int telldir (DIR = dir)
Returns the current location in the directory stream.

Returns the current location in the directory stream. Internally, the directory stream is
simply an array of file pointers. This function returns the current index into that array.

Parameters:
dir Directory stream to get location

See also:

readdir
seekdir

64

8.2 rom400_dhcp.h File Reference

8.2.1 Detailed Description

DHCP functions in the DS80C400 ROM.

This library contains functions that allow the DS80C400 to lease addresses from a
DHCP server. Only Ipv4 addresses can be leased using DHCP. Ipv6 addresses are
automatically configured. Once the DHCP client negotiates a lease on an address,
functions from the socket librariesom400_sock. hcan be used to get the current IP
address and communicate with other devices.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
The functions in this library are multi-process safe—that is, if you call the same
method from two different processes at the same time, the parameters to the func-
tion will not be destroyed. However, it is recommended that only one process
manage the DHCP client as it is a system-wide resource.

Note that the DHCP client requires a clock that is no slower than 133% of real time.
Otherwise, DHCP lease renewal might be problematic. Avoid blocking interrupts for
extended periods of time and usé_setfrequencyo set the correct crystal frequency.

Defines

« #defineROM400_DHCP_VERSION.2

« #defineDHCP_STATUS_INITO

« #defineDHCP_STATUS_SELECTING
« #defineDHCP_STATUS_REQUESTING
« #defineDHCP_STATUS_INITREBOOB
« #defineDHCP_STATUS_REBOOTING
« #defineDHCP_STATUS_BOUNLE

. #defineDHCP_STATUS_RENEWING

« #defineDHCP_STATUS_REBINDING
« #defineDHCP_MSG_DHCPDISCOVER
« #defineDHCP_MSG_DHCPOFFER

« #defineDHCP_MSG_DHCPREQUES3
« #defineDHCP_MSG_DHCPDECLINE
« #defineDHCP_MSG_DHCPACKS

« #defineDHCP_MSG_DHCPNAK6

« #defineDHCP_MSG_DHCPRELEASE
« #defineDHCP_MSG_DHCPINFORM

65

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Functions

* unsigned chadhcp_init(void)
Initializes the DHCP client.

« void dhcp_setrequestifstructsockaddraddress, int len)
Sets the requested IP (and INITREBOQOT state).

« unsigned indhcp_statugvoid)
Gets the status of the DHCP client.

« void dhcp_stoint releaseip)
Disabled the DHCP client.

« void dhcp_registernotify(void(xfunctionptr)(unsigned int newstate, unsigned
char farxpacket))

Register a function to be notified when DHCP acquires or loses an IP.

« void dhcp_registerparseoptigwoid(+functionptr)(unsigned char faioption))

Register a function to be called when an unknown or unhandled DHCP option is
encountered.

« void dhcp_registerbuildpackgtinsigned charfunctionptr)(unsigned char far
xoption, unsigned char msgtype))

Register a function to be called when a DHCP packet is about to be sent.

« unsigned indhcp_versior{void)
Returns the version number of this DHCP library.

« void dhcp_getserverifstructsockaddeaddress, int len)
Returns the IP address of the DHCP server.

 void dhcp_getprimarydnéstructsockaddeaddress)
Returns the IP address of the primary DNS server.

« void dhcp_getsecondaryd(structsockaddeaddress)
Returns the IP address of the secondary DNS server.

 unsigned indhcp_gettaskid)
Returns task ID of the DHCP process.

« int dhcp_getsockd)
Returns socket handle of the socket used in the DHCP process.

66

8.2.2 Define Documentation

8.2.2.1 #define DHCP_MSG_DHCPACK 5
DHCP message type ACK

8.2.2.2 #define DHCP_MSG_DHCPDECLINE 4
DHCP message type DECLINE

8.2.2.3 #define DHCP_MSG_DHCPDISCOVER 1
DHCP message type DISCOVER

8.2.2.4 #define DHCP_MSG_DHCPINFORM 8
DHCP message type INFORM

8.2.2.5 #define DHCP_MSG_DHCPNAK 6
DHCP message type NAK

8.2.2.6 #define DHCP_MSG_DHCPOFFER 2
DHCP message type OFFER

8.2.2.7 #define DHCP_MSG_DHCPRELEASE 7
DHCP message type RELEASE

8.2.2.8 #define DHCP_MSG_DHCPREQUEST 3
DHCP message type REQUEST

8.2.2.9 #define DHCP_STATUS_BOUND 5

DHCP status code returned biacp_statusThe DHCP client is in th@& OUND state:
it has been configured with a valid address.

See also:
dhcp_status

67

8.2.2.10 #define DHCP_STATUS_INITO
DHCP status code returned biacp_status The DHCP client is in théNIT state: it
has not yet sent a DHCP_DISCOVER message.

See also:
dhcp_status

8.2.2.11 #define DHCP_STATUS_INITREBOOT 3
DHCP status code returned biicp_statusThe DHCP client is in thétNITREBOOT
state: it has rebooted, and is trying to acquire its old address.

See also:
dhcp_status

8.2.2.12 #define DHCP_STATUS_REBINDING 7
DHCP status code returned diacp_statusThe DHCP client is in th&EBINDING
state: it is attempting to get a new lease after its current lease expired.

See also:
dhcp_status

8.2.2.13 #define DHCP_STATUS_REBOOTING 4
DHCP status code returned diacp_statusThe DHCP client is in th@EBOOTING
state: after a reboot, it is waiting for permission to use its old address.

See also:
dhcp_status

8.2.2.14 #define DHCP_STATUS_RENEWING 6

DHCP status code returned biacp_statusThe DHCP client is in th&RENEWING
state: it is attempting to extend the current, valid lease of its address.

See also:
dhcp_status

68

8.2.2.15 #define DHCP_STATUS_REQUESTING 2
DHCP status code returned biicp_statusThe DHCP client is in thREQUESTING
state: it has requested a DHCP address, and is awaiting a reply.

See also:
dhcp_status

8.2.2.16 #define DHCP_STATUS_SELECTING 1
DHCP status code returned diacp_statusThe DHCP client is in th&ELECTING
state: it is collecting DHCP offers.

See also:
dhcp_status

8.2.2.17 #define ROM400_DHCP_VERSION 12
Version number associated with this header file. Should be the same as the version
number returned by theéhcp_versioriunction.

See also:
dhcp_version

8.2.3 Function Documentation

8.2.3.1 void dhcp_getprimarydns (structsockaddr « addres}
Returns the IP address of the primary DNS server.

Returns the IP address of the primary DNS server. The DNS server can be set by an
option received from a DHCP response, or by setting it manually from the DNS library
functiondns_setprimaryNote that this DNS server information entry is cleared out on
initialization.

Parameters:
addresswill fill in the primary DNS server IP address

See also:
dhcp_getsecondarydns
dns_setprimary
dns_getprimary

69

8.2.3.2 void dhcp_getsecondarydns (strustockaddr x addres$
Returns the IP address of the secondary DNS server.

Returns the IP address of the primary DNS server. The DNS server can be set by an
option received from a DHCP response, or by setting it manually from the DNS library
functiondns_setprimaryNote that this DNS server information entry is cleared out on
initialization.
Parameters:

addresswill fill in the secondary DNS server IP address

See also:
dhcp_getprimarydns
dns_setsecondary
dns_getsecondary

8.2.3.3 void dhcp_getserverip (strucsockaddr x addressint len)
Returns the IP address of the DHCP server.

Parameters:
addresswill fill in the DHCP server IP address

len length of the address structure (ignored)

8.2.3.4 intdhcp_getsocket ()

Returns socket handle of the socket used in the DHCP process.

Returns the socket handle of the socket used in the DHCP process. If the DHCP process
is not running, the return value is invalid.

Returns:
Socket handle of DHCP socket

See also:
dhcp_gettaskid

8.2.3.5 unsigned int dhcp_gettaskid ()
Returns task ID of the DHCP process.

Returns the task ID of the DHCP process. If the DHCP process has not been initialized
(but theinit_rom function has been called), this function returns 0.

The value returned by this function is suitable to use with the task library—for instance,
to alter the priority of the DHCP task.

70

Returns:
Task ID of the DHCP process.

See also:
dhcp_init
dhcp_getsocket

8.2.3.6 unsigned char dhcp_init (void)
Initializes the DHCP client.

Starts a DHCP Client task and returns to the caller. DHCP is implemented for IPv4
only. The IPv6 portion of the network stack uses neighbor discovery. To read the
address that the DHCP client has leased, use the socket library fugetiotwork-
params DHCP tries to request a previously leased IP (INITREBOOT state}jisge -
setrequestip This can cause dhcp_init to take a long time. Set a zero IP to force the
INIT state.

Returns:
0 for success, non-zero for failure.

See also:
dhcp_stop
getnetworkparampn the socketibrary]
dhcp_setrequestip

8.2.3.7 void dhcp_registerbuildpacket (unsigned cha#)(unsigned char far
xoption, unsigned char msgtypefunctionptr)

Register a function to be called when a DHCP packet is about to be sent.

The function passed &snctionptrwill be called when the DHCP client is about to send

a DHCP packet. The function pointed to functionptrshould take two argumentis (a
pointer and a byte) and return a byte. Whenever the function at functionptr is called,
the pointer will be pointing to the first byte after the default options. The user can fill
in additional DHCP options, e.g. 0x0c,0x04,T','I'’N’;'I' would be a DHCP hostname
option. The msgtype argument contains the current DHCP message type (DHCP_-
MSG_DISCOVER or DHCP_MSG_REQUEST). The return value is the number of
bytes added to the DHCP options, 6 in the hostname example above.

The function does not need to save/restore any registers.
Parameters:

functionptr Pointer to a function with the signature unsigned char fn(unsigned
char fax option, unsigned char msgtype)

71

8.2.3.8 void dhcp_registernotify (void¢)(unsigned int newstate, unsigned char
far xpacket) functionptr)

Register a function to be notified when DHCP acquires or loses an IP.

The function passed danctionptrwill be called when the DHCP client acquires or
loses an IP.

Parameters:
functionptr Pointer to a function with the signature void fn(unsigned int new-
state, unsigned char fapacket). The function will be provided with the
new DHCP state and a pointer to the last DHCP packet received (the packet
pointer points to the beginning of the BOOTP data structure).

See also:
dhcp_status

8.2.3.9 void dhcp_registerparseoption (void{)(unsigned char far xoption) func-
tionptr)

Register a function to be called when an unknown or unhandled DHCP option is en-
countered.

The function passed danctionptrwill be called when the DHCP client is parsing
an unknown DHCP option. The function pointed to foyctionptr should take one
argument (a pointer) and return void. Whenever the function at functionptr is called,
the argument will be pointing to the current unhandled or vendor specific DHCP option.

The function does not need to save/restore any registers.

Parameters:
functionptr Pointer to a function with the signature void fn(unsigned chas far
option).

8.2.3.10 void dhcp_setrequestip (structockaddr x addressint len)
Sets the requested IP (and INITREBOOT state).

Whendhcp_initis called and the requested IP is not zero, the DHCP state machine
will start in INITREBOOT state and try to obtain a previously leased IP (if the DHCP
server doesn’t answer or the request is denied, it will ignore the requested IP). Setting
arequested IP can delay the IP lease if the DHCP server doesn’t respond (e.g. because
it didn’t retain the client record); set to zero to force the state machine to INIT state.

Parameters:
addressfill in the requested IP address

72

len length of the address structure (ignored)

See also:
dhcp_init

8.2.3.11 unsigned int dhcp_status (void)

Gets the status of the DHCP client.

Returns the current state of the DHCP Client. DHCP Clients that have leased a valid
address should retuHCP_STATUS_BOUND.

Returns:
Status of the DHCP client.

8.2.3.12 void dhcp_stop (inteleaseip
Disabled the DHCP client.

Kills the DHCP client task. Usdhcp_initto restart the DHCP client. If the "releaseip”
argument is non-zero, a DHCP release message is sent. Some DHCP servers don't
retain client records, and releasing the IP will make it impossible/slower to get the
same |IP after a reboot.

Parameters:
releaseip— 0: don’'t send a DHCP release message

See also:

dhcp_init

8.2.3.13 unsigned int dhcp_version (void)

Returns the version number of this DHCP library.

Returns:
Version number of this DHCP library.

8.3 rom400_err.h File Reference
8.3.1 Detailed Description

Error codes used by functions in the DS80C400 ROM.

73

This file contains error codes that might be returned by functions that call into the
ROM.

For detailed information on the DS80C400 please see lIthgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Defines

« #defineROM400_ERR_VERSION

« #defineROM400_IOEXCEPTIONDXOB

« #defineROM400_INTERRUPTEDIOEXCEPTIONX36

« #defineROM400_ARRAYINDEXOUTOFBOUNDSEXCEPTIONX0D
« #defineROM400_INTERNALERROFOX2C

« #defineROM400_NULLPOINTEREXCEPTIONIX08

« #defineROM400_OUTOFMEMORYERRORX30

« #defineROM400_BINDEXCEPTIONDX35

« #defineROM400_CONNECTEXCEPTIONX46

« #defineROM400_SOCKETEXCEPTIONX32

8.3.2 Define Documentation

8.3.2.1 #define ROM400_ARRAYINDEXOUTOFBOUNDSEXCEPTION 0x0D

Indicates that the index or offset to an array access was out of bounds.

8.3.2.2 #define ROM400_BINDEXCEPTION 0x35

Indicates that application cannot bind to address (interface unavailable, not a server
socket or socket not bound).

8.3.2.3 #define ROM400_CONNECTEXCEPTION 0x46

Indicates that an error occurred trying to connect to a remote port. The connection was
probably refused remotely.

8.3.2.4 #define ROM400_ERR_VERSION 1

\ersion number associated with this header file.

8.3.2.5 #define ROM400_INTERNALERROR 0x2C

Indicates a problem with the network queue.

74

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

8.3.2.6 #define ROM400_INTERRUPTEDIOEXCEPTION 0x36

Indicates that a sleep or wait was interrupted.

8.3.2.7 #define ROM400_IOEXCEPTION 0x0B

General error that is returned when a resource (memory, port) is not available or an
internal data structure (table) cannot hold more elements or is corrupted.

8.3.2.8 #define ROM400_NULLPOINTEREXCEPTION 0x08

Indicates that a pointer was not able to be dereferenced.

8.3.2.9 #define ROM400_OUTOFMEMORYERROR 0x30

Indicates that the system has run out of kernel or regular memory to allocate.

8.3.2.10 #define ROM400_SOCKETEXCEPTION 0x32

Indicates that a socket is not available (port in use or socket closed).

8.4 rom400_flash.h File Reference
8.4.1 Detailed Description

Flash programming functions for the TINIm400 module.

This library contains functions that allow applications to access the ROM'’s flash eras-
ing and programming algorithms. Any flash that is compatible with the DS80C400
boot loader’s functions will be compatible with this library.

For detailed information on the DS80C400 please see Ihigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

The functions in this library are multi-process safe—that is, if you call the same method
from two different processes at the same time, the parameters to the function will not
be destroyed. However, multiple processes should not be performing flash altering
operations without some kind of synchronization control.

Defines

« #defineROM400_FLASH_VERSION?

75

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Functions

« unsigned chaflash_eraseblocfunsigned char blocknum)
Erase a flash block.

* unsigned chaflash_programbytévoid «location, unsigned char b)
Program a byte of flash.

¢ unsigned inflash_versior{void)
Returns the version number of this flash library.

8.4.2 Define Documentation

8.4.2.1 #define ROM400_FLASH_VERSION 2
Version number associated with this header file. Should be the same as the version
number returned by thigash_versiorfunction.

See also:
flash_version

8.4.3 Function Documentation

8.4.3.1 unsigned char flash_eraseblock (unsigned chllocknum)
Erase a flash block.

Erases the block of flash that begins at addbdéssknum00:00. This operation checks
to see if the block is RAM or is the ROMblocknumequals FF), in which case the
operation fails.

Parameters:
blocknum bank/block number of flash to erase

Returns:
0 if the erase was successful, 1 if the erase could not be performed.

8.4.3.2 unsigned char flash_programbyte (voié location, unsigned charb)
Program a byte of flash.

Programs the bytb to the addrestocation If the location is unprogrammable (too
many zero bits have already been set) the operation fails.

76

Parameters:
location The address to write the vallgo

b The value to be programmed

Returns:
0 if the program is successful, 1 if the operation could not be performed.

8.4.3.3 unsigned int flash_version (void)

Returns the version number of this flash library.

Returns:
Version number of this flash library.

8.5 rom400_http.h File Reference
8.5.1 Detailed Description

Http Server functions in the DS80C400 ROM.
This library contains functions for implementing http server in DS80C400 ROM

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
Some functions in this library aldOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Data Structures

struct_http_variable
struct_http_request
struct_http_response
struct_http_session

Defines

 #defineHTTP_VERSIONS
o #defineHTTP_INSUFFICIENT_MEMORY-1
 #defineHTTP_LOGFILE_ERROR2

77

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

« #defineHTTP_SOCKET_ERROR3

« #defineHTTP_REQUEST_NOT_PROCESSEBD

« #defineHTTP_DENY_CONNECTIONS

- #defineHTTP_TASK_ERROR®6

« #defineHTTP_SERVER_ALREADY_RUNNING7

. #defineHTTP_NOSERVERTASKS

. #defineHTTP_STATUS_SUCCESS

« #defineHTTP_DISABLE_LOGO

- #defineHTTP_ENABLE_LOG1

« #defineHTTP_ENABLE_VARIABLE_PARSING1

- #defineHTTP_DISABLE_VARIABLE_PARSINGO

« #defineHTTP_ENABLE_MESSAGEBODY_READING
« #defineHTTP_DISABLE_MESSAGEBODY READING®
« #defineHTTP_STOP_SERVERTASK

« #defineHTTP_RUN_SERVERTASKL

« #defineDEFAULT_BUF_SIZE400

« #defineDEFAULT_MAX_PENDING_CONNECIONS
« #defineHTTP_DEFAULT_PORTS0

« #defineHTTP_MAX_URL 400

« #defineHTTP_MAX_BUFSIZE400

« #defineHTTP_GET_METHODL

« #defineHTTP_POST_METHOL®

« #defineHTTP_HEAD_METHOD3

Typedefs

« typedef_http_variablenttp_variable
 typedef_http_requeshttp_request
« typedef_http_responsbttp_response
 typedef_http_sessiohttp_session

Functions

« int http_init (structsockaddiserver_addr)

Initializes http server library.

« int http_setrootdif{charxrootdir)
Sets http root directory.

¢ charx http_getrootdii(void)
Returns http root directory.

78

int http_setindexpaggharxindex)
Sets index page name.

charx http_getindexpagévoid)
Returns current index page.

void http_setportnumbeint portnumber)
Sets HTTP Server Port number.

int http_getportnumbevoid)
Returns current http server port number.

void http_setheaderbufsiZat buffersize)
Sets header buffer size.

int http_getheaderbufsiggoid)
Returns header buffer size.

void http_set_req_linesiz@nt buffersize)
Sets the maximum size value of each line of http request.

int http_get_req_linesiz@yoid)
Returns the maximum size value of each line of http request.

void http_set_req_process_optigiebar flag)
Sets Http request Processing options configuration flag value.

charhttp_get_req_process_optioweid)
Returns Http request Processing options configuration flag value.

int http_getloggingvoid)
Returns logging status.

int http_setloggindchar logstatus)
Sets logging status.

charx http_getlogfilenamévoid)
Returns log file name.

int http_setlogfilenamécharxlogfilename)
Sets log file name.

79

void http_setmaxconnectiorigt max_connection)
Sets maximum number of pending connections value.

int http_getmaxconnectior{goid)
Returns the current value for maximum number of pending connections.

void http_setclientsocktimeogong milli_sec)
Sets http client socket timeout value.

long http_getclientsocktimeoiftoid)
Returns the current value for http client socket timeout.

void http_reg_req_ callbadint(xfunc)())
Registers callback function to process http request.

void http_reg_acl_callbacfint(xfunc)())
Registers access control callback function.

void http_sendheade(http_sessiorhttps)
Sends http response headers to client.

int http_start_servegvoid)
Starts http server.

int http_kill_server(void)
Terminates http server.

void http_decode_urlencodedddtharxpathname)

Decodes the url path which was encoded in "application/x-www-form-urlencoded"
format.

charhttp_hex_from_asciichar c)
Returns hexadecimal value for input ascii digit.

int http_change_server_stdtdhar server_state)
Changes Http Server state.

8.5.2 Define Documentation

8.5.2.1 #define DEFAULT_BUF_SIZE 400

Define for default header buffer size

80

See also:
http_getheaderbufsize
http_setheaderbufsize

8.5.2.2 #define DEFAULT_MAX_PENDING_CONNECIONS 5

Define for default maximum pending connections allowed

See also:
http_setmaxconnections
http_getmaxconnections

8.5.2.3 #define HTTP_DEFAULT_PORT 80

Define for default http port number

See also:
http_getportnumber
http_setporthnumber

8.5.2.4 #define HTTP_DENY_CONNECTION -5

Error value to indicate that http client connection is denied by access control callback
function

See also:
http_reg_acl_callback

8.5.2.5 #define HTTP_DISABLE_LOG 0
Define for disabling logging activity

See also:
http_setlogging

http_getlogging

8.5.2.6 #define HTTP_DISABLE_MESSAGEBODY_READING 0
Define for disabling message body reading status flag
See also:

http_set_req_process_options
http_get_req_process_options

81

8.5.2.7 #define HTTP_DISABLE_VARIABLE_PARSING 0

Define for disabling variable parsing status flag

See also:
http_set_req_process_options
http_get_req_process_options

8.5.2.8 #define HTTP_ENABLE_LOG 1

Define for enabling logging activity

See also:
http_setlogging
http_getlogging

8.5.2.9 #define HTTP_ENABLE_MESSAGEBODY_READING 2

Define for enabling message body reading status flag

See also:
http_set_req_process_options
http_get_req_process_options

8.5.2.10 #define HTTP_ENABLE_VARIABLE_PARSING 1

Define for enabling variable parsing status flag

See also:
http_set_req_process_options
http_get_req_process_options

8.5.2.11 #define HTTP_GET_METHOD 1
Get request method type
See also:

http_request
http_session

82

8.5.2.12 #define HTTP_HEAD_METHOD 3
Head request method type

See also:
http_request
http_session

8.5.2.13 #define HTTP_INSUFFICIENT_MEMORY -1

Insufficient memory error value

See also:
http_setrootdir
http_setindexpage
http_setlogfilename

8.5.2.14 #define HTTP_LOGFILE_ERROR -2

Error opening log file

See also:
http_setlogging

8.5.2.15 #define HTTP_MAX_BUFSIZE 400

Define for maximum buffer size

See also:
http_request
http_session

8.5.2.16 #define HTTP_MAX_URL 400
Define for maximum url path name size
See also:

http_request
http_session

83

8.5.2.17 #define HTTP_NOSERVERTASK -8

Error value to indicate that http server task is not running

See also:
http_start_server
http_Kkill_server
http_change_server_state

8.5.2.18 #define HTTP_POST_METHOD 2

Post request method type

See also:
http_request
http_session

8.5.2.19 #define HTTP_REQUEST_NOT_PROCESSED -4

Error value to indicate that http request was not processed by callback function

See also:
http_reg_req_callback

8.5.2.20 #define HTTP_RUN_SERVERTASK 1

Define for running http server task

See also:
http_change_server_state

8.5.2.21 #define HTTP_SERVER_ALREADY_RUNNING -7

Error value to indicate that server is already running

See also:
http_start_server

8.5.2.22 #define HTTP_SOCKET_ERROR -3

Socket error value

See also:
http_start_server

84

8.5.2.23 #define HTTP_STATUS_SUCCESS 0
Http Status Success value, this value is returned when operation is completed success-
fully

See also:
http_setrootdir
http_setindexpage
http_setlogfilename
http_start_server
http_kill_server

8.5.2.24 #define HTTP_STOP_SERVERTASK 0

Define for stopping http server task

See also:
http_change_server_state

8.5.2.25 #define HTTP_TASK_ERROR -6

New task creation error

See also:
http_start_server

8.5.2.26 #define HTTP_VERSION 8

Version number associated with this header file. Should be the same as the version
number returned by thiettp _versiorfunction.

See also:
http_version

8.5.3 Typedef Documentation

8.5.3.1 typedef struct_http_requesthttp_request

Structure for http request

8.5.3.2 typedef struct http_responsehttp_response

Structure for http response

85

8.5.3.3 typedef struct http_sessiorhttp_session

Structure for http session

8.5.3.4 typedef struct http_variable http_variable

Structure for http variable names and values

8.5.4 Function Documentation

8.5.4.1 inthttp_change_server_state (chaerver_state
Changes Http Server state.
This function sets http server state

This function is safe to be called from multiple processes at the same time.

Parameters:
server_stateServer state. Should be eithéiTTP_RUN_SERVERTASHr
HTTP_STOP_SERVERTASK

Returns:
HTTP_STATUS SUCCES®BHTTP_NOSERVERTASK

8.5.4.2 void http_decode_urlencodeddata (char pathnameg

Decodes the url path which was encoded in "application/x-www-form-urlencoded" for-
mat.

This function decodes the url path which was encoded in "application/x-www-form-
urlencoded" format.

This function is safe to be called from multiple processes at the same time.

Parameters:
pathname pointer to url path name

8.5.4.3 inthttp_get_req_linesize (void)
Returns the maximum size value of each line of http request.
This function returns the maximum size value of each line of http request

This function is safe to be called from multiple processes at the same time.

Returns:
buffersize the maximum size value of each http request line

86

8.5.4.4 char http_get_req_process_options (void)
Returns Http request Processing options configuration flag value.

This function is safe to be called from multiple processes at the same time.

Returns:
The variable parsing status flag value

8.5.4.5 long http_getclientsocktimeout (void)
Returns the current value for http client socket timeout.
This function returns the current value for http client socket timeout

This function is safe to be called from multiple processes at the same time.

Returns:
The current value for http client socket timeout

8.5.4.6 int http_getheaderbufsize (void)
Returns header buffer size.
This function returns buffer size value for http request and response headers.

This function is safe to be called from multiple processes at the same time.

Returns:
header buffer size

8.5.4.7 chaxk http_getindexpage (void)
Returns current index page.
This function returns the current index page name.

This function is safe to be called from multiple processes at the same time.

Returns:
The starting address of index page name. NULL will be returned if there is no
index page set.

87

8.5.4.8 chak http_getlogfilename (void)
Returns log file name.
This function returns the log file name.

This function is safe to be called from multiple processes at the same time.

Returns:
The address of log file name. NULL will be returned if there is no log file set.

8.5.4.9 int http_getlogging (void)
Returns logging status.
This function returns the current logging status

This function is safe to be called from multiple processes at the same time.

Returns:
HTTP_DISABLE LOGrHTTP_ENABLE_LOG

8.5.4.10 int http_getmaxconnections (void)
Returns the current value for maximum number of pending connections.
This function returns the current value for maximum number of pending connections

This function is safe to be called from multiple processes at the same time.

Returns:
The current value for maximum number of pending connections.

8.5.4.11 int http_getportnumber (void)
Returns current http server port number.
This function returns the current http server port number

This function is safe to be called from multiple processes at the same time.

Returns:
http server port number

88

8.5.4.12 chak http_getrootdir (void)
Returns http root directory.
This function returns the current root directory path name.

This function is safe to be called from multiple processes at the same time.

Returns:
The starting address of root directory path name. NULL will be returned if there
is no root directory set.

8.5.4.13 char http_hex_from_ascii (char)
Returns hexadecimal value for input ascii digit.
This function returns hexadecimal value for input ascii digit

This function is safe to be called from multiple processes at the same time.
Parameters:
¢ ascii digit

Returns:
hexadecimal value for input ascii digit

8.5.4.14 int http_init (struct sockaddr server_addy

Initializes http server library.

This function initializes the internal data structures of http server library
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
server_addrAddress of http server. Should be initialized with the IP address of
the TINI it is running on.

Returns:
Always returndHTTP_STATUS_SUCCESS

89

8.5.4.15 int http_kill_server (void)
Terminates http server.
This function Terminates http server

This function is safe to be called from multiple processes at the same time.

Returns:
HTTP_STATUS_SUCCESSTTP_NOSERVERTASK

8.5.4.16 void http_reg_acl_callback (int)() func)

Registers access control callback function.

This function registers callback function to process http request
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
func - the function pointer to call back function

NOTE:

Access control callback function should have the following function prototype to re-
ceive the sockaddr pointer

int << http access control call back function name (sockaddraddress)

NOTE: Access control callback routine should retudTTP_STATUS SUCCESS
value to process the http requesfTTP_DENY_CONNECTIOMNrror value to deny
the client connection

Warning:
this callback function should be multi-task safe.

8.5.4.17 void http_reg_req_callback (int¢)() func)

Registers callback function to process http request.

This function registers callback function to process http request
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

90

Parameters:
func - the function pointer to call back function

NOTE: Http request process callback function should have the following function pro-
totype to receive http session structure pointer.

int << http request process call back function name (http_sessiorhttps)

NOTE: Http request process callback routine should rettfmTP_STATUS_-
SUCCES%alue, if the request was processeff. TP_REQUEST_NOT_PROCESSED
error value to let http library process the request.

Warning:
this callback function should be multi-task safe.

8.5.4.18 void http_sendheadershtp_session« https)

Sends http response headers to client.

This function sends http response headers to client

This function is safe to be called from multiple processes at the same time.

NOTE: the response code, content type, content length, and response header values
can be modified from application before sending response headers

Parameters:
https the pointer to http session object that contains response header value

8.5.4.19 void http_set_req_linesize (inbuffersizg

Sets the maximum size value of each line of http request.

This function sets the maximum size value of each line of http request
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
buffersize the maximum size value of each http request line

8.5.4.20 void http_set_req_process_options (chflag)

Sets Http request Processing options configuration flag value.

91

This function sets http request processing options configuration flag value. By default,
The Http request Processing options flag contafi§TP_ENABLE_VARIABLE_-
PARSINGHTTP_ENABLE_MESSAGEBODY_READINGvalue.

This function is safe to be called from multiple processes at the same time.
Parameters:

flag Http request Variable parsing status flag value. The following table shows the
possible values for flag.

flag value Description
HTTP_ENABLE_VARIABLE_- When the flag is set with this value, The
PARSINGHTTP_ENABLE_- http server parses the variables from
MESSAGEBODY_READING "query string", and "message body" and

stores it in variable list. The variable
needs to be passed using standard
convention(variablename=value) to
make http server library to parse the
variables successfully.

HTTP_DISABLE_VARIABLE - This value makes http server library tg
PARSINGHTTP_ENABLE_- disable variable parsing. But, library
MESSAGEBODY_READING reads both "querystring" and

"messagebody" part of http request, and
user can access both "query string" and
"messagebody" values from
guerystring,messagebody members qf
http session object.

HTTP_ENABLE_VARIABLE - This value enables http server library to
PARSINGHTTP_DISABLE_- read "querystring" and parse
MESSAGEBODY_READING querystring to extract http variables.

But, http server does not read
"messagebody" part of httprequest. Itfis
user’s responsibility to read and process

messagebody.
HTTP_DISABLE_VARIABLE_- When the flag is set with this value, http
PARSINGHTTP_DISABLE_- server library reads "query string" valye
MESSAGEBODY_READING and keeps it in querystring member of

http session object. Http server library
neither parses "querystring" nor reads
messagebody part of http request.

8.5.4.21 void http_setclientsocktimeout (longnilli_sec)
Sets http client socket timeout value.

This function sets http client socket timeout value

92

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
milli_sec timeout value in milliseconds

8.5.4.22 void http_setheaderbufsize (inbuffersizg

Sets header buffer size.

This function sets both http request and http response header buffer size
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
buffersize the input buffer size value

8.5.4.23 int http_setindexpage (chax index)
Sets index page name.

This function sets index page name in http library. Index page will be sent to http client
if url request path is /"

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
index Index page name

Returns:
« HTTP_STATUS_SUCCES$8%$he operation is completed successfully

* HTTP_INSUFFICIENT_MEMORNK memory can’t be allocated for storing
new index page hame

8.5.4.24 int http_setlogfilename (chak logfilename
Sets log file name.

This function sets log file name with http library.

93

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
logfilename - name of the log file

Returns:
* HTTP_STATUS_SUCCE8#$he operation is completed successfully

« HTTP_INSUFFICIENT_MEMORN memory can'’t be allocated for storing
new log file name

NOTE: Logging activity has to be disabled and re-enabled in order to use new log file
name for logging

8.5.4.25 int http_setlogging (chatogstatug

Sets logging status.

This function sets the logging status with http server library
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
logstatus Logging status value. EitheHTTP_DISABLE_LOGor HTTP_-
ENABLE_LOG

Returns:
HTTP_STATUS SUCCESBHTTP_LOGFILE_ERROR

8.5.4.26 void http_setmaxconnections (imhax_connectiol

Sets maximum number of pending connections value.

This function sets maximum number of pending connections allowed in the listen
queue

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
max_connectionValue for maximum number of pending connections

94

8.5.4.27 void http_setportnumber (intportnumbe)
Sets HTTP Server Port number.

This function sets http server port number
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
portnumber the input http server port number

NOTE: http server has to be stopped and re-started in order to use new http port num-
ber.

8.5.4.28 int http_setrootdir (char * rootdir)
Sets http root directory.

This function sets http root directory in http library. url pathname for particular re-
source is "relative path name" to root directory.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
rootdir root directory path

Returns:
 HTTP_STATUS_SUCCES8$he operation is completed successfully

* HTTP_INSUFFICIENT_MEMORNK memory can’t be allocated for storing
new root directory name

8.5.4.29 int http_start_server (void)

Starts http server.

This function starts http server

This function is safe to be called from multiple processes at the same time.
Returns:

One of: HTTP_STATUS_SUCCESSTTP_TASK_ERRQRHTTP_SOCKET_-
ERRORorHTTP_SERVER_ALREADY_RUNNING

95

8.6 rom400 init.h File Reference
8.6.1 Detailed Description

ROM Initialization functions in the DS80C400 ROM.

This library contains functions for initializing the functionality in the ROM. Note that
the preferred way of initializing the ROM is to simply call thrét_rom function. How-
ever, you can also initialize the various modules individually. To do this, call these
functions in this order:

. init_clearXSEG
. init_copyivt

. init_redirect

. init_sched

. init_mm
init_km

. init_ow

. init_network

© © N o o~ W N B

. init_eth

=
o

. init_sockets

=
=

. init_tick

[N
N

. task_genesigin the process scheduler library]

13. init_enableinterrupts

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Functions in this library should only be called once on startup. The safety of calling
these functions from multiple processes at the same time is irrelevant.

Defines

* #defineROM400_INIT_VERSION19
#defineUSE_KEIL_MONITOR

#defineINIT_DIVISOR_3MHZ 0x01
#definelNIT_DIVISOR_4MHZ 0x08
#defineINIT_DIVISOR_5MHZ 0x02

96

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

« #definelNIT_DIVISOR_6MHZ 0x05

« #definelNIT_DIVISOR_7MHZ 0x03

e #defineINIT_DIVISOR_8MHZ 0x0C

« #definelNIT_DIVISOR_10MHZ 0x06

« #definelNIT_DIVISOR_12MHZ 0x09

e #definelNIT_DIVISOR_14MHZ 0x07

« #definelNIT_DIVISOR_16MHZ 0x10

« #definelNIT_DIVISOR_20MHZ Ox0A

e #definelNIT_DIVISOR_24MHZ 0x0D

« #definelNIT_DIVISOR_28MHZ 0x0B

 #definelNIT_DIVISOR_32MHZ 0x14

e #definelNIT_DIVISOR_40MHZ Ox0E

e #definelNIT_DIVISOR_48MHZ0x11

« #definelNIT_DIVISOR_56MHZ Ox0OF

o #defineINIT_DIVISOR_64MHZ 0x18

e #definelNIT_DIVISOR_80MHZ 0x12

« #definelNIT_DIVISOR_96MHZ 0x15

« #definelNIT_DIVISOR_112MHZ0x13

e #definelNIT_DIVISOR_128MHZ0x1C

« #definelNIT_POWERFAIL_RESETOX08

« #definelNIT_WATCHDOG_RESETOx10

e #defineINIT_CRYSTALFAIL_RESETO0x20

 #define DEFAULT_HEAP_START ((((long)&HEAP_START)&O0XTfffffL)-
0x10000L)

« #defineinit_setfrequencfclock) init_setclock(((cloclk)5L)/60)

Sets the crystal frequency.

Functions

¢ void HEAP_START(void)
« void init_rom (unsigned long mem_start_address, unsigned long mem_end_-
address)

Initializes the modules in the ROM.
« void init_netboot(void)
Starts the netboot functionality. Note that this will negate any initialization that has

already been performed.

« void init_copyivt (void)
Copies the interrupt vector table into memory.

« void init_redirect(void)

97

Sets up the redirect table for ROM redirected calls.

void init_sched(void)
Sets up the default task scheduler.

void init_clearXSEG(void)
Clears system variables in external RAM.

void init_mm (unsigned long mem_start address, unsigned long mem_end_-
address)

Initializes the heap.

void init_km (void)
Initializes fast kernel memory.

void init_ow (unsigned char DIVISOR)
Initializes the internal 1-Wire.

void init_network(void)
Initializes the network.

void init_eth(void)
Initializes the ethernet support.

void init_socketqvoid)
Initializest the socket layer.

void init_tick (void)
Initializes the system timer.

void init_enableinterruptévoid)
Enables system interrupts.

void init_usekeilmonitor(void)
Performs initialization necessary for using the Keil Monitor.

unsigned ininit_version(void)
Returns the version number of this initialization library.

unsigned chainit_getbootstatévoid)
Returns the boot status flags.

void init_setclock(unsigned int value)

98

Sets the crystal frequency.

8.6.2 Define Documentation

8.6.2.1 #define DEFAULT_HEAP_START ((((long)&HEAP_START)&O0x7fffff-
L)-0x10000L)

Defines the default start address for the heap.

See also:
init_rom

8.6.2.2 #define INIT_CRYSTALFAIL_RESET 0x20

Crystal failure reset status.

See also:
init_getbootstate

8.6.2.3 #define INIT_DIVISOR_10MHZ 0x06

1-Wire divisor value for operating frequencies greater than 10 MHz but less than 12
MHz.

See also:
init_ow

8.6.2.4 #define INIT_DIVISOR_112MHZ 0x13

1-Wire divisor value for operating frequencies greater than 112 MHz but less than 128
MHz.

See also:
init_ow

8.6.2.5 #define INIT_DIVISOR_128MHZ 0x1C

1-Wire divisor value for operating frequencies greater than 128 MHz.

See also:
init_ow

99

8.6.2.6 #define INIT_DIVISOR_12MHZ 0x09

1-Wire divisor value for operating frequencies greater than 12 MHz but less than 14
MHz.

See also:
init_ow

8.6.2.7 #define INIT_DIVISOR_14MHZ 0x07

1-Wire divisor value for operating frequencies greater than 14 MHz but less than 16
MHz.

See also:
init_ow

8.6.2.8 #define INIT_DIVISOR_16MHZ 0x10

1-Wire divisor value for operating frequencies greater than 16 MHz but less than 20
MHz.

See also:
init_ow

8.6.2.9 #define INIT_DIVISOR_20MHZ 0x0A

1-Wire divisor value for operating frequencies greater than 20 MHz but less than 24
MHz.

See also:
init_ow

8.6.2.10 #define INIT_DIVISOR_24MHZ 0x0D

1-Wire divisor value for operating frequencies greater than 24 MHz but less than 28
MHz.

See also:
init_ow

8.6.2.11 #define INIT_DIVISOR_28MHZ 0x0B

1-Wire divisor value for operating frequencies greater than 28 MHz but less than 32
MHz.

See also:
init_ow

100

8.6.2.12 #define INIT_DIVISOR_32MHZ 0x14

1-Wire divisor value for operating frequencies greater than 32 MHz but less than 40
MHz.

See also:
init_ow

8.6.2.13 #define INIT_DIVISOR_3MHZ 0x01

1-Wire divisor value for operating frequencies greater than 3 MHz but less than 4
MHz.

See also:
init_ow

8.6.2.14 #define INIT_DIVISOR_40MHZ OxOE

1-Wire divisor value for operating frequencies greater than 40 MHz but less than 48
MHz.

See also:
init_ow

8.6.2.15 #define INIT_DIVISOR_48MHZ 0x11

1-Wire divisor value for operating frequencies greater than 48 MHz but less than 56
MHz.

See also:
init_ow

8.6.2.16 #define INIT_DIVISOR_4MHZ 0x08

1-Wire divisor value for operating frequencies greater than 4 MHz but less than 5
MHz.

See also:
init_ow

8.6.2.17 #define INIT_DIVISOR_56MHZ 0x0F

1-Wire divisor value for operating frequencies greater than 56 MHz but less than 64
MHz.

See also:
init_ow

101

8.6.2.18 #define INIT_DIVISOR_5MHZ 0x02

1-Wire divisor value for operating frequencies greater than 5 MHz but less than 6
MHz.

See also:
init_ow

8.6.2.19 #define INIT_DIVISOR_64MHZ 0x18

1-Wire divisor value for operating frequencies greater than 64 MHz but less than 80
MHz.

See also:
init_ow

8.6.2.20 #define INIT_DIVISOR_6MHZ 0x05

1-Wire divisor value for operating frequencies greater than 6 MHz but less than 7
MHz.

See also:
init_ow

8.6.2.21 #define INIT_DIVISOR_7MHZ 0x03

1-Wire divisor value for operating frequencies greater than 7 MHz but less than 8
MHz.

See also:
init_ow

8.6.2.22 #define INIT_DIVISOR_80MHZ 0x12

1-Wire divisor value for operating frequencies greater than 80 MHz but less than 96
MHz.

See also:
init_ow

8.6.2.23 #define INIT_DIVISOR_8MHZ 0x0C

1-Wire divisor value for operating frequencies greater than 8 MHz but less than 10
MHz.

See also:
init_ow

102

8.6.2.24 #define INIT_DIVISOR_96MHZ 0x15

1-Wire divisor value for operating frequencies greater than 96 MHz but less than 112
MHz.

See also:
init_ow

8.6.2.25 #define INIT_POWERFAIL_RESET 0x08
Power fail reset status.

See also:
init_getbootstate

8.6.2.26 #define init_setfrequency(clock) init_setclock(((clockjL)/60)

Sets the crystal frequency.

Parameters:
clock Clock frequency in kHz (e.g. 14746 for a 14.7456 MHz crystal). The op-
erating frequency is the oscillator adjusted by any setting of the frequency
multiplier (i.e. a 14 MHz oscillator with the clock doubler enabled should
set 28 MHz)

Note that this macro has to be called befié_rom.

See also:
task_settickreload
init_rom
init_setclock

8.6.2.27 #define INIT_WATCHDOG_RESET 0x10

Watchdog reset status.

See also:
init_getbootstate

8.6.2.28 #define ROM400_INIT_VERSION 19

Version number associated with this header file. Should be the same as the version
number returned by thieit_versionfunction.

See also:
init_version

103

8.6.2.29 #define USE_KEIL_MONITOR

Macro that allows the use of a define to determine whether or not to call the function
init_usekeilmonitar This macro can be called after callingt_rom, and will correct
some monitor configuration details that are destroyed vitiérromis called.

See also:
init_rom
init_usekeilmonitor

8.6.3 Function Documentation

8.6.3.1 void HEAP_START (void)

Used to calculate the default start address for the heap.

See also:
init_rom

8.6.3.2 void init_clearXSEG (void)
Clears system variables in external RAM.
Note that callingnit_romis the preferred way of initializing the ROM.

This function also sets tHePFI bit.

See also:
init_rom

8.6.3.3 void init_copyivt (void)
Copies the interrupt vector table into memory.

Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_rom

8.6.3.4 void init_enableinterrupts (void)
Enables system interrupts.

Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_rom

104

8.6.3.5 void init_eth (void)
Initializes the ethernet support.

Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_rom

8.6.3.6 unsigned char init_getbootstate (void)
Returns the boot status flags.

The status flags are defined as follows: Status.3 (0x08) - Power Fail Reset INIT_-
POWERFAIL_RESET Status.4 (0x10) - Watchdog Reset INIT_WATCHDOG_RESET
Status.5 (0x20) - Crystal Oscillator Failure Reset INIT_CRYSTALFAIL_RESET All
other bits are reserved, but not necessarily 0.

Returns:
Status flags

See also:
INIT_POWERFAIL RESET
INIT_ WATCHDOG_RESET
INIT_CRYSTALFAIL_RESET

8.6.3.7 void init_km (void)
Initializes fast kernel memory.
Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_rom

8.6.3.8 void init_mm (unsigned longmem_start_addresaunsigned longmem_-
end_address

Initializes the heap.
Note that callingnit_romis the preferred way of initializing the ROM.
Parameters:

mem_start_addres§ he absolute beginning address for the heapi(seeomfor
a detailed discussion of the input parameters). Unlikdrtlierom function,

105

this function cannot acceptfor default parameters. The start address must
be specified. Us®BEFAULT HEAP_START0 specify the default start ad-
dress.

mem_end_addres3he absolute ending address for the heap {si¢erom for a
detailed discussion of the input parameters). Unlikeittite rom function,
this function cannot acceftfor default parameters. The end address must
be specified.

See also:
init_rom
DEFAULT_HEAP_START

8.6.3.9 void init_netboot (void)
Starts the netboot functionality. Note that this will negate any initialization that has
already been performed.

See also:
init_rom

8.6.3.10 void init_network (void)
Initializes the network.
Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_rom

8.6.3.11 void init_ow (unsigned chabDIVISOR)
Initializes the internal 1-Wire.

Note that callingnit_romis the preferred way of initializing the ROM.

Parameters:

DIVISOR Divisor value for given the DS80C400’s operating frequency. The op-
erating frequency is the oscillator adjusted by any setting of the frequency
multiplier (i.e. a 14 MHz oscillator with the clock doubler enabled should
look for a divisor for 28 MHz)

See also:
init_rom

106

INIT_DIVISOR_3MHZ
INIT_DIVISOR_4MHZ
INIT_DIVISOR_5MHZ
INIT_DIVISOR_6MHZ
INIT_DIVISOR_7MHZ
INIT_DIVISOR_8MHZ
INIT_DIVISOR_10MHZ
INIT_DIVISOR_12MHZ
INIT_DIVISOR_14MHZ
INIT_DIVISOR_16MHZ
INIT_DIVISOR_20MHZ
INIT_DIVISOR_24MHZ
INIT_DIVISOR_28MHZ
INIT_DIVISOR_32MHZ
INIT_DIVISOR_40MHZ
INIT_DIVISOR_48MHZ
INIT_DIVISOR_56MHZ
INIT_DIVISOR_64MHZ
INIT_DIVISOR_80MHZ
INIT_DIVISOR_96MHZ
INIT_DIVISOR_112MHZ
INIT_DIVISOR_128MHZ

8.6.3.12 void init_redirect (void)
Sets up the redirect table for ROM redirected calls.

Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_rom

8.6.3.13 void init_rom (unsigned longnem_start_addresainsigned longmem_-
end_address

Initializes the modules in the ROM.

Initializes the network stack, memory manager, process scheduler, and other modules
in the DS80C400 Silicon Software. Calling this method is the preferred way of initial-
izing the ROM.

Note that calling this function will cause the ROM to copy its own interrupt table into
memory. If you have any interrupts installed before calling this function (for instance,
you use the Keil compilergterrupt keyword to declare your function an interrupt
handler), the entry in the interrupt table will be erased.

107

init_rom prints status information to the serial port if serial O is set to use timer 2. If
that is not desired, clear2. ... TR2 = 0; init_rom(...); TR2 = 1;

init_rom will probe all available 1-Wire devices for an approximate clock frequency
and it will try to find a DS2502-E48 for an Ethernet MAC address. If no DS2502-E48
is present, you must ugeit_setfrequencyo specify a clock frequency, and you must
modify startup.a51 to manually set a MAC address.

Parameters:
mem_start_addresg he absolute beginning address for the heap.

mem_end_addres3 he absolute ending address for the heap.

Use mem_start_address==0 to use the default settings for both start and end, or pass a
value to mem_start_address and use mem_end_address==0 to use the remaining mem-
ory in the same bank, or use valid values for both addresses. Make sure the heap does
not conflict with the XDATA segment (adjustable in project settings); you can examine
the MAP file to determine the size of XDATA. Also note that the reentrant stack starts

at the top of the XDATA segment (start address adjustable in startup400.a51).

Start address examples...

mem_start_ - | mem_end_- | actual start actual end size of heap
address address
0x000000 0x000000 0x002900 Ox00FFFF 55040
DEFAULT - | OxO7FFFF 0x002900 Ox07FFFF 513792
HEAP_-
START
0x010440 0x000000 0x010440 Ox01FFFF 64448
0x010440 OXO07FFFF 0x010440 OXO07FFFF 457663

See also:
DEFAULT_HEAP_START

8.6.3.14 void init_sched (void)
Sets up the default task scheduler.

Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_rom

108

8.6.3.15 void init_setclock (unsigned invalue)
Sets the crystal frequency.
Parameters:
value Clock frequency in kHz< 5/60 (e.g. 1229 for a 14.7456 MHz crystal). The
operating frequency is the oscillator adjusted by any setting of the frequency

multiplier (i.e. a 14 MHz oscillator with the clock doubler enabled should
set 28 MHz)

Note that this function has to be called befané rom. Users should call the more
friendly macrainit_setfrequency

See also:
task_settickreload
init_rom
init_setfrequency

8.6.3.16 void init_sockets (void)
Initializest the socket layer.
Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_rom

8.6.3.17 void init_tick (void)
Initializes the system timer.
Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_rom

8.6.3.18 void init_usekeilmonitor (void)
Performs initialization necessary for using the Keil Monitor.

Performs initialization needed when using the Keil MON390 Monitor to debug pro-
grams that access the DS80C400's ROM. This function should be called after calling
init_rom, and only if the monitor will be used.

This file includes a macroSE_KEIL_MONITORvhich is defined to call this function
if MONITORIs defined. Use the following code to make use of this macro:

109

init_rom()
USE_KEIL_MONITOR

See also:
init_rom
USE_KEIL_MONITOR

8.6.3.19 unsigned int init_version (void)

Returns the version number of this initialization library.

Returns:
Version number of this INIT library.

8.7 rom400_kmem.h File Reference
8.7.1 Detailed Description

Kernel Memory initialization functions for the DS80C400 ROM.

This library allows users to allocate different amounts of memory as fast kernel buffers
for use as ethernet buffers and as task control structures. The default allocation by the
ROM may not be sufficient, and the use of multiple processes and multiple sockets
might combine to drain all kernel memory. This library allows you to increase that
amount for more complex applications.

There are two ways to use this library. 1) When usimigg rom: Call kmem_install
before callingnit_rom.

2) When using the individual initialization functions: The functiaonem_iniis meant
to replace the functiomit_kmfrom the initialization library.

For detailed information on the DS80C400 please see Ithigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

The functions in this library are multi-process safe—that is, if you call the same method
from two different processes at the same time, the parameters to the function will not
be destroyed. However, the functismem_initis a system initialization function and
should only be called once before the process scheduler is active.

Data Structures

 structkmem_memory

110

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Defines

 #defineROM400_KMEM_VERSION/
* #defineROM400_KMEM_MODEL_SMALLEST1
 #defineEROM400_KMEM_MODEL_LARGEST11

Functions

« unsigned chakmem_init(unsigned char MODEL)
Initializes the kernel buffers.

 unsigned inkmem_versior{void)
Returns the version number of this KMEM library.

« void kmem_instal{unsigned char MODEL)
Installs the kmem library.

¢ void kmem_getfredstructkmem_memoryfreeblocks)
Returns a count of free kmem blocks.

« unsigned chakmem_getblockcour(unsigned char offset)
Returns a count of free kmem blocks at specified offset.

8.7.2 Define Documentation

8.7.2.1 #define ROM400_KMEM_MODEL_LARGEST 11

The largest value of the argument to be passddrtem_init

See also:
ROM400_KMEM_MODEL_SMALLEST
kmem_init

8.7.2.2 #define ROM400_KMEM_MODEL_SMALLEST 1
The smallest value of the argument to be passedartem_init
See also:

ROM400_KMEM_MODEL_LARGEST
kmem_init

111

8.7.2.3 #define ROM400_KMEM_VERSION 7
Version number associated with this header file. Should be the same as the version
number returned by themem_versiofunction.

See also:
kmem_version

8.7.3 Function Documentation

8.7.3.1 unsigned char kmem_getblockcount (unsigned chaffsef

Returns a count of free kmem blocks at specified offset.

Allows user applications to query the kernel memory allocator for detailed free block
information.

Parameters:
offset offset of requested block count (range of 0 to 6)

8.7.3.2 void kmem_getfree (struckmem_memoryx* freeblockd
Returns a count of free kmem blocks.

Allows user applications to query the kernel memory allocator for detailed free block
information.

Parameters:
freeblocks pointer to structure to hold the current free block counts

8.7.3.3 unsigned char kmem_init (unsigned chaMODEL)
Initializes the kernel buffers.

Allows user applications to specify the amount of kernel memory that will be available
to the system. Kernel memory is used internally for Ethernet buffers and task control
structures, and as such can limit the number of processes or sockets an application can
use concurrently if there is not enough kernel buffer space. The default kernel buffer
allocation given by the ROM is:

* 90 byte buffers (20 count)

» 256 byte buffers (2 count)

« 512 byte buffers (1 count)

* 768 byte buffers (1 count)

112

¢ 1024 byte buffers (1 count)

¢ 1280 byte buffers (1 count)

« 1600 byte buffers (2 count)
By calling this function, the count of kernel buffers is multiplied by the vai@DEL.
Note that whileROM400_KMEM_MODEL_LARGEST s the largest amount of

kernel memory that the system can support, few applications will need to go beyond
ROM400_KMEM_MODEL_SMALLEST + 2.

Parameters:
MODEL specifies how much kernel memory will be allocated for the system

Returns:
0 for success, non-zero for failure.

See also:
init_rom

8.7.3.4 void kmem_install (unsigned chaMODEL)
Installs the kmem library.
This function must be called befongit_rom.

Allows user applications to specify the amount of kernel memory that will be available
to the system. Kernel memory is used internally for Ethernet buffers and task control
structures, and as such can limit the number of processes or sockets an application can
use concurrently if there is not enough kernel buffer space. The default kernel buffer
allocation given by the ROM is:

« 90 byte buffers (20 count)
256 byte buffers (2 count)
512 byte buffers (1 count)

768 byte buffers (1 count)

L]

1024 byte buffers (1 count)
1280 hyte buffers (1 count)
1600 byte buffers (2 count)

L]

By calling this function, the count of kernel buffers is multiplied by the val@DEL.

Note that whileROM400_KMEM_MODEL_LARGEST is the largest amount of
kernel memory that the system can support, few applications will need to go beyond
ROM400 KMEM_MODEL_SMALLEST +2.

113

Parameters:
MODEL specifies how much kernel memory will be allocated for the system

See also:
init_rom

8.7.3.5 unsigned int kmem_version (void)

Returns the version number of this KMEM library.

Returns:
Version number of this KMEM library.

8.8 rom400_mem.h File Reference
8.8.1 Detailed Description

Memory management functions in the DS80C400 ROM.

This library contains functions for allocating and de-allocating blocks of memory
through the ROM’s memory manager.

For detailed information on the DS80C400 please see Ihigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

The methods in this library are all multi-process safe. That is, a function can be called
by more than one process at the same time and its parameters won't be destroyed.

Defines

« #defineROM400_MEM_VERSIONS

Functions

« void x mem_malloqunsigned int size)
Requests a block of memory to be allocated.

« void * mem_mallocdirtyunsigned int size)
Requests a block of memory to be allocated.

* unsigned chamem_fregvoid *ptr)
De-allocates a block of memory.

* unsigned longnem_getfreerartvoid)

114

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Returns the amount of memory available for allocation.

 unsigned inmem_sizeofvoid xptr)
Gets the size of an allocated block of memory.

 unsigned inmem_versior{void)
Returns the version number of this memory management library.

« void mem_coalescévoid)
Join adjacent chunks of freed memory.

8.8.2 Define Documentation

8.8.2.1 #define ROM400_MEM_VERSION 6

Version number associated with this header file. Should be the same as the version
number returned by th@em_versiofunction.

See also:
mem_version

8.8.3 Function Documentation

8.8.3.1 void mem_coalesce (void)
Join adjacent chunks of freed memaory.

When the memory manager frees allocated memory, it makes no attempt to rejoin
adjacent pieces of memory, Therefore, the memory becomes fragmented over time
unless the allocation calls are very careful. This function will join adjacent pieces of
memory and make the larger piece available for allocation.

8.8.3.2 unsigned char mem_free (void ptr)
De-allocates a block of memory.

Deallocates a block of memory that was previously allocated by catliagn_malloc
or mem_mallocdirtymaking this block available for re-allocation. Use the function
mem_getfreerano determine how much memory is available for allocation.

This is a redirected function. The ROM includes a default memory manager implemen-
tation. See th®S80C400 User's Guide forinformation on replacing the default
memory manager with your own memory manager.

Parameters:
ptr pointer to the beginning of the previously allocated memory

115

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Returns:
0 for success, non-zero for failure

See also:
mem_malloc
mem_mallocdirty
mem_getfreeram
mem_sizeof

8.8.3.3 unsigned long mem_getfreeram (void)
Returns the amount of memory available for allocation.

Returns the total amount of memory available for allocation. Memory is allocated in
increments of 32 bytes. Due to fragmentation, large memory allocations may not be
possible.

Note that the size returned by this function includes the memory manager overhead for
this particular block. For example, if you request 512 bytes in a catiéen_mallogc

this function will report the amount 512 plus overhead size, rounded up to the next
32-byte block (thus returning 544).

This is a redirected function. The ROM includes a default memory manager implemen-
tation. See th®S80C400 User's Guide forinformation on replacing the default
memory manager with your own memory manager.

See also:
mem_sizeof

Returns:
The amount of memory available for allocation from the memory manager.

8.8.3.4 void mem_malloc (unsigned intsizg
Requests a block of memory to be allocated.

Tries to allocate a block of memory of the requested size (maximum size of 64K).
The data allocated is filled with O’s (similar to the traditional "calloc” library function).
To request non-cleared memory (and save the extra timejnase _mallocdirty To
de-allocate the memory block, useem_free

This is a redirected function. The ROM includes a default memory manager implemen-
tation. See th®S80C400 User's Guide for information on replacing the default
memory manager with your own memory manager.

Parameters:
size amount of data requested for allocation

116

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Returns:
pointer to the newly allocated memory, or NULL (0) if the operation failed

See also:
mem_mallocdirty
mem_free
mem_sizeof

8.8.3.5 void mem_mallocdirty (unsigned intsizg
Requests a block of memory to be allocated.

Tries to allocate a block of memory of the requested size (maximum size of 64K). The
data allocated is NOT filled with O’s, and is likely to be filled with unpredictable values.
To request cleared memory, useem_malloc To de-allocate the memory block, use
mem_free

This is a redirected function. The ROM includes a default memory manager implemen-
tation. See th®S80C400 User's Guide for information on replacing the default
memory manager with your own memory manager.

Parameters:
size amount of data requested for allocation

Returns:
pointer to the newly allocated memory, or NULL (0) if the operation failed

See also:
mem_malloc
mem_free
mem_sizeof

8.8.3.6 unsigned int mem_sizeof (void ptr)
Gets the size of an allocated block of memory.

Returns the size of a block of memory that was allocated by the ROM’s default memory
manager. If the input pointer is not a valid pointer that was created by an earlier call to
mem_malloor mem_mallocdirtythe value returned has no meaning.

This isNOT a redirected function, and only functions if the ROM’s default memory
manager is used.

Parameters:
ptr pointer to the beginning of the previously allocated memory

117

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Returns:
size of the memory allocated for a valid input pointer

See also:
mem_malloc
mem_mallocdirty
mem_getfreeram

8.8.3.7 unsigned int mem_version (void)

Returns the version number of this memory management library.

Returns:

Version number of this memory management library.
8.9 rom400 netif.h File Reference
8.9.1 Detailed Description

Network interface library for the DS80C400.
This library allows a user to add network interface drivers to the network stack.

For detailed information on the DS80C400 please see lIthgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Defines

 #defineROM400_NETIF_VERSION

Functions

¢ unsigned inhetif_version(void)

Returns the version number of this NETIF library.

« int netif_packetreceiveflinsigned chaxpacket, int len)
Submit an inbound packet to the network stack.

« int netif_addinterfacgchar xname, unsigned long ip, unsigned long subnet,
unsigned long gateway, unsigned char flags,«traismitter)(unsigned char
xpacket, int len), int mtu, unsigned char timeout)

Add an interface to the network interface list.

118

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

« int netif_removeinterfacéharxname)
Remove specified interface from the network interface list.

« int netif_setdefaultinterfacchar«name)
Set the specified interface Ras default interface.

8.9.2 Define Documentation

8.9.2.1 #define ROM400_NETIF_VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by theetif versiorfunction.

See also:
netif_version

8.9.3 Function Documentation

8.9.3.1 intnetif_addinterface (charx name unsigned longip, unsigned longsub-
net, unsigned longgateway unsigned charflags int(x)(unsigned charxpacket, int
len) transmitter, int mtu, unsigned chartimeou?)

Add an interface to the network interface list.

Parameters:
name name of network interface (e.g. "ppp0")

ip IP address of the new interface (MSB first, e.g. 0x0a000002L for 10.0.0.2)
subnet subnet mask of the new interface (e.g. 0xff000000L for 255.0.0.0)
gateway gateway IP address of the new interface (e.g. 0x0a000001L for 10.0.0.1)
flags set to 1 if new interface should be the default interface (else 0)

transmitter address of the user supplied transmit function (see below)

mtu maximum transmission unit

timeout initial tcp timout period based on an 8Hz tick; must be 8, 16, 32,6 4 or
128 (default: 128)

Returns:
1 for success, 0 for failure

See also:
netif_removeinterface

119

The transmitter functiomt transmitter(unsigned chaspacket, int lenshould return

1 when the packet was successfully sent (or dropped) and the packet memory should
be freed. If the packet couldn’t be sent and the packet should be retried, the transmitter
should return 0. The argumepacketpoints to the IP packet data to be transmitted
andlengthis the length of the IP packet. Note that the transmit function runs under
interrupt. Registers are saved, but only thread-safe functions can be called.

8.9.3.2 int netif_packetreceived (unsigned cha¢ packet int len)

Submit an inbound packet to the network stack.

Parameters:
packet IP packet

len length of the packet

Returns:
1 for success, 0 for failure

Causes for failure are:

¢ The ROM IP_CHECKHEADER routine doesn't like the packet.

« KMalloc can't allocate the memory required for the packet.
IP_CHECKHEADER would decline a packet if any of the following were true:

* not an IPv4 packet

« fragment offset not 0

» smaller than 28 bytes

 source IP is 0.X.X.x, or 127.X.X.X, or 255.X.X.X
« destination IP is 0.x.x.x, or 127.X.X.X

« destination IP is not ours

« packet not IGMP, ICMP, UDP, or TCP

¢ multicast packet we're not interested in (not joined to this group)

120

8.9.3.3 int netif_removeinterface (char namée
Remove specified interface from the network interface list.

Parameters:
name name of network interface to remove

Returns:
1 for success, 0 for failure

See also:
netif_addinterface

NOTE: The behavior of this function is not guaranteed if a network interface is re-
moved while output traffic for the interface is still pending. It is recommended to close
all sockets and delay for a few seconds before removing any network interface.

8.9.3.4 int netif_setdefaultinterface (char name

Set the specified interface Ras default interface.

Parameters:
name name of network interface

Returns:
1 for success, 0 for failure

8.9.3.5 unsigned int netif_version (void)

Returns the version number of this NETIF library.

Returns:
Version number of this NETIF library.

8.10 rom400_netstat.h File Reference
8.10.1 Detailed Description

Network statistics library for the DS80C400.

This library contains functions that return pointers to network information tables in the
socket library.

Note that the tables and structures returned by these functions are the actual, physical
tables used by the network stack and should not be modified by user applications.

121

Since these are the actual network structures, it is possible they might change while
an application is processing them. Any critical analysis of these structures should be
protected from interruption.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement .

Data Structures

» structnetstat_arp_entry
« structnetstat_udp_entry
* structnetstat_tcp_socket

Defines

« #defineROM400_NETSTAT VERSION

« #defineNETSTAT_ROM_ARP_ENTRIES
« #defineNETSTAT_ARP_USEDL

« #defineNETSTAT_ARP_REPLYPENDIN®
« #defineNETSTAT _ARP_STATICA

« #defineNETSTAT_UDP_ENTRIESL6

Number of entries in the UDP port table.

e #defineNETSTAT _UDP_USEDL
Values fometstat_udp_entry.flag¥able entry is used.

e #defineNETSTAT_TCP_MAXSOCKETS5
Maxmimum number of sockets supported.

e #defineNETSTAT _TCP_OUTPUT_NEEDED_MASR
Value fornetstat_tcp_socket.flagBither ACK or data or both.

e #defineNETSTAT _TCP_ACK_NEEDED_MASHKi
Value fornetstat_tcp_socket.flagdeed an ACK.

e #defineNETSTAT _TCP_SERVER_MASHK
Value fornetstat_tcp_socket.flagshis is a server connection.

e #defineNETSTAT_TCP_RESERVED_MASHKG6
Value fornetstat_tcp_socket.flagdReserved).

e #defineNETSTAT_TCP_HAVE_OUTPUT_DATA_ MASK32
Value fornetstat_tcp_socket.flagdave data in output buffer.

122

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

#defineNETSTAT _TCP_HAVE_FIN_MASK64
Value fornetstat_tcp_socket.flagSet when we receive a FIN.

#defineNETSTAT_TCP_SEND_FIN_MASKL 28
Value fornetstat_tcp_socket.flagSend a FIN after all data sent.

#defineNETSTAT_TCP_OPTION_NAGLE_ENABLED_MASK
Value fornetstat_tcp_socket.optianSet when Nagle’s algorithm enabled.

#defineNETSTAT_TCP_OPTION_IPV6_MASK
Value fornetstat_tcp_socket.optionSet when we should talk IPv6 on the socket.

#defineNETSTAT_TCP_OPTION_SOCKET_ASSIGNED
Value fornetstat_tcp_socket.optian&ssigned an application socket for tAIEB.

#defineNETSTAT_TCP_STATE_CLOSED
Value fornetstat_tcp_socket.stafEhe socket is closed.

#defineNETSTAT_TCP_STATE_LISTEN
Value fornetstat_tcp_socket.stafEhe socket is listening.

#defineNETSTAT_TCP_STATE_SYN_SENZ
Value fornetstat_tcp_socket.stafBhe socket has sent a SYN.

#defineNETSTAT_TCP_STATE_SYN_RECEIVEB
Value fornetstat_tcp_socket.stafEhe socket had received a SYN.

#defineNETSTAT_TCP_STATE_ESTABLISHER
Value fornetstat_tcp_socket.stafEhe socket connection has been established.

#defineNETSTAT_TCP_STATE_FIN_WAIT_B

Value fornetstat_tcp_socket.stat€he socket has been closed, and is waiting for its
peer to close.

#defineNETSTAT_TCP_STATE_FIN_WAIT_5®
Value fornetstat_tcp_socket.stafEhe socket’s peer has ACKed a FIN.

#defineNETSTAT_TCP_STATE_CLOSE_WAIT

Value fornetstat_tcp_socket.stat€he socket’s peer has sent a FIN, the application
should now close the socket.

#defineNETSTAT_TCP_STATE_LAST_ACI8

123

Value fornetstat_tcp_socket.stat€he socket has closed, and is waiting for it's peer
to ACK.

e #defineNETSTAT_TCP_STATE_CLOSING
Value fornetstat_tcp_socket.stat®oth ends have closed the socket.

e #defineNETSTAT_TCP_STATE_TIME_WAIT10
Value fornetstat_tcp_socket.stafEimeout wait before returning to closed state.

Functions

¢ unsigned innhetstat_versiofvoid)
Returns the version number of this NETSTAT library.

e netstat_arp_entrfar x netstat_get_arp_tab{eoid)
Returns a pointer to the ARP cache table.

¢ unsigned inhetstat_num_arp_entriégoid)
Returns the number of entries in the ARP cache table.

e netstat_udp_entrar x netstat_get_udp_tab(eoid)
Returns a pointer to the UDP port table.

¢ unsigned inhetstat_num_udp_entriégoid)
Returns the number of entries in the UDP port table.

e netstat_tcp_sockéar x netstat_get_tcp_sock@insigned int conn)
Returns a pointer to a TCP socket information block.

¢ unsigned inhetstat num_tcp_sockgigid)
Returns the number of entries in the TCP socket table.

8.10.2 Define Documentation

8.10.2.1 #define NETSTAT_ARP_REPLYPENDING 2

Value for netstat_arp_entry.flagsTable entry is not yet valid, request has been sent
out

8.10.2.2 #define NETSTAT_ARP_STATIC 4

Value fornetstat_arp_entry.flag§able entry does not expire

124

8.10.2.3 #define NETSTAT_ARP_USED 1

Value fornetstat_arp_entry.flag§able entry is used

8.10.2.4 #define NETSTAT_ROM_ARP_ENTRIES 8

Maximum number of ARP table entries. Only valid when not using Enhanced Network
Stack. Usexnetstack_get_arptablesifaising Enhanced Network Stack

8.10.2.5 #define ROM400_NETSTAT VERSION 2
Version number associated with this header file. Should be the same as the version
number returned by theetstat_versiofunction.

See also:
netstat_version

8.10.3 Function Documentation

8.10.3.1 netstat_arp_entryfarx netstat_get_arp_table (void)
Returns a pointer to the ARP cache table.

This function returns a pointer to the ARP cache table. Each entrynétsat_arp_-
entry. The entry is used when its "flags" has thETSTAT _ARP_USEL[Dbit set.

Returns:
Far pointer to the ARP cache table

8.10.3.2 netstat_tcp_sockefarx netstat_get_tcp_socket (unsigned intonn)
Returns a pointer to a TCP socket information block.

This function returns a pointer to a specific TCP socket information block of type
netstat_tcp_sockefThere are at MoMNETSTAT_TCP_MAXSOCKETSthe function
returns NULL when a given socket number doesn't exist. Note that the actual number
of sockets in the socket table might change at any time. Table entries are not guaranteed
to be contiguous. A user applicatiershould therefore call this function for all values

from O toNETSTAT_TCP_MAXSOCKETS 1 and discard non-existent entries.

Parameters:
conn Socket number

Returns:
Far pointer to the socket’s information block (or NULL if the socket doesn't exist).

125

8.10.3.3 netstat_udp_entryfar* netstat_get _udp_table (void)
Returns a pointer to the UDP port table.

This function returns a pointer to the UDP port table. ThereNiES STAT _UDP_-
ENTRIESin the UDP port table. Each entry im&tstat_udp_entryThe entry is used
when its "flags" has theETSTAT_UDP_USE[Dbit set.

Returns:
Far pointer to the UDP port table

8.10.3.4 unsigned int netstat_num_arp_entries (void)

Returns the number of entries in the ARP cache table.

This function returns the number of used entries in the ARP cache table (entries with
theNETSTAT_ARP_USEMlag set).

Returns:
Number of entries in the ARP cache table

8.10.3.5 unsigned int netstat_num_tcp_sockets (void)
Returns the number of entries in the TCP socket table.

This function returns the number of used entries in the TCP socket table.

Returns:
Number of entries in the TCP socket table

8.10.3.6 unsigned int netstat_num_udp_entries (void)

Returns the number of entries in the UDP port table.

This function returns the number of used entries in the UDP port table (entries with the
NETSTAT _UDP_USEDlag set).

Returns:
Number of entries in the UDP port table

8.10.3.7 unsigned int netstat_version (void)

Returns the version number of this NETSTAT library.

Returns:
Version number of this NETSTAT library.

126

8.11 rom400 ow.h File Reference
8.11.1 Detailed Description

Raw 1-Wire functions in the DS80C400 ROM.

This library contains functions for finding and communicating with devices on the
internal 1-Wire. These functions use the DS80C400’s 1-Wire master, applications do
not need to worry about protecting the ROM 1-Wire routines from interruption.

For detailed information on the DS80C400 please see Ihigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

These functions are all safe to be called from multiple processes simultaneously. That
is, if two processes call one of these functions at the same time, the function parameters
will not be destroyed. However, two processes attempting 1-Wire communications at
the same time will surely cause communications problems. In addition, the memory
space that ROM ID’s are stored in is global for the system. Therefore, processes should
synchronize around all 1-Wire communication sessions.

Defines

« #defineROM400_OW_VERSIONt
#defineOW_RESET_SHORD
#defineOW_RESET_PRESENCE
#defineOW_RESET_ALARM2
#defineOW_RESET_NO_PRESENCE

L]

Functions

« unsigned chaow_first(void)
Searches for the first device on the 1-Wire bus.

* unsigned chaow_next(void)
Searches the 1-Wire for subsequent devices.

¢ unsigned chaow_rese{void)
Sends a reset signal to the 1-Wire bus.

« unsigned chaow_byte(unsigned char x)
Sends/receives a byte to/from the 1-Wire bus.

¢ unsigned chax ow_getcurrentidvoid)
Returns a pointer to the address of the current device in a 1-Wire bus search.

127

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

 unsigned inbw_version(void)
Returns the version number of this 1-Wire library.

8.11.2 Define Documentation

8.11.2.1 #define OW_RESET_ALARM 2

Result of aow_resebperation. There is an alarming device on the 1-Wire bus.

See also:
ow_reset

8.11.2.2 #define OW_RESET_NO_PRESENCE 3

Result of aow_resebperation. There is no device on the 1-Wire bus.

See also:
ow_reset

8.11.2.3 #define OW_RESET_PRESENCE 1

Result of aow_resebperation. There is a device on the 1-Wire bus.

See also:
ow_reset

8.11.2.4 #define OW_RESET_SHORTO0

Result of aow_resebperation. The 1-Wire bus is shorted.

See also:
ow_reset

8.11.2.5 #define ROM400_OW_VERSION 4

Version number associated with this header file. Should be the same as the version
number returned by thew_versiorfunction.

See also:
ow_version

128

8.11.3 Function Documentation

8.11.3.1 unsigned char ow_byte (unsigned chj
Sends/receives a byte to/from the 1-Wire bus.

Sends the input byte to the 1-Wire bus, and returns any byte transmitted from the 1-
Wire bus. Send the byte OxFF to return the result of a transmission by the slave (the
device or iButton).

Parameters:
X byte to write to the 1-Wire bus

Returns:
Byte read from the 1-Wire bus

8.11.3.2 unsigned char ow_first (void)
Searches for the first device on the 1-Wire bus.

Tries to access the first device on the 1-Wire bus. After a cativtofirst use the
address returned byw_getcurrentido read the 8 byte Address of the device. To read
all the devices present, call this method only once, and theroealhextto read all
subsequent devices.

Returns:
Non-zero if a device is found, O if no devices are found.

See also:
ow_next
ow_getcurrentid

8.11.3.3 unsigned char ow_getcurrentid (void)
Returns a pointer to the address of the current device in a 1-Wire bus search.

Use the pointer returned by this method after every cadhvtofirstandow_next Note

that calls to these functions destroy what was previously held at this address. Programs
that need to remember all the devices found should copy the addresses one at a time as
the 1-Wire bus is searched.

Returns:
Pointer to the 8-byte device address.

See also:

ow_first
ow_next

129

8.11.3.4 unsigned char ow_next (void)
Searches the 1-Wire for subsequent devices.

Callow_firstonce before making subsequent calleto nexto find the second, third,
and so on devices. After a successful cathvo nextcall the functiorow_getcurrentid
to get the unique 64-bit address of the device found.

Returns:
Non-zero if a device is found, O if no more devices are found.

See also:
ow._first
ow_getcurrentid

8.11.3.5 unsigned char ow_reset (void)
Sends a reset signal to the 1-Wire bus.

The result of a reset tells you if the bus is shorted, if a device is present, if an alarming
device is present, or if no device is present.

Returns:
Result of reset (i.eOW_RESET_SHORJ

See also:
OW_RESET_SHORT
OW_RESET_PRESENCE
OW_RESET_ALARM
OW_RESET_NO_PRESENCE

8.11.3.6 unsigned int ow_version (void)

Returns the version number of this 1-Wire library.

Returns:
Version number of this 1-Wire library.

8.12 rom400_rarp.h File Reference
8.12.1 Detailed Description

RARP library for the DS80C400.
This library allows a user to send a RARP request to the network.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

130

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Defines

 #defineROM400_RARP_VERSION

Functions

 unsigned intarp_versior(void)
Returns the version number of this RARP library.

« void rarp_sendvoid(xcallback)(unsigned long))
Send a RARP request.

« void rarp_stop(void)
Disable reception of RARP packets (in the event of a timeout).

8.12.2 Define Documentation

8.12.2.1 #define ROM400_RARP_VERSION 1
Version number associated with this header file. Should be the same as the version
number returned by tharp_versionfunction.

See also:
rarp_version

8.12.3 Function Documentation

8.12.3.1 void rarp_send (voidf)(unsigned long)callback
Send a RARP request.

Parameters:
callback function that gets called when RARP receives an IP address (the IP ad-
dress will be supplied to callback MSB first)

8.12.3.2 void rarp_stop (void)
Disable reception of RARP packets (in the event of a timeout).

If RARP receives an IP address, it is not necessary to call this funtion. This function is
only necessary if the callback frorarp_sendwas never called.

131

8.12.3.3 unsigned int rarp_version (void)

Returns the version number of this RARP library.

Returns:
Version number of this RARP library.

8.13 rom400_sock.h File Reference
8.13.1 Detailed Description

Socket functions in the DS80C400 ROM.

This library contains functions for TCP, UDP and Multicast sockets, as well as net-
work configuration. The functions in this libragre safe to be called from multiple
processes at the same time, with the exception of the funpiimp Both the tradi-
tional Berkeley style socket APl and tegnchronizedocket functions are supported
(the Berkeley style API is supported through macros implemented by the synchronized
functions).

It is recommended that new applications use the Berkeley style API for portability.

Note that in order to run at 100 Mbs, the DS80C400 must be running at least 25MHz.
This can be accomplished on the TINIm400 module by enabling the clock doubler.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

#include <stdlib.h >

Data Structures

* structsockaddr

e structin_addr
structin6é_addr
structsockaddr_in
structpingdata

Defines

 #defineEROM400_SOCK_VERSION2
#defineROM400_SOCK_SYNCH_VERSIOROM400_SOCK_VERSION
#defineSOCKET_TYPE_DATAGRAMO
#defineSOCKET_TYPE_STREAM
#defineSSOCK_DGRAMSOCKET_TYPE_DATAGRAM
#defineSOCK_STREAMSOCKET_TYPE_STREAM

L]

L]

L]

132

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

#definePF_INET4
#defineAF_INET 4
#defineAF_INET66
#definelPPROTO_UDR)
#defineTCP_NODELAYO0
#defineSO_LINGER1
#defineSO_TIMEOUT2
#defineSO_BINDADDR 3
#defineETH_STATUS LINK1
#definehtongx) (x)

Convert a number to network byte order.

#definentohgx) (x)
Convert a number to host byte order.

#definesockefdomain, type, protocol) syn_socket((type))
Create a network socket for TCP or UDP communication.

#definesendtgsocket_num, buffer, length, flags, address, address_length) syn_-
sendto(syn_setDatagramAddress((socket_num),1,(address)),(length),(buffer))

Sends a UDP datagram to a specified address.

#define recvfrom(socket_num, buffer, length, flags, address,
address_length) syn_recvfrom(syn_setDatagramAddress((socket_-
num),0,(address)),(length),(buffer))

Receive a UDP datagram.

#define connecfsocket_num, address, address_length) syn_connect((socket_-
num),(address))

Connects a TCP socket to a specified address.

#define bind(socket_num, address, address_length) syn_bind((socket -
num),(address))

Binds a socket to a specified address.

#definesyn_listerfsocket_num, backlog) listen((socket_num),(backlog))
Tells a socket to listen for incoming connections.

#define accepfsocket num, address, address length) syn_accept((socket_-
num),(address))

Accepts TCP connections on the specified socket.

133

#define recsocket num, buffer, length, flags) syn_recv((socket -
num),(length),(buffer))

Reads data from a TCP socket.

#define sendsocket_num, buffer, length, flags) syn_send((socket -
num),(length),(buffer))

Sends data to a TCP socket.

#define getsockopsocket_num, level, name, buffer, length) syn_-
getsockopt((socket_num),(name),(buffer))

Get various socket options.

#define setsockofsocket num, level, name, buffer, length) syn -
setsockopt((socket_num),(name),(buffer))

Set various socket options.

#define getsocknam@ocket_num, address, address_length) syn_-
getsockname((socket_num),(address))

Gets the local IP and port of a socket.

#define getpeernan{socket_num, address, address_length) syn_-
getpeername((socket_num),(address))

Gets the remote address of a connection-based (TCP socket).

#definesyn_cleanufprocess_id) cleanup((process_id))
Close all sockets and free the parameter buffer associated with a task.

#definesyn_avai{socket_num) avail((socket_num))
Reports number of bytes available on a TCP socket.

#define join(socket num, address, address length) syn_join((socket -
num),(address))

Adds a socket to a specified multicast group.

#define leavgsocket num, address, address_length) syn_leave((socket -
num),(address))

Removes a socket from the specified multicast group.

#define syn_getnetworkparar(saram_buffer) getnetworkparams((param_-
buffer))

Get the IPv4 configuration parameters.

134

e #define syn_setnetworkpararfmaram_buffer) setnetworkparams((param_-
buffer))

Set the IPv4 configuration parameters.

« #definesyn_getipv6paraniparam_buffer) getipv6params((param_buffer))
Get the IPv6 address.

« #definesyn_getethernetstai}getethernetstatus()
Get the ethernet status.

 #definegettftpservefaddress, address_length) syn_gettftpserver((address))
Get the address of the TFTP server.

 #definesettftpservgladdress, address_length) syn_settftpserver((address))
Set the address of the TFTP server.

« #definesyn_versiof) sock version()
Returns the version number of this socket library.

« #define arp_generaterequéatidress, address_length) syn_arp_-
generaterequest((address))

Unconditionally generate an ARP request for a given IPv4 address.

* #define arp_cacherequdsddress, address_length) syn_arp_-
cacherequest((address))

Generate an ARP request for a given IPv4 address and add to the ARP cache.

« #definesyn_closesockétocket_num) closesocket((socket_num))
Closes a specific socket.

 #definesyn_getmacif) getmacid()
Get the pointer to the MAC ID storage area.

» #definesyn_setmaci) setmacid()
Stores the MAC ID into the MAC ID storage area.

Functions

¢ charx inet_ntop(int family, void xaddr, chassstrptr,size_tlen)

Converts a numeric address to a string.

135

unsigned ininet_pton(int family, charxstr, voidxaddr)
Converts a string to a numeric IP address.

unsigned longnet_addr(charxinet_string)
Converts a string representing an IPv4 address to numeric form.

int syn_sockefunsigned int type)
Create a network socket for TCP or UDP communication.

int syn_setDatagramAddregmt socket num, unsigned char sending, struct
sockaddraddr)

Set the IP address parameter for future datagram calls.

int syn_sendtdint socket_num, unsigned int length, veituffer)

Sends a UDP datagram to an address earlier specified by a callnosetDatagram-
Address

int syn_recvfrom(int socket_num, unsigned int length, vailduffer)
Receive a UDP datagram.

int syn_connecfint socket_num, structockaddraddress)
Connects a TCP socket to a specified address.

int syn_bind(int socket_num, structockaddraddress)
Binds a socket to a specified address.

int listen(int socket_num, unsigned int backlog)
Tells a socket to listen for incoming connections.

int syn_accep(int socket_num, structockaddraddress)
Accepts TCP connections on the specified socket.

int syn_rec\int socket_num, unsigned int length, vaiduffer)
Reads data from a TCP socket.

int syn_sendint socket_num, unsigned int length, vaibuffer)
Sends data to a TCP socket.

int syn_getsockop(iint socket_num, unsigned int name, veiolffer)
Get various socket options.

int syn_setsockopint socket_num, unsigned int name, veiouffer)
Set various socket options.

136

int syn_getsocknam@nt socket_num, structockaddsaddress)
Gets the local IP and port of a socket.

int syn_getpeernam(@nt socket_num, structockaddeaddress)
Gets the remote address of a connection-based (TCP socket).

int cleanup(unsigned int process_id)
Close all sockets and free the parameter buffer associated with a task.

int avail (int socket_num)
Reports number of bytes available on a TCP socket.

int syn_join(int socket_num, strucockaddeaddress)
Adds a socket to a specified multicast group.

int syn_leavgint socket_num, structockaddraddress)
Removes a socket from the specified multicast group.

int getnetworkparam@oid xparam_buffer)
Get the IPv4 configuration parameters.

int setnetworkparam@oid xparam_buffer)
Set the IPv4 configuration parameters.

int getipvbparamgvoid xparam_buffer)
Get the IPv6 address.

unsigned ingetethernetstatysoid)
Get the ethernet status.

int syn_gettftpservefstructsockaddraddress)
Get the address of the TFTP server.

int syn_settftpserve(structsockaddraddress)
Set the address of the TFTP server.

void clear_param_bufferoid)
Clears the parameter buffers used by the socket library.

unsigned insock_versior{void)
Returns the version number of this socket library.

137

int syn_arp_generaterequéstructsockaddraddress)
Generate an ARP request for a given IPv4 address.

int syn_arp_cacherequéstructsockaddeaddress)
Generate an ARP request for a given IPv4 address and add to the ARP cache.

int acceptqueuént socket_handle, strusbckaddraddress)
Returns the number of sockets in the wait queue for this listening socket.

int udpavailabldint socket_handle, strusbckaddeaddress)
Returns whether or not data is available to be read on a datagram socket.

int closesockefint socket_num)
Closes a specific socket.

unsigned chax getmacid(void)
Get the pointer to the MAC ID storage area.

void setmacidvoid)
Stores the MAC ID into the MAC ID storage area.

long ping (structsockaddr+address, unsigned int address_length, unsigned int
time_to_live, strucpingdataxresponse)

Pings the specified address.

unsigned ineth_readmi{unsigned int phy, unsigned int reg)
Read a PHY register via MIl.

void eth_writemii(unsigned int phy, unsigned int reg, unsigned int val)
Write a PHY register via MIL.

void eth_disablemulticastreceivéroid)
Disable multicast hardware receiver.

int unbind(int socket_num)
Unbind a bound socket.

int setsockownefint socket_num, unsigned int process_id)
Sets the socket’s owner to a different task ID.

unsigned longeth_readcsfunsigned int reg)

138

Read a MAC CSR register.

 void eth_writecsunsigned int reg, unsigned long val)
Write a MAC CSR register.

8.13.2 Define Documentation

8.13.2.1 #define accept(socket_num, address, address_length) syn_-
accept((socket_num),(address))

Accepts TCP connections on the specified socket.

Accepts a TCP conection on the specified socket. This function moves the first pend-
ing connection request from the listen queue into the established state, assigning a
new local socket to the connection for communicatieaceptblocks if there are no
pending incoming requests. The socketket_nunmust have been created with type
SOCKET_TYPE_STREAMound to an address usibind, and given a listen queue

by callinglisten

Parameters:
socket_numthe handle of the socket that will wait for connections

addresslocation to write remote address
address_lengththe length of the address structure (ignored)

Returns:
New socket handle for communicating with remote socket, or OXOFFFF for failure

See also:
socket
bind
listen

8.13.2.2 #define AF_INET 4

IPv4 family define, ignored by DS80C400 Silicon Software, but included for compati-
bility

8.13.2.3 #define AF_INET6 6

IPv6 family define, ignored by DS80C400 Silicon Software, but included for compati-
bility

139

8.13.2.4 #define arp_cacherequest(address, address_length) syn_arp_-
cacherequest((address))

Generate an ARP request for a given IPv4 address and add to the ARP cache.
If the given IP address is not in the ARP cache, generate an ARP request and add it to
the cache.

Parameters:
addressstructure to store the address

address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

8.13.2.5 #define arp_generaterequest(address, address_length) syn_arp_-
generaterequest((address))

Unconditionally generate an ARP request for a given IPv4 address.

Unconditionally generate an ARP request for a given IPv4 address. This functionality
can be used to implement Zeroconf protocols.

Parameters:
addressstructure to store the address

address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

8.13.2.6 #define bind(socket_num, address, address_length) syn_bind((socket_-
num),(address))

Binds a socket to a specified address.

Assigns a local address and port (stored ingtidresgparameter) to a socket. Binding
a socket is necessary for server sockets. For client socketsingséa specific source
port is desirable.

Fill addresswith Qs (for sin_addr and sin_port) to bind to any available local port. Use
getsocknamo discover which port the socket was bound to.

NOTE: When binding a UDP socket, matching inbound UDP packets will be queued
up for the socket. Caliecviromperiodically to avoid the risk of running out of kernel
memory.

140

Parameters:
socket_numsocket handle to bind to a local port number

addresscontains the local address (including port number)
address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
listen
getsockname
recvfrom

8.13.2.7 #define connect(socket_num, address, address_length) syn_-
connect((socket_num),(address))

Connects a TCP socket to a specified address.

Connects to a specified address with a streaming socket. This function can only be
used once with each socket. The sodatket nunmust have been created with type
SOCKET_TYPE_STREAM

Parameters:
socket_numthe socket handle to use to wait for and read a UDP packet

addressIP address and port number to create a streaming connection to
address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
socket

8.13.2.8 #define ETH_STATUS_LINK 1

Flag for analyzing ethernet status.

See also:
getethernetstatus

141

8.13.2.9 #define getpeername(socket num, address, address_length) syn_-
getpeername((socket_num),(address))

Gets the remote address of a connection-based (TCP socket).

Stores the IP address of the remote socket communicating with the socket specified by
socket_numUsegetsocknamio get the local port’s information.

Parameters:
socket_numhandle of the socket to get remote IP and port for

addressstructure where IP and port will be stored
address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

See also:
getsockname

8.13.2.10 #define getsockname(socket num, address, address length) syn -
getsockname((socket_num),(address))

Gets the local IP and port of a socket.

Stores the local IP and port number of the specified socket in treditiresparameter.
Usegetpeernaméo get the remote port's information for a connection-based (TCP)
socket.

Parameters:
socket_numhandle of the socket to get local IP and port for

addressstructure where IP and port will be stored
address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

See also:
getpeername

8.13.2.11 #define getsockopt(socket_num, level, name, buffer, length) syn_ -
getsockopt((socket_num),(name),(buffer))

Get various socket options.

142

Reads a number of supported socket options. Data written into the buffer depends on
the requested socket option.

Name Description Data in buffer
TCP_NODELAY TCP Nagle Enable 1 byte

SO_LINGER Ignored N/A

SO_TIMEOUT Inactivity timeout 4 bytes (milliseconds,

MSB first)

SO_BINDADDR

Local socket IP

16 bytes

Parameters:

socket_numsocket to get option information for

level ignored

name option to get

buffer location where option data will be written

length length of the buffer

Returns:

0 for success, non-zero for failure

See also:
setsockopt

8.13.2.12 #define
gettftpserver((address))

gettftpserver(address,

Get the address of the TFTP server.

address_length)

syn_-

Returns the address of the server accessed by the TFTP functions. To communicate
with a TFTP server, use the functions listed@m400_tftp.hthe TFTP library.

Parameters:

addressstructure to store the address of the TFTP server

address_lengththe length of the address structure (ignored)

Returns:

0 for success, non-zero for failure

See also:
settftpserver

143

8.13.2.13 #define htons(x) (x)
Convert a number to network byte order.

Converts a word from host byte order to network byte order. On the DS80C400, the
orders are the same, so this function does not alter the input data. This function is
included for compatibility.

Parameters:
X Input data to convert to network byte order

Returns:
Input data converted to network byte order

8.13.2.14 #define IPPROTO_UDP 0

Protocol ID define, ignored by DS80C400 Silicon Software, but included for compati-
bility

8.13.2.15 #define join(socket_num, address, address_length) syn_join((socket_-
num),(address))

Adds a socket to a specified multicast group.

Adds a UDP socket to a specified multicast group. In order to receive multicasts from
a group, firstind the socket to the port number that the multicast group is using (it is
not sufficient to include it here in order to receive).

Use theleavefunction to leave a multicast group.

Warning:
IPv6 multicasting is not supported

Parameters:
socket_numhandle for the datagram socket that will join a multicast group

addressIP address of the multicast group to join
address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
leave

144

8.13.2.16 #define leave(socket num, address, address length) syn_-
leave((socket_num),(address))

Removes a socket from the specified multicast group.

Removes a UDP socket from the specified multicast group.

Parameters:
socket_numhandle for the datagram socket that will leave a multicast group

addressIP address of the multicast group to leave
address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
join

8.13.2.17 #define ntohs(x) (x)
Convert a number to host byte order.

Converts a word from network byte order to host byte order. On the DS80C400, the
orders are the same, so this function does not alter the input data. This function is
included for compatibility.

Parameters:
X Input data to convert to network byte order

Returns:
Input data converted to network byte order

8.13.2.18 #define PF_INET 4

IPv4 protocol family define

8.13.2.19 #define recv(socket_num, buffer, length, flags) syn_recv((socket -
num),(length),(buffer))

Reads data from a TCP socket.

Reads data from a TCP socket. If there is no data availadde blocks until there is
data, subject to the value 80_TIMEOUTNOTE: This function readsip to length
bytes. Call this function repeatedly if you need to read a minimum number of bytes.

145

Parameters:
socket_numhandle of the streaming socket that will read data

buffer location to write any data read
length maximum amount of data to read
flags ignored

Returns:
The number of bytes read. If the operation times out according tcSMe-
TIMEOUT, a value of -2 is returned. If another error occurs, -1 is returned. If
the socket was closed by the other side, 0 is returned.

See also:
connect
send

8.13.2.20 #define recvfrom(socket num, buffer, length, flags, ad-
dress, address_length) syn_recvfrom(syn_setDatagramAddress((socket_-
num),0,(address)),(length),(buffer))

Receive a UDP datagram.

Receives a message on the specified socket, and stores the address that sentit. If no data
is available recvfromblocks subject to th&O_TIMEOUTvalue. The socketocket -
nummust have been created with a typ®@CKET_TYPE_DATAGRAM is required

to usebind to assign a local port to the socket, before receiving dAI@TE: This

function readsip to lengthbytes of a datagram. Any data not read in the datagram will

be discarded.

Parameters:
socket_numthe socket handle to use to wait for and read a UDP packet

buffer the location to write any data read from the datagram socket
length the maximum number of bytes to read from a datagram socket
flags ignored

addresslocation to fill in the address and port of the sender
address_lengththe length of the address structure (ignored)

Returns:
The number of bytes read. If the operation times out according tc&Ste-
TIMEOUT, a value of -2 is returned. If another error occurs, -1 is returned.

See also:
sendto
socket
bind

146

8.13.2.21 #define ROM400_SOCK_SYNCH_VERSION ROM400_SOCK_-
VERSION

Version number associated with this header file. Should be the same as the version
number returned by theock versioffiunction.

See also:
syn_version

8.13.2.22 #define ROM400_SOCK_VERSION 12

Version number associated with this header file. Should be the same as the version
number returned by theock_versiorfiunction.

See also:
sock_version

8.13.2.23 #define send(socket_num, buffer, length, flags) syn_send((socket -
num),(length), (buffer))

Sends data to a TCP socket.

Writes data to a TCP socket. The return value of this function is only a local suc-
cess/failure code, and may not necessarily detect transmission errors.

Parameters:
socket_numhandle of the streaming socket that will write data

buffer location of data to write
length number of bytes to write
flags ignored

Returns:
0 for success, non-zero for failure.

See also:
connect
recv

8.13.2.24 #define sendto(socket_num, buffer, length, flags, ad-
dress, address_length) syn_sendto(syn_setDatagramAddress((socket_-
num),1,(address)),(length),(buffer))

Sends a UDP datagram to a specified address.

147

Sends a UDP datagram to a specified address. The success/failure code this function
returns says nothing of if the packet was recieved by the target, only that the socket
layer was able to push the data out. The soskeket_nunmust have been created

with a typeSOCKET_TYPE_DATAGRAM

Parameters:
socket_numthe socket handle to use to send a UDP packet

buffer the data to send in the datagram packet

length the number of bytes to send in the datagram packet
flags ignored

addressthe destination address and port
address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
recvfrom
socket

8.13.2.25 #define setsockopt(socket num, level, name, buffer, length) syn_-
setsockopt((socket_num),(name),(buffer))

Set various socket options.

Sets a number of supported socket options. Input data in the buffer depends on the
desired socket option.

Name Description Data in buffer
TCP_NODELAY TCP Nagle Enable 1 byte
SO_LINGER Ignored N/A
SO_TIMEOUT Inactivity timeout 4 bytes (milliseconds,
MSB first)
SO_BINDADDR Read only N/A
Parameters:

socket_numsocket to set option information for
level ignored

name option to set

buffer location of option data that will be written
length length of the buffer

148

Returns:
0 for success, non-zero for failure

See also:
getsockopt

8.13.2.26 #define settftpserver(address, address_length) syn_-
settftpserver((address))

Set the address of the TFTP server.

Set the address of the server that the TFTP functions will usesédttfgpservefunction

must be used if the address of the TFTP server is not acquired by DHCP or 1-Wire.
Once the TFTP server's address is set, use the functions listesiria00_tftp.hto

begin receiving files.

Parameters:
addressstructure to store the address of the TFTP server

address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

See also:
gettftpserver

8.13.2.27 #define SO_BINDADDR 3

Argument for socket option. Local binding address.

See also:
getsockopt
setsockopt

8.13.2.28 #define SO_LINGER 1
Argument for socket option. Ignored by DS80C400 ROM.
See also:

getsockopt
setsockopt

149

8.13.2.29 #define SO_TIMEOUT 2
Argument for socket option. Socket inactivity timeout.
See also:

getsockopt
setsockopt

8.13.2.30 #define SOCK_DGRAM SOCKET_TYPE_DATAGRAM

Argument to functionsocketto create a UDP socket (same 8©CKET _TYPE_-
DATAGRAN

See also:
socket

8.13.2.31 #define SOCK_STREAM SOCKET_TYPE_STREAM

Argument to functionsocketto create a TCP socket (same 8©CKET_TYPE_-
STREAM

See also:
socket

8.13.2.32 #define socket(domain, type, protocol) syn_socket((type))
Create a network socket for TCP or UDP communication.

Creates a socket for network communication. This function returns a socket handle, but
has not specific local address assigned to it. Note that this functiortasitlsgettaskid
through the function redirect table.

Parameters:
domain ignored

type SOCKET_TYPE_DATAGRAMor SOCK_DGRAM for UDP, SOCKET_-
TYPE_STREAMor SOCK_STREAMfor TCP

protocol ignored

Returns:
OxOFFFF for failure, or the socket handle (socket number)

See also:
bind
connect
closesocket

150

8.13.2.33 #define SOCKET_TYPE_DATAGRAM 0
Argument to functiorsocketo create a UDP socket (sameSOSCK_DGRAN!

See also:
socket

8.13.2.34 #define SOCKET_TYPE_STREAM 1
Argument to functiorsocketo create a TCP socket (sameSBCK_STREAM

See also:
socket

8.13.2.35 #define syn_avail(socket_num) avail((socket_num))

Reports number of bytes available on a TCP socket.

Reports the number of bytes available on a TCP socket. This is the number of bytes
that can currently be read using tieevfunction without blocking.

Parameters:
socket_numthe handle of the socket to check for available data

Returns:
The number of bytes available foracvfunction call on this socket, or OXOFFFF
on failure.

See also:
recv

8.13.2.36 #define syn_cleanup(process_id) cleanup((process_id))

Close all sockets and free the parameter buffer associated with a task.

Close all sockets associated with a process ID and free the parameter buffer.

User applications should call this function whenever a task dies or is killed to ensure
all associated resources are freed by the socket layer.

Warning:
The DS80C400 Silicon Software task scheduler dd@3 call this function. User
applications should catlleanupafter each call toask_kill

Parameters:
process_idTask PID to clean up sockets associated with, 0 for current process.

151

Returns:
0 for success, non-zero for failure.

8.13.2.37 #define syn_closesocket(socket_num) closesocket((socket_num))
Closes a specific socket.

Closes the specified socket that was created usingatketfunction.

Parameters:
socket_numthe socket handle to close

Returns:
0 for success, non-zero for failure.

See also:
socket

8.13.2.38 #define syn_getethernetstatus() getethernetstatus()
Get the ethernet status.

Returns the ethernet status byte. This is a bit-wise OR of the following flags:

Flag Value Description
ETH_STATUS_LINK 01h Ethernet link status

Currently, no other flags are defined.

Returns:
Bitmapped ethernet status byte.

8.13.2.39 #define syn_getipv6params(param_buffer) getipv6params((param_-
buffer))

Get the IPv6 address.

Gets the IPv6 address of the ethernet interface. The format for the buffer after this
function returns is:

Parameter Offset Length Description

IP6ADDR 0 16 IP address

IP6PREFIX 16 1 IP prefix length
Parameters:

param_buffer pointer to buffer to store IPv6 configuration data

152

Returns:
0 for success, non-zero for failure

See also:
getnetworkparams
setnetworkparams

8.13.2.40 #define syn_getmacid() getmacid()

Get the pointer to the MAC ID storage area.

Returns the pointer to the MAC ID storage area. This area will store the MAC ID after
a successful call teetmacid

Returns:
Pointer to the 400’'s MAC ID (6 bytes stored at this location)

See also:
setmacid

8.13.2.41 #define syn_getnetworkparams(param_-
buffer) getnetworkparams((param_buffer))

Get the IPv4 configuration parameters.

Get the IPv4 configuration parameters, including IP address, subnet mask, and gateway.
The parameters are returned in a buffer in the following form:

Parameter Offset Length Description
(zero) 0 12 Must be 0
IPAADDR 12 4 IP address
IPASUBNET 16 4 Subnet mask
IPAPREFIX 20 1 Number of 1 bits
in subnet mask
(zero) 21 12 Must be O
IPAGATEWAY 33 4 Gateway IP
address

IPv6 addresses are autoconfigured. To retrieve the IPv6 address, gséth6params
function.

Parameters:
param_buffer pointer to buffer to store IP configuration data

Returns:
0 for success, non-zero for failure

153

See also:
setnetworkparams
getipv6params

8.13.2.42 #define syn_listen(socket_num, backlog) listen((socket_-
num),(backlog))

Tells a socket to listen for incoming connections.

Tells the socket to listen for connections. A queue of lertgghklogis created for
pending (unacceped connections). It is required to ubed to assign a local port
before callinglisten Useacceptto move an incoming request to an established state,
or wait for incoming connections.

Parameters:
socket_numsocket handle that will listen for connections

backlog the maximum number of pending connections (max 16 for the
DS80C400)

Returns:
0 for success, non-zero for failure.

See also:
bind
accept

8.13.2.43 #define syn_setmacid() setmacid()
Stores the MAC ID into the MAC ID storage area.

This is a redirected function. The DS80C400'’s default implementation of this function
searches the 1-Wire for a DS2502U-E48 1-Wire chip which contains a MAC ID. This
MAC ID is then stored into the MAC ID storage area, the location of which is stored in
a pointer in the export table. Use thetmacidfunction to return a pointer to the MAC

ID storage area.

See also:
getmacid
8.13.2.44 #define syn_setnetworkparams(param_-

buffer) setnetworkparams((param_buffer))

Set the IPv4 configuration parameters.

154

Set the IPv4 configuration parameters, including IP address, subnet mask, and gateway.
Input parameters should be formatted in the following form:

Parameter Offset Length Description
(zero) 0 12 Must be O
IPAADDR 12 4 IP address
IPASUBNET 16 4 Subnet mask
IPAPREFIX 20 1 Number of 1 bits
in subnet mask
(zero) 21 12 Must be 0
IPAGATEWAY 33 4 Gateway IP
address

Use this method to give the DS80C400 a static IP address. To dynamically configure
an IP address, use methods from the DHCP librargoim400_dhcp.H{IP addresses
leased by the DHCP client can still be retrieved by callijegnetworkparanjs

IPv6 addresses are autoconfigured. To retrieve the IPv6 address, gséphéparams
function.

Parameters:
param_buffer pointer to buffer with IP configuration data

Returns:
0 for success, non-zero for failure

See also:
getnetworkparams
getipv6params

8.13.2.45 #define syn_version() sock version()

Returns the version number of this socket library.

Returns:
Version number of this SOCK library.

8.13.2.46 #define TCP_NODELAY 0
Argument for socket option. Enables/disables Nagle algorithm.
See also:

getsockopt
setsockopt

155

8.13.3 Function Documentation

8.13.3.1 intacceptqueue (insocket_handlestruct sockaddr « addres$
Returns the number of sockets in the wait queue for this listening socket.
Returns the number of sockets in the queue attempting to connect to this server socket.

Parameters:
socket_handlehandle to socket to check for waiting connections

addresslocation where the IP and port number will be written

Returns:
-1 if the socket is not a streaming socket set up to listen O or greater for the number
of sockets waiting

The IP and port of the socket are returne@ddress

8.13.3.2 intavail (intsocket_nun

Reports number of bytes available on a TCP socket.

Reports the number of bytes available on a TCP socket. This is the number of bytes
that can currently be read using tieevfunction without blocking.

Parameters:
socket_numthe handle of the socket to check for available data

Returns:
The number of bytes available forracv function call on this socket, or -1 on
failure.

See also:
recv

8.13.3.3 int cleanup (unsigned inprocess_ijl

Close all sockets and free the parameter buffer associated with a task.

Close all sockets associated with a process ID and free the parameter buffer.

User applications should call this function whenever a task dies or is killed to ensure
all associated resources are freed by the socket layer.

Warning:
The DS80C400 Silicon Software task scheduler dd@3 call this function. User
applications should catlleanupafter each call toask_kill

156

Parameters:
process_idTask PID to clean up sockets associated with, O for current process.

Returns:
0 for success, non-zero for failure.

See also:
setsockowner

8.13.3.4 void clear_param_buffers (void)
Clears the parameter buffers used by the socket library.

Clears buffers used to store parameters for the socket library. This function should be
called immediately after calling thiait_rom function, and before any socket library
functions are called.

See also:
init_rom

8.13.3.5 int closesocket (insocket_num
Closes a specific socket.

Closes the specified socket that was created usingatieetfunction.

Parameters:
socket_numthe socket handle to close

Returns:
0 for success, non-zero for failure.

See also:
socket

8.13.3.6 void eth_disablemulticastreceiver (void)
Disable multicast hardware receiver.

This function disables the "pass multicast" (PM) bit in the DS80C400 MAC control
register. This improves performance if the application doesn't use multicast. This
function must be called after initialization of the Ethernet. WARNING: IPv6 requires
multicast. Disabling the receiver disables IPv6 address resolution.

157

8.13.3.7 unsigned long eth_readcsr (unsigned inég)
Read a MAC CSR register.

This function reads a MAC CSR register from the DS80C400. See the data sheet and
user’s guide for more information about the CSR registers.

Parameters:
reg register address (0 to 0x2c in steaps of 4)

Returns:
value read from the register specified

See also:
eth_writecsr

8.13.3.8 unsigned int eth_readmii (unsigned inphy, unsigned intreg)
Read a PHY register via MII.

This function reads a PHY register via the Mll interface. See the IEEE 802.3 specifi-
cation (22.2.4) for a description of the MIl management register set.

Parameters:
phy PHY address (0 to 31)

reg register address (0 to 31, 16 through 31 are vendor specific)

Returns:
value read from the register specified

8.13.3.9 void eth_writecsr (unsigned integ, unsigned longval)
Write a MAC CSR register.

This function writes a MAC CSR register. See the DS80C400 data sheet and user’s
guide for more information about the CSR registers.

Parameters:
reg register address (0 to 0x2c in steaps of 4)

val value to write to the specified register

See also:
eth_readcsr

158

8.13.3.10 void eth_writemii (unsigned inphy, unsigned intreg, unsigned intval)

Write a PHY register via MII.
This function writes a PHY register via the Ml interface. See the IEEE 802.3 specifi-
cation (22.2.4) for a description of the MIl management register set.

Parameters:
phy PHY address (0 to 31)

reg register address (0 to 31, 16 through 31 are vendor specific)
val value to write to the specified register

8.13.3.11 unsigned int getethernetstatus (void)
Get the ethernet status.

Returns the ethernet status byte. This is a bit-wise OR of the following flags:

Flag Value Description
ETH_STATUS_LINK 01h Ethernet link status

Currently, no other flags are defined.

Returns:
Bitmapped ethernet status byte.

8.13.3.12 int getipv6params (voidk param_buffes
Get the IPv6 address.

Gets the IPv6 address of the ethernet interface. The format for the buffer after this
function returns is:

Parameter Offset Length Description

IP6ADDR 0 16 IP address

IP6PREFIX 16 1 IP prefix length
Parameters:

param_buffer pointer to buffer to store IPv6 configuration data

Returns:
0 for success, non-zero for failure

See also:

getnetworkparams
setnetworkparams

159

8.13.3.13 unsigned chargetmacid (void)
Get the pointer to the MAC ID storage area.

Returns the pointer to the MAC ID storage area. This area will store the MAC ID after
a successful call teetmacid

Returns:
Pointer to the 400’s MAC ID (6 bytes stored at this location)

See also:
setmacid

8.13.3.14 int getnetworkparams (voidk param_buffei
Get the IPv4 configuration parameters.

Get the IPv4 configuration parameters, including IP address, subnet mask, and gateway.
The parameters are returned in a buffer in the following form:

Parameter Offset Length Description
(zero) 0 12 Must be 0
IPAADDR 12 4 IP address
IPASUBNET 16 4 Subnet mask
IPAPREFIX 20 1 Number of 1 bits
in subnet mask
(zero) 21 12 Must be O
IPAGATEWAY 33 4 Gateway IP
address

IPv6 addresses are autoconfigured. To retrieve the IPv6 address, getph€params
function.

Parameters:
param_buffer pointer to buffer to store IP configuration data

Returns:
0 for success, non-zero for failure

See also:
setnetworkparams
getipv6params

8.13.3.15 unsigned long inet_addr (chaf inet_string
Converts a string representing an IPv4 address to numeric form.

Converts the input string into an IPv4 address suitable for settingsockaddr_in
structure.

160

Parameters:
inet_string IPv4 address in string form

Returns:
Numberic IPv4 address

See also:
sockaddr_in

8.13.3.16 chax inet_ntop (int family, void * addr, char * strptr, size_tlen)
Converts a numeric address to a string.

Converts a numeric IP address to a presentable format as a null terminated string. 1Pv4
addresses are formatted such as in "192.0.1.1". IPv6 addresses are formatted such
as in "b803:8a11:0000:2121:fec5:0601:aa01:0102". Note that the "::’ shortnat is
supported—a '0000’ must be fully specified.

Parameters:
family AF_INET or AF_INET6

addr pointer to numeric representation of IP address
strptr storage location for presentation string
len size of storage area for strptr

Returns:
Reference to strptr, or NULL if thEamilyis not recognized or if there is not enough
space as declared tgn

See also:
inet_pton

8.13.3.17 unsigned int inet_pton (infamily, char x str, void x addr)
Converts a string to a numeric IP address.

Converts a string represenation of an IP address into numeric format. 1Pv4 addresses
are expected to be input in a format such asin "192.0.1.1". IPv6 addresses are expected
to be formatted such as in "b8:03:8a:11:00:00:21:21:fe:c5:06:01:aa:01:01:02".

Parameters:
family AF_INET or AF_INET6

str address string to translate
addr pointer to storage for numeric representation of IP address

161

Returns:
1 for successful translation. O if the format was invalid, or tamily was not
recognized.

See also:
inet_ntop

8.13.3.18 intlisten (intsocket_numunsigned intbacklog
Tells a socket to listen for incoming connections.

Tells the socket to listen for connections. A queue of lergabklogis created for
pending (unacceped connections). It is required to uband to assign a local port
before callinglisten Useacceptto move an incoming request to an established state,
or wait for incoming connections.

Parameters:
socket_numsocket handle that will listen for connections

backlog the maximum number of pending connections (max 16 for the
DS80C400)

Returns:
0 for success, non-zero for failure.

See also:
bind
accept

8.13.3.19 long ping (strucisockaddr « addressunsigned intaddress_lengthun-
signed inttime_to_live struct pingdata x responsg

Pings the specified address.

Sends an ICMP echo request (ping) to a specified address. Note that this function is
NOT safe to be called from multiple processes at the same time.

Parameters:
addressIP address to send an ICMP echo request to

address_lengththe length of the address structure (ignored)
time_to_live packets send by ping have this "time to live" setting
responsedata structure to fill in returned data (this argument must not be NULL)

Returns:
response time in milliseconds (0 means less than 1ms), or -1L for failure

162

The ping return data structure is defined as follows: reserved - Reserved field ip_-
header - The IP header of the return packet icmp_header - The ICMP header of the
return packet icmp_data - The ICMP data portion of the return packet (should be
0x20,0%x21,0x22,...,0x3f)

8.13.3.20 void setmacid (void)
Stores the MAC ID into the MAC ID storage area.

This is a redirected function. The DS80C400’s default implementation of this function
searches the 1-Wire for a DS2502U-E48 1-Wire chip which contains a MAC ID. This
MAC ID is then stored into the MAC ID storage area, the location of which is stored in
a pointer in the export table. Use thetmacidfunction to return a pointer to the MAC

ID storage area.

See also:
getmacid

8.13.3.21 int setnetworkparams (voidk param_buffel)
Set the IPv4 configuration parameters.

Set the IPv4 configuration parameters, including IP address, subnet mask, and gateway.
Input parameters should be formatted in the following form:

Parameter Offset Length Description
(zero) 0 12 Must be O
IP4AADDR 12 4 IP address
IPASUBNET 16 4 Subnet mask
IPAPREFIX 20 1 Number of 1 bits
in subnet mask
(zero) 21 12 Must be 0
IPAGATEWAY 33 4 Gateway IP
address

Use this method to give the DS80C400 a static IP address. To dynamically configure
an IP address, use methods from the DHCP libraryoin400_dhcp.HIP addresses
leased by the DHCP client can still be retrieved by calljegnetworkparanjs

IPv6 addresses are autoconfigured. To retrieve the IPv6 address, ge&pkiéparams
function.

Parameters:
param_buffer pointer to buffer with IP configuration data

Returns:
0 for success, non-zero for failure

163

See also:
getnetworkparams
getipv6params

8.13.3.22 int setsockowner (insocket_numunsigned intprocess_id
Sets the socket’s owner to a different task ID.

Sets the socket owner to a different task ID. This is useful where program code relies
on cleanupto deallocate a process’ resources, or in cases where ownership of a socket
needs to be moved to a child process. Note that the new process ID is not checked for
validity and it is possible to assign a socket to a non-existent task.

Parameters:
socket_numsocket handle

process_idthe task PID of the new socket owner

Returns:
0 for success, non-zero for failure.

See also:
cleanup

8.13.3.23 unsigned int sock_version (void)

Returns the version number of this socket library.

Returns:
Version number of this SOCK library.

8.13.3.24 intsyn_accept (insocket_numstruct sockaddr x addres$
Accepts TCP connections on the specified socket.

Accepts a TCP conection on the specified socket. This function moves the first pend-
ing connection request from the listen queue into the established state, assigning a
new local socket to the connection for communicatieaceptblocks if there are no
pending incoming requests. The socketket nunmust have been created with type
SOCKET_TYPE_STREAMound to an address usitnd, and given a listen queue

by callinglisten

Parameters:
socket_numthe handle of the socket that will wait for connections

164

addresslocation to write remote address

Returns:
New socket handle for communicating with remote socket, or -1 for failure

See also:
socket
bind
listen

8.13.3.25 intsyn_arp_cacherequest (strustockaddr x addres$
Generate an ARP request for a given IPv4 address and add to the ARP cache.

If the given IP address is not in the ARP cache, generate an ARP request and add it to
the cache.

Parameters:
addressstructure to store the address

Returns:
0 for success, non-zero for failure

8.13.3.26 intsyn_arp_generaterequest (strustockaddr « addres$

Generate an ARP request for a given IPv4 address.

Unconditionally generate an ARP request for a given IPv4 address. This functionality
can be used to implement Zeroconf protocols.

Parameters:
addressstructure to store the address

Returns:
0 for success, non-zero for failure

8.13.3.27 intsyn_bind (intsocket_numstruct sockaddr x addres$
Binds a socket to a specified address.

Assigns a local address and port (stored ingtidresgparameter) to a socket. Binding
a socket is necessary for server sockets. For client socketsingséa specific source
port is desirable.

Fill addresswith O's (for sin_addr and sin_port) to bind to any available local port. Use
getsocknam# discover which port the socket was bound to.

165

NOTE: When binding a UDP socket, matching inbound UDP packets will be queued
up for the socket. Callecvfromperiodically to avoid the risk of running out of kernel
memory.

Parameters:
socket_numsocket handle to bind to a local port number

addresscontains the local address (including port number)

Returns:
0 for success, non-zero for failure.

See also:
listen
getsockname
recvirom
unbind

8.13.3.28 int syn_connect (insocket_numstruct sockaddr « addres$
Connects a TCP socket to a specified address.

Connects to a specified address with a streaming socket. This function can only be
used once with each socket. The sodatket nunmust have been created with type
SOCKET_TYPE_STREAM

Parameters:
socket_numthe socket handle to use to wait for and read a UDP packet

addresslIP address and port number to create a streaming connection to

Returns:
0 for success, non-zero for failure.

See also:
socket

8.13.3.29 int syn_getpeername (irgocket_numstruct sockaddr x addres$
Gets the remote address of a connection-based (TCP socket).

Stores the IP address of the remote socket communicating with the socket specified by
socket_numUsegetsocknamio get the local port’s information.

Parameters:
socket_numhandle of the socket to get remote IP and port for

166

addressstructure where IP and port will be stored

Returns:
0 for success, non-zero for failure

See also:
getsockname

8.13.3.30 int syn_getsockname (irdocket _numstruct sockaddr « addres$
Gets the local IP and port of a socket.

Stores the local IP and port number of the specified socket in treditiresgparameter.
Usegetpeernameo get the remote port's information for a connection-based (TCP)
socket.

Parameters:
socket_numhandle of the socket to get local IP and port for

addressstructure where IP and port will be stored

Returns:
0 for success, non-zero for failure

See also:
getpeername

8.13.3.31 int syn_getsockopt (insocket_num unsigned intname void = buffer)

Get various socket options.

Reads a number of supported socket options. Data written into the buffer depends on
the requested socket option.

Name Description Data in buffer

TCP_NODELAY TCP Nagle Enable 1 byte

SO_LINGER Ignored N/A

SO_TIMEOUT Inactivity timeout 4 bytes (milliseconds,
MSB first)

SO_BINDADDR Local socket IP 16 bytes

This function assumes there is enough roorhufferto store the requested data.

Parameters:
socket_numsocket to get option information for

167

name option to get
buffer location where option data will be written

Returns:
0 for success, non-zero for failure

See also:
setsockopt

8.13.3.32 int syn_gettftpserver (strucsockaddr « addres$
Get the address of the TFTP server.

Returns the address of the server accessed by the TFTP functions. To communicate
with a TFTP server, use the functions listed@m400 _tftp.hthe TFTP library.

Parameters:
addressstructure to store the address of the TFTP server

Returns:
0 for success, non-zero for failure

See also:
settftpserver

8.13.3.33 intsyn_join (intsocket_numstruct sockaddr x addres$
Adds a socket to a specified multicast group.

Adds a UDP socket to a specified multicast group. In order to receive multicasts from
a group, firstbind the socket to the port number that the multicast group is using (it is
not sufficient to include it here in order to receive).

Use theleavefunction to leave a multicast group.

Warning:
IPv6 multicasting is not supported

Parameters:
socket_numhandle for the datagram socket that will join a multicast group

addressIP address of the multicast group to join

Returns:
0 for success, non-zero for failure.

See also:
leave

168

8.13.3.34 intsyn_leave (insocket_numstruct sockaddr x addres$
Removes a socket from the specified multicast group.

Removes a UDP socket from the specified multicast group.

Parameters:
socket_numhandle for the datagram socket that will leave a multicast group

addressIP address of the multicast group to leave

Returns:
0 for success, non-zero for failure.

See also:
join

8.13.3.35 intsyn_recv (insocket_numunsigned intlength, void *x buffer)
Reads data from a TCP socket.

Reads data from a TCP socket. If there is no data availadde blocks until there is
data, subject to the value 80_TIMEOUTNOTE: This function readsip to length
bytes. Call this function repeatedly if you need to read a minimum number of bytes.

Parameters:
socket_numhandle of the streaming socket that will read data

length maximum amount of data to read
buffer location to write any data read

Returns:
The number of bytes read. If the operation times out according tc&Ste-
TIMEOUT, a value of -2 is returned. If another error occurs, -1 is returned. If
the socket was closed by the other side, 0 is returned.

See also:
connect
send

8.13.3.36 int syn_recvfrom (intsocket_num unsigned int length, void = buffer)

Receive a UDP datagram.

Receives a message on the specified socket, and stores the address that sent it in the
address structure set by an earlier cabyo_setDatagramAddress no data is avail-
able,syn_recvfronblocks subject to th€0O_TIMEOUTvalue. The socketocket _num

169

must have been created with a typ@CKET_TYPE_DATAGRAM is required to use
syn_bindto assign a local port to the socket, before receiving dd@TE: This func-

tion readsup to lengthbytes of a datagram. Any data not read in the datagram will be
discarded.

Parameters:
socket_numthe socket handle to use to wait for and read a UDP packet

length the maximum number of bytes to read from a datagram socket
buffer the location to write any data read from the datagram socket

Returns:
The number of bytes read. If the operation times out according td&Sthe-
TIMEOUT, a value of -2 is returned. If another error occurs, -1 is returned.

See also:
sendto
socket
bind

8.13.3.37 intsyn_send (insocket_numunsigned intlength, void « buffer)
Sends data to a TCP socket.

Writes data to a TCP socket. The return value of this function is only a local suc-
cess/failure code, and may not necessarily detect transmission errors.

Parameters:
socket_numhandle of the streaming socket that will write data

length number of bytes to write
buffer location of data to write

Returns:
0 for success, non-zero for failure.

See also:
connect
recv

8.13.3.38 int syn_sendto (insocket_numunsigned intlength, void * buffer)

Sends a UDP datagram to an address earlier specified by a sgihtsetDatagram-
Address

170

Sends a UDP datagram to an address earlier specified by a sathtsetDatagram-
Address The success/failure code this function returns says nothing of if the packet
was recieved by the target, only that the socket layer was able to push the data out. The
socketsocket _nunmust have been created with a typ@CKET_TYPE_DATAGRAM

Parameters:
socket_numthe socket handle to use to send a UDP packet

length the number of bytes to send in the datagram packet
buffer the data to send in the datagram packet

Returns:
0 for success, non-zero for failure.

See also:
recvirom
socket
syn_setDatagramAddress

8.13.3.39 int syn_setDatagramAddress (irgocket_numunsigned charsending
struct sockaddr x addr)

Set the IP address parameter for future datagram calls.

In order to keep the functions in this library multi-process-safe, datagram functions
syn_sendtandsyn_recvfrontannot have as many parameters as their traditional coun-
terparts. This function sets the pointer to the address structure that will be used as the
address parameter for functiossgn_sendtandsyn_recvfrom

Note that the Berkeley style APl is how supported and is multi-process safe, so user
software should never have to call this function.

Parameters:
socket_numSocket number to set address for

sending Set to 0 if this is an address for receiving, Set to 1 if this is an address for
sending

addr Address structure that will be used in future callssion_sendtmr syn_-
recvfrom

Returns:
socket_num (for Macro purposes)

See also:

syn_sendto
syn_recvfrom

171

8.13.3.40 int syn_setsockopt (insocket_num unsigned int name void x buffer)

Set various socket options.

Sets a number of supported socket options. Input data in the buffer depends on the
desired socket option.

Name Description Data in buffer
TCP_NODELAY TCP Nagle Enable 1 byte
SO_LINGER Ignored N/A
SO_TIMEOUT Inactivity timeout 4 bytes (milliseconds,
MSB first)
SO_BINDADDR Read only N/A
Parameters:

socket_numsocket to set option information for
name option to set
buffer location of option data that will be written

Returns:
0 for success, non-zero for failure

See also:
getsockopt

8.13.3.41 int syn_settftpserver (strucsockaddr x addres$
Set the address of the TFTP server.

Setthe address of the server that the TFTP functions will usesdttigpservefunction

must be used if the address of the TFTP server is not acquired by DHCP or 1-Wire.
Once the TFTP server’s address is set, use the functions listemmif00_tftp.hto

begin receiving files.

Parameters:
addressstructure to store the address of the TFTP server

Returns:
0 for success, non-zero for failure

See also:
gettftpserver

172

8.13.3.42 int syn_socket (unsigned inypée
Create a network socket for TCP or UDP communication.

Creates a socket for network communication. This function returns a socket handle, but
has not specific local address assigned to it. Note that this functiortasitlsgettaskid
through the function redirect table.

Parameters:
type SOCKET_TYPE_DATAGRAMor SOCK_DGRAM for UDP, SOCKET _-
TYPE_STREAMor SOCK_STREAMfor TCP

Returns:
-1 for failure, or the socket handle (socket number)

See also:
bind
connect
closesocket

8.13.3.43 int udpavailable (intsocket_handlestruct sockaddr x addres$
Returns whether or not data is available to be read on a datagram socket.
Returnsl if there is data available to be read on a UDP socket.

Parameters:
socket_handlehandle to socket to check for available datagrams

addresslocation where the IP and port number will be written

Returns:
-1 if the socket is not a datagram socket O if no datagram packets are available 1 if
a datagram is available

The IP and port of the socket are returne@ddress

8.13.3.44 intunbind (intsocket_num
Unbind a bound socket.

Removes a local address and port from a socket that was assigned to bimsing

Parameters:
socket_numsocket handle

Returns:
0 for success, non-zero for failure.

See also:
bind

173

8.14 rom400_task.h File Reference
8.14.1 Detailed Description

Process scheduler functions in the DS80C400 ROM.

This library contains functions for starting, suspending, killing, and managing tasks
using the ROM’s process scheduler.

For detailed information on the DS80C400 please see Ithigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
Some functions in this library aldOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Data Structures

e structTIME
e structFARPTR
e structTCB

Defines

« #defineROM400_TASK_VERSIOND
« #defineROM400_SCHED_VERSIONROM400_TASK_VERSION

Included for legacy reasons. Please i&@M400_TASK_VERSIONstead.

o #defineRELOAD_14_74@xfb33
 #defineRELOAD_18_432Dxfa00
 #defineRELOAD_29 4910xfd99
« #defineRELOAD_36_8640xfd00
e #defineRELOAD_58 982xfecc
e #defineRELOAD_73_728)xfe80
e #defineMIN_PRIORITY 1

e #defineNORM_PRIORITY 128
« #defineMAX_PRIORITY 255

« #defineFLAG_SLEEPING1

« #defineFLAG_IO_WAIT 2

« #defineFLAG_DHCP_WAIT4

* #defineFLAG_USERO08

« #defineFLAG_USER10x10

174

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

#defineFLAG_USER20x20
#defineFLAG_USER30x40
#defineFLAG_USER40x80
#defineROM_SAVESIZE384

Functions

« void task_genesi@unsigned int savesize)
Initializes the process scheduler.

¢ unsigned charask_getcurrentvoid)
Gets the process ID for the current task.

¢ unsigned chatask_getpriorityunsigned char task_id)
Gets the priority level for the given task.

¢ unsigned chatask_setprioritfunsigned char task_id, unsigned char priority)
Sets the priority level for a given task.

 unsigned intask_fork(unsigned char priority, unsigned int savesize)
Creates a new task.

« unsigned charask_kill (unsigned char task_id)
Kills the specified task.

e unsigned chartask suspendunsigned char task id, unsigned char event -
mask)

Suspends the specified task.
« unsigned chatask_wait(unsigned char task_id, unsigned char event_mask, long
millis)

Puts the specified task to sleep.

¢ unsigned chatask_signa(unsigned char task_id, unsigned char event_mask)
Posts events to the specified task.

 void task_gettimemilligstructTIME xt)
Returns the system tick count.

« unsigned charask_getthreadi)
Redirected function to return the current thread’s ID number.

175

unsigned charask_threadresun{ensigned char thread, unsigned char task)
Redirected function to resume the specified thread.

unsigned chatask_threadiosleefunsigned char infinite, unsigned long time-
out)

Redirected function to put the current thread to sleep.

unsigned chatask_threadiosleepr{onsigned char infinite, unsigned long time-
out)

Redirected function to put the current thread (which is already in a critical section)
to sleep.

void task_threadsav@oid)

Redirected function to save the state of the current thread in anticipation of a
task/thread swap.

void task_threadrestor@oid)
Redirected function to restore the state of a thread.

unsigned chatask_sleegunsigned char task, long timeout)
Redirected function to put a specified task to sleep for a number of milliseconds.

unsigned charask_gettaskid)
Redirected function to get the ID of the current task.

void task_entercritsectiofvoid)
Enters a critical section.

void task_leavecritsectiofvoid)
Leaves a critical section.

unsigned intask_gettickreloadvoid)
Gets the current reload value for the system’s millisecond ticker.

void task_settickreloa¢unsigned int reload)
Sets the current reload value for the system’s millisecond ticker.

unsigned intask_versior{void)
Returns the version number of this process scheduling library.

void xdatax task_reentrant_stagkinsigned int size)
Rerserves space on the reentrant stack.

176

8.14.2 Define Documentation

8.14.2.1 #define FLAG_DHCP_WAIT 4

Event flag for putting a task to sleep. Reserved by the system.

See also:
task_wait

8.14.2.2 #define FLAG_IO_WAIT 2

Event flag for putting a task to sleep. Reserved by the system.

See also:
task_wait

8.14.2.3 #define FLAG_SLEEPING 1

Event flag for putting a task to sleep.

See also:
task_wait

8.14.2.4 +#define FLAG_USERO 8

Event flag for putting a task to sleep.

See also:
task_wait

8.14.2.5 #define FLAG_USER1 0x10

Event flag for putting a task to sleep.

See also:
task_wait

8.14.2.6 #define FLAG_USER2 0x20

Event flag for putting a task to sleep.

See also:
task wait

177

8.14.2.7 #define FLAG_USERS3 0x40

Event flag for putting a task to sleep.

See also:
task_wait

8.14.2.8 #define FLAG_USER4 0x80

Event flag for putting a task to sleep.

See also:
task_wait

8.14.2.9 #define MAX_PRIORITY 255

Maximum priority level assignable to a task.

See also:
task_setpriority
task_getpriority

8.14.2.10 #define MIN_PRIORITY 1

Minimum priority level assignable to a task.

See also:
task_setpriority
task_getpriority

8.14.2.11 #define NORM_PRIORITY 128

Normal priority for a task. This is the default priority for the default task.

See also:
task_setpriority
task_getpriority

8.14.2.12 #define RELOAD_14_746 Oxfb33

Timer reload value for 14.746 MHz crystal.

See also:
task_settickreload
task_gettickreload

178

8.14.2.13 #define RELOAD_18_432 0xfa00

Timer reload value for 18.432 MHz crystal.

See also:
task_settickreload
task_gettickreload

8.14.2.14 #define RELOAD_29 491 0xfd99

Timer reload value for 29.491 MHz crystal.

See also:
task_settickreload
task_gettickreload

8.14.2.15 #define RELOAD_36_864 0xfd00

Timer reload value for 36.864 MHz crystal.

See also:
task_settickreload
task_gettickreload

8.14.2.16 #define RELOAD_58 982 Oxfecc

Timer reload value for 58.982 MHz crystal.

See also:
task_settickreload
task_gettickreload

8.14.2.17 #define RELOAD_73 728 0xfe80
Timer reload value for 73.728 MHz crystal.
See also:

task_settickreload
task_gettickreload

179

8.14.2.18 #define ROM400_TASK_VERSION 9

Version number associated with this header file. Should be the same as the version
number returned by thiask_versiorfunction.

See also:
task_version

8.14.2.19 #define ROM_SAVESIZE 384

Default size for task switching buffer.

See also:
task_genesis

8.14.3 Function Documentation

8.14.3.1 void task_entercritsection (void)
Enters a critical section.

Enters a critical section, which disallows process swapping until the critical sec-
tion is left. Calls totask_entercritsectiorshould be balanced with calls task_-
leavecritsectior{or task_threadiosleepic

This function is safe to be called from multiple processes at the same time.

NOTE: An application should not stay in a critical section for extended periods of
time. 100-200us should be considered the maximum time.

See also:
task_leavecritsection
task_threadiosleepnc

8.14.3.2 unsigned int task_fork (unsigned chapriority, unsigned intsavesizg
Creates a new task.

Spawns a new task, returning the process ID of the new task to the parent task. Note
that because of the way the Keil compiler assigns variables, calls to task _fork should

be wrapped inside a critical section. Make sure the child’s process ID is stored in a

secure location before exiting the critical section. Note that only the parent need leave
the critical section, the child will not run until the parent has left it.

This function is safe to be called from multiple processes at the same time.

Parameters:
priority priority level for the new task.

180

savesizesize of the task state buffer for the new task

Returns:
OxXOFFFF for failure, else 0 if this is the child task, or the child’s PID if this is the

parent.

See also:
MIN_PRIORITY
NORM_PRIORITY
MAX_PRIORITY
ROM_SAVESIZE
task_Kill
task _reentrant_stack

8.14.3.3 void task_genesis (unsigned isivesize
Initializes the process scheduler.

Note that calling the functiomit_rom from the initialization library is the preferred
way of initializing the ROM.

This function is safe to be called from multiple processes at the same time.

Parameters:
savesizeSize of the task buffer for saving information on task switches.

8.14.3.4 unsigned char task_getcurrent (void)
Gets the process ID for the current task.
Returns the process ID for the current task, which can be used to manage that task.

This function is safe to be called from multiple processes at the same time.

Returns:
PID for the current task.

See also:
task_Kkill
task_setpriority
task_getpriority

181

8.14.3.5 unsigned char task_getpriority (unsigned chatask_id
Gets the priority level for the given task.

Given the process ID of a task, return the priority level for that task. Uasla idof O
for the current task.

This function is safe to be called from multiple processes at the same time.

Parameters:
task_id Task PID to get the priority for. A task PID of zero means the current task.

Returns:
Priority level of the task.

See also:
MIN_PRIORITY
NORM_PRIORITY
MAX_PRIORITY

8.14.3.6 unsigned char task_gettaskid ()
Redirected function to get the ID of the current task.

This is a redirected function that should be used to get the process ID of the current
task. The default implementation of this function calls the functemk_getcurrent

For more information on redirected functions, see the section
ROM Redirect Function Tablein the DS80C400 User's Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

Returns:
Task Id of the current task.

See also:
task_getcurrent

8.14.3.7 unsigned char task_getthreadid ()
Redirected function to return the current thread’s ID number.

This is a redirected function that should be used to retrieve the current thread’s ID
number. However, the DS80C400 ROM does not support threads, so the default imple-
mentation of this function always returns 0x01.

182

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

For more information on redirected functions, see the section
ROM Redirect Function Tablein the DS80C400 Users Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf.

This function is safe to be called from multiple processes at the same time.

Returns:
default implementation returns 0x01

8.14.3.8 unsigned int task_gettickreload (void)
Gets the current reload value for the system’s millisecond ticker.

Gets the current reload value for the system’s millisecond ticker. When initialized, this
reload value may not be correct for the system, and caltagh gettimemillisnay

show the resulting inaccuracy (for example, wall time may record 10 seconds while
the DS80C400 thinks 12 seconds have passes). Use this function to verify the system’s
current system millisecond ticker reload value.

This function is safe to be called from multiple processes at the same time.

See also:
task_settickreload
task_gettimemillis

8.14.3.9 void task_gettimemillis (structTIME x t)
Returns the system tick count.

The default implementation of this function returns the approximate number of mil-
liseconds since the system started. Note that the largest raw data structure supported
by Keil is 4 bytes, yet the DS80C400’s tick counter is 5 bytes, therefore the special
TIME structure is used.

This is a redirected function. The ROM includes a default process scheduler imple-
mentation. See thBS80C400 User's Guide for information on replacing the
default process scheduler with your own.

This function is safe to be called from multiple processes at the same time.

Parameters:
t pointer to a structure of typ€IME (a 5-byte structure). The result is written to
this pointer, MSB first.

See also:
TIME

183

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf.
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

8.14.3.10 unsigned char task_kill (unsigned chaask_id
Kills the specified task.

Kill the specified task. Use task_idof O to indicate the current task. This function
does not close or clean up any sockets. Use the socket library fuctgimmupto clean
any sockets owned by the task before any more processes are created.

This function is safe to be called from multiple processes at the same time.

Parameters:
task_id Task PID to kill.

Returns:
0 for Success, non-zero for failure

See also:
task_fork

8.14.3.11 void task_leavecritsection (void)
Leaves a critical section.

Leaves a critical section, which allows process swapping to continue. Ca#lsko-
leavecritsectiorshould have a matching call task_entercritsectian

This function is safe to be called from multiple processes at the same time.

NOTE: An application should not stay in a critical section for extended periods of
time. 100-200us should be considered the maximum time.

See also:
task_entercritsection
task_threadiosleepnc

8.14.3.12 void xdata task_reentrant_stack (unsigned intsizg
Rerserves space on the reentrant stack.

This function reserves the specified amount of space on the reentrant stack. Any task
that uses functions declared "reentrant” MUST call task_reentrant_skimte that

space on the reentrant stack is NOT freed when a task is killedAn function called

from an interrupt uses the reentrant stack of the foreground process. Note that the
reentrant stack is part of XDATA. You can adjust the top of the reentrant stack in
startup400.a51.

Parameters:
size Amount (in bytes) to reserve on the reentrant stack.

184

Returns:
-1 for failure (reentrant stack disabled in startup.a51), else the new lower bounds
of the reentrant stack.

See also:
task_fork

8.14.3.13 unsigned char task_setpriority (unsigned chamiask_id unsigned char
priority)
Sets the priority level for a given task.

Given the process ID of a task, set the priority level for that task. Uasla idof O for
the current task.

This function is safe to be called from multiple processes at the same time.

Parameters:
task_id Task PID to set the priority for. A task PID of zero means the current task.

priority Priority setting for PIDtask_id Can be any value betweeWIN_-
PRIORITY andMAX_PRIORITY

Returns:
0 for Success, non-zero for failure

See also:
MIN_PRIORITY
NORM_PRIORITY
MAX_PRIORITY

8.14.3.14 void task_settickreload (unsigned imeload)
Sets the current reload value for the system’s millisecond ticker.

Sets the current reload value for the system’s millisecond ticker. When initialized, this
reload value may not be correct for the system, and caltaghk_gettimemillisnay

show the resulting inaccuracy (for example, wall time may record 10 seconds while
the DS80C400 thinks 12 seconds have passes). Use this function to set the system’s
current system millisecond ticker reload value.

This function is safe to be called from multiple processes at the same time. This func-
tion should only be called afteénit_rom has been called. If you do not have a 1-
Wire device attached for MAC address storage, you shouldrgalketclockor init_-
setfrequencyefore callinginit_rom to initialize the system with a good clock reload
value.

185

Parameters:
reload New value for the system’s millisecond reload timer. Some reloads for
common crystal frequencies incluB&ELOAD_14 746RELOAD_18 432
RELOAD_29 49]1RELOAD 36 864RELOAD 58 982andRELOAD -
73_728 Values for other crystals (and crystal settings) can also be used.
See theHigh Speed Microcontroller's User Guide for more
information on timers and timer settings.

See also:
init_setclock
init_setfrequency
task_gettickreload
task_gettimemillis

8.14.3.15 unsigned char task_signal (unsigned chaask id unsigned char
event_mask

Posts events to the specified task.

Sends the event(s) event_masko procesdask_id If the task is waiting for no other
events, it will wake up and be electable to run by the task scheduler.

Use the event flagsLAG_USERGhroughFLAG_USER4%r a bitwise OR of these
flags. For tasks suspendedtask wait FLAG_SLEEPINGshould also be specified,
otherwise the task will sleep until the sleep time has elapbedG_SLEEPING:an
also be posted to prematurely wake a task suspendedknsleep

This function is safe to be called from multiple processes at the same time.

Parameters:
task_id Task PID to signal.

event_maskBitmap of events to signal.

Returns:
0 for Success, non-zero for failure

See also:
task_sleep
task_suspend
task wait

8.14.3.16 unsigned char task_sleep (unsigned chiask long timeou

Redirected function to put a specified task to sleep for a number of milliseconds.

186

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This is a redirected function that should be used to put a task to sleep for some known
period of time. The default implementation of this function calls the functisk_-
wait. The task can be woken up prematurely usigk _signal

For more information on redirected functions, see the section
ROM Redirect Function Tablein the DS80C400 Users Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

Parameters:
task task ID to put to sleep. A value of zero means put the current task to sleep.

timeout amount of time to put 'task’ to sleep for

See also:
task wait
task_signal

8.14.3.17 unsigned char task_suspend (unsigned chtask_id unsigned char
event_mask

Suspends the specified task.

Suspends the execution of the specified task until all specified events have occurred.
Use the functiortask_signato wake the task up. Use the event flagsAG_USERO
throughFLAG_USER%r a bitwise OR of these flags only, all other bits are system
reserved.

This function is safe to be called from multiple processes at the same time.

Parameters:
task_id Task PID to suspend. A task PID of zero means suspend the current task.

event_maskBitmap of events to wait for before wakeup.

Returns:
0 for Success, non-zero for failure

See also:
task_signal
task_sleep

8.14.3.18 unsigned char task_threadiosleep (unsigned charfinite, unsigned
long timeou)

Redirected function to put the current thread to sleep.

187

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This is a redirected function that should be used to put a thread to sleep. However,
the DS80C400 does not support threads, so the default implementation of this function
puts the current task to sleep.

For more information on redirected functions, see the section
ROM Redirect Function Tablein the DS80C400 Users Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
infinite O for non-infinite timeout, non-zero for infinite timeout (until woken)

timeout amount of time to sleep (if infinite==0)

Returns:
0 for Success, non-zero for failure

See also:
task_threadiosleepnc
task_threadresume

8.14.3.19 unsigned char task_threadiosleepnc (unsigned chiafinite, unsigned
long timeouy)

Redirected function to put the current thread (which is already in a critical section) to
sleep.

This is a redirected function that should be used to put a thread to sleep, when the
thread has already entered a critical section. However, the DS80C400 does not support
threads, so the default implementation of this function puts the current task to sleep

(which is assumed to be operating within a critical section).

For more information on redirected functions, see the section
ROM Redirect Function Tablein the DS80C400 Users Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
infinite O for non-infinite timeout, non-zero for infinite timeout (until woken)

timeout amount of tuime to sleep (if infinite==0)

188

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Returns:
0 for Success, non-zero for failure

See also:
task_threadiosleep
task _threadresume
task_entercritsection

8.14.3.20 void task_threadrestore (void)
Redirected function to restore the state of a thread.

This is a redirected function that should be used to restore the state of a thread that was
earlier saved with a call ttask_threadsaveHowever, the DS80C400 does not support
threads, so the default implementation of this function does nothing.

For more information on redirected functions, see the section
ROM Redirect Function Tablein the DS80C400 Users Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

See also:
task_threadsave

8.14.3.21 unsigned char task_threadresume (unsigned chanread, unsigned
char task

Redirected function to resume the specified thread.

This is a redirected function that should be used to resume a suspended or sleeping
thread. However, the DS80C400 ROM does not support threads, so the default imple-
mentation of this function resumes the task with a process ID matthshg

For more information on redirected functions, see the section
ROM Redirect Function Tablein the DS80C400 Users Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

Parameters:
thread thread ID to resume

task ID of the process thahreadbelongs to

Returns:
0 for Success, non-zero for failure

189

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

See also:
task_threadiosleep
task_threadiosleepnc

8.14.3.22 void task_threadsave (void)

Redirected function to save the state of the current thread in anticipation of a task/thread
swap.

This is a redirected function that should be used to save the state of the current thread
so it may be executed again later, after a caltask threadrestore However, the
DS80C400 does not support threads, so the default implementation of this function
does nothing.

For more information on redirected functions, see the section
ROM Redirect Function Tablein the DS80C400 Users Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

See also:
task_threadrestore

8.14.3.23 unsigned int task_version (void)
Returns the version number of this process scheduling library.

This function is safe to be called from multiple processes at the same time.

Returns:
Version number of this TASK library.

8.14.3.24 unsigned char task_wait (unsigned chaask_id unsigned charevent_-
mask long millis)

Puts the specified task to sleep.

Suspends the execution of the specified task until all specified events have occurred,
and/or until a set amount of time has elapsed.

When callingtask_wait use the event flagsLAG_USERQhroughFLAG_USER%r
a bitwise OR of these flags only, all other bits are system reserved.

Use the functiortask_signalto wake the task up. To properly wake a task, specify
FLAG_SLEEPINGN the call totask_signabs well as the user event flag(s).

This function is safe to be called from multiple processes at the same time.

190

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Parameters:
task_id Task PID to put to sleep. A task PID of zero means put the current task to
sleep.

event_maskBitmap of events to wait for before wakeup.
millis Maximum number of milliseconds to sleep for.

Returns:
0 for Success, non-zero for failure

See also:
task_signal
task_sleep
task_suspend

8.15 rom400 _tftp.h File Reference
8.15.1 Detailed Description

TFTP Client functions in the DS80C400 ROM.

This library contains functions for downloading files from a TFTP server. Note that the
function settftpservefrom the socket library must be used to initialize the IP address
of the TFTP server before communication can begin.

For detailed information on the DS80C400 please see lIthigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
The functions in this library are multi-process safe—that is, if you call the same
method from two different processes at the same time, the parameters to the func-
tion will not be destroyed. However, only one TFTP client is a available, and it
uses system-wide resources. Therefore, it is recommended that one process man-
age the TFTP client.

Defines

e #defineROM400_TFTP_VERSION

* #defineTFTP_MORE_DATAO

e #defineTFTP_LAST _SEGMENTL
Functions

 unsigned intftp_init (void)

Initialize the TFTP client.

191

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

« unsigned intftp_first (unsigned chaxfilename)
Requests a file from the TFTP server.

 unsigned intftp_next(unsigned int ack_only)
Read subsequent blocks of a file from a TFTP server.

« void * tftp_getdatgvoid)
Get the pointer to the TFTP client’s read buffer.

void tftp_close(void)
Closes the socket used by the TFTP library.

* unsigned intftp_version(void)
Returns the version number of this TFTP library.

8.15.2 Define Documentation

8.15.2.1 #define ROM400_TFTP_VERSION 5

Version number associated with this header file. Should be the same as the version
number returned by thitp versionfunction.

See also:
tftp_version

8.15.2.2 #define TFTP_LAST_SEGMENT 1

Agrument to functioriftp_nextrequesting the connection be closed.

See also:
tftp_next

8.15.2.3 #define TFTP_MORE_DATA O

Agrument to functioriftp_nextrequesting more data.

See also:
tftp_next

192

8.15.3 Function Documentation

8.15.3.1 void tftp_close (void)
Closes the socket used by the TFTP library.

Closes the socket used by the TFTP library. Every caftpo firstcreates a new socket,
and must be balanced by a calltttp_closeor the system will have lingering, inacces-
sible sockets.

See also:
tftp_first
tftp_next

8.15.3.2 unsigned int tftp_first (unsigned chas filename
Requests a file from the TFTP server.

Requests the specified file from the TFTP server. As long as the file exists and this
function returns successfully, use the buffer pointer returned ffipmgetdatao read

the first block of the requested file. U _nexto read subsequent blocks of data. Af-

ter the TFTP transaction is complete (or an error has occurred and the TFTP transaction
will be abandoned), us#tp_closeto clean up the transmission socket.

Parameters:
filename pointer to a null-terminated string that is the file to be requested from
the TFTP server

Returns:
OXOFFFF on failure, else the number of bytes read this time

See also:
tftp_next
tftp_close
tftp_getdata

8.15.3.3 voic tftp_getdata (void)
Get the pointer to the TFTP client’s read buffer.

Applications should read the TFTP data after every catftf firstor tftp_next This
function only needs to be called once afti#p_init has been called (the buffer pointer
does not change).

Returns:
Pointer to the area that the TFTP client is writing to

193

See also:
tftp_first
tftp_next

8.15.3.4 unsigned int tftp_init (void)
Initialize the TFTP client.

Initializes the TFTP client. Note that the IP address of the TFTP server must be set
using thesettftpservefunction from the socket library. After the TFTP Client is ini-
tialized, call thetftp_getdatdunction to request a pointer to the TFTP client’s buffer.

Returns:
0 for success, non-zero for failure

See also:
tftp_getdata

8.15.3.5 unsigned int tftp_next (unsigned inack_only)
Read subsequent blocks of a file from a TFTP server.

Requests the next block of a file be read from the TFTP server. Use the buffer pointer
returned frontftp_getdatao read the block read from the TFTP server. If this function
returns less than 512 bytes read, it means this is the last block of datatft@all
nextone more time with the argumenETP_LAST_SEGMENID clean up. After the
TFTP transaction is complete (or an error has occurred and the TFTP transaction will
be abandoned), ustp closeto clean up the transmission socket.

Parameters:
ack_only Use TFTP_MORE_DATAo request more data until the amount re-
turned is less than 512 bytes. UBETP_LAST_SEGMENIB acknowledge
the last segment was recieved.

Returns:
OXOFFFF on failure, or the number of bytes read.

See also:
tftp_first
tftp_close
tftp_getdata
TFTP_MORE_DATA
TFTP_LAST_SEGMENT

194

8.15.3.6 unsigned int tftp_version (void)

Returns the version number of this TFTP library.

Returns:
Version number of this TFTP library.

8.16 rom400_useriopoll.h File Reference
8.16.1 Detailed Description

User 10 Poll registration routines for the DS80C400 ROM.

This library contains functions to register User 1O Poll routines. User 10 Poll routines
are called at least every 4 milliseconds by the system task scheduler. These allow
programs to put their applications to sleep while waiting for input, and register a polling
routine that will be called to check for that input. The sleeping process can then be
signalled to wake up from the polling routine.

For detailed information on the DS80C400 please see Ihigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

The functions in this library are multi-process safe—that is, if you call the same method
from two different processes at the same time, the parameters to the function are pre-
served, and the function should execute correctly.

Defines

 #defineROM400_USERIOPOLL_VERSION

Functions

 unsigned chanseriopoll_isinstalledvoid)
Checks to see if the User 10 Poll library has already been initialized.

« void useriopoll_init(unsigned char num_routines)
Initializes the User 10 Poll library.

 unsigned chauseriopoll_registerpollroutinévoid «funct, unsigned char num-
ber)

Registers an 10 Poll routine.

« unsigned chauaseriopoll_removepollroutinginsigned char number)
Removes a registered 10 Poll routine.

195

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

« void * useriopoll_getpollroutinéunsigned char number)
Gets the address of a registered 10 Poll routine.

 unsigned chauaseriopoll_getlistsizévoid)
Returns the number of polling routines allowed.

¢ unsigned inuseriopoll_versiorfvoid)
Returns the version number of this User 10 Poll library.

8.16.2 Define Documentation

8.16.2.1 #define ROM400_USERIOPOLL_VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by theseriopoll_versiorunction.

See also:
useriopoll_version

8.16.3 Function Documentation

8.16.3.1 unsigned char useriopoll_getlistsize (void)
Returns the number of polling routines allowed.

Returns the size of the internal array that holds the registered polling routines. This
is the same as the number of entries that this library was initialized for. This num-
ber can be considered the bounds of valid indexes fousegiopoll_getpollrouting
useriopoll_removepollroutinenduseriopoll_registerpollroutinéunctions.

Returns:
Size of the list of polling routines.

See also:
useriopoll_init
useriopoll_registerpollroutine
useriopoll_getpollroutine
useriopoll_removepollroutine

8.16.3.2 void useriopoll_getpollroutine (unsigned chamumber)
Gets the address of a registered 10 Poll routine.

Gets the address of an entry in the list of registered IO Poll routines. If no entry exists
in the list at this location, this function returns NULL.

196

Parameters:
number location in the list of polling routines to clear

Returns:
address of the registered 10 Poll routine, or NULL if no routine exists at that
position in the list

See also:
useriopoll_init
useriopoll_registerpollroutine
useriopoll_removepollroutine

8.16.3.3 void useriopoll_init (unsigned chanum_routineg
Initializes the User 1O Poll library.

Initializes memory space required by the User 10 Poll library. The argument should
be the maximum number of IO Poll routines that will be needed by the library. In-
ternally, this is represented by an array of function pointers. Every 4 milliseconds (or
more often), all the function pointers in the array are invoked (if they have been set).
Therefore, itis in an application’s best interest to make this number the lowest possible
to reduce overhead.

The functions registered as 10 Poll routines should not destroy any registers aside from
the following: psw, acc, dptrO. All other registers should be preserved.

Parameters:
num_routines number of 10 Poll routines that can be registered

See also:
useriopoll_isinstalled
useriopoll_registerpollroutine

8.16.3.4 unsigned char useriopoll_isinstalled (void)

Checks to see if the User IO Poll library has already been initialized.

Checks to see if theseriopoll_initfunction has already been called. This function
allows libraries to determine if they need to initialize this library or not.

Returns:
0 if the library has not been initialized, 1 if it has

See also:
useriopoll_init

197

8.16.3.5 unsigned char useriopoll_registerpollroutine (void« funct, unsigned
char number)

Registers an 10 Poll routine.

Registers the given 10 Poll routine to be called by the task scheduler. The function will
be installed in the list of functions at the position definechbynber even if a function
already exists at that location.

Parameters:
funct function pointer of the 1O Poll routine

number location in the list of polling routines to place this function

Returns:
0 if the operation was successful, niimberwas out of bounds

See also:
useriopoll_init
useriopoll_removepollroutine
useriopoll_getpollroutine

8.16.3.6 unsigned char useriopoll_removepollroutine (unsigned chaumben
Removes a registered 10 Poll routine.

Removes an entry in the list of registered 10 Poll routines. If no entry exists in the list
at this location, this function has no effect.

Parameters:
number location in the list of polling routines to clear

Returns:
0 if the operation was successful, Inifimberwas out of bounds

See also:
useriopoll_init
useriopoll_registerpollroutine
useriopoll_getpollroutine

8.16.3.7 unsigned int useriopoll_version (void)

Returns the version number of this User 10 Poll library.

Returns:
Version number of this User 10 Poll library.

198

8.17 rom400 _util.h File Reference
8.17.1 Detailed Description

Utility functions in the DS80C400 ROM.
This library contains CRC, pseudo-RNG and utility memory functions.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
Some functions in this library aldOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Defines

- #defineROM400_UTIL_VERSIONS

« #defineREDIRECT_KERNELMALLOC1

« #defineREDIRECT _KERNELFRER

« #defineREDIRECT_MALLOC3

- #defineREDIRECT FREH

« #defineREDIRECT_MALLOCDIRTY 5

« #defineREDIRECT_TINIEXPORT_MM_DEREF®
« #defineREDIRECT_GETFREERAM

« #defineREDIRECT_GETTIMEMILLIS8

« #defineREDIRECT_GETTHREADID9

« #defineREDIRECT_THREADRESUMELO

« #defineREDIRECT_THREADIOSLEER1

« #defineREDIRECT _THREADIOSLEEPN(2

« #defineREDIRECT THREADSAVEL3

« #defineREDIRECT_THREADRESTORH4

« #defineREDIRECT_SLEER5

« #defineREDIRECT_GETTASKID16

« #defineREDIRECT_INFOSENDCHARL7

« #defineREDIRECT_IP_COMPUTECHECKSUM_SOFTWAREB
« #defineREDIRECT 019

« #defineREDIRECT_DHCPNOTIFY20

« #defineREDIRECT_ROM_TASK_CREATE1

« #defineREDIRECT_ROM_TASK_DUPLICATE22
- #defineREDIRECT_ROM_TASK_DESTROY3

« #defineREDIRECT_ROM_TASK_SWITCH_IN24

199

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

#defineREDIRECT_ROM_TASK_SWITCH_OUPR5
#defineREDIRECT_OWIP_READCONFI®6
#defineREDIRECT_SETMACID27
#defineREDIRECT_MM_UNDERERS
#defineREDIRECT_USER_IOPOLI29
#defineREDIRECT_ERROR_NOTIFICATIONSO

Functions

¢ unsigned inutil_crc16(unsigned char value, unsigned int seed)
Generates a 16-bit CRC given a seed.

« unsigned chauntil_getpseudorandoifvoid)
Gets a pseudo-random byte.

« void util_setrandomsee@insigned int seed)
Sets the seed of the random number generator.

« void util_memcleal(void «target, unsigned int length)
Clears a block of memory.

« void util_memcopy(void xsource, voidkdest, unsigned int length)
Copies a block of memory.

¢ unsigned chawutil_memcomparegvoid *blockO, void xblockl, unsigned int
length)

Compares the values in 2 blocks of memory.

« void util_infosendchafunsigned char ch)
Sends a character to serial port O.

« void util_installhook(void «fncptr, unsigned int fncindex)
Installs a new function pointer into the ROM redirect table.

 unsigned inutil_version(void)
Returns the version number of this utility library.

8.17.2 Define Documentation

8.17.2.1 #define REDIRECT_O 19

Reserved for future use with theil_installhookmethod.

200

See also:
util_installhook

8.17.2.2 #define REDIRECT_DHCPNOTIFY 20

Value to be used in conjunction with thél_installhookmethod to override thBHCP-
Notify method.

See also:
util_installhook

8.17.2.3 #define REDIRECT_ERROR_NOTIFICATION 30

Value to be used in conjunction with thiil_installhookmethod to override thError-
Notificationmethod.

See also:
util_installhook

8.17.2.4 #define REDIRECT_FREE 4

Value to be used in conjunction with tél_installhookmethod to override themem_-
freemethod.

See also:
util_installhook

8.17.2.5 #define REDIRECT_GETFREERAM 7

Value to be used in conjunction with thél_installhookmethod to override thenem_-
getfreerammethod.

See also:
util_installhook

8.17.2.6 #define REDIRECT_GETTASKID 16

Value to be used in conjunction with thiil_installhookmethod to override theask_-
gettaskidmethod.

See also:
util_installhook

201

8.17.2.7 #define REDIRECT_GETTHREADID 9

Value to be used in conjunction with thwil_installhookmethod to override theask_-
getthreadidmethod.

See also:
util_installhook

8.17.2.8 #define REDIRECT_GETTIMEMILLIS 8

Value to be used in conjunction with thiil_installhookmethod to override theask_-
gettimemillismethod.

See also:
util_installhook

8.17.2.9 #define REDIRECT_INFOSENDCHAR 17

Value to be used in conjunction with thiil_installhookmethod to override thatil_-
infosendchamethod.

See also:
util_installhook

8.17.2.10 #define REDIRECT_IP_COMPUTECHECKSUM_SOFTWARE 18

Value to be used in conjunction with thiil_installhookmethod to override th&>_-
ComputeChecksumethod.

See also:
util_installhook

8.17.2.11 #define REDIRECT_KERNELFREE 2

Value to be used in conjunction with thél_installhookmethod to override thigernel-
Freemethod.

See also:
util_installhook

202

8.17.2.12 #define REDIRECT_KERNELMALLOC 1

Value to be used in conjunction with thiél_installhookmethod to override thiernel-
Malloc method.

See also:
util_installhook

8.17.2.13 #define REDIRECT_MALLOC 3

Value to be used in conjunction with thél_installhookmethod to override themem_-
mallocmethod.

See also:
util_installhook

8.17.2.14 #define REDIRECT_MALLOCDIRTY 5

Value to be used in conjunction with thél_installhookmethod to override themem_ -
mallocdirty method.

See also:
util_installhook

8.17.2.15 #define REDIRECT_MM_UNDEREF 28

Value to be used in conjunction with theil _installhookmethod to override th#_-
UnDeref method.

See also:
util_installhook

8.17.2.16 #define REDIRECT_OWIP_READCONFIG 26

Value to be used in conjunction with thdil_installhook method to override the
OWIP_ReadConfignethod.

See also:
util_installhook

203

8.17.2.17 #define REDIRECT_ROM_TASK_CREATE 21

Value to be used in conjunction with thiil_installhookmethod to override th&ask-
Createmethod.

See also:
util_installhook

8.17.2.18 #define REDIRECT_ROM_TASK_DESTROY 23

Value to be used in conjunction with thiil_installhookmethod to override theask_-
kill method.

See also:
util_installhook

8.17.2.19 #define REDIRECT_ROM_TASK_DUPLICATE 22

Value to be used in conjunction with thwil_installhookmethod to override th&ask-
Duplicatemethod.

See also:
util_installhook

8.17.2.20 #define REDIRECT_ROM_TASK_SWITCH_IN 24

Value to be used in conjunction with thiil_installhookmethod to override théask-
Switchlnmethod.

See also:
util_installhook

8.17.2.21 #define REDIRECT_ROM_TASK_SWITCH_OUT 25

Value to be used in conjunction with thsil_installhookmethod to override th&ask-
SwitchOutmethod.

See also:
util_installhook

204

8.17.2.22 #define REDIRECT_SETMACID 27

Value to be used in conjunction with theil_installhookmethod to override th&et-
MACID method.

See also:
util_installhook

8.17.2.23 #define REDIRECT_SLEEP 15

Value to be used in conjunction with thiil_installhookmethod to override theask_-
sleepmethod.

See also:
util_installhook

8.17.2.24 #define REDIRECT_THREADIOSLEEP 11

Value to be used in conjunction with thwil_installhookmethod to override theask_-
threadiosleepnethod.

See also:
util_installhook

8.17.2.25 #define REDIRECT_THREADIOSLEEPNC 12

Value to be used in conjunction with thiil_installhookmethod to override theask_-
threadiosleepnenethod.

See also:
util_installhook

8.17.2.26 #define REDIRECT_THREADRESTORE 14

Value to be used in conjunction with thwil_installhookmethod to override theask_-
threadrestorenethod.

See also:
util_installhook

205

8.17.2.27 #define REDIRECT_THREADRESUME 10

Value to be used in conjunction with thwil_installhookmethod to override theask_-
threadresumenethod.

See also:
util_installhook

8.17.2.28 #define REDIRECT_THREADSAVE 13

Value to be used in conjunction with thiil_installhookmethod to override theask_-
threadsaveanethod.

See also:
util_installhook

8.17.2.29 #define REDIRECT_TINIEXPORT_MM_DEREF 6

Value to be used in conjunction with thil_installhookmethod to override thBIM_-
Deref method.

See also:
util_installhook

8.17.2.30 #define REDIRECT_USER_IOPOLL 29

Value to be used in conjunction with thidl_installhookmethod to override theser_-
IOPoll method.

See also:
util_installhook

8.17.2.31 #define ROM400_UTIL_VERSION 5

Version number associated with this header file. Should be the same as the version
number returned by thetil_versionfunction.

See also:
util_version

8.17.3 Function Documentation

8.17.3.1 unsigned int util_crc16 (unsigned chavalue unsigned intseed

206

Generates a 16-bit CRC given a seed.

Implements the Cyclic-Redundancy Check CRC16. This CRC is based on the poly-
nomial X*16 + X"15 + X*2 + 1. It is used extensively in operations with Dallas
Semiconductor 1-Wire devices.

This function is safe to be called from multiple processes at the same time.

Parameters:
value single byte input value to the crc function

seed 16 bit 'previous result’ seed

Returns:
16 bit CRC result

8.17.3.2 unsigned char util_getpseudorandom (void)
Gets a pseudo-random byte.

Returns a pseudo-random byte generated with the help of the CRC function. This is
not a true random byte, as there is no real source of entropy.

This function is safe to be called from multiple processes at the same time.

Returns:
One pseudorandom byte.

8.17.3.3 void util_infosendchar (unsigned chach)
Sends a character to serial port 0.

This is a redirected function. The DS80C400 silicon software version of this function
accesses the serial loader pin (P1.7) and does nothing if this pin is in the logic low state.
The DS80C400 silicon software does not use interrupt driver I/O to the serial port.

This function is safe to be called from multiple processes at the same time.

Parameters:
ch character to send to the debug port

8.17.3.4 void util_installhook (voidx fncptr, unsigned intfncindex)
Installs a new function pointer into the ROM redirect table.

This function alters the redirect table, which allows functions in the ROM to be overrid-
den by intredpid users. The function that is redirected will now call the code at address

207

fncptr. It is not advised thafncptr point to a C function unless no arguments are ex-
pected (there is no way without writing an assembler wrapper to get the arguments to
the C function in the Keil compiler).

See the DS80C400 User’'s Guide Supplement for more on the meanimdiagfcted
functions

This function is safe to be called from multiple processes at the same time.

Parameters:
fncptr address of the function that will be inserted into the redirect table

fncindex number of the redirected function that will be altered (REDIRECT _-
KERNELMALLOC)

8.17.3.5 void util_memclear (void« target, unsigned intlength)

Clears a block of memory.

Setslengthbytes to zero starting at addrdasget

This function is safe to be called from multiple processes at the same time.

Parameters:
target beginning address of memory to clear

length number of bytes to clear

8.17.3.6 unsigned char util_memcompare (void blockQ, void x blockl, unsigned
int length)

Compares the values in 2 blocks of memaory.

Comparedengthbytes fromblockOto lengthbytes fromblock1for equality. If the two
memory blocks are identical, the function returns 0.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
blockO first input block to compare

blockl second input block to compare
length maximum number of bytes to compare

Returns:
0 if the blocks are identical, non-zero otherwise

208

8.17.3.7 void util_memcopy (voidk source void x dest unsigned intlength)
Copies a block of memory.

Copieslengthbytes of data from theourcepointer to thedestpointer. The copy oper-
ation starts from the beginning of tseurcepointer, placing bytes from the beginning
of thedestbuffer. Therefore, f the buffers referenceddnurceanddestoverlap, some
bytes fromsourcebytes will be overwritten prior to being copied to the target.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
source pointer to bytes that will be the source of the copy

dest pointer to the bytes that will to copied to
length number of bytes to copy fromourceto dest

8.17.3.8 void util_setrandomseed (unsigned irseed
Sets the seed of the random number generator.

Changes the current value of the random seed to the random number generator, allow-
ing for additional randomness to be inserted into the generation. Note that additional
randomness is also generated by the timer bytes and the millisecond counter, so this
seed is not the only source.

This function is safe to be called from multiple processes at the same time.

Parameters:
seednew random seed

8.17.3.9 unsigned int util_version (void)
Returns the version number of this utility library.

This function is safe to be called from multiple processes at the same time.

Returns:
Version number of this UTIL library.

8.18 rom400_xnetstack.h File Reference
8.18.1 Detailed Description

Enhanced network stack for the DS80C400 ROM.

209

This library contains a replacement network stack with better performance and more
standards compliant functionality. Since this library will replace the default ROM net-
work stack, be careful of the physical location this library. If this library is targeted to
reside in flash memory, your system will be limited by the speed of your flash.

To use this functionality, adgnetstack install(jo your program before calling init_-
rom and add the library to your build process.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Defines

» #defineROM400_XNETSTACK_VERSIONL6
#defineSOCKET_TYPE_RAW2
#defineSOCK_RAW?2
#defineMDIO_ENABLE 0
#defineMDIO_DISABLE_HDX 1
#defineMDIO_DISABLE_FDX 2

Functions

« void xnetstack_instal{void)
Installs the enhanced network stack.

 unsigned inknetstack_versiofvoid)
Returns the version number of this library.

« void xnetstack_set_tcptimeoutfact@nt factor)
Sets a factor to scale all TCP timeouts.

« int xnetstack _get_tcptimeoutfactoid)
Gets the factor to scale all TCP timeouts.

 void xnetstack_set_ipv@nt enable)
Enables/disables IPv6.

 void xnetstack_set_icmpechorepli@st enable)
Enables/disables ICMP echo replies.

« void xnetstack_set_icmpdestinationunreachéinfieenable)
Enables/disables ICMP destination unreachable messages.

 void xnetstack_set_igmpreporttyfiet type)

210

http://www.maxim-ic.com/products/microcontrollers/pdfs/network_microcontroller_supplement.pdf
http://www.maxim-ic.com/products/microcontrollers/pdfs/network_microcontroller_supplement.pdf

Sets the IGMP membership report type.

« void xnetstack _set_arptimeo(int timeout)
Sets the ARP timeout.

¢ int xnetstack_get_arptimeo(uoid)
Gets the ARP timeout value.

« int xnetstack_set_arptablesi@nt entries)
Sets the number of ARP table entries.

* int xnetstack_get_arptablesi@eid)
Gets the maximum number of ARP table entries.

« void xnetstack_set_rawfiltéunsigned int proto)
Sets a protocol filter for the RAW socket.

« void xnetstack disable_rawfilt¢void)
Disables the protocol filter for the RAW socket.

¢ void xnetstack _set_mdignt value)

Sets whether the Mll interface should be used to talk to the physical network interface
chip (PHY).

« void xnetstack_set_igmfint enable)
Enables/disables inbound IGMP processing.

8.18.2 Define Documentation

8.18.2.1 #define MDIO_DISABLE_FDX 2

Argument to functiorxnetstack set mdio disable MDIO link detection and to force
the link to full duplex.

See also:

xnetstack_set_mdio

8.18.2.2 #define MDIO_DISABLE_HDX 1

Argument to functiorxnetstack set mdio disable MDIO link detection and to force
the link to half duplex.

See also:

xnetstack_set_mdio

211

8.18.2.3 #define MDIO_ENABLE 0

Argument to functiorxnetstack set _mdio enable MDIO link detection.

See also:
xnetstack _set_mdio

8.18.2.4 #define ROM400_XNETSTACK_VERSION 16

Version number associated with this header file. Should be the same as the version
number returned by thenetstack _versiofunction.

See also:
xnetstack_version

8.18.2.5 #define SOCK_RAW 2

Argument to functionsocketto create a RAW socket (same 8OCKET_TYPE._-
RAW

See also:
socket

8.18.2.6 #define SOCKET_TYPE_RAW 2
Argument to functiorsocketo create a RAW socket (same&9CK_RAW

See also:
socket

8.18.3 Function Documentation

8.18.3.1 void xnetstack_disable_rawfilter (void)
Disables the protocol filter for the RAW socket.

This function disables the filter set by xnetstack_set_rawfilter.

See also:
xnetstack set_rawfilter

212

8.18.3.2 int xnetstack_get arptablesize (void)
Gets the maximum number of ARP table entries.

Returns:
ARP table size

See also:
xnetstack_set_arptimeout

8.18.3.3 int xnetstack_get_arptimeout (void)
Gets the ARP timeout value.

Returns:
ARP timeout

See also:
xnetstack set_arptimeout

8.18.3.4 int xnetstack_get_tcptimeoutfactor (void)
Gets the factor to scale all TCP timeouts.

Returns:
TCP scale factor

See also:
xnetstack_set_tcptimeoutfactor

8.18.3.5 void xnetstack_install (void)
Installs the enhanced network stack.

This function installs the enhanced network stack functionality. The function has to be
called beforenit_rom().

8.18.3.6 int xnetstack_set_arptablesize (irgntrieg

Sets the number of ARP table entries.

Parameters:
entries ARP table entries (16 to 127)

213

Returns:
0 on success

This function allocates the new ARP table from the kernel memory subsystem. The
memory allocated will be the table entry count2. NOTE: Resizing the ARP table
will destroy all entries, including manually set static entries.

See also:
xnetstack set_arptablesize

8.18.3.7 void xnetstack_set_arptimeout (inimeouf)
Sets the ARP timeout.

Parameters:
timeout ARP timeout (1 to 255, default: 16)

This function manipulates the amount of timer ticks an ARP entry can be pending (be
unresolved) before the network stack considers a host to be unreachable.

Note thatinit_rom() resets the ARP timeout value.

See also:
xnetstack get_arptimeout

8.18.3.8 void xnetstack_set_icmpdestinationunreachable (iehable

Enables/disables ICMP destination unreachable messages.

Parameters:
enable 1 to enable, 0 to disable

Setting this to 0 prevents the network stack from generating ICMP destination unreach-
ables (i.e. the device will not respond when an unused port is accessed).

8.18.3.9 void xnetstack_set_icmpechoreplies (irhable
Enables/disables ICMP echo replies.

Parameters:
enable 1 to enable, 0 to disable

Setting this to 0 prevents the network stack from generating ICMP echo replies (i.e. the
device will no longer respond to "ping").

214

8.18.3.10 void xnetstack_set_igmp (irgnablg

Enables/disables inbound IGMP processing.

Parameters:
enable 1 to enable, 0 to disable

NOTE: This function disables the IGMP receiver and feeds all inbound packets to the
raw packet queue. If there is no raw socket, or if the raw filter doesn’t match, the
packets will be discarded.

8.18.3.11 void xnetstack_set_igmpreporttype (irttype
Sets the IGMP membership report type.

Parameters:
type (0x12 for version 1, 0x16 for version 2)

NOTE: This does not enable IGMPv2 compatibility, it merely changes the type of
membership reports to work around a problem with certain switches. The default is
IGMPV1.

8.18.3.12 void xnetstack_set_ipv6 (irdnablg
Enables/disables IPv6.

Parameters:
enable 1 to enable, 0 to disable

NOTE: This function disables the IPv6 receiver and transmitter. An application can
still send packet to IPv6 addresses without receiving an error message; these packets
will be discarded at the driver level.

8.18.3.13 void xnetstack_set_mdio (intalue)

Sets whether the Ml interface should be used to talk to the physical network interface
chip (PHY).

Parameters:
value MDIO_ENABLE MDIO_DISABLE_HDXMDIO_DISABLE_FDX

This function enables / disables MIl communication over the MIl interface. MIl com-
munication with the physical interface is used to determine link availability and status.
When disabling MDIO, you must specify whether the link is half duplex or full duplex.
This function should be called aftenetstack_installout beforanit_rom.

215

8.18.3.14 void xnetstack_set_rawfilter (unsigned irfiroto)
Sets a protocol filter for the RAW socket.

Parameters:
proto Ethernet protocol (e.g. 0x0800 for IPv4)

This function reduces the system load when a raw socket is used by filtering for a
given Ethernet protocol type at the Ethernet driver layer. Note: The network stack only
supports Ethernet Il frames.

See also:
xnetstack_disable_rawfilter

8.18.3.15 void xnetstack_set_tcptimeoutfactor (inflactor)
Sets a factor to scale all TCP timeouts.

Parameters:
factor TCP scale factor (1 to 255, default: 32)

See also:
xnetstack _get_tcptimeoutfactor

8.18.3.16 unsigned int xnetstack_version (void)

Returns the version number of this library.

Returns:
Version number of this library.

8.19 stdio.h File Reference
8.19.1 Detailed Description

File and other 10 functions.

This library contains functions for file system operations and formatting input and out-
put data. The file system has been adapted from TINI's Java Runtime Environment to
be able to be called from a C program.

The file system must reside in contiguous memory. Pages in the file system are 256-
byte blocks (on 256-byte boundaries).

216

Maximum File System Size The maximum size(15MB), of the file system is likely

to be far beyond the needs of most/any applications. The file system’s memory manager
has several overhead blocks used to maintain information on block allocation. The
number of overhead blocks cannot exceed 255 blocks (65280 bytes).

Overhead Bytes

L]

11 blocks for filesystem overhead

¢ 5 bytes magic signature

'num_blocks’ bytes for the free list

» 'numfd’ x 26 bytes for open file descriptors

Assuming we use the usual 'numfd’ vlaue of 8 open file descriptors,
65280-(11 *256)-5-(8 x26) = 62251 max bytes are available for a free
list. This yields a maximimum file system size of just over 15MB, although not all the
space can be utilized by file data due to file system overhead.

Example of File System Memory Usage: 64KB Available We have 64KB of mem-

ory available for file system space and we use 'numfd’ of 8 open file descriptors, that is
256 blocks of size 256 bytes. Initalized Vinit(8, 256, start_address)

To determine the amount of data space this allows we subtract the overhead blocks
from 64KB 65536-(11 *256)-5-(8 *26) leaving 62507 bytes for the free list and

the file data. We need 1 byte per free page62607/256 = 244.16 means one
page/block is needed to hold the free list, leaving us with 243 blocks for file system
data. 243 blocks is 62208 bytes of available file space, but not all can be used due to
internal fragmentation of the file system. File system sectors are allocated in 768 bytes
chunks with 512 bytes of data and 256 bytes of filesystem overhead. So the maximum
useable file space ($2208/768) 512 = 41472 bytes.

Example of File System Memory Usage: 128KB of Storage RequiredOur appli-

cation requires that we have 128KB of file system space. Again we will use 8 open file
descriptors. 128KB normaly means 131072 bytes. Due to internal fragmentation we
require(131072/512) 768 = 196608 bytes. This means we require 768 free
blocks of file space. 768 blocks require 3 blocks for the free list. As previously the

5 magic bytes and the open file descriptor space come to 213 bytes, this equates to
1 block. 768+11+3+1 = 783 . To initalize the file system for our requirements:
finit(8, 783, start address)

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

217

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Warning:
Some functions in this library aldOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

#include <stddef.h >

Data Structures

« structfile_structure

Defines

 #defineFS_VERSION10

o #defineNULL ((void) 0)
 #defineFILE_FLAGS_EOFL
 #defineFILE_FLAGS_TEMP2
« #defineFILE_TYPE_TINIFS1
« #defineFILENAME_MAX 255
 #defineFOPEN_MAX8

e #defineL_tmpnam20

« #defineSEEK_CUROx5555

« #defineSEEK_ENDOx5556

* #defineSEEK_SETOx5557
 #defineTMP_MAX 10

« #defineEOF-1

¢ #defineP_tmpdir"temp"

Typedefs

* typedef unsigned indize_t
* typedef unsigned indff_t
typedef longfpos_t

« typedeffile_structure~ILE

Functions

« void clearerr(FILE «f_handle)
Clear the error indicators for a file stream.

« int fclose(FILE «f_handle)

218

Closes the file stream.

int feof (FILE «f_handle)
Checks to see if this stream has reached the end of the file.

int ferror (FILE «f_handle)
Gets the error indicator for the file stream.

int fgetc(FILE «f_handle)
Gets the next unsigned character from the file stream.

int fgetpos(FILE «f _handle fpos_txposition)
Gets the current value of the file position indicator.

charx fgets(charxstring, int numFILE «f_handle)
Reads a string from the file stream.

FILE * fopen(const chakfilename, const chairmode)
Opens the specified file.

int fputc (int ch, FILE «f_handle)
Writes a character to a file stream.

int fputs(const charstr, FILE «f_handle)
Writes a string to a file stream.

size_tfread(void *ptr, size_tsize,size_tnum,FILE «f_handle)
Read a number of bytes from a file stream.

FILE = freopen(const char«newfilename, const charmode, FILE xold_-
handle)

Associates an open stream with a different file.

int fseek(FILE «f_handle, long int offset, int tag)
Sets the file position indicator.

int fseeko(FILE *f_handleoff t offset, int tag)
Sets the file position indicator.

int fsetpoS(FILE «f_handle, consfpos_txposition)
Sets the file position indicator.

longftell (FILE «f_handle)

219

Gets the file position indicator.

off_t ftello (FILE «f_handle)
Gets the file position indicator.

void flockfile (FILE xf_handle)
Gets exclusive access to a file.

int ftrylockfile (FILE «f_handle)
Tries to get exclusive accress to a file.

void funlockfile (FILE «f_handle)
Release exclusive access on a file.

size_tfwrite (const void«ptr, size_tsize,size_tnum,FILE xf_handle)
Write a number of bytes to a file stream.

int getc(FILE *f_handle)
Gets the next unsigned character from the file stream.

int putc(int value,FILE «f_handle)
Writes a character to a file stream.

int remove(const charfilename)

Removes a file from the file system.

int renamgconst charoldname, const chanewname)
Renames a file.

void rewind (FILE «f_handle)
Resets the file position indicator for a stream.

charx tempnam(const chakdirname, const chapfx)
Generates a path/filename that can be used for a temporary file.

FILE * tmpfile (void)
Generates a stream to a temporary file.

charx tmpnam(charxnametarget)
Generates a unige temporary filename.

int fflush (FILE «f_handle)

220

Flushes the buffers for a file stream.

int fcleaninit(char numfd, int numblocks, voigstart_address)
Initializes the file system to a blank state.

int finit (char numfd, int numblocks, voigstart_address)
Initializes the file system.

int fexists(char«filename)
Tests for the existence of a file.

void * fopen_fd(const chakfilename, const chasrmode)
Helper function that opens a file descriptor.

unsigned infreadbyteqvoid «buffer, int length FILE xstream)
Reads bytes into a buffer from a file stream.

unsigned infwritebytes(void xbuffer, int length FILE xstream)
Writes bytes to a file stream.

unsigned longyetfreefsrant)
Gets the amount of free space in the file system.

int mkdir (charxdirname)

Creates a directory.

char_getkey(void)
Keil-provided function.

chargetchar(void)
Keil-provided function.

charungetchafchar)
Keil-provided function.

charputchar(char)
Keil-provided function.

int printf (const chak,...)
Keil-provided function.

int sprintf (charx*, const chak,...)

221

Keil-provided function.

« int vprintf (const chak, charx)
Keil-provided function.

« int vsprintf (charx, const chak, charx)
Keil-provided function.

« charx gets(charsx, int n)
Keil-provided function.

« int scanf(const chak,...)
Keil-provided function.

« int sscanf(charx, const chak,...)
Keil-provided function.

« int puts(const chak)
Keil-provided function.

¢ unsigned infilesystem_versiofvoid)
Returns the version number of this file system library.

8.19.2 Define Documentation

8.19.2.1 #define EOF -1

Define for end-of-file.

8.19.2.2 #define FILE_FLAGS_EOF 1

Definition for file flag. Denotes that the end of the file has been reached for this file.

See also:
FILE

8.19.2.3 #define FILE_FLAGS_TEMP 2

Definition for file flag. Denotes that this is a temporary file.

See also:
FILE

222

8.19.2.4 #define FILE_TYPE_TINIFS 1
Type for the file. Currently, this file system only supports the TINI File System type.

See also:
FILE

8.19.2.5 #define FILENAME_MAX 255

Maximum size in bytes of the longest filename string that the implementation guaran-
tees can be opened.

See also:
fopen

8.19.2.6 #define FOPEN_MAX 8

Number of streams which the implementation guarantees can be open simultane-
ously.

See also:
fopen

8.19.2.7 #define FS_VERSION 10

Version number associated with this header file. Should be the same as the version
number returned by thi@esystem_versiofunction.

See also:
filesystem_version

8.19.2.8 #define L_tmpnam 20

Maximum size of character array to hdldpnamoutput.

See also:
tmpnam

8.19.2.9 #define NULL ((voidk) 0)

Definition for a null pointer.

223

8.19.2.10 #define P_tmpdir "temp"

Default directory that temporary file names will be built into.

See also:
tmpnam

8.19.2.11 #define SEEK_CUR 0x5555

Seek offset is from the current location in the file.

Warning:
Option currently not supported.

See also:
fseek
fseeko

8.19.2.12 #define SEEK_END 0x5556

Seek offset is from the end of the file.

Warning:
Option currently not supported.

See also:
fseek
fseeko

8.19.2.13 #define SEEK_SET 0x5557

Seek offset is from the beginning of the file.

See also:
fseek
fseeko

8.19.2.14 #define TMP_MAX 10

Maximum number of guaranteed unique file names that can be created toyham
function.

See also:
tmpnam

224

8.19.3 Typedef Documentation

8.19.3.1 typedef strucfile_structure FILE
Type definition for a C file object.

8.19.3.2 typedeflondpos t

Type definition for the position in a file.

8.19.3.3 typedef unsigned inbff t

Type definition for the offset in a file.

8.19.3.4 typedef unsigned insize_t

Type definition for the amount of data to be written or read.

8.19.4 Function Documentation

8.19.4.1 char _getkey (void)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h

8.19.4.2 void clearerr FILE «f_handle)
Clear the error indicators for a file stream.
Clears the error and end-of-file indicators for a file stream.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle file handle to file to clear error flag for

8.19.4.3 int fcleaninit (charnumfd, int numblocks void x start_addresp
Initializes the file system to a blank state.

Initializes the file system. This method (dinit) must be called every time the
DS80C400 boots up and wants to use the file system. Starts with a blank file system
automatically.

Note that thenit_rom function must be called before the file system is initialized.

225

This function is safe to be called from multiple processes at the same time.

Parameters:
numfd Maximum number of file descriptors that can be open at one time in the
system.

numblocks Number of 256-byte blocks available to the file system.

start_addressStarting address of the memory allocated for the file system. The
bounds of the memory allocated for the file system are then &tart_-
addressto (start_address+ 256 x numblocks+ File System and Memory
Manager overhead). Refer to top of this file for examples of file system
memory usage.

Returns:
Non-zero, since the file system memory had to be erased.

See also:
init_rom{[in the initialization library]
finit

8.19.4.4 intfcloseFILE xf_handle)
Closes the file stream.

Closes the stream associated witlhandle In the TINI File System, there are no
buffers, so this function has nothing to flush before closing.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle of file to close

Returns:
Always 0

See also:
fopen

8.19.4.5 intfeof FILE *f_handle
Checks to see if this stream has reached the end of the file.
Tests the end-of-stream indicator for this file stream.

This function is safe to be called from multiple processes at the same time.

226

Parameters:
f_handle handle to file to check end-of-file condition for

Returns:
Non-zero if the end of the file has been reached, otherwise 0

8.19.4.6 intferror (FILE «f_handle)
Gets the error indicator for the file stream.
Gets the current error indicator for the file stream.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle to file to get current error code for

Returns:
Current error code for file denoted byhandle 0 means no error.

8.19.4.7 intfexists (chas filename
Tests for the existence of a file.
Checks to see if the filBlenameexists in this file system.

This function is safe to be called from multiple processes at the same time.

Parameters:
filename File to check for the existence of.

Returns:
0 if the file exists, non-zero if it does not exist.

8.19.4.8 intfflush FILE «f_handle)
Flushes the buffers for a file stream.

The TINI File System has no buffers (data is read and written directly on the file system,
since it resides in XDATA). Therefore, this function only clears the error flag.

This function is safe to be called from multiple processes at the same time.

Parameters:
f _handle File handle to flush output buffers for

Returns:
0 on success.

227

8.19.4.9 intfgetc FILE *f_handle
Gets the next unsigned character from the file stream.

Returns the next unsigned character (if available) from the file stream (converted to an
int), advancing the file position pointer.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle of the file we will read from

Returns:
The next character from the file, BIOFif the end of file has been reached

See also:
getc
feof
fputc

8.19.4.10 intfgetposKILE *f handle fpos_tx position)
Gets the current value of the file position indicator.

Puts the current value of the file position indicator into the locgbosition The value
in positionafter the function call is to be used for resetting the stream to this position
using a later call tdsetpos

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
f _handle handle to file to get current position for

position pointer to location for position information

Returns:
Always 0

See also:
fsetpos
ftell

228

8.19.4.11 chax fgets (charx string, int num, FILE «f_handle)
Reads a string from the file stream.

Reads at mostum1 characters from the file stream. Will not return any data read
after a newline character (which is included) or the end of the file. A null character is
appended to the data read.

Note that the implementation of this method is not efficient. For more efficient reading
of data, use th&eadfunction.

This function is safe to be called from multiple processes at the same time.

Parameters:
string buffer to write string data to

num read a maximum offum1) bytes, leaving 1 for a terminating O
f_handle handle to file to read from

Returns:
Input pointerstring, or NULL if EOF or errors were encountered. Data will be
written as O-terminated string &iring

See also:
fread
fputs
feof

8.19.4.12 unsigned int filesystem_version (void)
Returns the version number of this file system library.

Returns:
Version number of this FILESYSTEM library.

8.19.4.13 int finit (charnumfd, int numblocks void = start_addresp
Initializes the file system.

Initializes the file system. This method (fmeanini) must be called every time the
DS80C400 boots up and wants to use the file system. If the file system does not exist
or is corrupted, it will erase and start with a blank file system. Also, if any of the
parameters given tbnit do not match how the file system was previously initialized,
the file system will erase and start blank.

Note that thenit_rom function must be called before the file system is initialized.

This function is safe to be called from multiple processes at the same time.

229

Parameters:
numfd Maximum number of file descriptors that can be open at one time in the
system.

numblocks Number of 256-byte blocks available to the file system.

start_addressStarting address of the memory allocated for the file system. The
bounds of the memory allocated for the file system are then Start_-
addressto (start_addresst 256 x numblockst+ File System and Memory
Manager overhead). Refer to top of this file for examples of file system
memory usage.

Returns:
0 if the file system previously existed and was restored. Non-zero if the file system
memory had to be erased.

See also:
init_rom{[in the initialization library]
fcleaninit

8.19.4.14 void flockfile FILE *f_handle)
Gets exclusive access to a file.

Sleeps until exclusive access to a file is available. Note that locks cannot be nested. A
nested lock will be released on the very first calfualockfile andnot the matching
call.

This function is safe to be called from multiple processes at the same time.

Parameters:
f _handle handle of file to acquire exclusive access for

See also:
ftrylockfile
funlockfile

8.19.4.15 FILE * fopen (const charx flename const charx mode
Opens the specified file.

Opens the file specified and associates a stream with it. Files can be opened in read,
write, or append mode.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

230

Parameters:
filename name of the file to get a handle for

mode - If mode[0] =='r’, open a reading file stream. If mode[0] =='a’, open a
writing stream for appending. If mode[0] =='w’, open a writing stream for
a blank file.

Returns:
handle to the file, oNULL on failure

See also:
freopen
fclose

8.19.4.16 void fopen_fd (const charx filename const charx mode
Helper function that opens a file descriptor.

Helper function that opens a file descriptor. File descriptors are not immediately useful
to any C library function. Applications should use flopenfunction to open a file.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
filename Name of the file to get a descriptor for. The data pointed tfilbpame
must stay consistent for the duration of the use of the file descriptor. The
fopenmethod avoids this limitation by creating a copy of the name data.

mode Read/Write/Append mode string

Returns:
pointer to a file descriptor

See also:
fopen

8.19.4.17 intfputc (intch, FILE = f_handle)
Writes a character to a file stream.

Writes the specified character (converted from an int) to a file stream, advancing the
file position indicator.

This function is safe to be called from multiple processes at the same time.

231

Parameters:
ch character that will be written to the fifehandle

f_handle handle of the file we will write character to

Returns:
Character written if successful, elE®©F

See also:
fgetc
putc

8.19.4.18 int fputs (const chak str, FILE *f_handle)

Writes a string to a file stream.

Writes a null-terminated string to a file stream. The terminating character is not written.
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
str null-terminated string to write to a file

f_handle handle to file to write string to

Returns:
number of bytes written, dOF on failure

See also:
fgets
fwrite

8.19.4.19 size_tfread (void * ptr, size_tsize size_tnum, FILE «f_handle)
Read a number of bytes from a file stream.

Reads a block of data from a file stream. This function allows you tomeaglements
of sizesize However, note that this function always behaves as if it had been called
by:

fread(ptr, 1, size *num, f_handle);

This function is safe to be called from multiple processes at the same time.

232

Parameters:
ptr pointer to buffer to read data into

size size of each element to be read
num number of elements to read
f _handle handle to file to read from

Returns:
number of elements read

See also:
fgetc
fwrite

8.19.4.20 unsigned int freadbytes (void buffer, int length, FILE x streamn)
Reads bytes into a buffer from a file stream.

Reads a specified number of bytes into a buffer from a file stream. This function is used
by freadas a helper function. It may safely be used from user applications, although it
is not a standard file reading function (is not part of an ANSI-C standard library).

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
buffer Location to read data into

length Number of bytes to read
stream File to read data from

Returns:
Number of bytes read, &OFif the end of file is reached.

See also:
fread
fwritebytes

8.19.4.21 FILE « freopen (const charx newfilename const char+ mode FILE x
old_handlg

Associates an open stream with a different file.
Closes the file associated withkd_handleand opens a stream to the filewfilename

This function is safe to be called from multiple processes at the same time.

233

Parameters:
newfilename name of file to open

mode mode to opemewfilenamén (seefopenfor details)
old_handle file handle to flush and close

Returns:
Handle to filenewfilenameor NULL if the file could not be opened.

See also:
fopen
fclose

8.19.4.22 intfseekFILE «f_handle long int offset, int tag)
Sets the file position indicator.

Sets the file position indicator for a file stream. Note that the only currently supported
value fortagis SEEK_SET meaning that the valueffsetwil always be interpreted as
the offset from the beginning of the file.

After a call tofseek the end-of-file indicator for the file stream is reset.

This function behaves the samefageko The only difference is thdseekaaccepts an
offsetparameter of typeff_t.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
f _handle handle of file to set posision for

offset offset to set for file position
tag only SEEK_SETis supported

Returns:
Always 0.

See also:
ftell
fseeko
fsetpos

234

8.19.4.23 intfseekoKILE = f_handle off t offset int tag)
Sets the file position indicator.

Sets the file position indicator for a file stream. Note that the only currently supported
value fortagis SEEK_SET meaning that the valueffsetwil always be interpreted as
the offset from the beginning of the file.

After a call tofseekothe end-of-file indicator for the file stream is reset.

This function behaves the samefasek The only difference is thdseekaccepts an
offsetparameter of typéong int.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle of file to set posision for

offset offset to set for file position
tag only SEEK_SETis supported

Returns:
Always 0.

See also:
ftello
fseek
fsetpos

8.19.4.24 int fsetposKILE xf_handle constfpos_tx position)
Sets the file position indicator.

Sets a stream’s file position indicator from the position information pointed fbiy
tion. The value imositionshould have been obtained by a caligetpos If successful,
this function will also clear the end-of-file indicator for the stream.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
f_handle handle of file we will set the position for

position position in the file to set

Returns:
Always 0

235

See also:
fgetpos
fseek

8.19.4.25 long ftell FILE « f_handle)
Gets the file position indicator.

Gets the file position indicator for the specified file. This is the number of characters
from the beginning of the file.

This function behaves the sameftalo. The only difference is thdtello returns a
value of typeoff t.

This function is safe to be called from multiple processes at the same time.

Parameters:
f _handle handle of file to get current position of

Returns:
Current position in file, or -1L on failure.

See also:
fseek
ftello
fgetpos

8.19.4.26 off tftello (FILE *f_handle
Gets the file position indicator.

Gets the file position indicator for the specified file. This is the number of characters
from the beginning of the file.

This function behaves the sameftl. The only difference is thdtell returns a value
of typelong.

This function is safe to be called from multiple processes at the same time.

Parameters:
f _handle handle of file to get current position of

Returns:
Current position in file, or -1L on failure.

See also:
fseek
ftello
fgetpos

236

8.19.4.27 int ftrylockfile (FILE *f_handle)
Tries to get exclusive accress to a file.

Obtains exclusive access to a file if it is available. Otherwise, returns without waiting
for exclusive access. Note that locks cannot be nested. A nested lock will be released
on the very first call tdunlockfile andnot the matching call.

This function is safe to be called from multiple processes at the same time.

Parameters:
f _handle handle to file we will try to get exclusive access to

Returns:
0 if the file was locked, non-zero if someone else has the lock

See also:
flockfile
funlockfile

8.19.4.28 void funlockfile FILE «f_handle)
Release exclusive access on a file.

Releases exclusive access that was earlier acquired on this fileflegikigje or ftry-
lockfile Note that locks cannot be nested. This function will release all locks that the
current thread/process have on the file.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle to file to release exclusive access for

See also:
flockfile
ftrylockfile

8.19.4.29 size_tfwrite (const void « ptr, size_tsize size_tnum, FILE *f_handle)

Write a number of bytes to a file stream.

Writes a block of data to a file stream. This function allows you to writmelements
of sizesize However, note that this function always behaves as if it had been called
by:

fwrite(ptr, 1, size *num, f_handle);

237

This function is safe to be called from multiple processes at the same time.

Parameters:
ptr pointer to buffer of data to be written

size size of each element to be written
num number of elements to write
f _handle handle to file to write to

Returns:
number of elements written

See also:
fputc
fread

8.19.4.30 unsigned int fwritebytes (void buffer, int length, FILE * streamn)
Writes bytes to a file stream.

Writes the specified number of bytes to a file stream. This function is usédriig
as a helper function. It may safely be used from user applications, although it is not a
standard file writing function (is not part of an ANSI-C standard library).

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
buffer Location to write data from

length Number of bytes to write
stream File to write data to

Returns:
Number of bytes written, dEOFif an error occurred

See also:
fwrite
freadbytes

238

8.19.4.31 intgetcFILE *f handle
Gets the next unsigned character from the file stream.

Returns the next unsigned character (if available) from the file stream (converted to an
int), advancing the file position pointer. Note: This function is equivaleifgétc

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle of the file we will read from

Returns:
The next character from the file, BIOFif the end of file has been reached

See also:
fgetc
feof
putc

8.19.4.32 char getchar (void)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h

8.19.4.33 unsigned long getfreefsram ()
Gets the amount of free space in the file system.

Returns the number of bytes available to the file system. Note that this number is
completely independent of the amount of free RAM available from the ROM’s memory
manager. The TINI File System uses its own independent memory manager.

This function is safe to be called from multiple processes at the same time.

Returns:
Amount of free RAM available to the file system.

8.19.4.34 chax gets (charx, int n)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h

239

8.19.4.35 int mkdir (char x dirname)
Creates a directory.
Creates a directory with the specified directory name.

This function is safe to be called from multiple processes at the same time.

Returns:
non-zero on success, 0 on failure

8.19.4.36 int printf (const charx, ...)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h

8.19.4.37 int putc (intvalue FILE «f_handle)
Writes a character to a file stream.

Writes the specified character (converted from an int) to a file stream, advancing the
file position indicator. Note: This function is equivalentfputc

This function is safe to be called from multiple processes at the same time.

Parameters:
value character that will be written to the fifehandle

f_handle handle of the file we will write character to

Returns:
Character written if successful, elE®F

See also:
getc
fputc

8.19.4.38 char putchar (char)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h

240

8.19.4.39 int puts (const chax)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h

8.19.4.40 int remove (const chax filename
Removes a file from the file system.
Deletes the file specified Hifename

This function is safe to be called from multiple processes at the same time.

Parameters:
filename file name that will be deleted

Returns:
0 on success, non-zero on failure

See also:
rename

8.19.4.41 int rename (const chax oldname const charx newname
Renames a file.

Renames the file identified mfdnameto now be identified bpewname
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
oldname filename of the file that will change names

newname new name for the file calledldname

Returns:
0 on success, non-zero on failure

See also:
remove

241

8.19.4.42 void rewind FILE *f_handle
Resets the file position indicator for a stream.

Sets the file position indicator for the stream to the beginning of the file. It also resets
the end of file condition. This is functionally equivalent to:

fseek(f_handle, 0, SEEK_SET);
clearerr(f_handle);

This function is safe to be called from multiple processes at the same time.

Parameters:
f _handle handle to file that the streams will be reset to the beginning for

See also:
fseek
fsetpos

8.19.4.43 int scanf (const cha, ...)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h

8.19.4.44 int sprintf (charx, const charx, ...)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h

8.19.4.45 int sscanf (chak, const charx, ...)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h

8.19.4.46 chax tempnam (const charx dirname, const charx pfx)
Generates a path/filename that can be used for a temporary file.

Generates a path/filename that can be used to create a temporary file with. The pointer
that is returned is suitable to be freed usingm_free Make sure to use the Dal-

las Semiconductor memory management libraoyn400_mem Jrather than the Keil
memory manager to free the memory.

242

This function is safe to be called from multiple processes at the same time.

Parameters:
dirname Directory for temporary file name to be created for. A default directory
will be used ifdirnameis null.

pfx Prefix to prepend to temporary file name

Returns:
Pointer to temporary file name. Useem_fregto delete the memory.

See also:
tmpnam
tmpfile
mem_fredin the memory manager library]

8.19.4.47 FILE x tmpfile (void)

Generates a stream to a temporary file.

Generates a stream to a temporary file, opened for writing/update.

This function is safe to be called from multiple processes at the same time.

Returns:
File handle to a temporary file, &#ULL on failure.

See also:
tempnam
tmpnam

8.19.4.48 chax tmpnam (char * nametarge}
Generates a unige temporary filename.

Capable of generatingMP_MAX unique temporary filenames. This filename is suit-
able for using in a call téopen If the name is written to a static location, then this call
destroys the previous filename stored in that location.

This function is safe to be called from multiple processes at the same time.
Parameters:
nametarget Storage location for new temporary name. If NULL, the temporary
name will be copied to a static location.

Returns:
Location where temporary name is stored. This may be the samenastarget

243

See also:
tempnam
tmpfile

8.19.4.49 char ungetchar (char)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h

8.19.4.50 int vprintf (const charx, char %)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h

8.19.4.51 int vsprintf (charx, const charx, char x)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h

8.20 tini400_canbus.h File Reference
8.20.1 Detailed Description

CAN Bus Interrupt Driver for DS80C390 / 400.

This library provides an interrupt driven interface for the CAN peripherals on the
DS80C390 / 400 Microcontorller. This driver allows applications to asynchronously
transmit & receive CAN data while the applications perform other processing.

For detailed information on the DS80C400 please see Ithigh-Speed
Microcontroller User's Guide: DS80C400 Supplement .

The CAN library consists of four sub modules:

Initialization module initializes the global data structures, message centers, transmit
& receive buffers and interrupt handlers.

Configuration Module enables the application to configure the CAN peripheral and
the individual message centers.

Data Access Moduleprovides interface to application to transmit & receive data.

Interrupt handlers contains interrupt handlers for all CAN interrupts.

244

http://www.maxim-ic.com/products/microcontrollers/pdfs/DS80C400_user_guide.pdf
http://www.maxim-ic.com/products/microcontrollers/pdfs/DS80C400_user_guide.pdf

Data Structures

¢ structCanFrame
CAN Frame structure. Denotes the structure of a Transmitted or received CAN frame.

* structMCConfig

CAN Message center configuration structure. Used for configuration of receive para-
meters of Message Centers.

Defines

* #defineTRUE 1
TRUE.

* #defineFALSE O
FALSE.

« #defineTINI400_CANBUS_VERSIONB

« #defineCAN_ERROR_NOERROR

« #defineCAN_ERROR_GENERIG1

« #defineCAN_ERROR_BUSOFF2

« #defineCAN_ERROR_TIMEOUT-3

« #defineCAN_ERROR_NOT_INITIALIZED-4
« #defineCAN_ERROR_ARGUMENT-5

« #defineCAN_ERROR_PORT_ENABLEDB6

« #defineCAN_ERROR_PORT_DISABLED7

« #defineCAN_ERROR_MC_ACTIVE-8

« #defineCAN_ERROR_BIT_STUFF9

« #defineCAN_ERROR_FORMAT-10

« #defineCAN_ERROR_TRANSMIT_NO_ACK11
« #defineCAN_ERROR_BIT_ONE12

« #defineCAN_ERROR_BIT_ZERG13

« #defineCAN_ERROR_CRG14

« #defineCAN_ERROR_COUNT_EXCEEDEBL5
« #defineCAN_ERROR_NOFREEMG16

« #defineCAN_ERROR_BUFFULL-17

« #defineCAN_ERROR_BUFEMPTY:18

« #defineCAN_ERROR_INVALID_TSEG-19

« #defineCAN_ERROR_FRAMESDROPPEE20

245

Typedefs

« typedef signed chant8 _t
8 bit signed integer

« typedef unsigned chaiint8_t
8 bit unsigned integer

typedef signed inint16_t
16 bit signed integer

« typedef unsigned intint16_t
16 bit unsigned integer

* typedef signed longnt32_t
32 bit signed integer

« typedef unsigned longint32_t
32 bit unsigned integer

typedef unsigned chdoolean
boolean

Functions

uintl6_tcan_versiorfvoid)

Returns the version number of this CAN library. this function is safe to be called from
multiple processes at the same time.

« void can_init(void)
Initializes CAN library.

« int8_tcan_resetcontrollduint8_tCAN_No)
Resets CAN controller.

¢ int8_tcan_setsiestamodeint8_tCAN_No)
Puts the CAN Controller in SIESTA (low power) mode.

int8_tcan_disablecontrollguint8_tCAN_No)
Disables the CAN controller.

« int8_tcan_enablecontroll€uint8_tCAN_No)

246

Enables the CAN controller.

int8_tcan_enablecontrollerpassi@@nt8 tCAN_No)
Enables the CAN controller, but doesn’t connect CAN transmit to the bus.

int8_tcan_setrxwriteoverenabfaint8_tCAN_No, booleanwriteover)
Sets the state of write over in the receiver buffer.

int8_tcan_setl1bitglobalidmagkint8 tCAN_No, uint32_txmask)
Sets the 11 bit Standard Global Id Mask.

int8_tcan_set29bitglobalidmagkint8_tCAN_No, uint32_txmask)
Sets the 29 bit Standard Global Id Mask.

int8_t can_setllbitmessagecenterl5idmagkint8 t CAN_No, uint32_t
xmask)

Sets the global 11 Bit Message Center 15 ID Mask.

int8_t can_set29bitmessagecenterl5idmagkint8 t CAN_No, uint32_t
xmask)

Sets the global 29 Bit Message Center 15 ID Mask.

int8_tcan_setmediaidmagkint8 tCAN_No, uint16_tmask)
Sets the global media ID mask.

int8_tcan_setmediaidarbitratiqmint8_tCAN_No, uint16_tvalue)
Sets the global media ID arbitration.

int8_tcan_setbaudrateprescalent8_tCAN_No, uint16_tprescaler)
Sets the basic time quantum (tqu) necessary for CAN communication.

int8_t can_setsynchronizationjumpwidtfuint8_t CAN_No, uint8_t jump-
Width)

Sets the Synchronization Jump Width necessary for adjusting TSEG1 and TSEG2.

int8_tcan_setsamplerataint8_tCAN_No, uint8_tsampleRate)

Sets the sample rate which is whether to use one or three samples per bit time during
CAN communication.

int8_tcan_settsegint8_tCAN_No, uint8_ttsegl)
Sets Timing Segment 1 to a specified number of time quanta.

int8_tcan_settsegint8 tCAN_No, uint8_ttseg?)

247

Sets Timing Segment 1 to a specified number of time quanta.

int8_tcan_enablemessagecer(tgnt8_tCAN_No, uint8 tmessageCenter)
Puts the message center into Active mode if disabled.

int8_tcan_disablemessagecen(@nt8 tCAN_No, uint8_tmessageCenter)
Puts the message center into Disabled mode if active.

int8_tcan_freemessagecen{amt8_tCAN_No, uint8_tmessageCenter)
Returns the message center to the free pool.

int8_tcan_setmessagecentef@nt8 tCAN_No, uint8_tmessageCenter)
Sets Tx/Rx bit of a specific message center to 1 (transmit).

int8_tcan_setmessagecentefuint8 tCAN_No, uint8_tmessageCenter)
Sets Tx/Rx bit of a specific message center to 1 (receive).

int8_t can_setllbitmessagecenterarbitratiorwint8 t CAN_No, uint8 -
t messageCentanjnt32_t«xID)

Sets the 11 bit Arbitration ID.

int8_t can_set29bitmessagecenterarbitratior@int8_t CAN_No, uint8 -
t messageCentanjnt32_t«xID)

Sets the 29 bit Arbitration ID.

int8_t can_setmessagecentermessageidmaskeabt8 t CAN_No, uint8_-
t messageCentdspoleanmaskEnable)

Enables or disables Message ID Masking for a specific message center.

int8_t can_setmessagecentermediaidmaskenébiiet8 t CAN_No, uint8 -
t messageCentdrpoleanmaskEnable)

Enables or disables Media ID Masking for a specific message center.

int8_tcan_sendfram@int8_tCAN_No, CanFramesframe)
Transmits a data or RFR frame.

int8_tcan_getrxmessagecenfamt8 tCAN_No, MCConfigconfig)
Gets the first available message centre and configure it for reception.

int8_tcan_receiveframesavailak{igeint8 _tCAN_No)
Gets the number of frames rending in the receive buffer.

int8_tcan_receivefram@int8 tCAN_No, CanFrameframe)

248

Gets a frame from the receive buffer.

¢ int8_t can_getautoanswerrfrmessagecenteint8 t CAN_No, CanFrame
«frame)

Gets the first available message centre and configure it for Auto-answering Remote
RFRs.

¢ intl6_tcan_gettxerrorcour{tint8 _tCAN_NOo)
Gets the transmitter error count.

¢ intl6_tcan_getrxerrorcourfiint8_tCAN_No)
Gets the receiver error count.

8.20.2 Define Documentation

8.20.2.1 #define CAN_ERROR_ARGUMENT -5

Improper argument.

8.20.2.2 #define CAN_ERROR_BIT_ONE -12

Bit 1 error.

8.20.2.3 #define CAN_ERROR_BIT_STUFF -9

Bit stuff error. CAN controller detected more than five consecutive bits of an identical
state in an incoming message.

8.20.2.4 #define CAN_ERROR_BIT_ZERO -13

Bit O error.

8.20.2.5 #define CAN_ERROR_BUFEMPTY -18

Receiver buffer is empty.

8.20.2.6 #define CAN_ERROR_BUFFULL -17

Transmitter buffer is full.

8.20.2.7 #define CAN_ERROR_BUSOFF -2

CAN Bus off error. Transmit error count has reached or exceeded 256.

249

8.20.2.8 #define CAN_ERROR_COUNT_EXCEEDED -15

Transmit or Receiver Error counter has exceeded the error count of 96 (in case of ERCS
bit of COC register is 0) or reached 128 (in case of ERCS bit of COC register is 1).

8.20.2.9 #define CAN_ERROR_CRC -14

CRC error. The calculated CRC of the received message message does not match the
CRC embedded in the message.

8.20.2.10 #define CAN_ERROR_FORMAT -10

Format error. Received message has the wrong format.

8.20.2.11 #define CAN_ERROR_FRAMESDROPPED -20

One or more frames have been dropped. In this case also, valid frames are are returned
from the receiver buffer. User can chose to ignore this error and treat it as CAN_-
ERROR_NOERROR.

8.20.2.12 #define CAN_ERROR_GENERIC -1

Message Center is not in disabled mode.

8.20.2.13 #define CAN_ERROR_INVALID_TSEG -19

Time Segment value not set.

8.20.2.14 #define CAN_ERROR_MC_ACTIVE -8

Message Center Active.

8.20.2.15 #define CAN_ERROR_NOERROR 0

No Error

8.20.2.16 #define CAN_ERROR_NOFREEMC -16

No Free Message Center available.

8.20.2.17 #define CAN_ERROR_NOT_INITIALIZED -4

Can controller not initialized.

250

8.20.2.18 #define CAN_ERROR_PORT_DISABLED -7
CAN Port disabled.

8.20.2.19 #define CAN_ERROR_PORT_ENABLED -6
CAN Port enabled.

8.20.2.20 #define CAN_ERROR_TIMEOUT -3

Time out error.

8.20.2.21 #define CAN_ERROR_TRANSMIT_NO_ACK -11

Transmit not acknowledged error. Requested node did not acknowledge the sent mes-
sage.

8.20.2.22 #define TINI400_CANBUS_VERSION 3

Version number associated with this header file. Should be the same as the version
number returned by thean_versiorfunction.

See also:
can_version

8.21 tini400_crypt.h File Reference
8.21.1 Detailed Description

SHA-1 and MD4 functions for the DS80C400.

This library contains functions that compute the SHA-1 hash and MD4 hash of a byte
array.

For detailed information on the DS80C400 please see lIthgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Defines

 #defineTINI400_CRYPT_VERSION3

251

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Functions

* unsigned intrypt_version(void)
Returns the version number of this CRYPT library.

« void crypt_shal(short inLength, voidinBuff, void xoutBuff)
Computes a SHA-1 hash on the given message.

« void crypt_md4(unsigned chakout, unsigned chain, int n)
Computes a MD4 hash on the given message.

8.21.2 Define Documentation

8.21.2.1 #define TINI400_CRYPT_VERSION 3

Version number associated with this header file. Should be the same as the version
number returned by therypt_versiorfunction.

See also:
crypt_version

8.21.3 Function Documentation

8.21.3.1 void crypt_md4 (unsigned chak out, unsigned charsx in, int n)

Computes a MD4 hash on the given message.

See RFC 1320 for more information. WARNING! MD4 has known cryptographic
weaknesses. Where possible, SHA-1 should be used instead.

Parameters:
out holds the hash value on return (16 bytes)

in the message to hash
n length of the message to hash

8.21.3.2 void crypt_shal (shorinLength, void * inBuff,, void x outBuff)
Computes a SHA-1 hash on the given message.
See FIPS 180-1 for more information on SHA-1.

Parameters:
inLength length of the message to hash

inBuff the message to hash
outBuff holds the hash value on return (20 bytes minimum)

252

8.21.3.3 unsigned int crypt_version (void)

Returns the version number of this CRYPT library.

Returns:
Version number of this CRYPT library.

8.22 tini400_debugport.h File Reference
8.22.1 Detailed Description

Functions supporting the debug port on the TINIs400 module.

This library contains functions that write to the debug port on the TI-
NIs400. More information on the debug port can be found in the
application note 614, Diagnostic Port for the TINIs4Q0 found at
http://pdfserv.maxim-ic.com/en/an/app614.pdf

For detailed information on the TINIS400 debug port please Agglication
Note 614: Diagnostic Port for the TINIs400

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.
Defines

* #defineTINI400_DEBUGPORT_VERSION

Functions

¢ unsigned indebugport_versiofvoid)
Returns the version number of this DEBUGPORT library.

« void debugport_ini(void)

Initializes the timing for the debug port.

« void debugport_sendbyt@nsigned char ch)
Sends a character to the debug port.

« void debugport_sendhdxnsigned char b)
Prints a hexadecimal value to the debug port.

253

http://pdfserv.maxim-ic.com/en/an/app614.pdf
http://pdfserv.maxim-ic.com/en/an/app614.pdf
http://pdfserv.maxim-ic.com/en/an/app614.pdf

« void debugport_sendstrin@nsigned chaxs)
Sends a string to the debug port.

8.22.2 Define Documentation

8.22.2.1 #define TINI400_DEBUGPORT_VERSION 2
Version number associated with this header file. Should be the same as the version
number returned by theéebugport_versiofunction.

See also:
debugport_version

8.22.3 Function Documentation

8.22.3.1 void debugport_init (void)
Initializes the timing for the debug port.

This function must be called after init_rom before the debug port can be used. For
correct serial port timing, set the clock frequency usinig setfrequency()

8.22.3.2 void debugport_sendbyte (unsigned chah)
Sends a character to the debug port.

This function sends a character to the debug port at 115200 bps. Note: This function
disables interrupts while sending the character.

8.22.3.3 void debugport_sendhex (unsigned chéj
Prints a hexadecimal value to the debug port.

This function converts a byte into hexadecimal and sends the result to the debug port
at 115200 bps. Note: This function disables interrupts while sending each character.

8.22.3.4 void debugport_sendstring (unsigned char s)
Sends a string to the debug port.

This function sends a zero-terminated string to the debug port at 115200 bps. Note:
This function disables interrupts while sending each character.

254

8.22.3.5 unsigned int debugport_version (void)
Returns the version number of this DEBUGPORT library.

Returns:
Version number of this DEBUGPORT library.

8.23 tini400_dns.h File Reference
8.23.1 Detailed Description

DNS Client functions for the DS80C400 ROM.

This libarary contains functions for resolving a host name to an IP address that is usable
by the silicon software for making socket function calls. Note that the functions in this
library are not safe to be called from multiple processes at the same time. The functions
in this library store their results in static memory locations, and must be retrieved and
stored in alternate locations before further DNS operations are performed.

Note that as of version 3, this library has been changed to use the system-wide DNS
server entries, which might be set by the DHCP client (from data recieved in a DHCP

response). Applications can make sure they have a valid server entry by making sure
the DNS server IP addresses are not all 0’s, since the ROM initialization functions clear
the DNS server entries.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.
The functions in this library use String functions suctspsntf for data format-
ting, which are not multiprocess safe. Care must be taken that DNS functions do
not operate at the same time as other string formatting operations.

#include <stdlib.h >

Data Structures

¢ structhostent
¢ structmailhostent

Defines

« #defineTINI400_DNS_VERSION?

255

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Functions

« hostent gethostbyaddfvoid xaddr,size_tlen, int type)
Looks up information on a host given an IP address.

* hostentx gethostbynamécharxname)
Looks up information on a host given a host name.

¢ void dns_init(void)
Initializes the DNS client code.

 void dns_settimeoutunsigned long t)
Sets the socket timeout value used for DNS server communications.

« void dns_setmaxtimeoftinsigned long t)
Sets the maximum socket timeout value used for DNS server communications.

 unsigned longins_gettimeougvoid)
Gets the socket timeout value used for DNS server communications.

« void dns_getprimarystructsockaddesa)
Gets the address of the primary DNS server.

« void dns_setprimarystructsockaddesa)
Sets the address of the primary DNS server.

« void dns_getsecondafgtructsockaddrsa)
Gets the address of the secondary DNS server.

« void dns_setsecondafgtructsockaddesa)
Sets the address of the secondary DNS server.

* mailhostent dns_getmxcharxname)
Performs a DNS MX record lookup.

« void dns_enableipv6queriéansigned char enable)
Enables/disables attempts to make IPv6 DNS queries.

¢ unsigned indns_versior)
Returns the version number of this DNS client library.

256

8.23.2 Define Documentation

8.23.2.1 #define TINI400_DNS_VERSION 7
Version number associated with this header file. Should be the same as the version
number returned by théns_versiorfunction.

See also:
dns_version

8.23.3 Function Documentation

8.23.3.1 void dns_enableipv6équeries (unsigned chanablg
Enables/disables attempts to make IPv6 DNS queries.

Use anenablevalue of 0 to disable attempts to perform IPv6 queries. Diabling IPv6
gueries can dramatically increase the speed of the library routines. ésahblevalue
of non-zero to enable IPv6 DNS queries.

Parameters:
enable 0 to disable IPv6 DNS queries, non-zero to enable

8.23.3.2 structmailhostent« dns_getmx (charx name
Performs a DNS MX record lookup.

MX records are mail exchanger records. In order to send an email without using a malil
relay (mail host), you need to look up the MX record of the remote domain and then
open the SMTP connection to the address returnedhisy getmx()

Parameters:
name domain to look up.

Returns:
DNS response(s) or NULL for failed lookup. If any valid data is returned, the first
invalid mailhostenentry will haveNULL for a host name.

See also:
mailhostent

8.23.3.3 void dns_getprimary (structsockaddr x s&)

Gets the address of the primary DNS server.

257

Fills in an address structure with the IP of the secondary DNS server used by this DNS
client code. DNS operations first try to use a server designated as primary, and the use
a server designated as secondary if the primary fails to return results.

Note that this gets the system’s primary DNS server setting. This may have been set
by the DHCP client or by previous calls tims_setprimaryThis function is equivalent
to dhcp_getprimarydns

Parameters:
sa will be filled in with the address of the primary DNS server

See also:
dns_setprimary
dns_setsecondary
dns_getsecondary
dhcp_getprimarydns

8.23.3.4 void dns_getsecondary (strustockaddr x sa)
Gets the address of the secondary DNS server.

Fills in an address structure with the IP of the secondary DNS server used by this DNS
client code. DNS operations first try to use a server designated as primary, and the use
a server designated as secondary if the primary fails to return results.

Note that this gets the system’s secondary DNS server setting. This may have been
set by the DHCP client or by previous calls dos_setsecondaryThis function is
equivalent tadhcp_getsecondarydns

Parameters:
sa will be filled in with the address of the secondary DNS server

See also:
dns_setprimary
dns_getprimary
dns_setsecondary
dhcp_getsecondarydns

8.23.3.5 unsigned long dns_gettimeout (void)

Gets the socket timeout value used for DNS server communications.

Gets the timeout value applied to all sockets that communicate with the DNS server.
Call this function to verify the timeout used by DNS socket operations.

Returns:
Global timeout value for sockets use in DNS server communications

258

See also:
dns_settimeout

8.23.3.6 void dns_init (void)
Initializes the DNS client code.

Performs initialization for the DNS client. This function need only be called once at
the start of the application.

8.23.3.7 void dns_setmaxtimeout (unsigned lorty
Sets the maximum socket timeout value used for DNS server communications.

Sets the maximum timeout value that can be applied sockets that communicate with
the DNS server. DNS operations are retried up to 4 times, and each time the timeout is
doubled. This function sets the maximum timeout allowed for a single operation.

Parameters:
t Global maximum timeout value for sockets use in DNS server communications

See also:
dns_gettimeout
dns_settimeout

8.23.3.8 void dns_setprimary (structsockaddr x s@)
Sets the address of the primary DNS server.

Sets the address of the primary DNS server used by this DNS client code. DNS oper-
ations first try to use a server designated as primary, and the use a server designated as
secondary if the primary fails to return results.

Note that this sets the system’s primary DNS server setting. If the system’s primary
DNS server entry had been previously set by the DHCP client, that information will be
destroyed by this function.

Parameters:
sa address of primary DNS server

See also:
dns_getprimary
dns_setsecondary
dns_getsecondary

259

8.23.3.9 void dns_setsecondary (strusbckaddr x sa)
Sets the address of the secondary DNS server.

Sets the address of the secondary DNS server used by this DNS client code. DNS
operations first try to use a server designated as primary, and the use a server designated
as secondary if the primary fails to return results.

Note that this sets the system’s secondary DNS server setting. If the system’s secondary
DNS server entry had been previously set by the DHCP client, that information will be
destroyed by this function.

Parameters:
sa address of secondary DNS server

See also:
dns_getprimary
dns_setprimary
dns_getsecondary

8.23.3.10 void dns_settimeout (unsigned lorty
Sets the socket timeout value used for DNS server communications.

Sets the timeout value applied to all sockets that communicate with the DNS server.
Call this function to make sure DNS operations fail after a reasonable waiting time.
All DNS operations are retried up to 4 times. In each retry, the local timeout will be
doubled, up to the maximum timeout allowed.

Parameters:
t Global timeout value for sockets use in DNS server communications

See also:

dns_gettimeout
dns_setmaxtimeout

8.23.3.11 unsigned int dns_version ()

Returns the version number of this DNS client library.

Returns:
Version number of this DNS client library.

260

8.23.3.12 structhostent: gethostbyaddr (void* addr, size_tlen, int type
Looks up information on a host given an IP address.
Contacts a DNS server and attempts to find known host names for the given IP address.

Parameters:
addr IP address structure, eithier addrorin6_addr

len The length of the input structure passedtidr (4 or 16)
type AF_INETor AF_INET6

Returns:
Host structure with any names found,MULL if the operation failed.

See also:
AF_INET
AF_INET6
in_addr
in6_addr
gethostbyname
inet_addr
hostent

8.23.3.13 structhostentx gethostbyname (char name
Looks up information on a host given a host name.

Contacts a DNS server and attempts to find known IP addresses given a host name.

Parameters:
name String representing the host name

Returns:
Host structure with any names found,MULL if the operation failed.

See also:

gethostbyaddr
hostent

8.24 tini400_ftpclient.h File Reference
8.24.1 Detailed Description

FTP Client functions for DS80C400.

This library contains functions for FTP Client.

261

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

For detailed information on the DS80C400 please see lIthgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

#include "rom400_sock.h"
#include "stdio.h"
#include “ftpcodes.h"
#include <string.h >

#include <ctype.h >

Defines

 #defineFTPCLIENT_VERSION_NUMBERL

* #defineFTPCLIENT_ASCIIO

o #defineFTPCLIENT_BINARY 1
 #defineFTPCLIENT_PORTNUMBER21

o #defineFTPCLIENT_ACTIVE_MODE1
 #defineFTPCLIENT_PASSIVE_MODB
 #defineFTPCLIENT_DETAILED_DIRLISTING1
* #defineFTPCLIENT_SHORT_DIRLISTIN®

» #defineFTPCLIENT_STATUS_SUCCESG
 #defineFTPCLIENT_SOCKET_ERRORL

o #defineFTPCLIENT_FILE_NOT_FOUND2

* #defineFTPCLIENT_FILE_IO_ERRORS3
 #defineFTPCLIENT_ALREADY_LOGGEDIN-4
* #defineFTPCLIENT_NOT_CONNECTEDS

Functions

 unsigned inftpclient_version(void)
Returns version number of ftpclient library.

« void ftpclient_init (long milli_seconds)
Initializes the ftpclient library.

« int ftpclient_connect{structsockaddr_inksa, chasuser, chaxpasswd)
Connects with FTP server.

262

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

int ftpclient_settransmissionmodehar flag)
Sets data transfer mode in FTP server.

void ftpclient_setdataconnectionmofar flag)
Set data connection mode in ftpclient library.

int ftpclient_getfile(char«filename, chakstoreas_filename)
Downloads file from FTP server.

int ftpclient_putfile(char«filename, chakstoreas_filename)
Uploads tini file to FTP server.

int ftpclient_dir(charxname, chaxdir_str, int dir_str_len, char format)
Returns FTP server directory list.

int ftpclient_pwd(charsxpath_str, int path_str_len)
Returns current FTP server directory path.

int ftpclient_cd(charxpath_str)
Changes server working directory.

int ftpclient_rawcmdcharxinput_cmd)
Sends command to FTP server.

int ftpclient_dataconnectiof)

Configures for new data connection. exchange port number and ip address informa-
tion with FTP server for data connection.

int ftpclient_get_dataconnection_hand(er
Establishes new data connection and returns socket handler.

int ftpclient_disconnecfvoid)
Terminates connection with FTP server.

charx ftpclient_getlaststatu@void)
Returns last FTP server response string.

8.24.2 Define Documentation

8.24.2.1 #define FTPCLIENT_ACTIVE_MODE 1

Definition for active data connection mode

263

See also:
ftpclient_setdataconnectionmode

8.24.2.2 #define FTPCLIENT_ALREADY_LOGGEDIN -4

Error value indicates that client application is already logged-in

8.24.2.3 #define FTPCLIENT_ASCII 0

Definition for ASCI| data transfer mode

See also:
ftpclient_settransmissionmode

8.24.2.4 #define FTPCLIENT_BINARY 1

Definition for BINARY data transfer mode

See also:
ftpclient_settransmissionmode

8.24.2.5 #define FTPCLIENT_DETAILED_DIRLISTING 1

Definition for detailed directory listing

See also:
ftpclient_dir

8.24.2.6 #define FTPCLIENT_FILE_IO_ERROR -3

File operation error value

8.24.2.7 #define FTPCLIENT_FILE_NOT_FOUND -2

File not found error value

8.24.2.8 #define FTPCLIENT_NOT_CONNECTED -5

Error value indicates that server is not connected

264

8.24.2.9 #define FTPCLIENT_PASSIVE_MODE 0

Definition for passive data connection mode

See also:
ftpclient_setdataconnectionmode

8.24.2.10 #define FTPCLIENT_PORTNUMBER 21

Definition for default FTP server port number

See also:
ftpclient_connect

8.24.2.11 #define FTPCLIENT_SHORT_DIRLISTING 0

Definition for short directory listing

See also:
ftpclient_dir

8.24.2.12 #define FTPCLIENT_SOCKET_ERROR -1

Socket error value

8.24.2.13 #define FTPCLIENT_STATUS_SUCCESS 0

FTP Client Status Success value, this value is returned when operation is completed
successfully.

8.24.2.14 #define FTPCLIENT_VERSION_NUMBER 1

Version number associated with this header file. Should be the same as the version
number returned by thigpclient_versiorfunction.

See also:
ftpclient_version

8.24.3 Function Documentation

8.24.3.1 int ftpclient_cd (charx path_st)
Changes server working directory.

This function changes server working directory

265

Parameters:
path_str Address of memory buffer that contains new working directory path
name

Returns:
* FTPCLIENT_NOT_CONNECTEDBf connection is not established

* FTPCLIENT_SOCKET_ERROHRf socket communication error happens
Otherwise, returns FTP server status code

8.24.3.2 int ftpclient_connect (structsockaddr_in % sa char * user, char x
passwdl

Connects with FTP server.

This function establishes connection with FTP server. Connection with FTP server
must be established before calling any other functions that interact with FTP server.

Parameters:
sa socket address contains server ip address and FTP server portrii@DEr
Passing zero value for porthumber enables ftpclient library to use default ftp
port number

user User name
passwdPassword

Returns:
One of the following values:

 FTPCLIENT_ALREADY_LOGGEDINf ftpclient is already connected with
server

 FTPCLIENT_SOCKET_ERRGHf there is any error in socket communica-
tion
Otherwise, FTP server status code will be returned for successful or failed authen-
tication

NOTE: In case of error, the server socket will be closed before returning from function

8.24.3.3 int ftpclient_dataconnection ()

Configures for new data connection. exchange port number and ip address information
with FTP server for data connection.

This function configures for new data connection. For Active mode connection, sends
IP address and port number of ftp client to which the data connection have to be estab-
lished. For passive mode connection, it gets server IP address and port number for data
connection

266

Returns:
FTPCLIENT_SOCKET_ERRGRsocket communication error happens. Other-
wise, returns FTP server status code

8.24.3.4 int ftpclient_dir (char x name char * dir_str, int dir_str_len, char for-
mat)

Returns FTP server directory list.

This function returns FTP server directory list in short format or detailed format. This
function can also be used to retrieve information about specific file.

Parameters:
name Name of the file to get file attributes information. If NULL, then informa-
tion about all entries of current directory will be returned.

dir_str Address of memory buffer where directory information will be stored
dir_str_len Maximum amount of data to be storeddir_str memory buffer

format Specifies the format of directory listing. The value for this parameter
should be eitheFTPCLIENT _DETAILED DIRLISTIN®r FTPCLIENT _-
SHORT_DIRLISTING

Returns:
e FTPCLIENT_NOT_CONNECTEDBf connection is not established

* FTPCLIENT_SOCKET_ERROHRf socket communication error happens
Otherwise, returns FTP server status code

8.24.3.5 int ftpclient_disconnect (void)
Terminates connection with FTP server.

This function terminates connection with FTP server. the server socket will be closed
even if there is any socket error

Returns:
* FTPCLIENT_SOCKET_ERROR socket communication error happens

* FTPCLIENT_NOT_CONNECTEDBIf connection is not established
Otherwise, returns FTP server status code

8.24.3.6 int ftpclient_get dataconnection_handler ()
Establishes new data connection and returns socket handler.

This function establishes new data connection and returns socket handler.

267

IMPORTANT NOTE: For Active mode connection, This function has to be called
after sending control command to server to initiate the data transfer as server will es-
tablish data connection after receiving control command. For passive mode connection,
this function has to be called before sending control command to server to initiate the
data transfer as server expects data connection to be made before responding for control
connection.

Returns:
FTPCLIENT_SOCKET_ERRGRsocket communication error happens. Other-
wise, returns FTP server status code

8.24.3.7 int ftpclient_getfile (charx filename char x storeas_filenamg
Downloads file from FTP server.
This function downloads file from FTP server and store it in tini file system.

Parameters:
filename Name of file to get from the FTP server

storeas_filenameName of file to store on TINI. If value for this parameter is
NULL, then the file will be stored under same name as it is on the FTP
server.

Returns:
e FTPCLIENT_NOT_CONNECTEDBf connection is not established

* FTPCLIENT_FILE_1O_ERRORIf error happens while storing file

* FTPCLIENT_SOCKET_ERROR socket communication error happens
Otherwise, returns FTP server status code

8.24.3.8 char ftpclient_getlaststatus (void)
Returns last FTP server response string.

This function returns the FTP server’s response status string for the last control com-
mand sent to the server.

Returns:
Pointer to response status string

8.24.3.9 void ftpclient_init (longmilli_second$
Initializes the ftpclient library.

This function initializes ftpclient library internal datastructure and configures the li-
brary with following default configuration

268

* ASCII file transfer mode

* Active data connection mode

Parameters:
milli_seconds socket timeout value

8.24.3.10 int ftpclient_putfile (charx filename char « storeas_filenamp
Uploads tini file to FTP server.

This function uploads tini file to FTP server.

Parameters:
filename Name of file on the TINI to send to the server

storeas_filenameName to give the file put on the FTP server. If NULL, then the
name for the file on TINI will be used.

Returns:
 FTPCLIENT_NOT_CONNECTEDBIf connection is not established

e FTPCLIENT_FILE_NOT_FOUNDIf the input tini file name is not there in
tini file system

e FTPCLIENT_SOCKET_ERROHR socket communication error happens
Otherwise, returns FTP server status code

8.24.3.11 int ftpclient_pwd (charx path_str, int path_str_len
Returns current FTP server directory path.

This function returns the current FTP server directory path name

Parameters:
path_str Address of memory buffer where the current FTP server path name will
be stored

path_str_len Maximum amount of data can be stored in path_str memory buffer

Returns:
 FTPCLIENT_NOT_CONNECTEDf connection is not established

* FTPCLIENT_SOCKET_ERROR socket communication error happens
Otherwise, returns FTP server status code

269

8.24.3.12 int ftpclient_rawcmd (charx input_cmad
Sends command to FTP server.

This function sends command to FTP server through control connection and returns
FTP server status code. This function ddE3T check whether server is connected.

NOTE: To retrieve the response string of server for control command, call the
ftpclient_getlaststatuiinction

Parameters:
input_cmd command to send to the FTP server

Returns:
FTPCLIENT_SOCKET_ERRGRsocket communication error happens. Other-
wise, returns FTP server status code

8.24.3.13 void ftpclient_setdataconnectionmode (chdliag)
Set data connection mode in ftpclient library.

This function sets data connection mode in ftpclient library. All future data connections
will be made in the mode set by this function

Parameters:
flag should be eitheFTPCLIENT_ACTIVE_MODBr FTPCLIENT_PASSIVE_-
MODE

Warning:

Invalid value for "flag" yields unexpected behavior of ftpclient data transfer func-
tions

8.24.3.14 int ftpclient_settransmissionmode (chditag)
Sets data transfer mode in FTP server.

This function sets data transfer mode in FTP server and ftpclient library

Parameters:
flag should be eitheFTPCLIENT_ASCIlbr FTPCLIENT_BINARY

NOTE: Invalid input forflag will be interpreted a&TPCLIENT_BINARY

Returns:
returns FTP server status code

270

8.24.3.15 unsigned int ftpclient_version (void)

Returns version number of ftpclient library.

Returns:
Version number of ftpclient library

8.25 tini400 isr.h File Reference
8.25.1 Detailed Description

Interrupt Service Routine installation functions.

This library contains functions that allow processes to install their own ISR’s from C
programs. Normally, the Keil compiler would automatically install interrupts in their
proper locations. However, the act of initializing the ROM sets the entire interrupt
vector table, so any interrupt vector that the Keil compiler generates are destroyed.
These functions allow programs to restore or update their interrupt vector tables.

To use interrupts written in C with the Keil compiler, functions should be defined with
theinterrupt keyword. Also, under the Project Target options dialog, under the C51
panel, uncheck the box labeléuterrupt Vectors at AddressThen make sure to call
isr_setinterruptvectosometime aftemit_rom has been called.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

The functions in this library are multi-process safe—that is, if you call the same method
from two different processes at the same time, the parameters to the function will not
be destroyed.

Defines

 #defineTINI400_ISR_VERSION4
« #definelSR_EXTERNALINTOO

* #definelSR_TIMERO1

o #definelSR_EXTERNALINT12

« #definelSR_TIMER13

* #definelSR_SERIALO4

* #definelSR_TIMER25

* #definelSR_POWERFAIL6

* #definelSR_SERIAL17

« #definelSR_EXTERNALINT23458
 #definelSR_EXTERNALINT28

« #definelSR_TIMER39

* #definelSR_EXTERNALINT39

271

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

* #definelSR_SERIAL210

« #definelSR_EXTERNALINT410

* #definelSR_WRITEPROTECTL1

o #definelSR_EXTERNALINT511

* #definelSR_WATCHDOG12

* #definelSR_CANO013
 #definelSR_ETHERNET14
 #definelSR_CAN114
 #definelSR_ETHERNETPOWERS5
 #definelSR_CANBUSACTIVITY 15

Functions

 void isr_setinterruptvectqfint vector_number, voigdfunction_ptr)
Installs an interrupt vector.

 void x isr_getinterruptvectofint vector_number)
Gets the current value of an interrupt vector.

 unsigned inisr_version(void)
Returns the version number of this ISR library.

8.25.2 Define Documentation

8.25.2.1 #define ISR_CANO 13

Interrupt vector number for th€é AN 0 interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.2 #define ISR_CANL1 14
Interrupt vector number for theAN 1 interrupt. Applicable to DS80C390 only
See also:

isr_setinterruptvector
isr_getinterruptvector

272

8.25.2.3 #define ISR_CANBUSACTIVITY 15
Interrupt vector number for th€EAN 0 & 1 bus activity interrupt. Applicable to
DS80C390 only

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.4 #define ISR_ETHERNET 14
Interrupt vector number for thethernet Activity interrupt. Applicable to DS80C400
only.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.5 #define ISR_ETHERNETPOWER 15

Interrupt vector number for th&xternal Power Mode interrupt. Applicable to
DS80C400 only

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.6 #define ISR_EXTERNALINTO O

Interrupt vector number for thexternal Interrupt O interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.7 #define ISR_EXTERNALINT1 2
Interrupt vector number for thexternal Interrupt 1 interrupt.
See also:

isr_setinterruptvector
isr_getinterruptvector

273

8.25.2.8 #define ISR_EXTERNALINT2 8

Interrupt vector number for th&xternal Interrupt 2 interrupt. Applicable to
DS80C390 only

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.9 #define ISR_EXTERNALINT2345 8

Interrupt vector number for thExternal Interrupt 2/3/4/5 interrupt. Applicable to
DS80C400 only

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.10 #define ISR_EXTERNALINT3 9

Interrupt vector number for th&xternal Interrupt 3 interrupt. Applicable to
DS80C390 only

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.11 #define ISR_EXTERNALINT4 10

Interrupt vector number for th&xternal Interrupt 4 interrupt. Applicable to
DS80C390 only

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.12 #define ISR_EXTERNALINT5 11

Interrupt vector number for th&xternal Interrupt 5 interrupt. Applicable to
DS80C390 only

See also:
isr_setinterruptvector
isr_getinterruptvector

274

8.25.2.13 #define ISR_POWERFAIL 6

Interrupt vector number for thRower Fail interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.14 #define ISR_SERIALO 4

Interrupt vector number for th&erial Port O interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.15 #define ISR_SERIAL1 7

Interrupt vector number for th&erial Port 1 interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.16 #define ISR_SERIAL2 10
Interrupt vector number for th8erial Port 2 interrupt. Applicable to DS80C400
only.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.17 #define ISR_TIMERO 1
Interrupt vector number for thEmer O interrupt.
See also:

isr_setinterruptvector
isr_getinterruptvector

275

8.25.2.18 #define ISR_TIMERL1 3
Interrupt vector number for thEimer 1 interrupt.
See also:

isr_setinterruptvector
isr_getinterruptvector

8.25.2.19 #define ISR_TIMER2 5
Interrupt vector number for thEimer 2 interrupt.
See also:

isr_setinterruptvector
isr_getinterruptvector

8.25.2.20 #define ISR_TIMER3 9
Interrupt vector number for thEimer 3 interrupt. Applicable to DS80C400 only
See also:

isr_setinterruptvector
isr_getinterruptvector

8.25.2.21 #define ISR_WATCHDOG 12
Interrupt vector number for thé/atchdog Timer interrupt.
See also:

isr_setinterruptvector
isr_getinterruptvector

8.25.2.22 #define ISR_WRITEPROTECT 11
Interrupt vector number for thé/rite Protect interrupt. Applicable to DS80C400
only.

See also:
isr_setinterruptvector
isr_getinterruptvector

276

8.25.2.23 #define TINI400_ISR_VERSION 4

Version number associated with this header file. Should be the same as the version
number returned by thisr_versionfunction.

See also:
isr_version

8.25.3 Function Documentation

8.25.3.1 voic isr_getinterruptvector (int vector_numbey
Gets the current value of an interrupt vector.

Returns a function pointer to the interrupt service routine for the interrupt defined by
vector_numberNote thatvector_numberis NOT the address of the interrupt, but the
number corresponding to that interrupt as described in the Keil documentation. For
example, avector_numbenpf 1 corresponds to the interrupt at addré&h, which is

the timer O overflow interrupt. Arector_numbenf 4 corresponds to the interrupt at
addres23h, which is the serial port 0 interrupt.

This file contains several defines for common interrupts that can be used for the
vector_numbeparameter.

Parameters:
vector_numberlID of the interrupt to be installed. It is up to the user to make sure
this parameter is in range

Returns:
function pointer for the interrupt service routine. RetukidLL if the instruction
at the interrupt's address is not BdMP.

See also:
isr_setinterruptvector

8.25.3.2 void isr_setinterruptvector (intvector_numbeyvoid x function_ptr)
Installs an interrupt vector.

Installs the functiorfunction_ptras the interrupt service routine for the interrupt de-
fined byvector_numberNote thatvector_numbeis NOT the address of the interrupt,

but the number corresponding to that interrupt as described in the Keil documentation.
For example, aector_numbeof 1 corresponds to the interrupt at addré8d, which

is the timer O overflow interrupt. Aector_numbeof 4 corresponds to the interrupt at
addres23h, which is the serial port O interrupt.

This file contains several defines for common interrupts that can be used for the
vector_numbeparameter.

277

The functionfunction_ptrshould terminate with &eti statement (functions declared
with theinterrupt keyword in Keil automatically have this).

Parameters:
vector_numberID of the interrupt to be installed. It is up to the user to make sure
this parameter is in range

function_ptr function that will be the interrupt service routine

See also:
isr_getinterruptvector

8.25.3.3 unsigned intisr_version (void)
Returns the version number of this ISR library.

Returns:
Version number of this ISR library.

8.26 tini400_mime.h File Reference
8.26.1 Detailed Description

MIME Library functions for DS80C400 processor.

This library contains functions for encoding and decoding mime messages
For detailed information on the DS80C400 please see Ihigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

Defines

* #defineBASE641
» #defineEQUOTED_ PRINTABLE2
» #defineMIME_VERSION 1

278

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Functions

« void mime_init(void)
Initializes mime library.

¢ charx mime_encodéunsigned char farinbuf, unsigned int size, char encode_-
flag)
Encodes the given message to mime format.

¢ charx mime_decodéchar far«inbuf, char decode_flag)
Decodes the given mime message.

8.26.2 Define Documentation

8.26.2.1 #define BASE64 1

Definition for mime base64 encoding and decoding method

See also:
mime_encodemime_decode

8.26.2.2 #define MIME_VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by th@ime_versiorunction.

See also:
mime_version

8.26.2.3 #define QUOTED_PRINTABLE 2

Definition for mime quoted printable encoding and decoding method

See also:
mime_encodemime_decode

8.26.3 Function Documentation

8.26.3.1 chak mime_decode (char far« inbuf, char decode_flay
Decodes the given mime message.
See RFC1521 for more information on MIME

279

Parameters:
inbuf - mime message to decode

decode_flag- decoding flag indicates what decoding method to be used, should
be eitheBASE640r QUOTED_PRINTABLE

Returns:
address of decoded message buffer or NULL if function failed

8.26.3.2 chak mime_encode (unsigned char fak inbuf, unsigned intsize char
encode_flay

Encodes the given message to mime format.
See RFC1521 for more information on MIME

Parameters:
inbuf input buffer to encode

size length of the input buffer
encode_flagnot used, reserved for future use

Returns:
address of encoded mime message buffer or NULL if function failed

8.27 tini400_ntim.h File Reference
8.27.1 Detailed Description

NTLM Library functions for DS80C400 processor.

This library contains functions for managing NeTwork Lan Manager(NTLM) authen-
tication protocol

For detailed information on the DS80C400 please see Ihigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

Data Structures

 struct_sbufhdr
« struct_typelmsghdr

280

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

e struct_typelmsg
struct_type2msghdr
struct_type2msg
struct_type3msghdr
struct_type3msg

Defines

« #defineMAX_NTLM_BUF 1024
#defineNTLM_SIGN "NTLMSSP\0"
#defineNTLM_TYPE1_MSG1
#defineNTLM_TYPE3_MSG3
#defineNTLM_FLAGS 0x0000b207L

Typedefs

« typedef_sbufhdrsbufhdr

« typedef_typelmsghdtypelmsghdr
typedef_typelmsgypelmsg
typedef_type2msghdtype2msghdr
typedef_type2msgype2msg
typedef_type3msghdtype3msghdr
typedef_type3msgype3msg

Functions

« void generate_typel mgtypelmsgstl msg, chakuser)
Generates typel NTLM message.

« void generate_type3_mgtype2msg«t2_msg,type3msg«t3_msg, chakuser,
charxpass)

Generates type3 NTLM message.

8.27.2 Define Documentation

8.27.2.1 #define MAX_NTLM_BUF 1024

definition for maximum ntim security buffer length.

See also:
generate_typel msgenerate type3 msg

281

8.27.2.2 #define NTLM_FLAGS 0x0000b207L
definition for NTLM flags

See also:
generate_typel_msgenerate_type3_msg

8.27.2.3 #define NTLM_SIGN "NTLMSSP\0"

definition for NTLM signature

See also:
generate_typel_ msgenerate_type3_msg

8.27.2.4 #define NTLM_TYPE1_MSG 1
definition for type 1 NTLM Message

See also:
generate_typel msg

8.27.2.5 #define NTLM_TYPE3_MSG 3
definition for type 3 NTLM Message

See also:
generate_type3_msg

8.27.3 Typedef Documentation

8.27.3.1 typedef struct sbufhdr sbufhdr

Structure for security buffer header

8.27.3.2 typedef struct typelmsgtypelmsg

Structure for typel message

8.27.3.3 typedef struct typelmsghdrtypelmsghdr

Structure for typel message header

8.27.3.4 typedef struct type2msgtype2msg

Structure for type2 message

282

8.27.3.5 typedef struct type2msghdrtype2msghdr

Structure for type2 message header

8.27.3.6 typedef struct type3msgtype3msg

Structure for type3 message

8.27.3.7 typedef struct type3msghdrtype3msghdr

Structure for type3 message header

8.27.4 Function Documentation

8.27.4.1 void generate_typel mstypelmsgs tl_msg char x user)
Generates typel NTLM message.

This function generates Typel NTLM message that is sent to server to get type2 mes-
sage. For more information, See NTLM authentication protocol specification.

Parameters:
tl_msgthe NTLM type 1 message

user the user name

See also:
generate_type3_msg

8.27.4.2 void generate_type3_msgtype2msgx t2_msgtype3msgx t3_msg char
x user, char * pas9

Generates type3 NTLM message.

This function generates Type3 NTLM message that contains both LAN Manager and
NT LAN manager responses for server challenge.For more information, See NTLM
authentication protocol specification.

Parameters:
t2_msgthe type 2 NTLM message

t3_msgthe type 3 NTLM message
user user name
pass password

See also:
generate_typel_msg

283

8.28 tini400_pop3.h File Reference
8.28.1 Detailed Description

Pop3 Library functions for DS80C400 processor.
This library contains functions for receiving mails from pop3 mail server

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

Data Structures

e struct_mailheader

e struct_userheader

e struct_mail

e struct_maillist

* struct_pop3_session

Defines

. #defineMAX_LINE_SIZE 1024

« #definePOP3_VERSION2

« #definePOP3_MAXATTACHMENTSIZE5

. #definePOP3_MAXUSERHEADERSIZER0

« #definePOP3_INSUFFICIENT_MEMORY1

« #definePOP3_RECEIVEMAIL_ERROR5

« #definePOP3_INVALID_MAILNUMBER -6

« #definePOP3_SOCKET_ERROR

- #definePOP3_INVALID_USER_PASSWORELO
- #definePOP3_LIBRARY_IS_NOT_CONFIGUREEL1
« #definePOP3_NOT_CONNECTEBL2

- #definePOP3_FILE_ERRORIL3

» #definePOP3_STATUS_SUCCESS

284

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Typedefs

 typedef_mailheademailheader

« typedef_userheadenserheader

¢ typedef_mail malil

« typedef_maillist maillist
typedef_pop3_sessiopop3_session

Functions

 void pop3_init(void)
Initializes pop3 library.

« void pop3_setuserheaderl{struct_userheadetpusrhdr)
Sets user defined mail header list.

« int pop3_login(long pop3_host, charusername, chaipwd)
Login to pop3 server.

* int pop3_deletemafiint mailnumber)
Deletes mail from pop3 mailbox.

« int pop3_getmailboxstat@nt xnumberofmails, longtotal_size)
Gets number of mails and mailbox size value from pop3 server.

¢ _mailx pop3_receivemalfiint mailnumber, intcstatus)
Receives mail from pop3 mail server.

¢ maillistx pop3_getmaillis{int xstatus)
Reads mail list from pop3 server.

« int pop3_logouvoid)
Terminates connection from pop3 server.

 void pop3_registerauthcallba¢it(xfunpt)())
Registers pop3 authentication callback routine.

8.28.2 Define Documentation

8.28.2.1 #define MAX_LINE_SIZE 1024

Definition for maximum size of mail header

285

8.28.2.2 #define POP3_FILE_ERROR -13

File creation error value, This value is returned if there is any error in opening file

See also:
pop3_receivemail

8.28.2.3 #define POP3_INSUFFICIENT_MEMORY -1

Insufficient memory error value

See also:
pop3_receivemail
pop3_login
pop3_getmaillist

8.28.2.4 #define POP3_INVALID_MAILNUMBER -6

Invalid mail number error value

See also:
pop3_receivemail

8.28.2.5 #define POP3_INVALID_USER_PASSWORD -10

Invalid User or Password error value

See also:
pop3_login

8.28.2.6 #define POP3_LIBRARY_IS_NOT_CONFIGURED -11

pop3 library is not configured error value, this value will be returned if pop3 host
information is not configured

See also:
pop3_login

8.28.2.7 #define POP3_MAXATTACHMENTSIZE 5

Definition for maximum number of attachments

See also:
pop3_receivemail

286

8.28.2.8 #define POP3_MAXUSERHEADERSIZE 20

Definition for maximum number of user headers

See also:
pop3_receivemail

8.28.2.9 #define POP3_NOT_CONNECTED -12

This error value is returned if connection was not established with pop3 server.

See also:
pop3_deletemail
pop3_getmailboxstate
pop3_getmaillist
pop3_receivemail
pop3_logout

8.28.2.10 #define POP3_RECEIVEMAIL_ERROR -5

Receive mail error value

See also:
pop3_receivemail

8.28.2.11 #define POP3_SOCKET_ERROR -7

Socket error value

See also:
pop3_receivemail
pop3_login
pop3_logout
pop3_getmailboxstate
pop3_getmaillist

8.28.2.12 #define POP3_STATUS_SUCCESS0

pop3 Status success value, this value is returned when operation is completed success-
fully.

See also:
pop3_receivemail

287

8.28.2.13 #define POP3_VERSION 2
Version number associated with this header file. Should be the same as the version
number returned by theop3_versiorfunction.

See also:
pop3_version

8.28.3 Typedef Documentation

8.28.3.1 typedef struct mail mail

Structure for mail that contains standard mail header, user mail header, message and
attachment filename list

8.28.3.2 typedef struct mailheadermailheader

Structure for standard mail header holds standard mail header values

8.28.3.3 typedef struct maillist maillist

Structure for maillist

8.28.3.4 typedef struct pop3_sessiopop3_session

Structure for pop3_session

8.28.3.5 typedef struct userheaderuserheader

Structure for user defined mail header contains user header name list and user header
value list

8.28.4 Function Documentation

8.28.4.1 int pop3_deletemail (inmailnumber)
Deletes mail from pop3 mailbox.

This function sets delete mark against the input message number. The server will delete
all the messages marked with delete mark after disconnecting from client. pop3 login
operation must be performed before calling this function.

Parameters:
mailnumber Message number to set delete mark

288

Returns:
POP3_STATUS SUCCESH¥ everything is successful. Otherwise, one of the
following error values:

* POP3_NOT_CONNECTED
* POP3_RECEIVEMAIL_ERROR
* POP3_INVALID_MAILNUMBER

See also:
pop3_getmaillist
pop3_receivemail

8.28.4.2 int pop3_getmailboxstate (ink numberofmails long = total_size
Gets number of mails and mailbox size value from pop3 server.

This function returns number of messages in mailbox and returns total size of the mes-
sage. pop3 login operation must be performed before calling this function.

Parameters:
numberofmails points to address location where number of mails value will be
stored

total_size points to address location where total mailsize value will be stored

Returns:
POP3_STATUS_ SUCCESH everything is successful. Otherwise, one of the
following error values:

« POP3_NOT_CONNECTED
« POP3_RECEIVEMAIL_ERROR

See also:
pop3_getmaillist
pop3_receivemail

8.28.4.3 struct_maillistx pop3_getmaillist (int x statug
Reads mail list from pop3 server.

This function returns list of mail numbers and size of each mail. pop3 login operation
must be performed before calling this function.

Parameters:
status points to address location where status of pop3 function will be stored

289

Returns:
NULL if pop3_getmaillist failed. Otherwise, returns pointer to maillist object

See also:
pop3_login
pop3_logout
pop3_getmailboxstate
pop3_deletemail

8.28.4.4 void pop3_init (void)
Initializes pop3 library.

This function initializes the internal data structures of pop3 library. This function
should be called first before calling any other functions of pop3 library

8.28.4.5 int pop3_login (longpop3_hostchar x username char * pwd)
Login to pop3 server.

This function performs authentication with pop3 server and enters into transac-
tion state. It does plain text authentication by default. user can override au-
thentication method by registering their own authentication callback through pop3_-
registerauthcallback function.

Parameters:
pop3_hostIP4 address structure, return valudgrofaddr

username user name value
pwd password value

Returns:
POP3_STATUS_ SUCCES&he operation is completed successfully. Otherwise,
one of the following error values:

* POP3_LIBRARY_IS_NOT_CONFIGURED
* POP3_INSUFFICIENT_MEMORY
POP3_SOCKET_ERROR
POP3_RECEIVEMAIL_ERROR
POP3_INVALID_USER_PASSWORD

See also:
pop3_logout

290

8.28.4.6 int pop3_logout (void)
Terminates connection from pop3 server.

This function terminates connection with pop3 server. If pop3 login operation was not
performed, it returns error.

Returns:
POP3_STATUS SUCCESH¥ everything is successful. Otherwise, one of the
following error values:

*+ POP3_NOT_CONNECTED
 POP3_RECEIVEMAIL_ERROR

See also:
pop3_login

8.28.4.7 struct_mailx pop3_receivemail (intmailnumber, int statug
Receives mail from pop3 mail server.

This function receives mail from POP3 server and returns pointer to mail object that
contains standard mailheader value, user mail header value, message and attachment
file list for received mail. this function supports both base64 and quoted-printable
encryption/decryption types for both attachments and message. all the attachments
will be directly stored in filesystem and mail object retains filenames of attachments.

NOTE: Memory for returned mailobject is allocated by this function. If user will not
free the memory, then, the memory for mailobject will be re-allocated when pop3_-
receivemail function is called next time

NOTE: User mail header name list should be set to retrieve user mail header values.
Otherwise, this function will ignore user mail header values.

Parameters:
mailnumber Message number of mail to retrieve

status points to address location where status of pop3 function will be stored

Returns:
NULL if pop3_receivemail function failed. Otherwise, returns pointer to mail
object

See also:
pop3_login
pop3_logout
pop3_getmaillist
pop3_deletemail

291

8.28.4.8 void pop3_registerauthcallback (int)() funpt)
Registers pop3 authentication callback routine.

This function registers user defined authentication callback function with pop3 library.
when pop3_login function is called from application, user authentication routine will

be called with pop3_session object parameter that contains username,password and
socket handler.

NOTE: User authentication callback function has to have the following function pro-
totype to receive pop3_session structure pointer.

int [authentication call back function name] (pop3_sessipop3_handle)

NOTE: User authentication callback routine should refe@®P3 STATUS SUCCESS
value for successful authentication. for invalid user or passwe@R3 INVALID_ -
USER_PASSWORI&rror value should be returned.

See also:
pop3_login
pop3_session

8.28.4.9 void pop3_setuserheaderlist (structuserheaderx pusrhdr)
Sets user defined mail header list.

This function stores address of user mail header list structure in pop3 library global
variable. the user mail header value will be retrieved for all user defined mail header
names.

Parameters:
pusrhdr pointer to the user mail header list. if user mail header name list is less
than POP3_MAXUSERHEADERSIZEthe last item of user mail header
namelist should be NULL.

See also:
pop3_receivemail

8.29 tini400_smtp.h File Reference
8.29.1 Detailed Description

SMTP Library functions for DS80C400 processor.
This library contains functions for sending mails to smtp mailhost server

For detailed information on the DS80C400 please see Ithigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

292

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

Data Structures

« struct_hostinfo
e struct_mailheader
e struct_userheader

Defines

. #defineMAX_LINE_SIZE 1024

« #defineSMTP_VERSION3

« #defineSMTP_MAXATTACHMENTSIZE 5

« #defineSMTP_MAXUSERHEADERSIZE20

« #defineSMTP_INSUFFICIENT_MEMORY-1

« #defineSMTP_MAILHOST_NOT_FOUND-3

« #defineSMTP_FILE_NOT_FOUND4

« #defineSMTP_SOCKET_ERROR?

« #defineSMTP_MAIL_QUEUED-8

« #defineSMTP_INVALID_MAILNODE_ADDRESS-9
« #defineSMTP_LIBRARY_IS_NOT_CONFIGUREDB11
« #defineSMTP_STATUS_SUCCESS

Typedefs

« typedef_hostinfohostinfo
« typedef_mailheademailheader

Structure for standard mail header holds standard mail header values.

« typedef_userheadesserheader

Structure for user defined mail header contains user header name list and user header
value list.

Functions

« void smtp_init(void)
Initializes smtp library.

293

« void smtp_sethostinf¢struct_hostinfoxphostinfo)
Sets the host information object with smtp library.

< void smtp_setclientsocktimeo(lbng milli_sec)
Sets SMTP client socket timeout value.

* long smtp_getclientsocktimeo@toid)
Returns the current value for SMTP client socket timeout.

 void smtp_setdefaultheaderval(struct_mailheadexpmhdr)
Sets the default value for standard mail headers.

 void smtp_setuserheaderl{struct_userheadetpusrhdr)
Sets user defined mail header list.

e int smtp_sendmail (struct _mailheader mail_header, charxmsg, char
sattachmentlistfSMTP_MAXATTACHMENTSIZE], char queuemail_flag, un-
signed longsmailnodeaddress)

Sends mail to mail host.

 int smtp_removemailfromqueyansigned long pmailnode_address)
Removes queued mail from mail queue list.

 int smtp_getqueuedmailstat(tmsigned long pmailnode_address)
Returns the status of queued mail.

8.29.2 Define Documentation

8.29.2.1 #define MAX_LINE_SIZE 1024

Definition for maximum size of mail header

8.29.2.2 #define SMTP_FILE_NOT_FOUND -4

File not found error value

See also:
smtp_sendmail
smtp_getqueuedmailstatus

294

8.29.2.3 #define SMTP_INSUFFICIENT_MEMORY -1

Insufficient memory error value

See also:
smtp_sendmail

8.29.2.4 #define SMTP_INVALID_MAILNODE_ADDRESS -9

Invalid mailnode address error value.

See also:
smtp_getqueuedmailstatus
smtp_removemailfromqueue

8.29.2.5 #define SMTP_LIBRARY_IS_NOT_CONFIGURED -11

smtp library is not configured error value, this value will be returned if smtp host infor-
mation is not configured.

See also:
smtp_sendmail

8.29.2.6 #define SMTP_MAIL_QUEUED -8

Mail is queued error value

See also:
smtp_sendmail
smtp_getqueuedmailstatus

8.29.2.7 #define SMTP_MAILHOST_NOT_FOUND -3

Mail host is not found error value

See also:
smtp_sendmail
smtp_getqueuedmailstatus

8.29.2.8 #define SMTP_MAXATTACHMENTSIZE 5
Definition for maximum number of attachments

See also:
smtp_sendmail

295

8.29.2.9 #define SMTP_MAXUSERHEADERSIZE 20

Definition for maximum number of user headers

See also:
smtp_sendmail

8.29.2.10 #define SMTP_SOCKET_ERROR -7

Socket error value

See also:
smtp_sendmail

8.29.2.11 #define SMTP_STATUS_SUCCESS 0

smtp Status success value, this value is returned when operation is completed success-
fully.

See also:
smtp_sendmail

8.29.2.12 #define SMTP_VERSION 3

Version number associated with this header file. Should be the same as the version
number returned by themtp_versiotiunction.

See also:
smtp_version

8.29.3 Typedef Documentation

8.29.3.1 typedef struct hostinfo hostinfo

Structure for host configuration information that has to be registered with smtp library
8.29.4 Function Documentation

8.29.4.1 long smtp_getclientsocktimeout (void)
Returns the current value for SMTP client socket timeout.
This function returns the current value for SMTP client socket timeout

This function is safe to be called from multiple processes at the same time.

296

Returns:
The current value for http client socket timeout

8.29.4.2 int smtp_getqueuedmailstatus (unsigned lomgnailnode_addregs
Returns the status of queued mail.

This function returns the status of mail which was queuedrbip_sendmail

Parameters:
pmailnode_address address of mailnode. this value should be same value re-
turned by smtp_sendmail function when queueing mail.

Returns:
if mail is still in queue, returns the status of mail. SMTP_INVALID_-
MAILNODE_ADDRESS:If invalid mail node address is passed or mail has been
already sent to mailhost

See also:
smtp_removemailfromqueue
smtp_sendmail

8.29.4.3 void smtp_init (void)
Initializes smtp library.

This function initializes the internal data structures of smtp library. This function
should be called first before calling any other functions of smtp library.

NOTE: Other libraries don’t need to be initialized before smtp library initialization.

8.29.4.4 int smtp_removemailfromqgueue (unsigned longmailnode_addregs
Removes queued mail from mail queue list.

This function removes the mail which was queuedsbytp_sendmail

Parameters:
pmailnode_address address of mailnode to delete. this value should be same
value returned by smtp_sendmail function when queueing mail.

Returns:
SMTP_STATUS SUCCESYH mailnode was deleted successfullySMTP_-
INVALID_MAILNODE_ADDRESS if invalid mail node address is passed or mail
has been already sent to mailhost

297

See also:
smtp_getqueuedmailstatus
smtp_sendmail

8.29.4.5 int smtp_sendmail (struct mailheader mail_header char * msg char
x attachmentlisfSMTP_MAXATTACHMENTSIZE], char queuemail_flag un-
signed longx mailnodeaddress

Sends mail to mail host.

This function sends mail to mailhost. if smtp host IP address is zero, this function uses
dns library to get IP address of target mailhost. if mail host is down and application

sets queuemail_flag=1, Mail will be queued to resend later. this function uses base64
MIME encryption for sending attachments. it does not use any encryption for message

Parameters:

mail_header standard mail header object. any uninitialized field name in this
structure should be set with NULL value. if default mail header value was ini-
tialized and mail_header field value is NULL, the default mail header value
will be used.

msg pointer to mail message.

attachmentlistarray of string holds attachment filelist. if attachment list is
less than SMTP_MAXATTACHMENTSIZE, last element of list should be
NULL to indicate end of the list. if there is no attachment to send, then, this
argument can be NULL.

gueuemail_flagflag to indicate whether mail to be queued or not. if mail host is
down and application sets queuemail_flag=1, mail will be queued.

mailnodeaddressaddress of mail which was queued to resend. this reference
value has to be passed to get status of queued mail or to delete it from queue.

Returns:
SMTP_STATUS_SUCCESIBthe operation is completed successfully Otherwise,
one of the following error values

« SMTP_LIBRARY_IS_NOT_CONFIGURED
SMTP_INSUFFICIENT_MEMORY

« SMTP_MAILHOST _NOT_FOUND
SMTP_MAIL_QUEUED

SMTP_SOCKET_ERROH there is any socket error, or one of smtp server
negative response error code which is listed out in rfc821

See also:
smtp_removemailfromqueue
smtp_getqueuedmailstatus

298

8.29.4.6 void smtp_setclientsocktimeout (longilli_sec)
Sets SMTP client socket timeout value.

This function sets SMTP client socket timeout value. The default SMTP client Time
out value after initializing smtp library is 30 seconds.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
milli_sec timeout value in milliseconds

8.29.4.7 void smtp_setdefaultheadervalue (structmailheaderx pmhdr)
Sets the default value for standard mail headers.

This function stores address of mail header structure in smtp library global variable.
smtp_sendmail function uses pmhdr value by default, user can override these values by
passing valid standard mail header value while calling smtp_sendmail function.

NOTE: default mail header value ot mandatory for sending mail. It is optional
feature.

Parameters:
pmhdr pointer to the mail header structure

See also:
smtp_sendmail

8.29.4.8 void smtp_sethostinfo (struct hostinfo x phostinfo)
Sets the host information object with smtp library.

This function stores address of host configuration information structure in smtp library
global variable. Then, configures dns library by setting primary and secondary dns
server ip addresses. host configuration information is used to connect with SMTP
servers.

Parameters:
phostinfo - pointer to the host information structure

See also:
smtp_sendmail

299

8.29.4.9 void smtp_setuserheaderlist (structuserheaders pusrhdr)
Sets user defined mail header list.

This function stores address of user mail header list structure in smtp library global
variable. user defined mail headers will be added while sending mail messages.

NOTE: user mail header list isot mandatory for sending mail. It is optional feature.

Parameters:
pusrhdr pointer to the user mail header list. if user mail header name list is
lessthan SMTP_MAXUSERHEADERSIZE the last item of user mail header
namelist should be NULL.

See also:
smtp_sendmail

8.30 tini400_spi.h File Reference
8.30.1 Detailed Description

SPI library for the TINIm400 module.

"Bit Bang" software SPI library for use with the TINIm400. This is a full featured
SPI library for sending and receiving data. It supports 4 SPI_CLK polarity and phase
modes, slave select with optional inversion and optional synching, 8 and 16 bit transfer
modes, bit reordering and SPI_CLK delays.

Port pins used by this SPI library can be specified in spimacros.inc.

For detailed information on the DS80C400 please see Ithigh-Speed
Microcontroller User's Guide: DS80C400 Supplement .

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. However, SPI pins are
a system resource and should not be shared among different processes.

Defines

 #defineTINI400_SPI_VERSION2
» #defineSPI_CKPOL_MASKOx01

CKPOL MASK.

o #defineSPI_CKPHA_MASKO0x02
CKPHA MASK.

300

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

#defineSPI_WORD_MASKO0x04
Word mode MASK.

#defineSPI_SKEW_MASKO0x08
No Skew MASK.

#defineSPI_USESS MASKx10
Use SS MASK.

#defineSPI_SYNCHSS MASHKIx20
Synch SS MASK.

#defineSPI_INVERTSS MASKOx40
Invert SS MASK.

Functions

« void spi_init (void)
Initalize the SPI library.

« int spi_reverseBit$int length, int wordSize, unsigned chedataptr)
Reverse bits in buffer.

« void spi_xmit(unsigned chaxdataptr, int length, unsigned char delay, unsigned
char options)

Transmit SPI data.

* unsigned inspi_versionvoid)
Returns the version number of this SPI library.

8.30.2 Define Documentation

8.30.2.1 #define SPI_CKPHA_MASK 0x02
CKPHA MASK.
See also:

SPI_CKPOL_MASK
sSpi_xmit

301

8.30.2.2 #define SPI_CKPOL_MASK 0x01
CKPOL MASK.

The four SPI clock (SPI_CLK) modes supported by this library are defined by CKPHA
and CKPOL. The CKPOL bit defines the idle state of the SPI clock, CKPOL = 0 forces
SPI_CLK to idle low while CKPOL = 1 forces SPI_CLK to idle high. CKPHA changes
the edge used to signal transfer of data. When CKPHA = 0 the first edge of SPI_CLK
specifies when the slave and master should sample their input. With CKPHA =1 the
second edge of SPI_CLK specifies when to sample. When CKPHA = 1, the master
and slave should present their data on their output during the first SPI_CLK edge, this
allows the data sufficent hold time. When CKPHA = 0, data should become valid when
the Slave Select (SS) line goes active. Note that most devices require the SS line to be
used when CKPHA =0 to allow proper timing while SS may be optional when CKPHA
=1.

See also:
SPI_CKPHA_MASK
Spi_xmit

8.30.2.3 #define SPI_INVERTSS_MASK 0x40

Invert SS MASK.

Most SPI devices expect the active state for SS to be low, but others require high as the
active state.

See also:
spi_xmit

8.30.2.4 #define SPI_SKEW_MASK 0x08
No Skew MASK.
To facilitate atomic transfers, interrupts may be disabled while transmiting.

See also:
spi_xmit

8.30.2.5 #define SPI_SYNCHSS_MASK 0x20
Synch SS MASK.

Some SPI devices expect the SS signal to go inactive after each word transfer in order
to synchronize.

302

See also:
Spi_xmit

8.30.2.6 #define SPI_USESS_MASK 0x10
Use SS MASK.
The SS signal is optional as it may not be required for all SPI setups.

See also:
Spi_xmit

8.30.2.7 #define SPI_WORD_MASK 0x04
Word mode MASK.

Data is sent to the SPI library as a character array in data memory. When in 8 bit word
mode these bytes will be transferred one at a time. In 16 bit word mode 2 bytes will
be transferred but this operation will only consume 1 transfer of the number requested.
Note that in this library, "word" may be 8 or 16 bits in length depending on the selected
mode. Using this mask activates 16 bit word mode

See also:
Spi_xmit

8.30.2.8 #define TINI400_SPI_VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thepi_versiorfunction.

See also:
spi_version

8.30.3 Function Documentation

8.30.3.1 int spi_reverseBits (intength, int wordSize unsigned charx dataptn
Reverse bits in buffer.

This function can be called to reverse the bits in the passed buffer. It reorders the based
on the word mode 8 bit words or 16 bit words. This can be used to convert data for
Least Significant Bit (LSB) transfers.

Parameters:

length Number of words to bit reverse. Note that for 16 bit words this must be a
even value, SPI library does not check this.

303

wordSize Size of the word to reverse. Only 8 and 16 are valid.

dataptr Pointer to the data to be reversed, after calling this function the data in
this buffers will be bit reversed.

Returns:
int 1 for success, -1 if error occured

8.30.3.2 unsigned int spi_version (void)

Returns the version number of this SPI library.

Returns:
int Version number of this SPI library.

8.30.3.3 void spi_xmit (unsigned chax dataptr, int length, unsigned chardelay,
unsigned charoptiong

Transmit SPI data.

Transmits the data passed in over the SPI port, reads and returns any data read back.

Parameters:
dataptr Pointer to the data to be transmited, received data is written over transmit
data during transfer,

length Amount of data to transfer

delay Amount of time to delay clock edges, in usec. In order to interface to slower
SPI slaves a SPI_CLK stretch can be used to increases the SPI_CLK period
by 1 usec per stretch.

options SPI configuration options defined as:
e bit0- CPOL - Setto 1 - SPICLK idles high
e bit1- CPHA - Setto 1 - Transfers on second edge
 bit 2 - wordMode - Set to 1 - 16 bit transfers
* bit 3 - noskew - Set to 1 - turn off interrupts during transfer
e bit4 - useSS - Setto 1 - Use the SS line during transfers
e bit 5-synchSS - Setto 1 - Takes SS to inactive after every word
* bit 6 - invertSS - Setto 1 - SS line is active high

8.31 tini400_time.h File Reference
8.31.1 Detailed Description

Date/Time utilities, tailored for the DS80C400 C Libraries.

304

This library contains functions that provide simple time utilities in conjunction with
the RTC C Library. The time base is variable for this library, meaning that the value
'0 seconds’ can be assigned to 12:00:00am of January 1st for a specific year. Note
that this library does not currently support daylight savings time computations or the
concept of time zones.

Note that this library will not return correct values for dates before the year 1901 or
after the year 2099.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Data Structures

e structtm

Defines

* #defineTINI400_TIME_VERSION2

Typedefs

« typedef unsigned longime_t

Functions

* unsigned intime_version(void)
Returns the version number of tAi8VE library.

« void time_settimebasginsigned int year)
Sets the time base year for the RTC.

 time_tmktime (structtm xtimeptr)
mktime

« time_ttime (time_t«timer)
time

305

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

e tm x gmtime(time_txtimer)
gmtime

8.31.2 Define Documentation

8.31.2.1 #define TINI400_TIME_VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by théme_versiorfunction.

See also:
time_version

8.31.3 Typedef Documentation

8.31.3.1 typedef unsigned longme_t

Type used for representing time. Our RTC is assumed to be 4 bytes of seconds.

See also:
time

8.31.4 Function Documentation

8.31.4.1 structtms* gmtime (time_t * timer)
gmtime
Converts the native time formatted input into a calendar representation.

Parameters:
timer Native represenation of the time to be converted to calendar format.

Returns:
Calendar format of the input time.

8.31.4.2 time_t mktime (struct tm = timeptr)
mktime

Converts @m structure (calendar time) into the native time representatidimad_t

The time is computed using the hour, minute, second, day of month, month, and year
fields of the input structure. The day of year, day of week, and daylight savings time
flag are ignored. No bounds checking is performed on the input data.

306

Parameters:
timeptr Calendar time to be converted to native time representation

Returns:
Native time representation of the calendar.

8.31.4.3 time_ttime (time_t x timer)

time

Gets the current time in its native representation format. Use the fungiidimeto
get a calendar representation of this time.

Parameters:
timer If non-null, this is also filled in with the return value

Returns:
Native time representation of the current time.

8.31.4.4 void time_settimebase (unsigned iyear)
Sets the time base year for the RTC.

Sets the time base year for the real time clock. The recommended time base is the year
2000. The time base must be set before meaningful calculations can occur.

Parameters:
year base year which will be used for time computations

8.31.4.5 unsigned int time_version (void)

Returns the version number of tAISME library.

Returns:
Version number of thiFIME library.

8.32 tini400_xnetboot.h File Reference
8.32.1 Detailed Description

External NetBoot library for the DS80C400.

The External Netboot library contains netboot code that can be invoked independently
from the ROM. This library provides the latest NetBoot code that adds the following

307

features: Improves TBIN2 loading to work with files larger than 64KB, disables all
multicast traffic reception to improve reliability, supports the DS2502 and the DS1982
to hold a MAC ID (in addition to the DS2502-E48), supports setting the clock mul-
tiplier for improved performance, supports acquiring a DHCP IP from the Netgear
WGT624 router.

This library works with IPv4 only.

The External Netboot library cannot reprogram the same flash chip it is running from,
i.e. you need two separate flash memories.

You can use the library from assembly language - set r7 to the desired clock multiplier
and jump to thexXNETBOOTsymbol.

EXTERN ECODE(XNETBOOT) mov 17, #2 limp XNETBOOT

Warning:
Note that debug symbols have to be turned off in order to avoid a linker error (the
linker cannot handle line numbers greater than 65534 and will return an "L220"
error when debug symbols are enabled).

Defines

* #defineTINI400_XNETBOOT_VERSION2

Functions

 unsigned inikxnetboot_versioifvoid)
Returns the version number of this XNETBOOT library.

« void xnetboot_boofunsigned char multiplier)
Starts NetBoot.

8.32.2 Define Documentation

8.32.2.1 #define TINI400_XNETBOOT_VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thenetboot_versiofunction.

See also:
xnetboot_version

308

8.32.3 Function Documentation

8.32.3.1 void xnetboot_boot (unsigned chanultiplier)
Starts NetBoot.
This function starts NetBoot and does not return to the caller.

Parameters:
multiplier The argumenmultiplier sets the clock multiplier (1, 2, or 4).

8.32.3.2 unsigned int xnetboot_version (void)
Returns the version number of this XNETBOOT library.

Returns:
Version number of this XNETBOOT library.

8.33 tini_i2c.h File Reference
8.33.1 Detailed Description

12C function library.

This library contains functions for communicating to 12C devices via user specified
port pins.

For detailed information on the DS80C400 please see lIthgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. However, 12C pins are
a system resource and should not be shared among different processes.

Defines

« #defineTINI_I2C_VERSION1

#definel2C_SDAP3_4

#definel2C_SCLP3_5
#definel2C_ENABLE_SCL_WAIT_FOR_SLOW_SLAVES®
#definel2C_MAXIMUM_SCL_WAITCOUNT 10000
#definel2C_DELAY_LOOP_COUNTO

309

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Functions

« inti2c_version()
Return the library version.

« voidi2c_delay(void)
Delay function.

« void i2c_start(void)
Performs an 12C start condition.

« voidi2c_bit(unsigned char singlebit)
Performs an 12C bit write.

 unsigned chai2c_readbit(void)
Performs an 12C bit read.

¢ voidi2c_stop(void)

Performs an 12C stop condition.

¢ unsigned chai2c_readbytdunsigned char doACK)
Performs an 12C byte read.

« unsigned chai2c_writebyte(unsigned char singlebyte)
Performs an 12C byte write.

« unsigned chai2c_selec{unsigned char address)
Perform 12C start, address selection.

¢ unsigned char2c_writeblock(unsigned char address, unsigned cHaarr, int
length)

Perform 12C start, address selection, write specified bytes and 12C stop.

¢ unsigned char2c_readblock(unsigned char address, unsigned chaarr, int
length)

Perform 12C start, address selection, read specified number of bytes and 12C stop.

« unsigned chai2c_writereadblocKunsigned char address, unsigned chmarrl,
int lengthl, unsigned chabarr2, int length2)

Perform I12C start, address selection, write specified bytes, 12C start, address slection,
read bytes and 12C stop.

310

8.33.2 Define Documentation

8.33.2.1 #define I2C_DELAY_LOOP_COUNT 0

Number of loops to wait between any host SCL and SDA transitions

8.33.2.2 #define 1I2C_ENABLE_SCL_WAIT_FOR_SLOW_SLAVES 0

Enable communication with slow slave devices. Value of 1 enables SCL waiting/flow
control.

8.33.2.3 #define 12C_MAXIMUM_SCL_WAITCOUNT 10000

Number of loops to wait for SCL to return high if SCL flow control is used.

8.33.2.4 #define 1I2C_SCL P3_5
Define SCL (clock) line to talk to the DS1672 on the TINIm400

8.33.2.5 #define I2C_SDA P3 4
Define SDA (data) line to talk to the DS1672 on the TINIm400

8.33.2.6 #define TINI_I2C_VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by th@c_versiorfunction.

See also:
i2c_version

8.33.3 Function Documentation

8.33.3.1 void i2c_bit (unsigned chasinglebif
Performs an 12C bit write.

Parameters:
singlebit Bit to write on 12C bus

8.33.3.2 unsigned char i2c_readbit (void)
Performs an 12C bit read.

Returns:
Value of SDA line during read timeslot

311

8.33.3.3 unsigned char i2c_readblock (unsigned chaddress unsigned char
barr, int length)

Perform 12C start, address selection, read specified number of bytes and 12C stop.
Parameters:

addressAddress of device to select. Upper 7 bits are address, LSbit automatically
set to 1 by function.

barr Array destination for read bytes
length Number of bytes to read

Returns:
0 if device acknowledged address selection and data transfer

8.33.3.4 unsigned char i2c_readbyte (unsigned chaoACK)
Performs an 12C byte read.

Parameters:
doACK Set to 1 to assert acknowledge after reading 8 bits, or 0 to not assert ACK.

Returns:
Value of SDA line during read timeslot

8.33.3.5 unsigned char i2c_select (unsigned chaddres$
Perform 12C start, address selection.
Parameters:

addressAddress of device to select. Upper 7 bits are address, LSbit denotes read
if 1 and write if 0.

Returns:
0 if device acknowledged address selection

8.33.3.6 unsigned char i2c_writeblock (unsigned chaaddress unsigned charx
barr, int length)

Perform 12C start, address selection, write specified bytes and 12C stop.
Parameters:

addressAddress of device to select. Upper 7 bits are address, LSbit automatically
set to O by function.

312

barr Array of bytes to write
length Number of bytes to write

Returns:
0 if device acknowledged address selection and data transfer

8.33.3.7 unsigned char i2c_writebyte (unsigned chainglebyté
Performs an 12C byte write.

Parameters:
singlebyte Value to write to bus.

Returns:
0 if byte was acknowledged

8.33.3.8 unsigned char i2c_writereadblock (unsigned chaaddress unsigned
char * barrl, int lengthl, unsigned charx barr2, int length2)

Perform I2C start, address selection, write specified bytes, 12C start, address slection,
read bytes and 12C stop.

Parameters:
addressAddress of device to select. Upper 7 bits are address, LSbit automatically
set to 0 by function.

barrl Array of bytes to write

lengthl Number of bytes to write
barr2 Array destination for read bytes
length2 Number of bytes to read

Returns:

0 if device acknowledged address selection and data transfer

8.34 tini_rtc.h File Reference
8.34.1 Detailed Description

RTC function library.

This library contains RTC functions for the DS1672U, the real time clock included in
the TINIM400 reference module.

For detailed information on the DS1672U, please sed the-Voltage Serial
Timekeeping Chip

313

http://pdfserv.maxim-ic.com/en/ds/DS1672.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1672.pdf

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

Defines

« #defineDEVICE_ADDRESS0xDO
 #defineCOUNTER_ADDRES®x00
 #defineCONTROL_ADDRES)x04
 #defineTRICKLECHARGER_ADDRES®x05
 #defineTRICKLECHARGER_DISABLEOXFO
e #defineSTART_CLOCKOx7F

* #defineSTOP_CLOCKOx80

e #defineNODIODE_2500HMOXA5

e #defineONEDIODE_2500HMOXA9

* #defineNODIODE_2KOHMO0xA6

e #defineONEDIODE_2KOHMOXAA

e #defineNODIODE_4KOHMOxA7

e #defineONEDIODE_4KOHMOXAB

e #defineTINI_RTC_VERSION1

Functions

* int rtc_version()
Return the library version.

« int rtc_startclock))
Start oscillator to count clock by setting MSB of control register to 0.

* int rtc_stopclock)
Stop oscillator to pause clock by setting MSB of control register to 1.

« int rtc_setcontrolregistdunsigned char newvalue)

Write value to 8 bit control register.

« int rtc_getcontrolregistgunsigned chax)
Fetch value of 8 bit control register.

« int rtc_disabletricklechargd)
Disable trickle charger register by setting 4 LSB’s to 0.

314

« int rtc_enabletricklechargerOdiode2500(m
Set trickle charger register to work no diode and with 250o0hm.

« int rtc_enabletricklechargerldiode2500(m
Set trickle charger register to work 1 diode and with 2500hm.

« int rtc_enabletricklechargerOdiode2koffn
Set trickle charger register to work no diode and with 2Kohm.

« int rtc_enabletricklechargerldiode2koffm
Set trickle charger register to work 1 diode and with 2Kohm.

« int rtc_enabletricklechargerOdiode4kolfn
Set trickle charger register to work no diode and with 4Kohm.

« int rtc_enabletricklechargerldiode4kolfn
Set trickle charger register to work 1 diode and with 4Kohm.

« int rtc_settricklechargerregist@unsigned char newvalue)
Set trickle charger register new value.

« int rtc_gettricklechargerregistéunsigned chas)
Fetch 8 bit trickle charger register content.

« int rtc_getclock(long)
Convert char array to long integer after fetch from 32 bit counter of RTC.

« int rtc_setclocklong newvalue)
Convert long integer to char array and write to 32 bit counter of RTC.

8.34.2 Define Documentation

8.34.2.1 #define CONTROL_ADDRESS 0x04
Address of Control register.
See also:

rtc_setcontrolregister
rtc_getcontrolregister

315

8.34.2.2 #define COUNTER_ADDRESS 0x00
Starting address of 32 bits RTC counter.

See also:
rtc_getclock
rtc_setclock

8.34.2.3 #define DEVICE_ADDRESS 0xD0O

Device address.

8.34.2.4 #define NODIODE_2500HM 0xA5

Value of Trickle Charger register that connects Vcc & Vbackup via no diode and 250
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklechargerOdiode2500hm

8.34.2.5 #define NODIODE_2KOHM 0xA6

Value of Trickle Charger register that connects Vcc & Vbackup via no diode and 2K
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklechargerOdiode2kohm

8.34.2.6 #define NODIODE_4KOHM 0OxA7

Value of Trickle Charger register that connects Vcc & Vbackup via no diode and 4K
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklechargerOdiode4kohm

8.34.2.7 #define ONEDIODE_2500HM 0xA9

Value of Trickle Charger register that connects Vcc & Vbackup via one diode and 250
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklechargerldiode2500hm

316

8.34.2.8 #define ONEDIODE_2KOHM O0xAA

Value of Trickle Charger register that connects Vcc & Vbackup via one diode and 2K
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklechargerldiode2kohm

8.34.2.9 #define ONEDIODE_4KOHM 0xAB

Value of Trickle Charger register that connects Vcc & Vbackup via one diode and 4K
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklechargerldiode4kohm

8.34.2.10 #define START_CLOCK 0x7F

Value of Control register that will start oscillator.

See also:
rtc_startclock

8.34.2.11 #define STOP_CLOCK 0x80

Value of Control register that will stop oscillator.

See also:
rtc_startclock

8.34.2.12 #define TINI_RTC_VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by thec_versionfunction.

See also:
rtc_version

8.34.2.13 #define TRICKLECHARGER_ADDRESS 0x05

Address of Trickle Charger register.

See also:
rtc_gettricklechargerregister
rtc_settricklechargerregister

317

8.34.2.14 #define TRICKLECHARGER_DISABLE 0xFO

Value of Trickle Charger register that will disable it.

See also:
rtc_disabletricklecharger

8.34.3 Function Documentation

8.34.3.1 intrtc_disabletricklecharger ()
Disable trickle charger register by setting 4 LSB'’s to 0.

Returns:
0 if pass, -1 if fail

See also:
rtc_enabletricklechargerOdiode2500hm

8.34.3.2 intrtc_enabletricklechargerOdiode2500hm ()
Set trickle charger register to work no diode and with 2500hm.

Returns:
0 if pass, -1 if fail

See also:
rtc_disabletricklecharger
rtc_enabletricklechargerldiode2500hm

8.34.3.3 int rtc_enabletricklechargerOdiode2kohm ()

Set trickle charger register to work no diode and with 2Kohm.

Returns:
0 if pass, -1 if fail

See also:
rtc_disabletricklecharger
rtc_enabletricklechargerldiode2kohm

318

8.34.3.4 intrtc_enabletricklechargerOdiode4kohm ()
Set trickle charger register to work no diode and with 4Kohm.

Returns:
0 if pass, -1 if fail

See also:
rtc_disabletricklecharger
rtc_enabletricklechargerldiode4kohm

8.34.3.5 intrtc_enabletricklechargerldiode2500hm ()
Set trickle charger register to work 1 diode and with 250o0hm.

Returns:
0 if pass, -1 if fail

See also:
rtc_disabletricklecharger
rtc_enabletricklechargerOdiode2kohm

8.34.3.6 intrtc_enabletricklechargerldiode2kohm ()
Set trickle charger register to work 1 diode and with 2Kohm.

Returns:
0 if pass, -1 if fail

See also:
rtc_disabletricklecharger
rtc_enabletricklechargerOdiode4kohm

8.34.3.7 intrtc_enabletricklechargerldiode4kohm ()

Set trickle charger register to work 1 diode and with 4Kohm.

Returns:
0 if pass, -1 if fail

See also:

rtc_disabletricklecharger
rtc_enabletricklechargerOdiode2500hm

319

8.34.3.8 intrtc_getclock (longx)

Convert char array to long integer after fetch from 32 bit counter of RTC.

Returns:
0 if pass, -1 if fail

See also:
rtc_setclock

8.34.3.9 intrtc_getcontrolregister (unsigned chax)

Fetch value of 8 bit control register.

Returns:
0 if pass, -1 if fail

See also:
rtc_setcontrolregister

8.34.3.10 intrtc_gettricklechargerregister (unsigned chax)

Fetch 8 bit trickle charger register content.

Returns:
0 if pass, -1 if fail

See also:
rtc_settricklechargerregister

8.34.3.11 intrtc_setclock (longhewvalug

Convert long integer to char array and write to 32 bit counter of RTC.

Parameters:
newvalue Value in long integer.

Returns:
0 if pass, -1 if fail

See also:
rtc_getclock

320

8.34.3.12 intrtc_setcontrolregister (unsigned chanewvalug

Write value to 8 bit control register.

Parameters:
newvalue Value to set.

Returns:
0 if pass, -1 if fail

See also:
rtc_getcontrolregister

8.34.3.13 intrtc_settricklechargerregister (unsigned chanewvalug

Set trickle charger register new value.

Parameters:
newvalue Value to set

Returns:
0 if pass, -1 if fail

See also:
rtc_gettricklechargerregister

8.34.3.14 intrtc_startclock ()

Start oscillator to count clock by setting MSB of control register to 0.

Returns:
RTC version.

See also:
rtc_stopclock

8.34.3.15 intrtc_stopclock ()

Stop oscillator to pause clock by setting MSB of control register to 1.

Returns:
0 if pass, -1 if fail

See also:
rtc_startclock

321

8.34.3.16 intrtc_version ()

Return the library version.

See also:
rtc_startclock

322

Index

_getkey
stdio.h,120

accept
rom400_sock.6
acceptqueue
rom400_sock.hg2
AF_INET
rom400_sock.6
AF_INET6
rom400_sock.h6
arp_cacherequest
rom400_sock.6
arp_generaterequest
rom400_sock.i7
avail
rom400_sock.7

bind
rom400_sock.i7
bogus_ptr
sockaddrb
sockaddr_ing

cleanup
rom400_sock.i8
clear_param_buffers
rom400_sock.hg2
clearerr
stdio.h,120
closesocket
rom400_sock.8
connect
rom400_sock.9
crypt_shal
tini400_crypt.h,140
crypt_version
tini400_crypt.h,140

dhcp_init
rom400_dhcp.h11

dhcp_registernotify
rom400_dhcp.hl1

dhcp_status
rom400_dhcp.h12
DHCP_STATUS_BOUND
rom400_dhcp.h9
DHCP_STATUS_INIT
rom400_dhcp.h10
DHCP_STATUS_INITREBOOT
rom400_dhcp.h10
DHCP_STATUS_REBINDING
rom400_dhcp.h10
DHCP_STATUS_REBOOTING
rom400_dhcp.h10
DHCP_STATUS_RENEWING
rom400_dhcp.h10
DHCP_STATUS_REQUESTING
rom400_dhcp.h10
DHCP_STATUS_SELECTING
rom400_dhcp.hl1
dhcp_stop
rom400_dhcp.h12
dhcp_version
rom400_dhcp.h12
dns_enableipv6queries
tini400_dns.h142
dns_getmx
tini400_dns.h142
dns_getprimary
tini400_dns.h143
dns_getsecondary
tini400_dns.h143
dns_gettimeout
tini400_dns.h144
dns_init
tini400_dns.h144
dns_setprimary
tini400_dns.h144
dns_setsecondary
tini400_dns.h144
dns_settimeout
tini400_dns.h145
dns_version
tini400_dns.h145

323

EOF
stdio.h,117
error
file_structure3
ETH_STATUS_LINK
rom400_sock.9

fclose

stdio.h,121
fd

file_structure3
feof

stdio.h,121
ferror

stdio.h,121
fexists

stdio.h,122
fflush

stdio.h,122
fgetc

stdio.h,122
fgetpos

stdio.h,123
fgets

stdio.h,123
FILE

stdio.h,120
FILE_FLAGS EOF

stdio.h,117
FILE_FLAGS TEMP

stdio.h,118
file_structure2

error,3

fd, 3

flags,3

type,3
FILE_TYPE_TINIFS

stdio.h,118
FILENAME_MAX

stdio.h,118
filesystem_version

stdio.h,124
finit

stdio.h,124
FLAG_DHCP_WAIT

rom400_task.hg0

FLAG_IO_WAIT
rom400_task.hg0
FLAG_SLEEPING
rom400_task.hg1
Flags
TCB, 7
flags
file_structure3
flash_eraseblock
rom400_flash.hl15
flash_programbyte
rom400_flash.h15
flash_version
rom400_flash.h16
flockfile
stdio.h,125
fopen
stdio.h,125
fopen_fd
stdio.h,126
FOPEN_MAX
stdio.h,118
fpos_t
stdio.h,120
fputc
stdio.h,126
fputs
stdio.h,127
fread
stdio.h,127
freadbytes
stdio.h,128
freopen
stdio.h,128
FS_VERSION
stdio.h,118
fseek
stdio.h,129
fseeko
stdio.h,129
fsetpos
stdio.h,130
ftell
stdio.h,130
ftello
stdio.h,131

324

ftrylockfile h_name
stdio.h,131 hostent3
funlockfile mailhostentb
stdio.h,132 hostent3
fwrite h_addr_list4
stdio.h,132 h_addrtype3
fwritebytes h_aliases3
stdio.h,133 h_length4
h_name3
getc htons
stdio.h,133 rom400_sock.h53
getchar
stdio.h,134 i2c_bit
getethernetstatus tini_i2c.h,155
rom400_sock.9 i2c_delay
getfreefsram tini_i2c.h,155
stdio.h,134 I2C_DELAY_LOOP_COUNT
gethostbyaddr tini_i2c.h,154
tini400_dns.h145 I2C_ENABLE_SCL_WAIT_FOR_-
gethostbyname SLOW_SLAVES
tini400_dns.h146 tini_i2c.h,154
getipv6params 12C_MAXIMUM_SCL_WAITCOUNT
rom400_sock.h50 tini_i2c.h,154
getmacid i2c_readbit
rom400_sock.h50 tini_i2c.h,155
getnetworkparams i2c_readblock
rom400_sock.h50 tini_i2c.h,155
getpeername i2c_readbyte
rom400_sock.hH1 tini_i2c.h,155
gets 12C_SCL
stdio.h,134 tini_i2c.h,154
getsockname 12C_SDA
rom400_sock.h51 tini_i2c.h,154
getsockopt i2c_select
rom400_sock.h52 tini_i2c.h,155
gettftpserver i2c_start
rom400_sock.h52 tini_i2c.h,156
i2c_stop
h_addr_list tini_i2c.h, 156
hostent4 i2c_version
h_addrtype tini_i2c.h, 156
hostent3 i2c_writeblock
h_aliases tini_i2c.h,156
hostent3 i2c_writebyte
h_length tini_i2c.h, 156
hostent4 i2c_writereadblock

325

tini_i2c.h,156
ID

TCB,7
in6_addr4

s6_addrd
in_addr,4

s_addr5
inet_addr

rom400_sock.hg3
inet_ntop

rom400_sock.hg3
inet_pton

rom400_sock.h63
init_clearSystemRAM

rom400_init.h 23
init_clearXSEG

rom400 _init.h24
init_copyivt

rom400_init.h24

INIT_CRYSTALFAIL_RESET

rom400_init.h,19
INIT_DIVISOR_10MHZ
rom400_init.h,19
INIT_DIVISOR_112MHZ
rom400_init.h,19
INIT_DIVISOR_128MHZ
rom400_init.h,19
INIT_DIVISOR_12MHZ
rom400_init.h,19
INIT_DIVISOR_14MHZ
rom400_init.h 20
INIT_DIVISOR_16MHZ
rom400 _init.h20
INIT_DIVISOR_20MHZ
rom400_init.h 20
INIT_DIVISOR_24MHZ
rom400_init.h 20
INIT_DIVISOR_28MHZ
rom400_init.h 20
INIT_DIVISOR_32MHZ
rom400_init.h20
INIT_DIVISOR_3MHZ
rom400_init.h21
INIT_DIVISOR_40MHZ
rom400 _init.h21
INIT_DIVISOR_48MHZ

rom400 _init.h21
INIT_DIVISOR_4MHZ
rom400_init.h21
INIT_DIVISOR_56MHZ
rom400_init.h21
INIT_DIVISOR_5MHZ
rom400 _init.h21
INIT_DIVISOR_64MHZ
rom400_init.h 22
INIT_DIVISOR_6MHZ
rom400_init.h 22
INIT_DIVISOR_7MHZ
rom400_init.h22
INIT_DIVISOR_80MHZ
rom400_init.h 22
INIT_DIVISOR_8MHZ
rom400 _init.h22
INIT_DIVISOR_96MHZ
rom400 _init.h 22
init_enableinterrupts
rom400_init.h 24
init_eth
rom400 _init.h24
init_getbootstate
rom400_init.h 24
init_km
rom400_init.h 25
init_mm
rom400_init.h 25
init_netboot
rom400_init.h 25
init_network
rom400 _init.h26
init_ow
rom400_init.h26

INIT_POWERFAIL_RESET

rom400_init.h 23
init_redirect

rom400 _init.h27
init_rom

rom400_init.h27
init_sockets

rom400_init.n 27
init_tick

rom400_init.h 28
init_usekeilmonitor

326

rom400 _init.h28
init_version
rom400_init.h 28
INIT_WATCHDOG_RESET
rom400_init.h 23
IPPROTO_UDP
rom400_sock.h53
ISR_CANO
tini400_isr.h,148
ISR_ETHERNET
tini400_isr.h,148
ISR_ETHERNETPOWER
tini400_isr.h, 148
ISR_EXTERNALINTO
tini400_isr.h,148
ISR_EXTERNALINT1
tini400_isr.h,148
ISR_EXTERNALINT2345
tini400 _isr.h,148
isr_getinterruptvector
tini400_isr.h,151
ISR_POWERFAIL
tini400_isr.h,149
ISR_SERIALO
tini400_isr.h,149
ISR_SERIAL1
tini400_isr.h,149
ISR_SERIAL2
tini400_isr.h,149
isr_setinterruptvector
tini400_isr.h,151
ISR_TIMERO
tini400_isr.h,149
ISR_TIMER1
tini400_isr.h,150
ISR_TIMER2
tini400_isr.h,150
ISR_TIMERS3
tini400_isr.h,150
isr_version
tini400_isr.h,152
ISR_WATCHDOG
tini400_isr.h,150
ISR_WRITEPROTECT
tini400_isr.h,150

join
rom400_sock.h53

kmem_init
rom400_kmem.h30

kmem_install
rom400_kmem.h31

kmem_version
rom400_kmem.h32

L_tmpnam
stdio.h,118

leave
rom400_sock.h54

listen
rom400_sock.hH4

mailhostent5
h_namep
preferenceb
MAX_PRIORITY
rom400_task.hg1
mem_free
rom400_mem.h33
mem_getfreeram
rom400_mem.h33
mem_malloc
rom400_mem.h34
mem_mallocdirty
rom400_mem.h34
mem_sizeof
rom400_mem.h35
mem_version
rom400_mem.h35
millis
TIME, 8
MIN_PRIORITY
rom400_task.h31
mkdir
stdio.h,134
msb
TIME, 8

Next
TCB, 7
NORM_PRIORITY

327

rom400_task.hg1
nstoh

rom400_sock.hH5
NULL

stdio.h,119

off t
stdio.h,120
ow_byte
rom400_ow.h38
ow_first
rom400_ow.h38
ow_getcurrentid
rom400_ow.h38
ow_next
rom400_ow.h38
ow_reset
rom400_ow.h39
OW_RESET_ALARM
rom400_ow.h37

OW_RESET_NO_PRESENCE

rom400_ow.h37

OW_RESET_PRESENCE

rom400_ow.h37
OW_RESET_SHORT

rom400_ow.h37
ow_version

rom400_ow.h39

P_tmpdir
stdio.h,119
PF_INET
rom400_sock.h55
preference
mailhostentb
printf
stdio.h,135
Priority
TCB,7
putc
stdio.h,135
putchar
stdio.h,135
puts
stdio.h,135

recv

rom400_sock.h55
recvfrom
rom400_sock.h56
REDIRECT_O
rom400_util.h,103
REDIRECT_DHCPNOTIFY
rom400_util.h,103
REDIRECT_FREE
rom400_util.h,103
REDIRECT_GETFREERAM
rom400_util.h,103
REDIRECT_GETTASKID
rom400 _util.h,104
REDIRECT_GETTHREADID
rom400_util.h,104
REDIRECT_GETTIMEMILLIS
rom400_util.h,104
REDIRECT_INFOSENDCHAR
rom400_util.h, 104
REDIRECT_IP_-
COMPUTECHECKSUM_-
SOFTWARE
rom400_util.h,104
REDIRECT_KERNELFREE
rom400_util.h,105
REDIRECT_KERNELMALLOC
rom400_util.h,105
REDIRECT_MALLOC
rom400_util.h,105
REDIRECT_MALLOCDIRTY
rom400_util.h,105
REDIRECT_MM_UNDEREF
rom400 _util.h,105
REDIRECT_OWIP_READCONFIG
rom400_util.h,106
REDIRECT_ROM_TASK_CREATE
rom400_util.h,106
REDIRECT_ROM_TASK_DESTROY
rom400_util.h,106
REDIRECT_ROM_TASK_DUPLICATE
rom400_util.h,2106
REDIRECT_ROM_TASK_SWITCH_IN
rom400_util.h,106
REDIRECT_ROM_TASK_SWITCH_-
ouT
rom400_util.h,107

328

REDIRECT_SETMACID
rom400_util.h, 107
REDIRECT_SLEEP
rom400_util.h,107
REDIRECT_THREADIOSLEEP
rom400_util.h,107
REDIRECT_THREADIOSLEEPNC
rom400_util.h,107
REDIRECT_THREADRESTORE
rom400_util.h,108
REDIRECT_THREADRESUME
rom400_util.h,108
REDIRECT_THREADSAVE
rom400_util.h,108
REDIRECT_TINIEXPORT_MM_-
DEREF
rom400_util.h,108
RELOAD_14 746
rom400_task.hg1
RELOAD_18 432
rom400_task.hg1
RELOAD_29 491
rom400_task.hg2
RELOAD_36_864
rom400_task.h82
RELOAD_58 982
rom400_task.h82
RELOAD_73_728
rom400_task.hg2
remove
stdio.h,136
rename
stdio.h,136
rewind
stdio.h,136
ROM400_-

DHCP_STATUS_BOUND9
DHCP_STATUS INIT,10
DHCP_STATUS_INITREBOQOT10
DHCP_STATUS_REBINDING10
DHCP_STATUS_REBOOTING10
DHCP_STATUS_RENEWING10
DHCP_STATUS REQUESTING,

10
DHCP_STATUS_SELECTINGl11
dhcp_stopl2
dhcp_versionl2
ROM400_DHCP_VERSIONI1

ROM400_DHCP_VERSION
rom400_dhcp.hl1
rom400_err.h13
ROM400_-

ARRAYINDEXOUTOFBOUNDSEXCEPTION,

13
ROM400_BINDEXCEPTION,13
ROM400_-

CONNECTEXCEPTION,

13
ROM400_ERR_VERSIONI3
ROM400_INTERNALERROR]13
ROM400_-

INTERRUPTEDIOEXCEPTION,

14
ROM400_IOEXCEPTION14
ROMA400_-

NULLPOINTEREXCEPTION,

14
ROM400_-

OUTOFMEMORYERROR,

14
ROM400_SOCKETEXCEPTION,

14

ARRAYINDEXOUTOFBOUNDSIONAERT ERR_VERSION

rom400_err.h13
ROM400_BINDEXCEPTION

rom400_err.h13
ROM400_CONNECTEXCEPTION

rom400_err.h13
rom400_dhcp.h8

dhcp_init,11

dhcp_registernotifyl 1

dhcp_statusl] 2

rom400_err.h13
rom400_flash.h14

flash_eraseblocKk,5

flash_programbytel,5

flash_versionl16

ROM400_FLASH_VERSION15
ROM400_FLASH_VERSION

rom400_flash.hl15
rom400_init.h,16

329

init_clearSystemRAM23
init_clearXSEG24
init_copyivt, 24
INIT_CRYSTALFAIL_RESET,19
INIT_DIVISOR_10MHZ,19
INIT_DIVISOR_112MHZ,19
INIT_DIVISOR_128MHZ,19
INIT_DIVISOR_12MHZ,19
INIT_DIVISOR_14MHZ, 20
INIT_DIVISOR_16MHZ,20
INIT_DIVISOR_20MHZ, 20
INIT_DIVISOR_24MHZ,20
INIT_DIVISOR_28MHZ, 20
INIT_DIVISOR_32MHZ,20
INIT_DIVISOR_3MHZ, 21
INIT_DIVISOR_40MHZ,21
INIT_DIVISOR_48MHZ,21
INIT_DIVISOR_4MHZ, 21
INIT_DIVISOR_56MHZ,21
INIT_DIVISOR_5MHZ, 21
INIT_DIVISOR_64MHZ,22
INIT_DIVISOR_6MHZ, 22
INIT_DIVISOR_7MHZ, 22
INIT_DIVISOR_80MHZ, 22
INIT_DIVISOR_8MHZ, 22
INIT_DIVISOR_96MHZ,22
init_enableinterrupt4
init_eth,24
init_getbootstate?4

init_km, 25

init_mm, 25

init_netboot 25
init_network,26

init_ow, 26
INIT_POWERFAIL_RESET23
init_redirect,27

init_rom, 27

init_sockets27

init_tick, 28
init_usekeilmonitor28
init_version,28
INIT_WATCHDOG_RESET23
ROM400_INIT_VERSION23
USE_KEIL_MONITOR,23

ROM400_INIT_VERSION

rom400_init.h23

ROM400_INTERNALERROR
rom400_err.h13
ROM400_-
INTERRUPTEDIOEXCEPTION
rom400_err.n14
ROM400_IOEXCEPTION
rom400_err.h14
rom400_kmem.h29
kmem_init,30
kmem_install31
kmem_version32
ROM400_KMEM_MODEL_-
LARGEST,30
ROM400_KMEM_MODEL _-
SMALLEST, 30
ROM400_KMEM_VERSION30
ROM400_KMEM_MODEL_LARGEST
rom400_kmem.h30
ROM400_KMEM_MODEL_-
SMALLEST
rom400_kmem.h30
ROM400_KMEM_VERSION
rom400_kmem.h30
rom400_mem.h32
mem_free33
mem_getfreeran83
mem_malloc34
mem_mallocdirty 34
mem_sizeof35
mem_version35
ROM400_MEM_VERSION33
ROM400_MEM_VERSION
rom400_mem.h33
ROM400_NULLPOINTEREXCEPTION
rom400_err.h14
ROM400_OUTOFMEMORYERROR
rom400_err.n14
rom400_ow.h36
ow_byte,38
ow._first,38
ow_getcurrentid38
ow_next,38
ow_reset;39
OW_RESET_ALARM,37
OW_RESET_NO_PRESENCEY
OW_RESET_PRESENCBY?

330

OW_RESET_SHORT37
ow_version39
ROM400_OW_VERSION37

ROM400_OW_VERSION

rom400_ow.h37

ROM400_SCHED_VERSION

rom400_task.h78

rom400_sock.h39

accept46
acceptqueueg2
AF_INET, 46
AF_INET6,46
arp_cacherequestf
arp_generaterequed{/
avail,47
bind, 47
cleanup48
clear_param_buffer§2
closesocket48
connect49
ETH_STATUS_LINK,49
getethernetstatug9
getipvbparams;0
getmacid50
getnetworkparam$0
getpeernaméql
getsocknamey1l
getsockopts2
gettftpserver52
htons,53
inet_addr63
inet_ntop,63
inet_pton,63
IPPROTO_UDP53
join, 53
leave,54
listen,54
nstoh,55
PF_INET,55
recv,55
recvfrom,56
ROM400_SOCK_SYNCH_-
VERSION,56
ROM400_SOCK_VERSION;6
send57
sendto57

setmacidb58
setnetworkparam$8
setsockopt59
settftpserver59
SO_BINDADDR, 60
SO_LINGER,60
SO_TIMEOUT,60
SOCK_DGRAM,60
SOCK_STREAM61
sock_version61l
socket,61
SOCKET_TYPE_DATAGRAM61
SOCKET_TYPE_STREAMG2
syn_acceptc4d
syn_arp_cacherequeéy
syn_arp_generaterequesh,
syn_avail 65

syn_bind,65
syn_cleanup66
syn_closesocke66
syn_connects7
syn_getethernetstatuy
syn_getipv6param$§,7
syn_getmacidg8
syn_getnetworkparam6€8
syn_getpeernamé9
syn_getsocknamé9
syn_getsockop9
syn_gettftpserve70
syn_join,70

syn_leaveyl
syn_listen,71
syn_recv,/2
syn_recvfromy2
syn_send73
syn_sendtof3
syn_setDatagramAddress)}
syn_setmacid{4
syn_setnetworkparamsb
syn_setsockop¥5
syn_settftpserver;6
syn_socket76
syn_versiony7
TCP_NODELAY,62
udpavailable77

ROM400_SOCK_SYNCH_VERSION

rom400_sock.h56
ROM400_SOCK_VERSION
rom400_sock.h56
ROM400_SOCKETEXCEPTION
rom400_err.h14
rom400_task.h77
FLAG_DHCP_WAIT,80
FLAG_IO_WAIT, 80
FLAG_SLEEPING_81
MAX_PRIORITY, 81
MIN_PRIORITY, 81
NORM_PRIORITY,81
RELOAD_14 74681
RELOAD_18 43281
RELOAD_29 49182
RELOAD_36_86482
RELOAD_58 98282
RELOAD_73_72882

ROM400_SCHED_VERSION/8
ROM400_TASK_VERSION82

ROM_SAVESIZE,83
task_entercritsectio®4
task_fork,84
task_genesi|5
task_getcurrenB85
task_getpriority35
task_gettaskid36
task_getthreadid36
task_gettickreload37
task_gettimemillis37
task_Kkill,87
task_leavecritsectio®8
task_setpriority88
task_settickreloadd9
task_signal89
task_sleep33
task_suspen®0
task_synch_sleepp
task_synch_wai91
task_threadiosleep,l
task_threadiosleepn®?2
task _threadrestor82
task_threadresum@3
task_threadsavé3
task_version94
task_wait,83

ROM400_TASK_VERSION

rom400 _task.hg2

rom400_tftp.h94

ROM400_TFTP_VERSION95
tftp_first, 96

tftp_getdata96

tftp_init, 96
TFTP_LAST_SEGMENT95
TFTP_MORE_DATA,95
tftp_next,97

tftp_version,97

ROM400_TFTP_VERSION

rom400_tftp.h95

rom400_useriopoll.l97

ROM400_USERIOPOLL_-
VERSION, 98
useriopoll_getlistsize99
useriopoll_getpollroutine99
useriopoll_init,99
useriopoll_isinstalled100
useriopoll_registerpollroutind,00
useriopoll_removepollroutind,00
useriopoll_version101

ROM400_USERIOPOLL_VERSION

rom400_useriopoll.i98

rom400_util.h,101

332

REDIRECT_0,103
REDIRECT_DHCPNOTIFY103
REDIRECT FREE103
REDIRECT GETFREERAM103
REDIRECT_GETTASKID,104
REDIRECT _GETTHREADID104
REDIRECT_GETTIMEMILLIS,
104
REDIRECT_INFOSENDCHAR,
104
REDIRECT_IP_-
COMPUTECHECKSUM_-
SOFTWARE,104
REDIRECT KERNELFREE105
REDIRECT_KERNELMALLOC,
105
REDIRECT_MALLOC,105
REDIRECT_MALLOCDIRTY, 105
REDIRECT _MM_UNDEREF105

REDIRECT_OWIP._-
READCONFIG,106

REDIRECT_ROM_TASK_-

CREATE, 106

REDIRECT_ROM_TASK_-

DESTROY,106

REDIRECT_ROM_TASK_-

DUPLICATE, 106

REDIRECT_ROM_TASK_-

SWITCH_IN, 106

REDIRECT_ROM_TASK_-

SWITCH_OUT,107

REDIRECT_SETMACID,107

REDIRECT_SLEEP107

REDIRECT_THREADIOSLEEP,

107
REDIRECT_-

THREADIOSLEEPNC,107
REDIRECT_THREADRESTORE,

108

REDIRECT_THREADRESUME,

108

REDIRECT_THREADSAVE 108
REDIRECT_TINIEXPORT_MM_-

DEREF,108

ROM400_UTIL_VERSION108

util_crc16,109

util_getpseudorandom09

util_infosendchar109
util_installhook,109
util_memclear110
util_memcomparel10
util_memcopy111
util_setrandomseed,11
util_version,111

ROM400_UTIL_VERSION

rom400_util.h,108

rom400_xnetstack.i,12
ROM400_XNETSTACK_-

VERSION, 112
xnetstack_install112
xnetstack_versior, 12

ROM400_XNETSTACK_VERSION

rom400_xnetstack.i,12

ROM_SAVESIZE

rom400_task.h33

s6_addr
in6_addr4
s_addr
in_addr,5
scanf
stdio.h,137
SEEK_CUR
stdio.h,119
SEEK_END
stdio.h,119
SEEK_SET
stdio.h,119
send
rom400_sock.h57
sendto
rom400_sock.h57
setmacid
rom400_sock.h58
setnetworkparams
rom400_sock.h;8
setsockopt
rom400_sock.h59
settftpserver
rom400_sock.h59
sin_addr
sockaddrp
sockaddr_ing
sin_family
sockaddrp
sockaddr_iny
sin_port
sockaddrp
sockaddr_inp
sin_zero
sockaddr_in6
size t
stdio.h,120
SO_BINDADDR
rom400_sock.h60
SO_LINGER
rom400_sock.h60
SO_TIMEOUT
rom400_sock.h60
SOCK_DGRAM
rom400_sock.h60
SOCK_STREAM

333

rom400_sock.hg1
sock_version
rom400_sock.hgl
sockaddrb
bogus_ptrp
sin_addrp
sin_family,6
sin_port,6
sockaddr_ing
bogus_ptrp
sin_addrg
sin_family,7
sin_port,6
sin_zerop
socket
rom400_sock.hg1
SOCKET_TYPE_DATAGRAM
rom400_sock.hg1
SOCKET_TYPE_STREAM
rom400_sock.hg2
sprintf
stdio.h,137
sscanf
stdio.h,137
StatePtr
TCB, 7
StateSize
TCB, 7
stdio.h,113
_getkey 120
clearerr,120
EOF,117
fclose,121
feof, 121
ferror,121
fexists,122
fflush, 122
fgetc,122
fgetpos,123
fgets,123
FILE, 120
FILE_FLAGS_EOF117
FILE_FLAGS_TEMP 118
FILE_TYPE_TINIFS,118
FILENAME_MAX, 118
filesystem_versior.24

334

finit, 124
flockfile, 125
fopen,125
fopen_fd,126

FOPEN_MAX,118

fpos_t,120
fputc, 126
fputs, 127
fread,127
freadbytes128
freopen,128
FS_VERSION118
fseek,129
fseeko,129
fsetpos,130

ftell, 130

ftello, 131
ftrylockfile, 131
funlockfile, 132
fwrite, 132
fwritebytes,133
getc,133
getchar134
getfreefsram134
gets, 134
L_tmpnam,118
mkdir, 134
NULL, 119
off_t, 120
P_tmpdir,119
printf, 135
putc,135
putchar,135
puts,135
remove,136
rename]136
rewind,136
scanf,137
SEEK_CUR119
SEEK_END,119
SEEK_SET]119
size t,120
sprintf, 137
sscanf137
tempnam137
TMP_MAX, 120

tmpfile, 138
tmpnam,138
ungetchar139
vprintf, 139
vsprintf, 139
syn_accept
rom400_sock.h64
syn_arp_cacherequest
rom400_sock.hg4

syn_arp_generaterequest

rom400_sock.hg5
syn_avalil
rom400_sock.h65
syn_hind
rom400_sock.hg5
syn_cleanup
rom400_sock.h66
syn_closesocket
rom400_sock.h66
syn_connect
rom400_sock.hg7
syn_getethernetstatus
rom400_sock.hg7
syn_getipv6params
rom400_sock.hg7
syn_getmacid
rom400_sock.hg8
syn_getnetworkparams
rom400_sock.h68
syn_getpeername
rom400_sock.hg9
syn_getsockname
rom400_sock.hg9
syn_getsockopt
rom400_sock.hg9
syn_gettftpserver
rom400_sock.h70
syn_join
rom400_sock.h70
syn_leave
rom400_sock.h71
syn_listen
rom400_sock.h71
syn_recv
rom400_sock.h72
syn_recvfrom

rom400_sock.h72
syn_send

rom400_sock.h73
syn_sendto

rom400_sock.h73

syn_setDatagramAddress

rom400_sock.h74
syn_setmacid
rom400_sock.h74
syn_setnetworkparams
rom400_sock.h75
syn_setsockopt
rom400_sock.h75
syn_settftpserver
rom400_sock.h76
syn_socket
rom400_sock.h76
syn_version
rom400_sock.h77

task_entercritsection
rom400_task.hg4
task fork
rom400_task.hg4
task_genesis
rom400_task.hg5
task_getcurrent
rom400_task.h85
task_getpriority
rom400_task.h35
task_gettaskid
rom400_task.hg6
task_getthreadid
rom400_task.h36
task_gettickreload
rom400_task.hg7
task_gettimemillis
rom400_task.hg7
task_Kkill
rom400_task.hg7
task_leavecritsection
rom400_task.hg8
task_setpriority
rom400_task.h38
task_settickreload
rom400_task.h39

335

task_signal
rom400_task.hg9
task_sleep
rom400_task.h83
task_suspend
rom400_task.n90
task_synch_sleep
rom400_task.n0
task_synch_wait
rom400_task.h91
task_threadiosleep
rom400_task.n91
task_threadiosleepnc
rom400_task.h92
task_threadrestore
rom400_task.h92
task_threadresume
rom400_task.h93
task threadsave
rom400_task.h93
task_version
rom400_task.n94
task_wait
rom400_task.h33
TCB, 7
Flags,7
ID, 7
Next, 7
Priority, 7
StatePtry
StateSizey
WakeupTimey/
TCP_NODELAY
rom400_sock.hg2
tempnam
stdio.h,137
tftp_first
rom400_tftp.h96
tftp_getdata
rom400_tftp.h96
tftp_init
rom400_tftp.h96
TFTP_LAST_SEGMENT
rom400_tftp.h95
TFTP_MORE_DATA
rom400_tftp.h 95

tftp_next
rom400_tftp.h97

tftp_version
rom400_tftp.h97

TIME, 8
millis, 8
msb,8

tini400_crypt.h, 139
crypt_shall140
crypt_version,140
TINI400_CRYPT_VERSION140

TINI400_CRYPT_VERSION
tini400_crypt.h, 140

tini400_dns.h140
dns_enableipv6queries42
dns_getmx142
dns_getprimaryl43
dns_getsecondarg43
dns_gettimeoutl 44
dns_init,144
dns_setprimaryl44
dns_setsecondary44
dns_settimeout| 45
dns_version145
gethostbyaddr 45
gethostbynamel,46
TINI400_DNS_VERSION142

TINI400_DNS_VERSION
tini400_dns.h142

tini400_isr.h,146
ISR_CANO,148
ISR_ETHERNET 148
ISR_ETHERNETPOWER148
ISR_EXTERNALINTO,148
ISR_EXTERNALINTZ1,148
ISR_EXTERNALINT2345,148
isr_getinterruptvector, 51
ISR_POWERFAIL149
ISR_SERIALO,149
ISR_SERIAL1,149
ISR_SERIAL2,149
isr_setinterruptvectof,51
ISR_TIMERO,149
ISR_TIMER1,150
ISR_TIMER2,150
ISR_TIMERS3,150

336

isr_version,152
ISR_WATCHDOG,150

ISR_WRITEPROTECT150
TINI400_ISR_VERSION]151

TINI400_ISR_VERSION
tini400_isr.h,151
tini_i2c.h,152
i2c_bit, 155
i2c_delay,155

|2C_DELAY_LOOP_COUNT154
12C_ENABLE_SCL_WAIT_FOR_-

SLOW_SLAVES,154
12C_MAXIMUM_SCL _-
WAITCOUNT, 154

i2c_readbit,155
i2c_readblock155
i2c_readbytel55
I2C_SCL,154
I2C_SDA,154
i2c_select]155
i2c_start, 156
i2c_stop,156
i2c_version156
i2c_writeblock,156
i2c_writebyte, 156
i2c_writereadblockl156
TINI_I2C_VERSION,154

TINI_I2C_VERSION
tini_i2c.h,154

TMP_MAX
stdio.h,120

tmpfile
stdio.h,138

tmpnam
stdio.h,138

type
file_structure3

udpavailable
rom400_sock.h77
ungetchar
stdio.h,139
USE_KEIL_MONITOR
rom400_init.h23
useriopoll_getlistsize
rom400_useriopoll.F99

useriopoll_getpollroutine
rom400_useriopoll.r99
useriopoll_init
rom400_useriopoll.l99
useriopoll_isinstalled
rom400_useriopoll.h100
useriopoll_registerpollroutine
rom400_useriopoll.h.00
useriopoll_removepollroutine
rom400_useriopoll.n1 00
useriopoll_version
rom400_useriopoll.h101
util_crcl6
rom400_util.h,2109
util_getpseudorandom
rom400_util.h,109
util_infosendchar
rom400_util.h,109
util_installhook
rom400_util.h,109
util_memclear
rom400 _util.h,110
util_memcompare
rom400_util.h,110
util_memcopy
rom400_util.h,111
util_setrandomseed
rom400 _util.h,111
util_version
rom400_util.h,111

vprintf
stdio.h,139

vsprintf
stdio.h,139

WakeupTime
TCB, 7

xnetstack_install
rom400_xnetstack.i,12

xnetstack_version
rom400_xnetstack.i,12

337

	DS80C400CLibraries Module Index
	DS80C400CLibraries Directory Hierarchy
	DS80C400CLibraries Data Structure Index
	DS80C400CLibraries File Index
	DS80C400CLibraries Module Documentation
	DS80C400CLibraries Directory Documentation
	DS80C400CLibraries Data Structure Documentation
	DS80C400CLibraries File Documentation

