The TINI™
Specification
and Developer’s
Guide

Don Loomis

A
A\ A 4

ADDISON-WESLEY

Boston ¢ San Francisco * New York ¢ Toronto « Montreal
London ¢ Munich ¢ Paris « Madrid
Capetown * Sydney « Tokyo * Singapore « Mexico City

Copyright © 2001 by Dallas Semiconductor Corporation

Many of the designations used by manufacturers and sellers to distinguish their
ucts are claimed as trademarks. Where those designations appear in this boc
Addison-Wesley was aware of a trademark claim, the designations have been p
in initial caps or all caps.

The author and publisher have taken care in the preparation of this documen
make no expressed or implied warranty of any kind and assume no responsibili
errors or omissions. No liability is assumed for incidental or consequential dam
in connection with or arising out of the use of the information or programs conta
herein.

All rights reserved. No part of this publication may be reproduced, stored in a retr
system, or transmitted, in any form, or by any means, electronic, mechanical, p
copying, recording, or otherwise, without the prior consent of the publisher. Printe
the United States of America. Published simultaneously in Canada.

The publisher offers discounts on this book when ordered in quantity for special ¢
For more information, please contact:

Pearson Education Corporate Sales Division
One Lake Street

Upper Saddle River, NJ 07458

(800) 382-3419
corpsales@pearsontechgroup.com

Visit us on the Web at www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data
Loomis, Don.

The TINI™ specification and developer’s guide / Don Loomis.

p. cm.
Includes index.
ISBN 0-201-72218-6
1. Telecommunication systems--Design and construction--Data
processing. 2. TINI. I. Title

TK5101 .L66 2001
621.382--dc.21
2001022528

ISBN 0-201-72218-6
Text printed on recycled paper

123456789—CRS—05 04 03 02 01
First printing, June 2001

To my family:
Judy, Jamie, and Nathan

Contents

Foreword xi

Preface Xiii

CHAPTER 1 The TINIPlatform. 1
1.1 DESCHIPLON. .« .« o vttt e
L2 Applications.
L3 TINITHardwareo e

1.3.1The Memory Map . . . oo e et e 6
1.3.21Integrated /O. o e 1
1.3.3 A Hardware Reference Design., 8
1.4 TINI Runtime Environmentottt 10
LA L API OVEIVIEW. . . oottt e e e e e e e e e e 1(
1.4.2 The Java Virtual Machine. 13
1.4.3 Native Methods. i 14
LAATINIOS. ... 1
1.4.5 Bootstrappingthe System 18
1.4.6 Step 1: Execute the Bootstrap Loader. 19
1.4.7 Step 2: Initialize the Runtime Environment. 20
1.4.8 Step 3: Start the Primary Java Application 21
1.5The Future. o e e e 2

vi Contents

CHAPTER 2 GettingStarted |
2.1 Hardware RequUirementsttt e
21.1TheTINIBoardModel 390, 2
2.1.2The EI0 SOCKet.ot
2.2 Development Platform Requirements 2
2.2.1 A Java Development Environment 2
2.2.2 The Java Communications APl 2
223TheTINISDK e e

2.3 Loading the TINI Runtime Environment 2
2.4 Slush: AQuUIiCk Primer
241 SlushDefined
242 Starting @a New SeSSIONo oottt
243 Exploringthe File System 3
244 Getting Help. . ..o
2.5 Configuringthe Netwotk
2.6 Some Simple Examples.
2.6.1HelloWorldo
2.6.2Blinky, Your First TINIFI/O. 4
2.6.3 HelloWeb, a Trivial Web Server. 4
2.7 Debugging TiPS. . . v v vt
CHAPTER 3 Serial Communication 5
3.1 Introduction and Terminologyt
3.2 The Java CommunicationsARL. L
3.2.1 Acquiring and Configuring Serial Ports 56
3.22Flow Control.o
3.2.3 Sending and Receiving SerialData. 6!
3.24 Serial PortEvents.
3.3TINIs Serial POrS.
4ASmall Terminal Example. {
3.5A Serial= Ethernet Converter. 1
CHAPTER 4 The 1-WireNet. |
4.1 1-Wire Networking Fundamentals. 8
4.1.11-Wire Signalling.
41.21-WireTransactionSt :
4.1.3 Addressing 1-Wire Chips.t €

4.1.4 1-Wire Chipsand iButtons.t .. 8

Contents vii

4.2 AdaPerS. . o €
4.2.1 Finding and Creating Adapters.c i 89
4.2.2 The Internal Adapter. 90
4.2.3The External Adapter. 91
4.2.4 Determining an Adapter’s Capabilities. 91
4.2.5 Searching for 1-Wire Devices. 92
4.2.6 Adapter Ownership. 95

4.3 Direct 1-Wire Communication. i, 96

A4 CoNtaINEIS 10
4.4.1 The Class OneWireContainer., 102
4.4.2 Creating Container Instances 102
4.4.3 Example: 1-Wire Humidity Sensor. 104

4.5 Ensuring Data Integrity USingCRCs. 108

CHAPTER 5 TCP/IP Networking. 111

5.1 TINI Networking Environment and APl Overview. 112
5.1.1 The Network Interfaces 113
5. l2Ethernet 11
5. L B PP, 11
5.1.4 Loopback. 11

5.2 Setting Network Parameters. 117
5.2.1 Committing Static Network Parameters. 119
5.2.2 Dynamic IP Configuration Using DHCP. 121

D B NS e 1

DA HT TP . 1:

D L ICMP. . e 1:

CHAPTER 6 Dial-Up Networking UsingPPP 139

6.1 The PPP APICIassesS. oo 13¢

6.2 PPP EVENtS. 14
6.2.1 STARTINGEvent 143
6.2.2 AUTHENTICATION_REQUESTED Event. 143
B.2.3UP EVENt e 14.
6.2.4 STOPPED Event. e 144

6.25CLOSED Event. 14E¢

viii Contents

CHAPTER 7 Building a Remote Datalogger 147
7. L DESCIIPON. . ot
7.2The DataLogger Class. e 1
7.3Collectingthe Data. 1
TA4ASample Client
7.5 Implementing the PPP Daemon. 1€
7.6 Managing the PPP DatalLink.............................. 1¢

7.6.1TheSerialLink 1
7.6.2 Controllingthe Modem. 1¢
7.7 Adding the PPP Daemon to DataLogger. 17!
7.8 Testing the Entire Application. 17

CHAPTER 8 Parallel /O 1
8.1TINI'sParallelBus 1
82TheDataPort Class i 1

821lDataTransfer. e e 1
8.2.2 Memory Access Modes 1¢
8.2.3ControllingBus Timing. 1¢
8.3 Parallel /O Examples. 1
8.3.1 Additional TTLI/O. e {
8.3.2 Reading and Writing External Memory 196

CHAPTER 9 JusttheBits. 1
9.1TINI'sPortsand Port Pins. i, 1
9.2TheBitPort Class i e e e z
9.3SyntheticPortPins. 2

9.3.1 Example: Creating Additional Outputs. 204
9.4 The BytePort Class oot .
9.5 Performance of BitPort and BytePort. 20

CHAPTER 10 Accessing SystemResources. 20¢

10.1 The Real-Time Clock. i e 2
10.1.1 Setting the Current Dateand Time. 21

10.1.2 Using a Network Time Server., 21

Contents ix

10.2 TheWatchdog. 21!
10.2.1 Motivation for Using the Watchdog. 215
10.22ATall of TWODOQGSo v et 216
10.2.3 Using the Watchdog Timer.uun. 216
10.2.4 Example Use of the Watchdog Timer. 217
10.25Beware of DOQ! i e 219

10.3 The External Interrupt 219
10.3.1 Polling versus Interrupts 219
10.3.2 Properties of the External Interrupt 220
10.3.3 Triggering the External Interrupt. 220
10.3.4 Receiving Notification of Interrupts 221
10.3.5 Sharing a Common Interrupt Source. 224

CHAPTER 11 Application Programming Tips 225

11.1 Performance Profiling 225

112 Efficient /Q 22
11.2.1 Block Data Transfer versus Byte-Banging 227
11.2.2 Buffered Streams 232

11.3Memory Usageo oot e e 23:
11.3.1 0bject Creation. 233
11.3.2 SUINGS . et 23
11.3.3 Profiing Memory Usage., 234
11.3.4 Garbage Collection., 237

11.4 Other Optimization TIPS.« o vt 237
11.4.1 Relative Cost of Common Operations. 238
11.4.2 Loop Optimizations.ot 239
11.4.3 Arithmetic Operations. 244
11.4.4TheArrayUtils Class.ot e 246

11.5 An Optimization Strategy.o 248

11.6 ApplicationHardening 248
11.6.1 TINI's Memory Technology and Data Persistence. 249
11.6.2 Application Startup. 251
11.6.3 Hardening Summary. 253

APPENDIX Almanac................ ... 25!

Foreword

“Prediction is very difficult, especially about the future.”
—Niels Bohr

Despite this authoritative caveat, here is a threefold prediction for this decade:

1. Demand for embedded software will grow significantly.
2. Java will be the language of choice for writing much of this new software
3. Engines like TINI will host much of this Java code.

The ever-broadening reach of the Internet will motivate much of the increa
ing demand for embedded systems. Existing devices that have hitherto be
driven by isolated controllers will become part of the network. New devices ar
new applications will exploit the opportunities of ubiquitous communications
These new (or newly connected) systems will appear in factories, offices, a
homes. Some may radically affect the way we live; many will squeeze higher pr
ductivity from existing activities; some will be short-lived novelties. The obvious
industrial applications include networked process control, networked power ma
agement, networked security, and so on. But the full extent of the network’s rea
isn't clear. Will networked process control allow a consumer to interact with .
manufacturing system that's assembling a custom product? Will network pow
management enable your dishwasher to negotiate with a power utility to deci

Xi

xii Foreword

when to wash the dishes? Will networked security include regulated webcar
day-care facilities?

Can we afford to write the software for these new systems without Java?
ditionally, embedded software has been written in assembler, C, and some
Although these languages were undoubtedly the right choice to date, Mo
Law compels us to reevaluate that decision. As the relative cost of the prog
ming rises against that of the hardware being programmed, we must move t
guages that make better use of programmers, at the expense of cycles execl
our microprocessors. Java is the single best candidate to meet this need tod:

Java is a higher-level language than C and C++. For example, Java’s mot
memory provides garbage-collected objects, whereas C’s has little more thal
bytes. Java’s higher-level abstractions, combined with its libraries, offer the
grammer a tool that's portable, robust and network-ready. Although some
real-time requirements may exceed Java’'s current reach, the language :
meets the needs of a wide range of embedded systems.

Java'’s suitability for embedded programming is no surprise. Java’s roots
in embedded systems. James Gosling and his team at Sun created OAK—
precursor—almost a decade ago to meet their needs for coding a variety o
worked consumer devices. Java blossomed on the desktop and in servers,
still meets its original design constraints for portable, network-enabled, embe
software.

The TINI's microcontroller realizes the software benefits of Java in a che
hardware package that can be easily interfaced into a wide variety of systen
designers have selected and constructed an impressive balance of base c
nents: hardware, firmware, and application libraries. The resulting platforr
remarkable for its ease of use and flexibility. It is well positioned to play a sigt
cant role in the wave of network embedded systems that | anticipate.

Although | believe this formal rationale, it's only half the story. Just as imp
tant, the TINI is fun. The technology surprises and delights; it challenges our
ditional thinking about how and where to apply computers. You'll be ama
when you first see a Web server running on a computer that’s little bigger th
stick of chewing gum. Join the fun, and discover what you can build!

Tom Cargill
Boulder, Colorado
http://www.profcon.com/cargill

Preface

The earliest implementation of TINI actually dates back to late 1998 when a har
ful of engineers at Dallas Semiconductor, working with engineers at Sun Lak
demonstrated a very small, Java programmable device that was capable of ¢
trolling household electrical appliances. The prototype modules were cramm
into light switch housings, coffee pots, HVAC systems, and fans. The applianc
communicated with one another and with a central server, using a crude form
power line networking. The main idea was to provide not only local control of th
appliance but also network connectivity to allow for remote control and monitol
ing. This increased the flexibility as well as the ease of use of the appliance. WF
none of the engineering work of this ancient version of the technology remair
the concept of a Java programmable runtime environment used to create emk
ded network applications is still the cornerstone of the TINI platform.

Over the past two years, the power line has given way to Ethernet, and the r
work programming interface has transitioned from an application specific inte
face to a standards-based TCP/IP protocol stack. The device I/O capabilities h
also been greatly extended. Today, TINI is a broad platform that includes ba
hardware and software used to create intelligent network devices. These are 0
devices that require a small footprint, have low power consumption, and are c
sensitive. A few examples include industrial automation equipment, access cc
trol, vending machines, remote meters, and environmental sensors.

The TINI development project is a first for Dallas Semiconductor in that it
design has been open to public scrutiny. The networking portion of the runtin

Xiii

xiv Preface

environment along with the core Java APIs are of course well defined and
understood by a large development community. However, several new APIs
been created to expose the rich I/O capabilities of the technology. Major cont
tions to the definition of these new APIs have been made by the TINI SIG (sp
interest group). The result of this cooperative effort is a feature-rich platform.
work is an attempt at presenting a reasonably complete specification of the
form with plenty of examples to help clarify important topics. The book focu
on the following three areas.

* Platform definition
e Local device I/O APIs
» TCP/IP networking capabilities

Several of the chapters describe the APIs that expose the various forr
device I/0. Some of these may not be required by developers with specific &
cations in mind. However, the reader is encouraged to read at least the firs
last chapters in addition to the chapters that expose capabilities relevant to |
her particular application. The first chapter provides a thorough definition of
platform, while the final chapter focuses on performance improvements and a
cation hardening—two important topics for anyone writing serious applicati
targeted for the TINI runtime environment. Chapter 7, Building a Remote L
Logger, is also quite useful as it details a large example that brings togethe!
eral of the concepts presented to that point in the book, including serial comn
cation, 1-Wire networking, and TCP/IP networking over both Ethernet and st
interfaces.

The best way to become familiar with this technology is, of course, to us
For this reason, every attempt has been made to create examples that are
run on the most commonly available hardware. Some of the larger exan
require additional hardware, but any additional hardware should be relati
inexpensive and easy to attain.

A strong familiarity with the Java programming language and some exp
ence with network programming concepts is assumed. While a comfort |
with hardware-related topics is helpful, it is not a requirement for understant
the bulk of the contents of this book. It is my hope that “pure programmers”
start with the code examples and gradually become more comfortable witt
hardware-oriented concepts presented here.

Preface Xv

ACKNOWLEDGMENTS

| would like to thank the many people who have contributed to the TINI projec
and this book. First and foremost | would like to thank the talented engineers w
contributed so much to this long and intense development effort for their ha
work and dedication: Kris Ardis, Bryan Armstrong, Tom Chenot, Chris Fox.
Stephen Hess, Nicolas Kral, Yolanda Lei, Jesse Marroquin, Caroline McLean, J
Owens, David Smiczek, Lorne Smith, Stephen Umfleet, and Clayton Ware.
would also like to thank my management, Steve Curry and Michael Bolan, fi
their support and encouragement while | was writing this book. | am grateful fc
the volunteer efforts of many on the TINI SIG, who not only provide fantastic
support to new developers but also contribute to the quality and definition of
platform.

Thorough and insightful technical reviews of early drafts were provided b
Tom Cargill, Steve Curry, Peter Haggar, Judy Loomis, Robert Muchsel, and Jo
Wilson. | appreciate all of the excellent feedback.

| am also grateful to Mike Hendrickson and Heather Olszyk at Addison
Wesley, who patiently guided me through the writing process. | would also lik
to thank the copy editor, Debbie Prato, who did a terrific job.

Finally, many thanks to the folks at Sun Microsystems who allowed me to us
their excellent MIF Doclet tool to create the Almanac. The legend page of the Alm
nac is also the result of blatant thievery from the Java Real-Time specification.

w1 1He TINI Platform

1.1 DESCRIPTION

Tiny InterNet Interface (TINI) is a platform developed by Dallas Semiconducto
to provide system designers and software developers with a simple, flexible, a
cost-effective means to design a wide variety of hardware devices that can conr
directly to corporate and home networks. The platform is a combination of a sm
but powerful chip-set and a Java programmable runtime environment. The ch
set provides processing, control, device-level communication and networkir
capabilities. The features of the underlying hardware are exposed to the softw
developer through a set of Java application programming interfaces.

The primary goal of the platform is to provide a voice on the network tc
everything from small sensors and actuators to factory automation equipment ¢
legacy hardware. The combination of broad-based 1/O capability, a TCP/IP ne
work protocol stack, and a Java programming environment empowers progra
mers to quickly create applications that provide not only local control of but als
global access to TINI-based devices. TINI's networking capability extends th
connectivity of any attached device by allowing interaction with remote systen
and users through standard network applications such as Web browsers.

This chapter examines a few applications of the technology, followed by
high-level description of both the hardware and software components of tl

2 Chapter 1 The TINI Platform

platform. The chapters that follow will focus on TINI's capabilities and featul
in much more detail.

1.2 APPLICATIONS

TINI is designed to meet the functional requirements for commercial and in
trial embedded network applications. However, because of its low-cost hard
and the availability of free software development tools, it is beginning to fin
home in the educational and hobbyist arenas as well.

TINI can be used for traditional stand-alone embedded tasks such as mo
ing and controlling a local device or system, but the majority of applications
lize TINI's networking capabilities. A few applications of the technology inclu
the following.

» Industrial controls TINI's integrated Controller Area Network (CAN)
support is instrumental in implementing factory automation equipme
networked switches, and actuators.

* Web-based equipment monitoring and contiiotan be used for commu-
nication with equipment to provide remote diagnostics and data collec
for purposes such as monitoring device utilization.

» Protocol ConversionTINI-based systems can be used to connect leg
devices to Ethernet networks. Depending on the 1/O capabilities of the
acy system, this may be a job that can be done with a PC or workstatic
well. However, TINI can do the job at a fraction of the cost and size.

« Environmental monitor$ Using TINI's built-in support for 1-Wire net-
working, an application can query sensors and report the results to re
hosts.

Figure 1.1 shows a use model in which TINI is employed as a protocol «
verter (or link) between a legacy embedded device and an Ethernet network
legacy device may communicate with the outside world using an RS232 s
port, Controller Area Network (CAN), or perhaps some type of parallel interfe
The Java application running on TINI performs the task of communicating v
the attached device in its native language (using a device-specific communic
protocol) and presents the results to remote systems reachable via a TCP/I
work. The link provided by TINI is bidirectional, allowing a remote system
control as well as monitor the device.

Figure 1.1 focuses on an embedded system that controls and provides ne
connectivity to a single device. However, TINI can also serve to interconnect

1. Chapter 7 presents a remote climate monitor application using TINI and a 1-Wire
humidity sensor.

TINI Hardware 3

[[

Serial, 1-Wire, CAN, . ..

Embedded
Device

TCP/IP
Network

TINI

Ethernet

Figure 1.1 Protocol conversion

ious types of networks by bridging the gap between smaller, localized networks
inexpensive and lightweight devices and a “big world” TCP/IP network such a
the Internet.

In general, TINI applications interface to other equipment and networks &
opposed to humans. Due to the embedded control and 1/O-centric nature of m
embedded network applications, there is no built-in hardware or API support for
human interface. TINI-based systems often provide a remote display by impl
menting a network server, such as an HTTP server, allowing the user to inter.
with the system using a network client such as a Web browser. Local display a
data entry can be obtained by interfacing to a PDA over a wireless link such
infrared (IR) or a hard-wired serial link. TINI systems requiring dedicated huma
interfacing capability can be implemented using liquid crystal displays (LCDs
and keypads.

1.3 TINI HARDWARE

This section presents a broad overview of TINI hardware and examines the ma
components as a chip-set. This includes primarily the large-scale integration (LS
chips. Other small chips and miscellaneous discreet components, such as re
tors, capacitors, and crystals, are of course required by any design. While ev
attempt has been made to keep the hardware description at a high level, part
this section assume a comfort level with hardware-oriented concepts. Howev
complete comprehension of this section is not required for programmers wanti
only to create Java applications for “off the shelf” TINI hardware. We will return
to our regularly scheduled programming topics in the next section.

4 Chapter 1 The TINI Platform

At the very minimum the TINI hardware consists of the following LSI chip:

* Microcontroller
* Flash ROM
e Static RAM

A block diagram of a minimal TINI hardware implementation is shown
Figure 1.2. The microcontroller is the heart of any TINI hardware design
directly executes the native code portion of the runtime environment. The mi
controller used in current TINI hardware implementations is the DS80C390.
a small microcontroller with built-in support for several distinct forms of 1/
including serial and CAN. It also provides several general purpose port pins
can be used to perform simple control tasks such as driving relays and ¢
LEDs.

The flash memory stores TINI's runtime environment and satisfies the foll
ing two important requirements.

1. The memory contents are maintained even in the absence of sy
power.
2. The memory is reprogrammable.

EEPROM also meets both of the preceding criteria, but rapidly growi
demand for flash memory has driven equally rapid advancement of flash tec
ogy, yielding faster and higher density memories.

The static RAM contains the system data area as well as the garbage coll
heap from which all Java objects are allocated. It also stores all file system
Whether the file system data persists in the absence of power depends on w
the static RAM is battery-backed (nonvolatized). This is discussed in more d
later in this section.

Peripheral devices, other than memory, can also be interfaced directly t
microcontroller's address and data buses (labeled “Parallel 1/0O expansior
Figure 1.2). Two such peripherals that are commonly used in TINI-ba
systems are an Ethernet controller and a real-time clock. This configura
shown in Figure 1.3, extends the reach of embedded devices to Eth
networks. It also provides an accurate time reference for time-stam,
purposes. Without the clock, commonly used Java methods such
java.lang.System.currentTimeMi1lis and java.util.Date methods that use
currentTimeMilTis return constant, and therefore useless, values. Section 1
discusses where peripheral devices such as the Ethernet controller and clo
included into the system’s memory map.

2. EEPROM stands for electrically erasable programmable read-only memory.

I

Serial, CAN, 1-Wire, . ..

Address/Data

Microcontroller
Integrated 1/0

Parallel 1/0 Expansion Bus

Figure 1.2 Minimal TINI Block Diagram

)
‘:>

TINI Hardware 5

Flash
ROM

SRAM

Another addition that is shown in Figure 1.3 is the battery-back circuity. Th
battery is a very small, single-cell lithium battery. Both the SRAM and clock use
in TINI designs have very low stand-by power requirements, which means that
appropriately chosen lithium cell will keep the clock running and the SRAM dat

persistent for over 10 years.

Address/Data

Microcontroller
Integrated 1/0

Serial, CAN, 1-Wire, . ..

/

Parallel 1/0 Expans

[1]]

Flash

ROM
Battery-Back

Circuitry

r T
' oyl !

SRAM ! NV T :
L
LT

Ethernet

Controller

Clock

ion Bus

“Nonvolatizer

Figure 1.3 A more full-featured TINI hardware implementation

6 Chapter 1 The TINI Platform

This circuitry performs two functions. First, it keeps the clock running in 1
absence of main power £, ensuring that an accurate time can always be re
from the clock. The lithium cell alone performs this task. Also, the lithium cell,
conjunction with a small chip known as an SRAM nonvolatizer, maintains
contents of the static RAM in the absence of main power. The primary reas
nonvolatize the SRAM is to allow file system data to persist even when pow
removed from the system.

1.3.1 The Memory Map

A memory map specifies where memory and other peripheral devices are det
in the microcontroller’s address space. The memory map used by TINI, shov
Figure 1.4, consists of the following three distinct segments.

+ Code
» Data
» Peripheral

The segment sizes shown in the figure are maximums and are all multipl
1 megabyte. If, for example, only 512 kilobytes of flash ROM exists in the c
segment, the starting address of the data segment remdii®000. In other
words, the starting addresses of the different segments are always as shown
ure 1.4. But the ending address may be less than those indicated, depend
how much of the space is actually occupied by the memory chips. The minir
memory requirement for the code and data segments is 512 kilobytes each.

The code and data segments are occupied by memory chips, and the p
eral segment is occupied by other types of hardware components such
Ethernet controller and real-time clock shown in Figure 1.3. Other periph
devices that support a parallel bus interface compatible with the microcontrol
bus can also be mapped into the peripheral segment. A word of caution: Ac
hardware in this fashion also adds capacitive loading to either or both the dat
address busses (depending on the device). The system designer must be a
this loading to ensure reliable system operation.

The Ethernet controller and real-time clock occupy these address ranges

» Ethernet controller - [0x300000 - 0x0x307FFF]
* Real-Time clock - 0x310000

System designers must avoid these ranges for interfacing any device
than an Ethernet controller or real-time clock. The rest of this address ran
available for adding other peripheral devices.

TINI Hardware 7

0x000000
Runtime environment _
(TINI 0S + Java API) Code segment — 1 Megabyte
OXOFFFFF
0x100000 System memory B
Garbage collected heap Data segment — 2 Megabytes
+
File system
Ox2FFFFF _J
0x300000
(Ethernet, Clock, . . .) Peripheral segment — 1 Megabyte
Ox3FFFFF

Figure 1.4 Memory map

There is also a separate 4-megabyte peripheral area, known as peripheral
enable (PCE) space, that can be used to interface large (up to four 1-megab
external memory chips or other hardware devices directly to the microcontroller
address and data busses. However most hardware is mapped in the peripheral
ment, shown in Figure 1.4, because it can be accessed more efficiently by the ¢
troller. The microcontroller uses four pins to control the PCE space. If no devic
are mapped into this space, the microcontroller pins can be dedicated for use
general purpose port pins. The system designer is free to use the peripheral |
either for interfacing hardware directly to the controller's address and data buss
or general purpose TTL I/O, but not both. The topics of interfacing devices to tt
parallel expansion bus are discussed in Chapter 8, and accessing microcontrc
port pins is covered in Chapter 9.

1.3.2 Integrated I/O

The peripheral devices described in the previous section are all interfaced to
microcontroller's address and data busses. However, a broad range of devices
are interesting to network-enable with TINI don’t have support to interface to
full parallel bus. Often these devices have some form of serial interface. This us
ally results in a lower communication bandwidth. But a serial interface als
reduces the required pin count, simplifies communication, and often lowers cc
when compared with devices that have parallel bus-type interfaces. Serial int
rupts also have the advantage of adding no load to either of the microcontrolle

8 Chapter 1 The TINI Platform

busses. Support for the following low-level serial communication protocols
been integrated onto the microcontroller.

e Serial communicatianSynchronous serial protocols, using a 2-wire inte
face, and asynchronous serial communication, based on the RS232-C
dard, are supported. TINI's controller provides two integrated UAI
(Universal Asynchronous Receiver Transmitter) circuits to facilitate se
communication. Asynchronous serial ports are extremely common in le
devices. Asynchronous serial communication is the subject of Chapter :

e Controller Area Network (CANYXriginally developed at Bosch-Siemen:
CAN is now described in two 1ISO standa?dss.provides a reliable serial
communications bus that is commonly used in automotive and indus
control applications. TINI's microcontroller provides two integrated CA
controllers. The application programming interface for communicati
with CAN devices is shown in the appendix.

» 1-Wire net Developed by Dallas Semiconductor, the 1-Wire netis ar
work of small sensors, actuators, and memory elements that all shar
same conductor for both communication and power. Programming for
1-Wire net is the subject of Chapter 4.

« TTL I/O. These general purpose, bidirectional microcontroller port p
may be used for various control tasks and are not necessarily tied tc
type of serial communication device. Both bit and byte-wide TTL 1/O ¢
covered in Chapter 9.

Utilizing the microcontroller’s integrated 1/0O capabilities instead of the memc
mapped I/O, reduces both total device count and the cost of communicating wi
external device because it burdens the CPU less than communicating with de
interfaced to the microcontroller's busses. For example, the microcontroller’s (
core runs at full speed, executing the runtime environment, while the UART is si
taneously sending and receiving serial characters. Communicating with bus
faced peripherals, on the other hand, requires the CPU to stop what it's doin
execute instructions to read data from or write data to the device.

1.3.3 A Hardware Reference Design

Not requiring a single hardware design or form-factor provides system desic
with the flexibility needed to design the TINI chip-set into custom products. |
without a concrete and commercially available reference implementation of
hardware, each new design would have to begin with the rather painful proce

3. IS0 11898 is for high-speed applications, and 1ISO 11519-2 is for low-speed applica-
tions.

TINI Hardware 9

designing and debugging new hardware. The TINI Board Model 390 (TBM39C
has been developed to solve this problem. It allows both hardware and softw:
designers to begin prototyping and development work without a large up-frol
investment of either money or time.

The TBM390 serves the following purposes.

Reference implementatiofll of the details of its design are public. Hard-
ware developers are free to use information gleaned from the TBM3S
when designing the chip-set into their own TINI-based systems.
Development toollt provides easy access to much of the platform’s I/O
capability, allowing designers to quickly interface custom external hard
ware and develop their applications. It has also been used internally by t
TINI engineering team to develop and test the runtime environment.
System component. The TBM390 is a fully specffiddsign. It has been
heavily tested and functionally characterized over voltage and temperatu
and is therefore well suited for use as a core component for deployment
commercial and industrial embedded network applications.

The TBM390 is a compact (31.8 mxn102.9 mm) 72-pin SIMM board. It is
an Ethernet-ready hardware implementation and supports all of the functional
shown in Figure 1.3. It includes these important features.

512 kilobytes of flash memory for critical system code

512 kilobytes nonvolatile (that is, persistent) SRAM, expandable to
megabyte

10Base-T Ethernet controller

Real-time clock

Dual 1-Wire net interface

Dual CAN controllers

Dual serial port (one RS-232 level and one +5V level)

2-wire synchronous serial port

Exposes the microcontroller’s address and data busses for parallel |I.
expansion

Requires only a single +5V power supply

We'll meet the TBM390 again in the next chapter when we begin to work in
more hands-on fashion with TINI technology. A complete schematic and pi
description is included in the CD provided with this book.

4. The specification for the TINI board model 390 can be found onlimépalf

www.ibutton.com/TINI/dstinil.pdnd is also included in the accompanying CD.

10 Chapter 1 The TINI Platform

1.4 TINI RUNTIME ENVIRONMENT

Providing hardware essential for developing embedded network devices is
half of the job. A large amount of software is also required to free applica
developers from having to worry about the details of creating layers of infrast
ture to provide support for executing multiple tasks, network protocol stacks,
an application programming interface. A well-defined runtime environment 1
provides all of these features allows the developer to focus primarily on the de
of the application. For this reason a runtime environment was developed fror
beginning as an integral part of the overall platform.

The software that comprises TINI’s runtime environment can be divided |
two categories: native code executed directly by the microcontroller and an
interpreted as bytecodes by the Java Virtual Machine. Application code is wr
in Java and utilizes the API to exploit the capabilities of the native runtime anc
underlying hardware resources. It is also possible to write native libraries tha
be loaded from within an application to meet strict real-time requirements
graphical representation of the runtime environment is shown in Figure 1.5.

Java programs running on TINI are most definitely applications and
applets. They are stand-alone programs that begin execution from a “n
method with the following signature.

public static void main(String[] args)

Also, unlike applets, they have no “sandbox” restrictions. On TINI, J
applications have full privileges and access to all system resources, even me
than on other platforms that support a Java runtime environment. This is pal
larly important for embedded applications because they are closely coupled
physical devices. Also, unlike other Java platforms, on TINI there is usually
system administrator to perform configuration and maintenance. This mean:
the application is responsible for configuring as well as controlling the entire
tem. For these reasons an application that controls an embedded system mu
complete access to even low-level functionality provided by the OS.

1.4.1 API Overview

The API portion of the runtime environment combines classes from several
ages defined in Sun’s Java Developer’s Kit (JDK) version 1.1.8 with TINI spec
classes that expose system capabilities that have no analog on other large
platforms. The TINI-specific classes are all defined as subpackages under
the root packageom.dalsemi. The classes that are included in the runtime en
ronment are known as the built-in portion of the API. There are also other cle
defined in TINI's API that can be included in an application during the build p
cess. The application build process is described in detail in the next chapter.

TINI Runtime Environment 11

Java Java
Application Application
API API
JVM JVYM

Native Methods

TINI 08
Process & Thread
Schedulers
1/0 Subsystem Memory Subsystem

| i |
| TCP/IP 1/0 [. i
] Stack Manager i ! File System Manager i
! ! I
I I
| Network Device i : Heap Garbage | i
1 Drivers Drivers 1, | Manager Collector i
R A N }

Y Y

External Hardware

Figure 1.5 The TINI runtime environment

The Core Java Packages. The API includes implementations for most of the
classes in the following core Java packages.

* java.lang
* java.io

* java.net
* java.util

The differences between the JDK1.1.8 API specification and TINI implemer
tation of the classes in these packages is described in a text file named “/
Diffs.txt.” This file is included in TINI's SDK documentation. As the platform
evolves, it is our hope that this file will approach zero length. However, it i
unlikely that functionality that is seldom useful in small embedded application:
such as the methods definedjéva.1ang.Math that perform trigonometric calcu-
lations, will be supported on TINI in the foreseeable future. Currently, the mo

12

Chapter 1 The TINI Platform

notable omissions from the packages in the preceding list are the classes the
port reflection and object serialization. Both reflection and object serializa
will be supported in a future version of the runtime environment.

The com.dalsemi Packages

com.dalsemi.system. Classes in this package provide access to sevi
forms of integrated 1/O including the 2-wire synchronous serial port,
microcontroller’s data bus, and individual port pins. It also conta
classes for configuring system resources such as the clock, watc
timer, and external interrupt (see Chapter 10).

com.dalsemi.tininet. This package contains a class nampdNet that
provides static methods for querying and setting several system-wide
work parameters, such as the IP address and subnet mask. Subpacke
com.dalsemi.tininet provide support for networking protocols such &
DHCP (Dynamic Host Configuration Protocol), ICMP (Internet Contr
Message Protocol), and DNS (Domain Name System). T
com.dalsemi.tininet package and its subpackages are described in Ct
ter 5 and Chapter 6.

com.dalsemi.shell. Classes in this package and its subpackages im
ment infrastructure for command shell applications. Classes in the
packages ofom.dalsemi.shell implement Telnet and FTP (File Transpol
Protocol) servers. These servers can also be used by applications othe
command shells to provide access to Telnet and FTP client application
com.dalsemi.comm. This package contains fairly low-level classes ft
accessing the CAN controllers. It also contains several classes for co
uring and communicating with the system'’s serial ports. However, th
classes are seldom used by applications. Serial port access is provid
an implementation of Sun’s Java Communications API, which is defil
in thejavax.comm package. Serial communication using the Java Comr
nications APl is presented in Chapter 3.

com.dalsemi.onewire. This is the root of the package hierarchy for the
Wire API. Unlike the packages listed above, the 1-Wire API is a
supported on Java platforms other than TINI. The packe
com.dalsemi.onewire.container provides classes, known as containel
that comprehend the behavior of specific 1-Wire chips. To av
consuming precious space in the flash memory, device specific cont:
classes are not included in the built-in API. Container classes n
therefore be included as a part of the application. The 1-Wire AP
discussed in Chapter 4.

All of the public classes, built-in or otherwise, in ttwn.dalsemi package
hierarchy are listed in almanac form in the appendix.

TINI Runtime Environment 13

1.4.2 The Java Virtual Machine

The memory footprint of TINI's Java Virtual Machine (JVM) is less than 40 kilo-
bytes. Despite its small size, it supports much of the functionality provided by fu
JVM implementations, including the following.

* Full support for threads
» Support for all primitive types
» Strings

However, there are also important omissions such as these.

« Dynamic class loading
« Object finalizatioR

Stating that the JVM doesn’t support the dynamic loading of class files me
leave the impression the methadass. forName andClass.newInstance are not
supported. In fact, both are implemented along with several other methods defir
in classClass. Many of the classes in the API rely on this capability for severa
tasks, including creating character-to-byte converters and loading 1-Wire ch
containers. However, if a thread of execution invokesame and passes it a
String specifying a class that does not exist in either the built-in API or the cul
rently executing applicationforName will throw a ClassNotFoundException
rather than loading the specified class into the current application’s binary imag

Class loading is effectively split into two phases. The first is performed by
convertor utility (TINIConvertor which is described in the next chapter) on a hos
development machine. The convertor performs complete constaﬁtrpsolution
of all of the classes used by an application. Application classes may referer
methods and fields in other classes in the application or in the built-in API. Tt
output of this conversion process is a binary image that can be directly executed
TINI's JVM. Any unresolvable constant pool entry results in the convertor abortin
before generating an executable image. The second phase of the class loading
cess, running the class initializer methods, takes place on TINI. When a new J:
application is launched, all of the class initializer methods are run for the classes
the API, followed by all of the application’s class initializer methods. The net effec
of this split class loading model is that an application, by default, has loaded all
the classes defined in the built-in API as well as application specific classes. T

5. An object'sfinalize method can be explicitly invoked by a Java thread of execution
but is not automatically run before it is reclaimed by the garbage collector.

6. Every class file contains an area known as the constant pool that contains symbolic
information required by the class during runtime execution, such as references to
fields, methods, and classes.

14 Chapter 1 The TINI Platform

doesn'’t increase the footprint of the application’s binary image because conv
images of the built-in API classes are stored separately in the flash memory a
of the runtime environment.

Besides the preceding functional omissions, there are also hard limits or
tain resources, such as a maximum of 16 actively executing threads. These
are documented in a file named “Limitations.txt” distributed with TINI's SDK dc
umentation. As the platform evolves, the majority of these limits will disappear

1.4.3 Native Methods

The native layer, shown in Figure 1.5, represents the collection of native
ods that support the APl by exposing the infrastructure provided by TINI
This includes access to the network protocol stack’s socket layer as well as
networking device drivers. It also includes methods for configuring and acc
ing system resources such as the watchdog timer and real-time clock.

Between the actual native method implementations and interpreted Java
is a very thin layer known as the native method interface. The native method i
face is a boundary that must be crossed to switch execution contexts betweel
being executed by the JVM and a native method. TINI's native method inter
(TNI) provides a very lightweight mechanism to cross this boundary. Its analo
most other Java platforms is the Java Native Interface (JNI). TNI is much lig
weight, and therefore less flexible, than JNI. Because the majority of TINI a
cations can be written entirely in Java, the details of TINI's native interface
unimportant to most developers. The only thing that matters is that the col
switching overhead incurred when invoking the runtime environment’'s na
methods is as low as possible.

Applications that require custom native methods can provide a native lib
that can be loaded into the system at runtime using]dhﬁ_'ibrary7 method
defined in the clasfava.lang.Runtime

public static void ToadLibrary(String libname)

where thelibname parameter specifies the file name of the native library. T
details of writing native libraries are beyond the scope of this text. A pair of
uments named “Native_Methods.txt” and “Native_API.txt” are included in t
TINI SDK distribution, and they describe the process of writing and buildi
native libraries.

7. The clasgava.lang.System also defines a method nameddLibrary that per-
forms the identical task.

TINI Runtime Environment 15

1.4.4 TINI OS

TINI's operating system is the lowest layer of the runtime environment. It i
responsible for managing all system resources including access to the memc
scheduling multiple processes and threads of execution, and interacting with b
internal and external hardware components. Though the operating system i
complex body of code that performs many independent tasks, it is reasonably w
represented as being the sum of the following three major components.

* Process and thread schedulers
¢ Memory management subsystem
e 1/0 management subsystem

The following sections describe each of these components in some detail.

The Schedulers. The operating system contains both process and thread sche
uler modules that drive application-level (as opposed to operating system) co
execution. The schedulers are launched by one of the microcontroller’s timers tl
generates a high-priority interrupt every millisecond. The timer’s interrupt servic
routine (ISR) either performs or initiates the following tasks.

» Update a millisecond system uptime cdunt

» Launch the thread schedulers every 2 milliseconds
* Run device driver modules every 4 milliseconds

» Launch the process scheduler every 8 milliseconds

Processes are scheduled in a simple round-robin fashion. Each proces:
given an 8-millisecond time slice. After the time slice expires, the process is se
to the end of an active process queue to wait its turn for another time slice. Evel
multiple processes exist in the system, a single process can utilize nearly all of
CPU if it is the only process actively competing for execution time. Each proce
has its own independently operating thread scheduler. At the native level three
are cooperative, each thread voluntarily relinquishes control of the CPU. From
Java application’s perspective, however, threads appear to be preemptive bec:
the JVM ensures that each thread relinquishes the CPU after its 2-milliseco
time slice has expired. Threads are also scheduled in a round-robin fashion.

Scheduling multiple threads is a lighter-weight operation than schedulin
multiple processes. Because process scheduling is expensive compared to th
scheduling, most applications perform multiple independent execution tasks |

8. This count is accessible to applications usingiptémeMi11is method defined in
classcom.dalsemi.system.TINIOS.

16 Chapter 1 The TINI Platform

creating multiple threads to perform each task rather than spawning addit
heavyweight processes. Synchronization is also easier to implement and
efficient with multiple threads than with multiple processes because there al
formal interprocess communication (IPC) mechanisms such as semapt
shared memory or named pipes. Multiple processes can use sockets bound
network stack’s loopback interface or the file system using a crude mecha
such as a lock file. The network interfaces, including the loopback interface
covered in Chapter 5. Both of these methods are slow compared to the bt
Java synchronization primitives for threads provided by the JVM.

However, it is useful to be able to have multiple Java processes during
application development phase. In this case, a command shell application rt
a separate Java process, allowing the developer to easily load and execi
application. Also, on TINI, the garbage collector runs as a separate process.

The Memory Management Subsystem. The memory management system pe
forms the following three tasks.

1. Allocates memory from the heap for both Java and system processes
2. Automatically collects garbage generated by Java processes
3. Manages the file system

As shown in Figure 1.4, the data segment contains all fast read/write mel
used by the runtime environment. The portion of memory from the system ar
the end of the data segment is called the heap. The heap represents the bulk
memory available to the system. Access to the heap is controlled by a centr
of memory allocation routines. The basic operation these routines perform is
similar to a C malloc operation. One exception is that most allocation operal
clear all of the bytes of an allocated memory block to 0 before returning the b
to the caller. Most blocks of memory are allocated from the heap on behalf
new operation executed by the JVM or by file system operations.

Memory blocks are seldom freed explicitly. This is true of most of the me
ory consumed by system tasks and of all of the memory consumed by the JV
behalf of a Java application. Memory is freed by a garbage collector that is rt
a separate system process. The garbage collector (gc) process is created wi
system boots. It is the only non-Java process that is ever created. Under n
memory use conditions, the gc process spends the majority of time in an ing
state. When the gc—or any other process for that matter—is inactive, it cons
no processing time. It is launched (that is, transitioned to an active state) in o
these three ways.

* An application explicitly invokes thgc method defined in the clas:s
java.lang.System.

TINI Runtime Environment 17

* A new operation reduces the amount of available memory below a low
memory threshold of 64 kilobytes.
» A Java process terminates.

When the garbage collector runs, it does not clean up all of the garbage in 1
entire heap. It cleans up only the garbage created by the process that launche
When a process terminates, all memory consumed by the process, including t
held by objects and internal JVM structures, is freed.

All files are created, deleted, read, and written by Java applications, usi
classes in thgava.io package such aile andFileOutputStream. All memory
occupied by the file system, including file data and directories, is allocated fro
the same heap used for the storage of Java objects. When the file system man
allocates memory, it “tags” the memory to indicate that it is a part of the file sy:
tem. This prevents memory held by file system structures from being reclaimed
the garbage collector. Memory used by the file system manager is explicitly fre
during file deletion operations.

The fact that file system data structures are allocated from the same heap as
objects may seem odd at first, but there is no local hard disk associated with TI
Using the heap, which is contained within fast static RAM, has the advantage tt
file write operations are as fast as file read operations. With most other rewrital
memory technologies, writes would be much slower than reads. The downside
this approach is that TINI hardware implementations that do not provide the sta
RAM nonvolatizing circuitry, shown in Figure 1.3, lose file system data when powe
is removed from the system. File system data will remain intact even in the absel
of main system power in systems that nonvolatize the static RAM. The other ob
ous disadvantage is that as the file system grows, it consumes more memory fi
the heap, leaving less memory available for Java object creation.

The file system can contain arbitrary data files as well as executable bine
images. All executable files are assumed to be binary images of Java applicati
that can be executed directly by the JVM. Large files are fragmented into smal
512-byte blocks and therefore occupy a noncontiguous range of memory. Befc
an executable file can be interpreted by the JVM, it must be contiguous. The
fore, the first time an executable file is run, the file system manager defragme
the file in order to generate a contiguous binary image. The memory consumed
the original file fragments is freed. From this point forward the file can be exe
cuted without the overhead of defragmentation. In the next chapter we’ll take
much higher-level look at the file system.

The I/0O Subsystem. The I/O subsystem is divided into two major compo-
nents: network and non-network I/0O. Referring to CAN and 1-Wire as non
networking 1/0 can be somewhat confusing because both are in fact networki
technologies. However for the sake of this discussion, network I/O refel

18 Chapter 1 The TINI Platform

strictly to “big world” TCP/IP (Transmission Control Protocol/Internet Protoc
networking.

Both the TCP/IP stack and the I/O manager are implemented as indepe
lightweight kernel processésThese processes are driven by a 4-millisecond s
tem timer tick. The I/O manager controls all non-networking device drivers.
requests generated from application code all pass through the /0O manager
appropriate driver and back. Certain 1/O requests go directly to attached harc
devices. For example, there are no built-in drivers to communicate with arbit
devices attached to the parallel expansion bus. In this case, the Java applica
responsible for managing all of the low-level details of communicating with
device.

The TCP/IP network protocol stack is one of the largest blocks of native c
in the runtime environment. It provides much of the same networking capak
found on larger platforms and is sufficiently rich in functionality to support a
implementation of thgava.net package. The protocol stack supports multip
network interfaces, including Ethernet, for high-speed local area networking
PPP (PPP—Point-to-Point Protocol) over a serial link for remote dial-up netw
ing using an analog modem. The Ethernet interface is managed by a sej
device driver that performs all communication with the Ethernet controller. PP
a little different in that it actually relies on a lower-level serial port driver
deliver network messages to the physical communications port.

1.4.5 Bootstrapping the System

To understand the sequence of events that occurs when the system boots
first need to take an expanded look at the “code area” section of the entire me
map shown in Figure 1.4. The code area is broken into these three distinct p
shown in Figure 1.6.

* Bootstrap loader
* Runtime environment
e Primary Java application

The combination of the bootstrap loader and runtime environment const
the first 468 kilobytes in the code area. The primary application always begil
the fixed address of 0x70000. Because the minimum amount of flash me
required by TINI is 512 kilobytes, a minimum of 64 kilob)?t%is reserved for
storage of the primary application. Hardware implementations that provide

9. Kernel processes should not be confused with application-level processes.
10. The exact minimum is a little smaller (65280 bytes) because 256 bytes are reserved fo
persistent storage of static network parameters. (See Section 5.2.1 for details.)

TINI Runtime Environment 19

full 1024 kilobytes of flash memory can have a primary application up to 57
kilobytes in length.

0xo0000 Bootstrap Loader
Runtime Environment 448 kilobytes

OXBFFFF
0x70000) o
B
0x80000

! |

| | 576 kilobytes

| |

! |

! |

! |

! |

! |

! |

! |
OXFFFFF | !

Figure 1.6 Code area—expanded

At a high level, the boot sequence can be described in very simple terms. T
bootstrap loader is the first code executed by the microcontroller. Under norn
startup conditions, the boot loader quickly transfers control to the runtime env
ronment. After some system initialization routines have been executed, the rt
time environment launches the primary Java application. Next we’ll take a mo
detailed look into the boot sequence to better understand this important phase
system operation.

1.4.6 Step 1: Execute the Bootstrap Loader

The bootstrap loader is a very small autonomous program (consuming abou
kilobytes of code space) that controls the loading of the runtime environment a
primary Java application into the flash ROM. The behavior of the bootstrap load
depends on the source of the reset that preceded the microcontroller's executio
the first machine instruction. There are two classes of reset with which the bo
strap loader is concerned: a power-on reset and an external reset. As the name
gests, a power-on reset (POR) occurs as soon as power is applied to the sy
and reaches an acceptable minimum level. An external reset is generated by

20 Chapter 1 The TINI Platform

external source by driving the microcontroller’s reset pin to its active state. -
provides an out-of-band reset that can be generated without cycling power.

After a POR, the boot loader immediately transfers control to the runt
environment’s initialization code, and the “normal” boot process continues. In
event of an external reset, the bootstrap loader waits to receive a specific da
ternt! on the microcontroller's default serial port (also known as “serial0”). It u:
the first character of the pattern to determine the serial data rate. If the cc
sequence is received, the loader enters a small command shell and awaits
instructions over the serial port. Once in the loader shell, the attached -
device, typically a PC or workstation, can reload any or all of the contents of
flash memory. The bootstrap loader will only wait for the data sequence for t
seconds before continuing normal system startup. The next chapter will dis
the specifics of interacting with the bootstrap loader for the purposes of loa
the runtime environment.

1.4.7 Step 2: Initialize the Runtime Environment

After the bootstrap loader transfers control to the runtime environment, a s
initialization routines is executed. The following tasks are performed during
initialization phase.

» Heap integrity check

File system integrity check
» Device driver initialization
» Create initial processes

Both the heap and file system managers maintain static system buffers th
used to back out of any incomplete operations. This is intended to prevent e
the loss or corruption of data due to an unexpected power interruption. Durin
initialization phase both the heap and file system are checked for any incons
cies. Any incomplete transactions are “rolled back.” If for any reason the hes
structurally damaged, it is reset to allow the system to boot in a consistent .
The integrity checks are skipped for systems that do not battery back the me
(SRAM) that contains the heap. In this case the heap is unconditionally |
when the system boots.

If the heap check passes, the sweeper (the second phase of the mark-and
garbage collector) is executed to look for any garbage left by applications that
terminated abruptly. Abrupt termination usually occurs due to loss of power. W\
an application terminates normally, all memory it was using is immedia
reclaimed. Any memory that is not part of the file system or otherwise marke

11. The current version of the bootstrap loader waits for a carriage return (0x0d) charactel

TINI Runtime Environment 21

persistent is returned to the free memory portion of the heap. Determining wt
actions were taken by the heap or file system manager during the boot proces
covered further in Section 11.6, which presents “application hardening” tips.

After the integrity checks, the I/O manager runs the initialization routines fo
the serial port and Ethernet drivers as well as other operating system modul
Drivers for other 1/O resources such as CAN and 1-Wire are initialized as need
by the system.

In the last phase of initialization these two processes are created.

» The garbage collector (gc)
e The primary Java application

The gc process is created first and is alive as long as the system is runni
However, it spends most of its time in a suspended state, consuming virtua
none of the CPU’s resources. When it is first created, it has no work to do a
therefore immediately suspends itself. It remains in a suspended state until -
memory manager wakes it up because of either a low memory condition or a g
bage collection that has been requested by a Java application. Finally, a proce:
created to execute the primary Java application. After both processes have b
created, the runtime environment’s initialization phase is complete and the ta
scheduler begins executing the primary application.

1.4.8 Step 3: Start the Primary Java Application

The primary Java application is in a sense analogous to the primordial thread
any Java application. The primordial thread is automatically created by the sy
tem, and all other threads are created as a direct result of actions taken by
application. The primary application is always the first Java process launched
the runtime environment and is, in fact, the only application launched automa
cally by the runtime environment. Without further direction from the primary
application no other system processes, Java or native, are created by the syste

As with all Java processes, TINI's JVM first executes the class initialize
methods in the API classes, followed by the applications class initializer methoc
After all class initialization is complete, the primordial thread is launched an
execution continues from the applicatiofés n method. The amount of time from
the moment that power is applied to execution of the main method is around thi
seconds. This can of course vary depending on the amount of code that mus
executed in the application’s class initializer methods. The bulk of the startup tin
is spent executing the API class initializer methods. The exact behavior of the p
mary application, from this point forward, is determined by the developer base
on the requirements of the overall embedded system. Typically the primary apf
cation assumes control of the entire system and is responsible for any configL
tion and hardware device initialization that may be required.

22 Chapter 1 The TINI Platform

The primary application can launch other Java processes, but most ap
tions accomplish multiple execution tasks simply by creating additional thre
rather than spawning new processes. Thread swapping is much lighter weigh
process swapping, leading to smaller system delays due to context-switc
overhead. One class of application in which it makes sense to launch indepe
processes is a command shell. For development purposes a command she
gram can be very useful as the primary application. The shell provides a cc
nient way to configure the system parameters such as network settings ar
and test applications. After the application has been debugged and harden
production deployment, it can replace the shell as the primary Java applic
and assume control of the entire embedded system. A small command
known as “slush,” is provided in the TINI software developer’s kit and
described further in the following chapter.

1.5 THE FUTURE

This chapter described the TINI platform as it exists today. Both the hardy
(chip-set) and software (runtime environment) components of the platform

continue to evolve over time. On the software front the main focus will be
addition of more support for the Java runtime environment with the additior
features such as object serialization and reflection. At the operating system

strict priority-based schedulers will be added for both process and thread sct
ing to offer better support for real-time applications. The migration path for
chip-set is very clear: faster microcontroller cores for enhanced system pe
mance and higher levels of integration to reduce the number of chips in the
set. The next generation controller, already in development, will widen TII
address space and integrate the Ethernet controller onto the same core

microcontroller. Other microcontroller enhancements will also provide chip le
support aimed at enhancing the performance of the JVM and the runtime en
ment as a whole. Regardless of how the platform evolves, care will be take
ensure that TINI's minimum resource requirements remain low even as its ¢
bilities continue to grow.

e @etting Started

The chapters that follow contain many examples that run directly on TINI an
illustrate the use of the various application programming interfaces. These exa
ples also demonstrate programming practices and concepts used in develog
Java code targeted for small footprint, embedded-network computing applic
tions. This chapter provides a description of both the hardware and software er
ronment needed to develop and execute TINI applications written in Jav
including the examples presented in this text. Readers already familiar with TII
technology can skip this chapter.

2.1 HARDWARE REQUIREMENTS

This section describes the core hardware configuratiead to develop and test
the example programs listed in this book. Other configurations are certainly pos
ble and can be assembled in piecemeal fashion by readers already in posses
of, or familiar with, TINI.

1. The hardware configuration used to develop and test the examples in this book is
available from Dallas Semiconductor ($e#://www.ibutton.com/TINI/
getting_started.htnfor details).

23

24 Chapter 2 Getting Started

2.1.1 The TINI Board Model 390

The TINI board model 390 (TBM390), which was described in Section 1.3.3,
complete TINI hardware reference design that is embodied in a full comme
product. The TBM390 is currently available with either 512 kilobytes or 1 me
byte of nonvolatile, static RAM. It is available as a 72-pin SIMM module anc
shown in Figure 2.1. All examples in this book are executed and tested us
TBM390 with 512 kilobytes of SRAM. Unless it's important, we'll just say TIN
avoiding further qualifiers, when referring to TINI hardware.

Flash ROM Microcontroller

(Java™ Runtime Environment)
» wil o N o PGl g R OO 7 1-Wire®.net®>

DALLAS
DS80C390
FNR

== 0014B3
== 027AB

Ethernet Controller 72 Pin SIMM SRAM

IEEE Ethernet Address
Real Time Clock

1-Wire Net Driver Lithium Backup

Figure 2.1 TBM390 (top and bottom views)

Hardware Requirements 25

2.1.2 The E10 Socket

For application development and prototyping, a TINI board, as shown in Figul
2.1, isn’t terribly useful without the ability to connect necessities such as seriz
Ethernet, and power. A socket board’s main function is to provide the physic
connectors to interface the TBM390 with other equipment such as an Etherr
network, a serial device, or a 1-Wire network.

The E10 socket board is aimed at aiding the application development proce
It provides the following physical connectors.

e 72-pin SIMM connectorThe SIMM connector accepts the TINI board
shown in Figure 2.1.

* 9-pin female DB9 connectdFhis connector provides a limited DCE (Data
Communications Equipment) type serial port that provides connection to
standard PC DTE (Data Terminal Equipment) serial port using a straigh
through serial cable. This port is typically only used for loading the run
time environment and bootstrap application (Section 2.3). Hardware han
shake lines, such as RTS (Request To Send) and CTS (Clear To Send),
not supported by the DCE port.

* 9-pin male DB9 connectof his connector provides a DTE serial port for
straight-through connection to DCE devices such as analog modems. Mc
TINI applications that control serial devices use the DTE port. In this cas
TINI is the DTE device, replacing the PC or workstation. The DTE seria
port supports all hardware handshake lines except DSR (Data Set Rea
and RI (Ring Indicate).

* RJ45 The RJ45 connector accepts a standard 10Base-T Ethernet ca
providing connectivity to an Ethernet network. Use a straight-througt
cable for connecting TINI to the network, using a hub or a crossover cab
for connecting TINI directly to a PC or workstation.

e RJ11 The RJ11 connector provides access to the 1-Wire network usir
standard telephone cable. 1-Wire networking is discussed in Chapter 4.

» Power jack The E10 accepts a regulated +5V DC power supply.

The E10 also provides IC (Integrated Circuit) and discreet component footprin
to support additional 1/0O options such as parallel, CAN and additional seri
ports.

The “E” in E10 stands for Eurocard and suggests that the size of the socl
board itself is identical to one of the standard Eurocard sizes, allowing it to |
placed inside a Eurocard enclosure. The E10 socket board is 18Qr26mm.
Figure 2.2 shows the E10 socket with a TINI board inserted and labels the conn
tors just described.

26 Chapter 2 Getting Started

iButton® Clip
1-Wire Net +5V DC Power

1
iloaaaa lololglo
riama!! =
[D[cic'co0]
— S 19 N
cx

£irdim—o
nete (O] 1
2o g

l:z[lu-'j ks /i
20 [k

10 Base-T Ethernet

DTE 9-Pin Serial DCE 9-Pin Serial

Figure 2.2 The E10 socket with TINI board

2.2 DEVELOPMENT PLATFORM
REQUIREMENTS

We use the term “development platform” to refer to the computer used for ci
ing, building, and loading TINI applications. This is the machine that runs
JDK or equivalent Java development and runtime environment and is connec
TINI using Ethernet and/or a serial cable. Typically we’ll just refer to the h
development machine as “the host.”

Since all of the required tools have been written in Java, TINI applications
be developed on any of the following operating systems.

e Any Win32 OS (Windows 95, 98, NT, 2000)
e Linux
e Solaris

To load TINI's runtime environment (see Section 2.3) the host must also |
an RS232 serial port. This requirement is met by nearly every PC and workste

Development Platform Requirements 27

Besides one of the operating systems mentioned above and a serial port, the
machine must also have the following software correctly installed.

« Java Development Environment
» Java Communications API
» TINI Software Development Kit

These software components are described briefly in the following sections.

2.2.1 A Java Development Environment

All examples in this text were compiled usifgvac from Sun’s JDK, standard
edition 1.2.22 Sun’s JDK is free and available for most platforms that suppor
Java development of any sort. However, you can certainly use your favorite Je
IDE such as JBuilder or Visual Cafe to edit and compile your TINI applications
In fact there are OpenSource extensions to JBuilder that allow for a purely graf
ical development environment for TINI.

2.2.2 The Java Communications API

The Java Communications API (comm API) is also available from Sun Microsy:s
tems and provides the infrastructure required to communicate with RS232 ser
ports in a platform-independent fashion. This API is used by the serial commur
cations utility, provided in the TINI SDK, that manages the process of loading tf
TINI runtime environment. At the time of this writing, comm API drivers supplied
by Sun supported only the Win32 and Solaris platforms. However, the Ope
Source project RXTX provides driver support for Linux. The installation proces
for the comm API for Win32 and Solaris is described in the comm API’s distribu
tion Readme.htm1 and is straightforward. There is extra work, such as compiling
the driver source, involved for those installing the comm API on Linux. Detailec
instructions are provided at the RXTX Web site.

2.2.3 The TINI SDK

The latest release of the TINI software distribution can be freely downloaded fro
Dallas Semiconductor's Web sfteit the time of this writing, the current release
of the software is 1.02. The SDK is distributed as a single compressed tar f

N

Any version of the JDK starting from 1.1.8 will suffice.

3. More information on RXTX including all source is available frwitp://
WWW.rxtx.org/.

4. The latest version of the TINI SDK can be downloaded frtm//www.ibutton.com/

TINI/software/index.html.

28 Chapter 2 Getting Started

(.tgz) 2 After downloading the distribution and extracting its contents, the SDF
installed. There is neetup.exe to run that installs DLLs or modifies the registry
and there is no need to reboot your system. These are some of the importat
included in the SDK. It is important to understand the contents of these
because we will use them to build the examples later in this chapter.

» README.txt . TheREADME. txt file is located in the root of the SDK hier:
archy. Start by completely reading this document. It contains deta
instructions on how to install the TINI runtime environment, boot the Tl
system, and initialize its network settings. It also contains reference
other documents in the SDK that further describe the process of creat
full development environment.

 tini.jar . This jar file is located in the bin directory and includes two impc
tant utility programs:Javakit and TINIConvertor. The JavaKit utility
manages the firmware-loading process and performs other system m:
nance tasks. It can also be used tosuh (see Section 2.4) user sessior
over a serial connection. Thi@NIConvertor utility takes the class files in
your application as input and generates a binary image suitable for ex
tion on TINI.

 tiniclasses.jar The tiniclasses.jar file is located in the bin directory
and contains all of the class files in TINI's API. In this sense it is similal
the rt.jar file distributed with Sun’s JRE and JDK 1.2 and higher. Tt
file must always be included as the first file in the classpath when con
ing applications for TINI.

e tini.db. Thetini.db file is an ASCII file that contains information abot
the API class files. This file is used tinIConvertor along with the class
files in your application to produce a binary image suitable for interpre
tion by TINI's JVM.

e tini.tbin . The.tbin extension is short for “TINI binary” and is the defau
extension used for binary images that are targeted for execution fromn
flash ROM. Theini.tbin file is located in théin directory and contains
the binary image of TINI's runtime environment. It is a combination of t
native operating system and the API. This file must be loaded before
Java applications can be executed.

» slush.tbin. Theslush.tbin file is located in the bin directory and contain
the binary image of the user shell knownsassh. Section 2.4 provides a
description and a quick tour of slush.

5. The commonly used Win32-based winzip utility will handle gzipped tar files correctly.

Loading the TINI Runtime Environment 29

2.3 LOADING THE TINI RUNTIME
ENVIRONMENT

At this point, it is assumed that you have successfully installed your favorite Ja
development environment, the Java Communications API, and the TINI SDK c
the host machine. Installing the runtime environment on your TINI board consis
of these two steps.

1. Loadingtini.tbin andslush.tbin
2. Initializing the heap

Both steps require the use of theakit utility. Javakit runs on the host and
communicates with TINI's bootstrap loader (Section 1.4.5) over an RS232 ser
port using the comm APJavakit is a Swing-based GUI utility, so if you're using
a version of the JDK released prior to 1.2, make sure that you hasii tlhhejar
file somewhere in your classpath. Before startingKit, make sure that you've
connected TINI and the host machine using a straight-through (not a null-mode
serial cable. Stantavakit with a command similar to this one.

c:\jdk1l.2.2\bin\javaw -classpath c:\tinil.02\bin\tini.jar JavaKit

Once you've successfully launchedakit, you should see a window similar
to the one shown in Figure 2.3.

Using the “Port Name” drop down selection box, choose the serial port t
which TINI is attached and click the “Open Port” buttonidfakit is able to
open the selected serial port, the name of “Open Port” button will change
“Close Port.” If the open operation failsvakit will display an error message
indicating the failure. If an attempt to open a serial port fails, it is usuall
because another application currently owns the port. In this case, close
application that owns the serial port and try the “Open Port” button again. Nex
click the “Reset” button. This should result in TINI's loader generating a prompg
similar to this.

TINI loader 05-15-00 17:45
Copyright (C) 2000 Dallas Semiconductor. A1l rights reserved.
>

Now that we have the loader’s attention, we can load the runtime binarie
Select “Load File” from the File menu. Use the directory drop down box to selet
the bin directory in the SDK hierarchy. Select the files namied.tbin and
slush.tbin and click the “Open” button. You should see the following text dis-
played in thedavakit window.

30 Chapter 2 Getting Started

e JavaKit B =] 53

File Edit Macro Options Help

|mmmmmm|;j

TINI loader 05-15-00 17:45
Copyright (C) 2000 Dallas Semiconductor. All rights reserved.

>

Port Name: Baud Rate

— ~lfr115200 =l
DTR—————
Close Port | Reset I " Set & Clear

Figure 2.3 JavaKit (Loader utility)

Loading file: C:\tinil.02\bin\slush.tbin.
Please wait... (ESC to abort.)
Load complete.

Loading file: C:\tinil.02\bin\tini.tbin.
Please wait... (ESC to abort.)
Load complete.

These files are rather large andatakit's default serial data rate of 115,200 bp:
loadingtini.tbin andslush.tbin takes a couple of minutes.

Now we've loaded the binary images that comprise TINI's runtime. E
before the system is booted for the first time, the heap must be initialized. A
boot loader prompt, type “BANK 18" and hit Enter. This selects the lowest €

Slush: A Quick Primer 31

portion of TINI's heap. See Section 1.3.1 for details of the memory map. Ne:
type “FILL 0” and hit Enter.

>BANK 18
>FILL 0

This rather cryptic two-step sequence fills the low 64K of heap with Os, forcin
the OS to initialize the heap, file system, and all other persistent settings.

Now we're ready to boot the system for the first time. To exit the serial loade
and boot the TINI runtime, type “EXIT” at the prompt. These are the first few
lines of text generated by the OS early in the boot process.

----> TINI Boot <----

TINI 0S 1.02

API Version 8009

Copyright (C) 1999 - 2001 Dallas Semiconductor Corporation

The system boot flow is described in detail in Section 1.4.5. After a couple «
seconds the system will have completely booted, and the following prompt is di
played by slush.

Hit any key to login.
After pressing a key, slush prompts the user for a login name.

Welcome to slush. (Version 1.02)
TINI Togin:

The next section provides a brief introduction to slush that will cover, amon
other things, the login process.

2.4 SLUSH: A QUICK PRIMER

This section provides a brief overview of slush and a look at just enough of t
commands and features we need to load and run the example applications at
end of this chapter and later chapters. A more complete description of slush is p
vided in theS1ush. txt file included in the SDK.

2.4.1 Slush Defined

Slush is a small command shell intended to provide a UNIX-like interface t
TINI's runtime environment by providing Serial (TTY), Telnet, and FTP servers
Slush is itself a Java application that is interpreted by TINI's JVM. Slush is les
than a full operating system but more than a simple shell. It provides a way

32 Chapter 2 Getting Started

view and manipulate the file system, run other Java applications, and contro!
tem functions such as the watchdog timer and network configuration.

Slush is designed to be a multi-threaded, multi-user system allowing sim
neous user sessions. It is typically used in the development phase. It provide:
veniences such as network accessibility using the ubiquitous networking c
application Telnet for user interaction and FTP for transferring applications
data files to and from the file system. After an application has been develope
debugged, it is typically built and targeted for installation in the flash RC
replacing slush. Transitioning an application from the development phase to
duction deployment is discussed in Chapter 11.

2.4.2 Starting a New Session

Slush uses a user name and password to authenticate a login request and
new user session. When slush is booted for the first time (as in the previous
tion), it creates two new default accounts: a root account with “super usel
administration privileges and a guest account with more limited access to sy
resources. Additional users can be added or removed by a user with administ
privileges. The user names and password for the default accounts are shc
Table 2.1.

Table 2.1 Default user accounts

Account Name User Name Initial Password
root root tini
guest guest guest

When we left the previous section we had booted slush for the first time
left it at the login prompt. It is important to note that both slush and TINI’s 1
system are case sensitive. All characters in the user name and password fc
default accounts are lower case. Log on to the system to establish a user s
with slush. Use the root account by typing “root<CR>" at the login prompt ¢
“tini<cCR>" at the password prompt.

TINI login: root
TINI password:

The password characters typed at the password prompt are not echoed
system. After successfully logging on to the system, slush returns a prompt
prised of the host name, TINI in this case, and the login session’s current wol

Slush: A Quick Primer 33
directory in the file system. Immediately after logging on to the system, the cu
rent working directory is the root directory of the file system.

TINI />

2.4.3 Exploring the File System

Using slush, we can explore the file system in its initial state, just after the fir
slush boot. A detailed listing of the files in a directory can be displayed using tt
1s command with the-1" option.

TINI /> 1s -1

total 2

drwxr-x 1 root admin 1 Jan 27 15:13 .
drwxr-x 1 root admin 3 Jan 27 15:14 etc
TINI>

The first line after the prompt displays the total number of files and directc
ries contained within the current directory. In the preceding sample listing, tr
second file is a directory named “etc.” This directory is created automatically k
slush the first time it boots and contains several system files. Changing to t
“etc” directory using thed (change directory) command and displaying its con-
tents using s -1” produces the following listing.

TINI /> cd etc

TINI /etc> 1s -1

total 5

drwxr-x 1 root admin 3 Jan 27 15:14 .
drwxr-x 1 root admin 1 Jan 27 15:13 .
-rwxr-- 1 root admin 28 Jan 27 15:14 .tininet
-rwx--- 1 root admin 225 Jan 27 15:14 .startup
-rwxr-- 1 root admin 101 Jan 27 15:14 passwd
TINI /etc>

This detailed listing displays, from left to right, the following information
about each file or directory contained within the current working directory.

e Permissions

e Number of links

e Owner

« Group

» File count/size

» Last modification date
* Name

34 Chapter 2 Getting Started

Let’s look at the listing for thestartup file in detail. The permissions for the
.startup file, from left to right, indicate that it is not a directory(-). The own
(root in this case) has read (r), write (w), and execute (x) privileges, while ot
have no read, write, or execute privileges. The file system does not support c
ent groups, but this entry is present for UNIX-listing compatibility when using
FTP server. The link count is also purely for compatibility, since the file sys
doesn’t support links.

All three of the files in the “etc” directory are created by slush during the
tial boot sequence. Thetininet file stores the host and domain names. I
default the host name is “TINL.” Theasswd file stores the user name along wit
the SHA1 (Secure Hash Algorithm) hash of the password for every account o
system. The most interesting of the autogenerated filestéstup. This file is
parsed and interpreted by slush on every reboot. It allows a user with admin
tive privilege to set environment variables and automatically launch applicat
on system boot. We can view the contentssafrtup, or any other ASCII text
file, using thecat command.

TINI /etc> cat .startup
#A#ARARH

#Autogen’d slush startup file
setenv FTPServer enable

setenv TelnetServer enable
setenv SerialServer enable

##

#Add user calls to setenv here:
##

initializeNetwork

#A#ARARH

#Add other user additions here:

Each line of the file is either a command to be interpreted by slush or a ¢
ment that begins with the “#” character. The three lines that begin with “sete
enable the FTP, Telnet, and serial servers, respectively. So, for example,
application needed to use the same serial port that slush uses for the serial
a user with administrative privilege could comment out the “setenv” line t
enabled the serial server. The next time the system is booted, slush will only
the FTP and Telnet servers. This allows another application to claim exclt
ownership of the serial port.

Applications can be launched on system boot by adding the appropriate
mands to thestartup. For example, adding this command

java /bin/MyApp.tini > /log/debug.out

causes slush to rmyApp. tini from the bin directory and redirect all output fror
java.lang.System.out and java.lang.System.err t0 a log file named

Slush: A Quick Primer 35

debug.out. All applications launched from thetartup file are forced to run in
the background.

This concludes our mini-tour of our new file system. Tyge /" at the com-
mand prompt to return to the root directory.

TINI /etc> cd /
TINI />

2.4.4 Getting Help

The help command provides a hands-on approach to exploring slush as well
some insight into the capabilities of TINI's runtime environment. Thgie at the
prompt at any time to obtain a complete list of all commands supported by slus|

TINI /> help
Available Commands:

append arp cat cd
chmod chown clear copy

cp date del df

dir downserver echo ftp

gc genlog help history
hostname ipconfig java ki1l

1s md mkdir move

mv netstat nslookup passwd
ping ps pwd rd
reboot rm rmdir sendmail
setenv source startserver stats
stopserver su touch useradd
userdel wall wd who
whoami

A command’s description and usage is obtained by typéng followed by
the name of the command at the prompt. Typimgp java” at the prompt dis-
plays the usage message for thea command.

TINI /> help java
java FILE [&]

Executes the given Java application.
’&’ dindicates a background process.

The java command is used to launch new Java processes. The usage m
sage specifies the required and optional parameters. In this casevdltem-
mand requires the name of the application binary file to be executed a
optionally allows the user to launch the application as a background proce
using the& parameter. We'll use thgava command in Section 2.6 to run the
example programs.

36 Chapter 2 Getting Started

At this point we can start a user session, navigate the file system, and ge
with unfamiliar commands. We will continue interacting with our “slush user s
sion” in the next couple of sections to configure the network as well as load
run some small example applications. The sections that follow describe new:
commands and functionality as they are encountered.

2.5 CONFIGURING THE NETWORK

Network configuration information can be set by using the slush comipasg-
fig. Theipconfig command provides several options that allow for comple
control of all important network parameters. Executipepnfig with no parame-
ters displays the current network settings.

TINI /> dipconfig

Hostname : TINI.

Current IP

Default Gateway

Subnet Mask :

Ethernet Address : 00:60:35:00:10:bb
Primary DNS

Secondary DNS

DNS Timeout : 0 (ms)
DHCP Server :
DHCP Enabled : false
MaiThost :

Restore From F1ash Not Committed

Since we have just installed the runtime and cleared the heap, nothing bt
Ethernet address and default host name, TINI, have been configured. The Etl
address is an IEEE registered MAC id to avoid any possible collision on an E
net network. It is read from the read-only memory of a 1-Wire chip on the T
board and is not user configurable. This implies that it is always available
always the same, allowing it to serve as a general purpose unique identificatic
the TINI board as well as the Ethernet address.

Use thenelp command to obtain the list of options supported dapnfig.

TINI /> help ipconfig
ipconfig [options]

Configure or display the network settings.

[-a xx.xx.xx.xx] Set IP address. Must be used with the -m option.
[-n domainname] Set domain name

[-m XxX.XX.XX.xx] Set subnet mask. Must be used with -a option.
[-g xx.xx.xx.xx] Set gateway address

[-p xX.xX.XxX.xx] Set primary DNS address

[-s XX.XX.XX.xx] Set secondary DNS address

[-t dnstimeout] Set DNS timeout (set to @ for backoff/retry)

[-d] Use DHCP to lease an IP address

[-r] Release currently held DHCP IP address

Configuring the Network 37

[-x] Show all Interface data

[-h xX.xx.xx.xx] Set mailhost

[-C] Commit current network configuration to flash
[-D] Disable restoration of configuration from flash
[-f] Don’t prompt for confirmation

As you can see from the preceding usage messagmfig provides fine-
grain configuration and control of network settings and parameters. We wor
cover all of them here, just enough to get TINI up and running on the network.
there is a DHCP (Dynamic Host Configuration Protocol) server available on yol
network, you can use the option to dynamically obtain an IP address and sub-
net mask as well as several other network parameters, depending on the config
tion of the DHCP server. Usually, if TINI is to be used as a server, you'll want t
use a static IP address, making it easy for network clients to access the servic
TINI is providing. For static network configuration we need to set the IP addre:
and subnet mask at a minimum. The following command sets the IP address :
subnet mask.

TINI /> ipconfig -a 192.168.0.15 -m 255.255.255.0

Warning: This will disconnect any connected network users
and reset all network servers.

OK to proceed? (Y/N): y

[Sun Jan 28 14:52:46 GMT 2001] Message from System: Telnet server
started.
[Sun Jan 28 14:52:46 GMT 2001] Message from System: FTP server started.

You will of course substitute the IP address and subnet mask used here w
values provided by your network administrator. We can test our new settings |
“pinging” the TINI board from the host machine, using theg command. Also,
we can see from this command that slush automatically starts Telnet and F
servers after setting the network information. At this point you should be able
establish a Telnet session with TINI, using the host’s Telnet client. Win32, Solari
and Linux all provide command line Telnet client programs. There are also grap
ical Telnet clients available for most platforms that should work fine with TINI.

C:\>telnet 192.168.0.15
Connecting To 192.168.0.15...
Welcome to slush. (Version 1.02)

TINI login: root
TINI password:
TINI />

Once connected, slush prompts the user for a user name and password.
the same name and password (root, tini) that we used to log in to the serial ses:
from JavaKit in the previous section. We can Kill the Telnet session by using th
exit command.

38 Chapter 2 Getting Started

Now TINI is on the network and ready for action. However, with only the
address and subnet mask set, network messages intended for machines on
ent physical networks can't reach their destination. To extend TINI's re
beyond its physical network, we will need to set at least one more network pa
eter: the IP address of the default gateway (or router). The default gateway ac
is set using theg option. The other network parameter we would like to set n
is the IP address of the DNS (Domain Name System) server using tption.
This allows us to use host names rather than raw IP addresses when comm
ing with other hosts. Running the following command from our serial sest
adds the default gateway and primary DNS server’'s IP addresses to the c
network configuration.

TINI /> ipconfig -g 192.168.0.1 -p 192.168.0.2
Warning: This will disconnect any connected network users
and reset all network servers.

OK to proceed? (Y/N): y

[Sun Jan 28 15:02:53 GMT 2001] Message from System: FTP server stopped.

[Sun Jan 28 15:03:00 GMT 2001] Message from System: Telnet server
stopped.

[Sun Jan 28 15:03:00 GMT 2001] Message from System: Telnet server
started.

[Sun Jan 28 15:03:01 GMT 2001] Message from System: FTP server started.

Note that if the FTP and Telnet servers are running, slush stops them b
changing the requested network settings. After aborting any active FTP or T
sessions, the new network parameters are set and the servers are restarted.
test both of the new settings by pinging a host machine on another network, |
that host's name as opposed to its IP address.

TINI /> ping www.ibutton.com
Got a reply from node www.ibutton.com/198.3.123.121
Sent 1 request(s), got 1 reply(s)

At this point we’ll want to log out of the serial session and clesekit.
Now we can interact with TINI and run our examples over the network using
host's Telnet and FTP clients. From this point forward in the book nearly
examples will be run from a Telnet client. Start a new Telnet session and
ipconfig with no parameters.

Welcome to slush. (Version 1.02)

TINI /> dipconfig

Hostname : TINT.
Current IP : 192.168.0.15
Default Gateway 1 192.168.0.1

Subnet Mask : 255.255.255.0

Some Simple Examples 39

Ethernet Address : 00:60:35:00:10:bb

Primary DNS : 192.168.0.2
Secondary DNS

DNS Timeout 1 0 (ms)

DHCP Server H

DHCP Enabled : false
Mailhost :

Restore From Flash: Not Committed

Allow this session to remain active because it will be used to run the exampl
in the following section.

2.6 SOME SIMPLE EXAMPLES

At this point we've loaded the runtime environment and configured TINI for net
work operation, and now we can interact with the runtime environment, usin
slush. Now we’ll create three very small applications from scratch and detail tt
process of building, loading, and running the examples. We'll use slush via a Tt
net session to run the applications, display any output, interact with the file sy
tem, and control processes.

2.6.1 HelloWorld

Naturally, we simply must begin with the canonikéllowor1d program. While it
won't exactly enhance our skills as Java coders, it does provide a nice vehicle
describing the application development process in a step-by-step fashion. Ty
cally, to develop and test your application requires these five steps.

Create the source file.
Compile the source file.
Convert the class file.
Load the converted image.
Run the converted image.

arwNE

The remainder of this section will detail all five steps. We'll recycle this expe
rience for the remaining examples, allowing us to focus on other details. For t
sake of becoming familiar with the development process, we'll perform all o
these steps manually. Since this quickly becomes tedious for real-world applic
tion development, the process of building and loading applications should |
automated using a reasonable combination of make files and shell scripts (ba
file in Windows lingo).

Step 1: Create the source file. Create and save a file named lowor1d.java
containing the source code in Listing 2.1.

40 Chapter 2 Getting Started

Listing 2.1 HelloWorld

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World");
}
}

Step 2: Compile the source file. Compile HelloWorld.java to a class file,

using your favorite Java compiler. If you're using Sun’s JDK and the JDK’s

directory is in your path, change to the directory that contains the file we just
ated and execute the following command.

javac HelloWorld.java

If the compile completes successfully, you should have a new file naened
loWorld.class in the current working directory.

Step 3: Convert the class file. The utility programTINIConvertor performs a
conversion on input, specifically one or more Java class files, and outputs a k
image suitable for execution on TINIINIConvertor’s function is described in
Section 1.4.2. However, it is worth mentioning thatIConvertor is performing
a portion of the class loading process. The binary file produc&mhibgonvertor
is typically about 25 to 35 percent of the size of the sum of the original class
TINIConvertor does not generate code native to TINI's microcontroller; rathet
generates a binary file containing Java bytecodes that are interpreted by T
JVM.

TINIConvertor is a Java application that lives in the tini.jar file and is run frc
a command shell on the host. It is controlled by a series of command line patr
ters that specify the converter’s input and output. A list of all required and extel
parameters can be obtained by runningiConvertor with no parameters.

To convertHelloWorld.class t0 a binary image that we can execute on TIN
run TINIConvertor supplying the three mandatory command line paramete
input file or directory {f), API database-§), and output file {o0).

java -classpath c:\tinil.02\bin\tini.jar TINIConvertor -f HelloWorld.class
-d c:\tini\tinil.02\bin\tini.db -o HelloWorld.tini

In this example, our application consists of only one class fHide;
loWorld.class, SO we can specify the class file's name with-th@arameter. In
general, our applications will consist of several classes in one or more pack
In this case, supply the directory name of the root of the package structure h
chy. This causeSINIConvertor to include all class files in and below the spec
fied directory when creating the application binary.

Some Simple Examples 41

The other input required byINIConvertor is the name of the API database
distributed in the SDK. This file is namedini.db and must be supplied with the
-d parameter. This file is used by the convertor to resolve information betwe
your application and the API. Theni.db file is specific to a version of the SDK,
so if you have multiple versions of the SDK installed on the host, be sure to u
the correctini .db file.

TINIConvertor produces an output file with the name provided with-the
parameter. Other than being a legal name, as determined by the file system, tl
are no specific rules that restrict the name of the final application binary. By co
vention, the name of the class that containsntti@ method is used for the file
name with an extension of “.tini.” The extension is used to indicate that this file
a TINI executable. Following this convention produces a binary output file name
HelloWorld.tini.

Step 4: Load the converted image. Use the FTP client provided with your
operating system to connect to TINI and transfer the binary image, generated
the previous step, to the TINI file system.

C:\tinil.02\HelloWorld>ftp 192.168.0.15

Connected to 192.168.0.15.

220 Welcome to slush. (Version 1.02) Ready for user Tlogin.
User (192.168.0.15:(none)): root

331 root login allowed. Password required.

Password:

230 User root logged 1in.

ftp>

After successfully establishing a connection and logging in to slush we ce
transferHelloworld.tini to TINI's file system. First type “bin” at the FTP
prompt to ensure that our binary image is not altered during the actual file transt

ftp> bin
200 Type set to Binary

TransferHelloWorld. tini, using thisout command.

ftp> put HelloWorld.tini

200 PORT Command successful.

150 BINARY connection open, putting HelloWorld.tini

226 Closing data connection.

ftp: 171 bytes sent in 0.00Seconds 171000.00Kbytes/sec.

Finally, close the FTP session by typisyg or quit at the prompt.

ftp> bye
221 Goodbye.

42 Chapter 2 Getting Started

We can check that our file transfer completed successfully by using th
command at the slush prompt in our Telnet session.

TINI /> 1s -1

total 3

drwxr-x 1 root admin 2 Jan 28 14:45 .

-rwxr-- 1 root admin 171 Jan 28 15:46 HelloWorld.tini
drwxr-x 1 root admin 3 Jan 28 14:45 etc

The fileHe11oWor1d. tini now appears in the root directory of the file syste
and has the same size that was listed during the FTP transfer.

Note that all operating systems that are capable of hosting TINI applica
development have an FTP client that works nearly identically to the prece
session. There also exist several graphical FTP clients for various platfo
These are useful for developers that prefer not to work from a command shel
some developers, a command line FTP client is preferable because it allow
easy automation of the file transfer process. For example, using the Windows
client, we can create a file with the following contents.

root
tini
bin
put HelloWorld.tini
bye

If we call this fileTload.cmd, we can use the following command to transf
HelloWorld.tini without any interaction with the FTP client command prompt

C:\TINI\tinil.@2\myapps\HelloWorld>ftp -s:Toad.cmd 192.168.0.15

Using the-s option causes the FTP client to read the specified file and exe
each line as if it were typed in manually in response to a prompt.

Step 5: Run the converted image. Now we're ready to run the applicatior
using thejava command at the slush prompt.

TINI /> java HelloWorld.tini
Hello World
TINI />

HelloWorld.tini executes and produces the output we expect. After the |
gram terminates, control of the user session returns to the command prompt.

2.6.2 Blinky, Your First TINI I/O

Now that we know how to build, load, and execute a Java application, let’s tr
example that performs the most basic form of I/O by controlling a single mi

Some Simple Examples 43

controller port pin. There is a status LED (Light Emitting Diode) on the TINI
board that is connected to p3.5 (port 3, bit 5) of the microcontroller. This pin |
also shared with the internal 1-Wire network (see Table 9.1) but since we're n
doing any 1-Wire at the moment, we're free to play with it.

The relevant portion of the TBM390 schematic is shown in Figure 2.4. Th
anode side of the LED is connected @ {the power supply voltage). A 680-ohm
current limiting resistor separates the LED’s cathode and the source of transis
Q2. In this circuit, Q2 is just used as a saturation switch to ground. So we ¢
think of it as either being off (nonconducting) or on (conducting). The port pir
drives the gate of Q2. Setting the pin high (a logic 1) forces Q2 into a conductil
state, causing current to flow through the LED and turning it on. Setting the p
low (a logic 0), forces Q2 to a nonconducting state, stopping the flow of curre
through the diode, thereby turning it off.

VCC

D1
R4 K
680
['4'4
Q2 Red LED
INTOWB (p3.5 2N7002

.”

Figure 2.4 TINI's status LED

TheBlinky program, shown in Listing 2.2, uses the clag®ort from the
com.dalsemi.system package to access p3.5. Once we have an instance
BitPort, we can invoke the methodst andclear, to turn the LED on and off,
respectively.

public void set()
public void clear()

Listing 2.2 Blinky

import com.dalsemi.system.BitPort;

class Blinky {
public static void main(String[] args) {
BitPort bp = new BitPort(BitPort.Port3Bit5);
for (53) {
// Turn on LED
bp.clear(Q);
// Leave it on for 1/4 second
try {

44 Chapter 2 Getting Started

Thread.sleep(250);
} catch (InterruptedException ie) {}

// Turn off LED
bp.set();
// Leave it off for 1/4 second

try {
Thread.sleep(250);
} catch (InterruptedException ie) {}

Compile, convert, and loadlinky following the steps we used for the
HelloWor1d example. However, we will make one small change to the way
which we run this progranmglinky runs forever just brainlessly blinking the
status LED at 2 Hz. If we run it in the same fashion that wei¢@towor1d, as a
foreground process, we would never get our command prompt back in the T
sessiorP We would either have to start a new Telnet session just teTHalky by
using thekill command or removing power, forcing the system to rebo
Instead, just executinky in the background.

TINI /> java Blinky.tini &
TINI />

Now if you take a look at your TINI board, you should see the status L
(D1) blinking about twice per second. It will continue to blink until you Kkill tk
process. To kill a process from slush, you usekthe@ command specifying the
process id on the command line. To learn the process id, use the ps commar

TINI /> ps

3 processes

1: Java GC (Owner root)

2: init (Owner root)

4: Blinky.tini (Owner root)

The ps command shows us the total number of processes and lists each
cess id followed by its name. Now let’s kifl inky, since the thrill of a blinking
light is probably starting to wane.

TINI /> kill 4

TINI /> ps

2 processes

1: Java GC (Owner root)
2: init (Owner root)

6. Slush does not support the use of <ctrl>C to terminate foreground processes.

Some Simple Examples 45

After killing process 4 and examining the process list, we see that the proce
count has gone from three to two, and only the background garbage collector ¢
command shell (Notice that the first Java process started during the bootup ph:
Slush in this case is always named “init.”) are running. Even if you kill and imme
diately restart the same process, it will not get the same process id. Process ids
always incrementing and are not recycled. So, if you were to run Blinky again al
do a ps, the process id would be 5. The process id is an unsigned 16-bit value
therefore rolls to the lowest available value after 65535.

2.6.3 HelloWeb, a Trivial Web Server

Finally, we’'ll upgrade th@elloWor1d example, taking it to the World Wide Web.
The Helloweb program, shown in Listing 2.3, is a very small Web server. The
“built-in” HTTPServer class, provided in théom.dalsemi.tininet.http package,
does the bulk of the workelloweb creates an instance fTPServer that listens

for client HTTP requests on server port 80. It also logs all requests to a file nam
web.Tog in the “/log” directory. The main loop simply spins forever, invoking the
serviceRequests method on th&TTPServer instance.

Listing 2.3 HelloWeb

import com.dalsemi.tininet.http.HTTPServer;
import com.dalsemi.tininet.http.HTTPServerException;

class HelloWeb {

public static void main(String[] args) {
// Constuct an instance of HTTPServer that Tlistens for
// requests port 80
HTTPServer httpd = new HTTPServer(80);
httpd.setHTTPRoot("/html");
httpd.setIndexPage("index.html");
// Specify a name for the log file and turn on Togging
httpd.setLogFilename("/Tog/web.1og");
httpd.setlLogging(true);

// Spin around forever servicing inbound requests
for (55) {
try {
// Wait for a new request
httpd.serviceRequests();
} catch (HTTPServerException e) {
System.out.printin(e.getMessage());
}

46 Chapter 2 Getting Started

Compile, convert, and loadelloweb, following the steps used in the
HelloWorld example. LikeB1inky, HelloWeb runs forever and should therefore
be executed as a background process. But there’s a little more work to do b
we can rundelloweb. Unlike the first two examplesie1loWeb requires some
application data in the form of an ASCII file, nameéhdex.htm1. On the host,
create and save a file namidex.htm1 with the following contents.

<html>

<head><title>Hello Web!</title></head>
<body>

<hl>Hello from TINI!</hl>

</body>

</html>

Now let’s return to our slush Telnet session to make directories for our \
root and log file.

TINI /> mkdir html
TINI /> mkdir log

TINI /> 1s -1

total 7

drwxr-x 1 root admin 6 Jan 28 14:45 .

drwxr-- 1 root admin 0 Jan 28 18:06 Tog

drwxr-- 1 root admin 1 Jan 28 18:06 html

-rwxr-- 1 root admin 297 Jan 28 18:05 HelloWeb.tini
-rwxr-- 1 root admin 220 Jan 28 17:58 Blinky.tini
-rwxr-- 1 root admin 171 Jan 28 15:46 HelloWorld.tini
drwxr-x 1 root admin 3 Jan 28 14:45 etc

Use FTP again to “putindex.htm1 into the “/html” directory we just created.
To make sure we transferred the file successfully, we can, from the slush pr
change to the “/html” directory and display the contentseéx.htm1, using the
cat command.

TINI /> cd html

TINI /html> cat index.html
<html>

<head>

<title>Hello Web!</title>
</head>

<body>

<h1l>Hello from TINI!</hl>
</body>

</html>

Now that we have the Web server application bina&yiweb.tini) and the
HTML file that it will serve in the Web root, we can return to the root directc
and start the program as a background process.

Some Simple Examples 47

TINI /html> cd ..
TINI /> java HelloWeb.tini &
TINI />

Typing theps command at the slush prompt shows that our server is indeed
and ready to receive and process client HTTP requests.

TINI /> ps

3 processes

1: Java GC (Owner root)

2: init (Owner root)

5: HelloWeb.tini (Owner root)

Now we can test our simple server, using any browser and typing TINI’s ||
address or DNS name in the URL line. Figure 2.5 shows the results of browsi
the elaborate Web site servedHay 1oWeb, using the Netscape browser.

}K Hello Web! - Netscape =] B3

File Edit Yiew Go Communicator Help

o A 4 2 w5 N

Back Forward Reload Home Search MNetscape Fiint
J " Bookmarks & Location: Ihttp: //132.168.0.15/ LI G2l What's Related

Hello from TINI!

| (== |Document: Done

Figure 2.5 Browsing HelloWeb

48 Chapter 2 Getting Started

Recall that when we created the instanceatopPserver, we specified that it
generate a log file. Let’s take a look at its contents, usingatheommand from
the slush prompt.

TINI /> cd Tog

TINI /Tog> cat web.log
192.168.0.3, GET, index.html
TINI /log>

The log file shows us that the server has processed 1 “GET” request fo
file index.htm1 from a client with the IP address 192.168.0.3. You can hit
reload (or refresh if you're using Internet Explorer) button on your browser <
eral times and watch the log file grow by one entry for each new request. If
were a real application serving real Web pages, we probably wouldn't enable
ging, since we're working with a relatively small memory footprint. If loggir
were used by a real application, the log file would eventually grow too large t
in TINI's memory.

2.7 DEBUGGING TIPS

Trivial applications like those in the previous section require little in the way
debugging. So the development cycle of building the application on the host
loading and running it on TINI isn’t really much of a burden. Real-world appli
tions are of course much more complicated and involve a fair amount of de
ging. This is one of the more difficult areas of TINI application development.

As a general rule, do all of the debugging you possibly can on your deve
ment host. On a host machine the use of a full-featured IDE that provides a
time environment with integrated source-level debugging can further aid in
development and debugging cycle.

There are broad classes of applications that can be developed for the
platform that will also run on larger, more traditional Java platforms. Th
classes include applications that use the following mechanisms for monitc
and controlling external devices and communicating with other networ
machines.

» Serial communication
» TCP/IP networking
* 1-Wire networking

If your application uses only the standard Java packages supported by
(see Section 1.4.1) and extensions available on most Java platforms—name
Java Communications API (Section 3.2) and the 1-Wire API (Chapter 4)—the
debugging can be accomplished using just your host’s development environn

Debugsging Tips 49

Since TINI's main purpose is interacting with physical devices, it also pro
vides I/O capabilities above and beyond those supported by any other Java p
form. Once you're writing applications that make use of the APIs that expos
these expanded I/O capabilities, your applications will only run on TINI anc
therefore must be debugged on TINI. Here are some examples of TINI's expanc
I/O capabilities.

o Parallel I/O
* Port pin 11O
e Controller Area Network (CAN)

If your application makes use of APIs that support any of the above, you lo:
source level debugging capabilities and are relegated to using exceptions w
informative detail messages and old-fashioned consgletem.out.printin)
debug output.

Also, there’s a pretty good chance that if you're using expanded I/O capabi
ties, TINI is connected to specialized hardware. This often brings traditional har
ware diagnostic and debug equipment into the picture—anywhere from expens
DSOs (Digital Storage Oscilloscopes) and logic analyzers to very inexpensi
tools like logic probes and DMMs (Digital Multi-Meters). This isn't always a sim-
ple and user friendly environment for debugging. It proves to be very challengir
at times, but such is life in the murky world where hardware meets software.

CHAPTER 3 Serial
Communication

The sheer number of devices that use a serial port as a means for communica
with other electronic devices is staggering: everything from very well-knowr
examples like personal computers and modems to manufacturing and indust
automation equipment. In fact, for many, a serial port provides the sole mect
nism of communicating with the outside world. Such devices have no dire
means of participating in a larger computer network. For this reason bridging ti
communications gap between serial-only devices to networked hosts is one of
most popular applications of TINI technology.

This chapter will cover both the hardware and software aspects of developi
serial applications on TINI. It focuses on application programming, providing ree
sonably detailed coverage of the serial portion of the Java Communications Al
The chapter concludes with a sample implementation of a general purpose se
to Ethernet network bridge.

3.1 INTRODUCTION AND TERMINOLOGY

The asynchronous serial communication discussed in this chapter is based c
standard that dates back to the earliest days of recorded history. Well, it's not ac
ally that old, but the RS-232-C standard was published way back in 1969, spec
cally. Most modern serial ports do not support all of the signals defined in tt

51

52 Chapter 3 Serial Communication

standard. The signals that are implemented are used in a fashion that is fairly
to that defined in the standard.

It's difficult, if not impossible, to discuss asynchronous serial communicat
based on the RS-232-C standard without delving into fairly tricky terminolc
that brings with it a significant amount of historical baggage. Over the ye
terms commonly used in the industry have diverged somewhat from those de
in the standard.The following text will define a few necessary terms, attempti
to stay reasonably close to the RS-232-C standard. It will also describe the
ware and software test environment used to test the examples in this section

The low-level details of asynchronous serial communication, such as ma
ing tight timing tolerances on receive data sampling, are typically handled |
dedicated piece of hardware known as a UART (Universal Asynchron
Receiver Transmitter). This is often a dedicated piece of silicon that is either
grated into a microcontroller or provided externally as a special purpose ext
UART chip. TINI's serial driver provides support for both of the internal UAR
as well as optional support for an external dual-UART chip. This allows TINI
communicate with up to four separate serial devices.

The standard specifies that the receiver shall acknowledge voltage leve
+3V to +25V for a “SPACE” (a binary zero) bit and -3V to —25V for a “MARK
(a binary one) bit. This is shown in Figure 3.1. The “no man’s land” between -
and +3V is the switching region. All of the UARTs supported by TINI transr
and receive the much more common (and modern) TTL (Transistor Trans
Logic) voltage levels of OV and +5V. Special purpose chips commonly knowi
level translators are used to convert between TTL and RS-232 levels to ¢
communication with devices that transmit and receive true RS-232 levels. M
small embedded serial devices also use TTL signals obviating the need for
translation. All voltage levels discussed here are measured with respect to ¢
ground (a.k.a., common, see Table 3.1).

The serial ports that we're concerned with in this chapter come in the foll
ing two configurations.

» DCE (Data Communications Equipment)
» DTE (Data Terminal Equipment)

The RS-232-C standard refers to the two endpoints of a communicat
channel as being data terminal equipment (DTE) and data communications e
ment (DCE). A common example of data communications equipment is a ma
and a common example of data terminal equipment is a PC or workstation.

1. For example, the DCE acronym is now almost exclusively used to refer to data com-
munications equipment, as opposed to the original definition of data circuit-terminat-
ing equipment.

Introduction and Terminology 53

+ 25V
SPACE
+VE-—_— .
ov
—8V bl
MARK
- 25V

Figure 3.1 RS-232 voltage levels

In general, systems that employ TINI technology can expose either DTE
DCE serial ports. However, in the interest of constructing a concrete test envirc
ment, we'll need to refer to specific hardware implementations. For our purpos
the most commonly available and generic configuration, which includes
TBM390 and an E10 socket, is used.

For most serial applications, TINI controls or acts as a network bridge fc
DCE serial devices and is therefore more likely to be used as data terminal eqt
ment. For this reason the E10 socket provides a DTE serial port that supports v
of the hardware handshake (flow control) lines. As we’ll see in the next sectio
this serial port is identified by the system as serialQ. It is often called the “defal
serial port” because the UART is integrated within the microcontroller.

The pinout, along with signal names and descriptions for a DB-9 DTE seri:
port connector, is shown in Table 3.1.

Table 3.1 DB-9 DTE serial connector pinout

Pin# Signal Name DTE Sense Description

1 CD (Carrier Detect) INPUT Asserted by DCE when it has
received a data carrier signal

2 RD (Receive Data) INPUT Data receive from DCE

3 TD (Transmit Data) OUTPUT Data transmit to DCE

4 DTR (Data Terminal Ready) OUTPUT Asserted by DTE when it is

ready for communication

continues

54 Chapter 3 Serial Communication

Table 3.1 DB-9 DTE serial connector pinout (continued)

Pin# Signal Name DTE Sense Description
5 Common (Signal Ground) N/A 0 volt reference
6 DSR (Data Set Ready) INPUT Asserted by DCE when it has

established a communications
channel and is ready to transmit

7 RTS (Request To Send) OUTPUT Asserted by DTE to request
permission to transmit data

8 CTS (Clear To Send) INPUT Asserted by DCE to grant per-
mission to DTE to transmit data

9 RI (Ring Indicator) INPUT Asserted by DCE when it
receives a ringing tone

The BlackBox example application, distributed with the comm API, is ve
useful for test purposes. In fact, it was used to test all of the examples in this
ter. BlackBox is a GUI application that allows the user to configure port settir
such as the baud (or bit) rate, number of data and stop bits, and flow control m

The difficulty is that the host machine on whietackBox executes also has
DTE serial ports. So the same straight-through serial cable that connect:
TINI's DCE connector to load the firmware is not sufficient by itself to allow TII
and the development host to communicate over a serial link to TINI's DTE ¢
nector. If only a straight-through serial cable were used, both computers w
transmit data on the same pin (TD), causing an electrical contention. This co
tion shouldn’t cause any damage since RS-232 outputs are current-limited. |
ever, it certainly prevents any communication. The hardware handshake ou
(RTS and DTR) will also collide.

The use of a null modem solves this problem. At a minimum a null moc
swaps RD and TD and passes through signal ground. This would allow
machines with DTE serial ports to communicate, assuming none of the hard
handshake lines are required. We’'ll make use of the handshake lines in a cou
the following examples. For our testing we’ll use the common null modem cor
uration shown in Figure 3.2. This configuration also swaps RTS and CTS, w
is used for “hardware” flow control.

The entire hardware test configuration is shown in Figure 3.3. A strai
through cable and null modem are used to connect TINI with the developr
host machine. Both the TINI and development host have pin-male DB-9 con
tors. Both connectors on the null modem are pin-female DB-9.

Introduction and Terminology 55

= o
g
o
(=}
—_
m
(=}
®
o
(=
—_
m

(o 0L L L)

8
9

(Momnnnnnm

Pin names and descriptions are identical to those
shown in Table 3.1.

Figure 3.2 Null modem

TINIE10 <—»|: NULL :| ‘_’H — Dev. Host

T

Null Modem Straight-Through Cable

Figure 3.3 Test configuration

The null modem shown in Figure 3.3 is in a brick form factor. Null modem:
are also available as cables. This would obviate the need for both a null mod
and a straight-through cable. Since straight-through cables are more common .
typically used with TINI anyway for loading the runtime environment, we have
chosen to use a separate null modem brick. If the development host has a DB
pin connector, you will need a DB-9 to DB-25 adapter as well. Depending o
whether your development host is pin-male or pin-female you may also neec
gender changer. With the hardware configuration shown in Figure 3.3 (or equi\
lent) andB1ackBox running on the development host, we're ready to begin writing
and testing serial applications.

56 Chapter 3 Serial Communication

3.2 THE JAVA COMMUNICATIONS API

The Java Communications API (or comm API for brevity) has been definec
Sun Microsystems as an extension to the Java platform. The API is definec
partially implemented in thgavax.comm package. The platform specific portior
of the comm API implementation exists in then.dalsemi.comm package. For
most applications there isn't a compelling reason to use the serial port class
com.dalsemi.comm directly, so this section will focus entirely on the public spec
fication injavax.comm. Unless explicitly stated otherwise, all classes describec
the next section are defined in t&ax.comm package.

You may recall that when you installed the comm API on your host devel
ment machine, you copied a file namjgsax.comm.properties to the “jre/lib/
ext” directory under the root of your JRE or JDK installation. This text file cc
tains a line that specifies a driver to be loaded to manage serial port commt
tion. On TINI the serial port drivers are always installed and available in
runtime environment and therefore thavax.comm.properties file is not
required or supported.

3.2.1 Acquiring and Configuring Serial Ports

Ultimately we’ll be working withserialPort ObjectsSerialPort is a subclass of
the abstract classommPort. CommPort provides a fairly generic abstraction of .
communications port. It provides methods for configuring port settings
acquiring streams for reading data from and writing data to the underlying pt
cal port.CcommPort Objects can't be created directly using tlae operator. Rather,
they are created by invoking thgen method on &ommPortIdentifier object.

The CommPortIdentifier class manages access to the ports exposed by
platform’s physical port drivers. It also provides a mechanism for notifying ap
cations when port ownership status changes. This can be useful when mt
applications need to share a single port. The ability to share ports among mt
processes on TINI is supported, but it isn't typically important and is therefore
covered hereCommPortIdentifier Objects can be created by invoking one of tl
following getPortIdentifier methods.

public static CommPortIdentifier getPortIdentifier(String portName)
throws NoSuchPortException

public static CommPortIdentifier getPortIdentifier(CommPort port)
throws NoSuchPortException

An enumeration ofommPortIdentifiers for all communicatiof ports sup-
ported by the system can be obtained by invoking déwortIdentifiers
method.

2. On TINI this specifically means all serial ports.

The Java Communications API 57

public static Enumeration getPortIdentifiers()

The PortLister example, shown in Listing 3.1, gets an enumeration of all
CommPort Objects on the system and displays their names.

Listing 3.1 PortLister

import java.util.Enumeration;
import javax.comm.CommPortIdentifier;

class PortLister {
public static void main(String[] args) {
Enumeration ports = CommPortIdentifier.getPortIdentifiers();
while (ports.hasMoreElements()) {
System.out.printin(
((CommPortIdentifier) (ports.nextElement())).getName());
3

When this application is run on a Win32 machine with the communication
API properly installed, it will list both parallel and serial ports. On a system witt
two serial ports and two parallel ports, it will generate output similar to the fol
lowing:

coM1
Ccom2
LPT1
LPT2

On TINI, however, there are no parallel ports—at least not the IEEE-128
type parallel ports that are comprehended by the comm API. In fact, there is
implementation for the parallel classes defined by the comm API. TINI doe
support parallel 1/0, but in a far more flexible and powerful fashion by exposin
the processor bus to allow for arbitrary 1/0 expansion. From a programmer
perspective, parallel 1/O on TINI-based systems is accomplished using tl
com.dalsemi.system.DataPort class and is covered in Chapter 8.

The output oPortLister when executed on TINI shows that four serial ports
are supported by the system. They are nagaeth1e throughserial3.

TINI /> java PortLister.tini
serial@
seriall
serial?2
serial3

After we have &ommPortIdentifier object, we can invokepen to obtain a
CommPort Object.

58 Chapter 3 Serial Communication

public synchronized CommPort open(String appname, int timeout)
throws PortInUseException

Ownership of a communications port is mutually exclusive. In other wot
multiple processes cannot simultaneously access the underlying physical
The open method only returns when it has either obtained exclusive access t
port or the input time-out value, specified in milliseconds, has elapsed. If the
is owned by another process and a time-out occurs waiting for the process to
quish ownership of the porgpen throws aPortInUseException. The open
method also requires a string representation of the name of the application.
string is used to identify the owner of the port. There is another open methoc
takes ajava.io.FileDescriptor object. Because the runtime environment do
not represent physical devices as files, TINI's comm API implementation doe:
support this version afpen. Ownership of the port is relinquished by invoking th
close method on th€ommPort object.

public void close()

The commPort object returned from open must be cast serdalPort Object
before we can begin altering the port settings. Sdré€alpPort class provides pub-
lic “setter” methods for configuring individual parameters as well as symme
public “getter” methods for querying the parameters current value. These «
few of the parameters that are typically set before transmitting or receiving
on the underlying physical port.

* Baud rate

* Number of data bits

* Number of stop bits

» Type of parity checking (if any)
* Flow control (if any)

On TINI, the default settings are 115,§ins, 8 data bits, 1 stop bit, no pat
ity, and no flow control. The supported values for the humber of data bits,
bits, flow control, and parity types are defined as public integer constants i
SerialPort class. The most common set of serial port configuration parame
can be set with a single invocation of #e@SerialPortParams method.

public void setSerialPortParams(int baudrate, int dataBits,
int stopBits, int parity)
throws UnsupportedCommOperationException

All of the settings are supplied as integers. The humber of data bits, stop
and parity mode are supplied using theialPort constants. The baud rate i

3. Thejavax.comm documentation afetSerialPortParams specifies a default of 9600 bps.

The Java Communications API 59

simply an integer value equal to the desired speed. In the following code snipy
the serial port (represented by theialPort objectsp) is configured for trans-
mitting and receiving data at 115,200 bps with 8 bit serial characters followed |
1 stop bit and no parity checking.

try {

sp.setSerialPortParams (115200, SerialPort.DATABITS_S,
SerialPort.STOPBITS_1, SerialPort.PARITY_NONE);

} catch (UnsupportedCommOperationException usc) {
}

If any of the parameter values are invadiel;SerialPortParams will throw an
UnsupportedCommOperationException. If this occurs, all four parameters will
remain the same as before theSerialPortParams method was invoked.

3.2.2 Flow Control

Another setting that should be configured before beginning serial data transfel
the flow control mode. Flow control is a mechanism that allows a receiver to te
the sender to pause when its internal receive data buffer is close to full. Tt
avoids lost data due to buffer overflow. The following flow control modes are suj
ported by the comm API.

* None
* RTSI/ICTS (often loosely termed hardware flow control)
* XON/XOFF (often loosely termed software flow control)

If no flow control is specified, both sides of the communication transmit a
will, leaving no inherent protection against receive buffer overrun. This may nc
be a problem, depending on the serial protocol employed by the end points of |
data channel. However, if one side of the channel transmits a continuous d
stream, the receiver must be dedicated to the task of servicing the receive buffe
risk losing data. This is potentially a problem for multitasking systems, especial
those that are not driven by a real-time kernel.

XON/XOFF flow control works as follows. When the receiver’s (call it A)
internal receive buffer begins to reach capacity, it transmits an XOFF (0x13) che
acter back to the sender (call it B) requesting that it pause its transmission. Af
the application has unloaded some or all of the data, A transmits an XON (0x1
character notifying B that it is ready to receive more data. XON/XOFF flow con
trol has the advantage of not requiring support for any hardware handshake lin
Its main drawback is that the in-band signalling is somewhat awkward in that

60 Chapter 3 Serial Communication

application can inadvertently stop the remote endpoint from transmitting by s
ing an XOFF character in a binary data stream. Also, it inhibits an applicati
ability to receive the XON or XOFF control characters because they are absc
by the serial drivef.

If available, RTS/CTS (hardware) flow control is the best way to avoid bu
overflow. In this scheme the endpoint (call it A) wishing to transmit asserts
request to send (RTS) signal. If the other endpoint (call it B) has sufficient roo
its buffer and is willing to receive data, it will assert the clear to send (CTS)
nal. At this point device A begins transmitting. If B's receive buffer approacl
capacity, it de-asserts CTS and A pauses its transmission. Eventually the ap
tion will read the available serial data, and B’s serial port driver will assert C
allowing A to resume data transmission.

The default flow control setting is no flow control. This is appropriate beca
many devices have no support for hardware or software flow control. Howevi
the device with which you are communicating supports flow control, this def
should be overridden. In fact, some devices may require the use of flow cont

The flow control mode is configured by invoking theFlowControlMode
method on &erialPort object. The current flow control mode in use by tf
driver can be retrieved at any time using deeF1owControlMode method.

public void setFlowControlMode(int flowcontrol)
throws UnsupportedCommOperationException
public int getFlowControlMode()

The desired flow control setting is passeddtFlowControlMode encoded as
an integer equal in value to any of the following constants. The value can al:
the bitwise-or of one input (_IN) mode constant and the matching output (_O
constant.

public static final int FLOWCONTROL_NONE

public static final int FLOWCONTROL_RTSCTS_IN
public static final int FLOWCONTROL_RTSCTS_OUT
public static final int FLOWCONTROL_XONXOFF_IN
public static final int FLOWCONTROL_XONXOFF_OUT

Flow control can be specified as unidirectional only. For example, the app
tion can require that the remote endpoint specify RTS/CTS flow control witt
implementing any flow control during its own data transmission. The use of 1
control can also be required of both devices protecting each endpoint in the
munication from receive buffer overflow. However, input and output flow cont
modes can’'t be mixed between RTS/CTS and XON/XOFF flow control. |
example, an application can’t specify RTS/CTS flow control for outbound c
and XON/XOFF flow control for inbound data.

4. Applications would have to “escape” XON/XOFF characters.

The Java Communications API 61

// ITlegal setting!
SerialPort.FLOWCONTROL_RTSCTS_IN | SerialPort.FLOWCONTROL_XONXOFF_OUT

The following code snippet shows how to correctly select the use of RTS/CT
flow control for both serial data input and output.

try {
sp.setFlowControlMode(SerialPort.FLOWCONTROL_RTSCTS_IN |
SerialPort.FLOWCONTROL_RTSCTS_OUT);
} catch (UnsupportedCommOperationException usc) {
// Can't use hardware flow control with this serial port!

If the underlying driver or UART does not support the specified type of flow
control or the flow control mode is an invalid combination of the mode
constants that are listed above, th&FlowControlMode method throws an
UnsupportedCommOperationException. In this event the actual flow control mode
remains the same as it was befe¢erlowControlMode was invoked.

3.2.3 Sending and Receiving Serial Data

An application transmits and receives serial data usingeiieandwrite meth-
ods on input and output streams, respectivgbra.io.InputStream and
java.io.OutputStream objects are acquired by invoking theInputStream and
getOutputStream methods on 8erialPort Object.

public InputStream getInputStream() throws IOException
public OutputStream getOutputStream() throws IOException

There is exactly ongénputStream and oneutputStream attached to a serial
port. Multiple calls to either method will return a reference to the same stream.

The comm API supports the notion of receive time-outs and threshold
Receive time-outs and thresholds allow the application to control blocking rea
on serial portinputStream objects. A read time-out can be set by invoking the
enableReceiveTimeout method on @erialPort Object.

public void enableReceiveTimeout(int rcvTimeout)
throws UnsupportedCommOperationException
public void disableReceiveTimeout()

The specified time-out value represents the number of milliseconds that a
of the InputStream’s read methods should block waiting for receive data. If the
specified number of milliseconds elapses before the number of bytes requestec
the read method is received, theecad method will return immediately with any
data that was received. The receive time-out can be disabled at any time, using
disableReceiveTimeout method.

62 Chapter 3 Serial Communication

A receive threshold value can be set by invoking the metf
enableReceiveThreshold On aSerialPort Object

public void enableReceiveThreshold(int thresh)
throws UnsupportedCommOperationException
public void disableReceiveThreshold()

The thresh parameter passed é@ableReceiveThreshold represents a mini-
mum number of bytes that should be returned when reading serial data. Set
threshold value will cause the serial pdibutStream’s read methods to block
until eitherthresh bytes have been received or a time-out (if one has been s¢
enableReceiveTimeout) occurs. The receive threshold can be disabled at any ti
using thedisableReceiveThreshold method.

Both enableReceiveTimeout and enableReceiveThreshold declare that an
UnsupportedCommOperationException will be thrown in the event that the native
serial driver doesn’t support the requested functionality. This exception sh
never be thrown on TINI from either of these methods, since all serial port dri
do in fact support receive time-outs and thresholds.

Using receive time-out values and receive threshold settings, an applici
can read serial data from the serial pomifputStream without polling the
InputStream’s available method to determine when data is available in tl
serial driver’s receive buffer.

Since the receive buffers are of finite size, they can overflow if not servi
(unloaded) frequently enough by the application. Without the use of any flow
trol, both sides must ensure that they can service the receive buffer before |
any data. This problem can be avoided to some extent by using a large el
receive buffer to give the application plenty of time to read the data. A rec
buffer of a specific size can be requested by invokingséh@nputBufferSize
method on &erialPort Object.

public void setInputBufferSize(int size)
public int getInputBufferSize()

The requested buffer size is passed as an integer. On TINI the maximum
ported input buffer size is 65535. If an invalid size is specified or another e
such as insufficient memory for the new buffer occurs, the input buffer rem
the same size as it was befeseInputBufferSize was invoked. No exception is
thrown. However, the actual input buffer size can be verified at any time u
the getInputBufferSize method. The combination of controlling the inpL
buffer size and using well-chosen receive thresholds and time-out values
allow an otherwise busy application to service the serial port input buffer v
little overhead.

An application can manually query the state of all of the hardware flow c
trol lines that are supported by the underlying serial port.

The Java Communications API 63

public boolean isCD()
public boolean isRI()
public boolean isDSR()
public boolean isCTS()
public boolean isRTS()
public boolean isDTR()

These methods retutirue if the signal was asserted at the exact time it was
sampled by the native driver afgllse otherwise.

The comm API only allows the DTR and RTS signals to be altered by th
applications. This is because DTR and RTS are the only two lines that are outp
in a DTE serial port configuration, and the comm API assumes that it is imple
mented on data terminal equipment. The state of DTR and RTS can be set us
thesetRTS andsetDTR methods.

public void setDTR(boolean dtr)
public void setRTS(boolean rts)

Passing either method olean value of true asserts the signal, while a
value offalse de-asserts the signal. An application using RTS/CTS flow contro
should not attempt to alter the state of RTS as it's managed by the driver. We
utilize the comm API’s ability to toggle the state of data terminal ready (DTR) t
reset an external modem in Section 7.6.2.

On TINI, the internal serial portsdriale andseriall) don’t support all of
the hardware handshake signals. We'll cover the details of TINI's serial port har
ware and driver support in Section 3.3

3.2.4 Serial Port Events

The communications APl provides a mechanism for asynchronou
notification of interesting serial port events such as state changes in the mod
control lines and when data is available. On TINI the events are propagated b
daemon thread that listens for state changes in the serial port drivers. T
daemon thread is created when the first event listener is registered using
addEventListener method in theSerialPort class. The argumertistener
passed to methodddEventListener requires an instance of a class that
implements th&erialPortEventListener interface.

public void addEventListener(SerialPortEventListener 1listener)
throws TooManyListenersException
public void removeEventListener()

The removeEventListener can only be invoked by a listener. Event listeners
are automatically removed when the port is closed.

For every serial port event there exists one method wiidt&fyon prefix.
The listener chooses the events for which it wishes to be notified by invokir

64 Chapter 3 Serial Communication

the appropriateotifyon* method on &erialPort Object. So, for example, to
receive notification when serial data is available, a listener invokes
notifyOnDataAvailable method.

public void notifyOnDataAvailable(boolean enable)

An enable value oftrue enables notification for the specified event. Notific
tion can be disabled at any time by invoking the same method withagmhe
value offalse.

ThesSerialPortEventListener interface defines theerialEvent method that
is invoked when an event for which the listener has requested notification occ

public void serialEvent(SerialPortEvent ev)

Listeners invoke th@etEventType method on theserialPortEvent object
passed t@erialEvent to determine the source of the event.

public int getEventType()

getEventType returns the type of the event encoded as an integer. There
several serial port events defined as public constargsriralPortEvent. We'll
only cover the types supported by TINI's comm API implementation. Otl
events, such as FE (Framing Error), are also defined by the comm API but al
supported by TINI's serial drivers.

These are two of the most important events.

» DATA_AVAILABLE
* OUTPUT_BUFFER_EMPTY

These provide notification of the state of the serial driver's transmit
receive buffers. When these events are used properly it allows the applicati
maximize serial port throughput with a minimum of CPU overhead and with
dedicated threads.

An application can periodically poll the/ailable method on the serial port
input stream to determine when serial data has been received. However, poll
typically inefficient in terms of CPU usage. Depending on the type of serial de
and the other things that the application is doing, it can be difficult to determine
frequency at which to check for inbound data. If the application polls too freque
then much of the CPU is wasted asking the question “Any data yet (huh, ht
there, how about now)?” Even if the application can dedicate much of the CF
polling for receive data, there is no guarantee that other system operations s
garbage collection won't delay polling from time to time. If the serial device doe
support either RTS/CTS (hardware) or (XON/XOFF) software flow control, inf
guent polling can lead to loss of data due to the receive buffer overflowing.

The Java Communications API 65

An application can avoid polling either by using the receive time-outs an
thresholds discussed in Section 3.2.4 or tWgA_AVAILABLE event. The
DATA_AVAILABLE event is generated when data is received by the serial port. Whe
the listener receives notification of this event, it typically reads all data availab
from the input stream and supplies it to another thread in the application for fu
ther processing. The advantage of th@A_AVAILABLE event is that it doesn’t
require a blocking invocation of one of the input strearei&sl methods.

Managing the flow of outbound data is typically less critical and a little easie
The OUTPUT_BUFFER_EMPTY event is generated when the serial driver's transmit
buffer is empty. The listener can use this event to move data from an arbitrar
large buffer to the serial port in smaller, more manageable blocks. This event ¢
be used as an alternative to invoking a write method that will block if the seri
transmit buffer is full.

Changes in the state of the control lines defined as inputs for DTE serial po
can be detected by registering for any of the following events.

e CD (Carrier Detect)
 CTS (Clear To Send)

* DSR (Data Set Ready)
* RI (Ring Indicate)

The getNewvalue method of clasSerialPortEvent can be used to determine
the sense of the transition.

public boolean getNewValue()

It returns true if the specified signal is asserted afulse otherwise. A
common example of how control line change notification is useful is found il
managing communications with a serial modem. When the modem has establis|
a connection with another modem, it asserts carrier detect. If the remote mod
“hangs up,” a SerialPortEvent.CD change event will be generated and
getNewvalue returnsfalse. The listener can use this information to notify the rest
of the application that the modem connection is no longer valid.

The CTSMonitor example, shown in Listing 3.2, listens for changes on the
CTS line.

Listing 3.2 CTSMonitor

import java.io.IOException;

import java.util.TooManyListenersException;
import javax.comm.*;

import com.dalsemi.system.TINIOS;

class CTSMonitor implements SerialPortEventListener {

66 Chapter 3 Serial Communication

SerialPort sp;
CTSMonitor() throws NoSuchPortException, PortInUseException {

// Specify a timeout value of at least a few seconds before
// failing on ’open’ attempt. This allows another process
// (probably sTush) to relinquish port ownership.
sp = (SerialPort)
CommPortIdentifier.getPortIdentifier("serial@").open(
"CTSMonitor", 5000);
try {
// Enable the use of hardware handshake 1lines for serial@
TINIOS.setRTSCTSFlowControlEnable(@, true);
} catch (UnsupportedCommOperationException usce) {
// Won’t happen on serial@
}

try {
sp.addEventListener(this);
sp.notifyOnCTS(true);
} catch (TooManyListenersException tmle) {}
}

public void serialEvent(SerialPortEvent event) {
switch (event.getEventType()) {
case SerialPortEvent.CTS:
System.out.println("CTS change, new value="+
event.getNewValue());

break;
default:
}
}
public static void main(String[] args) {
try {
CTSMonitor cm = new CTSMonitor();
try {

Thread.sleep(Long.MAX_VALUE) ;
} catch (InterruptedException ie) {}
} catch (Exception e) {
System.out.println(e.getMessage());
e.printStackTrace();

During constructiorcTSMonitor creates and opensSarialPort object that
encapsulateserialo. It then adds itself as an event listener and requests notif
tion for CTS change events. After ttiEsSMoni tor object is created, the primordia
thread puts itself to sleep for an almost infinite amount of time because the
notifications are generated by a daemon thread. If we were to allow the primc
thread to terminate by falling out of thein method, the event notification dae

mon would also exit and the application would terminate.

TINI’s Serial Ports 67

From this point forward the application just waits for notification of a change
in the state of the serial port's CTS line. We can test the application using tl
BlackBox utility and the null modem configuration shown in Figure 3.2. The null
modem swaps, among other things, RTS and CTS. So by toggling RTS from t
BlackBox utility, we can generate transitions on the CTS pin of the TINI seria
port. When th@1ackBox utility starts, RTS is asserted (high in this case), and CTS
on the TINI serial port should also be asserted. Toggling RTS fromTtiekBox
will produce an event of typeerialPortEvent.CTS. InvokinggetNewvalue on the
SerialPortEvent Object will returnfalse, indicating that CTS has been de-
asserted.

In Chapter 7 we'll use the comm API to control an analog phone line model
with a serial interface. It takes advantage of much of the functionality describe
here including carrier detect (CD) change notification to provide asynchrono
notification that the modem has lost the carrier signal (that is, the modem conn
tion has been lost).

3.3 TINI'S SERIAL PORTS

This section covers details that are specific to TINI's serial port hardware ar
drivers. Limitations and configuration options for each port are described. If yot
application requires only one serial port, then it can likely use the default seri
port (seriale) without worrying about many of the following details. However, if
your application targets unusual serial devices or requires the use of multiy
serial ports, you should read this section.

As mentioned earlier, the TINI runtime environment supports up to four seri
ports. The serial ports are designadeelialo throughserial3. The UARTs used
by serialo andseriall are integrated within TINI's microcontroller. For this rea-
son they are termed “internal” serial ports. The UARTs usedebyal2 and
serial3 require a dedicated external dual-UARIhip. These are referred to as
“external” serial ports. Becauserialo andseriall use internal UARTS, they
are more efficient. The internal serial port drivers don't have to do nearly as mu
work to load or unload data from the UART. However, the internal serial ports a
somewhat limited in terms of configuration options. The serial character config
rations supported bseriale andseriall are the following.

» 8 data bits, 1 stop bit, no parity (default)

« 8 data bits, 1 stop bit, with parity (odd/even only)
» 7 data bits, 2 stop, no parity

» 7 data bits, 1 stop, with parity (odd/even only)

5. See the E10 socket schematic for details.

68 Chapter 3 Serial Communication

Configurations that use only 5 or 6 data bits or 1.5 stop bits are impossit
using the internal ports. However, this is seldom of practical concern. The op
listed allow the internal ports to communicate with most common serial devi
The external serial ports support all configurations that can be achieved usir
comm API with the exception of XON/XOFF flow control.

Both internal ports support XON/XOFF flow control. A single set of hardw:
handshake lines is shared between the internal ports. This implies that only on
at a time can be used with RTS/CTS flow control. By defaultaie does not own
the hardware handshake signals. This default can be changed using the n
setRTSCTSFlowControlEnable defined in classom.dalsemi.system.TINIOS.

public static boolean setRTSCTSFlowControlEnable(int portNumber,
boolean enable)
throws UnsupportedCommOperationException

The port number must specify one of the internal serial ports (0 or 1]
enable is true, the hardware handshake signals will be dedicated for use as |
ware handshake signals for the specified serial paiabfie is false, the signals
are released to be used with w.dalsemi.system.BitPort (See Chapter 9)
class as general purpose TTL I/O.

There are a couple of additional points to keep in mind when gsitig11.
First, seriall is by default dedicated to the task of communicating with t
external 1-Wire line driver. If your TINI hardware implementation does r
require (or support) the use of the external 1-Wire adapéetall can be
reclaimed for use with a general purpose serial port. To ovesdeiall’s
default usage, an application must invoke #mbleSerialPortl method
defined in therInTos class?

public static final void enableSerialPortl()

This option persists across system boots. The other thing to keep in n
with respect taeriall, is that it does not support any data rates below 2400
This is seldom of practical concern when communicating with modern se
devices.

The external serial ports must also be enabled using the mel
setExternalSerialPortEnable in ClasSTINIOS.

public static void setExternalSerialPortEnable(int portNum, boolean enable)

6. If you're usingseriall on a TBM390, you will also need to disable the DS2480
1-Wire driver. This is accomplished by grounding EN@480 signal (pin 26 of the
SIMM connector).

A Small Terminal Example 69

The port number must specify one of the external ports (2 or 3gn#le
value oftrue enables the use of external serial drivers. The settings established
setExternalSerialPortEnable persist across system boots.

The external serial drivers allow flexibility where the external UART
hardware is mapped into TINI's memory space. The default base address for
external UART is 0x380020. This method can be overridden using th
setExternalSerialPortAddress method inTINIOS.

public static void setExternalSerialPortAddress(int portNum, int address)

The port number must specify one of the external ports (2 or 3). The addre
refers to the base (or lowest) address consumed in the memory map. The sett
established byetExternalSerialPortAddress persist across reboots.

There is one final tidbit to keep in mind when developing applications the
control serial devices. When TINI boots, it transmits progress messages
seriale at the data rate of 115,200 bps. This can cause confusion for certe
embedded serial devices because the data is unsolicited and is transmitted
speed that may be different from the speed for which the device is configured
receive data. Applications can disable boot progress messages using
setSerialBootMessageState method in clas$INIOS.

public static final void setSerialBootMessagesState(boolean on)

The serial boot message state is also persistent across system boots. If slu
involved, the line §etenv SerialServer enable” should be removed from the
.startup file. This will prevent slush from chattering oweiriale.

3.4 A SMALL TERMINAL EXAMPLE

A serial terminal program provides a reasonably small example that ties togett
much of the functionality provided by the communications APIl. TheéiTerm
program presented in this section reads characters from the cazaken (in)
and writes the same characters to a serial port. Data flow in the other directior
supported as well. All characters received on the serial port are written to the cc
sole Eystem.out).

TiniTerm's constructor and main method are shown in Listing 3.3. The bau
rate must be specified on the command line.mehe method simply creates and
starts a new thread that blocks waiting for console input.

Listing 3.3 TiniTerm

class TiniTerm extends Thread implements SerialPortEventListener {

70 Chapter 3 Serial Communication

private SerialPort sp;
private InputStream sin;
private OutputStream sout;

private TiniTerm(String portName, int baudRate)
throws NoSuchPortException,
PortrtInUseException,
UnsupportedCommOperationException,
IOException {

try {
// Create SerialPort object for specified port
sp = (SerialPort)
CommPortIdentifier.getPortIdentifier(portName).open(

"TiniTerm", 5000);

// Configure port for 8 databits, 1 stop bit and no parity
// checks
sp.setSerialPortParams(baudRate, SerialPort.DATABITS_S,
SerialPort.STOPBITS_1,
SerialPort.PARITY_NONE);

// Get input and output streams for serial data I/0
sin = sp.getInputStream();
sout = sp.getOutputStream();
} catch (NoSuchPortException nsp) {
System.out.printIn("Specified serial port ("+portName+
") does not exist");
throw nsp;
} catch (PortInUseException piu) {
System.out.printin("Serial port "+portName+
" in use by another application");

throw piu;

} catch (UnsupportedCommOperationException usc) {
System.out.printin("Unable to configure port:"+portName);
throw usc;

} catch (IOException joe) {

System.out.printin(
"Unable to acquire I/0 streams for port
throw ioe;

+ portName);

public static void main(String[] args) {
if (args.length != 1) {
System.out.println("Usage: java TiniTerm.tini data_rate");
System.exit(l);
}

try {
TiniTerm term = new TiniTerm("serialQ",
Integer.parseInt(args[0]));
term.start();

A Small Terminal Example 71

} catch (Exception e) {
System.out.println(e.getMessage());
e.printStackTrace(Q);

The getCommPortIdentifier method of classommPortIdentifier is used to
obtain acommPort object representing the port specified by name to the constructc
The CommPort object is immediately cast assarialPort object. The resulting
serial port object is then initialized to transmit and receive data at the rate specif
on the command line. The serial characters will contain 8 data bits and 1 stop |
All parity checking is disabled. Finally, the constructor invokegét@nputStream
and getOutputStream methods on theerialPort object to acquire streams for
receiving data from and transmitting data to the underlying serial port.

For the purpose of illustratiom;iniTerm’s constructor catches each checked
exception that can be thrown during initialization and displays an appropria
error message. The following are exceptions from the preceding catch bloc
along with a likely culprit.

* PortInUseException. The port specified is being used by another applica:
tion.

* NoSuchPortException. This exception won't actually be thrown in this
example because it specifieseriala as a hard-coded value.
NoSuchPortException is thrown if an invalid port name, such as “serial5”
or “Serial0,” is specified.

* UnsupportedCommOperationException. An unsupported baud rate was
specified.

Listing 3.4 TiniTerm’s run method

public void run() {
// Return from read as soon as any bytes are available
// (i.e. don’t wait for Tine termination)
((SystemInputStream) System.in).setRawMode(true);

while (true) {

try {
byte b = (byte) System.in.read();
if (b == (byte) ’~’)

break;

// Send the byte out the serial port
sout.write(b);

} catch (IOException ioe) {
ioe.printStackTrace(Q);

}

72 Chapter 3 Serial Communication

By default on TINI, ePrintStream's read method will block until a line sepa-
rator has been received. In general this behavior varies from platform to platf
Win32 platforms perform the same buffering as TINI. However, in Linux tl
behavior depends on how the shell that launches the application is configure
a terminal application it is nicer to havead return as soon as a character is ava
able so that it can immediately be transmitted to the remote terminal and echc
the console. When an application is launched from slush, it inhesitstam.in
that extends the clasystemInputStream. SystemInputStream iS defined in the
com.dalsemi.shell.server package. It provides thetRawMode method to over-
ride the defaulteadLine type behavior. In Listing 3.4 on the previous page, t
first thing therun method does is casystem.in t0 aSystemInputStream and set
its mode to “raw,” using theetRawMode method, so that the terminal applicatio
behaves as we would expect. If you comment out the statement that iswekes
RawMode, TiniTerm should run on any Java platform for which an implementati
of the communications API exists. However, you may have to hit <ENTER> be
the data you type is transmitted to the remote terminal or echoed to the consc

Next, therun method enters an infinite loop that blocks waiting for input «
System.in. It reads a byte at a time and echoes it to the serial port. The
escape from theun method is to type the tilde (~) character at the prompt. Typi
the tilde character should cause the read thread to terminate, and the appli
should exit gracefully.

TiniTerm implementsSerialPortEventListener, Which means it must pro-
vide an implementation for thearialEvent (Listing 3.5) method. In this case, we
requested notification whenever data is received on the seriakgoid]Event
invokes thegetEventType method on theserialPortEvent oObject. If it is a
DATA_AVAILABLE event, the serial porhputStream’s available method is queried
to determine how many bytes can be read without blocking. Since we recei
DATA_AVAILABLE event, the number of bytes available should be at least 1. If
delay between when the first byte of data was received and when we read th
is high enough, it is possible that multiple characters will be in the serial rec
buffer. In this example, the bottleneck is the speed at which a human can
characters from a keyboard, so we’'d expect to always read just one byte. Re
less, all characters received from the serial port input stream are read fror
input stream attached to the serial port and immediately written to the systern
put stream. Any events other thetTA_AVAILABLE are ignored.

Listing 3.5 serialEvent

public void serialEvent(SerialPortEvent ev) {
switch (ev.getEventType()) {
case SerialPortEvent.DATA_AVAILABLE:

A Small Terminal Example 73

try {
int count = sin.available();
if (count > 0) {
byte[] buf = new byte[count];
count = sin.read(buf, 0, count);
System.out.write(buf, @, count);

}

} catch (IOException ioe) {
// Drain it

}

break;

default:
// Ignoring any unexpected events
break;

We can testTiniTerm using BlackBox and the null modem configuration
shown in Figure 3.281ackBox allows the user to select all necessary parameter
to communicate with the terminal program. For our purposes select the followir
settings.

e Data bits: 8
e Stop bits: 1
» Parity: none
e Data rate: 115,200

Assuming that the data rate selectedlisxckBox is 115,200 bps, you can start
TiniTerm in your Telnet session using a command similar to the following.

TINI /> java TiniTerm.tini 115200

Notice that the application is launched as a foreground process (that is,
“&" at the end of the command). This is important because background process
cannot read fromdystem.in. For background processeagstem.in is fed from a
com.dalsemi.comm.NullInputStream. This allows the Telnet session itself to con-
tinue to process characters typed at the prompt, while other processes run in
background. In this case, we want the applicationj Term, to process all con-
sole input.

If the B1ackBox settings and serial cable are correct, you should be able 1
type data at the Telnet prompt and see the characters echoed at both the Te
prompt and th@lackBox receive window. You should also be able to type charac:
ters in theBlackBox transmit window and see them written to the Telnet prompt.

74 Chapter 3 Serial Communication

3.5 ASERIAL = ETHERNET CONVERTER

Although it may not be obvious, we actually implemented a simple seria
Ethernet converter in the last section. Wheti Term is run, it takes console input
System.in, which was most likely receiving data typed from a Telnet session.
characters typed at the Telnet prompt ultimately wind up as network data trav
over a TCP connection. In this section we’ll do a more formal job of makin
bridge between a serial device and another host on an Ethernet network. Tt
difference is that the example presented in this secti@fialToEthernet, IS
designed for communication with serial devices that transfer potentially I
amounts of information with very little delay between characters. This is
opposed tainiTerm that only needed to perform well enough to keep up witt
human typist. The main difference is the need to move large buffers, in the for
byte arrays, in single, relatively few I/O operations. The need for fast, full-duy
I/0 over both the serial and network connections will lead to an application wi
different structure that configures and uses the serial port in a much different
ion thanTiniTerm.

The serialToEthernet application reads data from an attached serial dev
and writes it to a network server. Data received from the same network sen
transmitted to the serial device. Potentially network and serial data are traveli
both directions simultaneously, as shown in Figure 3.4.

TINI

Serial Device " | serialo eth0 Server

l

eth0: Ethernet Network Interface

Figure 3.4 Serial to Ethernet bridge data flow

SerialToEthernet’s main method extracts the network server name, ser
port, and serial port data rate from the command line and passes them to th
structor (shown in Listing 3.6). The constructor opestsale and configures the
port for operation at 8 data bits, 1 stop bit, and no parity. The baud rate is set
speed passed to the constructor. Since both serial and network I/O are pote
full duplex, the serial port flow control mode is set for RTS/CTS flow contt
This will protect the serial receive buffers of both TINI and the attached de
from overflow under a potentially heavy load. Next, the constructor acquire:
InputStream and aroutputStream for reading from and writing to the serial port

A Serial = Ethernet Converter 75

Listing 3.6 SerialToEthernet

class SerialToEthernet extends Thread {
// Use a 1K buffer for serial data receive
private static final int INPUT_BUF_LEN = 1024;

// Serial port and associated streams
private SerialPort sp;

private InputStream spin;

private OutputStream spout;

// Socket and associated streams
private Socket s;

private InputStream sin;

private OutputStream sout;

private SerialToEthernet(String server, int port, int speed)
throws Exception {

// Create and initialize serial port
sp = (SerialPort)
CommPortIdentifier.getPortIdentifier("serial0").open(
"SerialToEthernet", 5000);

// Enable the use of hardware handshake 1lines for serial@
TINIOS.setRTSCTSFlowControlEnable(@, true);

// 8 data bits, 1 stop bit, no parity
sp.setSerialPortParams(speed, SerialPort.DATABITS_8,

SerialPort.STOPBITS_1,
SerialPort.PARITY_NONE);

// Require RTS/CTS flow control from both serial channel

// endpoints

sp.setFlowControlMode(SerialPort.FLOWCONTROL_RTSCTS_IN |
SerialPort.FLOWCONTROL_RTSCTS_OUT);

// Initialize serial port input and output streams
spin = sp.getInputStream();

spout = sp.getOutputStream();

// Set a 100 millisecond receive timeout
sp.enableReceiveTimeout(100);

// Set the receive threshold equal to buffer Tength
sp.enableReceiveThreshold (INPUT_BUF_LEN);

// Connect to network server
s = new Socket(server, port);
sin = s.getInputStream();
sout = s.getOutputStream();

// Create and Taunch Serial -> Ethernet thread

(new Thread(new SerialReader(this, INPUT_BUF_LEN))).start();
// Create and Taunch Ethernet -> Serial thread

(new Thread(new SerialWriter(this))).start();

76 Chapter 3 Serial Communication

// Launch maintenance thread
super.start();

A receive time-out of 100 milliseconds and a receive threshold equal to
length of the serial port receive buffer are set to allow fairly large blocks of dat
be read in an efficient fashion from the input stream attached to the serial
After finishing the serial port configuration, a connection is established with
network server, and input and output streams are obtained for data transfer t
from the server.

Finally the constructor starts three new threads of execution. Their tasks ¢
follows.

1. SerialReaderReads from the serial port, writes to the socket
2. SerialWriter Reads from the socket, writes to the serial port
3. SerialToEthernetProvides periodic statistical updates

The run method of the maintenance thread is shown in Listing 3.7. It wri
the total number of bytes received from the serial port and the total numb
bytes received from the network to the conseiefem.out) and sleeps for about
a minute. This process is repeated as long@sing is true. The cumulative byte
counts are maintained by tlserialReader andsSerialWwriter threads. Both of
the aforementioned threads keep a reference to the maintenance threac
java.io.IOException OCCUrS in or the network connection is closed by the rem
server, the thread (eitheérialReader Or SerialWriter) that detected the prob-
lem sets theunning boolean tcfalse and interrupts the maintenance thread. Tl
maintenance thread then falls out of the while loop and closes the serial
socket, and all associated streams.

Listing 3.7 run

private volatile boolean running = true;
private int serialTotal = 0;
private int networkTotal = 0;

public void run() {
while (running) {
try {
Thread.s1eep(60000) ;
} catch (InterruptedException ie) {}
System.out.printin("Bytes received from serial:"+serialTotal);
System.out.println("Bytes received from network:"+networkTotal);

A Serial = Ethernet Converter 77

try {
// Close serial port and associated streams

// Close socket and associated streams

} catch (IOException e) {}

SerialToEthernet contains two inner classesSerialReader and
SerialWriter. Each implement theunnable interface so that they can each run
as separate threads of execution. This prevents either of the threads from hay
to block while the other is performing serial or network data transfer. This helf
achieve the goal of high-speed, full-duplex I/O.

The inner classerialReader, shown in Listing 3.8, creates a byte array of the
specified size that serves as a reusable buffer for serial receive data. The
method enters a loop that reads data available from the serial potitStream
and immediately writes that data to the sock@tigutStream.

In SerialToEthernet’s constructor, we set a serial port read time-out of 100
milliseconds and a receive threshold equal to the length of the serial receive d
buffer length (1024 bytes in this case). The number of bytes read (that is, the va
of count) from the serial port'SnputStream will be the minimum of the number
of bytes received and the length of the input buffer.

e count = min(serial bytes received, serBuf.length)

At slower speeds thead method should not return due to receiving the num-
ber of bytes specified by the threshold value. For example, if the baud rate is se
9600 bps, we'd expect to receive about 1 serial character (d) byty millisec-
ond® assuming that the attached serial device is continuously transmitting. In tt
case, we would expect thead method to return after the 100 millisecond time-
out has expired with approximately 100 bytes of receive data copied to the st
plied byte array. At the highest supported baud rate of 115,200 bps, we'd rece
about 12 serial characters per millisecond (9600 bps * 12 = 115,200 bps). Aga
assuming that the attached serial device is transmitting continuously, the numi
of bytes received in the 100 ms time-out window—approximately 1200—is large
thanserBuf. In this caseread will return after the receive threshold of 1024 bytes

7. We're reasonably safe in referring to the received serial characters as bytes because
the port is configured for 8 data bits.

8. With 8 data bits, 1 stop bit, and the mandatory start bit result in 10 bits received on the
wire for every 8 bits of data. At 9600 bps, 1 bit is received every 104 microseconds.
This results in a total time of 1040 microseconds (or 1.04 milliseconds) per byte of
serial data.

78 Chapter 3 Serial Communication

is reached. We would expect to hit the receive threshold in less than the 1C
time-out window.

Listing 3.8 SerialReader

private class SerialReader implements Runnable {
private byte[] serBuf;
private Thread maint;

private SerialReader(Thread maint, int size) {
serBuf = new byte[size];
this.maint = maint;

}

public void run() {
while (running) {
try {
// Read all available data in serial input buffer
int count = spin.read(serBuf, @, serBuf.length);
if (count > 0) {
// Blast serial data to network server
sout.write(serBuf, @, count);
serialTotal += count;
}
} catch (IOException ioe) {
// Trouble communicating with server
System.out.printin(ioe.getMessage());
ioe.printStackTrace();
running = false;
maint.interrupt();
break;

The inner classerialwriter is shown in Listing 3.9SerialWriter’s run
method enters a loop that reads data available on the sonketistream and
immediately writes the data to the serial postisputStream. It also maintains a
single 1024-byte buffer that is (re)used for moving data from the socket to
serial port.

SerialWriter’s job is just a bit less complicated than thas@fialReader as
it doesn’t need to be concerned with receive time-outs and thresholds. A tim
could be set for reads from the sock&tgutStream, but in this example, it sim-
ply blocks until 1 or more bytes of data are available and returns the minimul
the data available and the buffer length. If the remote server closes the nei
connection, the socketBiputStream read method returns —1. When this occur:
running iS set tofalse and the maintenance thread is interrupted. This will ca

A Serial = Ethernet Converter 79

all three threads to eventually fall out of theih methods, and the application
will terminate.

Listing 3.9 SerialWriter

private class SerialWriter implements Runnable {
private byte[] ethBuf = new byte[1024];
private Thread maint;

private SerialWriter(Thread maint) {
this.maint = maint;

}

public void run() {
int count = 0;
while (running) {
try {
// Read all available data from network server
count = sin.read(ethBuf, 0, ethBuf.length);
if (count > 0) {
// Write data received from network out serial port
spout.write(ethBuf, 0, count);
networkTotal += count;
} else if (count == -1) {
running = false;
maint.interrupt(Q);

} catch (IOException ioe) {
System.out.println(ioe.getMessage());
ioe.printStackTrace();
running = false;
maint.interrupt(Q;
break;

For this application we wanted to move relatively large amounts of dat
between the serial port and the network. If we only moved a byte (or even a f
bytes) at a time, the CPU would be consumed, performing relatively heavyweig
context switches moving back and forth from Java to the native OS. This wou
dramatically reduce the overall throughput. For this reason, a large receive thre
old and buffer size were chosen for serial input. Moving large buffers prorates t
overhead of the expensive context switches mentioned previously. Another way
possibly increase the overall throughput is to provide a large buffer for the drivel
receive buffer, using thetInputBufferSize method described in Section 3.2.3.
If the driver maintains a large receive buffer, it gives the application more time
service the buffer before the driver must tell the attached serial device to st

80 Chapter 3 Serial Communication

transmitting. Ideally, how large to make the receive time-out, threshold, anc
driver’s serial input buffer should be computed as a function of the serial data
and an estimate of the CPU load imposed by any other tasks your applicatior
be performing.

In the event that th&rialReader thread is unable, due to other system acti
ity, to unload the serial receive data fast enough, the serial driver’s receive k&
is protected by the use of RTS/CTS flow control. On the networking side of th
we don’t need to worry at all about the flow control. It's automatically handled
the fact that we're using socket. A Socket (as opposed to BatagramSocket)
encapsulates a TCP connection. TCP provides built-in flow control.

To testSerialToEthernet, theBlackBox utility was used to simulate the seria
device shown in Figure 3.4. When selected, its “auto transmit” mode will cont
ously transmit data at the specified rate. Its receive window shows the contin
stream of data that is received simultaneously. For testing the network portic
the application, an echo ser¥avas used. With this particular test configuratio
all bytes originate from thelackBox transmitter and terminate at tB&ackBox
receiver.

9. The source for thechoServer application wasn't shown here, but it, along with all of
the source tgerialToEthernet, is included in the accompanying CD.

wvs THe 1-Wire Net

Many of the gadgets that you might want to interface to TINI such as camer:
vending machines, lab equipment, and so forth are electronic and have the buil
capability to communicate with the outside world. Perhaps they are stand-alo
devices with some type of serial or parallel port. These are usually “smar
devices endowed with their own processor that manages the underlying physi
port used to communicate with other electronic devices. What about all the ott
things that lack the ability to communicate with the outside world—for example
an appliance such as a light, dishwasher, or heater? Or maybe you're trying
gather information about something that isn’'t even a physical device—the en\
ronment in a remote-climate-controlled room, for example.

1-Wire chips provide network connectivity to otherwise mute entities. The vau
ious families of 1-Wire chips provide functionality ranging from object tagging for
the sole purpose of identification to sensing environmental conditions such as te
perature and humidity and scale all the way to secure cryptographic processors
run JavaCard and provide an authentic digital identity. Once 1-Wire chips a
attached to an object, it becomes capable of joining a 1-Wire network. Once t
object is a part of a 1-Wire network, TINI provides the bridge to the Interner
allowing it to be monitored and controlled by something as common and easy
use as a Web browser.

This chapter begins with a brief introduction to 1-Wire networking. The
introduction defines the notion of a 1-Wire network and describes the low-lev
communication protocols. The introduction is intended to present only the co

81

82 Chapter 4 The 1-Wire Net

concepts and terminology necessary to describe and illustrate the use of T
1-Wire API. An in-depth treatment of 1-Wire networking is beyond the scope
this book! The rest of the chapter provides a detailed description of the 1-V
API and examines adapters and containers, the classes that represent the
how they are used to monitor and control devices on a 1-Wire network. E
though all of the examples presented in this chapter were tested on TII
should be mentioned that the 1-Wire API is also supported on several other
platforms as welf.

4.1 1-WIRE NETWORKING FUNDAMENTALS

A 1-Wire network is a collection of one or more uniquely addressable devices
share a single conductor for communication and power. The single conduc
often referred to as a bus. The 1-Wire devices attached to the bus are a
slaves. This implies the existence of a master that initiates all communication
the devices.

4.1.1 1-Wire Signalling

The extremely simple hardware configuration of a 1-Wire network is showi
Figure 4.1.

Veup
1-Wire master
2.2 KOhm (Typ.)
Rx r _ _C
< =
TX4|
1-Wire chip (slave) 1-Wire chip (slave)
[I: Rx [l: Rx
TX TX
Rx = Receive SUA 100 Ohm 5UA 100 Ohm
Tx = Transmit Typ. MOSFET Typ. MOSFET

Figure 4.1 1-Wire network hardware configuration

1. A thorough treatment of 1-Wire networking is providebtgs://www.ibutton.com/
ibuttons/standard.pdf.

2. Details on platform support for the Java 1-Wire API can be found at
http://www.ibutton.com/software/1wire/1wire_api.html.

1-Wire Networking Fundamentals 83

1-Wire devices are open drain driven and can therefore only drive the bus lo
The devices rely on either an external pull-up resistor on the master end of the |
or a pull-up resistor integrated into a dedicated master chip to return the bus t
high state. In normal operating conditions the bus is not even driven high by t
master. There are, however, circumstances when a properly configured master
actively drive the line high for very brief durations to aid communication ove
long line lengths.

Most 1-Wire devices can communicate at two different sﬁ’eeeig;ular speed
and overdrive speed. If not explicitly set into the overdrive speed, devices w
communicate at regular speed. Regular speed results in a maximum data rat
16.3 kilobits per second, while overdrive speed results in a maximum data rate
144 kilobits per second. The characteristics of the waveforms at the two differe
speeds are the same except for the duration.

There are four distinct signals (or waveforms) generated by the master on 1
1-Wire bus.

Reset sequence
Write O

Write 1

Read data

PonNE

The reset sequence is used to return all devices on the bus to a known ini
state. It consists of a master generated reset pulse followed by a device gener
presence pulse. The master transmits a reset pulse by driving the bus low fc
minimum 480 pus at regular speed or 48 ps at overdrive speed. The master t
releases the bus and goes into receive mode. The bus is pulled to a high state
the pull-up resistor. After detecting the rising edge on the bus, the devices wait
to 60 us at regular speed or 2 to 6 us at overdrive speed and then transmit the |
ence pulse by driving the bus low for a time of 60 to 240 us at regular speed o
to 24 us at overdrive speed. A reset pulse of 480 ps or longer will return al
devices communicating at overdrive speed to regular speed.

The read and write data signals are known as time slots. All time slots are ini
ated by the master driving the bus low for at least 1 ps. The falling edge of the d
line synchronizes the slave devices to the master. Each slave device employ
delay circuit that is triggered by this falling edge. During write time slots, the dela
circuit determines when the devices will sample the bus. For a read data time s
if a 0 is to be transmitted, the delay circuit determines how long the devices w
hold the data line low overriding the 1 generated by the master. If the data bit is ¢
the device will leave the read data time slot unchanged. An important point to ma

3. Some of the older 1-Wire devices are only capable of communication at regular
speeds. Supported speeds for any device are specified in that device’s data sheet.

84 Chapter 4 The 1-Wire Net

here is that any device that transmits a O in response to a master initiated rea
slot will override or hide any 1 transmitted by any other device. Since lows (loc
0s) are actively driven and highs (logical 1s) are soft due to the relatively large
up resistor between the bus and power, Os win any contention. This point is in
tant in understanding the address discovery process described in Section 4.1.

Note that the master samples the 1-Wire line whether it is transmittin
receiving. This means that the application receives the data it transmits. Thit
can be used by an application as a quick check to ensure that the data it tra
ted was not altered by errors such as a momentary short of the 1-Wire lit
ground. We'll put this to the test in Listing 4.6. This quick check, however, d
not obviate the need to protect 1-Wire data using CRCs (cyclic redund:
checks) as described in Section 4.5.

4.1.2 1-Wire Transactions

A complete communication with a 1-Wire device is called a transaction. A tre
action is divided into 3 phases.

1. Initialization
2. Addressing
3. Data exchange

The initialization phase consists of the bus master transmitting a reset p
After receiving the reset pulse, all attached devices generate a presence pu
this point the master knows that at least one device is attached to the bus. Aft
initialization phase all devices are in a reset state waiting for the master to t
mit one of the address layer commands.

Typically, during the addressing phase, a specific device is targeted by bl
casting its entire 64-bit address. This causes all but the addressed device to
off the bus” by transitioning to a high-impedance idle state waiting for the ma
to begin a new transaction. The device whose address was broadcast is “sels
The 1-Wire addressing commands and the addressing phase is covered in
detail in Section 4.1.3.

After a device has been selected, it is ready to receive device-specific
mands that allow access to the services it provides. Different devices have c
ent capabilities. The details of special function commands and assoc
protocols and data specific to a device family are described in a data sheet a
ated with the particular device. Most application software doesn’t need to w
about these details because the 1-Wire API hides them through an abstr:
called a container, described in Section 4.4. However, applications with strict
formance requirements may wish to communicate directly with the device.

1-Wire Networking Fundamentals 85

Table 4.1 details a complete 1-Wire transaction for performing a temperatu
conversion using a DS18S20 temperature sensor.

Table 4.1 Perform temperature conversion

Master Data Comments

Transmit Reset Reset all 1-Wire devices

Receive Presence pulse All devices announce their presence on
the bus

Transmit Address match (0x55) Devices wait for an address to be broad
cast

Transmit DS18S20’s address All other devices idle

Transmit Convert temperature com- Send special function command

mand (0x44)

N/A None Master leaves bus high for ~.75s to
provide power for conversion

After the DS18S20 has finished with the temperature conversion, a seco
transaction is required to read the result. This transaction is detailed in Table 4
Note that both transactions begin with a reset followed by device selection usi
the DS18S20’s address. This is true of almost all 1-Wire transactions.

Table 4.2 Read temperature conversion results

Master Data Comments

Transmit Reset Reset all 1-Wire devices

Receive Presence pulse All devices announce their presence on
the bus

Transmit Address match (0x55) Devices wait for an address to be broad-
cast

Transmit DS18S20’s address All other devices idle

Transmit Read scratchpad commandResults of conversion are stored in the

(Oxbe) scratchpad

Receive Scratchpad data Read the temperature data

86 Chapter 4 The 1-Wire Net

4.1.3 Addressing 1-Wire Chips

All 1-Wire devices contain a unique 64-bit address. This address consists of
distinct parts, as shown in Figure 4.2.

CRC Device Id Family

Figure 4.2 1-Wire address

The family code is used to determine the type (or family) of the 1-Wire dey
and therefore the services it provides. For example, the family id for the DS
Dual Addressable Switch is Oxf2After reading the 1-Wire address and extrac
ing the family id, the application knows it has discovered a switch with t
switched I/O channels and 128 bytes of EPROM. The Device id portion of
address can be viewed simply as a large number used to ensure uniquene:s
CRC (Cyclic Redundancy Check) byte is used to ensure the integrity of bott
family and device id. The use of CRCs to protect the address as well as othe
is covered in detail in Section 4.5.

There are two methods by which 1-Wire devices are addressed.

» Device discovery
» Device selection

When an application that uses a 1-Wire network is started, it doesn't nee
know the number, types, or addresses of the attached devices. Device disco
also referred to as an address search and allows the master to use a process
ination to discover the addresses of all the devices on the network. Once the
knows a device’s address, its type and therefore the services it provides are
attained by examination of the family id portion of the address. Device selectic
also called an address match and is used to select a specific device giv
address. After the host application has “discovered” the addresses of all c
devices on the network, it uses the selection process to initiate further 1-
transactions targeted at a specific device. Let's consider device discovery
device selection in more detail.

For the following discussion it is helpful to represent a 1-Wire address, A
an “array of bits.” The array has 64 elements labelgtoAAg3, where A is the
Oth element of the array and least significant bit of the address. It is also use
imagine that both the master and all 1-Wire chips maintain an iteration vari

4. Alist of all device types and associated family ids can be found onlinktijs2e
www.dalsemi.com/products/autoinfo/families.html

1-Wire Networking Fundamentals 87

(call it i, whereo<i<63) that represents the position within the address durin
the search process.

The process of device (or address) discovery begins with the master transr
ting a reset followed by the “search address” command byte (0xf0). The devi
discovery process continues with the iterative execution of the following three
step sequence: read a bit (R0), read the complement of the bit (R1), write
acknowledgment bit (W). Each iteration of this sequence produces one bit of
device address. The address bits are discovered in little-endian fashion, start
with the least significant bit & This sequence is performed for each bit of the
address and terminates after bigAas been discovered. After one complete pass
the host application knows the complete 64-bit address of one device. The reme
ing number of devices and their addresses are discovered by additional pas
This implies that a full discovery of every 1-Wire chip on the bus is a process th
is linear in time.

Now let's consider the three-step sequence and how it is used to discover
i bit of a device address A When the master initiates the Rthd R} time
slots, all devices respond with; And the bit complement of;Arespectively.
When the master transmits the acknowledgment hit, @sch device compares it
to A;. If both W and A have the same bit value, the device waits fqr R0ther-
wise the device transitions to the idle state, where it remains until the masi
transmits a reset. As this iterative process continues, all but one device “drop
the bus.” The address of the single device that remains “on the bus” for all 64 it
ations has been discovered. The magic lies with the master’s determination of
value of the acknowledgment bit;WThere are multiple algorithms a master can
use in determining Y\and the choice of algorithm determines the order in which
device addresses are discoveted.

One final important note about the discovery process is that after a pass of
search has completed, the device whose address was just discovered has also
“selected.” This implies that the device is ready to accept a “special functior
command, the next step in a 1-Wire device transaction.

Device selection is a more straightforward process that begins with the mas
transmitting a reset followed by the “match address” command byte (0x55). Aft
receiving the match address command, each device on the network initializes
address iterator to 0 and waits for the master to begin transmitting an addre
Let's denote the target device’s address as T with addresgtd@sTd;. The mas-
ter then begins transmitting the address T in a bit-serial fashion, startinggwith T
Each device compareg, To its Ay bit. Each device that has ap &qual to
increments its own address iterator to 1 and remains in a “listen” state waiting f
the master to transmit the next bit, All other devices transition to the idle state,

5. The algorithm used by the Java 1-Wire API is described iBdbk of iButton Stan-
dards (http://www.ibutton.com/ibuttons/standard.pdf

88 Chapter 4 The 1-Wire Net

awaiting a reset from the master. This process continues with the master trar
ting T4, T,, and so on, and completes when the master transmits the most si
cant bit of the target addresg;zTAfter the entire 64 bits of the address have be
transmitted, only the device with that exact address (A = T) remains “on the |
This device has been selected and is now ready to receive a special function
mand, continuing the 1-Wire transaction.

The addressing modes just described can be bypassed completely by usi
“skip address” or broadcast command (OxCC). The broadcast command c:
used when there is only one 1-Wire device attached to the bus. This is typi
considered bad practice because it precludes adding any more parts to the bu
out modifying the software that implements the lowest layer of the 1-Wire com
nication protocol. The skip address command can also be used when perforn
write only operation to many devices of the same family. This command can r
be used in an operation that involves reading data from multiple devices. Tt
due to the fact that the bus is open drain driven and each bit read by the n
would be the logical AND of the data transmitted simultaneously by all attac
devices. Because the use of “skip address” command is only applicable to
specialized circumstances, it is seldom used. All code examples that follow ir
chapter will use the discovery process to attain a device’s address. After the ac
is known to the application, it will use the selection process to begin every con
nication with that device. This avoids possible collisions with any other device:

4.1.4 1-Wire Chips and iButtons

Many 1-Wire applications present challenging packaging requirements. App
tions such as access control and tagging for inventory management require a
cally durable package. iButtons, 1-Wire chips packaged in 16mm diameter stai
steel micro-cans, were created to provide durable, roaming data carriers. \
every iButton contains a 1-Wire chip, not all 1-Wire chips are iButtons. Later in
chapter we introduce the notion of containers for 1-Wire devices. Containers
for every type of 1-Wire device without regard to form-factor or packaging.

4.2 ADAPTERS

The termport adaptey or more simplyadapter is used to refer to a 1-Wire mastel
Each 1-Wire network has exactly one master that is responsible for initiatine
network communication as well as delivering the power and programming pt
required by certain device families. The term adapter is used because 1-Wire
ters typically attach to another physical port—such as a serial, parallel, or
port—and perform a translation between the host port and the 1-Wire netwc
controls. At the lowest level adapters receive data from the port and transm
data in the form of time slots to the devices attached to the 1-Wire bus. Time

Adapters 89

simultaneously received on the 1-Wire bus are returned by the adapter to the F
port.

4.2.1 Finding and Creating Adapters

The com.dalsemi.onewire package is the root of the 1-Wire API hierarchy and is
purposefully very small and simple in design. This package contains only tw
classesDnewireAccessProvider andOneWireException. OneWireAccessProvider
provides the static methaghumerateAl1Adapters, which returns amnumeration
of all adapters registered with the operating system. Adapters are represented by
abstract clasBsPortAdapter, defined in theom.dalsemi.onewire.adapter pack-
age. The example in Listing 4.1 finds all of the adapters and displays their name:

Listing 4.1 FindAdapters

import java.util.Enumeration;
import com.dalsemi.onewire.OneWireAccessProvider;
import com.dalsemi.onewire.adapter.DSPortAdapter;

class FindAdapters {
public static void main(String[] args) {
Enumeration e = OneWireAccessProvider.enumerateAlTAdapters();
while (e.hasMoreElements()) {
System.out.println(
((DSPortAdapter) e.nextElement()).getAdapterName());

Running this application on TINI produces this output.

TINIExternalAdapter
TINIInternalAdapter

Both TINIExternalAdapter and TINIInternalAdapter are subclasses of
DSPortAdapter. If you know exactly the type and name of the adapter youl
application is using, you can instantiate the adapter directly. For example, the t
adapters found in Listing 4.1 usingeWi reAccessProvider.enumerateAllAdapters
could be created directly as shown in Listing 4.2.

Listing 4.2 CreateAdapters

import com.dalsemi.onewire.adapter.TINIInternalAdapter;
import com.dalsemi.onewire.adapter.TINIExternalAdapter;

class CreateAdapters {
public static void main(String[] args) {
TINIExternalAdapter external = new TINIExternalAdapter();

90 Chapter 4 The 1-Wire Net

TINIInternalAdapter internal = new TINIInternalAdapter();
System.out.println(external.getAdapterName());
System.out.printIn(internal.getAdapterName());

Running this application produces the same result as Listing 4.1.

Often applications know the name of the target adapter and use the ¢
method shown in Listing 4.2 to create an adapter instance. Once an adapt
been created, there is seldom any reason for an application to create add
adapter instances that reference the same physical port adapter. Adapter ¢
are typically instantiated during application initialization and remain in use for
lifetime of the application.

If the application simply needs to access one adapter on the system, it ce
theoneWwireAccessProvider.getDefaultAdapter method. This method returns at
instance of the underlying platforms default adapter. Which adapter is
“default adapter” is determined by one of the three following methods (in ol
of priority).

1. The adapter/port combination specified by the system property spec
by the “onewire.adapter.default” and “onewire.port.default” keys

2. The adapter/port combination specified in the “onewire.propertie8” file

3. A "best guess” default

On TINI the external adapter, representedTbyIExternalAdapter, is the
default adapter and the system property specified by the “onewire.adapter.de
key always exists. Therefore, there is seldom the need to create a “onewire.pl
ties” file. UsinggetDefaultAdapter leads to code that will run on other Java ple
forms as well as TINI.

4.2.2 The Internal Adapter

The internal adapter is so named because its physical interface is simply o
TINIs microcontroller’s port pins and therefore can never be omitted from .
hardware implementation. This adapter is used by the operating system d
the boot process to read the Ethernet address stored in the EPROM of tt
board 1-Wire chip. The number of attached devices and the line length drive
the internal adapter are limited by the electrical characteristics of the micro
troller port pin used by the adapter. The same port pin is shared by other s\
functions such as bit-bang serial output for system-level debugging and cor
ling the status LED. However, assuming TINI is loaded with non-debug firmw

6. If this file exists on TINI, it is contained in the “/etc” directory.

Adapters 91

and no applications are using the status LED, the internal adapter can be usec
controlling very small networks of 1-Wire devices.

4.2.3 The External Adapter

The external adapter uses a serial to 1-Wire conVettat is attached to the aux-
iliary serial port (seriall) of TINI's microcontroller. All TINI hardware designs
(including the TBM390) from Dallas Semiconductor include the external adapte
chip.

The external adapter is a full-featured port adapter capable of controlling
Wire networks that cover a large area and potentially have many attached devic
It is also capable of the power delivery required by many 1-Wire chips to perfor
special functions such as measuring temperatures and converting analog volts
and currents to digital outputs. Since the external adapter is far more capable, |
the one used for almost all TINI 1-Wire applications. Most of the examples in th
chapter will use the external adapter.

4.2.4 Determining an Adapter’s Capabilities

The previous section provided a description of the two 1-Wire adapters support
by TINI. This same information is encapsulated in an adapter instance and ¢
therefore be determined programmatically. The methods catwbverdrive,
canDeliverPower, and so on) defined DBPortAdapter return theboolean result
true if the underlying adapter has that particular ability.

Listing 4.3 AdapterFeatures

import com.dalsemi.onewire.adapter.TINIExternalAdapter;
import com.dalsemi.onewire.adapter.TINIInternalAdapter;
import com.dalsemi.onewire.OneWireException;

class AdapterFeatures {
public static void main(String[] args) {
try {
TINIInternalAdapter internal = new TINIInternalAdapter();
System.out.println("Internal Adapter:");

System.out.println(" Supports overdrive speeds - " +
internal.canOverdrive());
System.out.printin(" Supports flexible timing - " +

internal.canFlex());

TINIExternalAdapter external = new TINIExternalAdapter();
System.out.println("External Adapter:");
System.out.printin(" Supports overdrive speeds - " +

7. Specifically, TINI uses the DS2480b ($etp://www.dalsemi.com/datasheets/pdfs/
2480b.pdf as the 1-Wire line driver.

92 Chapter 4 The 1-Wire Net

external.canOverdrive());
System.out.printin(" Supports flexible timing - " +
external.canFlex());
} catch (OneWireException owe) {
System.out.println(owe.getMessage());
}

TheAdapterFeatures program, shown above in Listing 4.3, creates instant
of TINIInternalAdapter and TINIExternalAdapter and queries both for their
capabilities. RunningdapterFeatures produces the following output.

Internal Adapter:
Supports overdrive speeds - true
Supports flexible timing - false
External Adapter:
Supports overdrive speeds - true
Supports flexible timing - true

We see here that both adapters are capable of communications at ove
speeds, but only the external adapter is able to support the flexible timing r
used to communicate with 1-Wire chips over long line lengths.

4.2.5 Searching for 1-Wire Devices

One of the major roles served by an adapter is managing the address discove
search) process by which the address of every device attached to the netw
discovered. The super class of all adaptes®prtAdapter, contains several
methods used to configure and execute the discovery process. The m
getAl10neWireDevices returns ankEnumeration Of OneWireContainer objects
(containers are described in Section 4.4). Listing 4.4 uses
getA110neWireDevices method to obtain a “census” of all chips on the 1-Wi
network controlled by TINI's default (external) adapter.

Listing 4.4 Census

import java.util.Enumeration;

import com.dalsemi.onewire.OneWireAccessProvider;
import com.dalsemi.onewire.container.OneWireContainer;
import com.dalsemi.onewire.adapter.DSPortAdapter;
import com.dalsemi.onewire.OneWireException;

class Census {
public static void main(String[] args) {
try {
DSPortAdapter adapter =
OneWireAccessProvider.getDefaultAdapter();

Adapters 93

adapter.targetAllFamilies();
System.out.printin("1-Wire net addresses:");
Enumeration e = adapter.getAl1DeviceContainers();
while (e.hasMoreElements()) {
System.out.println(
((OneWireContainer)
e.nextElement()) .getAddressAsString());
}
} catch (OneWireException owe) {
owe.printStackTrace();

}

When executedgensus displays a string representation of every 1-Wire
address attached to the network by invokingdéddressAsString method on
eachoneWwireContainer object.

1-Wire net addresses:
F300000018A4BC12
8F00000018A37A12
AD00000018A51612
D600000018A37912
3D34C00000609F21

There are a total of five 1-Wire devices in this example configurdfour of
them have the family id of 0x12. These devices are all DS2406-addressal
switches. The device with family id 0x21 is DS1921 Thermocron iBu}biner-
mocrons log temperature over time for the purposes of generating time vers
temperature histograms. We'll be using this same network configuration for tt
next few examples. The important property of this configuration is that we ha
devices from different 1-Wire families on the same network.

Since our simple network consists of only five chips, it doesn't take long t
search the entire network. So, for example, if we're interested only in Therm
crons, it wouldn't be unthinkable to just get aumeration of all available
devices and slug through tReumeration looking for Thermocrons. However, if
the network contained tens or even hundreds of devices, this approach would
far too cumbersome. For this reaspsfRortAdapter defines several methods that
allow the targeting or exclusion of certain families. These methods great
improve the efficiency with which an application can identify devices of interest.

8. The specific test configuration used here is the Systronix 8x1-Wire Digital I/O board
with the Thermocron inserted into the iButton clip. 8&p://www.systronix.com/
expansion/8x1wire/81w.htfor details on the 8x1-Wire Digital I/0O board.

9. More detailed information on the Thermocron iButton can be foulmitipat/
www.dalsemi.com/datasheets/pdfs/1921.pdf

94 Chapter 4 The 1-Wire Net

public void targetFamily(int familyID);
public void targetFamily(byte[] familyID);
public void excludeFamily(int familyID);
public void excludeFamily(byte[] familyID);

The targetFamily methods allow an application to specify exactly whic
device families it is interested in. The searches that follow will return o
devices in the specified families. So, for example, if a program is only intere
in discovering the switches currently attached to the network, it would inv
targetFamily specifying a value of 0x12 for tHfami1yID parameter.

Using thetargetFamily method, we can create a smarter versione6fus
that finds only devices of a specified family. Listing 4.5 takes the family id
vided on the command line and passes that valuertetFamily.

Listing 4.5 FamilyCensus

import java.util.Enumeration;

import com.dalsemi.onewire.OneWireAccessProvider;
import com.dalsemi.onewire.container.OneWireContainer;
import com.dalsemi.onewire.adapter.DSPortAdapter;
import com.dalsemi.onewire.OneWireException;

class FamilyCensus {
public static void main(String[] args) {
if (args.length != 1) {
System.out.printin(
"Usage: java FamilyCensus.tini family_id");
System.exit(1l);

try {
DSPortAdapter adapter =
OneWireAccessProvider.getDefaultAdapter();
// Family id assumed to be input in hex
adapter.targetFamily(Integer.parseInt(args[@], 16));
Enumeration e = adapter.getAll1DeviceContainers();
while (e.hasMoreElements()) {
System.out.println(((OneWireContainer)
e.nextElement()) .getAddressAsString());
}
} catch (OneWireException owe) {
owe.printStackTrace();

}

RunningFamilyCensus and providing the addressable switches family ID
0x12 on the command line produces a list of only switch addresses.

1-Wire net addresses:
F300000018A4BC12
8F00000018A37A12

Adapters 95

AD00000018A51612
D600000018A37912

Running FamilyCensus again specifying a family id of 0x21 displays the
address of the only Thermocron on the network, ignoring all of the switches.

1-Wire net addresses:
3D34C00000609F21

The excludeFamily methods exclude the specified families from the searct
process and return only devices that are members of non-excluded families. T
is particularly useful for large networks that use 1-Wire digital switches to eithe
isolate or include different network segments. Often when searching for devic
on such a network, it is useful to exclude the switches to expedite the search
cess. The adapter object maintains a list of all excluded family ids. This list can
cleared at any time by invoking thergetAl11Families method.

Certain families are capable of responding to a special type of search call
an “alarm search.” The alarm search allows parts in need of special attention to
discovered quickly even in a large network of 1-Wire devices. For example, tt
DS18S20 temperature sensor allows for the setting of high and low thresholds
the temperature drops below the low temperature threshold or rises above the f
temperature threshold, the device will enter an alarm state. Once in an alarm st
a device will respond to alarm-only searches as well as general searches. An al
search uses a 1-Wire addressing command distinct from the general search, wi
causes all 1-Wire devices that either don't generate alarms or are not in an alz
state to immediately drop off the bus. ThetSearchOnlyAlarmingDevices
method sets the adapter’s internal search state to perform searches that disc
only devices in an alarm state.

public abstract void setSearchOnTyAlarmingDevices()
public abstract void setSearchAll1Devices()

This state can be cleared by invokisigSearchAl1Devices. This causes the
adapter to issue searches using the global search command rather than the a
search.

4.2.6 Adapter Ownership

This section deals with the rather difficult issue of multiple threads or even pri
cesses accessing the same adapter. We use the term adapter in a generic ¢
applying it to either an instance of a subclasssebrtAdapter or to a physical

adapter such as TINI's external adapter. However, to treat the subject of muti
exclusion effectively, we will need to draw a clear distinction between an adapt
object and the underlying physical adapter. In the rest of this section we’ll use t
term port adapterto refer to the underlying physical 1-Wire bus master and the

96 Chapter 4 The 1-Wire Net

term adapter instancdor objec) when referring to an instance of a subclass
DSPortAdapter.

Creating an adapter object provides a means for interacting with the und
ing port adapter, but it does not guarantee exclusive access to that port adaj
the 1-Wire network it controlsbsPortAdapter defines the abstract method
beginExclusive andendExclusive, requiring subclasses to override these mei
ods and provide a mechanism for mutual exclusion.

public abstract boolean beginExclusive(boolean bTock)
throws OneWireException
public abstract void endExclusive()

ThebeginExclusive method is invoked on an adapter object to obtain a Ic
on the underlying physical adapter. Once the lock is owned by a partic
adapter, no other adapter instance can invoke methods that result in commi
tion with either the port adapter directly or the 1-Wire network it controls. A
attempt to do so results inoaewi reException being thrown. The lock applies to
other processes as well as other threads within the same process. The lock
freed by either of two mechanisms. Typically, the adapter instance that own
lock will invoke endExclusive, voluntarily releasing the lock. Also, the lock will
automatically be freed in the event that the owning process terminates wit
invoking endExclusive.

The boolean value passed tdeginExclusive specifies whether the caller
wishes to wait until the lock is free or return immediately regardless of the lo
state. Ifblock is false, beginExclusive will immediately returntrue in the event
that the lock was successfully acquired aatlse otherwise. Ifblock is true,
beginExclusive Will attempt to acquire the lock; if it is already owned by anoth
adapter instanc@geginExclusive blocks indefinitely until the lock has been free
and it can claim ownership. Whéhock is true andbeginExclusive returns nor-
mally (that is, non-abruptly), it will always retutnue.

4.3 DIRECT 1-WIRE COMMUNICATION

Typically, once an application has used the adapter’s search capability to o
containers for the devices in which it is interested, all further communica
with the device goes through the container, not the adapter. However, while
tainers provide a very useful abstraction from the low-level device details, t
are times when it is better to avoid the overhead of containers and commur
directly with the devices. Several methods in bSeortAdapter class provide
the support necessary to communicate with any 1-Wire chip. The follow
methods provide the minimum set of primitives that allow any possible com
nication with any 1-Wire chip.

Direct 1-Wire Communication 97

public int reset() throws OneWireIOException, OneWireException
public abstract boolean getBit()

throws OneWireIOException, OneWireException
public void putBit(boolean bitValue)

throws OneWireIOException, OneWireException

A reset is required to begin any new communication. Invokingt'® puts
all devices on the 1-Wire net in a known (RESET) state. After the reset signal h
been transmitted, all devices are waiting to receive one of the addressing cc
mands. Since there is only one data carrier, communication is done in a bit-se|
fashion. So theoretically, the rest of the communication can be accomplished |
usinggetBit for reads angutBit for writes. In practice almost all device com-
mands and data are structured on byte-boundaries. So the methods

public void putByte(int byteValue)
throws OneWireIOException, OneWireException
public int getByte() throws OneWireIOException, OneWireException

provide an efficient way to move individual bytes to the bus.gkbgit andput-

Bit methods are necessary for communication with a few 1-Wire devices. F

example, every operation that runs the processor in the Java Powered iBut

begins with a release sequence that terminates with a single bit acknowledgme
Both of the methods that write to the bysitBit and putByte, throw

OneWireIOException if the value written (or transmitted) is not identical to the

value read (or received). Consider the example in Listing 4.6.

Listing 4.6 ByteBlast

import com.dalsemi.onewire.OneWireAccessProvider;
import com.dalsemi.onewire.OneWireException;

import com.dalsemi.onewire.adapter.DSPortAdapter;
import com.dalsemi.onewire.adapter.OneWireIOException;

class ByteBlast {
public static void main(String[] args) {
DSPortAdapter adapter = null;
try {
adapter = OneWireAccessProvider.getDefaultAdapter();
adapter.beginExclusive(true);

adapter.reset();
while (true) {
adapter.putByte (0xFF);
}
} catch (OneWireIOException ioe) {

10. This assumes the adapter is configured for “regular” bus speeds. A reset issued at
“overdrive” speed will reset only the devices currently operating at overdrive speed.

98 Chapter 4 The 1-Wire Net

System.out.printin("1-Wire I/0 problem:"+ioe.getMessage());
} catch (OneWireException owe) {
System.out.println(owe.getMessage());
} finally {
adapter.endExclusive(Q);

}

The first thingByteB1ast does is transmit a reset to the bus to put all devic
into a high-impedance listen-only state. Then it repeatedly writes the valdé 0
to the bus, producing a continuous stream of write-1 time slots. All devices sh
be in a high-impedance state and therefore should not alter the state of th
This implies that all data written should simply be echoed and the identical v
will be read. To terminate this application we can short the bus to ground, an
logic 1s we were writing to the bus are read back as logic Os. This gatsgs
to throw an instance @heWireIOException, which is caught, and the following
output is displayed.

1-Wire I/0 problem:Error during putByte()

In practice, OneWireIOException should be caught and the operatio
retried. Transient problems can occur when roaming 1-Wire devices (typic
iButtons) attach to or detach from the network, causing a momentary s
between the 1-Wire bus and ground. This should not be sufficient to termin:
well-written application. Retry logic must be intelligent enough to determi
when a problem is persistent and fatal.

Whenever possible an application should use block reads and writes \
accessing sequential memory addresses, as opposed to the less efficient af
of invoking getByte Or putByte in a loop. For example, a memory chip can t
read by selecting it, and transmitting a read memory command, followed |
starting memory address. After this, all of the chip’s memory can be read us
single invocation of a “block” read method. The following methods provide
very efficient way to send and receive arbitrarily large blocks from 1-W
devices.

public byte[] getBlock(int Ten) throws OneWireIOException, OneWireException
public void getBlock(byte[] arr, int len)

throws OneWireIOException, OneWireException
public void getBlock(byte[] arr, int off, int len)

throws OneWireIOException, OneWireException

Writes can also be done in a block fashion usingd#isB1ock method.

11. The value Oxff was chosen because it is not a valid address command and all device:
will simply ignore it.

Direct 1-Wire Communication 99

public abstract void dataBlock(byte[] arr, int off, int Ten)
throws OneWireIOException, iButtonException

A single invocation oflataBlock can be used for reading and writing multiple
bytes. The block transfer methods are put to use in Listing 4.8.

The discovery process can also be controlled directly using the metho
findFirstDevice andfindNextDevice

public abstract boolean findFirstDevice()
throws OneWireIOException, OneWireException
public abstract boolean findNextDevice()
throws OneWireIOException, OneWireException

Since different adapters provide different interfaces to control the search pr
cess,findFirstDevice and findNextDevice are abstract, forcing the subclasses
that encapsulate real adapters to implement the search algorithm. Both meth
throw Onewi reIOException if any communication error occurs during the search
process. To discover the addresses of all devices attached to the network, an a|
cation invokesfindFirstDevice and then invokesindNextDevice repeatedly
until findNextDevice returnsfalse. Listing 4.7 discovers and displays all of the
devices attached to the default adapter.

Listing 4.7 FastCensus

import com.dalsemi.onewire.OneWireAccessProvider;
import com.dalsemi.onewire.OneWireException;
import com.dalsemi.onewire.adapter.DSPortAdapter;

class FastCensus {
public static void main(String[] args) {
DSPortAdapter adapter = null;
try {
adapter = OneWireAccessProvider.getDefaultAdapter();
adapter.beginExclusive(true);
adapter.setSpeed(adapter.SPEED_REGULAR);
if (adapter.findFirstDevice()) {
System.out.printin(adapter.getAddressAsString());
while (adapter.findNextDevice()) {
System.out.println(adapter.getAddressAsString());
}
}
} catch (OneWireException owe) {
System.out.println(owe.getMessage());
} finally {
adapter.endExclusive(Q);

}

100 Chapter 4 The 1-Wire Net

FastCensus produces the same output as Listing 4.4 but without the overh
of creating arEnumeration Of OneWireContainer objects. It is important to realize
that invokingfindFirstDevice does not typically return the address of the 1-Wi
device that is physically nearest the adapter. The ordering of device discove
logical, not physical.

Now that we know all of the methods required for direct access to the 1-\
network, we can put it all together in a more comprehensive example. Earli
this chapter it was mentioned that the Ethernet address is contained in a 1
device on TINI's internal 1-Wire network. The Ethernet address is read wher
system boots and is written to program memory as well as the Ethernet cont
The Ethernet address can be displayed at the slush prompt by executin
ipconfig command with no command line parameters. Tgw@nfig command
fetches the Ethernet address directly from system memory, using
getEthernetAddress method in the clas®m.dalsemi.tininet.TININet.

Another method of accomplishing the same result is to read the Ethe
address directly from the 1-Wire source. The device that maintains the MAC
called a DS2502. The DS2502 has a family id of 0x89 and contains 128 byt
EPROM memory. During the manufacturing process, the 48-bit Ethernet adc
is programmed into the DS2502’s memory, starting at address 0x06. The me
is programmed in a fashion that allows this address to be determined progran
ically. However, performing this exercise would add little value to the example
we'll just accept the starting address as a magic nutdber.

Listing 4.8 EthernetAddressReader

import com.dalsemi.onewire.adapter.TINIInternalAdapter;
import com.dalsemi.onewire.OneWireException;

class EthernetAddressReader {

static final int TARGET_FAMILY_ID = 0x89;
static final int START_ADDRESS = 0x6;
static final int READ_MEMORY_COMMAND = 0xf0;

public static void main(String[] args) {
TINIInternalAdapter adapter = new TINIInternalAdapter();
booTlean foundIt = false;

try {
adapter.beginExclusive(true);
if (adapter.findFirstDevice()) {
// Test LSB (family 1id) against target
if ((adapter.getAddressAsLong()&0xff) ==
TARGET_FAMILY_ID) {

12. For those interested, the storage format is governed by the UniqueWare specification
that can be viewed online (sktp://www.dalsemi.com/datasheets/pdfs/app99.pdf

Direct 1-Wire Communication 101

foundIt = true;

while (!foundIt &% adapter.findNextDevice()) {
if ((adapter.getAddressAsLong() & OxFF) ==
TARGET_FAMILY_ID) {
foundIt = true;
}
}
if (foundIt) {
/:’:
* data[@] -> read memory command byte
* data[l] -> low byte of starting address
* data[2] -> high byte of starting address
*/
byte[] command = new byte[3];
command[@] = (byte) READ_MEMORY_COMMAND;
command[1] = START_ADDRESS & OxFF;
command[2] (START_ADDRESS >>> 8) & OxFF;

// Send the command and starting memory address
adapter.dataBlock(command, @, command.length);
// Read 48-bit ethernet address
byte[] macID = adapter.getBlock(6);
for (int i =5; 1 >=0; i--) {
System.out.print(
Integer.toHexString(macID[i] & Oxff));
if (1= 0) {
System.out.print(":");
}
}
System.out.println();
} else {
System.out.println("Device not found");
}
}
} catch (OneWireException owe) {
System.out.println(owe.getMessage());
} finally {
adapter.endExclusive();

}

EthernetAddressReader (Listing 4.8) begins by searching for a device with the
correct family id. Note that we assume there is only one DS2502 attached to TIN
internal 1-Wire network. After the correct part has been addressed, a 3-byte write
performed using théataBlock method to transmit the read memory command anc
the starting address. This is immediately followed by reading the 6-byte (48-bi
Ethernet address usingtBlock. Finally, the result is formatted in a manner simi-
lar to that used by “arp” commands on Unix systems.

0:60:35:0:55:27

102 Chapter 4 The 1-Wire Net

This result should be identical to the Ethernet address displayed by slush
execution ofipconfig.

4.4 CONTAINERS

The container classes provide high-level access to the services offered by sy
families of devices, shielding the programmer from low-level details of poss
complicated communication protocols. Consider, for example, the DS18S20
perature sensor device. In Section 4.1.2 we detailed the two 1-Wire transac
required to obtain a temperature. For most development purposes we would
ably want something as simple as a method that returns a floating point repr
tation of the current temperature rather than worrying about the details of ser
and receiving the set of 1-wire commands and data specified in Tables 4.1 an

4.41 The Class OneWireContainer

The OneWireContainer class, defined in theom.dalsemi.onewire.container

package, is the superclass of all device specific containers and implements o
fuctionality that is shared by all 1-Wire devices, specifically the address. It
provides methods for identifying and describing the devices in a textual form.

All 1-Wire device families are represented by a subclass
OneWireContainer and also exist in thecom.dalsemi.onewire.container
package. The name of the container is simply a hexadecimal st
representation of the device family id appendedrewireContainer’s fully
gualified class name. For example, devices with a family id 0x10
represented by the container clasewireContainer10. The formation of a
container class name is done in this fashion to allow instances of device sp
container classes to be created as they are discovered on the 1-Wire net
This is discussed in more detail in the next section.

An instance obneWireContainer (Or a subclass) maintains a reference to
parent adapter that is used for all communication with the devi
OneWireContainer methods use the technigques described in Section 4.3
sending and receiving commands and data to and from the underlying devi

4.4.2 Creating Container Instances

OneWireContainer Objects are created by invoking any of the following metho
on an instance of a subclas®sfortAdapter.

public OneWireContainer getFirstDeviceContainer()
throws OneWireIOException, OneWireException
public OneWireContainer getNextDeviceContainer()

Containers 103

throws OneWireIOException, OneWireException
public Enumeration getAll1DeviceContainers()
throws OneWireIOException, OneWireException

The DsPortAdapter methods that create container objects fis®lame and
newInstance Of classClass. The string passed t@rName t0 get theClass object
is created by appending an uppercase, hexadestmialg representation of the
device’s family id to thetring representation of the fully qualified nameoeé-
WireContainer: com.dalsemi.onewire.container.OneWireContainer.

The Census example in Listing 4.4 used the methadadFirstDevice and
findNextDevice to display all devices on the network. We can use the methoc
getFirstDeviceContainer andgetNextDeviceContainer to find the same devices
in the same order, but instead of just returning béolean result,
getFirstDeviceContainer andgetNextDeviceContainer returnOnewireContainer
objects representing the devices found during the discovery process. Listing 4.¢
essentially the same as Listing 4.7 except it ugesFirstDevice and
getNextDevice t0 obtain device containers. Once we have containers, we can pri
out more information specific to the chips discovered during the search, as oppo
to just each chip’s address.

Listing 4.9 FindContainers

import com.dalsemi.onewire.OneWireAccessProvider;
import com.dalsemi.onewire.OneWireException;

import com.dalsemi.onewire.container.OneWireContainer;
import com.dalsemi.onewire.adapter.DSPortAdapter;

class FindContainers {
public static void main(String[] args) {

DSPortAdapter adapter = null;

try {
adapter = OneWireAccessProvider.getDefaultAdapter();
adapter.beginExclusive(true);
adapter.setSpeed(adapter.SPEED_REGULAR) ;
OneWireContainer owc = null;
if ((owc = adapter.getFirstDeviceContainer()) != null) {

System.out.printin(owc.getName()+","+
owc.getAlternateNames() +

at address "+
owc.getAddressAsString());

while ((owc=adapter.getNextDeviceContainer()) != null) {
System.out.printin(owc.getName(Q+","+
owc.getAlternateNames() +
" at address "+
owc.getAddressAsString());

}

} catch (OneWireException owe) {
System.out.println(owe.getMessage());

104 Chapter 4 The 1-Wire Net

} finally {
adapter.endExclusive(Q);

}

RunningFindContainers on the same 1-Wire network as Listing 4.7 outpu
each chip’s address as well as a short description and formal part name.

DS2406,Dual Addressable Switch at address F300000018A4BC12
DS2406,Dual Addressable Switch at address 8F00000018A37A12
DS2406,Dual Addressable Switch at address ADQQQQOQ018A51612
DS2406,Dual Addressable Switch at address D600000018A37912
DS1921,Thermochron at address 3D34C00000609F21

Note that on TINI, device specific container classes are not available
default as part of the API. They must be included with the application during
conversion process (see Section 1.4.2). In Listingoh&\ireContainer12 and
OneWireContainer21 were both included during the conversion process !
FindContainers. On large systems with no practical memory constraints, it
reasonable to assume that all device specific containers will be available.

Finally, onewireContainer objects can also be created directly in the eve
that the application somehow knows a device’s address without going throug
discovery process. In this case the application can createwareContainer
object using the container’s default constructor and invoking one eéthgCon-
tainer methods on the newly created container. #ltupContainer methods
require an adapter to be used for device communication and the device’s adc

public void setupContainer(DSPortAdapter sourceAdapter, byte[] newAddress)
public void setupContainer(DSPortAdapter sourceAdapter, Tong newAddress)
public void setupContainer(DSPortAdapter sourceAdapter, String newAddress)

4.4.3 Example: 1-Wire Humidity Sensor

At the time of this writing there were over 20 containers, one for each device fal
Now we'll take a closer look at the container for one of the more interesting 1-\
device families, the DS2438 A/D (Analog to Digital) converter. The DS24
includes an A/D converter, a temperature sensor, an elapsed time meter, and 4
of nonvolatile memory. The practical uses for a device that can measure analoc
ages and currents as well as sense temperature are nearly unlimited. For exam
DS2438 can be used to create sensors that monitor various environmental con
including temperature, solar radiance, humidity, and barometric pressure.

We would expect a container designed to encapsulate the DS2438’s bef
to provide simple methods for accessing the memory, reading the current ter
ature, and returning the voltage read on its A/D pin. For our purposes we'll 1
to be able to read the temperature and the input voltage ondipe\as well as

Containers 105

the supply voltage (Yj). OneWireContainer26 (the DS2438 has a family id of
0x26) provides the following methods to serve these purb%ses

public void doADConvert(int channel, byte[] state)
throws OneWireIOException, OneWireException
public double getADVoltage(int channel, byte[] state)
throws OneWireIOException, OneWireException
public void doTemperatureConvert(byte[] state)
throws OneWireIOException, OneWireException
public double getTemperature(byte[] state)

Both the voltage and temperature measurements are split into two phases: |
forming a conversion and reading the result. So, for example, to read an ana
voltage from the DS2438, an application invokegDConvert, followed by
getADVoltage. The channel parameter of theloADConvert method allows the
caller to specify which analog voltage is desired. In Example 4.1 we’ll need t
read both Yy and Vg

This example uses a DS2438 and its associated container to create a 1-V
humidity sensor. The circuit diagram for the humidity sensor is shown in Figur
4.3. This circuit uses a core humidity sensor from Honeywell that outputs an ar
log voltage that can be used in conjunction with the supply voltage and tempe
ture to calculate the relative humidity using Equation 1 and Equation 2. Tr
DS2438 (U1) provides a 1-Wire communication interface for the composite se
sor as well as the analog-to-digital conversion and the temperature measurem
The schottky diode, D2, is used to protect the circuit from negative voltage
greater than about 400 millivolts in magnitude. D1 and C1 are used to build a p
asite power supply that “steals” energy from the bus during high periods. Finall
R1 and C1 serve as a low-pass filter.

vdd

DATA (1- Wire)
N 3l
- u1
U2 g >(;, D1
e}
3 bQ |8 W v
100K

Out 2 : 4 Vad L D2
2 o a
5 S v [

HIH-3605-A °
® DS2438

c1 -

.01uF ——c2
0.1uF
GND

Figure 4.3 1-Wire humidity sensor

13. This part actually contains much more functionality and therefore many more methods
than needed for our example.

106 Chapter 4 The 1-Wire Net

The output of the humidity sensor is an analog voltage proportional to
supply voltage. From the HIH-3605 data sheet, the relative humidity at 25°C
be computed with respect to the supply voltaggy(dsing Equation 1.

RHsensor = (Vout/Vad — 0.16) / 0.0062 (EQ1)

Of course, what we're really interested in is the true relative humidity with
any dependence on the supply voltage or a fixed temperature. Equation 2 prc
the means to compute the true relative humidity.

RHtrye = RHgensor / (1.0546 — 0.00216*T) (EQ 2)

Where T is measured in degrees celsius ("C). From these equations we ¢.
that we need three measurements to compute a value {RRR,, Vyg and T.
Fortunately, the A-to-D converter can measure bofh and Vg Now we're
armed with all of the information we need to write a small program to read the
ative humidity usin@neWwi reContainer26.

Listing 4.10 HumiditySensor

import com.dalsemi.onewire.OneWireAccessProvider;

import com.dalsemi.onewire.adapter.DSPortAdapter;

import com.dalsemi.onewire.OneWireException;

import com.dalsemi.onewire.container.OneWireContainer;
import com.dalsemi.onewire.container.OneWireContainer26;

public class HumiditySensor {
DSPortAdapter adapter;
OneWireContainer26 owc;
byte[] state;

HumiditySensor (DSPortAdapter adapter) throws OneWireException {

this.adapter = adapter;
// Only find DS2438 family devices
adapter.targetFamily(0x26);
adapter.setSpeed(adapter.SPEED_REGULAR) ;
owc = (OneWireContainer26) adapter.getFirstDeviceContainer();
if (owc == null) {

throw new OneWireException("No DS2438 A to D chip found");
}
state = owc.readDevice();

}

public double getTemperature() throws OneWireException {
owc.doTemperatureConvert(state);
state = owc.readDevice();

return owc.getTemperature(state);

}

public double getSensorRH() throws OneWireException {

Containers 107

// Read Vad

owc.doADConvert(OneWireContainer26.CHANNEL_VAD, state);

double Vad = owc.getADVoltage(OneWireContainer26.CHANNEL_VAD,
state);

// Read Vdd

owc.doADConvert(OneWireContainer26.CHANNEL_VDD, state);

double Vdd = owc.getADVoltage(OneWireContainer26.CHANNEL_VDD,
state);

return (Vad/Vdd-0.16)/0.0062;
}

public double getTrueRH() throws OneWireException {
return getSensorRH()/(1.0546-0.00216*getTemperature());

}
void displayData() {
try {
adapter.beginExclusive(true);
System.out.printin("Temperature = "+getTemperature(Q+" C");

System.out.printin("RHsensor = "+getSensorRHQO+"%");
System.out.printin("RHtrue = "+getTrueRHO+"%");

} catch (OneWireException owe) {
System.out.printin(owe.getMessage());

} finally {
adapter.endExclusive(Q);

}

}

public static void main(String[] args) {

try {

HumiditySensor humidity =
new HumiditySensor(
OneWireAccessProvider.getDefaultAdapter());

humidity.displayData(Q);

} catch (OneWireException owe) {
System.out.printin(owe.getMessage());

}

HumiditySensor finds the appropriate container during construction by
invoking targetFamily on the adapter object to specify that the search shouls
ignore all devices that are not in the DS2438 family. We then know that whe
we invoke getFirstDeviceContianer on the adapter, it will return either an
instance ofneWireContainer26 Or null if no devices with family id 0x26 are
discovered on the 1-Wire network. ThetSensorRH method uses the container
to read both the supply voltage [y and the voltage output of the core
humidity sensor (g and then uses Equation 1 to computesREl, The
getTrueRH method invokegetSensorRH to obtain RHgngor@NdgetTemperature
to obtain a current temperature reading. It then uses those two results as inpu
Equation 2 to compute the true relative humidity (Rl

108 Chapter 4 The 1-Wire Net

Running HumiditySensor on the TINI in my home office in the beautifu
wilds of Coppell, Texas, produces the following rather unspectacular output.

Temperature = 26.875C
RHsensor = 45.766129032258057%
RHtrue = 45.915238770164166%

In this case, the relative humidity as measured by the core analog hun
sensor is not far from the true relative humidity computed taking supply volt
and temperature into account. This makes sense because the temperatu
close to the nominal 25°C used by the core sensor. As the temperature drift
ther from 25°C in either direction, we would expect wider divergence Qf Rk}
from RH,; e

4.5 ENSURING DATA INTEGRITY USING CRCS

Thecom.dalsemi.onewire.utils package contains two utility classes used excl
sively for the computation and verification of Cyclic Redundancy Checks (CR
A CRC is a mathematical tool used to verify the integrity of data transferred «
an unreliable communication link.

It is common in 1-Wire networks to have devices that are both “ha
wired” (permanently attached) and roaming. Roaming devices can cause
sient short circuits on the 1-Wire bus that corrupt normal communicatic
CRCs are employed to detect corruption in the transfer of data over the 1-
bus. When errors are detected, the typical remedy is to retry the commu
tion. Once the condition that caused the error is gone, the operation st
complete successfully.

Methods for the computation and verification of the two CRCs that are t
in the data transfer layers of the 1-Wire protocol, CR&Ea6d CRC-8° are pro-
vided by the classe®c16 andcrcs, respectively. Both classes provide static uti
ity methods only and therefore have private constructors to explicitly disal
their instantiation. The following method descriptions are frontklae class, but
everything following applies to therci6 class as well. The following method is
the most flexible of the CRC generators.

public static int compute(byte[] data, int off, int Ten, int seed);

This method returns a CRC value computed over the range of bytes spe
by [off, off+len), using the specified seed. All of the other methods itrb®

14. The CRC-16 is described mathematically by the polynontfat %1+ X2 + 1.
15. The 1-Wire CRC is an 8-bit CRC described mathematically®oy Y0 + X* + 1.

Ensuring Data Integrity Using CRCs 109
class simply provide some convenient subset of this functionality. For exampl
the method
public static int compute(byte[] data);

computes the CRC over the entire byte[] using the default initial seed of 0. Tl
example in Listing 4.11 computes the CRC8 of the data input using hexadecin
notation on the command line.

Listing 4.11 CRCCalculator

import com.dalsemi.onewire.utils.CRCS8;

class CRCCalculator {
public static void main(String[] args) {
byte[] data = new byte[args.length];
for (int i = 0; i < data.length; i++)
data[i] = (byte) Integer.parselnt(args[i], 16);
System.out.println("crc=" +
Integer.toHexString(CRC8.compute(data)));

Running CRCCalculator using the least significant 56 bits of the 1-Wire
address of the Thermocron on our example network

TINI /> java CRCCalculator.tini 21 9F 60 00 00 CO 34
produces the output
crc=3d

This implies that the last byte of the 1-Wire address (the CRC) is 0x3c
Indeed, this agrees with the output from Listing 4.4. If we run the example aga
with the CRC byte included

TINI /> java CRCCalculator.tini 21 9F 60 00 00 CO 34 3D
it produces the output
crc=0

The preceding two example outputs suggest the two different approaches t
an application may use to check a CRC value that it computes against the C
value read from the device. It can either compute the CRC of all of the data up to*
CRC byte(s) and then check that the resulting value is identical to the CRC returr
by the device, or it can compute the CRC of all of the data including the CR
byte(s) returned by the device and check the computed CRC for a valté of 0.

110 Chapter 4 The 1-Wire Net

All methods that perform address searches in the APl automatically chec
address CRC before returning an address to the caller. When a CRC check
the search result is discarded. Several 1-Wire devices automatically ger
CRCs on various fields as they are being queried or updated. In these cas
container implementation for that family is responsible for checking the C
before successfully returning to the caller. If the CRC fait®e#i reI0Exception
is thrown to indicate that the operation failed. Applications that use 1-Wire m
ory devices for data storage and retrieval should be sure to protect their data
the 16-bit CRC (CRC-16).

16. Note that the CRC-16 value is often stored bit-wise inverted (ones complement).
Computing the CRC-16 including the inverted CRC16 value results in a final value
of 0xB001 (as opposed to 0).

CHAPTER 5 TC P/I P
Networking

TINI's main objective is to provide a powerful platform for developing small
embedded applications that connect non-networked devices to the netwo
TINI's broad networking is its most compelling feature, and Java’s suitability fo
writing networked applications is one of the primary reasons TINI provides a Ja
runtime environment. Java supports basic network access using classes in
java.net package. Since TINI provides a full implementation of hea.net
package, many network applications written in Java will run on TINI without
modification. However, there are differences between developing a network apy
cation for a PC or workstation and a dedicated network application for TINI
These differences come from the fundamental nature of programming for embe
ded networking devices. For example, configuring the network parameters
general purpose computers or workstations is not handled programmatically a
part of your application. However, in the embedded world, if your applicatior
assumes control of the entire system, then it must be capable of configuring
network as well as using it.

This chapter assumes a strong familiarity with writing networked application
in Java. It is not intended to be a general treatment of TCP/IP networking or wr
ing network applications in Java. There are many excellent books that cover bt
of these subijects in detail. Rather, this chapter focuses primarily on programmi
for TINI's networking environment.

111

112 Chapter 5 TCP/IP Networking

5.1 TINI NETWORKING ENVIRONMENT AND
APl OVERVIEW

A diagram of the networking environment is shown in Figure 5.1. The figure
plays the following six application layer protocols that are supported in the AF

* HTTP (Hypertext Transfer Protocol)

* DNS (Domain Name System)

» DHCP (Dynamic Host Configuration Protocol)
* Telnet

* FTP (File Transfer Protocol)

* Ping (ICMP echo request/reply)

All of the application layer protocols except Ping are implemented using
socket classes in thava.net package as the network transport mechanism. P
isn't really a protocol. It's an application wrapper over a subset of ICMP (Intel
Control Message Protocol). The Ping class, covered in Section 5.5, dir
invokes native methods that are exposed in the network stack’s ICMP module

Support for most of the application layer protocols is provided by the s
packages ofom.dalsemi.tininet.

e com.dalsemi.tininet.http
e com.dalsemi.tininet.icmp
» com.dalsemi.tininet.dhcp
* com.dalsemi.tininet.dns

We'll cover TINI's API for these protocols in detail in the next few sections. T
FTP and Telnet protocols are implemented indfie dalsemi.shell.server.ftp
andcom.dalsemi.shell.server.telnet packages, respectively. Both FTP and Te
net are implemented as servers and are typically only used by system shells s
slush. Support for using FTP as a client is of course available using the URL cl
in thejava.net package.

The protocols in Figure 5.1 are those for which the TINI networking API p
vides special support. Other networking protocols can and have been written ir
and can run on TINI with little or no change to the code. Examples include |
servers and clients for network time and SNMP (Simple Network Management
tocol). Also, there is no reason that the protocol support provided in the netwol
API cannot be extended or possibly even replaced by third-party implementatic

Parameters specific to the various network interfaces can be queried or c
ured using th@ININet class in thecom.dalsemi.tininet packageTININet also
provides methods for setting global networking parameters such as the hos
domain name. Network configuration is covered in Section 5.2.

TINI Networking Environment and APl Overview 113

1
i
Ping DHCP DNS Telnet FTP HTTP !
| [‘ k __ __I
Java Networking API
e e Java___
Native
Native Sockets
TCP ubp
Y
ICMP |<—>» IP <—>»| IGMP
ARP |<—> Eg".”"e‘ Loophack PPP
river .
Native
Ethernet Serial Port Hardware
Controller
Ethernet Network Phone Switch Network

Figure 5.1 Network protocol stack

5.1.1 The Network Interfaces

From Figure 5.1 we can see that TINI supports three distinct network interface typ

e Ethernet
« PPP over a serial link
* Loopback

There are a maximum of four network interfaces supported by the netwo
stack. For the sake of viewing the configuration of individual interfaces, assun
they are numbered starting with 0. Interface O is always the Ethernet interfa
(etho). Interface 1 is always the loopbadio) interface, and interfaces 2 and 3
are available for use by up to two simultaneous PPP (Point-to-Point Protoc
connections.

You can query the state of all network interfaces using the slush comma
“jpconfig -x.”

114 Chapter 5 TCP/IP Networking

Interface 0 is active.

Name : eth0 (default)
Type : Ethernet

IP Address : 192.168.0.15
Subnet Mask : 255.255.255.0
Gateway : 192.168.0.1
Interface 1 is active.

Name : lo

Type : Local Loopback
IP Address 1 127.0.0.1
Subnet Mask : 255.0.0.0
Gateway : 0.0.0.0

Interface 2 is not active.

Interface 3 is not active.

This sample output shows a fairly typical network configuration. In this c
the Ethernet interfacethe) has been configured and is the default interface. T
means that an IP datagram that isn't specifically destined for any host on the
works serviced by the other interfaces will be sent to the default (Ethernet in
case) driver for transmission onto the physical link. Interfaces 2 and 3 as sl
above are not in use because there were no PPP connections on the syster
time the ipconfig command was executed.

Network interfaces can be added or removed programmatically Tusing:t's
addInterfaceEntry andremoveInterfaceEntry methods. This operation is usuall
handled indirectly through the PPP class using wrapper methods that provid
details to theriNINet methods. Neither the Ethernet nor loopback interface car
removed from the system. Both are created as unconfigured network interfac
the system during the initial boot.

5.1.2 Ethernet

Ethernet is by far the most popular networking technology used today in
structing Local Area Networks (LANs). Ethernet networking is currently st
ported on TINI using a separate Ethernet controller to send and receive net
messages. All Ethernet nodes have a 48-bit address, usually called the Etl
address or MAC id. To ensure that networking hardware is built with a uni
address, the number pool is managed by the Institute of Electrical and Electr
Engineeré (IEEE). Organizations register for an Organizationally Unique Ider
fier (OUI). The OUI is the most significant 24 bits of the MAC id and is 00:60:
for TINI. The Ethernet address is stored in the EPROM of a 1-Wire chip on

1. Alist, searchable by organization name, of OUlIs is onlih&@t/standards.ieee.org/
regauth/oui/index.html

TINI Networking Environment and APl Overview 115

internal 1-Wire net and is present in every TINI hardware implementation. It cg
be queried but not altered programmatically. The follovg&eE thernetAddress
methods are defined irININet and return the ethernet address as either a byt
array orstring.

public static void getEthernetAddress(byte[] address)
public static String getEthernetAddress()

The Ethernet address can also be used by applications as a unique ident
for the TINI hardware on which it is running. The first method listed above fills ir
the supplied byte array with the Ethernet address where the most significant b
is stored in the Oth array element. Since the Ethernet address is 48 bits long,
array must be of length 6 or greater. The second method retstisna repre-
sentation of the Ethernet address in a format similar to that output by a UNI
style arp command. In Section 4.3 we read the Ethernet address directly from
storage in the on-board 1-Wire chip. That was for the sake of learning how
communicate directly with 1-Wire chips. But it was definitely the hard way to dis
cover the MAC id. TheSimpleEthernetAddressReader program, shown in
Listing 5.1, produces the same result in a trivial fashion.

Listing 5.1 SimpleEthernetAddressReader

import com.dalsemi.tininet.TININet;

class SimpleEthernetAddressReader {
public static void main(String[] args) {
System.out.printIn(TININet.getEthernetAddress());
h

Notice that the following sample output is identical to that of the
EthernetAddressReader example in Listing 4.8.

TINI /> java SimpleEthernetAddressReader.tini
0:60:35:0:55:27

The Ethernet interface is typically configured as the default interface. It prc
vides the most efficient means to transfer data to other networked hosts. On c
rent TINI hardware implementations, the highest sustainable data rate overa T
connection is about 1Mbps or 10 percent of the bandwidth of a 10Mbps Etherr
network.

5.1.3 PPP

Just like the Ethernet driver, the Point-to-Point Protocol (PPP) module provides
packet-oriented interface to the IP layer. PPP is actually a very broad and flexil

116 Chapter 5 TCP/IP Networking

protocol that allows for the transmission of various types of network packets
various types of physical links such as serial, parallel, and even Ethernet. |
ever, on TINI, PPP is used strictly as a mechanism to transmit IP datagrams
a serial link. PPP uses one of the serial port drivers for all data transmis
Usually a modem is attached to the serial port to support dial-up networ
applications.

If you're using Ethernet (ethO) or Loopback (lo) interfaces only, you wo
need to add or remove network interfaces. Only PPP interfaces can be dy
ically added to or removed from the system. By convention PPP interface:
named by appending the serial port number to the lowercase string “ppp.” Ar
the four serial ports can be used by the native stack’s PPP implementation tc
vide the physical data link. The network stack can support two simultaneous
sessions over two independent serial ports.

For applications that support dial-up networking, the classes in
com.dalsemi.tininet.ppp provide an API for establishing and controlling PP
connections. The PPP API is discussed in Chapter 6.

5.1.4 Loopback

The loopback interface (lo) allows a server and (potentially multiple) client:
communicate on the same host from possibly different processes. The class .
work id 127 is reserved for use by the loopback interface. Since it is a class A
work, it uses the subnet mask 255.0.0.0 so that all of the IP addresses be
127.0.0.1 and 127.255.255.25te valid IP addresses and use the loopback int
face. No IP traffic destined to a 127 address is transmitted to any physical nei
interface. TINI follows the convention of binding the name “localhost” with the
address 127.0.0.1. If you use the slush “ping” command to ping localhost,
will see the following output.

TINI /> ping localhost
Got a reply from node Tocalhost/127.0.0.1
Sent 1 request(s), got 1 reply(s)

You should be able to execute this command regardless of whether yc
previously configured any of the other network interfaces, since loopback is ¢
matically configured during the boot process and therefore always exists.
minor note here is that unlike “pinging” hosts on other network interfaces, p
ing localhost should never fail to get a reply. This is because the IP datagran
rying the ping (ICMP echo request) data is never transmitted “on the w
removing the possibility of a lost IP datagram.

2. 127.0.0.0 is the network address and 127.255.255.255 is the broadcast address for tt
127 network.

Setting Network Parameters 117

The loopback interface is generally used by the network stack implementc
for testing purposes, but it can also be used by multiple applications running
the same host as a mechanism for IPC (Inter-Process Communication).

5.2 SETTING NETWORK PARAMETERS

On non-embedded hosts, networking applications don’t need to worry about cc
figuring basic network parameters such as the IP address and subnet mask.
task is performed by a network administrator using the network utility prograr
provided with the operating system. During application development this is als
true for TINI. The network settings are established using the spdshfig com-
mand. Ultimately, however, if your application is going to control the entire sys
tem, it will replace slush as the Java application that is launched automatica
when the system boots. In this case, your application must be able to query :
configure network parameters.

TheTININet class in theom.dalsemi.tininet package provides static meth-
ods for storing and retrieving all of the configuration information used by the dif
ferent network interfaces, TCP/IP stack, and “built-in” application protocols. Th
following are networking parameters configurable usiginet, with brief
descriptions.

» IP address A 32-bit integer that encodes the host’s network identificatior
as well as the identification of the host on that network. Every host on &
internet has a unique IP address. Each network interface has its own
address.

* Subnet maskA 32-bit integer used by the TCP/IP protocol stack as a bi
mask to separate the network and host portions of the IP address.

e Gateway (router) IP addres3 he IP address of the default router. A router is
(usually) a dedicated machine connected to at least two networks that fi
wards IP datagrams between the various networks.

* Primary DNS addressThe IP address of the preferred DNS (Domain Name
System) server. A DNS server resolves IP addresses to human reade
host names, and vice-versa.

e Secondary DNS addres$he |IP address of an alternate DNS server. If a
request to the primary DNS server is unanswered, the DNS client impl
mentation will send the request to the secondary DNS server.

* DNS time-out valueThe amount of time (in milliseconds) that the DNS cli-
ent will wait for a response from a DNS server before timing out and po:s
sibly retransmitting the request.

* Domain name A string representing the domain name (for example,
“dalsemi.com”).

118 Chapter 5 TCP/IP Networking

* DHCP server IP addressThe IP address of the DHCP (Dynamic Host Co
figuration Protocol) server. DHCP is discussed in detail in Section 5.2.

* Host nameA string representing the local host’s (not localhost) name. T
host’s name is not necessarily the same as its DNS name.

* Mailhost The IP address of the machine running an SMTP (Simple N
Transfer Protocol) server. This must be set to use the mailto protocol
ported by the Java URL classes.

e HTTP proxy serverThe IP address of a machine that forwards HT"
requests on your behalf. For example, if your TINI is behind a firewall, |
of a proxy server may be required to satisfy HTTP requests of hosts
side of the local network.

* HTTP proxy port A 16-bit integer that specifies the port number on whi
the HTTP proxy server expects to receive HTTP requests.

TININet provides both set (and the symmetric get) methods for each of tl
parameters.

public static boolean setIPAddress(byte[] TocalIP)
public static boolean setIPAddress(String TocalIP)

The first method requires a byte array of length 4 with the IP address st
using big-endian byte ordering (also known as network byte ordering), such
the most significant byte of the address is stored in array element 0 and the
significant byte is stored in element 3. This byte ordering applies for all of
TININet setters that require a byte array to specify any IP address or subnet 1
The secondetIPAddress method here takessaring with an IP address speci-
fied in dotted-decimal notation—for example, “192.168.1.1.” These methods
not require specification of the target network interface and therefore apply t
default interface. All parameters that are specific to an interface, such as the
face IP address and subnet mask, have an additional setter method that allo
application to specify the interface to which the new settings apply.

public static boolean setIPAddress(String interfaceName, byte[] TocalIP)

The interfaceName parameter is a case-sensititging equal to the target
interface—"eth0,” for example. All of the preceding methods return true if -
address has been successfully set on the targeted interface.

Note that while there are a lot of network parameters listed, it is not neces
to configure each of them. In fact, it is possible to get up and running on an E
net network by setting just the IP address and subnet mask. However, if you
to be able to communicate with hosts on other networks, the default gatew:
address must also be configured. Also, if you want to be able to use real nan
well as just IP addresses when creating instancesGf.net.InetAddress,

Setting Network Parameters 119

you'll have to set at least the IP address of the primary DNS server. It boils dov
to a question of how much networking capability is required by your applica
tion(s). We'll cover additionalININet methods used for network configuration as
the need arises.

5.2.1 Committing Static Network Parameters

The network parameters are stored in a special system area just beneath the
bage collected heap. By default, they persist across system reboots. However
application can force the entire RAM, including the system area, to be clear
during the boot process. This provides a known, reliable state to allow the syst
to boot, but it also wipes out all network configuration information. This is not al
issue for applications that use DHCP (described in the next section) to obtain th
network parameters, but it is fatal for systems that rely on statically configure
network information. TheriNINet class provides a commit/restore mechanism
that allows network parameters to be stored in flash ROM as well the RAM sy
tem area. Use of the commit/restore capability assures that an application ¢
always boot up with network access.

The commitNetworkState method that follows copies the configuration infor-
mation for all network interfaces into a reserved space in flash memory. On bc
any change that is detected in the network parameters causes the configura
information to be restored to its exact state at the time the commit operation w
executed.

public static void commitNetworkState() throws CommitException

Before invokingcommitNetworkState, an application should set a minimum
of the IP address and subnet mask for the default (typically ethO) interface.
application can determine whether a commit operation has been performed us
the getNetworkCommitState method.

public static int getNetworkCommitState()

It returns one of the following integer constants, also defin@tiirNet.

public static final int UNCOMMITED
public static final int COMMITTED
public static final int RESTORE_DISABLED

If commitNetworkState has never been invokedetNetworkCommitState
returnsUNCOMMITED. In this case, the commit/restore functionality is not used or
system reboot, and all network parameters are left unchanged. This is the o
state in which a call t@ommitNetworkState iS guaranteed to succeed. If the
persistent memory technology used is the Flash ROM, the network paramet
may be committed only once without reloading the flashed application. In tf

120 Chapter 5 TCP/IP Networking

future, external memory devices may be used to provide alternate stora
support of multiple commit operations. If an attempt to commit netw
parameters is made and the underlying persistent storage can be written
once,commitNetworkState will throw aCommitException.

An application can override the system’s network restore operation using
disableNetworkRestore method.

public static void disableNetworkRestore()

This allows the application to make changes to the network parameters
out the operating system overriding them on every reboot.

Finally, an application can determine whether a restore operation wa:s
quired during the last system boot using gaeBootState method in therInIos
class.

public static native int getBootState()

The value thatyetBootState returns is an integer that encodes inform:
tion about the state of the system during the boot process. The boot
value is the bitwise-or of several possible bit masks. To extract the netv
restore bit, the returned value frogatBootState is bitwise anded with the
NETWORK_CONFIGURATION_RESTORED mask defined irmInIos. If the result is
non-zero, then the network parameters were copied from the ROM to the F
system area during the system boot. This can serve as a warning that per
data in the heap may have been damaged, forcing the restore operation.

The network commit/restore capability can be tested using slush without \
ing a line of code or running any other applications. First execut¢pthafig
command with no command line parameters. The last line displayed st
whether the network parameters have already been committed.

TINI /> ipconfig

Restore From Flash: Not Committed

Next, use theipconfig command to configure your static network setting
After verifying that the settings are correct, you caniitonfig again, but this
time supply the-C option. You should see the following output.

TINI /> dipconfig -C
Network configuration committed to flash memory

If you were to run this exact command a second timenfig would display
an error message due t@amitException. Finally, use the feboot -a” com-
mand to reboot and force both the heap and system area to be cleared. Wh
system boots, slush usgsBootState to determine whether the network param

Setting Network Parameters 121

ters were restored. Immediately after logging on you should see output similar
the following.

[Thu Feb 01 21:00:05 CMT 2001] Message from System: Network recovery
routines have run.

Executingipconfig one final time, you can verify that the network settings are
identical to those committed prior to the heap clearing reboot.

5.2.2 Dynamic IP Configuration Using DHCP

The previous section dealt with directly setting static network configuratiol
parameters using thaNINet class. It is possible, under certain circumstances, tc
write your application so that it can dynamically obtain required network param
ters using the Dynamic Host Configuration Protd¢®HCP). A DHCP client
can obtain several network parameters without knowing anything other than
own Ethernet address in advance. DHCP is an extension of the BOOTP proto
that was designed to allow a diskless workstation to boot, determine its netwc
configuration information, and download a binary image of its operating syster
One of the big improvements with DHCP is that IP addresses are assigned dyn:
ically from a predetermined pool of available addresses.

When a client boots, it issues a DHCPDISCOVER message, looking for
DHCP server. The discover message is a broadcast message that means that
host on the same physical network as the client receives the message. It cont
information describing the network parameters requested by the client. If a DHC
server is available and it receives the message and chooses to respond to the
cover message, the server will respond with a DHCPOFFER message. The o
contains a set of network parameters the server is willing to let the client use. T
client inspects the contents of the offer and, if acceptable, transmits a DHCPFR
QUEST message to the server. After receiving the request, the server transmi
final acknowledgment to the client.

It is possible that multiple DHCP servers can respond to the clients discov
message. In this case, the client chooses the offer it likes and issues a reque
only that offer. DHCP servers that made the offers that weren’t selected by the «
ent are notified of this rejection because the request message is also broadca:s
the case of TINI's DHCP client implementation, the offer that it chooses is th
first offer that contains at least an IP address and subnet mask.

At this point the client has successfully “leased” the IP address from th
server. With no further involvement from the client, however, the lease will expir
and the server will allow the IP address to be vended to another client at a la
time. This prevents IP addresses from being permanently consumed by clients t

3. The current version of DHCP is defined in RFC 2131.

122 Chapter 5 TCP/IP Networking

have “gone offline” for whatever reason. The amount of time for which the le
is valid is determined during the negotiation phase. To maintain its lease, th
ent periodically sends DHCPREQUEST messages with the same content ¢
initial request message.

The description above assumed everything went perfectly; there was at le
DHCP server running on the network, and all messages transmitted were rec
by their intended recipient. But DHCP requests and responses travel within
messages, and since UDP provides an unreliable datagram delivery service,
the messages previously mentioned may fail to reach the intended recipient
details about how messages are retried and how this affects the DHCP clien
machine are all handled internally by the DHCP client. TINI's client does, h
ever, notify the application of important changes in state, including repeated
ures when attempting to lease network configuration parameters.

If you're running slush, you can use DHCP to configure your network setti
by using theipconfig command with thed option. An IP lease can be relin:
guished nicely (without the lease expiring) at any time usipgohfig -r.” For
normal development purposes, your application can remain blissfully unawal
whether the network settings were obtained statically or dynamically. Howeve
your application is to acquire the network settings using DHCP, it will need to ¢
the DHCP client and process a few different types of events to ensure that th
working portion of the application can execute properly. The rest of this sec
describes how to interact with TINI's DHCP client from within an application.

The DHCP client is implemented by the following two classes in t
com.dalsemi.tininet.dhcp package.

« DHCPClient
« DHCPListener

DHCPClient runs as a separate thread of execution that acquires and mair
a lease on an IP address. It spends the vast majority of the time sleeping, w
only to renew the leased IP address. The sleep time is typically hours or
days. So onceHcpClient has leased the IP address, it imposes very little ov
head on the overall system.

Both bHCPClient constructors require an instance of a class that impleme
the DHCPListener interface. The listener is notified of important changes in f
DHCP client’s internal state machine.

public DHCPClient(DHCPListener Tlistener) throws ITlegalStateException
public DHCPClient(DHCPListener Tlistener, byte[] serverIP, byte[] TlocalIP)
throws IT1legalStateException

The first constructor is used to obtain a new lease on a new IP address
second constructor requires the IP address obtained during a previous exe

Setting Network Parameters 123

of the DHCP client. This is typically the IP address acquired before the last tin
the system was rebooted. The serverlP array contains the IP address of the se
from which the client (or local) IP address was leased. Both byte arrays requ
the most significant byte of the IP address to be stored in big-endian fashion w
the most significant byte of the address in array element 0 and so on. If this cc
structor is used, the client will attempt to renew a lease on the specified IP addr
rather than obtain a new lease on a (possibly) different IP address. If the pre
ously leased IP address is available, the renew operation will likely succeed.
however, while the client was not executing—and therefore not maintaining—tt
lease, the server issued the address to a different host, it will reject the clier
attempt to renew the lease. This does not have to be fatal. The client can
stopped, and a nepHCPClient Object can be created using the first constructor
listed to obtain a new lease.

DHCPClient does not begin negotiating for an IP address until sthet
method, inherited from Thread, is invoked. After the client thread is started,
immediately sends a broadcast discover message in the forpatafgaamPacket.

The datagram requests the following parameters from any DHCP server listeni
on the network.

* An IP address

» The subnet mask

» The default gateway (router) IP address

e Primary and secondary DNS server IP addresses
* The mailhost IP address

Even if a server replies with an offer, there is no guarantee that all of tt
requested parameters will be specified in the offer datagram. For example, the 1
work on which the DHCP server is running may not have an SMTP server (ma
host) or a secondary DNS server. At a minimum, the client requires an IP addrt
and subnet mask. However, if the application is going to createaddress
objects using DNS names (Section 5.3), it will need an IP address of the prime
DNS server as well. All network parameters that are received from the server :
automatically set by the client after it receives acknowledgment of its reque
from the server. An application can check the network settings using the methc
provided in therININet class to ensure any additional parameters that it require
have been set before initiating network activity.

TheDHCPCTient thread continues to execute until dt®pDHCPThread method
is invoked.

public void stopDHCPThread()

If stopDHCPThread is invoked during a time when the client has successfully
leased an IP address, the lease is relinquished by transmitting a DHCPRELEA

124 Chapter 5 TCP/IP Networking

message to the server. The only other way the client thread halts is if a fatal
occurs in one of theatagramSockets used in communicating with the server.

TheDbHCPListener interface can be implemented by any class that wants tc
notified of important DHCP events. The interface defines the following meth
for event notification.

public void ipLeased()

public void ipRenewed()

public void ipLost()

public void ipError(String error)

TheipLeased method is invoked afteHcPClient (or simply the client from
this point forward) has successfully negotiated the lease of an IP address v
DHCP server. At this point, it is safe for the application to begin network comi
nication. TheipRenewed method is invoked every time the client thread wakes
and successfully renews the lease. This is for informational and debug pury
only. The listener is not required to perform any actiofiplrteased. TheipLost
method is invoked when the client fails to renew its lease. At this point the a
cation should close all open sockets and cease all network communication
ipError method is invoked when a serious error occurs, such as failure to re
any response from a DHCP server. Note thdtror is not invoked every time
there is a minor error in communicating with the server. Only after repe:
attempts to communicate with the server wikprClient invoke the listener’s
ipError method.

5.3 DNS

The Domain Name System (DNS) is the globally distributed database that
vides mappings between humanly readable names and IP addresses. To det
a remote host’s IP address given its name, an application uses a DNS clien
ning on the local machine to contact a DNS server, typically running on anc
host. If the server doesn’t have an entry for the specified host, it will ask anc
DNS server and so on until the name is resolved to an address or it is deter!
that no entry for that host exists.

On TINI the DNS client (also known as a “resolver”) is used primarily to st
port theInetAddress class in thejava.net package. The client is used for bot
forward lookups—mapping a name to an IP address—and reverse lookups—
ping an IP address to a nameetAddress objects are used explicitly during con
struction ofSocket andDatagramSocket objects and implicitly when using the
URL classes. On most Java platforms lookups are performed by a native DN.
ent. TINI's runtime environment, however, implements its DNS client in Ja
The client may be configured by a Java application.

DNS 125

To be able to use DNS names in creafingctAddress objects, the IP address
of the primary DNS server must be configured. The IP addresses of both the
mary and secondary DNS servers can be set programatically using the followi
methods. The server string is specified using dotted-decimal notation.

public static boolean setPrimaryDNS(String primaryDNS)
public static boolean setSecondaryDNS(String secondaryDNS)

It is also useful, but not required, to set the domain name using tt
setDomainName method.

public static boolean setDomainname(String domain)

If the domain name has been configured and host names are passed to
getByName method without specifying the domain portion of the DNS name, the
local domain name will automatically be appended before querying the server 1
the remote host’s IP address. If you have configured the domain name on y«
TINI, you can see this in action by using #i@g command and pinging another
host on the local network. Here is some sample output.

TINI /> ping win2kpc
Got a reply from node win2kpc.tinitest.net/192.168.0.3
Sent 1 request(s), got 1 reply(s)

The domain name in this example is dalsemi.com. In this gasg Wwally”
produces the same result @s$ng wally.dalsemi.com.” For application develop-
ment purposes, all three DNS-related parameters: primary server, second
server, and domain name can be set from the slush prompt usithgcthéig
command.

Performing DNS lookups can be a time-consuming process, depending
reachability of the server and how much work it has to do interacting with othe
DNS servers to complete the lookup. When theByName method of
InetAddress is used for the first time on a specified host, it can block for sever:
seconds, waiting for a response from the DNS server. A cache of successfl
resolved DNS entries is maintained in a priv@tea.util.Hashtable to avoid
unnecessary DNS requests and delay in creatisgAddress objects for which
DNS bindings already exist.

DNS requests can travel over either a TCP connectetkdt) or within
UDP message®{tagramSocket). TINI's DNS client implementation uses UDP
with a time-out and retry scheme. The retry scheme deals with the fact that Ul
is an unreliable datagram delivery service. This problem can be exacerbated
the fact that some network links come up slowly after periods of inactivity, so th
first couple of attempts to resolve a name might fail due to a time-out waiting for

126 Chapter 5 TCP/IP Networking

reply. The initial time-out value used by the client can be set explicitly using
setDNSTimeout method.

public static boolean setDNSTimeout(int dnsTimeout)

The dnsTimeout value is specified in milliseconds, but values of at leas
second (1000 milliseconds) or greater should be specified. If a non-zero tim
value is specified, the DNS client will send the request and wait for ug
dnsTimeout milliseconds for a response from the server. If no response
received, it will not retry the request. If the time-out value is set to zero, a fallk
and retry procedure will take effect. The DNS client will retry after a 2-sect
period and double the time-out value until it reaches 16 seconds. This produ
maximum four retries before the DNS client finally gives up. If during t
creation of a new instance oietAddress a forward lookup fails, either due to ¢
time-out or another DNS server error, @iknownHostException is thrown. If,
however, an error occurs trying to perform a reverse lookup, no exceptic
thrown, since the IP address is all that is required to communicate with the re
host.

The classDNSClient in the com.dalsemi.tininet.dns package implements
TINI's DNS client. It exposes public methods for performing both forward a
reverse lookups.

public String[] getByName(String name)
public String[] getByIP(String 1ip)

The getByName method performs a forward lookup, taking a host name
input. It returns an array Gkrings encoded in dotted-decimal notation represel
ing all of the IP addresses that map to that néfﬁenegetByIP method takes as
input astring representation of the IP address encoded in dotted-decimal r
tion. It returns an array of strings representing all of the host names that m
the input IP address. These methods can be used directly for name resc
without adding entries to the DNS cache maintained internallyhbyAddress.
You can interact with the raw (without going throunfetAddress) DNS client
using the slush commamdiookup. It takes either an IP address in dotted-decirr
notation or a host name as a command line parameter and performs either
ward or reverse lookup, depending on the input.

It is a simple matter to create our own “nslookup” application using just
InetAddress class. TheNsTest application is shown in Listing 5.2. It takes th
same command line input as #¥ ookup command.

4. A host name can have multiple IP addresses, and multiple host names can map to th
same IP address.

HTTP 127

Listing 5.2 DNSTest

import java.net.InetAddress;
import java.net.UnknownHostException;

class DNSTest {
public static void main(String[] args) {

if (args.length != 1) {
System.out.println("Usage: java DNSTest.tini name");
System.exit(1l);

}

try {
InetAddress[] names = InetAddress.getAl1ByName(args[@]);
for (int i = 0; i < names.length; i++) {

System.out.printin(names[i].toString());

} catch (UnknownHostException uhe) {
System.out.printin("Lookup error:'

+ uhe.getMessage());
}

The getAT1ByName method is used to generate an array of all DNS entries fo
the given input. They are displayed using tihetAddress.toString method,
which generates string containing both the host name and IP address. Befor
this example is run on a TINI, the primary DNS server IP address must be set. T
following output shows the IP address of the iButton Web server.

TINI /> java DNSTest.tini www.ibutton.com
www.ibutton.com/198.3.123.121

If we run DNSTest again but this time supply a bogus host name,
getA11ByName Will be unable to resolve the name to an IP address and will throy
anUnknownHostException.

TINI /> java DNSTest.tini bogus.aintthere.com
Lookup error:Could not find an entry for bogus.aintthere.com

5.4 HTTP

The classHTTPServer in the com.dalsemi.tininet.http package implements a
very simple HTTP server. It supports only HTTP GET requests and serves
static information contained within files at or below a specified root directory. It i
not intended to be a dedicated Web server application but rather provide HT
serving capability that an application can launch and forget aborAServer
offers reasonable performance, and the overhead it imposes on an applicatio
relatively small. The basic idea is that the server should not detract much from t
application’s foreground processing requirements.

128 Chapter 5 TCP/IP Networking

An HTTPServer Object is created using either of the following constructors.
the constructor doesn't specify the port to be used, the TCP port number de
to 80.

public HTTPServer() throws HTTPServerException
public HTTPServer(int httpPort) throws HTTPServerException

If the specified port is already in use by another thread or process, the con
tor will be unable to createsarverSocket to listen for connections on the spec
fied port and will throw amTTPServerException. The HTTP root directory and
index page default to “webroot” and “index.html,” respectively. To change th
defaults, an application can use #@HTTPRoot andsetIndexPage methods.

public void setHTTPRoot(String httpRoot)
public void setIndexPage(String indexPage)

Both of theserviceRequest methods block indefinitely waiting for an in-
bound connection from a client (for example, a browser).

public int serviceRequests() throws HTTPServerException
public int serviceRequests(Object Tock) throws HTTPServerException

The only difference between the two is that4beviceRequests method that
requires the lock parameter will synchronize on the lock before servicing
inbound connection. This method should be used by an application that wi
modifying the contents of files, at or below the Web root, from within anot
thread. Either method will cause the server to create a new thread for each re
The application typically dedicates a single thread that invokes
serviceRequests method in an infinite loop. No other action is required of tl
application foHTTPServer to continue processing client GET requests.

BecauseiTTpPServer is very small and simple by design, it doesn’'t meet eve
application’s requirements as a general purpose Web server. However, there
powerful, full-featured, commercial grade HTTP servessitten for TINI that
support the Java servlet API.

Applications that need access to information provided by Web servers us
familiar URL classes in thgava.net package. There is one additional configur
tion parameter that can be set by an application using the URL classes: a
server. Often corporate networks are protected behind a firewall and the only
HTTP requests can reach the Internet is through a proxy server. A proxy ser
simply a machine that receives requests from a client and forwards the
another server. The proxy server has special privileges to communicate with

5. One such server (TiniHttpServer), available from Smart Software Consulting, is free and
OpenSource. It can be downloaded fiiattp://www.smartsc.com/tini/TiniHttpServer

HTTP 129

outside the firewall. TheININet class provides the following methods for config-
uring the use of a proxy server.

public static boolean setProxyServer(String proxyServer)
public static boolean setProxyPort(int proxyPort)

The setProxyServer method takes the server name &3 r@ing representing
either an IP address encoded in dotted-decimal notation or a DNS name. T
setProxyPort method takes an integer value specifying the 16-bit port number o
which the proxy server receives HTTP requests. Both the server and port
persistent across system rebootssdtProxyServer is invoked with an empty
String, it will disable the use of a proxy server. By default, the URL protocol
handling classes do not use a proxy.

Listing 5.3 shows a small application that reads the contents of a UR
through a proxy server.

Listing 5.3 MiniBrowser

import java.net.*;
import java.io.*;
import com.dalsemi.tininet.TININet;

class MiniBrowser {
public static void main(String[] args) {
if (args.length != 3) {
System.out.println(
"Usage: MiniBrowser URL proxy_server proxy_port");
System.exit(1l);
}

TININet.setProxyServer(args[1]);
TININet.setProxyPort(Integer.parselnt(args[2]));

try {
URL u = new URL(args[0]);
InputStream in = u.openConnection().getInputStream();
byte[] content = new byte[512];
int count = 0;
do {
count = in.read(content);
System.out.write(content, @, count);
} while (count != -1);
} catch (Exception e) {
System.out.printin(e.getMessage());
e.printStackTrace();

130 Chapter 5 TCP/IP Networking

MiniBrowser requires that the URL, proxy server name (or IP address),
proxy port be specified on the command line. After setting both the proxy se
and proxy port, it opens a connection to the specified URL. It then reads the
tents of the URL in 512-byte blocks and displays them usiagem.out. The fol-
lowing is the output from browsing the smiadfi 1oweb application, from Section
2.6.3. In this test configuration one TINI is running He@loweb HTTP server
application and another TINI (behind a firewall) is runmingiBrowser. The only
way for HTTP requests to escape the firewall is through the proxy server ne
wally on port 576.

TINI /> java MiniBrowser.tini http://198.3.123.182/index.html
wally.dalsemi.com 576

<html>

<head>

<title>Hello Web!</title>

</head>

<body>

<h1>Hello from TINI!</hl>

</body>

</html>

The output should look familiar as it is identical to the contents of |
“index.html” file that we created to be servedHayloWeb.

5.5 ICMP

The Internet Control Message Protocol (ICMP) is the mechanism used by n
on a TCP/IP network to transfer error and control information. Even thol
ICMP messages often provide error information regarding IP datagrams,
travel encapsulated within IP datagrams. ICMP is used by routers to tran
error messages and by hosts, like TINI, to determine the reachability of a re
destination.

Unlike DNS, DHCP and the other protocols we've discussed to this poin
the chapter, ICMP is not actually an application layer protocol. ICMP is a mo
that exists in the network stack and is used to send IP control and error mes:
However, the ICMP module does provide simple native method hooks to a
Java applications to send ICMP echo requests and read the raw ICMP resj
Nearly every host on a TCP/IP network provides an application named “ping”
uses ICMP’s echo request/reply mechanism to determine the reachability of
network nodes. When a machine receives an ICMP echo request from a re
host, it responds with an ICMP echo reply message that contains an exact c«
the request packet data.

The pingNode method as follows effectively provides one bit of informatiol
if the remote node was reachable. It can be used to programmatically detel

ICMP 131

whether just a particular service running on the remote host has died or whetl
the host machine itself has become unreachable on the network, providing
more precise error reporting.

public static boolean pingNode(InetAddress addr)

It transmits a single ICMP echo request message to the node specified by a
and waits for a response. The time-out period is about 500 milliseconds. It retut
true if a reply is received within the time-out period afglise otherwise.
Because IP provides an unreliable datagram delivery service, ICMP messages
not guaranteed to reach their destination. So one failyrm@fode does not nec-
essarily mean a node has become unreachable. Multiple successive failu
reported bypingNode, however, dictate, with a high probability, that it has indeed
gone “off line.” A remote host can become unreachable for several reasor
including a failure with the remote host itself or persistent problems with one «
more routers between the hosts. HiegNode method used by the slughng
command.

There is anothesingNode method that is crude and more difficult to use but
provides much more information. It can be used to perform some reasonal
sophisticated network analysis.

public static long pingNode(InetAddress addr, byte ttl, byte[] response)

This version obingNode requires two additional parameters: th& param-
eter specifying the time to live field in the IP datagram header of the outbour
ICMP echo request and a byte array that is filled in with the entire IP datagrs
received in response to the echo request. The response array should be of le|
128 or greater to avoid amrrayIndexOutOfBounds exception. The method
returns the time, measured in milliseconds, between transmitting the ICMP ec
request message and receiving a response. The response is typically (but
always, as we’ll see later) an ICMP echo reply. If no response is received pri
to the time-out periochingNode returns —1. The round-trip time (RTT) estimate
is measured in the native network stack and is therefore reasonably (withir
few milliseconds) accurate. Any inaccuracy is on the high side, and therefo
the return value opingNode provides an upper bound on the true round-trip
time.

To understand how to make full use of this method, we’ll have to dig a little
deeper into the format of the IP datagram header as well as the format of cert
ICMP messages. We will cover just enough of the details to be able to parse
response array and extract useful information. The remainder of this section
fairly technical and can be skipped by readers not interested in the low-lev
details of ICMP. Figure 5.2 shows the overall format of an ICMP message ence
sulated within an IP datagram.

132 Chapter 5 TCP/IP Networking

IP ICMP
Header |Header

ICMP Data

[
IP Data Area

Figure 5.2 ICMP message within an IP datagram

The ICMP header begins immediately following the IP header. The struc
of the IP header is shown in Figure 5.3. The exact length of the IP header c
determined by examining its first byte. The IP version number and header le
in 4-byte words, are combined in the first byte. The version number is conta
in the most significant nibble (4 bits), and the header word length in the leas
nificant nibble. So a byte value of 0x45 tells us that the IP version is 4 anc
header is 5*4 or 20 bytes in length. At the time of this writing, TINI's netwc
stack and the Java platform only support IP version 4. However, due to the r
limited number of IPv4 addresses, both will undoubtedly support IP version
the near future. The length of the entire IP datagram, including headers, is r
sented by the 16-bit value starting at byte offset 2 in the IP header. This repre
the total number of bytes copied into the response array passegnNoede.

After computing the IP header length, we can extract the TYPE byte from
ICMP header. The format of an ICMP header is shown in Figure 5.4. As the r
implies, the TYPE byte specifies the type of ICMP message, providing infor
tion as to how the ICMP data should be interpreted. Initially, we’ll focus on t
types: echo request (8) and echo reply (0). Wi@gNode is invoked, an ICMP
message is transmitted to the remote host with the type byte set to 8. Unde
mal circumstances we expect to get a reply from the remote host with a type
of 0.

V/HL .. TL e TTL cee Src addr | Destaddr | Opt...

0 1 2 4 8 9 12 16 20

V/HL—IP version and header length

TL—total length of IP datagram including header
TTL—time to live (hop count)

Scr addr—source IP address

Dest addr—destination IP address
Opt—optional header data (if any)

Figure 5.3 |IP datagram header

ICMP 133

The code field in the ICMP header specifies additional information about tt
type. For echo reply and echo response types, there are no code values defi
and this field will always be 0.

The other ICMP type of interest is TIME_EXCEEDED (11) and is generate
by a router when the time to live (TTL) field of an IP datagram reaches 0. The T1
field is byte offset 8 in the IP header (see Figure 5.3). The time to live value is oft
called the hop count and represents the maximum number of routers a datag
can pass through before it expiPeEvery time a datagram passes through a router
the TTL value is decremented by 1. When a router receives a datagram witha T
of 1, it (logically speaking) decrements it to 0, discards it, and sends an ICMP tir
exceeded message to the host that transmitted the original dafagram.

Type Code Checksum
0 1 2

Figure 5.4 ICMP header

By explicitly manipulating the TTL field, we can determine the route a data
gram travels when transmitted from the local host to the remote destination. If t
TTL field of an outbound ICMP echo request message is set to 1, the mess:
cannot leave the local network. If the message is destined for a host on anot
network, the message will be sent to a router, and, since the TTL is 1, the rou
will generate an ICMP TIME_EXCEEDED message. When the local machin
receives the TIME_EXCEEDED message, it can extract the router’s IP addre
from the source address field of the IP header. Now we know the address of
first router along with an estimate of how long it took to get a response. This pr
cess is repeated with a TTL of 2, yielding the IP address of the second router ¢
so on. Eventually the TTL is set high enough to allow the datagram to be del
ered to its final destination. After receiving the final ICMP echo reply, we have tr
addresses of all routers and estimates for the amount of time required for a d:
gram to traverse each network segment.

A couple of additional points should be mentioned here. First, you may &
unable to ping certain machines on the Internet at all because some hosts d
process ICMP echo requests due to certain types of attacks such as denial of
vice attacks that attempt to flood a host with ICMP messages, making its respol

6. Older specifications of the behavior of routers dictated that the TTL should be decre-
mented by 1 for each additional second that a router held on to the datagram. Many
routers ignored this requirement and treated the TTL strictly as a hop count. Later ver-
sions of the specification relaxed this requirement, making it optional.

7. Under normal circumstances, TIME_EXCEEDED messages will only be seen when
there is a “routing loop.”

134 Chapter 5 TCP/IP Networking

much slower when processing other network messages. Also, the route tak
successive datagrams to the same destination may differ, and the time requi
reach a remote host can vary dramatically from datagram to datagram, depe
on network congestion. Finally, note that it is not a requirement to use ICMF
the purpose of tracing a route. In fact, older versions of the ICMP speciff-’tat
stated that no ICMP error messages were to be generated in response to &
ICMP message. This was to avoid network congestion caused by endless loc
error messages. However, the specification was changed to allow routers tc
TIME_EXCEEDED messages in response to echo request messages. The
result can be accomplished using UDP messages. Older implementations
UNIX traceroute utility used UDP messages with a high, and hopefully bog
value for the remote port number. The same TTL scheme described previou
used to solicit the ICMP TIME_EXCEEDED messages from the routers,
finally, when the UDP message reaches its ultimate destination, the remote
generates an ICMP PORT_UNREACHABLE message. This is not terribly cle
however, as it assumes that no application on the remote host is listening for
messages on the “bogus” port number.

Armed with the information from the previous discussion, we can now pe
the response array filled in by thimgNode message. Theinger example, shown
in Listing 5.4, usegingNode to create a ping type of application that is muc
more useful than the slush ping command. It requires the remote node, numl
ICMP echo requests to be transmitted, and the TTL for the echo requests
specified on the command line.

Listing 5.4 Pinger

import java.net.¥;
import com.dalsemi.tininet.icmp.Ping;

class Pinger {
static final int ICMP_ECHO_REPLY
static final int ICMP_TIME_EXCEEDED

0;
11;

public static void main(String[] args) {

if (args.length != 3) {

System.out.printin(
"Usage: java Pinger.tini node count max_hops™);

System.exit(1l);

}

try {
InetAddress addr = InetAddress.getByName(args[0]);
int count = Integer.parseInt(args[1]);
int ttl = Integer.parselnt(args[2]);
byte[] response = new byte[256];

8. ICMP is specified in RFC 792.

for (int i =0
long rtt =
if (rtt ==
System

} else {

ICMP 135

;1 < count; i4+) {
Ping.pingNode(addr, (byte) ttl, response);
- {

.out.printin("No response from host:"+args[0]);

// Compute length of IP header
int ipHdrLength = (response[0] & Ox0f)<<2;
int type = response[ipHdrLength];

switch

(type) {

case ICMP_ECHO_REPLY:

int sequence = ((response[ipHdrLength+6] &
OxFF) << 8) +
(response[ipHdrLength+7] &
OxFF);
System.out.printin("Reply from:"+
addr.toString(Q+
"An "+rtt+"ms"+
ttl="+
(response[8]&0xff)+
" sequence="+sequence);

break;

case ICMP_TIME_EXCEEDED:

// Hack out the source IP address and

// convert to a String.

StringBuffer sb = new StringBuffer(15);

for (int j =0; j < 4; j++) {
sb.append(Integer.toString(

response[12+j] & Oxff));
if (G < 3) {
sb.append(’.");

b

}

System.out.println(
"Time exceeded message from:"+
InetAddress.getByName(sb.toString())+
" dn "+rtt+"ms");

break;

default:

}
}
try {

System.out.printin(
"Unexpected ICMP message type: "+type);
break;

Thread.sTeep(1000) ;
} catch (InterruptedException ie) { }

}

catch (UnknownHostException uhe) {
uhe.printStackTrace();

}

136 Chapter 5 TCP/IP Networking

If pingNode returns a negative value, then the specified remote nod
unreachable. Any nonnegative return value indicates that some type of me
was received in response to the outbound ICMP echo request message a
response array contains an |IP datagram carrying that responge. computes
the length of the IP header and uses that value as an offset to extract the
type byte. The only two types processed Hiyiger are ECHO_REPLY and
TIME_EXCEEDED.

If we're just trying to determine the reachability of another network no
we'd typically set the TTL to a large value such as Oxff to give the echo req
message the best chance to reach its destination. If the message is an ech
Pinger displays the round-trip time, the sequence number, and the TTL of
response. The sequence number is a 16-bit value assigned by the native
module immediately following the ICMP header in an echo request or reply.
network stack uses this value along with another 16-bit value known as the |
tifier to match echo requests with replies. The following is sample output fi
pinging the remote node “www.awl.com” from a TINI with global Interne
access.

TINI /> java Pinger.tini www.awl.com 3 255

Reply from:www.awl.com/204.179.152.52 in 65ms tt1=244 sequence=0
Reply from:www.awl.com/204.179.152.52 in 64ms tt1=244 sequence=1
Reply from:www.awl.com/204.179.152.52 in 64ms tt1=244 sequence=2

The TTL specified for the outbound echo request messages is 255, s
expect that if the node is reachable at all, it should receive the request and ¢
reply. In fact all three echo requests generated replies from the remote node
the round-trip times were all about the same. We're not sure what the initial
value was set to by the remote machines network stack, but 255 (0xff) is a
good bet, since this is a common value used for echo request and reply mes
If this is the case, then the fact that the datagram’s time to live when it reache
local machine is 244 suggests that it passed through 11 routers on its way fro
remote to the local machines.

Now we can play around a bit with the TTL value and begin to trace the r
between the local TINI and the remote host. Fheyer output for TTL values of
1 and 2 are as follows.

TINI /> java Pinger.tini www.awl.com 1 1

Time exceeded message from:gte-ds1-bvi4.fastlane.net/209.197.224.237 in
23ms

TINI /> java Pinger.tini www.awl.com 1 2

Time exceeded message from:dallas.tx.corel.fastlane.net/209.197.224.1 1in
23ms

So the IP addresses of the first two routers encountered by datagrams
eling between the local host and the destination are 209.197.224.237

ICMP 137

209.197.224.1, respectively. We can continue this process until we get an ec
reply from the final destination node (204.179.152.52). Pinger can easily be mc
ified to automate this process and generate the names and IP addresses o
intermediate routers as well as the time required to pass through each netw
segment, turning it into a full-blown traceroute type of utility.

CHAPTER 6 DiaI'Up
Networking
Using PPP

In Chapter 5 we touched on PPP (Point-to-Point Protocol) over serial as one of
network interface types supported by TINI's runtime environment. PPP is actual
a very general purpose protocol that supports data transfer over many differ
physical media, including (but not limited to) serial, parallel, and Ethernet. O
TINI, however, PPP is currently used strictly as a transport mechanism for IP d
agrams over a serial link. In the native network stack, PPP exists below the
module and above the serial port drivers. To an application developer PPP
exposed through Java classes in dbie dalsemi.tininet.ppp package. One of
the more compelling aspects of using PPP on TINI is that both endpoints of t
connection can be communicating with analog phone line modems. This allo\
for the development of remote embedded networking applications for deployme
in areas where an Ethernet network is not available but the vast phone switch r
work is.

6.1 THE PPP APl CLASSES

The PPP API provides a fairly thin wrapper on the native PPP modules. Tr
allows application developers to choose their own mechanisms for authenticatic
physical link configuration (that is, control of modem vs. hard serial link) and prc
vides for fine-grained control of error handling. Once a PPP connection has be
established, the rest of the networking is business as usual, based on the class

139

140 Chapter 6 Dial-Up Networking Using PPP

the java.net package and possibly TINI's networking extensions presentec
Chapter 5.

Unless otherwise specified, the methods mentioned in this section are de
in the PPP class. APPP object is used to control and monitor the state of a P
connection. An application that create®r® object must provide a listener tc
receive notification of PPP events. A listener is an instance of a class
implements thePPEventListener interface. Listeners can be added or remov
usingaddEventListener andremoveEventListener, respectively.

public void addEventListener(PPPEventListener listener)
throws TooManyListenersException
public void removeEventListener(PPPEventListener Tistener)

PPPEventListener defines the methodppEvent. This method is invoked
whenever important state changes occur in the underlying PPP layer and re
attention from the listener. The listener is passeePavent object that encapsu-
lates the event type and any error information. Jéx€ventType method returns
the event encoded as an integer.

public int getEventType()

The types of events and their meanings are discussed in Section 6.2.

Part of the overall process of establishing a PPP connection is the logil
authentication) information. For this purpose TINI's PPP implementation c
rently only supports the most basic authentication protocol used with PPP, kr
as Password Authentication Protocol (PAP). PAP passes both the user narr
password over the physical data link in clear text. To set login information tc
used to authenticate TINI to a remote peer, d¢tfPassword and setUsername
methods are used.

public void setPassword(String password) throws PPPException
public void setUsername(String userName) throws PPPException

To request login information from the remote peer, i{h€Authenticate
method is invoked with a value efue.

public void setAuthenticate(boolean value)

This causes PPP to generate\@THENTICATION_REQUESTED event when login
information is received from the remote peer. This is examined in more dete
the next section. PPP is a peer-to-peer protocol and therefore doesn’t hay
notion of a client or server. Both sides of the communication are equal anc
request authentication information from the other. In a typical configuration c
one peer requests authentication information, and in the case that the phon
work is being used, this is often the same peer that answers the phone. We'll

The PPP API Classes 141

to this node as the authenticating peer. In the next chapter we’ll implement a P
daemon that acts strictly as an authenticating peer. However, the PPP API is st
ciently flexible to allow for the creation of a general purpose PPP daemon.

Before the connection can support IP traffic, the IP addresses of both pe
must be established. Both the local and remote peer IP addresses can be set
the following methods.

public void setLocalAddress(byte[] address)
public void setRemoteAddress(byte[] address)

Both methods require yte array containing the IP address in big-endian
byte ordering. If a remote address is specified, it will be vended to the remote p
during address negotiation. If a remote address is specified, the local address r
also be specified, and both addresses should be on the same network. If the |
address is set and the remote peer attempts to vend a different adstesesm
event will be generated and the negotiation of the PPP connection halts. If t
local application is connecting to a dial-up server, it is not required to set eith
the local or remote address. In this case, it is expected that the remote peer !
vend the local IP address.

After creating aPPP object, an application will typically set a new value for
the asynchronous control character map (ACCM) used by the native PPP imp
mentation.

public void setACCM(int newACCM)

The setACcM method takes an integer that contains a bit map of the characte
to be escaped. If a bit in a specified position is 1, the corresponding characte
escaped; otherwise, it is transmitted normally. For example, an ACCM value
0x80000001 would escape only characters 0 and 31. By default, during link neg
tiation PPP instructs the remote peer to escape all characters between 0
0x1f—in other words, the default ACCM of fif#fff. Since you’ll most often be
working with physical links capable of receiving arbitrary binary data, the ACCN
should be set to 0. This will allow for more efficient data transfer because it wi
avoid the unnecessary transmission of escape characters. One important exceyf
to this occurs when the use of software flow control (often referred to as XOI
XOFF flow control) is specified with the underlying serial port. In this case, th
software flow control characters XON (17 decimal) and XOFF (19 decimal) mu:
be escaped. This yields an ACCM of 0xa0000. If XON/XOFF flow control is to b
used, theetXonXoffEscape method must also be invoked.

public void setXonXoffEscape(boolean value)

When invoked with a value afrue, the setXonXoffEscape method notifies
the local PPP interface to escape the XON/XOFF characters.

142 Chapter 6 Dial-Up Networking Using PPP

Another option that an application may want to configure before attemptin
establish PPP connections is passive mode. Passive mode can be enabled
abled using theetPassive method.

public void setPassive(boolean value)

The passive mode option affects the earliest phase in connection esta
ment: Line Control Protocol (LCP) negotiation. The native LCP module atten
to initiate a connection by sending a configuration request message. It will
for a certain amount of time for the remote peer to acknowledge receipt o
message. If no acknowledgment is received, LCP will time out and send the
figuration request message again. The retry count is finite, however, which n
if no remote peer is actually receiving the message, PPP will time out and g
ate asTOPPED event. Passive mode disables this time-out. LCP will just wait inc
initely for a remote peer to transmit its own configuration request message.

Passive mode should not be enabled when modems are being used to es
the physical data link. In this case, LCP negotiation doesn’t begin until
modem connection has been established. The time-out is required to notif
application that the remote peer is not responding. However, in a configur:
where a raw serial port is being used in an environment where devices com
go—handheld computers such as a Palm Pilot, for example—the applicatior
no way of knowing when a device will be attached to the serial port. In this ¢
the use of passive mode frees the application from having to pretEsED
events and restart PPP. When a device eventually attaches to the port, it will
mit a configuration request message, the local LCP module will acknowledge
message, send its own configuration request, and the rest of the connection r
ation will continue in the normal fashion.

After using these methods to configure the PPP session to meet its re
ments, the application invokes thgn method.

public void open()

At this point the listener will start receiving PPP events.

6.2 PPP EVENTS

When aPpp object is created, it starts a daemon thread to listen for events ir
native PPP module. This thread generates the events that notify PPP event li
of important changes in the state of a PPP connection. The following events g
ated by the daemon thread are defined as integer constantsrpeth@t interface.

» STARTING
« AUTHENTICATION_REQUESTED

PPP Events 143

- UP
- STOPPED
. CLOSED

6.2.1 STARTING Event
A STARTING event is generated by the application invokingoge method.

public void open()

The STARTING event provides the application with a chance to bring up the phys
cal communication link. At a minimum this involves initializing the serial port
that will be used by all PPP traffic. If a modem is attached to the serial port, tl
application also initializes the modem and either instructs it to dial a remo
modem or waits for the modem to answer an incoming call. After the physic
communication link has been established, the application invokesg thethod.

pubic void up(SerialPort port) throws PPPException

The application passes a reference to the serial port that will be used for P
traffic. At this point, PPP assumes exclusive use of the port. Any other attempt
read from or write to the serial port could disturb the PPP connection and w
most likely result in #TOPPED event being generated.

6.2.2 AUTHENTICATION_REQUESTED Event

The AUTHENTICATION_REQUESTED event is generated if theetAuthenticate
method is invoked with the paramet@fue equal totrue. This will cause PPP to
request authentication information from the remote peer during its negotiation
the connection. This gives the application a chance to verify the login informatio
The getPeerID andGetPeerPassword methods as follows can be used to retrieve
the remote peer’s login data.

public String getPeerID()
public String getPeerPassword()

After the application examines the login information, it invokes this authenti
cate method.

public void authenticate(boolean valid)

If the login information is correct, a boolean value tefie is passed to
authenticate. In this case, PPP continues its negotiation of the connection. If tr
login information is invalid, the application invokesthenticate, passing a
boolean value ofalse and causing PPP to reject the clients connection reque:
and generate STOPPED event.

144 Chapter 6 Dial-Up Networking Using PPP

6.2.3 UP Event

If the connection is successfully established, the notifier thread generates
event. At this point, the PPP connection is established and is ready for IP net
traffic. However, the application must invoke Huginterface method before the
TCP/IP stack will recognize the new PPP connection as a valid network inter

public void addInterface(String name, boolean default)

The name passed #@dInterface is typically formed by appending the num
ber of the serial port being used for PPP traffic to the lowesaseg “ppp.” So,
for example, if serial port O is being used, the new PPP interface will be na
“ppp0.” The name passed te@ldinterface is the same interface nhame that |
viewed when using theipconfig -x" slush command. Iflefault is true, the
new interface will become the default network interface for the entire system.

6.2.4 STOPPED Event

The sTOPPED event is typically generated in response to an error condition. S
of the possible sources of errors include problems negotiating connection op
rejection of authentication information, or the remote peer explicitly closing
connection. The source of the error can be determined by invoking
getLastError method on thepPEvent object passed to the listener.

public int getLastError()

ThepppPEvent class defines the following integer constants used to detect €
types.

*» NONE—NOo error condition exists.

+ ADDR—One (or both) of the IP addresses could not be negotiated.

» AUTH—The remote peer rejected the local peer's authenticat
credentials.

* TIME—LIink negotiation timed out.

« REJECT—Link options were rejected by the remote peer.

Typically, the listener increments an error (or retry) count. The listener
use a combination of the retry count and the error information to determine
difference between transient and persistent (or fatal) problems. If a persi
problem occurs, the listener may choose to notify the application of the fai
rather than trying again to establish a connection. Regardless of the source
error, the listener invokes tli@ose method to allow PPP to shutdown the conne
tion and generate@O0SED event.

public void close()

PPP Events 145

6.2.5 CLOSED Event

After receiving aCLOSED event, the listener frees any resources that were cor
sumed establishing the connection. THagoveInterface method is invoked by
the listener if anip event was previously generated, causing a new network inte
face to be added to the system.

public void removeInterface(name)

TheremoveInterface method takes the sarsering value that was passed to
addInterface duringUP event processing. After removing the interface, the lis-
tener invokes th@own method to force PPP to relinquish any claim to the seria
port. This makes the serial port available to the rest of the application.

public void down()

At this point, the listener may choose to invelen to attempt to establish a
new connection.

Handling PPP events and dealing with error recovery can be fairly compl
cated. The next chapter presents a remote data logging application that uses
to allow remote machines to dial in and upload a log file. This example mak
extensive use of the PPP API and should help to clarify the concepts presente
this chapter.

CHAPTER 7 BUiIding a
Remote Data
Logger

7.1 DESCRIPTION

This chapter presents a comprehensive example intended to provide some ins
into writing powerful networked applications that take full advantage of big net
working capabilities provided by this little computer. TINI will be put to work as a
network status reporting device. We'll create a complete example that captul
and logs data and implements a TCP/IP network server, making the data availa
to remote clients. Ultimately, the server will accept connections over both Ethe
net and the PSTN (Public Switched Telephone Netwaikjng PPP to manage
dial-up connections. Support for dial-up networking is primarily what will make
the data logger truly remote. This allows access to any client computer anywhe
in the world with Internet access without requiring the presence of an Etherr
network at the data collection site. It assumes nothing more than a serial mod
and a connection to the public phone network.

The actual data collected by the application isn’t terribly important. The mai
point is that we can collect information from some sensor or other physical devi
(or possibly multiple devices) and upload it to any interested client over a TCP/
network. For this reason we’'ll try to keep the framework used for data collectic
relatively general purpose and reusable to allow for collecting data from oth

1. Also commonly known as POTS (Plain Old Telephone System).

147

148 Chapter 7 Building a Remote Data Logger

types of devices. However, to make the finished example reasonably con
we’ll need some real data to sample. For this purpose we can recycle our
from the 1-Wire Networking chapter in which we created a humidity and tem
ature sensing circuit and an accompanying Java class.

The data logging application consists of several classes. The class that
tains themain method is in a class namesdtaLogger. We will also refer to the
entire application asbatalogger,” as this is the name of the binary that will b
executed on TINI.

ThebatalLogger example will combine three different concepts from this al
two previous chapters.

» TCP/IP networking
» Serial communications
» 1-Wire networking

Since thebatalLogger example is rather large, it will be broken down into tt
following steps.

1. Creating the network server. The TCP/IP server will be implementec
the main class namexhtalogger. The server will be implemented in &
multithreaded fashion and will handle all inbound connections over
Ethernet network and eventually over the phone network using a moa

2. Implementing the data collection classes. These classes will be resp
ble for collecting and managing the data samples as well as writing
results to an output stream to the client.

3. Develop a test client application. After completing these first two ste
we’ll have enough functionality to test an intermediate version of
DatalLogger application over an Ethernet network only.

4. Adding dial-up networking support. Create a class to manage PPP
nections.

5. Managing the serial data link used for PPP communications. W
develop a set of classes that deal with all of the issues of communic:
with both a raw serial port and a modem attached to a serial port.

6. Testing the application. Finally we’ll be able to test the entire applicat
with a sample client downloading the data log over both an Ethernet
work and the PSTN.

Because th@ataLogger example is fairly large, the following sections om
portions of the source code. However, all of the source code fontheogger
application is provided in the accompanying CD.

The DatalLogger Class 149

7.2 THE DATALOGGER CLASS

We'll start by exploring the main class of the applicatitalLogger. DatalLogger
implements the network (TCP/IP) server and accepts and manages inbound c
nections from remote clients. A skeleton of thealogger class including its
constructor is shown in Listing 7.1. TinataLogger class extendShread and
overrides theun method, making it the server’s main loop. The primordial threac
is allowed to die after successful initialization of the application.

During construction obatalLogger an instance ofiumiditylLogger is created
specifying the sample count and delay time in seconds between samples. After
logger thread is started, thetaLogger thread is not concerned with the operation
of the logger or even what kind of data it is collecting. It maintains a reference
the logger object that is used to satisfy log requests for inbound client conne
tions. We'll cover the data collection classes in detail in the next section.

Listing 7.1 DatalLogger

import java.io.*;
import java.net.*;

class DatalLogger extends Thread {
é%étic final int SERVER_PORT = 5588;
HumiditylLogger logger;
Datalogger(int samples, int delay) throws LoggingException {
// Create and start the Togging daemon

logger = new HumidityLogger(samples, delay);
logger.start();

DatalLogger requires the number of data readings to be maintained and tt
delay in seconds between each reading to be specified on the command |
Datalogger’s main method is shown in Listing 7.2.

Listing 7.2 DatalLogger’s main method

public static void main(String[] args) {
System.out.println("Starting DatalLogger ...");
if (args.length != 2) {
System.out.printin("Usage: java DatalLogger samples delay");
System.exit(1l);

150 Chapter 7 Building a Remote Data Logger

}

int samples = Integer.parselnt(args[0]);

int delay = Integer.parseInt(args[1]);

try {
(new DatalLogger(samples, delay)).start();

} catch (Exception e) {
System.out.printin("Error creating data Togger");
e.printStackTrace();
// In case any non-daemon threads have been started
// System.exit(l);

After extracting thesamples andcount values from the command line, the
main method creates a newtalogger object, which also creates a new thread
execution. After constructing the new instanceadhlLogger, thestart method is
invoked to kick off the server.

The server spends eternity in the method, processing network connection
Datalogger’s run method along with the inner clagsgworker is shown in
Listing 7.3. It starts by creating serverSocket object to listen for inbound
connections from remote clients. TRERVER_PORT number used in creating the
ServerSocket object is simply chosen as a large magic number. Anything the
comfortably above the range of “well-known p8rt’humbers will do. As
implemented heraatalogger uses a port number of 5588. The application col
easily be modified to use a port number specified on the command line.

Listing 7.3 DatalLogger’s run method

public void run() {

ServerSocket ss = null;

try {
ss = new ServerSocket(SERVER_PORT);

} catch (Exception e) {
e.printStackTrace();
// Abort if we can’t create ServerSocket instance
return;

}

while (true) {

Socket s = null;

try {
// Wait for client connections over PPP or Ethernet
s = ss.accept();

} catch (IOException joe) {
// Shut down the logging daemon
logger.stopLogging();
System.out.printin("Fatal problem with server socket™);

2. The well-known ports are listed in RFC 1700.

The DatalLogger Class 151

ioe.printStackTrace();
// Fall out of run method
break;

}

// Create a new thread to handle this connection
(new LogWorker(s)).start(Q);

}

private class LogWorker extends Thread {
private Socket s;

private LogWorker(Socket s) {
this.s = s;

}

public void run() {
DataOutputStream dout = null;
try {
dout = new DataOutputStream(
new BufferedOutputStream(s.getOutputStream()));
Togger.writelLog(dout);
dout.flush();
} catch (IOException ioe) {
System.out.printin("I/0 error writing log data");
ioe.printStackTrace(Q);
} finally {
try {
s.close();
dout.close();
} catch (IOException e) {}

After the ServerSocket object is created, theun method enters an infinite
loop that accepts and processes inbound client connections. After a new insta
of Socket is returned from the&erverSocket object's accept method, a new
thread (an instance afogWorker) is created to manage the connection. The
socket’'sgetOutputStream method is invoked to obtain the lowest-level output
stream (an instance GbcketOutputStream) for writing data to the underlying
connection. This stream is wused in constructing an instance
BufferedOutputStream, and the resulting buffered output stream is wrapped in
DataOutputStream.

The idea of using a buffer@dtaoutputStream for writing the log data is that
the data-collecting daemon will write all of the samples it has collected to th
output stream in an iterative fashion. If the output stream were not buffered, eve
write method invoked on the output stream would perform a write to the low
level SocketOutputStream. This forces a write to the native socket layer. Writing

152 Chapter 7 Building a Remote Data Logger

the log data in such a fashion could be termed “byte-banging.” Byte-bangir
very inefficient, since each of these writes is fairly expensive. With
BufferedOutputStream, writes to the underlyingocketOutputStream occur only
when theBufferedOutputStreams internal buffer is full or the stream®lush
method is invoked. The default internal buffer size used in TINI's implementa
of all buffered streams is 512 bytes. This allows several log entries to be writt:
the DataOutputStream before thewrite method on theSocketOutputStream is
invoked to write the contents of the buffer to the native socket layer.

The DataOutputStream Object is passed to theiteLog method of the data
collecting daemon. TheriteLog method is responsible for writing all data point
to the output stream. After theiteLog method returns, any data remaining in tt
output stream’s internal buffer is flushed and both the stream and under
socket are closed.

There are two catch blocks in the run method. The first protectsthgt
method. If antoException is thrown fromaccept, the problem is assumed to b
fatal. There isn't any good reason fafcept to throw a runtime exception othel
than that the port selected is already owned by another thread or process ai
problem won't be fixed with retries. In this case, the while loop is exited by
break statement, allowing tibatalogger thread to exit. As we’ll see in the nex
few sections, all other threads created in thealogger process are daemor
threads, so when the server thread exits, all of the other threads stop executir
the application terminates. The other catch block protects the writing of the
data to the remote client. In this case, an error could result from the client term
ing the connection unexpectedly. While this certainly does prohibit the succe
transfer of the log data, it shouldn’t cause the application to exit. In this case
just close down the socket and output stream and wait for a new connection.

In this section we developed the top-level framework necessary to accep
work connections and dispatch output requests to the data collector. Next,
focus on the details of collecting and managing the data samples.

7.3 COLLECTING THE DATA

The first task is deciding exactly what data we’ll be collecting. Since we're us
the humidity sensing circuit we developed in Section 4.4.3, we should bri
review its capabilities. The sensor used a 1-Wire chip as a digital front end t
physical humidity sensor. The humidity sensor’s only output is an analog volt
The 1-Wire chip provided analog to digital conversion as well as tempera
readings. Th&umiditySensor class we created to expose the sensor’s functior
ity provides the following public methods.

public double getSensorRH() throws OneWireException
public double getTrueRH() throws OneWireException
public double getTemperature() throws OneWireException

Collecting the Data 153

Of the three readings we can obtain from the above methods, only two &
likely to be interesting to a client: the temperature and the true relative humidit
The sensor relative humidity might be interesting for calibration purposes, b
we’'ll ignore it here. We'll also want to put a time stamp on each reading so th
clients can build logs and chart environmental change over time.

The next thing we need to decide is how to store the data samples. C
obvious approach would be to write the data to a file. Each new entry could
appended to the end of the file. The advantage of using a file is that even if |
system loses power, the log data is not lost. When power is restored and
application restarts, it can simply continue logging data samples by appendi
each sample to the end of the same file. If the system were down long enougt
miss one or more samples, any client that downloads the file would be able
detect this by examining the time stamps. The downside to logging the data t«
file is thatDataLogger is running in a memory constrained environment. The file
system, Java objects, and all system data structures live in the same mermr
space. If the log file grows too large, the application will likely terminate with ar
OoutOfMemoryError Or some other fatal exception. Special tricks would be requirec
to ensure that the file didn’t grow beyond a certain size. This is furthe
complicated by the fact that we can't just truncate the file at a certain size |
writing the latest sample over the sample at the end of the file. If a sample must
lost, it should be the oldest sample. In this sense, we really want something lik
circular buffer. This can still be implemented with the file system using :
RandomAccessFile, but it is too cumbersome for our example. For our purposes, |
will be much simpler and more efficient to store the datavizeor. Of course, if
we just continue to add elements to the vector, we’ll still run out of memory. Bt
by using avector we can easily avoid this problem by removing the oldest
sample, which will always be at index 0, before adding the new sample after t
maximum sample count has been reached.

Note that if we assumed a constant connection to a network, we could strt
turebatalogger SO that it just wrote all samples to a socket as they were collecte
But we’re building this application with the idea that the network isn’'t always
available. This allows the logger to do all of its work without the network. Thetr
when a client is interested in synching up with the logger, it can establish a cc
nection with the server and collect the necessary data. The more “remote” the s
tem is, the more important this ability becomes.

To keep the logging classes reasonably general purpose and reusable, w
create an abstract class nameghingDaemon to drive the data collection process.
Ideally we don’t wantoggingDaemon to have to be aware of what kind of data is
being logged or the details of how it is acquired. To accomplish this isolatior
LoggingDaemon defines the following abstract methods.

protected abstract Object captureSample();
protected abstract void writeLogEntry(Object sample, DataOutputStream dout)
throws IOException;

154 Chapter 7 Building a Remote Data Logger

Subclasses afoggingbaemon implement theaptureSample method to handle
the details of collecting a single data sample. This sample must be encaps
within an object because it will be stored ineator. ThewriteLogEntry method
is used to write the individual fields contained in the sample object to the sup
instance obataOutputStream.

LoggingDaemon’s constructor is shown in Listing 7.4. The constructor requir
the maximum number of samples to be held inst@les Vector along with the
delay between consecutive samples. mheamples field is used to set the initial
size of thevector. Thedelay is input to the constructor as a number of secon
The delay is converted to milliseconds so that it can be input directly ir
Thread’s sleep method. Finally the.oggingDaemon thread is set to a daemor
thread. This means that when the last non-daemon thread Lexti$ngDaemon
will exit, along with any other daemon threads, allowing the process to termir
We do this because there isn’'t any point in continuing to log data if there isi
server running to allow clients to download it.

Listing 7.4 LoggingDaemon’s constructor

import java.io.*;
import java.util.*;

public abstract class LoggingDaemon extends Thread {
private int maxSamples;
private int delay;
private Vector samples;

public LoggingDaemon(int maxSamples, int delay)
throws LoggingException {

this.maxSamples = maxSamples;

// Convert delay from seconds to milliseconds
this.delay = delay * 1000;

samples = new Vector(maxSamples);
this.setDaemon(true);

public void stopLogging() {
TogEm = false;
}

LoggingDaemon's run method is shown in Listing 7.5. As long as th
stopLogging method is not invoked, theun method spins in an infinite loop
collecting data samples at the specified interval.

Collecting the Data 155

Listing 7.5 LoggingDaemon’s run method

public void run() {
while (TogEm) {
Object smp = captureSample(Q);
if (smp != null) {
synchronized (samples) {
if (samples.size() == maxSamples) {
// Remove the oldest entry
samples.removeElementAt(Q);

}
samples.addElement(smp);
}
}
try {
Thread.sleep(delay);
} catch (InterruptedException ie) {}

If the captureSample method returns null, there is no changedfiples. The
run method simply goes to sleep until it is time to try another sample. This is
rather simplistic mechanism for handling errors that occur during data collectio
but it is appropriate for our application. Since every sample carries with it a tir
stamp, a client can determine that one or more samples were missed by sin
analysis of the time stamps.

LoggingDaemon’s writeLog method is shown in Listing 7.6. Theitelog
method is invoked by the server when a client establishes a connection with 1
server, requesting a log of the recent data samplessrilieLog method simply
enumeratesamples, invoking writeLogEntry for every data sample contained
within thevector. The details of extracting and writing the actual field data con:
tained within the sample object are left to the subclass.

Listing 7.6 LoggingDaemon’s writeLog method

public void writelLog(DataOutputStream dout) throws IOException {
Vector sc = (Vector) samples.clone();
dout.writeInt(sc.size());
for (Enumeration e = sc.elements(); e.hasMoreElements();) {
writeLogEntry(e.nextETlement(), dout);
}

Since we need to encapsulate the individual data readings within an obje
we’ll create a class namediumiditySample (shown in Listing 7.7).
HumiditySample iS just a thin wrapper on the sample data that provides publi
“get” methods for the individual fieldsiumiditySample's constructor takes the

156 Chapter 7 Building a Remote Data Logger

readings attained using thiumiditySensor class and stores them in the
temperature andrelHumidity fields. It also time stamps the readings using t
System.currentTimeMillis method, which returns the number of milliseconc
between the current time and midnight, January 1, 1970. This is much simple
faster for our purposes than storing the time stampbaseaobject. We can put
the burden of converting theimeStamp value to humanly readable date and tirr
on the client program. In the case that the client is written in Java, this jc
trivial. It can simply pass theimeStamp value received to theate constructor

that takes the long value returned fr@orrentTimeMillis. We'll make use of

this in the next section, which presents a small sample client application.

Listing 7.7 HumiditySample

public class HumiditySample {
private double temperature;
private double relHumidity;
private Tong timeStamp;

public HumiditySample(double relHumidity, double temperature) {
this.temperature = temperature;
this.relHumidity = relHumidity;
timeStamp = System.currentTimeMillis(Q);

}

public long getTimeStamp() {
return timeStamp;

}

public double getRelativeHumidity() {
return relHumidity;

}

public double getTemperature() {
return temperature;

}

Now that we have a simple framework for collecting, maintaining, and c
putting a group of samples, we can create the class that performs the actual
of collecting individual samples. The clagsidityLogger, shown in Listing 7.8,
extendsLoggingDaemon and provides implementations for tteptureSample and
writeLogEntry methods.

Listing 7.8 HumidityLogger

import java.io.IOException;
import java.io.DataOutputStream;

Collecting the Data 157

import com.dalsemi.onewire.OneWireAccessProvider;
import com.dalsemi.onewire.adapter.DSPortAdapter;
import com.dalsemi.onewire.OneWireException;

public class HumiditylLogger extends LoggingDaemon {
private HumiditySensor sensor;
private DSPortAdapter adapter;

public HumiditylLogger(int maxSamples, int delay)
throws LoggingException {

super (maxSamples, delay);
try {
adapter = OneWireAccessProvider.getDefaultAdapter();
sensor = new HumiditySensor(adapter);
} catch (OneWireException owe) {
throw new LoggingException(
"Error creating Environmental Sensor:" +
owe.getMessage());

}

public Object captureSample() {
try {
adapter.beginExclusive(true);
double temp = sensor.getTemperature();
doubTle humidity = sensor.getTrueRHQ);
return new HumiditySampleChumidity, temp);
} catch (OneWireException owe) {
System.out.printin("Error reading sensor™);
owe.printStackTrace();
// No need to terminate app because of a failed reading
return null;
} finally {
adapter.endExclusive(Q);
}
}

public void writeLogEntry(Object sample, DataOutputStream dout)
throws IOException {

dout.writeLong(((HumiditySample)sample).getTimeStamp());
dout.writeDouble(((HumiditySample)sample).getRelativeHumidity());
dout.writeDouble(((HumiditySample)sample).getTemperature());

HumidityLogger creates a new instance of the class ditySensor, which is
used to perform the humidity and temperature measurements. When t
captureSample method is invoked, it simply creates a newiditySample object
to encapsulate the humidity and temperature values and returns that object to
caller, in this case theun method ofLoggingDaemon. It is important that a
transient error that could cause a failure while performing an individua

158 Chapter 7 Building a Remote Data Logger

measurement not cause the logging thread to terminate. If an exception is tt
while performing the measurements, it is caught, and null is returned.

Since theloggingbaemon class doesn’t know anything about the intern
details of the data sample objedtumiditySample, in this case—it invokes
writeLogEntry passing it a reference to the sample object and
DataOutputStream used to write the sample object’s field information to tt
underlying socket. TheriteLogEntry method extracts the time stamp, humidit
and temperature readings and writes them to the stream using the appro
methods,writelLong and writeDouble, preserving their primitive types. It is
assumed that the client will be usingaaaInputStream for easy interpretation of
the data.

7.4 A SAMPLE CLIENT

At this point, we have a data logging application capable of capturing data
serving up to any client over an Ethernet network connection. To test the date
ger, we'll develop a small client application to connect to the server and down
its current log.

ThebDataloggerClient class, shown in Listing 7.9, is a simple command lir
application that can be run on any Java platform. The name of the server, the
running thebatalLogger application, is extracted from the first argument on tl
command line.DataLoggerClient then uses the server name to establish
connection to the server. After the connection has been established,
getInputStream method is invoked on the socket instance to get a stream tha
be used for uploading the log information from the server. The input streal
buffered, and the result is wrapped iDa@aInputStream. Now the client is ready
to read the data in the same format in which it is written by the server.

Listing 7.9 DatalLoggerClient

import java.io.*;
import java.net.¥;
import java.util.Date;

class DataloggerClient {
static final int PORT = 5588;

public static void main(String[] args) {
if (args.length != 1) {
System.out.printin("Usage: java DatalLoggerClient server");
System.exit(1l);
}

Socket s = null;

A Sample Client 159

DataInputStream din = null;
try {
s = new Socket(InetAddress.getByName(args[0]), PORT);
din = new DataInputStream(
new BufferedInputStream(s.getInputStream()));
// Read number of data entries coming our way
int entries = din.readInt();
System.out.printin("Total readings="+entries);
for (int i = 0; i < entries; i++) {
System.out.print("Entry " + i + ":" +
new Date(din.readLong()));
System.out.print(", RH=" + din.readDouble());
System.out.println(", TEMP=" + din.readDouble());
}
} catch (IOException ioe) {
System.out.printin("Error downloading readings:"+
ioe.getMessage());
ioe.printStackTrace(Q);
} finally {
try {
s.close();
din.close();
} catch (IOException _) {}

The first thing the server sends to us is an integer value that tells the client 1
number of log entries to expect. After the client has read this value, it can lo
through all entries, reading each individual sample. The client simply display
each entry as it's being read, but a real client application would probably be lo
ging this information to a database. The individual fields of each entry—time
stamp, humidity, and temperature—must be read by the client in the same or
they are written by the server. The time stamp is read inagand passed to a
constructor of theate class. ThaoString method obate is then used to display
a human readable date and time. The humidity and temperature measurement:
simply read asoubles and displayed.

Now we have both the client and server programs and are ready to run b
applications. The server can be launched on TINI using a command line similar
the following.

TINI /> java Datalogger.tini 60 120 &
Starting Datalogger ...

A maximum number of 60 samples was specified along with a 120-secol
delay between each sample. After running the server for several minutes to all
it to acquire a few samples, we can run the client. Here is the sample output
DatalLoggerClient that is run on a Win2K machine.

160 Chapter 7 Building a Remote Data Logger

java DatalLoggerClient 192.168.0.15

Total readings=3

Entry @:Fri Feb 02 14:20:41 CST 2001, RH=27.733103869596295, TEMP=23.53125
Entry 1:Fri Feb 02 14:22:42 CST 2001, RH=28.067076700395877, TEMP=23.4375
Entry 2:Fri Feb @02 14:24:42 CST 2001, RH=27.73123954744912, TEMP=23.28125

By examining the time stamp, we can see that each sample was taken jus
two minutes apart. If we let the server run more than two hours, it will fill its s
ple vector, and running the client would result in 60 data samples. If we let
server continue to run for days, weeks, or even months, we would still get 60
ples, but they would always represent readings taken within the last two hour

In the next section, support will be provided for managing a PPP interface
can then use the same client we developed in this section tatesbgger’s
ability to accept connections over both Ethernet and PPP network interfaces.

7.5 IMPLEMENTING THE PPP DAEMON

Now on to the business of making our “remote data logger” truly remote. W\
accomplish this by adding support for establishing dial-up networking conr
tions to our logger using the PPP network interface and supporting API classe
this point we're going to bring a second server into the picture, which cc
become confusing. The top-level network server is what we implemented ir
Datalogger class in Section 7.2. It blocks amcept, waiting for a connection
over any network interface. It doesn't really care if the connection is establi:
over an Ethernet network or a serial line using PPP. The server we’ll impleme
this section is a “dial-up” server that allows clients to establish TCP/IP conl
tions to TINI using a PPP interface. For the sake of brevity, we’'ll just refer to
dial-up server as the “server.” However, when both servers are a part of the di
sion context, we'll explicitly refer to the “dial-up server.”

We'll implement our dial-up server in a class namegbaemon. A portion of
the PPPDaemon class is shown in Listing 7.1@PPDaemon implements two inter-
faces:PPPEventListener t0 receive PPP event notification angalinkListener
to receive notification about errors that occur with the physical data link. In
section, we won't get too concerned about the details of the underlying phy
link and whether the connection is established over a hard-wired serial lin
using modems. Then next section will deal with the low-level data link hand
issues.

On constructiorPPDaemon requires an instance of a class that implements
PPPDaemonListener interface shown in Listing 7.11. ThremonError interface
method is invoked byppDaemon to provide asynchronous notification of a PPP
data link error to the listener. Thevaliduser method is invoked after the serve
has received the client’s login information. This gives the listener the final sa
whether a PPP connection is accepted or rejected.

Implementing the PPP Daemon 161

Listing 7.10 PPPDaemon

import java.io.*;
import com.dalsemi.tininet.ppp.¥*;

public class PPPDaemon implements PPPEventListener, DatalLinkListener {
private PPP ppp;
private PPPDatalink datalink;
private int maxRetries;
private PPPDaemonListener Tistener;

public PPPDaemon(PPPDaemonListener Tistener,
String portName, int speed)
throws PPPException {

this(listener, portName, speed, 3, true);

}

public PPPDaemon(PPPDaemonListener Tistener, String portName,
int speed, int maxRetries, boolean modemLink)
throws PPPException {

this.listener = listener;
this.maxRetries maxRetries;
try {
if (modemLink) {
dataLink = new PPPModemLink(portName, speed, this);
} else {
datalink = new PPPSerialLink(portName, speed, this);

}
} catch (DatalLinkException dle) {
throw new PPPException("Unable to initialize PPPDaemon:" +
dle.getMessage());
}

ppp = new PPP();

ppp.setLocalAddress(new byte[] {(byte) 192, (byte) 168, 1, 1});
ppp.setRemoteAddress(new byte[] {(byte) 192, (byte) 168, 1, 2});
ppp.setAuthenticate(true);

public void datalLinkError(String error) {
System.err.println("Error in data Tink:"+error);
ppp.close();

After initializing the1istener andmaxRetries fields,PPPDaemon’s constructor
creates an object to manage the physical data link. It creates either
PPPSerialLink Or aPPPModemLink object, depending on th@demLink boolean

162 Chapter 7 Building a Remote Data Logger

passed to the constructor. Both of these classes apeptheaalink interface they
implement will be covered in detail in the next section. For now it's sufficient
know that by using therpbataLink object, the daemon can initialize the link an
obtain a reference to its underlying serial port. From this point forward
daemon doesn'’t care if the physical link is over a hard-wired serial connectic
a modem.

Next, a newppP object is created and the IP addresses for both the local ir
face and the remote peer are set.

Listing 7.11 PPPDaemonlListener interface

public interface PPPDaemonListener {
public void daemonError(String error);
public boolean isValidUser(String name, String password);

It is easiest to understand the operationPedDaemon as a Finite State
Machine (FSM). The state diagram for the FSM implemented byrtfiaemon
class is shown in Figure 7.1. The solid lines represent state transitions caus
PPPDaemon invoking methods on itBPP object. The dashed lines represent tran:
tion caused by errors detected by the native PPP implementation.

Note that there are actually two finite state machines at work here: the
PPP state machif¢hat is implemented as a part of the network stack beneath
IP module (see Figure 5.1) and the high-level state machine implemente
PPPDaemon, Whose state transitions are driven by events generated prthe
daemon thread and method invocations @mraobject. The low-level PPP state
machine is very complex and has several additional states. For the most pa
arcane details of its implementation are hidden from the application develope
the ppp class. The purpose of tiRePEventListener interface is to provide a
mechanism to drive a much simpler, higher-level state machine that give:s
application an opportunity to control the physical data link, user authenticat
and the handling of error information.

After creating a newePP object,PPPDaemon is in theINIT state. At this point,
there is no PPP traffic traveling across the physical data link. To transition tc
STARTING state, the owner of therPbaemon object invokes thestartDaemon
method shown in Listing 7.12tartDaemon adds its own object:kis) as a lis-
tener for PPP events and invokes dhen method on it®pp object.

3. The PPP finite state machine is described in RFC 1661.

Implementing the PPP Daemon 163

open()

Y

LCP
Negotiation

CLOSED

Link terminated”]
by remote peer |

Figure 7.1 PPP daemon FSM

Listing 7.12 StartDaemon

public void startDaemon() throws PPPException {
retryCount = 0;
try {
// Add PPP event listener to driver state machine
ppp.addEventListener(this);
} catch (java.util.TooManyListenersException Te) {
throw new PPPException("Unable to add event Tlistener™);
h
ppp.openQ);
}

public void stopDaemon() {
// Don’t receive any more PPP events
ppp.removeEventListener(this);
ppp.close();

164 Chapter 7 Building a Remote Data Logger

The bulk of the FSM is implemented in tlh@pEvent method shown in
Listing 7.13.pppEvent is invoked by a daemon thread that is created during c
struction of therppP object. It is passedrmePEvent object that is used to determine
the event type. TheppEvent method switches on the event type to determine |
next appropriate action. The event processing usually completes by invoki
method on @PP object forcing another state transition. The possible events w
described in the previous chapter and are listed here for convenience.

* STARTING

* AUTHENTICATION_REQUEST
« UP

« STOPPED

« CLOSED

The STARTING state provides the application with a chance to initialize t
physical data link. Our sample PPP daemon implementation does so usin
initializeLink method defined in theppbataLink (Listing 7.14) interface. If
initializelLink returns normally, the server invokes tlye method on itsPpp
object, passing it a reference to the serial port. All PPP traffic flows over this |
This is really a handoff of serial port ownership. Once the port reference is pe
to PPP, it assumes exclusive access to the serial poitithfalizeLink fails to
bring up the link successfully for any reason, it thronBagaLinkException,
which is caught, andlose is invoked on therpp object. This will cause the
notifier thread to generatecaoseD event transitioningPPDaemon to the CLOSED
state.

At this point, PPP waits for a client to begin LCP (Line Control Protoc
negotiation. Once a client successfully completes the line negotiation,
requests login information and the remote peer replies with a user name and
word. This generates a0THENTICATION_REQUESTED event (theauTH state in Fig-
ure 7.1), anthppEvent gets the user name and password forpreobject and
passes them to the listenet'svaliduser method. If the listener likes the login
information, PPP completes its negotiation with the client, establishing the
addresses for both the local and remote peer, and generates\amt.pppEvent
then invokesaddInterface on therpp object, which adds a new network interfac
to the OS.

Now the communication link is fully established and ready for IP traffic.
the listener didn't like the login information SEOPPED event is generated, and the
retryCount, Which is used to track errors, is incrementesTAPPED event can
also be generated by the remote peer breaking the connection. Regardless
we transitioned to thetoppeD state, we'll invokez1ose on theppp object to gen-
erate aLOSED event. This gives both the underlyipgp object and our daemon &
chance to perform an orderly shutdown of the connection. If the connection

Implementing the PPP Daemon 165

been fully established (that is, it had at some point transitioned tep thiate),
then we’'ll invokedown on thepPpp object and remove the network interface that
was added during the state processing.

Listing 7.13 pppEvent

private int retryCount;

public void pppEvent(PPPEvent ev) {
switch (ev.getEventType()) {
case PPPEvent.STARTING:

try {
// Now we need to bring up the physical 1link
datalLink.initializeLink();
ppp.up((SerialPort) datalLink.getPort());

} catch (DatalLinkException dle) {
Tistener.serverError("Data link error:"+

dle.getMessage());

ppp.close();

}

break;

case PPPEvent.AUTHENTICATION_REQUEST:
ppp.authenticate(listener.isValidUser(ppp.getPeerID(),
ppp.getPeerPassword()));
break;

case PPPEvent.UP:
// Reset error count after successfully bringing
// up connection
retryCount = 0;
ppp.addInterface("ppp0");
isUp = true;
break;

case PPPEvent.STOPPED:

ppp.close();
if (++retryCount < maxRetries) {

ppp.close();
} else {

Tistener.serverError(

"UnabTle to establish PPP connection");

}

break;

case PPPEvent.CLOSED:

if (isUp) {
ppp . removelnterface("ppp0");
ppp.down();
isUp = false;

}

try {

166 Chapter 7 Building a Remote Data Logger

// Sleep before recycling ppp connection
Thread.s1eep(1000) ;
} catch (InterruptedException ie) {}

ppp.open();
break;

default:
break;

The state machine as implemented in Listing 7.13 is designed to run con
ously, retrying if transient errors occur. Every time a connection is success
established (thep state is reached), the error count is reset to 0. Unless a rr
mum retry countnaxRetries) is reached, the daemon continues to run. Once
error count threshold is reached, the listener is notified that a persistent probl
preventing the daemon from establishing PPP connections. The listener
choose to either stop the daemon entirely by invokitigbaemon or take some
action to fix the problem and recycle the server by stopping and restarting it.
problem may be with the modem or phone line and may require some ht
intervention.

7.6 MANAGING THE PPP DATA LINK

The PPP daemon we implemented in the previous section maintained a refe
to an instance of a class that implemented rbebataLink interface. This
reference is used by the server to control the data link. Now we’'ll create
PPPDatalLink interface shown in Listing 7.14. Both of the link manageme
classes we will create in this section will implement this interface.

Listing 7.14 PPPDataLink

import javax.comm.SerialPort;

public interface PPPDatalLink {
public SerialPort getPort();
public void initializeLink() throws DatalLinkException;

TheinitializeLink method is used to perform any specific setup requirec
use that data link. After the link has been successfully initialized, the PPP dae
invokesgetPort to acquire a reference to the link’s serial port. This reference
transferred to the native PPP implementation and is used for all PPP commt
tion. Other than during construction and execution of thétializelink
method, the data link classes should not access the serial port.

Managing the PPP Data Link 167

Because data link errors can occur asynchronously and without the knov
edge of the underlying native PPP implementation, an object that owns the d
link needs a mechanism for notifyirrgrDaemon that an error has occurred. The
most common example of a link error is the modem hanging up. This results
loss of carrier detect from the modem. We'll discuss this further in Section 7.6.
The interfaceDatalinkListener shown in Listing 7.15 defines the method
dataLinkError that will be invoked by the object controlling the data link upon
detection of an unrecoverable error.

Listing 7.15 DatalinkListener

public interface DatalLinkListener {
public void datalLinkError(String error);

}

When the listener'satalinkError (see Listing 7.16) is invoked, it will typi-
cally set some internal state and call these method on theepp object. The
internal state allows th& 0SED event code to determine why theSED event was
generated. In the case of a link error, it will invoke dben method on thepp
object, freeing the serial port and forcing a transition tstheT state. This pro-
vides a clean way to reset the link and hopefully clear the condition that genera
the error.

Listing 7.16 dataLinkError

public void datalLinkError(String error) {
System.err.println("Error in data Tink:"+error);
++1inkErrors;
ppp.close();

In our example PPP server, we maintain a retry count and put an upper lir
on the number of retries that can be caused by a persistent error in either the
link or the underlyingepp object. The retry count is reset to 0 after every success
ful transition to thesp state.

7.6.1 The Serial Link

All PPP traffic flows over a serial port. The serial port may or may not have
modem attached. Now we’ll create a class namrederiallLink that provides
functionality that is common to both hard-wired serial and modem configuration
PPPSeriallLink iS shown in Listing 7.17. Notice first thatPPSeriallink
implements thepPpPDataLink interface providing implementations for the
initializelLink andgetPort methods. These are the only public methods neede
by ppPDaemon t0 manage the data link.

168 Chapter 7 Building a Remote Data Logger

During constructionpPPSeriallLink creates a new serial port object and us
that object to configure the physical port. In this example, we set the port for 8
bits, 1 stop bit, and no parity. This is a very common configuration and shou
cause us any problems in communicating with other modems or directly
another serial port. We also select the use of RTS/CTS (Request to Send/Cl
Send) hardware flow control (see Section 3.2.2), assuming that the under
physical port has support for the necessary hardware flow controf IFirally,
the constructor creates input and output streams for reading from and writing 1
serial port, respectively. Note that this class could be made more flexible by a
parameters to the constructor that allowed for the selection of either hardwa
software flow control as well as other data transfer settings.

Listing 7.17 PPPSerialLink

import javax.comm.*;
import java.io.*;

public class PPPSerialLink implements PPPDatalLink {
protected DatalLinkListener Tistener;
protected SerialPort sp;
protected InputStream in;
protected OutputStream out;

public PPPSerialLink(String portName, int speed,
DatalLinkListener 1listener)
throws DatalinkException {

this.listener = listener;
try {
// Create and initialize serial port
sp = (SerialPort)
CommPortIdentifier.getPortIdentifier(portName).open(
"PPPDatalLink", 5000);

sp.setSerialPortParams(speed, SerialPort.DATABITS_S,
SerialPort.STOPBITS_1,
SerialPort.PARITY_NONE);

TINIOS.setRTSCTSFlowControlEnable(@, true);
sp.setFlowControlMode(SerialPort.FLOWCONTROL_RTSCTS_IN |
SerialPort.FLOWCONTROL_RTSCTS_OUT);

in = sp.getInputStream();
out = sp.getOutputStream();
} catch (Exception e) {

4. If your TINI hardware does not support the hardware handshake lisesiaio,
remove the statements that configure flow control or use a serial port that supports
RTS/CTS flow control.

Managing the PPP Data Link 169

throw new DatalinkException("Error configuring serial port"+
e.getMessage());

}

public void initializeLink() throws DatalLinkException {

}

public SerialPort getPort() {
return sp;

}

If the constructor fails to properly acquire ownership or properly initialize the
specified serial port for any reason, it throviaeaLinkException. Typical causes
of failure would be that the port is already owned by another process or it does
support one of the selected options.

A PPPSeriallink object doesn’t need to do much after it has initialized the
port. TheinitializeLink method simply returns because the link is always ready
for data traffi In the next section, when we add modem support, we'll have t
do a bit of work ininitializeLink.

ThePpPPSerialLink class implements the functionality needed to provide PPF
communication over a hard-wired serial link. This type of connectivity is useful a
a quick and simple mechanism for testing PPP code written for TINI. No mode
is required in this configuration, and it allows for a faster connection because y
don’t have to wait for normal modem delays such as dialing and answering t
phone. In practice, it is probably most useful for direct communication betwee
TINI and a hand-held PDA that supports PPP connections such as the Palm P
or Visor.

7.6.2 Controlling the Modem

Most practical uses of PPP on TINI require the use of an external serial mode
Ultimately, if an application similar tdatalLogger is deployed in an Ethernet
challenged location, its only connection to a TCP/IP network could be using tt
public phone network. A hardware configuration of TINI plus a serial moden
allow applications to either accept or make dial-up network connections wit
remote clients or servers.

Since all communication with the modem will be over a serial port, we ca
create the class to manage modem communications as a subclass
PPPSerialLink, defined in the previous section. The cleE®odemLink is shown

5. If you're using Windows 2000 or NT for your direct link testing, you will need to
modify theinitializeLink method to wait for the string “CLIENT” and respond
with the string “CLIENTSERVER.”

170 Chapter 7 Building a Remote Data Logger

in Listing 7.18. Upon constructiorPPPModemLink invokes its superclass’s
constructor to acquire and initialize the serial port. It also createge@Command
object to manage sending commands to and receiving responses from the m
TheModemCommand class is described later in this section.

Listing 7.18 PPPModemLink

import javax.comm.*;
import java.io.*;
import java.util.TooManylListenersException;

public class PPPModemLink extends PPPSerialLink
implements SerialPortEventListener {
private ModemCommand mc;

public PPPModemLink(String portName, int speed,
DataLinkListener Tistener)
throws DatalinkException {

super(portName, speed, listener);
mc = new ModemCommand(sp, in, out);
try {
sp.addEventListener(this);
} catch (TooManylListenersException tmle) {
throw new DatalinkException(
"Unable to register for serial events");

}

public void serialEvent(SerialPortEvent ev) {
if ((ev.getEventType() == SerialPortEvent.CD) &&
lev.getNewvalue()) {

listener.dataLinkError("Lost carrier detect");

PPPModemLink implements theSerialPortEventListener interface. In this
case we're specifically interested in tRerialPortEvent.CD (Carrier Detect)
event because we need to be notified if and when the modem hangs up. Wh
modem hangs up, the CD signal transitions from high (carrier present) to
(carrier not present). If this happens, #eeialEvent method is invoked by the
serial port event daemon notification thresttialEvent checks the event type to
see if it is a carrier detect change event. All other events are ignored. I
returned event value is false, this signals that the modem has indeed hung u
serialEvent invokes the DatalinkListener's (PPPDaemon in this case)
dataLinkError method, notifying the listener that the data link is no longer val

Managing the PPP Data Link 171

The PPP daemon then closes the underlying PPP connection and frees
resources that were consumed.
Initializing the modem link involves the following three steps:

1. Reset the modem.
2. Wait for aring.
3. Answer the phone.

Both theinitializeLink andresetModem methods are shown in Listing 7.19.
The modem reset is initiated by dropping the DTR (Data Terminal Ready) lin
low, delaying for a couple of seconds, and then raising DTR back high. After to
gling DTR, resetModem sends the string “AT\r” to the modem and waits for a
response string of “OK.” If the expected response is receiv@dtModem returns
normally. If the response is not received within the specified time-out value—s
seconds in this case—batal inkException is thrown by theendCommand method
of theModemCommand class. This exception is allowed to propagate up the call stac
to notify the method that invokeihitializeLink of the failure to initialize the
modem.

Listing 7.19 initializeLink and resetModem

public void initializeLink() throws DatalLinkException {
resetModem() ;
mc.receiveMatch("RING", null, 0);
mc.sendCommand ("ATA\r", "CONNECT", 25);

}

private void resetModem() throws DatalLinkException {
// Clear RTS and DTR
sp.setDTR(false);
sp.setRTS(false);

try {
Thread.sTeep(2000) ;
} catch (InterruptedException ie) {}

// Set RTS and DTR
sp.setDTR(true);
sp.setRTS(true);

try {
Thread.s1eep(2000) ;
} catch (InterruptedException ie) {}

// Sync modem to serial port baud rate
mc.sendCommand ("AT\r", "OK", 6);

172 Chapter 7 Building a Remote Data Logger

Note that depending on the specific modem you're using, you may have 1
more or different work irinitializelLink. For example, the modems used to te
this class all autobaud by default when the “AT\r” string is transmitted imme
ately after the DTR reset. If your modem initializes to some predefined h
coded speed after a DTR resstjtializeLink would have to transmit a com-
mand at the predefined speed, setting the new desired speed. Other com
may also be required to correctly reset and initialize the modem.

After successfully resetting the modetmmitializeLink waits for a ring.
When the modem detects a ring on the phone line, it transmits the string “RII
initializeLink blocksindefinitely by specifying a time-out value of 0, waiting
for this string. Once it receives the string, it sends the “ATA” command to
modem, instructing it to answer the incoming call. After answering the phone
modem will respond with the string “CONNECT.” We allow a 25-second time-«
for the modem to answer the phone and respond because this is a time-cons
process. It should typically complete within 10 or 15 seconds of ring detect
After receiving the “CONNECT” string from the modem, the communicatit
channel is fully established anditializeLink returns normally.

The ModemCommand class, partially shown in Listing 7.20, is a utility clas
used byppPModemLink to handle the details of serial communication with t
modem. It is passed references to the serial port as well as serial port inpt
output streams for the actual data transf&femCommand provides these two pub-
lic methods.

public void sendCommand(String command, String response, int timeout)
throws DatalinkException

public void receiveMatch(String match, String response, int timeout)
throws DatalinkException

The sendCommand method convertsommand t0 abyte array and transmits the
result over the serial port to the attached modem. After transmitting the comr
string, sendCommand invokes thewaitForResponse method (described below) to
wait for the modem to transmit a response equal (ignoring case) to the value
plied in response. If No response is expected from the modewn] can be sup-
plied for theresponse String. In this casesendCommand returns immediately after
transmitting the command. TleceiveMatch command has the opposite sense.
first waits for a transmission from the modem equal (again ignoring case) t
supplied value ofiatch and then transmits a response to the modem. If nothin
to be transmitted to the modem after receipt of the desiredth String, null is
passed for theesponse. Both methods throwatalinkException in the event of a
time-out waiting for the desired response.

Managing the PPP Data Link 173

Listing 7.20 ModemCommand

import javax.comm.*;
import java.io.*;

public class ModemCommand {
private SerialPort sp;
private InputStream in;
private OQutputStream out;

public ModemCommand(SerialPort sp, InputStream 1in,
OutputStream out) {
this.sp = sp;
this.in = in;
this.out = out;

}

public void sendCommand(String command, String response,
int timeout)
throws DatalinkException {

try {
// Transmit the command
out.write(command.getBytes());
} catch (IOException ioe) {
ioe.printStackTrace(Q);
throw new DatalinkException(
"Error sending command to modem™);

}

waitForMatch(response, timeout);

}

public void receiveMatch(String match, String response, int timeout)
throws DatalinkException {

try {
waitForMatch(match, timeout);
if ((response != null) && (response.length() > 0)) {
out.write(response.getBytes());

} catch (IOException ioe) {
ioe.printStackTrace();
throw new DatalinkException(
"I0 Error receiving a match to:"+match);

174 Chapter 7 Building a Remote Data Logger

ThewaitForMatch method, shown in Listing 7.21, takestaing used for the
desired pattern match. The pattern match is performed in a case insensitive
ner. It also takes an integer number of seconds used as a time-out value, w
value of 0 seconds is used to specify an infinite time-out. It uses both serial
receive time-outs and thresholds to control the reading of data and man:
timer. The receive time-out is set to 100 milliseconds and the threshold tc
number of bytes equal to the length of laech String. The overall time that has
elapsed is tracked usiisgstem.currentTimeMi1lis.

Listing 7.21 waitForMatch

private void waitForMatch(String match, int timeout)
throws DatalinkException {
try {
sp.enableReceiveTimeout(100);
sp.enableReceiveThreshold(match.Tength());

byte[] mb = new byte[match.Tength()];

long timer = 0;

if (timeout > @) {
// Time out when timer > currentTimeMillis
timer = timeout*1000+System.currentTimeMillis();

}

StringBuffer modemSpew = new StringBuffer();
while ((timer == 0) || (System.currentTimeMillis() < timer)) {
int count = in.read(mb);
if (count > Q) {
modemSpew. append((new String(mb,0,count)).toUpperCase());
if (modemSpew.toString() .index0f(
match.toUpperCase()) >= 0) {
return;

}

throw new DatalinkException("Timed out waiting for match:"+
match) ;
} catch (Exception e) {
e.printStackTrace();
throw new DatalLinkException("IO Error receiving a match to:"+
match) ;

The trick here is that the modem might send other unwanted byte:
information in the same stream of data that has the pattern that we'’re tryir
match. To deal with this problemaitForMatch reads all serial bytes and store
them in astringBuffer. Each time data is available, the new bytes are appen

Adding the PPP Daemon to DatalLogger 175

to the end of thestringBuffer. To check for a match, th&tringBuffer is
converted to &tring, and theindexof method is used to check to see if the
desired response is contained anywhere within the resultirigg. If a match

is found, waitForMatch returns normally. Otherwise, it performs another
blocking read until either the number of bytes equal to the length afatlee
String is available or until 100 milliseconds elapses. If no match is founc
within the specified overall time-out, BatalinkException is thrown. The
DatalLinkException propagates up the call stack eventually notifying the PPF
daemon of the modem’s failure to respond.

7.7 ADDING THE PPP DAEMON TO
DATALOGGER

Now that we have an implementation of a PPP daemon and the supporting d
link classes, we can enhance bhealogger class to accept network connections
over both PPP and Ethernet interfaces.

Listing 7.22 shows the additions and modifications made t@dt@ ogger
class for the purpose of adding PPP daemon support. The first change to notic
that DatalLogger creates and starts a new instancerebaemon on construction.
The other change tmtalogger is that it now implements tt/®PDaemonListener
(Listing 7.11) interface and therefore provides implementations for the
daemonError andisvalidUser methods. ThdaemonError method is invoked when
a persistent error is preventimgrDaemon from establishing PPP connections. As
implemented belowdaemonError stops the PPP server. Howeveitalogger
continues to run, allowing connections over the Ethernet network interface only.

Listing 7.22 Datalogger changes

class DatalLogger extends Thread implements PPPDaemonListener {

PPPDaemon pppd;
private String name;
private String password;

DatalLogger(int samples, int delay, String name, String password)
throws PPPException, LoggingException {

// Set authentication information
this.name = name;
this.password = password;

// Create a server to manage PPP dial-up requests
PPPDaemon pppd = new PPPDaemon(this, "serial@", 19200);
pppd.startDaemon();

176 Chapter 7 Building a Remote Data Logger

public void daemonError(String error) {
System.err.println("Error in PPP server:"+error);
pppd.stopDaemon();

}

public boolean isValidUser(String name, String password) {
return (this.name.equals(name) &&
this.password.equals(password));

public static void main(String[] args) {
System.out.println("Starting DatalLogger ...");
if (args.length != 4) {
System.out.printin(
"Usage: java DatalLogger samples delay username password");
System.exit(l);
}

try {
(new DatalLogger(samples, delay, args[2], args[3])).start(Q);
} catch (Exception e) {

}

Sincebatalogger is now responsible for validating login requests, we’ll ac
instance fields to store a user name and password. Rather than choose ar
hard-coded strings to use for validation of login information, we’ll modify tl
main method to require the user name and password on the command line.
also modify the constructor as well to accept login information and store it in
name andpassword private instance fields. These strings will be used as a di
comparison to the login information passed toithwa1iduser method. Note that
the login scheme that we're supporting in this example with our simple user r
and password match is PAP (Password Authentication Protocol). PAP was ct
because it is the most straightforward to implement. The main goal of this e
ple is to focus on the mechanics of writing multihomed network servers ra
than getting bogged down with security details.

7.8 TESTING THE ENTIRE APPLICATION

Now our remote data logging example is multihomed. That is to say that it
accept TCP connections (sockets) from multiple network interfaces—specific
the PPP and Ethernet interfaces. We testedl ogger over Ethernet only using
theDataloggerClient developed in Section 7.4. Testing our new PPP functior

Testing the Entire Application 177

ity is going to take a little more work. However, we can Ds&lLoggerClient
without modification for testing both interfaces simultaneously.

The test setup tests the full dial-up networking capabilities provided b
PPPDaemon using analog modems and a phone line simulator. However, you c:
also testpatalogger’'s PPP support using a hard-wired serial connection. The
test configuration used here includes the following equipment.

* ATINI board—running the Datal.ogger server

* A Windows 2000 machine—dial-up networking client

e A Linux machine—Ethernet networking client

e Two analog modems—one attached to the Windows 2000 PC and tl
other attached to serial port 0 of the TINI

* The humidity sensing circuit detailed in Section 4.4.3

A diagram of a sample test configuration is shown in Figure 7.2. This is one
the smallest test configurations that can be used to test the full networking ca
bilities of thebatalogger application. TINI's network interface IP addresses are
192.168.0.15 and 192.168.1.1 for Ethernet and PPP, respectively.

Ethernet Crossover Cable 192.168.0.100

Linux
Client
192.168.0.15 .
TINI 1 - Wire Humidity
(DataLogger) Sensor
192.168.1.1
RS232
Serial
Phone Phone Line Phone RS232 Win2K
Cabl Cabl Serial
Modemt |=C— Simuiator = Modem2 |- Clien
(or PSTN) 192.168.1.2

Figure 7.2 Sample test configuration

To keep the necessary equipment to a minimum, the Linux (Ethernet) clie
connects directly to TINI using an Ethernet crossover cable. The Linux box ar
TINI could also be connected using straight-through cable with an Ethernet ht
The PPP connection is made using two analog modems on either side of a ph

178 Chapter 7 Building a Remote Data Logger

line simulator. If two different phone lines are available, you can of course use
public phone network instead.

If we add a couple of debug statements (see Listing 7.23k#&0ogger’s run
method, it will display connection information, including both the remote clier
IP address and TINI's local interface IP address.

Listing 7.23 Adding debug statements

public void run(Q) {
WH%1e (true) {
s = ss.accept();

System.out.printin("New client:" + s.toString(Q));
System.out.printin("Local interface:" + s.getLocalAddress());

Now we can launchatalogger, supplying the sample count, sample rate, a
client authentication information as command line parameters.

TINI /> java Datalogger.tini 60 120 ducto kid
Starting Datalogger ...

To test the PPP interface, you'll need to create a new dial-up network cor
tion. The details on how this is accomplished are platform specific and are
covered here. After you've created the new dial-up connection, you can use
manually connect to the TINI or optionally use whatever dial-on demand cap:
ity is provided on the client OS. Regardless, once you initiate the connection
following sequence of events occurs.

Client modem dials TINI's modem.

TINI's modem answers the incoming call.

PPP option negotiation begins.

Authentication information is transmitted from the remote peer to TINI
IP addresses of TINI and remote peer are established.

arwdE

At this point, the communication link is ready for network traffic. After su
cessfully establishing the link, executing th@config -x” command at the slush
prompt will produce the output shown here. Note that the Ethernet and loop
interfaces are not shown for brevity.

Interface 2 is active.

Testing the Entire Application 179

Name I ppp0

Type : Point-to-Point Protocol
IP Address 1 192.168.1.1

Subnet Mask : 255.255.255.0

Gateway : 0.0.0.0

A new network interface has been added to the system as a result of |
PPPDaemon invoking addInterface oOn its PPP object after the modem link was
established. The local address is set to the value specified during constructior
PPPDaemon, and the interface name is the same as supplieddayiterface. The
“ppp0” interface will remain in the system uniémoveInterface is invoked in
response to a PRIROSED event.

Now that both the Ethernet (eth0) and PPP (ppp0) interfaces are active,
can connect to the server over both usingpth@lLoggerClient.

Output from launching the Linux (Ethernet) Client

java DatalLoggerClient 192.168.0.15

Total readings=2

Entry 0:Fri Feb 02 14:31:06 CST 2001, RH=27.738698340362145, TEMP=23.40625
Entry 1:Fri Feb 02 14:33:07 CST 2001, RH=27.402815524359628, TEMP=23.46875

Output from launching the Win2K (PPP) Client

java DataloggerClient 192.168.1.1

Total readings=2

Entry 0:Fri Feb 02 14:31:06 CST 2001, RH=27.738698340362145, TEMP=23.40625
Entry 1:Fri Feb 02 14:33:07 CST 2001, RH=27.402815524359628, TEMP=23.46875

DatalLogger (TINI) output

New client:Socket[addr=192.168.0.100/192.168.0.100,port=1056,
Tocalport=5588]

Local 1interface:192.168.0.15/192.168.0.15

New client:Socket[addr=192.168.1.2/192.168.1.2,port=1949,localport=5588]

Local interface:192.168.1.1/192.168.1.1

From the output above we can see thahlLoggerClient was launched on
both the Linux and Win2K client at about the same time and within a fev
minutes of starting theataLogger application on TINI. Each client receives the
same log data, but each connects to the server using a different IP addre
Notice, however, that the local port value displayed in the TINI output i
Datalogger’'s SERVER_PORT number (5588) for both connections. When the
Linux box establishes its connectianatalogger displays the remote client’s IP
address (192.168.0.100) and the IP address of its own local Ethernet interf
(192.168.0.15). When the Win2K client connects the client (192.168.1.2) ar
server (192.168.1.1) the IP addresses displayed are those selected

180 Chapter 7 Building a Remote Data Logger

PPPDaemon’s constructor during initialization of therp object. In the Ethernet
case, both IP addresses were statically configured outside of program contr
the PPP case, however, the IP addresses were set programaticaitpdeyion.

Further improvements to ttmatalogger application are certainly possible
For example, we could improve its flexibility by allowing more parameters to
supplied on the command line or perhaps read from a configuration file. S
examples of additional useful parameters are serial port number, serial port
rate, and client and server IP addresses to be used by the PPP network int
We could also modifyppbaemon to support multiple PPP interfaces. This requir
using multiple serial ports to allow two different clients to establish dial-up ¢
nections simultaneously.

CHAPTER 8 Pa ra I Iel I/O

For our purposes, we'll use the teRarallel 1/0O to refer to communication with
devices interfaced to the microcontroller's address and data busses. The par:
data interface can be thought of as a catchall, since it can be used for interfac
with a very broad range of devices from LCDs to external memory devices
even other microcontrollers. TINI hardware implementations, such as tt
TBM390, communicate with the real-time clock and Ethernet controller over th
controller’s bus. The parallel I/O bus is very fast and very flexible. However, thi
flexibility often comes at the cost of additional interface circuitry such as octe
buffers, latches, and address decoders.

This, more than any other chapter, requires some comfort with hardware a
device driver software concepts. To fully understand this section the reader mt
at a minimum, be able to study a simple schematic to determine the address ra
used to communicate with attached devices. Despite the complexities of the pal
lel bus interface, the TINI API provides a very simple abstraction, known as
DataPort, to communicate with devices attached to the bus. Given the addr
range and device speeds, a pure software engineer can focus on code and \
Java drivers for attached devices without fully understanding the details of tl
underlying hardware design.

This chapter begins by describing TINI's parallel bus interface, providing a
operational description of the relevant bus signals. A memory map, used to acc
the microcontroller's entire address space, is presented. This is followed by
description of how a Java application can communicate with devices interfaced

181

182 Chapter 8 Parallel /O

the parallel bus. The chapter concludes with a couple of detailed examples ¢
at solidifying both the hardware and software details of communicating with |
allel devices on TINI.

8.1 TINI'S PARALLEL BUS

TINI's parallel bus is used, at a minimum, for interfacing with external mem
chips for code and data storage. Peripheral devices such as an Ethernet cor
and real-time clock are also accessed via the parallel bus. The block dia
shown in Figure 8.1 presents a fairly generic configuration for interfacing exte
devices to the bus. As their names suggest, the address bus specifies the
address of the read or write operations, while the data bus transfers the binar
to and from the device. The combination of certain control signals and pos:
certain address lines can be used in conjunction with decoding logic to act :
enable signal for the peripheral. The purpose of the enable signal is to ensur
only bus operations intended for the device are actually seen by the device.
that some devices, including many memory chips, can be interfaced directly t
bus without using any decode logic. (See Section 8.3.2 for an example of inte
ing a memory device to the parallel bus.)

Address Bus

U]|

Signals Decode Enable
Logic |

Peripheral
Device

< Data Bus >

Figure 8.1 Interfacing to the controller bus

An important point to be made here is that Figure 8.1 shows the addres:
data bus signals connected directly to the external device. This is often app
ate. However, depending on the total number of devices on the parallel bus,
or both the address and data signals may require external buffering to ensur
able system operatid'nBuffers are chips that provide isolation from the capas

1. Seéhttp://www.ibutton.com/TINI/dstinil.péiér bus loading specifications for the
TBM390.

TINI’'s Parallel Bus 183

tive loading of bus interfaced peripherals. Whether or not buffering is require
and how to buffer the bus if it is required, are design specific issues.

The signals that comprise the microcontroller's parallel bus can be group
into the following categories.

» Data—nbidirectional data bus

» Address—unidirectional address bus, driven by the controller

» Control—provides signals for distinguishing between read and write ope
ations as well as device (or chip) selection

All data, address, and control signals are listed, along with brief description
in Table 8.12 The data bus (DO-D7) is an 8-bit bidirectional bus. All data transfe
occurs on this bus, including code fetches from flash ROM, data fetches fro
static RAM, and read and write operations to bus interfaced peripherals. Extert
devices are addressed using the 20-bit address bus (A0O—A19) along with one
eight predecoded “chip select” signals. The 20-bit address bus provides a 1-me
byte address range. However, this range is extended by the eight chip select li
that each decode a separate megabyte of address space. The chip selects co
two flavors: chip enables (CEs) and peripheral chip enables (PCEs). There
four CE signals (CEECEJ and four PCE signals (PCEPCEJ.

Table 8.1 Bus control signals

Signal

Designator Full Signal Name Description

DO-D7 Data Bus 8-bit wide bidirectional data bus

A0-A19 Address Bus 20-bit wide address bus

CEO-CE3 Chip Enables Chip enable lines are used to select mem-

ory or attached peripherals. Code fetches
must occur from memory chips enabled
by one of these signals.

PCEG-PCE3 Peripheral Chip enables Peripheral chip enable lines are com-
monly used to enable memories for pur-
poses of data storage only. No native code
can be fetched from memory chips
enabled by these signals.

continues

2. A complete description of all of the microcontroller, including the signals described in
this table, can be found in the DS80C390 data shééipatwww.dalsemi.com/
datasheets/pdfs/80c390.pdf.

184 Chapter 8 Parallel /O

Table 8.1 Bus control signals (continued)

Signal

Designator Full Signal Name Description

PSEN Program Store Enable Strobe line used to control code fetches
(reads) from external memory devices
enabled by CE lines. It can also be used
for data fetches.

RD Read Strobe Read strobe line used for data fetches
from memory and other peripheral
devices enabled by PCE lines

WR Write Strobe Strobe line used for data writes to mem-
ory and other peripheral devices

DRST Device Reset Pin 3.4 of the microcontroller. This is not

a formal signal defined in the parallel bus.
On TINI it is used to reset external
devices.

The memory map, shown in Figure 8.2, is split into two separate 4-mega
ranges. The CE space contains all memory chips used as program and data
for the runtime environment. It also contains a 1-megabyte peripheral are:
addressing high-speed devices that support a parallel bus interface. A
detailed memory map of the CE space is contained in Figure 1.4.

The primary difference between the CE and PCE signals is that the PCE
nals can only be used for data reads and writes. In other words, the microco
ler cannot fetcmative code from memory devices that are enabled using the F
signals. This is why the flash ROM and static RAM used by the runtime envi
ment are accessed using the CE signals.

The CE addresses correspond to true physical addresses in the microcc
ler's memory map. The starting address of memory enabled by PCE sign:
somewhat arbitrary because it's a virtual address mapping. Real PCE add1
actually overlap CE addresses. This requires the microcontroller to change r
ory maps when transitioning from accessing devices mapped into CE spa
accessing devices mapped into PCE space. Applications accessing devices i
space don'’t need to worry about the details of this address map swapping be
they are managed automatically by the parallel I/O driver. However, the sy:
designer should be aware that there is overhead associated with swapping be
CE and PCE memory maps. Data transfer rates on block move operation
about three times faster when only CE mapped devices are involved.

The DataPort Class 185

0x000000 0x800000

CEO PCEO
OXOFFFFF Ox8FFFFF
0x100000 0x900000

CE1 PCE1
Ox1FFFFF OX9FFFFF
0x200000 0xA00000

CE2 PCE2
OX2FFFFF OXAFFFFF
0x300000 0xB00000

CE3 PCE3
OX3FFFFF OXBFFFFF

[] = Not accessible using DataPort

Figure 8.2 DataPort mapping of CE and PCE address ranges

TINI's runtime environment does not reserve any of the PCE space fc
peripheral devices. This implies that all four PCE signals, and the four megabyt
of address space they control, are wide open for system designers. However, m
high-speed peripheral devices are mapped into thea@BB:ss space because it
can be accessed more efficiently by the microcontroller. If no devices are mapy
into PCE space, the four PCE pins can be used as general purpose port pins.
system designer is free to use the peripheral area either for interfacing hardw
directly to the microcontroller’s parallel bus or as general purpose TTL 1/O bt
not both. The topic of accessing the microcontroller’s port pins is covered |
Chapter 9.

8.2 THE DATAPORT CLASS

Access to the parallel 1/O bus is accomplished usingdt#Port class defined in
thecom.dalsemi.system package. MataPort object provides a thin, but efficient,
encapsulation of the parallel bus. It allows an application to control bus timing
and read data from and write data to the bus.

public DataPort(int address)

186 Chapter 8 Parallel I/O

The address parameter obataPort’s constructor specifies the initial addres
for I/O operations. The address must be in either of the following ranges.

. [0x300000—0x3FFFFF]—CESpace
. [0x800000—0xBFFFFF]—PCE®PCE3space

Note that only the last megabyte of CE space, enabled byd@aide used as
a DataPort address. The lower three megabytes, enabled by-CERP are
reserved for code and data storage and are therefore owned by the operatir
tem. While all addresses in CEBace are legal, two address ranges that shoulc
avoided are those consumed by the Ethernet controller and real-time clock.

» Ethernet controller address range—[0x300000—0x307FFF]
* Real-Time clock—0x310000

A DataPort Object can be used to transfer data to and from these dev
though it is not recommended. The operating sy%tmsumes that it has exclu:
sive access to these devices and their respective address ranges. Howeve
possible that some sophisticated networking applications may benefit from qt
ing certain status registers in the Ethernet controller.

Note thatataPort’s constructor does not throw an exception when passec
invalid address. AataPort object can be initialized with any address and tl
address can be changed at any time usingettreldress method.

public void setAddress(int address)

However, any attempt to read from or write to an invalid address will result ir
exception being thrown. Parallel bus read and write operations are discuss
the next section.

8.2.1 Data Transfer

For transferring data to and from peripherals interfaced to the parallel bus
DataPort class providesead and write methods similar to those defined i
java.io.InputStream and java.io.OutputStream. After aDataPort Object has
been properly initialized, the followingead andwrite methods can be used fc
transfer a single byte of data to or from an attached device.

public int read() throws ITlegalAddressException
public void write(int value) throws I1legalAddressException

3. Specifically the Ethernet driver and the clock driver.

The DataPort Class 187

Theread method returns an integer value between 0 and 255 representing t
byte fetched during the bus read operation. Wtiee method writes the least sig-
nificant eight bits, specified in thelue parameter, to the data bus. Thidue
parameter is treated as unsigned and should be between 0 and 255.

When transferring multiple bytes usin@aaPort object, the following-ead
andwrite methods are much more efficient than their single-byte equivalents. |
the remainder of the chapter we will refer to the methods below as tdaciand
write methods.

public int read(byte[] arr, int off, int Tlen)
throws I1legalAddressException

public void write(byte[] arr, int off, int len)
throws I1legalAddressException

The read method takes a byte array, an offset into the array and a byte coL
as parameters. Data is read from the parallel bus and stosed starting at the
offset specified by theff parameter. A total ofen bytes is read from the bus.
The read method returns the number of bytesad. If read returns normally
(without throwing ari11egalAddressException), the return value will be equal to
the number of bytes requested by tle parameter. Therite method takes an
identical list of parameters but reverses the direction of the data transfer. In tl
case, bytes are fetched from the array and are written to the parallel bus.

Both the block and single-byteead and write methods will throw an
I1legalAddressException if the address specified during construction of the
DataPort Object (or later using theetAddress method) is not in either of the
valid ranges specified previously. Th&legalAddressException class is also
defined in thecom.dalsemi.system package.

Depending on the speed of the attached device, parallel I/O can be the fas
form of data transfer supported by the TINI platform. With current implementa
tions of TINI hardware, speeds of up to 170 kilobytes per second when access
devices in PCE space and up to 650 kilobytes per second when accessing dev
in CE space are achievable on large block fi@perations. In contrast, moving
data using the single-byteead andwrite methods results in transfer rates of
about 750 bytes per second, a difference of nearly three orders of magnitude!

8.2.2 Memory Access Modes

DataPort provides two addressing modes that can be used withetltieand
write methods: FIFO (First In First Out) mode and sequential memory mode. |
FIFO mode, the address is not altered when performing block read or write ope
tions. So, for example, if a 32-kilobyte block write is performed usibgraPort

4. In this context, a “large block move” refers to moving several kilobytes of data, con-
tained within abyte array, to a parallel device with a single method invocation.

188 Chapter 8 Parallel I/O

object in FIFO mode, all 32,768 writes will occur at the same address. In sec
tial memory mode, the address is automatically incremented following each
read or write operation. After a bloekad orwrite method returns, the address i
restored to its value prior to the operation.

The addressing mode is only relevant when using the bleckandwrite
methods. The single-bytead andwrite methods don’'t cause the address to |
incremented. This implies that performing successive single-byte operat
results in behavior that, from an addressing perspective, is identical to F
mode. So, if sequential memory mode is desired, the application must incre
the address between single-byte reads or writes by usingth&iress method.
In most cases, an application that must perform parallel I/O in sequential mel
mode should be using the more efficient bleekd andwrite methods.

The setFIFOMode method is used to change the addressing mode for bl
read and write operations.

public void setFIFOMode(boolean useFIFOAccess)
public boolean getFIFOMode()

Invoking setFIFOMode with the boolean value ofrue for the useFIFOAccess
parameter will force successive block reads and writes to use FIFO mode adt
ing. When abataPort oObject is initialized, the addressing mode defaults
sequential memory mode. The addressing mode can be changed at any tim
current mode can be queried usigFIFOMode. This method returns true if the
DataPort Object is using the FIFO addressing mode and false if it is using seq
tial memory mode. Examples of parallel I/O using both addressing modes are
sented in Section 8.3.

8.2.3 Controlling Bus Timing

To accommaodate different logic families and peripherals with varying speeds
DataPort class provides a method for specifying the number of stretch eyoles
be used for bus access. Stretch cycles are used to increase data setup al
times for bus accesses. One stretch cycle adds exactly one machine cycle
execution time of a bus access instruction. In the case of a TINI hardware in
mentation executing at a clock rate of 36.864 MHz, one machine cycle req
approximately 110 nanoseconds. This implies that each stretch cycle add:
nanoseconds to the total time required for each read or write operation.

The valid ranges of stretch cycles are [0-3] and [7-10].

The low range is fine for most CMOS logic families and medium- to hig
speed peripherals. However, there are some slow devices, such as certain |
that may require a large number of stretch cycles. For these devices the

5. Stretch cycles are also commonly referred to as wait states.

Parallel /O Examples 189

range may be appropriate. The number of stretch cycles is specified using |
setStretchCycles method.

public void setStretchCycles(byte stretch) throws ITlegalArgumentException
public int getStretchCycles()

Each valid stretch cycle value is represented by a public constant that
defined in th@ataPort class. If values outside of either of those ranges are spec
fied, setStretchCycles throws anillegalArgumentException. The number of
stretch cycles being used by theraPort object can be queried at any time using
thegetStretchCycles method.

The stretch cycle count can be changed at any time. The change will apply
successive read and write operations. However, in most cases, the stretch ¢
count only needs to be specified once. The default stretch cycle count is 0, wh
assumes that attached peripherals have fast bus access times. Determining the
rect number of stretch cycles requires analysis of both the microcontroller’s b
timing diagram8 as well as the peripheral’s timing diagrams.

8.3 PARALLEL I/O EXAMPLES

This section contains a couple of examples to help clarify the somewhat techni
nature of managing devices interfaced to the parallel bus. Both the hardware
software portions of each example are presented. A fair amount of time is sp
describing the hardware configuration for each example. These descriptions
aimed at software engineers with an only modest hardware background and v
therefore be rather obvious to hardware designers.

8.3.1 Additional TTL I/0

Many embedded applications use microcontroller port pins as general purpc
digital 1/0 for monitoring and controlling external hardware. (Controlling micro-
controller port pins is the subject of Chapter 9.) However, on TINI, many of th
microcontroller’s port pins are dedicated to the purpose of addressing a relative
large amount of memory. For many embedded applications this doesn't lea
enough general purpose digital I/0. The example presented in this section sol
this problem by creating eight additional digital inputs and eight digital outputs
interfaced to the microcontroller’s parallel bus using a few commonly availabl
CMOS chips.

The circuitry, shown in Figure 8.3, uses an octal latch (74HC574) to provid
eight output lines and an octal buffer (74HC541) for eight input lines. Each inp

6. The bus timings are provided in the microcontroller’'s data sheet, which can be viewed
online athttp://www.dalsemi.com/datasheets/pdfs/80c390.pdf.

190 Chapter 8 Parallel I/O

is pulled to \{ using a 10-k ohm resistor. Both chips are decoded in the 1-m:
byte space controlled by CE®@ne important requirement for this circuit is the
the I/O lines occupy an address range distinct from the Ethernet controller
real-time clock, both of which are mapped within the Gi#8ress space in the
ranges listed in Section 8.2.

VvCcC

[oe] [[{e] ITo] RS [e0] [oV] B2}
10K
$333823%
ololal~|lslale
PSEN
ELp—t !
1| o s L9 INg
2 8 iN7
Q7 D7
13 7 NG
o D6 —5 NG
T D517 N4
L D4
6 4 N3
Q3 D3
7 3 iNZ
8 | b2 1—7 INL
o1 D1
DRST 74HC541
74HC574
22% A YOOS 1A 3 79 0¢
R Z B vi p—a-) CLK
c v2 b3 9
2 2 19 ouT1
v3 p—12- 1D 10
1 74HC32 3 18 oUT2
TE34 A — Y4 b5 s 2Q 7 oUT3
A6 5 9 EL Y505 5]3P 3Q s oUT4
A0 6 9 E2 Y6 0 6 4P Q175 oUTS
A9 S 1 g3 Y7 o—— 5D 5Q
Z oo 1 OUT6
7AHC138 8 3 oUT?
7D 7Q
L I oo 12 OUTS
WR

Figure 8.3 Eight I/O lines decoded in CE space

The decoder chip used in this circuit, a 74HC138, provides a one of €
decode. If the decoder’s three enable lines @2, and E3) are in their active
states (low, low, and high, respectively), the three address lines (A5, A6, anc
are used to provide eightjistinct input values. The state of these three addr
lines causes exactly one of the decoder’s eight outputs to be in its active low
as shown in Table 8.2. Because the least significant five address lines are nc
in this circuit for decoding purposes, each output decodes a 32-5ytamge in
memory’ In this example, we only use one of these outputs (YO) for selecting
latch and buffer used for output and input, respectively.

Parallel /O Examples 191

Table 8.2 74HC138 truth table

A B C YO Y1 Y2 Y3 Y4 Y5 Y6 Y7
0 0 0 0 1 1 1 1 1 1 1
1 0 0 1 0 1 1 1 1 1 1
0 1 0 1 1 0 1 1 1 1 1
1 1 0 1 1 1 0 1 1 1 1
0 0 1 1 1 1 1 0 1 1 1
1 0 1 1 1 1 1 1 0 1 1
0 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0

The signals CE3A16, and A19 drive the decoder’s enable lines. By studying
the chip enable and all of the address lines used by the decoder, we can deterr
an address that can be used to access the additional I/O lines Dsitupat
object.nataPort operates with 32-bit addresses. For the purposes of this discu
sion, we'll refer to the address bits as a0 through a31, where a0 is the least sig
icant address bit and a31 is the most significant address bit. Note that we us
lowercase “a” to avoid confusion with the address bus signal names (AO—A1¢
Because the circuit is decoded in CE space, we know from the memory m
shown in Figure 8.2 that the highest possible address is Ox3FFFFF. This me:
that a22—a31 must all be 0. Bits a20 and a21 are determined by our choice of c
select signals, as shown in Table 8.3.

Table 8.3 Chip enable to high-order address bit mapping

CEO CE1 CE2 CE3 a20 a21
0 1 1 1 0 0
1 0 1 1 1 0
continues

7. This decode logic is compatible with, but not identical to, the decode used in the E
series socket boards. The E series socket board schematics are included in the accom-
panying CD and can also be found onlinatgt://www.ibutton.com/TINI/developers/
index.html.

192 Chapter 8 Parallel I/O

Table 8.3 Chip enable to high-order address bit mapping (continued)

CEO CE1 CE2 CE3 a20 a21
1 1 0 1 0 1
1 1 1 0 1 1

Because we're using CEBoth a20 and a21 are 1. The lower 20 bits of t
address (a0 through al9) are determined simply by a 1 to 1 mapping of th
address bus signals (A0O—-A19). The states of the address lines that are not L
the decode are irrelevant, so we'll refer to therdast carebits (or lines). Figure
8.4 shows the combination of the different address fields. The bit posit
marked with an X ardon’t carebits.

a31—> a22 a21 a20 al9 al8 al7 al6 al5—>a8 a7 a6 a5 a4—>a0d

0000000000 1 1 1 X X X XXXXXXXX @ 0 0 XXXXX

X =>don't care

Figure 8.4 Constructing the DataPort address

Note that because a0-a4 are @din't cares all addresses in the range
[0x380000—0x3801F] will enable bus access to the I/O circuitry. Also, bece
there are higher-ordelon’t carebits in the address, there are many such 32-b
address ranges. To select a specific address, we'll simply set alldgriheare
bits to 0, resulting in an address of 0x380000.

While this is not a precise decode, it does ensure that our new /O circ
will not conflict with the other devices attached to the microcontroller’s bus. S
cifically, the decision to require that address line A19 be high and address
A16 be low keeps the new I/O lines out of the way of the Ethernet controller
the real-time clock.

Now that we've covered the somewhat tricky subject of decoding a v
address for transferring data to and from the additional I/O lines, the overall
ation of the circuit can be described simply. During a bus write operatior
address 0x380000, both ¥ahd WRwill be in their active states, causing the cor
tents of the data bus (D0-D7) to be written to the latch’s output lines (1Q—
Likewise, during a bus read operation from address 0x380000, b@hd/BSEN
will be in their active states, causing the contents of the buffers’s input lines t
transferred onto the data bus.

The circuit can be tested by connecting IN1 to OUT1, IN2 to OUT2, anc
on, producing a simple loopback configuration. PAeallelLoopBack test pro-
gram, shown in Listing 8.1, creates DataPort Object attached to addres:

Parallel /O Examples 193

0x380000. TheataPort object is used to perform byte-wide writes to the latch
and byte-wide reads from the buffer.

Listing 8.1 ParallelLoopback

import com.dalsemi.system.DataPort;
import com.dalsemi.system.IllegalAddressException;

class ParallelLoopback {
static final int ADDRESS = 0x380000;

public static void main(String[] args) {
DataPort dp = new DataPort(ADDRESS);
// A1l reads and writes go to the same address
dp.setFIFOMode(true);
// Allow for use of slow logic
dp.setStretchCycles(DataPort.STRETCHL);
boolean passed = true;
try {
// Cycle through all possible 8-bit values
for (int val = 0; val < 256; val++) {
dp.write((byte) val);
if ((dp.read() & Oxff) != val) {
System.out.println("Loopback test failed at:"+val);
passed = false;
break;

}

} catch (I11egalAddressException iae) {
iae.printStackTrace();
}
if (passed) {
System.out.println("Loopback test passed");
}

Because all reads and writes are to the same addresatiiRert object is
placed into FIFO mode. Also, to allow for the use of slower logic, the stretch cyc
count is set to 1. After theataPort object is configured, a test loop is entered in
which each possible byte value (0-255) is written to the latch and then imme
ately read back from the buffer. If all eight output lines of the latch are connects
to the eight input lines of the buffer, as previously described, the test should pa
Due to the pull-up resistors on the input lines, any unconnected signals result
the corresponding bit positions being read back as a logic 1. So, for example
none of the I/O lines are tied together and all of the input lines on the latch &
open, each read from address 0x380000 will return a byte of all logic 1s (OXxFF)

If for cost or size reasons total chip count is a serious concern, the same fu
tionality can be achieved without the decoder by mapping the I/O circuitry int

194 Chapter 8 Parallel I/O

PCE space. This obviates the need to avoid any particular address range. Tl
cuit shown in Figure 8.5 provides the same additional digital I/O capability us
the same buffer and latch. However, it uses P&&the chip select signal. The
other important difference is that bus reads from the 74HC541 buffer are
enabled using R@s opposed to PSENs a rule, PSENontrols bus read opera-
tions for devices enabled using Ginals and Rxontrols bus read operations
for devices enabled with PCE signals.

VCC

10K

11
12
13
14
15
16

D0-D7 5 b9
—— Q 1
El1 O————
1L | o o L9 IN8
12 8 IN7
| Q7 D7
13 7 ING
| Q6 D6
13 b6 IN5
PCEL 15 5 N4
PcEl | e D4
16 4 N3
L Q3 D3
17 3 IN2
8 | & D2 —> IN
| Q1 D1
DRST 74HC541
74HC574
l —
_ 9 A 3 11 gLCK
WR 24
2 19 ouTL
74HC32 3 1P 10 73 oUT2
| 2D 2Q
3 20 17 ouT3
5 16 ouT4
4D 4Q
R sg |15 oUTS
7 14 OUT6
| 6D 6Q
g |5 o2 ouT?
O 80 |12 ouTe

Figure 8.5 Eight I/O lines in PCE space without address decode

Because PCE space ends at 0xC00000, the high-order address bits a3
must all be 0. Also, from the memory map shown in Figure 8.2, the lowest adc
in PCE space is 0x800000. This implies that a23 must be 1. Setting bit a23
duces the same result as adding an offset of 0x800000. Because there is a |
the memory map between 0x400000 and 0x800000, a22 must be zero. This
is a no-man’s-land because the microcontroller maps several system areas, i
ing the stack, into this address range.

Parallel /O Examples 195

As with allpataPort addresses, bits a20 and a21 are determined by the choi
of the chip select signal. Table 8.4 shows the values of a20 and a21 for the vari
PCE signals. Table 8.4 is identical to Table 8.3 with the CE signals replaced
PCE signals.

Table 8.4 Peripheral chip enable to a20 and a21 mapping

PCEO PCE1 PCE2 PCE3 a20 a21
0 1 1 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 0 1 1

Because this circuit uses PGERO is 1 and a21 is 0. Finally, we use a 1 to 1
mapping of the address bus lines to determine the values of al9 through a0. In
example, none of the address lines are used to enable the circuit. This makes
low-order 20 bits of the addreden’t carebits.

The address construction for the circuit shown in Figure 8.5 is summarized
Figure 8.6.

a31—>a24 a23 a22 a21 a20 al19—>al

2
00000000 1 0 0 1 XXXXXXXXXXXXXXXXXXXX

X =>don't care

Figure 8.6 Constructing the DataPort address

Using the convention of choosing tden't care bits to be 0 produces an
address of 0x900000. So, if we simply change the address used in t
ParallellLoopBack test application from

static final int ADDRESS = 0x380000;

to
static final int ADDRESS = 0x900000;

it will work fine with the circuit shown in Figure 8.5. Note that because no addre:
lines are used to enable the circuit, any address in the 1-megabyte range contrc
by PCE1(0x900000-0x9FFFFF) can be used.

196 Chapter 8 Parallel I/O

Finally, it is worth mentioning that even though the two circuits presentes
this section produce only eight digital inputs and outputs, more can easily be
ated in the same fashion by using the other outputs of the decoder to select
tional buffers and latchés.

8.3.2 Reading and Writing External Memory

Often, embedded applications require nonvolatile storage that is distinct fron
garbage collected heap and the file system. It may be used to store critical s
data required for bootstrapping the system or some sort of log data. This
tional requirement can be met by interfacing a nonvolatile memory device tc
parallel bus.

The circuit shown in Figure 8.7 shows the parallel bus interface betweer
microcontroller and a 32-kilobyte nonvolatile SRAM modtl®&ecause the
SRAM'’s density is 32 kilobytes, it uses the 15 low-order address h&hke
SRAM is enabled using PCE@hich implies that the read strobe (RB used to
control read operations (as opposed to P$ENCE reads). Because none of th
high-order address lines are used in this circuit, the contents of the memory
actually be decoded as many times as its 32-kilobyte “image” can fit in"®GEQ
megabyte address space. This produces 32 identical images of the 32-kil
memory, since 1 megabyte i€°232 kilobytes is 2, and 2%21°= 22 = 32. we'll
use the lowest address range to access the memory. This resulistiPart
address range from 0x800000 to 0x807FFF.

TheMemoryTester application, shown in Listing 8.2, begins by creating a 3
kilobyte array and initializing it with a “checkerboard” test pattern. Next,
DataPort Object is created and attached to the base (lowest) address of the Sl
The stretch cycle count is set to 1 to give the memory plenty of time for
accesses. Because TINI's bus is operating at a high frequency, memories
access times greater than 55 nanoseconds require at least one stretch cycle
I/0. The final step abataPort initialization is setting the memory access mode
sequential mode by invoking thetFIFoMode method with a boolean value of
false. Now thebDataPort object is ready to write to and read from the exterr
memory.

8. At some point, of course, the data bus will have to be buffered to prevent it from
becoming too heavily loaded.

9. An SRAM module includes an SRAM, an SRAM nonvolatizer, and a lithium battery
for backup power.

10. 215=32768

Parallel /O Examples

AQ-AL4
AQALA
13 AO
— AL
| A2
é | A3 DQO i;
S A4 DQL —2
2— A DQ2 2
— A6 DQ3 2
N DQ4
25 17
| A8 DQ5
24 18
A9 pQs —i8
55 A0 DQ7
S — Al
- = A12
PCED S a1z
S N
RD 2 | £
27 | OE
WE
WR
DS1230Y/AB
DO-D7

Figure 8.7 32-kilobyte nonvolatile SRAM interfaced to PCEO

Listing 8.2 MemoryTester

import com.dalsemi.system.DataPort;
import com.dalsemi.system.IllegalAddressException;
import com.dalsemi.system.ArrayUtils;

class MemoryTester {
// Assuming a 32 kilobyte SRAM
static final int MEM_SIZE = 32768;
// Least significant byte of SRAM
static final int BASE_ADDRESS = 0x800000;

public static void main(String[] args) {

byte[] testPattern = new byte[MEM_SIZE];

for (int i = 0; i < MEM_SIZE; i += 2) {
testPattern[i] = 0x55;
testPattern[i+1l] = (byte) 0xaa;

}

DataPort dp = new DataPort(BASE_ADDRESS);

// Need incrementing addresses

dp.setFIFOMode(false);

// Allow for communication with slow memories

dp.setStretchCycles(DataPort.STRETCHL);

try {
// Write test pattern to memory
dp.write(testPattern, 0, testPattern.length);
// Read back the contents of the memory

197

198 Chapter 8 Parallel I/O

byte[] ramContents = new byte[MEM_SIZE];

dp.read(ramContents, @, ramContents.length);

// Verify test pattern

boolean passed = ArrayUtils.arrayComp(testPattern, 0,
ramContents, 0,
MEM_SIZE);

System.out.print("RAM test results:");

System.out.println(passed ? "PASS" : "FAIL");

} catch (I11egalAddressException iae) {
System.err.println("Invalid address: Memory test aborted");
jae.printStackTrace();

The entire test pattern is then written to the memory with just one invoca
of the blockwrite method. Next, the test pattern is read back into a separate
kilobyte array using the bloakead method. The array containing the results of tt
read operationrémContents) is then compared with the original test pattern da
If the contents of the two arrays are identical, the test is considered succe
Note that the address does not need to be reset to 0x800000 after returning
write becauseataPort’s block read andwrite methods automatically restore
the address after each operation.

wme JUSE the Bits

Embedded programmers are accustomed to having direct access to microcon!
ler port pins. This is important for many embedded applications because port p
are often used on an individual basis to provide a single bit of output for drivin
devices such as LEDs, relaysr stepper motors. Because the port pins we're
concerned with are bidirectional, they can also be used to provide a single bit
input for tasks such as reading the state of a switch.

This chapter focuses on the ports and port pins provided by TINI's microcot
troller. Specifically, we’ll cover their default usage by the native portion of the
runtime environment and under what circumstances they can be manipula
directly by a Java application.

9.1 TINI'S PORTS AND PORT PINS

On TINI's microcontroller, all port pins belong to one of six ports. The ports ar
numbered sequentially starting from 0. A port is a group of eight pins. So, f
example, port 3 (or P3) is the collection of the eight port pins [p3.0—p3.7]. Ports
1, 2, and 4 are consumed by the data bus, address bus, and chip enable sig

1. Typically, a port pin drives the gate of a FET (Field Effect Transistor), which drives
the actual relay.

199

200 Chapter 9 Just the Bits

This leaves the pins within ports 3 and 5 available as candidates for use as g
purpose input and output.

We touched on accessing port pins from Java in Section 2.6.2 with the
inspiring “Blinky” application. In this example, we flashed a TINI board’s stat
LED on and off by toggling the state of one of the microcontroller’s portzpin
There’s not much more to it than that. The only real trick is knowing which
pins are available to use with your application, since most port pins serve two
sometimes three, distinct purposes. Determining which port pins can be
requires a careful study of the “built-in” 1/O resources the application is us
such as serial and CAN. Table 9.1 lists all of the port pins that can be contr
directly by a Java application along with their default usage.

Table 9.1 Java accessible port pins

Micro Pin TBM390 Pin

Number/Name Number®/Name Default Use(s)

4 (P3.0) 22 (XRXO0) Receive data for serial0

5(P3.1) 21 (TX) Transmit data for serialO

6 (P3.2) N/A Ethernet controller interrupt

7 (P3.3) 23 (EXTINY General purpose external interrupt

10 (P3.4) 18 (DRS External device reset

11 (P3.5) 17 (INTOW) Internal 1-Wire net

21 (P5.0) 10 (CTX) Transmit data for CANO, clock signal for
2-wire synchronous serial /10

20 (P5.1) 11 (CRX) Receive data for CANO, data transmit and
receive for 2-wire synchronous serial 1/0

19 (P5.2) 15 (XRX1) Receive data for CAN1, receive data for
seriall

18 (P5.3) 14 (TX1) Transmit data for CAN1, transmit data for
seriall

17 (P5.4) 30 (PCBO Peripheral chip enable 0

16 (P5.5) 29 (PCB1 Peripheral chip enable 1

continues

2. The status LED on the TBM390 is controlled by P3.5.

The BitPort Class 201

Table 9.1 Java accessible port pins (continued)

Micro Pin TBM390 Pin

Number/Name Number?®/Name Default Use(s)

15 (P5.6) 28 (PCB2 Peripheral chip enable 2
14 (P5.7) 27 (PCB3 Peripheral chip enable 3

a. These pin numbers are valid for 72-pin TBM390s only.
b. This pin is not presented at the TBM390’s edge connector.

Consider the four high-order pins of port 5 (p5.4-5.7). Their normal use is ft
decoding hardware interfaced to the controller’s bus. If a system doesn’t use ¢
of the PCE signals for logic decoding purposes, then all four of these pins can
used as general purpose port ﬁr&milarly, if the system isn’t using CANO or
the 2-wire synchronous serial port normally associated with pins p5.0 and p5
the Java application can assume direct control of these pins.

9.2 THE BITPORT CLASS

Access to individual port pins is achieved usingsthePort class contained in the
com.dalsemi.system package. The followingitPort constructor is used to
attach aitPort object to a specific port pin.

public BitPort(byte bitname)

The port pin is specified by thdtname parameter. Valid values fofi tname
are defined as public constants in #iePort class. The constant names are
formed by concatenating the “Port” string, followed by the port number to th
“Bit” string, followed by the bit’s (or pin’s) position within the port. So, for exam-
ple, the following statement creates a new BitPort object attached to the mici
controller’s p5.3 port pin.

BitPort bp = new BitPort(BitPort.Port5Bit3);
Theset andclear methods are used to control the state of the pin.

public void set()
public void clear()

3. With the PCE signals it’s all or nothing. If a system uses any one of the PCE signals as
true “chip enables” then none of the remaining signals can be used as general purpose
port pins.

202 Chapter 9 Just the Bits

For theclear method, the story is simple: When it is invoked, the port pin
actively driven to a low (to a logic 0) voltage level. Likewise, one might nature
expect that wheet is invoked, the pin is driven to a hijta logic 1) voltage
level. This is not necessarily the caseself is invoked following an invocation of
clear, the pin will be actively driven high for a very brief period of ttraed then
it will transition to a “soft” higﬁ through a weak pull-up. This behavior allows th
pin to be used as an input because external circuitry can easily overdrive the
pull-up. So, if the external circuitry is driving a low-impedance low, the act
voltage level of the pin will be low, even following the invocatiorsef. If the
external load on the port pin is sufficiently high-impedance, or completely oj
then bothset andclear drive true logic levels.

The read method returns the value sampled from the port pin. If at the time
sampling the pin was high (logic Xkad returns 1. Otherwisegad returns 0. The
set method should be invoked before the first caldad. Also, if at any time the
port pin is driven low via an invocation of thgear method, theet method must
be invoked to allow external circuitry to override the pin before invokéag.

public int read()
public int readlLatch()

The readLatch method always returns the state of the last “write” operati
where a write operation is defined as an invocation of either afether clear
methods. TheeadLatch method does not perform a true read of a hardware la
it sSimply “remembers” the last write operation that was performed by the app!
tion. Therefore, it returns a 0 if the previous write operation was a “clear” or
the previous write operation was a “set.”

9.3 SYNTHETIC PORT PINS

Some applications require more port pins than are provided by the microcont
as “built-in” port pins. Depending on your application’s I/O requirements, it c
be especially difficult to find free (that is, not used by any of the platform’s bt
in I/O capability) port pins. One solution is to throw hardware at the problen
small amount of external circuity can be used to synthesize additional port pir
this section we loosely define the notion of synthetic ports as ports created

4. In this context, high implies a voltage level at or near the controller’s supply voltage
(V¢o, and a low voltage implies a voltage level at or near the ground reference.

5. The pin will be actively driven for two clock cycles (half of one machine cycle). This
is about 220 ns on a TINI system running at 36.864 MHz.

6. See the DS803C90 data shéxtp(//www.dalsemi.com/datasheets/pdfs/80c39).pdf
for details on the electrical characteristics of the port pins for ports 3 and 5.

Synthetic Port Pins 203

external I/O circuitry as “external ports.” We'll refer to the pins created by these
ports as “external pins.”

Like internal ports, external ports can contain a maximum of eight pins. How
ever, multiple addresses can be used to decode additional circuitry, producin
practically unlimited number of external port pins. Whether these pins are outpt
only, input-only, or bidirectional is completely up to the system designer. Becau
external ports are interfaced to the system using the microcontroller bus, this sect
assumes that the reader is comfortable with the material presented in Chapter 8.

To access external pins, an application can wserart object created using
the following constructor.

public BitPort(DataPort port)

The constructor requiresbataPort object attached to the address of the external
port. Because TINI's data bus is eight bits wid®; ePort object constructed in
this manner can control up to 8 distinct pins. Controlling more than eight pir
requires multiplesitPort objects, each constructed using a diffem@iaPort
object associated with a unique address.

Just as with true port pinset andclear methods exist for controlling the
state of external pins.

public void set(int bitpos) throws IllegalAddressException
public void clear(int bitpos) throws ITlegalAddressException

There are a few differences between these methods and their true port pin anal
First, the methods used with external pins requirebth@os parameter, which
specifies the position of a pin within an external port. Because a port can contai
maximum of eight pins, the value of thetpos parameter must be between 0 and
7. Another difference is that theet andclear methods associated with external
pins will throw ani1legalAddressException if invoked on aBitPort object that
was constructed usingmataPort object attached to an invalid address. Finally,
the 1/0 characteristics described et andclear in Section 9.2 do not necessar-
ily apply to external ports. Rather, the electrical characteristics of external pil
depend completely on the circuitry used to implement the external port.
ThereadBit andreadLatch methods are used to query the state of an externe
pin. The position of the pin within the external port is specified bybikgos
parameter using the same rules just described farethandclear methods. The
readBit method throws anllegalAddressException when invoked on &itPort
object that was constructed usinpp@aPort object attached to an invalid address.

public int readBit(int bitpos) throws ITlegalAddressException
public int readlLatch(int bitpos)

7. Typically octal buffers and latches.

204 Chapter 9 Just the Bits

Just as with thereadLatch method used in conjunction with “built-in” (or
true) port pins, this is a “software latch” that simply maintains the state of the
write operation as a convenience. Becaus@Latch is not performing a true bus
read operation, it does not throw Bl egalAddressException.

9.3.1 Example: Creating Additional Outputs

To make the concepts presented in this section a little more concrete, let’s
sider a very basic, but useful, example in which eight output-only external pin:
created using a minimal amount of circuitry. First, the hardware will be descril
and then a small application that controls the hardware will be presented.

The schematic shown in Figure 9.1 shows a simple circuit used to cont
bank of eight LEDs. The circuit uses a 74HC574 octal latch (hereafter know
the latch) to control the state of the cathodes of each of the LEDs. When an ¢
is low, the LED that it controls will be “on” (emitting light). So, for example,
output 1Q is low and the remaining outputs (2Q—7Q) are high, D1 will be on
D2 through D8 will all be off. The latch is decoded using PCHfs is a very
lazy decode in which the goal is to minimize the amount of external logic. In
case, no address lines are used in the decode. This implies that any addres:
range [0x800000—-0x8FFFFF] can be used to write to the latch. (See the me
map shown in Figure 8.2.) Note that in this example, our eight “external |
pins” are output only. Any attempt to read the states of the latch’s outputs
duces a meaningless result.

VCC

470

D1 D3 D5 D7
DRST A A ¥ ¥ ¥
Al D2 ™ Y RS De[™ D8
. . . Y.
WR 1 1 — N N N N
® ———Q OC
— A)3 i e
PCEO 2 -
2 19 o1
74HC32 3] 1P 1Q 3 07
} 2D 2Q
4 7 o3
} 3D 3Q
5 6 04
6 | 24P 4Q 5 05
} 5D 5Q
7 7y 06
} 6D 6Q
3 3 o7
9 | /P s 12 08
} 8D 8Q

74HC574

DO-D7

Figure 9.1 8x1 LED test configuration

Synthetic Port Pins 205

The BitTwiddler example, shown in Listing 9.1, usess#&Port object to
individually control each LED in the circuit in Figure 9.1. The application begins
by creating aataPort object, attached to address 0x800000, for the purpose ¢
writing to the latch. ThepataPort object is set to FIFO mode to prevent the
address from being incremented on every write. Afterpth®@port object has
been correctly initialized, it is handed offgotPort’s constructor to be used for
low-level control of the latch.

Listing 9.1 BitTwiddler

import com.dalsemi.system.BitPort;
import com.dalsemi.system.DataPort;
import com.dalsemi.system.IllegalAddressException;

class BitTwiddler {
static final int ADDRESS = 0x800000;

public static void main(String[] args) {
// Create and initialize DataPort object
DataPort dp = new DataPort(ADDRESS);
dp.setStretchCycles(DataPort.STRETCH2);
dp.setFIFOMode(true);

// Create BitPort object to expose 8 independant I/O Tlines
BitPort bp = new BitPort(dp);
try {
while (true) {
int pos = 0;
for (pos = 0; pos < 8; pos++) {
bp.set(pos);
try {
Thread.sleep(100);
} catch (InterruptedException ie) {}

for (pos = 7; pos >= 0; pos--) {
bp.clear(pos);
try {
Thread.s1eep(100);
} catch (InterruptedException ie) {}
}
}
} catch (I11egalAddressException iae) {
iae.printStackTrace();

}

Next, BitTwiddler enters an infinite loop in which all LEDs are repeatedly
turned off by driving each latch output high and then turned back on by drivin
each latch output low. The inner loops invoke ¢he andclear methods on the

206 Chapter 9 Just the Bits

BitPort object to turn the LEDs off and on, respectively. Both loops “touc
every output individually so that only one LED changes state at any given tim

Note that the same exact result can be accomplished using jasirart
object and by forming appropriate bit masks associated with the write opera
In this caseitPort is simply used as a programming convenience, making it €
ier to change an individual output of the latch without altering the state of
other outputs.

9.4 THE BytePort CLASS

Besides being able to manipulate individual port pins, embedded programs
also perform single byte-wide read and write operations to and from a port.
BytePort class in thecom.dalsemi.system package provides the mechanism t
read a byte from or write a byte to a port.

public BytePort(byte portname)

BytePort’s lone constructor requires a byte value specifying the port that i
be the target of any subsequent read or write operations. Note that, u
BitPort, the BytePort class cannot be used in conjunction wittraPort to
access external ports. This is becang@aPort already contains methods for byte
wide 1/O to external logic.

Legal values for theortname parameter are specified as public constants
the BytePort class. Currently, the only port that can be used to constru
BytePort object is port 5 (P5). You may have noticed in Table 9.1 that, under
correct circumstances, all eight pins that comprise P5 can be used as port
The following line of code creates a neytePort oObject attached to the
microcontroller’s port 5.

BytePort bp = new BytePort(BytePort.Port5);

What's not obvious from the preceding statement are the side effects ce
by creating th@ytePort object. From Table 9.1 we can see that the pins that c
prise port 5 serve several different purposes. The functionality provided by t
pins, such as synchronous serial 1/0, CAN, and 1-Wire, must all be disa
before all of port 5's pins can be used in a general purpose fashion. Specifi
BytePort’s constructor performs the following operations.

» Disables the use of pins 5.0 and 5.1 for use by CANO or as a 2-wire
chronous serial interface

» Disables the use of p5.2 and p5.3 for use by CAN1 or seriall; this also
ables the external 1-Wire network adapter

» Disables the use of p5.4, p5.5, p5.6, and p5.7 as peripheral chip enab

Performance of BitPort and BytePort 207

After taking these steps, the application can safely read from or write to tt
port. Read and write operations are accomplished using theseand write
methods.

public int read()
public void write(int value)

The read method returns a value between 0 and 255 decimal that represe
the state of eight pins of the port at the exact time it was sampled. The value of
Oth position pin (p5.0) is stored in the least significant bit of the return value ar
so on. So, for example, if thead method is invoked on &/ tePort object that is
attached to port P5 andad returns a value of Oxcl, then at the time the port was
sampled, p5.0, p5.6, and p5.7 were high (logic 1s), and the remaining pins we
low (logic 0s).

Notice the lack ofead orwrite methods that takieyte arrays as parameters.
This is because there is no way for the native code responsible for performing |
actual operation to pace the transmission or reception of multiple bytes. This
due to the fact that there are no strobe lines associated with the port for controll
the read and write operations. To write multiple bytes usjfagPort, the applica-
tion must “byte-bang” all data destined for the port.

9.5 PERFORMANCE OF BITPORT AND
BYTEPORT

Accesses to either a port or an individual port pin are very fast, single instructi
operations imativecode. The instructions look something like these pseudo-cod
shippets.

mov p5, a // move the 8 bit contents of accumlator to port 5
or
clr p5.0 // force bit 5.0 to a Togic @ (Tow)

However, setting the state of a port pin usingsétemethod of8itPort, for
example, requires two method invocations. The first is the invocation etthe
method itself, and the second is a native method invocation that ultimately sets
desired state of the port pin. Each of these method invocations imposes a non-r
ligible overhead and requires the execution of hundreds (or even thousands)
native instructions. This brings the overall time required for accessing a port
from a few hundred nanoseconds to a few hundred microseconds!

This is an instance where the overhead of the Java runtime environment ¢
adversely impact the 1/O performance of the system. In many cases, such as s¢
and network 1/O, read and write operations can be performed using large bloc

208 Chapter 9 Just the Bits

of data. This prorates the overhead of the method invocations and greatly re
the runtime environment’s impact on performance. But in the casemfrt and
BytePort operations, only a single read or write can be accomplished per me
invocation(s).

For purposes such as driving status LEDs or relays, this overhead has no
tical impact on the overall system performance. Often with such examples
only thing that is important is that the time delay is imperceptible to a human,
a few hundred microseconds easily meets this requirement. However, ther
cases where a port pin must be driven at medium to high frequencies. For €
ple, imagine a scenario where a port pin is being used to generate the clock:
for a synchronous serial protocol. For this type of application, a native library |
be required to achieve the desired performance levels for reading and writing
vidual ports or port pins.

cwreio ACCESSING
System
Resources

In this chapter we'll take a detailed look at the following three very important an
distinct system resources.

* The real-time clock—supports teva.util.Date class and is often used
by embedded applications to provide time-stamping functionality

e The external interrupt—provides asynchronous notification when an inte
rupt is generated by an attached peripheral device

« The watchdog—adds robustness in the form of system crash detection &
recovery

A section is dedicated to each of these topics. Each contains a simple exarr
that demonstrates how to access and control the specific system resource.

10.1 THE REAL-TIME CLOCK

While the real-time clock (RTC) is not a requirement for TINI hardware
designs, most implementations provide it. During the development phase wh
slush is in use, you can set the current date, time, and time zone us#agethe
shell command.

For the most part, your interaction with the RTC will be throughptie
class in thejava.util package. However, thiate class does not provide any

209

210 Chapter 10 Accessing System Resources

method for setting the current date and time in the underlying platform’s hardy
clock. TheClock class in theom.dalsemi.system package provides the ability to
read and write all of the RTC registers, allowing the current date and time to b
programaticallyClock providesgettersandsettersfor each of the following pub-
lic fields.

* int year—two-digit year

e int month

» int date—day of the month

» int day—day of the week

e int hour

e int minute

* int second

e int hundredth—the RTC resolution is hundredths of seconds—that i
milliseconds

* boolean is12Hour—12/24-hour mode flag

* boolean pm—true for PM, false otherwise

Each instance field corresponds to a value in one of the real-time clock’s
ware registers. Constructing of a new instanceletk does not force a read of
any of the RTC's registers. After construction, all instance fields are set to
default initial values. Invoking the meth@étRTC on an instance @flock forces a
read of the RTC and copies the raw registers to their respective instance f
The RTC's register set does not provide any information about the local time
or the first two digits of the year. Code that uskesk to set or retrieve the date
and time must take both of these facts into account.

The example in Listing 10.1 creates an instancel ek, invokesgetRTC to
take a snapshot of the current value of the RTC registers, and displays their v

Listing 10.1 ReadClockRaw

import com.dalsemi.system.Clock;

class ReadClockRaw {
public static void main(String[] args) {

Clock rtc = new Clock();
rtc.getRTCQ;
System.out.printin("Year: + rtc.getYear());
System.out.println("Month: + rtc.getMonth());
System.out.printin("Day of the month: " + rtc.getDate());
System.out.printin("Day of the week: " + rtc.getDay());
System.out.printin("Hour: " + rtc.getHour());
System.out.printin("Minute: " + rtc.getMinute());
System.out.printin("Second: " + rtc.getSecond());

System.out.println("Hundredths of seconds: +

The Real-Time Clock 211

rtc.getHundredth());
System.out.println("Is pm: " + rtc.getPm());
if (rtc.getl2Hour()) {
System.out.println("In 12 hour mode™);
} else {
System.out.printin("In 24 hour mode");

}

RunningreadClockRaw produces output similar to the following.

Year: 1

Month: 1

Day of the month: 31

Day of the week: 5

Hour: 22

Minute: 30

Second: 15

Hundredths of seconds: 63
Is pm: true

In 24 hour mode

This is the output from the slugfate command run just two seconds after
executingReadClockRaw.

TINI /> date
Thu Jan 31 22:30:17 GMT 2001
Wed Jan 31 16:30:17 CST 2001

Note that the first line displayed by tiere command agrees, within a couple
of seconds, with the output from the raw RTC registers. To properly support tl
platform and location, independent functionality specifiedjdfta.uti1.Date,
TINI always uses the RTC in 24-hour mode and computes the register valu
using the GMT (Greenwich Mean Time) zone. If a time zone other than GMT we
specified during a previous run of thete command, the current date and time
are also displayed for the local time zone. The local time zone in this instance
CST (Central Standard Time).

The default (or local) time zone used by thee class can be set and
retrieved using the following methods in the cless. dalsemi.system. TINIOS.

public static String getTimeZone()
public static void setTimeZone(String zone)
throws I1legalArgumentException

ThesetTimeZone method requires string that specifies the time zone. A list
of all supported time zones can be acquired usingetreailableIds method in
the clasgjava.util.TimeZone.

public static String[] getAvailableIDs()

212 Chapter 10 Accessing System Resources

All time zone ids are uppercase letters and are three characters in lengtt
can also view a list of all supported time zones using sldaléiscommand sup-
plying the-t option.

10.1.1 Setting the Current Date and Time

To set the date and time, an application creatdse object and sets all of the
public fields to their desired values. Invoking teerRTC method commits those
values to the real-time clock. This is how the sldske command works. It
parses user input from the command line and calculates the correct values 1
of the clock registers. If a time zone is specified, it adjusts the input date
time with respect to GMT before setting ttieck instance fields.

There is another method for setting the real-time clock that sets all regi:
and commits them to the RTC.

public synchronized void setTickCount(long millis)

Themillis parameter required bsetTickCount is the difference between
the current time and midnight, January 1, 1970 UTC (coordinated unive
time). For our very practical purposes, we can think of UTC as equivaler
GMT. The valueni1lis is the same number that is returned from an invocati
of System.currentTimeMillis. If you're interested in the difference betwee
UTC and GMT, the documentation for thexe class is a good place to start.

10.1.2 Using a Network Time Server

The setTickCount method is an ideal way to set the real-time clock if you he
a convenient means of acquiring the correct value ofitheis parameter. One
way to accomplish this is to gei11is from System.currentTimeMillis on a
host that already has the correct time and feed that valuettdackCount.
Another way is to get the value from a network time server. If your TINI is
(or has access to) a network running a Time Protocol (RF&8é8)er, you can
connect to the server to read the current fime.

An RFC868 server listens for connections on “well-known port” number .
When a connection is established, it returns the time as an unsigned 32-bit
and closes the connection. The returned time is the number of seconds sinc
night, January 1, 1900 GMT. Ultimately, the number we're interested in is
number of milliseconds since midnight, January 1, 1970. From RFC868 we k
the number of seconds between midnight, January 1, 1970 and midnight, Ja

1. RFCB868 can be viewedlattp://www.fags.org/rfcs/rfc868.html

2. SNTP (Simple Network Time Protocol) is actually a much better protocol. We use
Time Protocol here because of its simplicity. SNTP is specified in RFC2030
(seehttp://www.fags.org/rfcs/rfc2030.html

The Real-Time Clock 213

1, 1900 is 2,208,988,800. To convert the value received from the time server t
value that can be passedstixTickCount, we subtract from it the offset shown
previously to get the total number of seconds since midnight, January 1, 197
Finally, we multiply the result by 1000 for the unit conversion from seconds t
milliseconds.

Listing 10.2 uses an RFC868 Time Protocol server to set the current date &
time in TINI's RTC.

Listing 10.2 SetClock

import java.io.IOException;
import java.io.DataInputStream;
import java.net.Socket;

import java.util.Date;

import com.dalsemi.system.Clock;
import com.dalsemi.system.TINIOS;

public class SetClock

{
// Well known port for Time Protocol (RFC 868)
static int TIME_PORT = 37;

// Number of seconds between 00:00 1 Jan 1900 GMT and
// 00:00 1 Jan 1970 GMT
static long SECONDS_OFFSET = 2208988800L;

public static void main(String[] args) {
if (args.length != 1) {
System.out.printin("Usage: java TiniClock TIMESERVER");
System.exit(1l);
}

Socket s = null;

try {
System.out.printin("Crusty date: " + new Date());

// Establish a connection with the TIME server and read

// 32 bit seconds count since 00:00 1 Jan 1900 GMT

s = new Socket(args[@], TIME_PORT);

DataInputStream din = new DataInputStream(
s.getInputStream());

// Compute # of seconds between now and 00:00 1 Jan 1970 GMT
Tong time = (din.readInt() & OxFFFFFFFFL) - SECONDS_OFFSET;

Clock rtc = new Clock();

// Commit the new date/time settings to the system clock
rtc.setTickCount(time * 1000);

// Set the Tocal timezone

TINIOS.setTimeZone("CST");

214 Chapter 10 Accessing System Resources

System.out.println("Shiny new date: " + new Date());
} catch (IOException joe) {
joe.printStackTrace();
} finally {
try {
s.close();
} catch (IOException e) {}

SetClock takes the host nhame (wally, in this case) or IP address of the
server from the command line. It connects to the specified host and reads tt
bit time value using theeadInt method on gava.io.DataInputStream object.
There is one somewhat subtle point here. Since thérimitive type is signed,
the result returned fromeadInt must be promoted to a long and then truncat
using the maskxFFFFFFFFL. This choice of a mask results in both the promotic
of the value returned fromeadInt as well as removing the effect of the unwante
sign extension. The result is the true, unsigned 32-bit value returned by the
server represented withinlang. Sincelongs are 64 bits in width, this leaves
plenty of room to perform the final multiplication without the possibility of ove
flow. Note that we could solve the problem more directly usingr#aéLong
method ofbataInputStream. The time server returns only 4 bytes before closil
the connection. TheeadLong method would attempt to read 8 bytes, and tt
would result in gjava.io.I0Exception being thrown by the underlying socket.

It is easier to see the effect of this example by first setting a bogus date
time using the slustiate command before runnirggtClock.

TINI /> date 010120250000 GMT
TINI /> date
Wed Jan 1 00:00:22 GMT 2025

TINI /> java SetClock.tini wally
Crusty date: Wed Jan 01 00:01:06 GMT 2025
Shiny new date: Wed Jan 31 16:33:09 CST 2001

SetClock uses th@ate class to display the date and time before and after
ting the RTC usingetTickCount. Just for good measure, it also sets the loc
time zone before displaying the new date and time.

Finally, note that setting the clock is not something that an application n
perform every time it is run. The clock is powered by a small lithium cell so t
accurate time is maintained even in the absence of main powgr Kowever,
some applications may want to use a network time server to synchronize the
with the network time during the initialization phase and perhaps periodic
thereafter.

The Watchdosg 215

10.2 THE WATCHDOG

The watchdog timer provides a hardware reset of TINI's microcontroller tc
recover from fatal problems in software that prevent normal operation of tr
embedded system as a whole. This section presents the need for a watchdog
describes its use from a Java application.

10.2.1 Motivation for Using the Watchdog

Many embedded systems are deployed in remote locations and must run con
uously without manual intervention. To achieve very reliable operation ove
long periods of time, an embedded system needs a mechanism for detecting
correcting fatal execution errors in the software that controls the system.

Unresponsive software can be caused by several distinct problems such as
following.

* Thread termination due to an unhandled exception

» Deadlocked threads

» A crash of the underlying OS

e Momentary hardware failures due to environmental stresses such as E
(Electrostatic Discharge)

Of course application software should be written and tested to avoid the
problems to the largest extent possible. However, for large applications execulti
under complex operating environments, like TINI, it is very difficult to guarantee
flawless operation under all conditions. Also, there is no way for application c
system-level software to guard against things like processor glitches, possil
caused by environmental stresses, that usually result in “runaway” code.

Whatever mechanism we use to protect against hanging applications, it ca
be a purely software-based solution, since unreliable software operation is exac
what we're trying to protect against in the first place. The system software must
protected by a simple and reliable underlying hardware construct. For this reas
TINI's microcontroller supports a hardware-based timer known as the watchdo
The purpose of the watchdog is to guard against runaway code. The watchc
timer can be thought of as a countdown to a “hard” reset. If the timer ever expire
it produces an effect that is roughly equivalent to hitting the reset button on yo
PC. Using the watchdog timer is a harsh but effective way to ensure that yc
application does not “hang” indefinitely, leaving the system in an unresponsi\
and useless state.

The basic idea behind the operation of the watchdog is that periodically
your code you reinitialize or “feed” the watchdog, preventing a reset. If the coc
has become unresponsive to the point that it can’t execute the critical sections

216 Chapter 10 Accessing System Resources

code that feed the watchdog, it is better to reset the entire system, returning
known state, than to continue executing “hung” code.

10.2.2 A Tail of Two Dogs

There are actually two different watchdog timers on TINI, one hardware bz
and one software based, that are used together to protect the entire emb
system, both the OS and the application(s), from runaway code. The hard
watchdog, completely managed by the operating system, has a limited ran
time-out values that are determined by the processor clock. The largest pos
time-out value of the hardware watchdog is less than three seconds. Thres
onds is plenty of time for very small, dedicated embedded applications that
highly deterministic behavior and are written entirely in native code. In t
case, feeding the watchdog is as simple and fast as writing to one of the pr
sor’s registers.

However, in a large, multi-threaded Java application, the amount of time
elapses between opportunities to feed the watchdog is nondeterministic an
be long. So a more flexible watchdog is required to allow for longer time-out
ues. The software watchdog provides arbitrarily large time-out values. The
ware watchdog is managed by the OS and is checked for expiration every tirr
task scheduler runs. By itself it would be sufficient to detect runaway applicat
level code, but it can’t guard against a crash in the operating system. If the
itself were to crash and the timer maintenance routine stopped getting calle
entire system could still hang indefinitely. For this reason, the hardware watcl
is used to ensure the integrity of the software watchdog. The software watch
timer maintenance routine feeds the hardware watchdog every time it is calle
the task scheduler. During normal operation, a Java application feeds the sof
watchdog and the software watchdog feeds the hardware watchdog, keepir
system from resetting.

10.2.3 Using the Watchdog Timer

The com.dalsemi.system.TINIOS class provides these two methods for contrc
ling the watchdog.

public static void setWatchdogTimeout(int mstimeout);
public static void feedwWatchdog();

The setWatchdogTimeout method sets the watchdog timer to expire in tl
specified number of milliseconds. The watchdog timer can be disabled by in
ing setWatchdogTimeout With a time-out value of 0. By default, the watchdog
disabled during bootup. OngetwWatchdogTimeout has been invoked with a non-
zero time-out, the watchdog timer begins. Finally, thedwatchdog method is
used to “knock back” the timer and prevent a system reset.

The Watchdosg 217

Even though it can be accessed by multiple applications, it should be used
only one application: the application that performs the lion’'s share of the syste
critical work. This is typically the application that is started after the OS boots.

Using the watchdog in your application is easy. The only trick is picking
good time-out value and choosing where and how often to feed it. Often an apy
cation has a main loop that runs periodically and performs some critical task. Tt
is an excellent place to feed the watchdog. Other applications, such as Web s¢
ers, spend most of their time blocking with all threads sleeping, waiting fa
incoming network connections or some other asynchronous event. Applicatio
that don’t have a natural place to perform periodic maintenance can create a se
rate thread with the sole purpose of feeding the watchdog. This is not quite
effective as embedding the timer reset in critical code that must execute perio
cally and also adds the cost of an additional thread to the application. It is, ho
ever, a solid mechanism for recovering from a system-level crash.

Since the watchdog contributes nothing to the actual functionality of you
application, you want the resources consumed by the watchdog to be as smal
possible. This suggests the use of a large time-out value, typically on the order
several seconds. Also, it is important to feed the watchdog in intervals that &
comfortably smaller than the time-out value. This avoids unnecessary resets ¢
to race conditions caused by process and thread scheduling.

10.2.4 Example Use of the Watchdog Timer
Listing 10.3 illustrates the use of the watchdog timer.

Listing 10.3 Watchdog

import java.io.IOException;
import com.dalsemi.system.TINIOS;

class Watchdog {
boolean feedDog;
int interval;

// Create a thread for timer maintainence
Thread feeder = new Thread(new Runnable() {
public void run() {
while (feedDog) {
try {
Thread.sleep(interval);

} catch (InterruptedException ie) {}
System.out.printin("Feeding the dog!");
TINIOS.feedWatchdog();

b;

218 Chapter 10 Accessing System Resources

Watchdog(int timeout, int frequency) {
// # of milliseconds between watchdog feedings
interval = timeout / frequency;
feedDog = true;
feeder.start();
// Set watchdog timeout value, this also starts the timer.
TINIOS.setWatchdogTimeout(timeout);
}

public static void main(String[] args) throws IOException {
// Set the timeout for 8 seconds and knock back the
// timer 2 times during each timeout period (i.e. every
// 4 seconds)
Watchdog wd = new Watchdog(8000, 2);

System.out.println("Hit <ENTER> and die!!!");
int ¢ = System.in.read();
System.out.printIn("Shutting down Watchdog thread");
// Allow Feeder thread to fall out of its run loop
wd.feedDog = false;
// Now we’re just waiting to die!
while (true) {

System.out.println("Still breathing ...");

try {

Thread.s1eep(2000) ;
} catch (InterruptedException ie) {}

watchdog creates a thread to feed the watchdog, feeder, that keeps the s
from resetting. The watchdog time-out is set to 8 seconds. As soon &s the
watchdogTimeout method is invoked, the timer starts running. The timer main
nance thread resets the watchdog timer twice per time-out period. So evi
secondseeder wakes up, knocks back the watchdog, and goes back to sleef
long as thefeedDog boolean remainstrue, feeder Will keep the system from
resetting. The program’s other thread of execution, the primordial thread, bl
waiting for user input. Once user input has been received, the primordial th
sets thefeedDog boolean t0 false. The next timefeeder wakes up, it detects that
feedDog is false and falls out of the run loop. At this point, there is nothing ru
ning in the system that can stop the watchdog timer from expiring. From
point, the system is 8 seconds from a hard reset.

watchdog should be run from a serial session to view the boot progress r
sages just shown. Also, since a watchdog reset is abrupt, the OS doesn't ha
time to perform an orderly system shutdown, closing network connections
open files. So, before runningtchdog, be sure to exit any Telnet or FTP se:
sions, and Kill all processes other than slush and the garbage collector. Her
sample output afatchdog.

The External Interrupt 219

TINI /> java Watchdog.tini
Hit <ENTER> and die!!!
Feeding the dog!

Feeding the dog!

Feeding the dog!

Shutting down Watchdog thread
Still breathing ...

Still breathing ...

Still breathing ...

Still breathing ...

----> TINI Boot <----
TINI OS 1.02
API Version 8009

Here we can see that the watchdog timer was knocked back three times bef
user input was received. So the application ran peacefully for about 12 secon
At the point user input was received, the warning message “Shutting down Watc
dog thread” was displayed, and the infinite loop in the primordial thread beg:e
executing. Somewhere between the fourth and fifth iteration of the “would be
infinite loop, the watchdog timer expired, rebooting the system.

10.2.5 Beware of Dog!

The watchdog is a very powerful and important tool in helping to ensure reliab
operation for systems that use TINI technology. However, since a watchdog rese
a very abrupt action, it should be used only as a last resort to regain control ©
completely unresponsive system. If an application is executing well enough
detect fatal errors, it should use #doot method, provided imINIOS, instead of
forcing a watchdog reset. To avoid extraneous resets, use long time-out values,
feed the watchdog at least a couple of times per time-out interval.

10.3 THE EXTERNAL INTERRUPT

The external interrupt is so called because it is accessible to hardware not integre
into TINI's microcontroller. The external interrupt is exposed to peripheral device
as a port pin on the microcontroller. The external interrupt is exposed to the Jz
programmer through the small set of classes indhedalsemi.system package.
These classes are used to configure the external interrupt and receive asynchro
notification from the system when an interrupt occurs. This section describes 't
important features and the correct use of the external interrupt classes.

10.3.1 Polling versus Interrupts

Polling is a pure software technique in which a thread of execution repeatec
asks all attached peripheral devices whether they have undergone a chang

220 Chapter 10 Accessing System Resources

state that requires some action by the application software. If the answer is
the thread performs whatever action is required by the device, clearing the
dition that caused the interrupt. If the answer is no, the thread will typici
sleep for some small amount of time and ask again later.

Interrupts provide a much more efficient method of determining whel
peripheral device requires attention. Instead of the applicaskinga peripheral
whether it has data, the periphasdls the application that it has data by interrup
ing it. Once the microcontroller detects the interrupt, it transfers execution col
to a special software handler for the interrupt known as an ISR (Interrupt Se
Routine). At this point, the ISR determines the source of the interrupt and \
additional code, if any, is required to handle it.

The advantage of using interrupts is that no CPU cycles are burned unles
of the attached peripherals actually requires attention. This leaves the applic
free to go on about its business performing other, more useful, tasks.

10.3.2 Properties of the External Interrupt

The external interrupt pin is a “low true” pin. This is to say that the “acti
state of the pin is a logic 0. The pin is pulled high (a logic 1) to its inactive s
by a resistor internal to the microcontroller. To generate an interrupt, the pel
eral drives this pin to a low level.

TINI's microcontroller provides three interrupt priority levels: low, high, ar
highest. The only interrupt that runs at the highest priority level is the “power f
interrupt. The external interrupt is set by the OS during bootup to a high-pric
interrupt. This implies that it will preempt the execution of code in either a nor
(noninterrupting) state or code executing under a low-priority interrupt. T
ensures that the ISR will receive quick notification of the interrupt.

10.3.3 Triggering the External Interrupt

The external interrupt can be configured to be either edge or level triggere
edge triggering is selected, an interrupt is generated by a falling edge (a tr
tion from a logic 1 to a logic 0) on the external interrupt pin. When using e
triggering, the interrupt is latched. This means that it is “remembered” b
memory element in the microcontroller, and the interrupt condition pers
until it has been acknowledged by software. During the TINI OS boot proc
the external interrupt is configured for edge triggering.

If level triggering is selected, the external interrupt pin must remain at a I
0 until the microcontroller begins executing the low-level software routine t
first handles interrupts. In other words, the fact that the interrupt occurred i
“remembered” by the microcontroller. So if the external interrupt pin returns
logic 1 before the low-level ISR executes, it is as if the interrupt never occur

The External Interrupt 221

This results in loss of interrupts and a possible loss of synchronization betwe
the processor and the peripheral generating the interrupts.

The triggering mechanism for the external interrupt can be configured frol
Java by invoking the following method on cl&ssernalInterrupt.

public static void setTrigger(boolean edgeTrigger,
ExternalInterruptEventListener owner)
throws ExternalInterruptException

Theboolean parameteedge is set totrue for edge triggering anéalse for
level triggering. Theowner parameter is used by the system to provide a mute;
(mutual exclusion) type semaphore. OreeTriggering is invoked by a process,
that process is considered to be the owner of the interrupt. If another thread fr
the same process or a thread in a different process attempts to alter the trigge
mode, arExternalInterruptException IS thrown. After the owning process ter-
minates, the interrupt becomes unowned and the triggering mechanism can
altered by another process. Note that threads in other processes can still rec
interrupt event notification. The triggering mode can be queried at any time |
any thread using thgtTrigger method.

public static boolean getTrigger()

ThegetTrigger method returnsrue for edge triggering anehlse for level triggering.

10.3.4 Receiving Notification of Interrupts

Notification of the occurrence of external interrupts is accomplished using ¢
event listener modekxternalInterrupt provides methods that allow an appli-
cation to register and unregister for receiving interrupt notifications.

public void addEventListener(ExternalInterruptEventListener listener)
throws TooManyListenersException
public void removeEventListener(ExternalInterruptEventListener 1listener)

Both methods require an instance of a class that implementsdd@alIn-
terruptEventListener interface.ExternalInterruptEventListener defines the
following method.

public void externalInterruptEvent(ExternalInterruptEvent ev)

This is the method that is invoked when an external interrupt has bee
received. The method is passed &xternallnterruptEvent oObject.
ExternalInterruptEvent extends java.util.EventObject. Currently, an
ExternalInterruptEvent Object encapsulates no information about the source o

222 Chapter 10 Accessing System Resources

the interrupt. It is left to the application to communicate with the attacl
peripheral to determine additional information about the nature of the interri

Applications can have multiple listeners for external interrupts. The first ti
addEventListener is successfully called, a daemon thread is created that imm
ately invokes a blocking native method. The native method puts the thread to
until an external interrupt occurs. When the interrupt occurs, the daemon thre
awakened by the system and returns from the native method. The thread thel
merates a vector of the event listeners and notifies them of the interrupt. Onc
last listener invokes theemoveEventListener method, the daemon thread i
destroyed.

The program shown in Listing 10.4 listens for external interrupts. Every ti
an external interrupt occurs, it simply increments an event counter. For the sg
making the event causing the interrupts more concrete, a push-button switct
used to generate the interruﬁfﬁo test the example one side of the switch is cc
nected to the external interrupt piand the other side to ground. Recall that tt
external interrupt pin is pulled high to its inactive state internally. When the sw
is closed, by depressing the push button, the external interrupt pin is pulle
ground, generating a falling edge that causes the interrupt.

Listing 10.4 PushButton

import java.util.TooManylListenersException;

import com.dalsemi.system.ExternalInterrupt;
import com.dalsemi.system.ExternalInterruptEvent;
import com.dalsemi.system.ExternalInterruptEventListener;

class PushButton implements ExternalInterruptEventListener {
// Maintain a count of external interrupt events
int count;
ExternalInterrupt extInt;

PushButton() throws TooManylListenersException {
extInt = new ExternalInterrupt();
extInt.addEventListener(this);

}

public void externalInterruptEvent(ExternalInterruptEvent ev) {
++count;
System.out.println("Event count: " + count);

}

public static void main(String[] args)

3. This example ignores debounce problems altogether because it adds little to the
discussion.
4. Pin 23 on the TINI Board Model 390.

The External Interrupt 223

throws TooManyListenersException {
PushButton pb = new PushButton();
// Don’t let the primordial thread die!

try {
Thread.sleep(Long.MAX_VALUE) ;
} catch (InterruptedException ie) {}

The PushButton class implements th@&xternalInterruptEventListener
interface and must provide an implementation of ¢kiernalInterruptEvent
method. Every time an interrupt occurs, this method is invoked and
increments and displays the number of interrupts that have occurred since
listener was added.

After adding itself as a listener for external interrupts, the primordial threa
itself has nothing left to do. So it puts itself to sleep for a practically infinite
amount of time. This is roughly equivalent to invokinigread. suspend, but it
avoids using a deprecated method. We need to sleep forever as opposed to
exiting the main method because the notifier thread is a daemon thread and
exit when the last user thread exits. In this example, the only user thread is the |
mordial thread. If it exits, the application will terminate almost immediately afte
starting.

Every time the push button is depressed, &ék€ernalInterruptEvent
method is invoked by the daemon notifier thread and the event count is inc
mented and displayed. This is the output from runmimghButton as a back-
ground process from a Telnet session.

TINI /> java PushButton.tini &

Id:7 Event count: 1
Id:7 Event count: 2
Id:7 Event count: 3
Id:7 Event count: 4
Id:7 Event count: 5
Id:7 Event count: 6

The fact that the external interrupt is a shared system-wide resource can
seen by running another instanceraéhButton in the background of the same
Telnet session.

TINI /> java PushButton.tini &
Id:7 Event count: 7
Id:8 Event count:
Id:8 Event count:
Id:7 Event count:
Id:8 Event count:
Id:7 Event count:

O Woo N =

224 Chapter 10 Accessing System Resources

Now there are two instances of the same application listening for the s
external interrupts. Every time the push button is depressed, both processes
ment and display their own internal event counter.

A closer look at the preceding output suggests an important point. The
two lines of output show that the first instanc@whButton received notification
of the interrupt before the second instance. The next two lines of output shov
the opposite: the second instance receives the first notification. The order in v
event listeners are invoked is not guaranteed between different processes or
ent threads in the same process. The ordering depends on what process
thread is executing when the interrupt occurs. For all practical purposes
ordering should be considered random.

10.3.5 Sharing a Common Interrupt Source

In thepushButton example, there was only one source for interrupts in the en
system: the push button. In a large embedded system, there may be mt
peripherals, each providing one or possibly more interrupt sources.
requires a mechanism for sharing the external interrupt.

An interrupt controller chip can be used to multiplex several different sout
of interrupts into the same external interrupt pin. It is up to each listener to d
mine whether it is interested in the source of the interrupt. If so, it takes the aj
priate action and acknowledges receipt of the interrupt in a fashion comple
dependent on the hardware that generated the interrupt.

w1 Application
Programming
Tips

This chapter discusses techniques for profiling I/O performance, execution tirr
and memory use. These methods are employed to study the impact of I/O, me
ory, and code speed optimizations. It concludes with a discussion of how

harden an application for production deployment. All the suggestions and pra
tices described in this chapter were written with TINI's runtime environment ir
mind. Some of these tips may be beneficial on other platforms, while others m
not. In other words, your mileage may vary.

11.1 PERFORMANCE PROFILING

To avoid being vague about how a suggested optimization may improve applic
tion performance, most of the examples presented here will be timed before ¢
after a specific optimization. This section describes the procedure used to time
performance of most of the code snippets in the following sections. It also pr
vides some insight into issues that should be considered to accurately profile p
tions of your application.
TheuptimeMillis method, defined in them.dalsemi.system.TINIOS class,

can be used for timing operations that execute over a period of a few millisecor
to several minutes with reasonable accuracy.

public static native final long uptimeMillis()

295

226 Chapter 11 Application Programming Tips

This method returns #ong integer representing the number of milliseconc
that have elapsed since the system was booted. It is maintained by the high-p
timer interrupt that drives system operations such as task scheduling. It is nc
to the real-time clock in any way, but it drifts only about 1 millisecond evi
second. TheurrentTimeMillis method, defined ijava.lang.System, returns a
long integer that represents the number of milliseconds that have elapsed
midnight, January 1, 1970 UTC. Its value is derived from reading the real-t
clock and over long periods of time is very accurate. However, the smallest
interval granularity supported by TINI's real-time clock is 10 milliseconds, mak
it difficult to usecurrentTimeMi11is to measure small intervals of time. Also, a Ic
of expensive arithmetic must be performed to compute the specified return v
In fact, it takes nearly 20 milliseconds per invocatiorwfrentTimeMi11is Oon a
TINI Board model 390. Either method can be used for our purposes, bu
execution times reported in this chapter are measured wsifngeMi11is because
of its relatively low overhead compared wilrrentTimeMi1lds.

To keep the overhead of profiling code to a dull roar, the timing measl
ments are taken in-line by capturing the OS tick count just before and just
the operation being timed. Additional method invocations are avoided. A sar
code snippet is shown in Listing 11.1. With a granularity of approximately 1 r
lisecond returned byiptimeMillis, we should expect timing errors roughl
within a +/— 2-millisecond range for two invocationsupfimeMillis.

Listing 11.1 Measuring elapsed time

import com.dalsemi.system.TINIOS;

class SomeClass {

void someMethod() {
long startTime = TINIOS.uptimeMillis(Q);
// Do stuff we're interested in timing

long elapsed = TINIOS.uptimeMillis() - startTime;
System.out.printin("Time elapsed : " + elapsed);

All source was compiled with javac distributed in JDK1.2.2. The time m
surements were taken by executing the code snippets on a TINI Board Mode
that runs at processor clock rate of 36:861#Hz. The TINI runtime version used

1. The external crystal is actually 18.432 MHz, but the clock rate is doubled on the
processor by a phase locked loop (PLL) to 36.864 MHz.

Efficient I/O 227

is v1.02, and all applications were launched from slush. No other processes w
running. The numbers achieved when the applications are loaded directly into 1
flash ROM are about 3 to 4 percent faster. The performance of other TINI har
ware implementations will of course vary depending largely on the process
clock rate. System loading caused by processing network and other interrupts
also cause noticeable timing variations.

Serious variations can occur when measuring operations that require only
small amount of time for execution. The variations can be caused by sudd
changes in CPU load due to interrupts, from sources such as the Ethernet netw
controller, or just due to loss of execution because of either thread or proce
swapping. For this reason, the test environment should be reasonably well c
trolled. First, only one process should be actively executing. Other live process
such asnit (typically the shell) andc (the garbage collector), are fine as long as
they are dormant (not actively being scheduled). To avoid high percentage err
in measurement when measuring relatively quick operations, perform the ope
tion a number of times, typically in a loop, and measure the entire time. The
divide the result by the number of loop iterations. If the overall execution time |
aimed at several seconds, then any error due to interrupt latency under nor
loads will be negligibly small.

11.2 EFFICIENT I/O

For most TINI applications, the first priority is efficiently moving data to and
from system resources such as the serial port or Ethernet controller, as well
external application-specific hardware. TINI's runtime environment was writtel
with this in mind. The native 1/O infrastructure was carefully coded so that da
can be moved quickly from application provided buffexsé arrays) to system
resources or attached circuitry. The most important thing a Java application m
do to take advantage of this infrastructure is to move data between the appli
tion and native drivers quickly. This means moving data in reasonably larc
blocks as opposed to a single byte at a time. The process of moving data to
from streams, or other I1/O mechanisms, a byte at a time will be loosely term
byte-banging

11.2.1 Block Data Transfer versus Byte-Banging

Like other Java platforms, much of the I/O on TINI is stream based, including ne
work, file system, and serial port communication. This means that moving data
and from an 1/O resource usually boils down to invokisgd andwrite methods

on instances of subclassesjafa.io.InputStream andjava.io.OutputStream.
Efficient I/O using streams can be achieved by utilizing these “bleeid and
write methods.

228 Chapter 11 Application Programming Tips

public int read(byte[] b, int off, int Ten) throws IOException
public void write(byte[] b, int off, int Ten) throws IOException

The default implementation of these methods providerhpntStream and
OutputStream iS very inefficient. Thewrite method, for example, simply
invokes the single byte write method iterativeéln times to moveaen bytes of
data to the underlying resource. This makes sense betapssStream and
OutputStream are not tied to any concrete 1/O resource and therefore are un
to make any assumptions about the native interface provided for a spe
device or resource. However, subclassesIimputStream and OutputStream
override theread andwrite methods just shown. The subclass’s implementati
maps directly to a native method call to a driver that takes the same paran
and performs the requested I/0. The requested data transfer occurs e
expense of only one, rather thaan, context switches from the Java applicatio
to the native runtime.

Listing 11.2 shows the worker thread of an echo server. The echo se
accepts connections from clients and createscasworker thread to manage
the connection.Echoworker’'s constructor invokes theetInputStream and
getOutputStream methods on the socket to get the lowest level, and theref
most efficient, streams available for reading data from and writing data to
underlying connection. These are actually instance®@fetInputStream and
SocketOutputStream, Which are private classes defined in jhea.net package.
The run method waits for receive data. All data received is immediat
transmitted (or echoed) back to the sender. rthanethod will exit normally if
the echo client closes the connection or abruptly ifIl@fxception occurs
during a network read or write operation. Inbound data from the client is rea
invoking the single-byteead method on the socket’s input stream and written
the client using the single-byéeite method on the socket’s output stream.

Listing 11.2 EchoWorker

private class EchoWorker implements Runnable {
Socket s;
InputStream sin;
QutputStream sout;

private EchoWorker(Socket s) throws IOException {
this.s = s;
sin = s.getInputStream(Q);
sout = s.getOutputStream();

}

public void run(Q) {
try {

Efficient I/O 229

int count = 0;
while (count != -1) {
int ¢ = sin.read();
if (c = -1 {
sout.write(c);
}
}
} catch (IOException ioe) {
System.out.println(ioe.getMessage());
ioe.printStackTrace();
} finally {
try {
s.close();
sin.close();
sout.close();

} catch (IOException _) {}

To test the echo server, we'll need an echo clidfite echo client used here
connects to the server and transmits a fixed amount of data to the server. It clc
the connection after it has received all of the data it transmitted. The effecti
throughput of the server is measured by the client by dividing the number «
bytes transmitted by the time elapsed between when the first byte is transmit
and the last byte is received. This is a measurement of the full-duptexigh-
put of the server. The total number of bytes flowing between the client ar
server, ignoring network packet overhead, is twice the number of bytes transm
ted by the client.

With the run method implemented as shown in Listing 11.2, the echo serve
achieves a total throughput of 110 bytes per second. We can see why the servi
so slow by examining the series of events that occurs every time we invoke t
write method on theocketOutputStream. First, thewrite method invokes a
native method to send the byte to the socket layer of the network stack. The nat
socket write routine copies the byte into a TCP output buffer. From there the by
makes its way down the network stack and finally is transmitted onto the netwol
In the read case, the data flow is reversed, but the cost per byte is about the s:
Even if the overhead incurred by data processing in the network stack were ne
gible, the throughput would still be greatly limited just by the number of Jav
method invocations. We’'ll see in the next section that method invocations a
fairly expensive.

2. The source code of the echo client and server used to generate the performance num-
bers that follow is included in the CD that accompanies this text.
3. Data is being simultaneously transmitted and received by both the client and server.

230 Chapter 11 Application Programming Tips

Listing 11.3 Modified run method

byte[] buf = new byte[4096];

public void run() {
try {
int count = 0;
while (count != -1) {
count = sin.read(buf, @, buf.length);
if (count > Q) {
sout.write(buf, 0, count);
}
}
} catch (IOException ioe) {

}

If we change theun method to do block reads and writes, each method in
cation can move multiple bytes at almost the same cost as moving a single
Listing 11.3 shows a modifiedin method. The new version creates a 4-kiloby
buffer that is used for both reads from and writes to the socket’s streams.
read method that takes a byte array, an offset into the array, and a byte co
used to receive data from the client. It blocks until at least 1 byte of data is a
able to the stream. Once 1 or more bytes are available, they are copied in
caller-provided byte array. The number of bytes actually copied into the |
array is returned byead. All of the bytes read from th&cketInputStream are
then written to theocketOutputStream. The write operation is accomplishe
using the efficientvrite method that also takes a byte array, an offset into
array, and a length. The length suppliedvitote is identical to the number of
bytes received byead.

If only 1 byte is available every timead is invoked, then the situation hasn’
improved any. Theead method will return the byte, and it will be echoed to tf
client. However, if the client is transmitting data at a rapid pace, there will usu
be multiple bytes available on the input stream. In this example, data is kb
received over a TCP connection on an Ethernet network. This means the mes
received by the network stack can contain as much aéb%@s of application
data. Since there is no guarantee that an application will be ready to receive
work data as soon as it's available, the network stack maintains fairly large bu
for receive and transmit data. TINI's network stack uses input buffers of 4 k
bytes in length—hence the sizeboff chosen in Listing 11.3.

4. The maximum length of an unfragmented IP datagram encapsulated within an Ether-
net frame is 1500 bytes. Accounting for a 20-byte IP header and a 20-byte TCP
header, the resulting segment payload can be as large as 1460 bytes.

Efficient I/O 231

Running the new and improved version mfhoServer results in a total
throughput of about 60,000 bytes per second. This is well over 500 times fas
than the results obtained from the byte-banging version. This dramatic improv
ment underscores the point that the cost of moving a single byte at a time throt
a stream can be nearly as expensive as moving multiple bytes using byte array
at all possible, an application should prorate the overhead of read and write ope
tions by moving reasonably large blocks of data.

Byte-banging is appropriate, and actually a requirement, for some applic
tions. TheTiniTerm program, presented in Section 3.4, is a good example of a
application that needs to move data in small, often single-byte, chunks. A termir
program appears more responsive to the user if it is not buffering the data befi
displaying it. As soon as a character is received by the terminal program, it shol
be echoed to the display. Also, data rates comparable to the 110 bytes per sec
achieved by the slow echo server are fine in the case of a terminal progr:
because it's awfully tough to type more than 100 keystrokes in one second. Ho
ever, the majority of TINI applications interface with hardware (as opposed t
humans) that move data in bursts and often at the maximum rate supported by
communications channel. TiserialToEthernet example, presented in Section
3.5, was written to be able to move large amounts of data between a serial de
and an Ethernet network. A throughput of only a few hundred bytes per seco
would render that application useless.

Since both th&choClient andEchoServer programs used in this section are
written in Java, it is a trivial matter to collect similar numbers for other platforms
When the byte-banging version of the echo server was run on a PIlll Win2
machine, the server processed only about 1000 bytes per second. This is fa
than the equivalent server running on TINI but still much slower than the efficiet
version of the echo server on TINI. This demonstrates that byte-banging isn't j
inefficient on resource-constrained environments. It can be painfully slow ©
almost any platform.

In the echo client/server example, we focused on stream-based 1/O, but tl
also applies to other forms of data transfer such as parallel 1/O and 2-wi
synchronous serial data transfer. The classes that expose these forms of
provide blockread andwrite methods that accept a parameter list identical to
those defined inmnputStream andoutputStream. The performance differences
between byte-banging and block moves are huge for both of these cases as v
If the MemoryTester application, developed in Section 8.3.2, used the single-byt
read method on thepataPort object to read from and write to the external
memory, the throughput would have been a few hundred bytes per secc
versus more than a hundred thousand bytes per second. In most ca:
converting the 1/0 portions of an application to block moves from byte-bangin
will lead to throughput improvements of two to three orders of magnitude.

232 Chapter 11 Application Programming Tips

This section can be summarized as follows.

» Byte-banging: Bad, very bad!
* Moving data from stream to stream (or port to port, as the case may b
reasonably large blocks: Good!

11.2.2 Buffered Streams

Under the right circumstances, the use ofa@a.io.BufferedInputStream Or
java.io.BufferedOutputStream can improve a program’'s performance, and wh
used for network 1/0O, they can also reduce the total amount of network traffic
the names suggest, both provide buffering on top of another stream. The bu
maintained internally as a byte array whose size can be specified during con
tion of the stream. The main idea is that most reads from or writes to the st
can occur directly to the internal buffer without incurring the overhead of na
method invocations to transfer the data to or from the operating system. In the
of aBufferedOutputStream, for example, only when the internal buffer fills or th
flush method is invoked is the underlying streantste method called.

Using buffered streams does not always lead to greater efficiency. While |
ering would improve the performance of the inefficient echo server fr
Listing 11.2, it would actually degrade the results produced by the modified
sion of the echo server in Listing 11.3. In this case, the buffered streams !
only to introduce another layer of data handling between the application an
network stack. In general, if an application already has a large block of data
is, a buffer), it should probably use the stream that is the “closest to the meta
greatest efficiency.

If your application consumes or produces data in small chunks, the us
buffered streams provides a large benefit. fdaLogger example, from Chapter
7, collected measurements that were represented as a codialeies and aong.
The measurements were transmitted to a network client using
java.io.DataOutputStream oObject attached to a sockefataOutputStream's
writeDouble andwritelLong methods each write 8 bytes of data to the underlyi
output stream. If that output stream were not buffered, each of these writes v
copy the data directly to the native socket layer’s write routine. The network s
would then be generating lots of small messages, transmitting most of the valt
separate segments. By wrapping thmtaOutputStream oObject in a
BufferedOutputStream, the values written to thataOutputStream are not copied
to the network stack until treufferedoutputStream’s internal buffer is full or its
flush method is invoked. The result is that fewer network segments need t
generated because each segment contains more data. Network bandwi
utilized more efficiently, and the overall application performance is improved.

Memory Usage 233

11.3 MEMORY USAGE

As Java programmers we're used to enjoying the freedom of developing progra
without considering how much memory we use or when we're using it. We torc
memory with reckless abandon and let the garbage collector clean up the me
For the most part, we would rather not concern ourselves with memory manag
ment issues at all, and there is certainly no requirement to do so when writi
TINI applications. However, on TINI, we're working with heap sizes as small as
few hundred kilobytes versus a few hundred megabytes on a PC or workstation
little consideration, especially during the design phase, of how your applicatic
behaves with respect to memory consumption can go a long way.

11.3.1 Object Creation

Object creation, initiated by thew operator, is expensive both in terms of mem-
ory and CPU consumption. All objects that are created are either arrays or cl:
instances. When either is created, a malloc (memory allocation operation) is p
formed by the memory manager on behalf of the VM. Further adding to the cc
of the malloc operation is the fact that malloc is effectively a “calloc” that clear
all of the allocated memory to 0s. This is done so that all array elements,

instance fields, are properly initialized to their specified default values. The ve
majority of the time required to create an array is spent performing the mallc
operation. When a class instance is created, allocating the memory is just the f
step. Next, the object’s internal structure is initialized, and then its constructor a
its superclasses’s constructor (and so on) are all interpreted by the VM. The til
this takes depends largely on what operations are performed by the individt
constructors, but it can easily dwarf the amount of time required to allocate mel
ory for the object. In some cases, the amount of object creation can be reducec
reusing previously created objects. Depending on the application, this may requ
care to avoid using stale information from an old object or possibly creatin
thread-safety problems.

11.3.2 Strings

Strings have a sneaky way of gobbling up lots of memory (and CPU in the pr
cess), but they are extremely useful. Every attempt has been made to make st
operations efficient. For example, many of the methods irsthing class are
implemented as native methods. However, there isn’t much that can be done ak
the amount of memory consumed by various methods iattfiag class. Meth-
ods liketoUpperCase, toLowerCase, substring, and so forth all create and return
new String objects. Imagine a scenario in which an array of strings is bein
parsed within a loop and in each iteration of the loop the string is compared to t

234 Chapter 11 Application Programming Tips

lowercase version of a portion of some source string using a statement like th
lowing.

if (s[i].equals(src.toLowerCase().substring(3, 6))) {
) e

Two temporary strings are created. Each pass through the loop, chewir
both memory and time. In this case, the problem can be avoided by creatin
string required for comparison outside of the loop and storing a reference to i
local variable. The local reference can then be used for comparison withir
loop.

String concatenation using theperator is also expensive. The java compil
generates code that createStaingBuffer object and uses itfpend method to
copy the individual strings into thexringBuffer’s internal character array. The
result is then converted back to a string by involdmgingBuffer’'s toString
method. The cost of string concatenation can be lowered by creating an app
ately sizedstringBuffer directly. If thestringBuffer is created using the follow-
ing constructor

public StringBuffer(int Tength)

with a capacity (the value akngth) large enough to contain the final string, th
StringBuffer’s internal character array will not have to be resized during conc
enation gppend) operations. This prevents creating new arrays as well as the &
copy operations that would be required to copy the contents of the old buff
the new bulffer.

11.3.3 Profiling Memory Usage

There are a few things to keep in mind when analyzing your application’s mer
usage. First, because TINI is a multi-threaded, multi-process system, me
profiling is an inexact science. If you're analyzing a particular method execu
within a particular thread, you may need to suspend other processes as w
other threads within the same process in case they are consuming memory a
If your application, slush, and the garbage collector are the only processes
ning in the system, you shouldn’t need to worry about the other processes.
won't use any memory unless you're interacting with a slush session. The
kernel process that could consume memory without direct cause from the ap
tion is the network stack’s TCP process. When it establishes a connection w
remote peer, it allocates approximately 12 kilobytes of memory (for circular ir
and output buffers) from the garbage collected heap. Most other kernel proc
use a fast memory manager that allocates data from a separate, small heap.

Memory Usage 235

There are two methods that return the amount of free memory available in t
garbage collected heap (Java heap). fifeemMemory method that is defined in the
java.lang.Runtime class

public Tong freeMemory()
and thegetFreeRAM method defined ifom.dalsemi.system. TINIOS.
public static final int getFreeRAM()

Both return the same value, hystcFreeRAM is static and therefore doesn’t require
the creation of an object just for the sake of memory reporting.

If you're going to write the amount to the console usiggtem.out or any
PrintStream using a harmless-looking statement like the following

System.out.printin("Free RAM:"+TINIOS.getFreeRAM(Q));

be aware that just executing that statement consumes a noticeable amoun
memory. To see this, you can executeM&Reporter example shown in Listing
11.4. It simply loops forever, displaying the amount of free memory.

Listing 11.4 MemReporter

import com.dalsemi.system.TINIOS;

class MemReporter {
public static void main(String[] args) {
while (true) {
System.out.printin("Free RAM:"+TINIOS.getFreeRAM(Q));
}

Sample output frorMemReporter is shown in Listing 11.5.

Listing 11.5 MemReporter output

TINI /> java MemReporter.tini &

Free RAM:312512
Free RAM:312224
Free RAM:311936

Each iteration consumes 288 bytes. The exact number of bytes consun
from iteration to iteration may vary by a small amount. Also, note that since th
smallest chunk of memory allocated by the memory manager is 32 bytes, t

236 Chapter 11 Application Programming Tips

difference between return valugstFreeRAM from successive iterations will be
a multiple of 32.

Let's take a look at where some of the memory is going. To manage the s
concatenation, the compiler generates code to cresteiagBuffer. The “Free
RAM:” string is copied to th&tringBuffer. Also, memory is consumed, convert
ing the integer returned hygtFreeRAM tO aString USiNgInteger.toString. The
string representation of the free memory is then appended 8xth&gBuffer.
Finally, the resultingstringBuffer is converted to &tring. After the display
string is fully cooked, it is written to therintStream. During that process the
message string is first converted to a character array and then a byte array.
these steps create objects, reducing the actual amount of free memory befc
even displayed. Of course, all of the memory consumed by the preceding :
ment quickly becomes garbage and will eventually be reclaimed.

To get a handle on where and how much memory your application is con:
ing, it helps to view the free memory without altering it. Bhep1ayrRAM method
shown in Listing 11.6 writes the current amount of free memosyf@em.out
without consuming any memory.

Listing 11.6 displayRAM

private static final byte[] prompt = "Free RAM:".getBytes();
private static final byte[] 1t =
System.getProperty("line.separator™).getBytes();

private static void displayRAM(O) {
try {
synchronized (prompt) {
System.out.write(prompt);
Debug.intDump (TINIOS.getFreeRAM(Q));
System.out.write(1t);

}
} catch (IOException ioe) {
joe.printStackTrace();

}

It looks a little awkward, but it is effective. The memory for the fixed-te
portion of the output is allocated only once when the class (static) initiali:
are run. Both the prompt and the line separator are maintained as byte arrz
that they can be used directly withintStream's write method that takes a byte
array as input. The static methodntbump, defined in the class
com.dalsemi.system.Debug, converts the integer to a printable form and write
the result toSystem.out. This replaces the memory-consuming meth
Integer.toString, used byemReporter

Other Optimization Tips 237

11.3.4 Garbage Collection
The garbage collector is launched in one of the following three ways:

» An application explicitly invokeSystem.gc().

e A new operation reduces the amount of free RAM to drop below a low
memory threshold (64 kilobytes).

* A Java process terminates.

On TINI, when an application invokes tle method, it is treated as more
than just a suggestion. If the garbage collector isn't already running on behalf
the applicatior, it will be launched immediately. It executes as an independer
process as opposed to a separate thread executing within the same process. \
the garbage collector runs, it will compete, on equal footing, with other process
for CPU time. This can cause a temporary degradation in your application’s pe
formance. For example, consider the typical case where only one Java proces
actively competing for the CPU. When the garbage collector is idle, the Java pt
cess can utilize nearly 100 percent of the CPU. However, when the garbage ¢
lector is active, the Java process will share the CPU equally with the garba
collector. This reduces the Java process’s maximum possible CPU utilization
50 percent. After the garbage collector has completed its task, the gc proc
returns to an idle state in which it consumes no CPU. You can see this in action
letting theMemReporter example (Listing 11.4) run for a while. Once the free
memory dips below 64 kilobytes, the garbage collector will start automaticall
andMemReporter’s updates will slow. Once the garbage collector has finished, th
updates will speed up again.

If the structure of your application is such that there exists a natural locatic
to explicitly launch the garbage collector, then it may be possible to reduce tl
overall impact that garbage collection has on the application to a negligible lev
Perhaps it periodically communicates with some device or network host, consu
ing memory in the process, and then goes quiet for long periods. During this qu
period your application can launch the garbage collector, allowing it to use mc
of the available CPU to quickly do its job and go back to sleep. The combinatic
of reusing objects when appropriate and launching the garbage collector at opf
tune times can lead to a faster and more responsive application.

11.4 OTHER OPTIMIZATION TIPS

The controller at the heart of TINI's runtime environment is geared much motr
toward efficient I/O than quick execution of computationally intensive tasks

5. The gc can collect garbage on multiple processes simultaneously.

238 Chapter 11 Application Programming Tips

Because of this, applications that perform a lot of data processing and an:
present performance challenges. In order to improve the performance of
applications and squeeze the most out of TINI's small controller, we’'ll spend
a little time under the hood of the JVM to see why certain operations are ex
sive. We'll discuss ways to exploit this knowledge for the sake of enhancing a
cation performance in critical sections of code.

Most of the operations that are expensive on TINI execute in a neglig
amount of time on your Hexium X, 2 Jillion Hz host development machine. M:
coding inefficiencies can go completely unnoticed when running on a very
machine. The tips presented here are geared for the TINI platform. Due to
and other runtime optimizers, some of the following optimizations may not
nearly as effective when applied to other Java platforms. On TINI there is no
no hotspot, and no runtime optimizations performed by the virtual machine.
technigues described here reduce the amount of work that must be undertal
the bytecode interpreter and can therefore make a real difference to your ap
tion’s overall performance.

11.4.1 Relative Cost of Common Operations

Before getting into specific optimizations, it is worth spending a little time exp!
ing the cost, in terms of execution time, of common operations like acces
instance variables and invoking methods. Those listed below are ordered
most to least expensive.

» Class instance creation

» Array creation

* Method invocation

» Instance and class (static) variable access
« Array accesd

» Local variable access

As discussed in Section 11.3, object creation is a very expensive operatior
creating class instances takes longer than creating new arrays. Method invoc:
either static or instance, are also time consuming. They take about 5 to 10
longer than storing or retrieving instance or static field values. The differenc
execution speed of array access and field accesses isn't usually too dra
Finally, by comparison to the other operations listed, working with local variaf
is very fast. In certain cases, an application can save a lot of time by moving

6. This assumes single-dimensional arrays. The use of multidimensional arrays is very
expensive, both in terms of memory usage and access time.

Other Optimization Tips 239

of the slower operations from within loops that must execute quickly. We discuss
few possible ways to accomplish this in the following section.

11.4.2 Loop Optimizations

There may be occasions where your application will need to charge through
array in a loop performing some operation(s) on the individual array element
The tips described in this section are designed to speed up performance of lo
with modest to large iteration counts. The iteration count should be sufficient
prorate the overhead of single operations that are added outside of the loop v
the goal of speeding operations within the loop.

For the purpose of illustration, we’ll use a concrete, though highly contrivec
example. Th&ogus class, shown in Listing 11.7, contains the static methae-
Counter that counts the number of occurrences of the specified character encap
lated within astring object. Themain method concocts a testring that
encapsulates a character array whose length is specified on the command line.
character array is initialized with a repeating sequence of incrementing lowerce
ASCII characters (a—z). The string’s length should be large enough to reduce
effect that short-duration transient spikes of system activity could have on the tir
ing measurements.

Listing 11.7 Bogus

import com.dalsemi.system.TINIOS;

class Bogus {
public static int charCounter(String s, char ch) {

long startTime = TINIOS.uptimeMillis(Q);
int count = 0;
for (int i = 0; i < s.lengthQ; i++) {

if (s.charAt(i) == ch) {

++count;

}
}
long elapsed = TINIOS.uptimeMillis() - startTime;
System.out.println("elapsed time: " + elapsed +

"ms for String of length " + s.length());

return count;

}

public static void main(String[] args) {

if (args.length != 1) {
System.out.println("Usage: java Bogus.tini Tength");
System.exit(1l);

}

// Create a bogus String

char[] ca = new char[Integer.parseInt(args[0])];

for (int i = 0; i < ca.length; i++) {

240 Chapter 11 Application Programming Tips

ca[i] = (char) (Ca’ + (i%26));
}
String s = new String(ca);
System.out.println("number of a’s="+charCounter(s, ’a’));

All of the run times listed below apply to the time required for dher-
Counter method'’s loop to process a test String of length 16384 (16 kilobytes
will take charCounter plenty of time (on the order of several seconds) to slug
way through the entire string, leaving us with a reasonably accurate idea o
how effective the performance enhancements really are. Runninggtiseappli-
cation as in Listing 11.7 produces an output similar to the following.

TINI /> java Bogus.tini 16384
elapsed time: 8564ms for String of Tength 16384
number of a’s=631

It took about 8.6 seconds to count the number of a’'s contained within
String.

Now let's focus orcharCounter’s loop that computes the count and look fc
some possible performance improvements. We can start by looking adrthe
loop’s conditional expression.

i < s.lengthQ

Each iteration through the loop invokes thegth method on thetring
object. We know from the previous section that method invocations are relat
expensive operations. Since strings are immutable, we know that their lengtt
remain constant. To avoid this method invocation on every loop operation, we
cache the length in a local variable. So when the loop conditional is evaluate
length is fetched quickly from the local variable rather than returned fror
method. The modifications are shown in Listing 11.8.

Listing 11.8 Caching the length in a local variable

// Copy String length to Tocal for faster access
int len = s.lengthQ);
for (int i =0; i < Ten; i++) {
if (s.charAt(i) == ch) {
++count;

}

ExecutingBogus again with these modifications reduces the execution time
5997 milliseconds.

Other Optimization Tips 241

Next we can take a look inside the loop. Every iteration invokestidet
method to determine the character value at the specified index. Again we c
exploit the fact that strings are immutable to safely acquire a local copy of tt
character array and extract the characters directly from the array. The modific
tions are shown in Listing 11.9

Listing 11.9 Directly accessing character data

// Copy String length to local for faster access
int len = s.length(Q);
// Get a local copy of char[]
char[] ca = new char[Tlen];
s.getChars(@, len, ca, 0);
for (int i = 0; i < Ten; i++) {

if (ca[i] == ch) {

++count;

}

With this implementation, the execution time drops to 3248 milliseconds
Now there isn’'t much left to optimize away. No methods are invoked in the looj
the only array access is necessary, and all variables are local, as oppose
instance or static variables. We can still squeeze a few more CPU cycles out of
loop by optimizing the loop structure itself. To this poinfpaloop has been used
to iterate through the array elements. The loop expression compares two non-z
integer values to decide whether to terminate the loop. This comparison is accc
plished by the JVM using one of a set (of six) Java opcodes that compare the
two integers on the operand stack and, depending on the result of the comparis
branch to a new location in the bytecode stream. Both integers are copied fror
local variable to the top of the operand stack prior to the comparison. This :
occurs reasonably quickly, but the comparison of an arbitrary integer with 0
faster. There is a separate set of opcodes in which one of the operands (0) in
comparison is implied. This means that the VM only needs to copy the contents
one local variable to the top of the operand stack. If we convefloedoop to a
while loop that just counts down to O, we should see a small performanc
enhancement. The modifications are shown in Listing 11.10.

Listing 11.10 Using a faster loop

// Copy String length to local for faster access
int len = s.lengthQ);

// Get a local copy of char[]

char[] ca = new char[len];

s.getChars(@, len, ca, 0);

2492 Chapter 11 Application Programming Tips

while (len > 0) {
if (ca[--Ten] == ch) {
++count;

}

This final tweak runs in a time of 2877 milliseconds. So from our start
point to now we've improved the method’s performance by about 300 percel
still isn’'t blazingly fast, but certainly the improvement is well worth the sm
amount of additional code.

The charCounter example was of course just used as a simple vehicle to
cuss techniques for optimizing code within time-consuming loops. If we w
actually interested in the functionality provided by #herCounter method, we
might consider the implementation shown in Listing 11.11. At first glance
seems reasonable that this approach would be more efficient than the or
technigue used in Listing 11.7 but somewhat less efficient than our fastest at
shown in Listing 11.10.

Listing 11.11 Using indexOf

int count 0;
int index 0;
while (true) {
index = s.indexO0f(ch, index);

if (index !'= -1) {
++count;
++index;

} else {
break;

}

The results obtained using the above implementatiathaofCounter on the
test string are in the neighborhood of 630 milliseconds. However, only the
that index0f is implemented as a native method on TINI makes it faster tl
Listing 11.10.

What wasn’t mentioned in the previous discussion was the possible bene
unrolling loops to further reduce the impact of the overhead of the loop struc
This isn’t specific to TINI or Java. It is a time-honored tradition usually emplo
out of true desperation. Whether unrolling a loop is beneficial really depend
the time required testing for loop termination versus the time required for the
of the operations performed inside the loop. If the loop structure is lean and r
when compared with the operations performed inside the loop, there is little |
tical benefit to unrolling the loop. On the other hand, if the loop termine
requires a large amount of time (perhaps due to necessary method invoca

Other Optimization Tips 243

compared to the time required to execute the code within the loop, it may |
worthwhile.

In the previous example, we achieved substantial performance gains
replacing unnecessary method invocations with fast local variable accesses. Un
certain circumstances we can also improve performance by caching class
instance fields in local variables. Accessing an instance variable is somewl
expensive because it requires the JVM to parse the object’s internal structure
extract the specified field. Consider the array compare example shown
Listing 11.12. In this case the arraysndb are private instance variables. If the
arrays are of identical length, theequal method iterates through the elements of
the array, checking for equality. If the array elements are unequal at any inde
isEqual aborts immediately and returns false.

Listing 11.12 Array compare

private byte[] a;
private byte[] b;

private boolean isEqual() {
if (a.length != b.Tlength) {
return false;
}
for (int i = 0; i < a.length; i++) {
if (afi] !'= b[i]) {
return false;
}
}

return true;

The worst-case execution time results when the arrays are identical.
isEqual is run on arrays 16 kilobytes in length with identical contents, it
requires 7390 milliseconds to compare all of the elements. If we modify th
method slightly and cache the array refereneeandb, in local variables as
shown in Listing 11.13, the resulting run time is 4431 milliseconds. In this cas
three instance variable accesses are replaced by local variable accesses for
loop iteration: two used in the comparison of the array elements and one usec
extracting the array length.

Listing 11.13 Caching instance fields in local variables

byte[] a = this.a;
byte[] b = this.b;
for (int i = 0; i < a.length; i++) {

244 Chapter 11 Application Programming Tips

if (@afi] !'= b[i]) {

return false;
}

The way the loop’s conditional expression is constructed requires the JVI
interpret thearraylength opcode, fetching the length from the specified array f
each iteration. This seems like a bit of a waste, since the array length is guare
to remain constant. Fetching the length of an array isn't a terribly slow opere
but it is still faster to load a value from a local variable. In the code snippetin |
ing 11.14, the array length is stored in the local variaélewnhich is then used in
the loop’s conditional expression.

Listing 11.14 Caching array length in a local variable

byte[] a = this.a;

byte[] b this.b;

int len = a.length;

for (int i =0; i < Ten; i++) {
if (afi] !'= b[i]) {

return false;
}

The resulting execution time is 4001 milliseconds. Finally, we can apply
same trick we used in théharCounter method in the previous example an
restructure the loop so that the termination expression performs a compa
against 0. This change, shown in Listing 11.15, results in a run time of 3538 r
seconds, shaving an additional 363 milliseconds.

Listing 11.15 Using a faster loop

WH%]e (len > @) {
if (a[--1en] != b[Tlen]) {
return false;

}

11.4.3 Arithmetic Operations

Arithmetic operations on identical primitive types all take about the same am
of time, with the exception of multiplication and division (including #hepera-

Other Optimization Tips 245

tion that produces the remainder of an integer division). The fastest operations
those performed on thiaat primitive type. This is due to the fact that the smaller
primitives likebyte andshort are widened tants before an arithmetic operation
is performed.

Whenever possible, integer (not just specificallyitiedata type) multiplica-
tion and division operations should be replaced by the equivalent shift operatiol
For example, you could replace the following statement

i /= 32;
with its mathematical equivalehtising the logical right shift operator.
i >>>= 5;

You can also improve the performance of mw)doperations when the modu-
lus is an even power of 2 by bit wise ANDing with the value of the modulus minu
one. For example the following statement

i %= 32;
can be replaced with
i &= 0x1f// 31 decimal

The use of the shift operators, when possible, will be faster on most platforn
but the difference on TINI is far more striking. This is because the controller o
which TINI is built does not have 32-bit ALU registers that can perform multipli-
cation and division operations quickly in hardware. Instead, 32-bit multiplicatiol
or division requires many individual operations. The CPU does, however, offe
some support for 32-bit shift operations, which results in shift operationston
primitives being much faster than multiplication or division.

By far the most time-consuming arithmetic operations are floating point ca
culations. Unlike your host development machine, TINI's controller does not cor
tain a “built-in” floating point unit. So floating point operations must be carriec
out purely by a software floating point library. Surprisingly, using calculations ol
doubles is faster than calculations étpats. This is because, on TINI, &Hloats
are widened taioubles before the calculation is performed. If your application
needs to perform floating point arithmetic, it's probably best tadoges. One
thing to keep in mind, however, is thaubles are represented in 64 bits (8 bytes)
andfloats only 32 bits (4 bytes). So, for example, moving a double around usir
DataInputStream andDataOutputStream takes about twice as long.

7. ltis assumed here thas non-negative.

246 Chapter 11 Application Programming Tips

11.4.4 The ArrayUtils Class

While array accesses are not nearly as expensive as object creation or
invocations, they can still cause performance bottlenecks. One reason is tha
array access requires bounds checking. To enhance the performance of
operations, the API provides a class namedyUtils in thecom.dalsemi.system
package.ArrayUtils consists entirely of static native methods geared tow:
speeding up common array operations. Because all of the methadayintils
are native, they are much faster than equivalent methods implemented in Jave
The arraycopy method, defined in thgava.lang.System class, is imple-

mented as a native method in most Java platforms (including TINI) and there
has no analog in therayutils class. It allows the caller to quickly copy a po
tion of the contents of one array to another.

public static native void arraycopy(Object src, int src_position,
Object dst, int dst_position, int length)

It copies data from a source array-d) to a destinationd6t) array. When
copying arrays of primitives, both of the arrays must be of identical type. The
sets into the source and destination arrayseteposition anddst_position,
respectively The total number of bytes copied is equal to the value specifiec
thelength parameter.

The rest of the methods discussed in this section are defined in
com.dalsemi.system.ArrayUtils class.

The arrayCopyUnequal method takes a parameter list identical to that
arraycopy and performs a similar operation with a couple of exceptions.

public static native void arrayCopyUnequal(Object fromArray,
int fromOffset,
Object toArray, int toOffset,
int length)

First, arrays of object references may not be copied using this method.
System.arraycopy method should be used for reference array copies. Next,
most important, arrays can be of different types. For exampleraarray can be
copied into abyte array and vice versa. If the primitive type of the source ari
(fromArray) is wider than the primitive type of the destination arraafray), a
truncating operation is performed on each element during the copy. For exal
when copying from annt array tobyte array, only the least significant byte o
each integer in thént array will be copied to theyte array. If anint value of
Oxffffff7f w ere extracted from a souréet array, it would be truncated to 0x71
and stored in theyte array. If the primitive type of theoArray array is narrower
than the primitive type ofromArray, then the most significant bytes of the ele
ments copied t&romArray are set to 0. For example, ifsaort value of Oxff7f

Other Optimization Tips 247

were extracted from a sourgkort array, it equals 0x0000ff 7f after a copy opera-
tion into anint array. In other words, the value is not sign extended.
ThearrayComp method is a comparison analogat@aycopy.

public static native boolean arrayComp(Object arrayl, int offsetl,
Object array2, int offset2, int Tength)

It compares two arrays from specified offset&§et1, offset2). The number
of bytes compared is specified by thength parameter. Both arrayarfrayi,
array2) must be of identical type. If the array elements in the specified range a
equal,arrayComp returnstrue. ThearrayComp method is a general purpose and
very fast version of thésEqual method we experimented with in Listing 11.12.
The arrayFi11 method that follows fills each element in the range specifiec
by fromIndex andtoIndex (inclusive) with the value specified By11value.

public static native void arrayFill(byte[] thisArray, int fromIndex,
int toIndex, byte fillvalue)

The getLong andsetLong methods store and retriev@@g primitive to and
from a byte array.

public static native byte[] setlong(byte[] thisArray, int offset,
Tong value)
public static native Tong getLong(byte[] thisArray, int offset)

The setLong method returns a reference to the target anashrray). Cor-
respondinget* andset* methods exist for thehort andint primitive types as
well. The byte ordering for all methods is big-endian. So for example the follow
ing statement

setInt(b, offset, val);

extracts bytes from the specified integer value and places them in the target at
as shown here.

b[offset] = (byte) (val>>>24);
b[offset+1l] = (byte) (val>>>16);
b[offset+2] = (byte) (val>>>8);
b[offset+3] = (byte) (val>>>0);

Primitive values returned from thet* methods construct a return value by
shifting the bytes into the target primitive in big-endian fashion. The most signif
cant byte is located in the array element whose index is specifiefd dat.

-
=}
~+

i = b[offset] << 24;

i | ((b[offset+1]<<16)&0xTf0000) ;
i | ((b[offset+2]<<8)&0Oxff00);

i | ((b[offset+3]<<0)&0Oxff);

-
o u

248 Chapter 11 Application Programming Tips

11.5 AN OPTIMIZATION STRATEGY

First, simply develop your application in a clean fashion without worrying 1
much about optimization. Otherwise, you may wind up writing awkward, harc
maintain code. After the application is functionally complete, focus on per
mance enhancements, if necessary. When you do get to the point of optirr
your code, go after the big targets first: I/O and memory usage. Use profiling 1
niques, such as those discussed in Section 11.1 and Section 11.3.3, to ic
execution bottlenecks. After discovering where the bulk of the CPU cycles
being consumed, consider some of these techniques, discussed previously
marized roughly in order of effectiveness.

» Identify the real performance bottlenecks. Then optimize only the ¢
that must be fast.

» Optimize 1/0 by transferring relatively large blocks of data whene
possible. When your application must read and write small amount
data to an underlying stream, use buffered streams. Use-the and
printTn methods orprintStream objects sparingly, since they are fairly
abstract and consume memory when converting from character to
arrays.

» Try reducing unnecessary memory usage. Reuse objects when fee
(that is, easy to do and thread-safe). Reducing unnecessary object cre
will not only save memory, it will also speed code execution.

» Make judicious use of strings and be aware of their tendency to use n
ory. Consider usingtringBuffers. This should allow some recycling o
memory, and thetringBuffer can be easily converted t&saring when
necessary.

» For better performance within a tight loop try the loop optimization st
gestions from Section 11.4.2. Avoid unnecessary method invocations
field accesses.

» If after a reasonable attempt at optimization you still need better pet
mance, a native library may be required.

11.6 APPLICATION HARDENING

To this point in the chapter we've been discussing how to make your applic:
faster and more responsive. Now we’'ll shift the focus to hardening the app
tion. A production application must ultimately be able to deliver the uptime
reliability required of embedded network devices, as well as recover from u
pected events such as loss of power or runaway code.

Application Hardening 249

11.6.1 TINI's Memory Technology and Data
Persistence

First, it's important to understand the different types of memory technology use
by TINI hardware and the purpose each serves so that you can make two img
tant decisions.

» Where should your application be stored?
» Where should any other required persistent data be stored?

For the purposes of this discussion, persistent storage is defined as mem
that retains its contents for long periods of time in the absence of primary pow
(Vco- There are two distinct types of memory used by any TINI hardware imple
mentation: flash ROM and static RAM (SRAM). The flash ROM is of course per
sistent and stores the bootstrap loader, the runtime environment, and the “flash
Java application. Figure 1.6 shows how the different binary images are mapg
into the flash ROM’s memory space. The SRAM can also be made persiste
using a small amount of additional circuitry and a lithium coin cell battery (se
Figure 1.3). System configuration information such as static network paramete
are stored in the SRAM along with the garbage collected heap and file syst
data.

If the SRAM is persistent, network parameters and file system data rems
intact even in the absence of primary power. If the SRAM is volatile, critical sys
tem data must be stored in another memory device. The runtime environme
makes provisions for storing network parameters in the flash ROM and restori
these parameters during the OS boot phase. Otherwise, the flash memory can
used for arbitrary data storage. However, any hardware implementation may p
vide a separate persistent external memory device to store important data nee
to bootstrap the system. This additional memory device can take the form of eitt
a full parallel access memory with an address and data bus that is decoded ir
unused portion of the system memory map (Figure 1.4) or a small serial memc
such as an 1-Wire EEPROM. The TINI Board Model %88 example, provides
a small 1-Wire EEPROM (electrically erasable programmable read-only memor
chip to allow the application(s) to store up to 512 bytes of configuration data. Tl
TBM390 also nonvolatilizes the SRAM, providing a total of three distinct types o
persistent read/write memory.

Executing from Flash Memory. During the application development phase,
the persistent Java application is typically slush, or perhaps another shell, tl

8. Included on board revisions D and later

250 Chapter 11 Application Programming Tips

allows the developer to load, execute, and test her application. Slush can al
used in production because applications can be automatically launched by a
the appropriate line of text in the “/etc/.startup” file. This line is normally the se
command used when launching your application from the command line. /
rule, however, the safest place for your application to live is in the flash R(
This ensures the application binary image will withstand any damage that c
be caused by heap corrupti%mt also means that your application is automa
cally launched as the first Java process when the system is booted. This re
the amount of time required for the application to begin executing from 11
onds to about 3 seconds.

You can target your application for execution from the flash ROM by us
the “—I” option on the TINIConvertor command line. This overrides the SR/
(file system) default execution target. The only change you may have to ma
your application for it to execute properly from flash is to initialize the strea
used for console 1/Gsystem.in, System.out, andSystem.err. Use of the default
serial port cannot be assumed by the system because there may be a picky
device attached to the port that could get confused by unsolicited chatter whe
system boots. If your application performs no console I/O, then it is not nece:s
to invoke either of the following methods.

A flashed application can enable console I/O on a serial port by invoking
setDefaultStreams method defined in thém.dalsemi.system.Debug class.

public static void setDefaultStreams(String port, int speed)

It takes astring, such as “serial0,” specifying the serial port to be used
console I/O and the serial port baud rate. AetDefaultStreams has been
invoked,System.in, System.out, andSystem.err Will use the specified serial port
for the actual data transfer.

public static void resetDefaultStreams()

The resetDefaultStreams method setSystem.in to aNul1InputStream and
System.out andSystem.err t0o Nul1OutputStreams. Both “null” stream classes
are defined in theom.dalsemi.comm package. This mutes all console I/O an
allows the serial port to be used by the rest of the application. By invol
setDefaultStreams immediately after startup a flashed application can se
console output and report progress during its startup phase. After
initialization is complete, it can invokesetDefaultStreams to release the port
for other, possibly more useful, serial communication.

9. If a corrupt heap is detected on bootup, the memory manager will clear the heap and
re-initialize the file system, destroying your application. While this is an unlikely
event, it can occur and should be guarded against for any production development.

Application Hardening 251

11.6.2 Application Startup

The system boot flow was described in Section 1.4.5. We'll briefly review a smé
portion of the boot process and extend the startup discussion into the early phe
of an application’s initialization. Early in the boot process, the OS analyzes tt
contents of the SRAM, performing integrity checks on each of the following.

* Network parameters
* Heap
* File system

The network parameters are checked only if the network information we
committed to the Flash ROM (see Section 5.2.1). If committed, the network info
mation in the SRAM is compared to the contents of the flash ROM. If they diffe
the flash version of the network data is copied to the SRAM. Next, the heap strt
tures are checked for consistency. If the heap is found to be in a damaged stat
is reinitialized. Because the file system is contained in the heap, it will b
destroyed and reinitialized in the event that the heap integrity check fails. If tf
integrity check succeeds, the file system structure is examined and any structt
damage to the file system is repaired.

Detecting Boot-Up Problems. The clasgom.dalsemi.system.TINIOS provides
a method namedetBootState that can be invoked to determine what, if any,
recovery actions were performed by the operating system during the boot proce

public static native int getBootState()

It returns the boot state encoded as an integer value that is the bit-wise OR
zero or more of the following public constants definedINTos.

NETWORK_CONFIGURATION_RESTORED
MASTER_ERASE_OCCURRED
HEAP_CLEAR_OCCURRED
FS_MODIFICATION_OCCURRED

If no recovery action was required during system b@etBootState returns 0.
Using this method, an application can determine whether it needs to initialize ar
or restore any of its own persistent state. For example, it may need to load a ¢
figuration file from the network or an external memory device.

Forced Heap Initialization. To force either the entire SRAM or just the file
system to be reinitialized during system boot, an application can invoke tt
blastHeapOnReboot method in theINIOS class.

public static final void blastHeapOnReboot(int blastType)

252 Chapter 11 Application Programming Tips

Invoking b1astHeapOnReboot Serves only as a trigger to reset the file syste
and possibly the system configuration information, the next time the system b
It does not have any immediate impact on the systembTdw@Type parameter
can be either of the following public integer constants defingaNros.

BLAST_HEAP
BLAST_ALL

TheBLAST_ALL parameter should only be specified when the network comr
restore functionality has been enabled or when the application has net
parameters stored in another persistent memory device. Resetting the hea
pens automatically if the SRAM is not persistent. B tHeapOnReboot method
forces this action even if the SRAM is persistent, overriding the utility of the n
volatizing circuitry. It should only be used if it is necessary to guarantee that
heap is reinitialized during the boot process. This also assumes that the ap
tion can restore any necessary persistent system parameters and files.

To guard against heap corruption due to sudden loss of power, the me
manager maintains state in the system area of the SRAM. This state allow
memory manager to back out during system startup of an incomplete mel
operation such as a “malloc” or a “free.” Maintaining this state during normal ¢
cution imposes about a 30 percent overhead on memory management oper:
This behavior can be disabled by invoking thtsablePowerFailRecovery
method in the TINIOS class.

public static final void disablePowerFailRecovery()

This result is faster memory operations and somewhat better performanc
applications that perform lots of object creation. However, it should only be t
in conjunction withblastHeapOnReboot. In this case, the heap’s consistency
boot time isn’t an issue because it will unconditionally be reinitialized.

Starting the Watchdog. For most applications the watchdog timer should |
armed early in the initialization phase. The watchdog timer guards against a
away or otherwise unresponsive system. Once armed, the timer must be rese
odically by the application or the system will automatically reboot. This is ide
for example, at preventing the system from becoming permanently hung di
deadlocked threads. The watchdog’s use is described thoroughly in Section :

Application Hardening 253

11.6.3 Hardening Summary

For robust applications that can recover from otherwise fatal problems, keep 't
following tips in mind.

e Target your application for execution in the flash ROM.

« Use network commit/restore capabilities for static network parameter:
This is not necessary if your application acquires network settings dynar
ically using DHCP.

» CheckgetBootState early in application execution, and, if necessary, take
the appropriate recovery action.

» Use the watchdog to guard against runaway or unresponsive code.

All of these techniques can be used together to ensure that your applicatit
and the embedded system it controls, can recover from unexpected proble
gracefully. Combined, their implementation amounts to only a few lines of cod
and therefore they have only a negligible impact on the application’s footprint ar
performance.

APPENDIX Almanac

LEGEND

The following is a very condensed summary of all of the classes defined in tl
TINI API, listed alphabetically. It also includes all useful 1-Wire API classes tha
are relavent to the TINI platform. The almanac is presented in the style introduc
by Patrick Chan in th@ava Developers Almanac

0. Q.

DHCPClient com.dalsemi.tininet.dhcp

Object
—p» [l Thread 0—»Runnab1e
LI DHCPClient
void addDHCPListener(DHCPListener newlListener)
e—» O DHCPCl1ient (DHCPListener DL)
throws ITlegalStateException
O DHCPClient (DHCPListener DL, byte[] serverIP,

byte[] locallIP)
throws ITlegalStateException
void removeDHCPListener (DHCPListener thisListener

)

%d'run()
void stopDHCPThread()

255

256

arwnE

o

Appendix Almanac

The name of the class.

The name of the package containing the class

The chain of superclasses. Each class is a subclass of the one abov
The names of the interfaces implemented by each class.

A constructor. Other icons that may occur in this column are:

abstract
final

static
static final
protected
field

The return type of a method or the declared type of an instance varial
The name of the class member. If it is a method, the parameter list
optional throws clause follows. Members are arranged alphabetically

OO mROe

Appendix Almanac 257

com.dalsemi.onewire.container

ADContainer OneWireSensor
int ALARM_HIGH
int ALARM_LOW
boolean canADMultiChannelRead()
void doADConvert(boolean[] doConvert,
byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
void doADConvert(int channel, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
double getADAlarm(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
boolean getADAlarmEnable(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
doubTe getADRange(int channel, byte[] state)
doubTle[] getADRanges(int channel)
doubTe getADResolution(int channel, byte[] state)
doubTle[] getADResolutions(int channel, double range)
doubTle[] getADVoltage(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
double getADVoltage(int channel, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
int getNumberADChannels()
boolean hasADAlarmed(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
boolean hasADAlarms()
void setADAlarm(int channel, int alarmType,

double alarm, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

258

Appendix Almanac

void

void

void

setADAlarmEnable(int channel, int alarmType,
boolean alarmEnable, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

setADRange(int channel, double range,
byte[] state)

setADResolution(int channel,
double resolution, byte[] state)

Address com.dalsemi.onewire.utils

Object

Ll Address

Oo0ooooooao

booTlean
booTlean
booTlean
byte[]
byte[]
Tong
Tong
String
String

isValid(byte[] address)
isValid(long address)
isValid(String address)
toByteArray(long address)
toByteArray(String address)
toLong(byte[] address)
toLong(String address)
toString(byte[] address)
toString(long address)

ArrayUtils com.dalsemi.system

Object
L ArrayUtils
O boolean
O void
O void
O int
O Tong
O short
O byte[]
O byte[]
O byte[]

arrayComp(Object arrayl, int offsetl,
Object array2, int offset2, int length)
arrayCopyUnequal (Object fromArray,
int fromOffset, Object toArray,
int toOffset, int Tlength)
arrayFill(byte[] thisArray, int fromIndex,
int toIndex, byte fillvalue)
getInt(byte[] thisArray, int offset)
getLong(byte[] thisArray, int offset)
getShort(byte[] thisArray, int offset)
setInt(byte[] thisArray, int offset,
int value)
setLong(byte[] thisArray, int offset,
Tong value)
setShort(byte[] thisArray, int offset,
short value)

Appendix Almanac 259

com.dalsemi.onewire.utils

Object
OBit
O int arrayReadBit(int index, int offset,
byte[] buf)
O void arrayWriteBit(int state, int index,
int offset, byte[] buf)
O Bit()

com.dalsemi.system

Object
I BitPort
O BitPort(byte bitname)
O BitPort(DataPort port)

I T~ i T A T

void
void

byte
byte
byte
byte
byte

int
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte

int

int

int

clear()

clear(int bitpos)
throws I1legalAddressException
ETH_EEDO

ETH_EESK
ETH_IO0SO
ETH_IOS1
ETH_IO0S2
latchvalue
Port3Bit0
Port3Bitl
Port3Bit2
Port3Bit3
Port3Bit4
Port3Bit5
Port5Bit0
Port5Bitl
Port5Bit2
Port5Bit3
Port5Bit4
Port5Bit5
Port5Bit6
Port5Bit7
read()
readBit(int bitpos)
throws I1legalAddressException
readLatch()

260 Appendix Almanac

int readLatch(int bitpos)
void set()

void set(int bitpos)
throws I1legalAddressException

BytePort com.dalsemi.system

Object
LI BytePort
O BytePort(byte portname)
m byte Port5

int read(Q)
void write(int value)

CanBus com.dalsemi.comm

Object
] CanBus
void autoAnswerRemoteFrameRequest(int messageCent

er, int ID, byte[] data)
throws CanBusException

O CanBus (byte portnum) throws CanBusException

L] byte CANBUSO

L] byte CANBUS1

void close() throws CanBusException

void disableController() throws CanBusException

void disableMessageCenter(int messageCenter)
throws CanBusException

void enableController() throws CanBusException

void enableControllerPassive()
throws CanBusException
void enableMessageCenter(int messageCenter)
throws CanBusException
int getRXErrorCount() throws CanBusException
int getTXErrorCount() throws CanBusException
void open() throws CanBusException
void receive(CanFrame frame)
throws CanBusException
int receiveFramesAvailable()
throws CanBusException
boolean receivePol1(CanFrame frame)
throws CanBusException
void resetController() throws CanBusException

void sendDataFrame(int ID, boolean extendedID,
byte[] data) throws CanBusException
void sendFrame(CanFrame frame)
throws CanBusException

Appendix Almanac 261

void

void

void

void

void

void

void

void

void

void

void

void

void

void
void

void

void
void

sendRemoteFrameRequest(int ID,

boolean extendedID, byte[] data)

throws CanBusException
setllBitGlobalIDMask(int mask)

throws CanBusException
setllBitMessageCenterArbitrationID(int messa

geCenter, int ID) throws CanBusException
set29BitGlobalIDMask(int mask)

throws CanBusException
set29BitMessageCenterl5IDMask(int mask)

throws CanBusException
set29BitMessageCenterArbitrationID(int messa

geCenter, int ID) throws CanBusException
setBaudRatePrescaler(int prescaler)

throws CanBusException
setMessageCenterMessageIDMaskEnable(int mess

ageCenter, boolean maskEnable)

throws CanBusException
setMessageCenterRXMode(int messageCenter)

throws CanBusException
setMessageCenterTXMode(int messageCenter)

throws CanBusException
setMessageCenterWriteOverEnable(int messageC

enter, boolean writeover)

throws CanBusException
setReceiveQueueLimit(int numframes)

throws CanBusException
setSampleRate(int sampleRate)

throws CanBusException
setSiestaMode() throws CanBusException
setSynchronizationJumpWidth(int jumpWidth)

throws CanBusException
setTransmitQueueLimit(int numframes)

throws CanBusException
setTSEG1(int tsegl) throws CanBusException

setTSEG2(int tseg2) throws CanBusException

CanBusException com.dalsemi.comm

Object

U Throwable
[l Exception

java.io.Serializable

[CanBusException

m =TT T
We W eew

int
int
int
int

int
int

ALLOCATION_ERROR

BIT_ONE

BIT_STUFF

BIT_ZERO

CanBusException()
CanBusException(String s, int reason)
CLOSE_NOTOWNER

COUNT_EXCEEDED

262

Appendix Almanac

" w

e w

int
int
int
int
int
int
int
int

CRC

FORMAT
getReason()

NONE
OPEN_ALREADYOPEN
PORT_DISABLED
PORT_NOTOPENED
TRANSMIT_NO_ACK

Object

[CanFrame

com.dalsemi.comm

O
O

O 0OoOoog

byte[]
booTlean
byte[]
booTlean
int

int

int
booTlean
int

int

int
booTlean
void
void
void
void
void
void

CanFrame()

CanFrame(int ID, boolean extendedID,
byte[] buf, int Tength)
data

extendedID

getData()

getExtendedID()

getID(Q)

getLength()

getMessageCenter ()
getRemoteFrameRequest ()

ID

Tlength

messageCenter

remoteFrameRequest

setData(byte[] buf)
setExtendedID(boolean extendedID)
setID(int ID)

setLength(int length)
setMessageCenter(int MC)
setRemoteFrameRequest(boolean RTR)

com.dalsemi.system

Object
[Clock
O int bcdToInt(int bcdVal)
O int calculateDayOfWeek(int month, int date,
int fullYear)
O Clock()
boolean getl2Hour()
int getDate()
int getDay()

Appendix Almanac 263

int
int
int
int
boolean
void
int
Tong
int
byte
void
void
void
void
void
void
void
void
void
void
void
void

getHour ()

getHundredth ()
getMinute()

getMonth()

getPm()

getRTCO

getSecond()
getTickCount()

getYear()

intToBCD(int intVval)
setl2Hour (boolean isl2Hour)
setDate(int date)
setDay(int day)

setHour (int hour)
setHundredth(int hundredth)
setMinute(int minute)
setMonth(int month)
setPm(boolean pm)
setRTC()

setSecond(int second)
setTickCount(long millis)
setYear(int year)

ClockContainer com.dalsemi.onewire.container

ClockContainer

OneWireSensor

boolean
Tong
Tong

Tong
boolean
boolean
boolean
boolean

void

void

void

void

canDisableClock ()

getClock(byte[] state)

getClockAlarm(byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

getClockResolution()

hasClockAlarm()

isClockAlarmEnabled(byte[] state)

isClockAlarming(byte[] state)

isClockRunning(byte[] state)

setClock(long time, byte[] state)

setClockAlarm(long time, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

setClockAlarmEnable(boolean alarmEnable,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

setClockRunEnable(boolean runEnable,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

264 Appendix Almanac

CommandAPDU com.dalsemi.onewire.container

Object
L] CommandAPDU

] int CLA

O CommandAPDU (byte[] buffer)

O CommandAPDU (byte cla, byte ins, byte pl,
byte p2)

O CommandAPDU (byte cla, byte ins, byte pl,
byte p2, byte[] data)

O CommandAPDU (byte cla, byte ins, byte pl,
byte p2, byte[] data, int le)

O CommandAPDU (byte cla, byte ins, byte pl,
byte p2, int le)

° byte[] getBuffer()

° byte getByte(int index)

° byte[] getBytes()

byte getCLAQ)
byte getINS(Q)
int getLCQO
int getLEQ
° int getlLength()
byte getPl1()
byte getP2()
int INS
int LC
int P1
int P2
void setByte(int index, byte value)
String toString()

T

CommitException com.dalsemi.system

Object
Ll Throwable java.io.Serializable
L] Exception

[l CommitException
O CommitException()

] CommitException(String error)

Appendix Almanac 265

CRC16 com.dalsemi.onewire.utils

Object
] CrRC16
O int compute(byte[] dataToCrc)
O int compute(byte[] dataToCrc, int seed)
O int compute(byte[] dataToCrc, int off, int Ten)
O int compute(byte[] dataToCrc, int off, int len,
int seed)
O int compute(int dataToCrc)
O int compute(int dataToCrc, int seed)

CRCS8 com.dalsemi.onewire.utils

Object
[J crRC8
O int compute(byte[] dataToCrc)
O int compute(byte[] dataToCrc, int seed)
O int compute(byte[] dataToCrc, int off, int len)
O int compute(byte[] dataToCrc, int off, int len,
int seed)
0 int compute(int dataToCRC)
O int compute(int dataToCRC, int seed)

DataPort com.dalsemi.system

Object

[DataPort

O
O
O

int

int
boolean
int
int
int
int

int
void
void
void

byte
byte

address

DataPort ()

DataPort(int address)

getAddress ()

getFIFOMode ()

getStretchCycles()

latchvalue

read() throws I1legalAddressException

read(byte[] arr, int off, int len)
throws I1legalAddressException
readLatch()

setAddress(int address)
setFIFOMode(boolean useFIFOAccess)

setStretchCycles(byte stretch)
throws IT1legalArgumentException
STRETCHO

STRETCH1

266 Appendix Almanac

byte STRETCH10
byte STRETCH2

[m byte STRETCH3

byte STRETCH?7

[m byte STRETCH8

[m byte STRETCH9

O byte stretchCycles
O boolean useFIFOAccess

void write(byte[] arr, int off, int len)
throws I1legalAddressException
void write(int value)
throws ITlegalAddressException

Debug com.dalsemi.system

Object
[l Debug

void debugDump(byte[] arr, int length)
void debugDump(int b)
void debugDump(String out)
boolean defaultStreams
void dump(byte[] arr, int Tength)
void dump(int b)
void dump(String out)
void hexDump(byte[] b)
void hexDump(byte[] b, int Tength)
void hexDump(int i)
void hexDump(java.io.PrintStream out, byte[] b)
void hexDump(java.io.PrintStream out, int i)
void intDump(int iVal)
void resetDefaultStreams()
void setDefaultStreams()
void setDefaultStreams(String port, int speed)
void setNativeVerboseDebugSpew(boolean verbose)

DebugOutputStream com.dalsemi.comm

Object
[l java.io.OutputStream
[l DebugOutputStream
O DebugOutputStream()

void write(byte[] barr, int offset, int length)
throws java.io.IOException
void write(int b) throws java.io.IOException

DDDDDDDDDDDDDEDDD

Appendix Almanac 267

DefaultTINIShell com.dalsemi.shell

Object
[J TINIShell
[J DefaultTINIShell
O DefaultTINIShel1()

void execute(Object[] commandLine,
server.SystemInputStream in,
server.SystemPrintStream out,
server.SystemPrintStream err,
java.util.Hashtable env)
throws Exception

java.util.Hash- getCurrentEnvironment()
table
byte getCurrentUID()

String getCurrentUserName()
String getFromCurrentEnvironment(String key)
String getName()

int getUIDByUserName(String username)
String getUserNameByUID(byte uid)
String getVersion()

int login(String userName, String password)

void Togout(Object info)

DHCPClient com.dalsemi.tininet.dhcp

Object
U Thread Runnable
[] DHCPClient
void addDHCPListener(DHCPListener newlListener)

O DHCPClient(DHCPL1istener DL)
throws ITlegalStateException
O DHCPClient(DHCPListener DL, byte[] serverIP,

byte[] TocalIP)
throws ITlegalStateException
void removeDHCPListener (DHCPListener thisListener

)

void run()
void stopDHCPThread()

DHCPL1istener com.dalsemi.tininet.dhcp
DHCPListener

void ipError(String error)
void iplLeased()

void dplLost()

void ipRenewed()

268 Appendix Almanac

DNSClient

com.dalsemi.tininet.dns

Object
[JDNSClient
O DNSCl1ient()

String[] getByIP(byte[] 1ip)

String[] getByIP(String 1ip)

String[] getByName(String name)
void setDNSTimeout(int timeout)
void setPrimaryDNS(String dnsl)
void setSecondaryDNS(String dns2)

DSFile

Object
[java.io.File
Comparable
LI DSFile

com.dalsemi.fs

java.io.Serializable,

O byte[]

boolean

O

int
int

buildAbsolutePath(String parent,
String name)
canExec()

DSFile(java.io.File dir, String name)
DSFile(String path)

DSFile(String path, String name)
executeFile() throws java.io.IOException

executeFile(java.io.InputStream stdin,
java.io.OutputStream stdout,
java.io.OutputStream stderr,
String[] args, boolean foreground,
String processName)
throws java.io.IOException
executeFile(java.io.InputStream stdin,
java.io.OutputStream stdout,
java.io.OutputStream stderr,
String[] args, String[] env,
boolean foreground, String processName)
throws java.io.IOException
executeFile(java.io.InputStream stdin,
java.io.OutputStream stdout,
java.io.OutputStream stderr,
String[] args, String[] env,
boolean foreground, String processName,
Process procObj)
throws java.io.IOException
getOtherPermissions ()
throws java.io.FileNotFoundException
getUser()
throws java.io.FileNotFoundException
getUserPermissions()
throws java.io.FileNotFoundException

Appendix Almanac 269

boolean

void

void
void

void

TistLong(java.io.OutputStream out,

boolean unixStyle)

throws java.io.IOException
setOtherPermissions(int perms)

throws java.io.IOException
setUser(byte uid) throws java.io.IOException
setUserPermissions(int perms)

throws java.io.IOException
touch() throws java.io.IOException

DSPortAdapter com.dalsemi.onewire.adapter

Object
L] DSPortAdapter

O boolean

O boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

int

=

int

=

int

=

void

O

int

=

int

=

int

=

int

=

int

=

int

=

int

=

int

Oopg ®

void

adapterDetected() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

beginExclusive(boolean blocking)
throws com.dalsemi.onewire.OneWireExcept
ion

canBreak () throws OneWireIOException,
com.dalsemi.onewire.OneWireException

canDeliverPower () throws OneWireIOException,
com.dalsemi.onewire.OneWireException

canDeliverSmartPower ()
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

canFlex() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

canHyperdrive() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

canOverdrive() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

canProgram() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

CONDITION_AFTER_BIT

CONDITION_AFTER_BYTE

CONDITION_NOW

dataBlock(byte[] dataBlock, int off,
int len) throws OneWireIOException,
com.dalsemi.onewire.OneWireException
DELIVERY_CURRENT_DETECT

DELIVERY_EPROM
DELIVERY_FOUR_SECONDS
DELIVERY_HALF_SECOND
DELIVERY_INFINITE
DELIVERY_ONE_SECOND
DELIVERY_SMART_DONE
DELIVERY_TWO_SECONDS
DSPortAdapter ()
endExclusive()

270

Appendix Almanac

void
void
booTlean

boolean

void

String

String
String

void
Tong
String

java.util.Enumer-
ation

boolean

void

void

byte[]
int

String
com.dalsemi.one-
wire.con-
tainer.OneWireCon
tainer
com.dalsemi.one-
wire.con-
tainer.OneWireCon
tainer
com.dalsemi.one-
wire.con-
tainer.OneWireCon
tainer
com.dalsemi.one-
wire.con-
tainer.OneWireCon
tainer

excludeFamily(byte[] family)
excludeFamily(int family)
findFirstDevice() throws OneWireIOException,
com.dalsemi.onewire.OneWireException
findNextDevice() throws OneWireIOException,
com.dalsemi.onewire.OneWireException
freePort()
throws com.dalsemi.onewire.OneWireExcept
ion
getAdapterAddress ()
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
getAdapterName()
getAdapterVersion()
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
getAddress(byte[] address)
getAddressAsLong()
getAddressAsString()
getAl1DeviceContainers()
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
getBit() throws OneWireIOException,
com.dalsemi.onewire.OneWireException
getBlock(byte[] arr, int len)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
getBlock(byte[] arr, int off, int len)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
getBlock(int Ten) throws OneWireIOException,
com.dalsemi.onewire.OneWireException
getByte() throws OneWireIOException,
com.dalsemi.onewire.OneWireException
getClassVersion()

getDeviceContainer()

getDeviceContainer(byte[] address)

getDeviceContainer(long address)

getDeviceContainer(String address)

Appendix Almanac 271

oeweEw

O

v e

com.dalsemi.one-
wire.con-
tainer.OneWireCon
tainer
com.dalsemi.one-
wire.con-
tainer.OneWireCon
tainer

String

java.util.Enumer-
ation

String

int

boolean

boolean

boolean

boolean

boolean

boolean

char
char
char
char
void

void

void

int
int
int
int

getFirstDeviceContainer()
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

getNextDeviceContainer()
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

getPortName()
throws com.dalsemi.onewire.OneWireExcept
ion

getPortNames ()

getPortTypeDescription()
getSpeed ()
isAlarming(byte[] address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
isAlarming(long address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
isAlarming(String address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
isPresent(byte[] address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
isPresent(long address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
isPresent(String address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
LEVEL_BREAK
LEVEL_NORMAL
LEVEL_POWER_DELIVERY
LEVEL_PROGRAM
putBit(boolean bitValue)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
putByte(int byteValue)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
registerOneWireContainerClass(int family,
Class OneWireContainerClass)
throws com.dalsemi.onewire.OneWireExcept
ion
RESET_ALARM
RESET_NOPRESENCE
RESET_PRESENCE
RESET_SHORT

272 Appendix Almanac

0 int

boolean

boolean

boolean

O boolean

O void
void

void

void

O void
void

O

void

int

=

int

=

int

=

int

=

void

booTlean

booTlean

void
void
void

reset () throws OneWireIOException,
com.dalsemi.onewire.OneWireException
select(byte[] address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
select(long address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
select(String address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
selectPort(String portName)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
setNoResetSearch()
setPowerDuration(int timeFactor)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
setPowerNormal () throws OneWireIOException,
com.dalsemi.onewire.OneWireException
setProgramPulseDuration(int timeFactor)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
setSearchAl1Devices ()
setSearchOnlyAlarmingDevices ()
setSpeed(int speed)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
SPEED_FLEX
SPEED_HYPERDRIVE
SPEED_OVERDRIVE
SPEED_REGULAR
startBreak() throws OneWireIOException,
com.dalsemi.onewire.OneWireException
startPowerDelivery(int changeCondition)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
startProgramPulse(int changeCondition)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
targetAlTFamilies()

targetFamily(byte[] family)
targetFamily(int family)

Appendix Almanac 273

ExternalInterrupt com.dalsemi.system

Object
[l ExternalInterrupt
void addEventListener(ExternalInterruptEventListe
ner externalEventListener)
throws java.util.TooManyListenersExcepti

on
O ExternalInterrupt()
O boolean getTrigger()

void removeEventListener(ExternalInterruptEventLi
stener externalEventListener)

O void setTrigger(boolean edgeTrigger,
ExternalInterruptEventListener owner)
throws ExternalInterruptException

I int TRIGGER_EDGE

L] int TRIGGER_LEVEL

ExternalInterruptEvent com.dalsemi.system
Object
[java.util.EventObject java.io.Serializable
[ExternalInterruptEvent
O ExternalInterruptEvent(ExternalInterrupt ext

ernalInterrupt)

ExternalInterrupt- com.dalsemi.system
EventListener

ExternalInterruptEventListener java.util.EventListener
void externalInterruptEvent(ExternalInterruptEven
t ev)
ExternalInterruptExcep- com.dalsemi.system
tion
Object
U Throwable java.io.Serializable

[l Exception

[l ExternalInterruptException
[B] ExternalInterruptException()

O ExternalInterruptException(String error)

274 Appendix Almanac

FTPServer com.dalsemi.shell.server.ftp
Object
U Thread RunnabTle

[J com.dalsemi.shell.server.Server

Ll FTPServer
void broadcast(String sendThis)

FTPServer() throws java.io.IOException

FTPServer(int port)
throws java.io.IOException
String getConnectionMsgFile()

String getWelcomeMsgFile()
boolean isAnonymousAllowed()
boolean 1isRootAllowed()

String TogAnon()

|

OO0OoOooag

FTPSession com.dalsemi.shell.server.ftp
Object
U Thread Runnable

[com.dalsemi.shell.server.Session

L] FTPSession
String getNextCommand() throws java.io.IOException
void Togin() throws java.io.IOException

GetOpt com.dalsemi.shell.server

Object
L] GetOpt
int getopt()
0 GetOpt(String[] args, String opts)
String optArgGet()
int optEOF
int optERR
com.dalsemi.tininet.http
Object
LJHTTPServer
int DEFAULT_HTTP_PORT
int DELETE
int GET

String getHTTPRoot()
String getIndexPage()

Appendix Almanac

275

String
boolean

e wewewew

O O 4

e w

e wew

int
int
int
int
int
int
int
int
int
int
int

int
int
int
int
int

void
void
void
void
void

void

int
int
int
int
int

getLogFilename()
getlogging)
getPortNumber ()
HEAD
HTTP_BAD_REQUEST
HTTP_CREATED
HTTP_FORBIDDEN
HTTP_INTERNAL_ERROR
HTTP_NOT_FOUND
HTTP_OK
HTTP_SERVER_ERROR
HTTP_UNAUTHORIZED
HTTP_UNSUPPORTED_TYPE

HTTPServer () throws HTTPServerException

HTTPServer(int httpPort)
throws HTTPServerException

HTTPServer(int httpPort, boolean logEnabled)

throws HTTPServerException
OPTIONS

POST
PUT

serviceRequests() throws HTTPServerException

serviceRequests(Object Tock)
throws HTTPServerException

setBitmapMimeType(String newMimeType)

setHTTPRoot (String httpRoot)
setIndexPage(String indexPage)
setLogFilename(String logFileName)

setLogging(boolean TogEnabled)
throws HTTPServerException
setPortNumber(int httpPort)
throws HTTPServerException
TRACE

TYPE_FULL_REQUEST
TYPE_FULL_RESPONSE
TYPE_SIMPLE_REQUEST
UNSUPPORTED

HTTPServerException

Object
U Throwable
L] Exception

com.dalsemi.tininet.http

java.io.Serializable

U RuntimeException
LI HTTPServerException

HTTPServerException()
HTTPServerException(String error)

276 Appendix Almanac

I2CPort

com.dalsemi.system

Object
[I2CPort
O byte clockDelay
int getStretchCycles()
O I2CPort()
O I2CPort(int SCLAddress, byte SCLMask,
int SDAAddress, byte SDAMask)
int read(byte[] barr, int off, int len)
throws I1legalAddressException
O int SCLAddress
O byte SCLMask
O int SDAAddress
O byte SDAMask
void setAddress(byte address)
void setClockDelay(byte delay)
void setStretchCycles(byte stretch)
throws I1legalArgumentException
O byte slaveAddress
m byte STRETCHO
m byte STRETCH1
m byte STRETCH10
m byte STRETCH2
m byte STRETCH3
byte STRETCH7
m byte STRETCH8
m byte STRETCH9
O byte stretchCycles
int write(byte[] barr, int off, int Ten)

throws I11legalAddressException

I11egalAddressException

Object
Ll Throwable
L] Exception

com.dalsemi.system

java.io.Serializable

[l ITlegalAddressException

I11egalAddressException()
I11egalAddressException(String s)

LCDOutputStream

Object

Appendix Almanac 277

com.dalsemi.comm

[ljava.io.OutputStream

L] LCDOutputStream

void

void

void

close() throws java.io.IOException
LCDOutputStream(LCDPort lcd)
write(byte[] barr, int offset, int Ten)
throws java.io.IOException
write(int ch) throws java.io.IOException

LCDPort com.dalsemi.comm

Object
] LCDPort
void close() throws java.io.IOException
int getOutputBufferSize()
java.io.Output- getOutputStream() throws java.io.IOException
Stream
O LCDPort(int portNum, int stream)
throws java.io.IOException
void open()
O void sendControl (int value)
O void sendData(int value)
O void setAddress(int address)
O void setLCDParams(int paramNum, byte[] params,
int length)
0 void setNumberOfLines(int num)
O void setShiftDirection(boolean dir)
O void setShiftInterval (int num_ms)
O void setShiftMode(boolean on)
void write(byte[] arr) throws java.io.IOException

void

void

write(byte[] arr, int offset, int len)
throws java.io.IOException
write(int ch) throws java.io.IOException

MemoryBank com.dalsemi.onewire.container

MemoryBank

String
int
int

boolean
boolean
boolean
boolean

getBankDescription()
getSize()
getStartPhysicalAddress()
isGeneralPurposeMemory ()
isNonVolatile()
isReadOnly()
isReadWrite()

278 Appendix Almanac

boolean
boolean
boolean

void

void
void

isWriteOnce()

needsPowerDelivery()

needsProgramPulse()

read(int startAddr, boolean readContinue,
byte[] readBuf, int offset, int Ten)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

setWriteVerification(boolean doReadVerf)

write(int startAddr, byte[] writeBuf,
int offset, int Ten)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

NetworkMonitor

Object
U Thread
L] NetworkMonitor

com.dalsemi.onewire.utils

Runnable

void
booTlean
void
void
void

void
void

addEventListener (NetworkMonitorEventListener
nmel)

isMonitorRunning()

kiTTMonitor()

NetworkMon+itor(com.dalsemi.onewire.adapter.D
SPortAdapter adapter)

pauseMonitor()

removeEventListener (NetworkMonitorEventListe
ner nmel)

resumeMonitor()

run()

NetworkMonitorEvent

Object

[java.util.EventObject

com.dalsemi.onewire.utils

java.io.Serializable

[J NetworkMon1itorEvent

com.dalsemi.one-
wire.adapter.DSPo
rtAdapter

byte[]

Tong

String

getAdapter()

getAddress ()
getAddressAsLong()
getAddressAsString()

Appendix Almanac 279

com.dalsemi.one- getDeviceContainer()
wire.con-
tainer.OneWireCon
tainer
OWPath getOwWPath()
O NetworkMonitorEvent (NetworkMonitor nm,
com.dalsemi.onewire.adapter.DSPortAdapt
er adapter, Tong address, OwWPath path)

NetworkMonitorEventLis- com.dalsemi.onewire.utils
tener

NetworkMonitorEventListener
void networkArrival (NetworkMonitorEvent nme)

void networkDeparture(NetworkMonitorEvent nme)
void networkException(Exception ex)

NullInputStream com.dalsemi.comm

Object
[ljava.io.InputStream

LI Nul1InputStream
O Nul1InputStream()

int read()

Nul1OutputStream com.dalsemi.comm

Object
[l java.io.OutputStream

LI Nu110utputStream
[B] Nul10utputStream()

void write(byte[] barr, int offset, int length)
void write(int b)

OneWireAccessProvider com.dalsemi.onewire

Object
[l OneWireAccessProvider
O java.util.Enumer- enumerateAllAdapters()
ation

280 Appendix Almanac

O adapter.DSPort-
Adapter
O adapter.DSPort-
Adapter
O String

getAdapter(String adapterName,
String portName)
throws adapter.OneWireIOException, One-
WireException

getDefaultAdapter()
throws adapter.OneWireIOException, One-
WireException

getProperty(String propName)

OneWireContainer

Object
L] OneWireContainer

com.dalsemi.onewire.container

void

com.dalsemi.one-
wire.adapter.DSPo
rtAdapter

bytel[]

Tong

String

String

String

int
java.util.Enumer-
ation

String

booTlean

boolean

void

doSpeed ()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

getAdapter()

getAddress ()
getAddressAsLong()
getAddressAsString()
getAlternateNames ()
getDescription()
getMaxSpeed ()
getMemoryBanks ()

getName()

isAlarming(Q
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

isPresent()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer()

OneWireContainer(com.dalsemi.onewire.adapter
.DSPortAdapter sourceAdapter,
byte[] newAddress)
OneWireContainer(com.dalsemi.onewire.adapter
.DSPortAdapter sourceAdapter,
Tong newAddress)
OneWireContainer(com.dalsemi.onewire.adapter
.DSPortAdapter sourceAdapter,
String newAddress)
setSpeed(int newSpeed, boolean fallBack)

Appendix Almanac 281

void

void

void

setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
byte[] newAddress)
setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
Tong newAddress)
setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
String newAddress)

OneWireContainer0l com.dalsemi.onewire.container

Object
L] OneWireContainer

L] OneWireContainerol

String
String
String

O

O

O

O

getAlternateNames ()
getDescription()
getName()
OneWireContainerol()

OneWireContainer0l(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
OneWireContainer0l(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
OneWireContainer0l(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

OneWireContainer0?2 com.dalsemi.onewire.container

Object
U] OneWireContainer

L] OneWireContainero?

void

String

String

String
O
O
O

copyScratchpad(int key, byte[] passwd,
int blockNum)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, ITlegalArgumentException
getAlternateNames ()
getDescription()
getName()
OneWireContainer02()
OneWireContainer02(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
OneWireContainer02(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)

282 Appendix Almanac

byte[]

void

byte[]

void

void

void

OneWireContainer02(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)
readScratchpad()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
readSubkey (byte[] data, int key,
byte[] passwd)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, I1legalArgumentException
readSubkey(int key, byte[] passwd)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, ITlegalArgumentException
writePassword(int key, byte[] oldName,
byte[] newName, byte[] newPasswd)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, I1legalArgumentException
writeScratchpad(int addr, byte[] data)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, ITlegalArgumentException
writeSubkey(int key, int addr,
byte[] passwd, byte[] data)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, I1legalArgumentException

OneWireContainero4

Object
L] OneWireContainer

L] OneWireContainero4

com.dalsemi.onewire.container

ClockContainer

boolean
boolean
String
Tong
Tong

Tong
Tong
Tong
String
Tong
Tong

java.util.Enumer-
ation

canDisableClock()
canReadAfterExpire(byte[] state)
getAlternateNames ()
getClock(byte[] state)
getClockAlarm(byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
getClockResolution()
getCycleCounter(byte[] state)
getCycleCounterAlarm(byte[] state)
getDescription()
getIntervalTimer(byte[] state)
getIntervalTimerAlarm(byte[] state)
getMemoryBanks ()

Appendix Almanac 283

String
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean
boolean

bytel[]

void
void

void

void

void

void
void

void

void

getName()

hasClockAlarm()
isAutomaticDelaylLong(byte[] state)
isClockAlarmEnabled(byte[] state)
isClockAlarming(byte[] state)
isClockRunning(byte[] state)
isClockWriteProtected(byte[] state)
isCycleCounterAlarmEnabled(byte[] state)
isCycleCounterAlarming(byte[] state)
isCycleCounterWriteProtected(byte[] state)
isIntervalTimerAlarmEnabled(byte[] state)
isIntervalTimerAlarming(byte[] state)
isIntervalTimerAutomatic(byte[] state)
isIntervalTimerStopped(byte[] state)
isIntervalTimerWriteProtected(byte[] state)
OneWireContainer04()

OneWireContainer04(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
OneWireContainer04(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
OneWireContainer04(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)
readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
setAutomaticDelaylong(boolean delaylLong,
byte[] state)
setClock(Tong time, byte[] state)
setClockAlarm(long time, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
setClockAlarmEnable(boolean alarmEnable,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
setClockRunEnable(boolean runEnable,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
setCycleCounter(long cycles, byte[] state)
setCycleCounterAlarm(long cycles,
byte[] state)
setCycleCounterAlarmEnable(boolean alarmEnab
le, byte[] state)
setIntervalTimer(long time, byte[] state)

284 Appendix Almanac

void

void

void

void

void

void

void
void
void

setIntervalTimerAlarm(long time,
byte[] state)
setIntervalTimerAlarmEnable(boolean alarmEna
ble, byte[] state)
setIntervalTimerAutomatic(boolean autoTimer,
byte[] state)
setIntervalTimerRunState(boolean runState,
byte[] state)
setReadAfterExpire(boolean readAfter,
byte[] state)
writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
writeProtectClock(byte[] state)

writeProtectCycleCounter(byte[] state)
writeProtectIntervalTimer(byte[] state)

OneWireContainer0s com.dalsemi.onewire.container

Object
Ll OneWireContainer
L] OneWireContainer@5 SwitchContainer
void clearActivity()
throws com.dalsemi.onewire.OneWireExcept
ion
String getAlternateNames ()
String getDescription()
boolean getLatchState(int channel, byte[] state)
boolean getLevel(int channel, byte[] state)
String getName()
int getNumberChannels(byte[] state)
boolean getSensedActivity(int channel, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
boolean hasActivitySensing()
boolean hasLevelSensing()
booTlean hasSmartOn()
boolean -isHighSideSwitch()
O OneWireContainero5()
O OneWireContainer05(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
O OneWireContainer05(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
O OneWireContainer05(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)
boolean onlySingleChannelOn()

Appendix Almanac 285

bytel[]

void

void

readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

setLatchState(int channel,
boolean latchState, boolean doSmart,
byte[] state)

writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer06 com.dalsemi.onewire.container

Object
[OneWireContainer

L] OneWireContainere6

String

java.util.Enumer-

ation

String
O
O
O
O

getDescription()
getMemoryBanks ()

getName()
OneWireContainer06()
OneWireContainer06(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
OneWireContainer06(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
OneWireContainer06 (com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

OneWireContainer08 com.dalsemi.onewire.container

Object
[l OnewireContainer

] OnewWireContaineros

String

java.util.Enumer-

ation

String
O
O
O
O

getDescription()
getMemoryBanks ()

getName()
OneWireContainero8()
OneWireContainer08(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
OneWireContainer08(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
OneWireContainer08(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

286 Appendix Almanac

OneWireContainer09 com.dalsemi.onewire.container

Object
L] OneWireContainer

[l OneWireContainer@9
String getAlternateNames ()

String getDescription()
int getMaxSpeed()
java.util.Enumer- getMemoryBanks()

ation
String getName()
O OneWireContainer09()
O OneWireContainer@9(com.dalsemi.onewire.adapt

er.DSPortAdapter sourceAdapter,
byte[] newAddress)

O OneWireContainer@9(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)

O OneWireContainer@9(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

OneWireContainer0A com.dalsemi.onewire.container

Object
Ll OneWireContainer
L] OneWireContaineroA
String getDescription()
int getMaxSpeed()
java.util.Enumer- getMemoryBanks()

ation
String getName()
O OneWireContainer0A()
O OneWireContainer0A(com.dalsemi.onewire.adapt

er.DSPortAdapter sourceAdapter,
byte[] newAddress)

O OneWireContainer0A(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)

O OneWireContainer0A(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

Appendix Almanac 287

OneWireContainer9B com.dalsemi.onewire.container

Object
[l OnewireContainer

] OnewireContaineroB

String
String

java.util.Enumer-
ation
String

getAlternateNames ()
getDescription()
getMemoryBanks ()

getName()
OneWireContaineroB()

OneWireContainer@B(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
OneWireContainer@B(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
OneWireContainer@B(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

OneWireContaineroC com.dalsemi.onewire.container

Object
[OneWireContainer

L] OneWireContainereC

String

int

java.util.Enumer-

ation

String
O
O
O
O

getDescription()
getMaxSpeed()
getMemoryBanks ()

getName()
OneWireContaineroC()
OneWireContainer0C(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
OneWireContainer0C(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
OneWireContainer0C(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

288 Appendix Almanac

OneWireContainerOF com.dalsemi.onewire.container

Object
L] OneWireContainer

[l OneWireContainer@F
String getAlternateNames ()

String getDescription()
int getMaxSpeed()
java.util.Enumer- getMemoryBanks()

ation
String getName()
O OneWireContaineroF ()
O OneWireContainer@F (com.dalsemi.onewire.adapt

er.DSPortAdapter sourceAdapter,
byte[] newAddress)

O OneWireContainer@F (com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)

O OneWireContainer@F (com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

OneWireContainerlo com.dalsemi.onewire.container

Object
[l OneWireContainer
[l OneWireContainerl® TemperatureContainer
O doubTle convertToCelsius(double fahrenheitTemperatur
e
O double convegtToFahrenheit(doub1e celsiusTemperatur
e)
void doTemperatureConvert(byte[] state)

throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

String getAlternateNames()

String getDescription()

double getMaxTemperature()

double getMinTemperature()

String getName()

doubTle getTemperature(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException

double getTemperatureAlarm(int alarmType,
byte[] state)

double getTemperatureAlarmResolution()

double getTemperatureResolution(byte[] state)

double[] getTemperatureResolutions()
boolean hasSelectableTemperatureResolution()

Appendix Almanac 289

boolean
O
O
O
O

bytel[]

] double

] double

void

void

void

hasTemperatureAlarms ()
OneWireContainerl0()

OneWireContainerl@(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
OneWireContainerl@(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
OneWireContainerl@(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)
readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
RESOLUTION_MAXIMUM

RESOLUTION_NORMAL

setTemperatureAlarm(int alarmType,
double alarmValue, byte[] state)
setTemperatureResolution(double resolution,
byte[] state)
writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainerl?2 com.dalsemi.onewire.container

Object
[l OneWireContainer
[l OneWireContainerl2 SwitchContainer

[m byte CHANNEL_A_ONLY

[m byte CHANNEL_B_ONLY

[byte CHANNEL_BOTH

[byte CHANNEL_NONE

byte[] channelAccess(byte[] inbuffer,
boolean toggleRW,
boolean readInitially, int CRCMode,
int channelMode, boolean clearActivity,
boolean interleave)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException
void clearActivity()

[m byte CRC_DISABLE

[m byte CRC_EVERY_32_BYTES

[m byte CRC_EVERY_8_BYTES

[m byte CRC_EVERY_BYTE

[m byte DONT_CHANGE

String

getAlternateNames ()

290 Appendix Almanac

java.util.

" w

String
boolean
boolean
Enumer-

ation

String

int
booTlean
booTlean
booTlean
booTlean
booTlean
booTlean

booTlean
byte
byte
byte[]

void

void

void
byte
byte
byte
void

getDescription()

getLatchState(int channel, byte[] state)
getLevel (int channel, byte[] state)
getMemoryBanks ()

getName()
getNumberChannels(byte[] state)
getSensedActivity(int channel, byte[] state)
hasActivitySensing()
hasLevelSensing()
hasSmartOn()
isHighSideSwitch()
isPowerSupplied(byte[] state)
OneWireContainerl2()
OneWireContainerl2(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
OneWireContainerl2(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
OneWireContainerl2(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)
onlySingleChannelOn()
POLARITY_ONE
POLARITY_ZERO
readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
setLatchState(int channel,
boolean latchState, boolean doSmart,
byte[] state)
setSearchConditions(byte channel,
byte source, byte polarity,
byte[] state)
setSpeedCheck (boolean doSpeedCheck)
SOURCE_ACTIVITY_LATCH
SOURCE_FLIP_FLOP
SOURCE_PIO
writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

Appendix Almanac 291

OneWireContainerl3 com.dalsemi.onewire.container

Object
[l OnewireContainer

L] OneWireContainerl3

String
String

java.util.Enumer-
ation
String

getAlternateNames ()
getDescription()
getMemoryBanks ()

getName()
OneWireContainerl3()
OneWireContainerl3(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
OneWireContainerl3(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
OneWireContainerl3(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

OneWireContainerl4 com.dalsemi.onewire.container

Object
[OneWireContainer

L] OneWireContainerl4

String
String

java.util.Enumer-
ation
String

getAlternateNames ()
getDescription()
getMemoryBanks ()

getName()
OneWireContainerl4()
OneWireContainerl4(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
OneWireContainerl4(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
OneWireContainerl4(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

292

Appendix Almanac

OneWireContainerlé com.dalsemi.onewire.container

Object

L] OneWireContainer

L] OneWireContainerl6

= T

int
int
int
int
int
int
ResponseAPDU

ResponseAPDU

ResponseAPDU

ResponseAPDU

String
ResponseAPDU

ResponseAPDU

CommandAPDU
ResponseAPDU

AID_LENGTH_OFFSET
AID_LENGTH_SIZE
AID_NAME_OFFSET
AID_SIZE
APDU_PACKET_LENGTH
APPLET_FILE_HEADER_SIZE

deleteAppletByAID(String aid)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion

deleteAppletByNumber(int index)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, I1legalArgumentExcep-
tion

deleteSelectedApplet()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, I1legalArgumentExcep-
tion

getAIDByNumber(int index)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion

getAlternateNames ()

getAppletGCMode ()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, I1legalArgumentExcep-
tion

getATR(Q)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, I1legalArgumentExcep-
tion

getCommandAPDUInfo ()

getCommandPINMode ()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion

Appendix Almanac 293

ResponseAPDU

String
ResponseAPDU

ResponseAPDU

ResponseAPDU

ResponseAPDU

ResponseAPDU

ResponseAPDU

int
ResponseAPDU

int
String
ResponseAPDU

getCommitBufferSize()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion

getDescription()

getEphemeralGCMode ()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

getErrorReportingMode ()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion

getExceptionMode ()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion

getFirmwareVersionString()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

getFreeRAM()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion

getLastError()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion

getLoadPacketSize()

getLoadPINMode ()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

getMaxSpeed()

getName()

getPORCount ()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

294 Appendix Almanac

ResponseAPDU
ResponseAPDU
ResponseAPDU
ResponseAPDU
int
ResponseAPDU
ResponseAPDU
O
O
O
O
] int
] int
ResponseAPDU
ResponseAPDU

getRandomBytes (int numBytes)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

getRealTimeClock ()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, I1legalArgumentExcep-
tion

getResponseAPDUInfo ()

getRestoreMode()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion

getRunTime()

loadApplet(String fileName,
String directoryName, String aid)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion, java.io.FileNotFoundException,
java.io.IOException

masterErase()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion

OneWireContainerl6 ()

OneWireContainerl6(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

OneWireContainerl6(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)

OneWireContainerl6(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

PASSWORD_LENGTH_SIZE

PASSWORD_SIZE

process (CommandAPDU capdu)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion

select(String aid)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, I1legalArgumentExcep-
tion

Appendix Almanac 295

ResponseAPDU

ResponseAPDU

ResponseAPDU

ResponseAPDU

ResponseAPDU

ResponseAPDU

ResponseAPDU

ResponseAPDU

boolean
ResponseAPDU

void
ResponseAPDU

void

sendAPDU (CommandAPDU capdu, int runTime)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion

setAppletGCMode(int mode)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

setCommandPINMode (int mode)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion

setCommitBufferSize(int size)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion

setCommonPIN(String newPIN)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

setEphemeralGCMode(int mode)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion

setErrorReportingMode(int mode)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion

setExceptionMode(int mode)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

setLoadPacketSize(int size)

setLoadPINMode(int mode)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, I1legalArgumentExcep-
tion

setPIN(String passwd)

setRestoreMode(int mode)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, ITlegalArgumentExcep-
tion

setRunTime(int newRunTime)
throws I1legalArgumentException

296 Appendix Almanac

void

void

void

void

setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
byte[] newAddress)
setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
Tong newAddress)
setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
String newAddress)
setupJibComm(com.dalsemi.onewire.adapter.DSP
ortAdapter sourceAdapter,
byte[] newAddress)

OneWireContainerl$8 com.dalsemi.onewire.container

Object
L] OneWireContainer

L] OneWireContainerl8

] byte
booTlean

] byte
] byte
] byte
] byte
] byte

booTlean
] byte

boolean

String

String

int
java.util.Enumer-
ation

String

booTlean

] byte

AUTH_HOST

bindSecretToiButton(int page,
byte[] bind_data, byte[] bind_code,
int secret_number)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

COMPUTE_CHALLENGE

COMPUTE_FIRST_SECRET

COMPUTE_NEXT_SECRET

COMPUTE_SHA

COPY_SCRATCHPAD

copyScratchPad()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

ERASE_SCRATCHPAD

eraseScratchPad(int page)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

getAlternateNames ()

getDescription()
getMaxSpeed ()
getMemoryBanks ()

getName()

installMasterSecret(int page, byte[] secret,
int secret_number)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

MATCH_SCRATCHPAD

Appendix Almanac 297

W

boolean

byte
byte
byte
boolean

void

int

byte
void
void

boolean

boolean

byte
void
byte
boolean

matchScratchPad(byte[] mac)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
OneWireContainerl8()
OneWireContainerl8(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
OneWireContainerl8(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
OneWireContainerl8(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)
READ_AUTHENTICATED_PAGE

READ_MEMORY
READ_SCRATCHPAD

readAuthenticatedPage(int pageNum,
byte[] data, int start)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

readMemoryPage (int pageNum, byte[] data,
int start)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

readScratchPad(byte[] data, int start)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

RESUME

setSpeedCheck (boolean doSpeedCheck)

setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
byte[] newAddress)

SHAFunction(byte function)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

SHAFunction(byte function, int T)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

SIGN_DATA_PAGE

useResume(boolean set)

VALIDATE_DATA_PAGE

waitForSuccessfulFinish()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

298 Appendix Almanac

] byte
booTlean

boolean

WRITE_SCRATCHPAD

writeDataPage(int page_number,
byte[] page_data)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

writeScratchPad(int targetPage,
int targetPageOffset,
byte[] inputbuffer, int start,
int length)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainerlA

Object
L] OneWireContainer

com.dalsemi.onewire.container

L] OneWireContainerlA

String getAlternateNames()
String getDescription()
int getMaxSpeed()
java.util.Enumer- getMemoryBanks()
ation
String getName()
] OneWireContainerlA()
O OneWireContainerlA(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
O OneWireContainerlA(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
O OneWireContainerlA(com.dalsemi.onewire.adapt

er.DSPortAdapter sourceAdapter,
String newAddress)

OneWireContainerlD

Object
L] OneWireContainer

com.dalsemi.onewire.container

[l OneWireContainerlD

String

int
java.util.Enumer-
ation

String

getDescription()
getMaxSpeed ()
getMemoryBanks ()

getName()
OneWireContainerlD()
OneWireContainerlD(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

Appendix Almanac 299

O OneWireContainerlD(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)

O OneWireContainerlD(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

Tong readCounter(int counterPage)

throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainerlF com.dalsemi.onewire.container

Object
[l OneWireContainer
[l OneWireContainerlF SwitchContainer
[int CHANNEL_AUX
[int CHANNEL_MAIN
void clearActivity()
throws com.dalsemi.onewire.OneWireExcept
ion
void dischargelLines(int time)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
String getAlternateNames()
int getControlChannelAssociation(byte[] state)
int getControlData(byte[] state)
String getDescription()
boolean getLastSmartOnDeviceDetect()
boolean getLatchState(int channel, byte[] state)
boolean getLevel(int channel, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
String getName()
int getNumberChannels(byte[] state)
boolean getSensedActivity(int channel, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
boolean hasActivitySensing()
boolean hasLevelSensing()
boolean hasSmartOn()
boolean 1isHighSideSwitch()
boolean 1isModeAuto(byte[] state)
O OneWireContainerlF()
O OneWireContainerlF(com.dalsemi.onewire.adapt

er.DSPortAdapter sourceAdapter,
byte[] newAddress)

300 Appendix Almanac

O OneWireContainerlF(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
O OneWireContainerlF(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)
boolean onlySingleChannelOn()

byte[] readDevice()

throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void setControlChannelAssociation(int channel,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setControlData(boolean data, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setLatchState(int channel,
boolean TatchState, boolean doSmart,
byte[] state)

void setModeAuto(boolean makeAuto, byte[] state)

void setSpeedCheck(boolean doSpeedCheck)

void writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer220 com.dalsemi.onewire.container

Object
[l OneWireContainer
[l OneWireContainer20 ADContainer
] int ALARM_OFFSET
] int BITMAP_OFFSET
boolean canADMultiChannelRead()
] int CHANNELA
] int CHANNELB
] int CHANNELC
] int CHANNELD

void doADConvert(boolean[] doConvert,
byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void doADConvert(boolean[] doConvert,
int[] preset, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

Appendix Almanac 301

void

void

[m int
double

boolean

doubTe
double[]
doubTe
double[]
double[]

double

String

String

boolean

int
java.util.Enumer-
ation

String

int

boolean

boolean

boolean
O double

boolean

boolean
int

=

int

oo w

doADConvert(int channel, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

doADConvert(int channel, int preset,
byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

EXPOWER_OFFSET

getADAlarm(int channel, int alarmType,
byte[] state)

getADAlarmEnable(int channel, int alarmType,
byte[] state)

getADRange(int channel, byte[] state)

getADRanges (int channel)

getADResolution(int channel, byte[] state)

getADResolutions(int channel, double range)

getADVoltage(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

getADVoltage(int channel, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

getAlternateNames ()

getDescription()

getDevicePOR(byte[] state)

getMaxSpeed()

getMemoryBanks ()

getName()

getNumberADChannels ()

getOutputState(int channel, byte[] state)
throws I1legalArgumentException

hasADAlarmed(int channel, int alarmType,
byte[] state)

hasADAlarms ()

interpretVoltage(long rawVoltage,
doubTle range)

isOutputEnabled(int channel, byte[] state)
throws I1legalArgumentException

isPowerExternal (byte[] state)

NO_PRESET

NUM_CHANNELS

OneWireContainer20()

OneWireContainer20(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

302 Appendix Almanac
O OneWireContainer20(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
O OneWireContainer20(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)
m int PRESET_TO_ONES
m int PRESET_TO_ZEROS
byte[] readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
void setADAlarm(int channel, int alarmType,
double alarm, byte[] state)
void setADAlarmEnable(int channel, int alarmType,
boolean alarmEnable, byte[] state)
void setADRange(int channel, double range,
byte[] state)
void setADResolution(int channel,
double resolution, byte[] state)
void setOutput(int channel, boolean outputEnable,
boolean outputState, byte[] state)
void setPower(boolean external, byte[] state)
O int voltageToInt(double voltage, double range)

void

writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer2l

Object
L] OneWireContainer

L] OneWireContainer2l

ClockContainer

com.dalsemi.onewire.container

TemperatureContainer,

booTlean
void

] int
double
void

void

canDisableClock()

clearMemory ()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
CONTROL_REGISTER
decodeTemperature(byte tempByte)
disableMission()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
doTemperatureConvert(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

Appendix Almanac 303

void

byte
byte[]

boolean
java.util.Calen-
dar
String
Tong
Tong
Tong
String
int
Tong
boolean

boolean

int
double

java.util.Enumer-
ation

doubTe

int
java.util.Calen-
dar

String

int

double

double

double
int[]

byte[]

double
double[]
boolean

enableMission(int sampleRate)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

encodeTemperature(double temperature)

getAlarmHistory(byte alarmBit)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

getAlarmStatus(byte alarmBit, byte[] state)

getAlarmTime(byte[] state)

getAlternateNames ()

getClock(byte[] state)
getClockAlarm(byte[] state)
getClockResolution()

getDescription()
getDeviceSamplesCounter(byte[] state)
getFirstLogOffset(byte[] state)

getFlag(int register, byte bitMask)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

getFlag(int register, byte bitMask,
byte[] state)

getMaxSpeed()

getMaxTemperature()

getMemoryBanks ()

getMinTemperature()
getMissionSamplesCounter(byte[] state)
getMissionTimeStamp(byte[] state)

getName()
getSampleRate(byte[] state)
getTemperature(byte[] state)
getTemperatureAlarm(int alarmType,
byte[] state)
getTemperatureAlarmResolution()
getTemperatureHistogram()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
getTemperaturelLog(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
getTemperatureResolution(byte[] state)
getTemperatureResolutions ()

hasClockAlarm()

304 Appendix Almanac

booTlean

booTlean

booTlean

booTlean

booTlean

] byte

] byte

] byte

] byte

] byte

] byte

] byte

] byte

] byte
[}
[}
[}
[}

] byte

byte

byte[]

] byte

] byte

void

void

void

void

void

hasSelectableTemperatureResolution()
hasTemperatureAlarms ()
isClockAlarmEnabled(byte[] state)
isClockAlarming(byte[] state)
isClockRunning(byte[] state)
MEMORY_CLEAR_ENABLE_FLAG
MEMORY_CLEARED_FLAG
MISSION_ENABLE_FLAG
MISSION_IN_PROGRESS_FLAG
ONCE_PER_DAY

ONCE_PER_HOUR

ONCE_PER_MINUTE

ONCE_PER_SECOND

ONCE_PER_WEEK
OneWireContainer21()

OneWireContainer2l(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
OneWireContainer2l(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
OneWireContainer2l(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)
OSCILLATOR_ENABLE_FLAG
readByte(int memAddr)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
ROLLOVER_ENABLE_FLAG
SAMPLE_IN_PROGRESS_FLAG
setClock(long time, byte[] state)
setClockAlarm(int hours, int minutes,
int seconds, int day,
int alarmFrequency, byte[] state)
setClockAlarm(long time, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
setClockAlarmEnable(boolean alarmEnable,
byte[] state)
setClockRunEnable(boolean runEnable,
byte[] state)

Appendix Almanac 305

void
void
void
void
void
void
] int
] byte
] byte
] byte
] byte
] byte
] byte
] byte
] byte
] byte
] byte
void
void

setFlag(int register, byte bitMask,
boolean flagValue)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
setFlag(int register, byte bitMask,
boolean flagValue, byte[] state)
setMissionStartDelay(int missionStartDelay,
byte[] state)
setSpeedCheck (boolean doSpeedCheck)
setTemperatureAlarm(int alarmType,
double alarmValue, byte[] state)
setTemperatureResolution(double resolution,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
STATUS_REGISTER
TEMP_CORE_BUSY_FLAG
TEMP_HIGH_SEARCH_FLAG
TEMP_LOW_SEARCH_FLAG
TEMPERATURE_HIGH_ALARM
TEMPERATURE_HIGH_FLAG
TEMPERATURE_LOW_ALARM
TEMPERATURE_LOW_FLAG
TIMER_ALARM
TIMER_ALARM_FLAG
TIMER_ALARM_SEARCH_FLAG

writeByte(int memAddr, byte source)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer23 com.dalsemi.onewire.container

Object
[OneWireContainer

L] OneWireContainer23

String

String

int
java.util.Enumer-
ation

String

getAlternateNames ()
getDescription()
getMaxSpeed()
getMemoryBanks ()

getName()
OneWireContainer23()

306 Appendix Almanac

O OneWireContainer23(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

O OneWireContainer23(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)

O OneWireContainer23(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

OneWireContainer26 com.dalsemi.onewire.container

Object
[l OneWireContainer
[] OneWireContainer26 ADContainer, Temperature-
Container, ClockContainer
] byte AD_FLAG
byte ADB_FLAG
] byte CA_FLAG
void calibrateCurrentADC()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, ITlegalArgumentException
boolean canADMultiChannelRead()
boolean canDisableClock()
[int CHANNEL_VAD
[int CHANNEL_VDD

void doADConvert(boolean[] doConvert,
byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
void doADConvert(int channel, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
void doTemperatureConvert(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
[byte EE_FLAG
double getADAlarm(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
boolean getADAlarmEnable(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
doubTe getADRange(int channel, byte[] state)
double[] getADRanges(int channel)

Appendix Almanac 307

double
double[]
double[]

double

String
int

Tong
Tong

Tong
double
int

String
Tong
Tong

boolean

int

doubTe
doubTe
String

int
doubTe

double
double
double

getADResolution(int channel, byte[] state)

getADResolutions(int channel, double range)

getADVoltage(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

getADVoltage(int channel, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

getAlternateNames ()

getCCAQ
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

getClock(byte[] state)

getClockAlarm(byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

getClockResolution()

getCurrent(byte[] state)

getDCAQ)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, I1legalArgumentException
getDescription()
getDisconnectTime(byte[] state)
getEndOfChargeTime(byte[] state)
getFlag(byte flagToGet)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, ITlegalArgumentException
getICAQ
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, I1legalArgumentException
getMaxTemperature()
getMinTemperature()
getName()
getNumberADChannels ()
getRemainingCapacity ()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, ITlegalArgumentException
getSenseResistor()
getTemperature(byte[] state)
getTemperatureAlarm(int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

308 Appendix Almanac

doubTe

doubTle
doubTe[]
booTlean

booTlean
booTlean
booTlean
booTlean
m byte
booTlean

booTlean
booTlean
booTlean
] byte

byte[]

byte[]

void

void

void

void

getTemperatureAlarmResolution()
throws com.dalsemi.onewire.OneWireExcept
ion
getTemperatureResolution(byte[] state)
getTemperatureResolutions()
hasADAlarmed(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
hasADAlarms ()
hasClockAlarm()
hasSelectableTemperatureResolution()
hasTemperatureAlarms ()
TAD_FLAG
isCharging(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, ITlegalArgumentException
isClockAlarmEnabled(byte[] state)

isClockAlarming(byte[] state)
isClockRunning(byte[] state)
NVB_FLAG

OneWireContainer26()

OneWireContainer26(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
OneWireContainer26(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
OneWireContainer26(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)
readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
readPage(int page)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, ITlegalArgumentException
setADAlarm(int channel, int alarmType,
double alarm, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
setADAlarmEnable(int channel, int alarmType,
boolean alarmEnable, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
setADRange(int channel, double range,
byte[] state)
setADResolution(int channel,
doubTle resolution, byte[] state)

Appendix Almanac 309

void

void

void

void

void

void

void

void

void
void
void

void

void

setCCA(int ccaValue)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, I1legalArgumentException
setClock(Tong time, byte[] state)

setClockAlarm(long time, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
setClockAlarmEnable(boolean alarmEnable,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
setClockRunEnable(boolean runEnable,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
setDCA(int dcaValue)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, I1legalArgumentException
setFlag(byte flagToSet, boolean flagValue)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, ITlegalArgumentException
setICA(int icaValue)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, I1legalArgumentException
setSenseResistor(double resistance)

setSpeedCheck (boolean doSpeedCheck)

setTemperatureAlarm(int alarmType,
double alarmValue, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException
setTemperatureResolution(double resolution,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException
setThreshold(byte thresholdValue)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

310 Appendix Almanac

] byte
void

void

TB_FLAG

writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

writePage(int page, byte[] source,
int offset)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer28

Object
L] OneWireContainer

L] OneWireContainer28

com.dalsemi.onewire.container

TemperatureContainer

] byte
float

m byte
void

void

String
String
doubTle
doubTle
String
doubTle

double

doubTle
doubTle
doubTe[]
booTlean
booTlean
booTlean

CONVERT_TEMPERATURE_COMMAND
convertToFahrenheit(float celsiusTemperature

)
COPY_SCRATCHPAD_COMMAND

copyScratchpad()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
doTemperatureConvert(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
getAlternateNames ()
getDescription()
getMaxTemperature()
getMinTemperature()
getName()
getTemperature(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException
getTemperatureAlarm(int alarmType,
byte[] state)
getTemperatureAlarmResolution()
getTemperatureResolution(byte[] state)
getTemperatureResolutions ()
hasSelectableTemperatureResolution()
hasTemperatureAlarms ()
isExternalPowerSupplied()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
OneWireContainer28()

Appendix Almanac 311

=

T

byte
byte
bytel[]

byte[]

byte
byte[]

byte
byte
byte
byte
void

void

byte
void

void

OneWireContainer28(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
OneWireContainer28(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
OneWireContainer28(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)
READ_POWER_SUPPLY_COMMAND

READ_SCRATCHPAD_COMMAND

readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

readScratchpad()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

RECALL_E2MEMORY_COMMAND

recallE2()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

RESOLUTION_10_BIT

RESOLUTION_11_BIT

RESOLUTION_12_BIT

RESOLUTION_9_BIT

setTemperatureAlarm(int alarmType,
double alarmValue, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException

setTemperatureResolution(double resolution,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

WRITE_SCRATCHPAD_COMMAND

writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

writeScratchpad(byte[] data)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

312 Appendix Almanac

OneWireContainer2C

Object
L] OneWireContainer

L] OneWi reContainer2C

com.dalsemi.onewire.container

PotentiometerContainer

int

int

String
int
String
int
String
int

int

int

boolean
boolean
int
int

int
byte[]

decrement()

throws com.dalsemi.onewire.adapter.OneWi

reIOException, com.dalsemi.onewire.One-

WireException
decrement (boolean reselect)

throws com.dalsemi.onewire.adapter.OneWi

reIOException, com.dalsemi.onewire.One-

WireException
getAlternateNames ()
getCurrentWiperNumber (byte[] state)
getDescription()
getMaxSpeed()
getName()
getWiperPosition()

throws com.dalsemi.onewire.adapter.OneWi

reIOException, com.dalsemi.onewire.One-

WireException
increment()

throws com.dalsemi.onewire.adapter.OneWi

reIOException, com.dalsemi.onewire.One-

WireException
increment(boolean reselect)

throws com.dalsemi.onewire.adapter.OneWi

reIOException, com.dalsemi.onewire.One-

WireException
isChargePumpOn(byte[] state)
isLinear(byte[] state)
numberOfPotentiometers(byte[] state)
numberOfWiperSettings (byte[] state)
OneWireContainer2C()
OneWireContainer2C(com.dalsemi.onewire.adapt

er.DSPortAdapter sourceAdapter,

byte[] newAddress)
OneWireContainer2C(com.dalsemi.onewire.adapt

er.DSPortAdapter sourceAdapter,

Tong newAddress)
OneWireContainer2C(com.dalsemi.onewire.adapt

er.DSPortAdapter sourceAdapter,

String newAddress)
potentiometerResistance(byte[] state)
readDevice()

throws com.dalsemi.onewire.adapter.OneWi

reIOException, com.dalsemi.onewire.One-

WireException

Appendix Almanac 313

void

void

boolean

boolean
void

setChargePump (boolean charge_pump_on,
byte[] state)
setCurrentWiperNumber(int wiper_number,
byte[] state)
setWiperPosition(int position)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
wiperSettingsAreVolatile(byte[] state)
writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer30 com.dalsemi.onewire.container

Object
L] OneWireContainer

[J OnewireContainer3o ADContainer, Temperature-

Container

boolean
byte
byte

[m byte
void

" W

[m byte
byte
byte
void

1

void

void

=

byte
byte
byte
byte
byte

T

canADMul tiChannelRead ()
CC_PIN_STATE_FLAG
CHARGE_ENABLE_FLAG
CHARGE_OVERCURRENT_FLAG

clearConditions()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

DC_PIN_STATE_FLAG

DISCHARGE_ENABLE_FLAG
DISCHARGE_OVERCURRENT_FLAG

doADConvert(boolean[] doConvert,
byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

doADConvert(int channel, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

doTemperatureConvert(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

EEPROM_BLOCK_0_LOCK_FLAG

EEPROM_BLOCK_1_LOCK_FLAG

EEPROM_COPY_FLAG

EEPROM_LOCK_ENABLE_FLAG

EEPROM_REGISTER

314 Appendix Almanac

doubTe

boolean

doubTle
doubTe[]
doubTle
doubTe[]
doubTe[]

doubTle

String
double

String
boolean

booTlean

doubTe
doubTe
String

int
doubTe

double
double

doubTle

doubTle
doubTe[]

getADAlarm(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

getADAlarmEnable(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

getADRange(int channel, byte[] state)

getADRanges (int channel)

getADResolution(int channel, byte[] state)

getADResolutions(int channel, double range)

getADVoltage(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

getADVoltage(int channel, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

getAlternateNames ()

getCurrent(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

getDescription()

getFlag(int memAddr, byte flagToGet)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

getLatchState()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

getMaxTemperature()

getMinTemperature()

getName()

getNumberADChannels ()

getRemainingCapacity(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

getTemperature(byte[] state)

getTemperatureAlarm(int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
getTemperatureAlarmResolution()
throws com.dalsemi.onewire.OneWireExcept
ion
getTemperatureResolution(byte[] state)
getTemperatureResolutions()

Appendix Almanac 315

O

s v eew

boolean

boolean
boolean
boolean

void

byte
byte
byte
byte
byte
byte

void

byte[]

byte[]

void

void

hasADAlarmed(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
hasADAlarms ()
hasSelectableTemperatureResolution()
hasTemperatureAlarms ()

lockBlock(int bTockNumber)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer30()

OneWireContainer30(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)
OneWireContainer30(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)
OneWireContainer30(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)
OVERVOLTAGE_FLAG

PIO_PIN_SENSE_AND_CONTROL_FLAG
PROTECTION_REGISTER
PS_PIN_STATE_FLAG
READ_NET_ADDRESS_OPCODE_FLAG

readByte(int memAddr)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

readBytes(int memAddr, byte[] buffer,
int start, int Ten)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

readEEPROMBlock(int blockNumber)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

setADAlarm(int channel, int alarmType,
double alarm, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

setADAlarmEnable(int channel, int alarmType,
boolean alarmEnable, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

316

Appendix Almanac

T

void
void

void

void

void

void
void
void

void

byte
byte
byte
byte
void

void

void

setADRange(int channel, double range,
byte[] state)
setADResolution(int channel,
doubTle resolution, byte[] state)
setFlag(int memAddr, byte flagToSet,
boolean flagValue)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
setLatchState(boolean on)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
setRemainingCapacity(double remainingCapacit
y)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
setResistorExternal (double Rsens)

setResistorInternal ()

setTemperatureAlarm(int alarmType,
double alarmValue, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException
setTemperatureResolution(double resolution,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException
SLEEP_MODE_ENABLE_FLAG

SPECIAL_FEATURE_REGISTER
STATUS_REGISTER
UNDERVOLTAGE_FLAG

writeByte(int memAddr, byte data)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

writeEEPROMBlock(int bTockNumber,
byte[] data)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer33

Object
[l OnewireContainer

Appendix Almanac 317

com.dalsemi.onewire.container

L] OnewireContainer33

void

String

void

String

int
java.util.Enumer-
ation

String

void

boolean

O boolean

boolean

boolean

boolean

boolean

boolean

computeNextSecret(int addr,
byte[] nextsecret,
byte[] partialsecret, byte[] mac)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

getAlternateNames ()

getChallenge(byte[] get)
getDescription()
getMaxSpeed()
getMemoryBanks ()

getName()
getSecret(byte[] get)

isContainerSecretSet()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

isMACValid(int addr, byte[] SerNum,
byte[] memory, byte[] mac,
byte[] challenge, byte[] secret)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException

isPageOneEPROMmode ()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

isSecretWriteProtected()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

isWriteProtectAl11Set()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

isWriteProtectPageZeroSet()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

loadFirstSecret(byte[] data)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer33()

318 Appendix Almanac

O OneWireContainer33(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

O OneWireContainer33(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
Tong newAddress)

O OneWireContainer33(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

void setChallenge(byte[] challengeset)

void setContainerSecret(byte[] secretset)

void setEPROMModePageOne()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
byte[] newAddress)

void setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
Tong newAddress)

void setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
String newAddress)

void writeProtectAl1()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void writeProtectPageZero()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void writeProtectSecret()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireException com.dalsemi.onewire

Object
[l Throwable java.io.Serializable
[l Exception
[l OneWireException

O OneWireException()
O OneWireException(String desc)
OneWi reIOExcept-i on com.dalsemi.onewire.adapter
Object

L Throwable java.io.Serializable

Appendix Almanac 319

[l Exception
[l com.dalsemi.onewire.OneWireException
] OneWireIOException

O OneWireIOException()
O OneWireIOException(String desc)
OneWireMonitor com.dalsemi.onewire.utils
Object
U Thread Runnable

L] OneWireMonitor

void addEventListener(OneWireMonitorEventListener
owmel)

void killMonitor()

O OneWireMonitor(com.dalsemi.onewire.adapter.D

SPortAdapter adapter)

void removeEventListener(OneWireMonitorEventListe
ner owmel)

void run()

OneWireMonitorEvent com.dalsemi.onewire.utils

Object
[java.util.EventObject java.io.Serializable
[l OneWireMonitorEvent
com.dalsemi.one- getAdapter()
wire.adapter.DSPo
rtAdapter
byte[] getAddress()
Tong getAddressAsLong()
String getAddressAsString()
com.dalsemi.one- getDeviceContainer()
wire.con-
tainer.OneWireCon
tainer
O OneWireMonitorEvent (OneWireMonitor owm,
com.dalsemi.onewire.adapter.DSPortAdapt
er adapter, Tong address)

OneWireMonitorEventLis- com.dalsemi.onewire.utils
tener

OneWireMonitorEventListener

void oneWireArrival (OneWireMonitorEvent owme)
void oneWireDeparture(OneWireMonitorEvent owme)

320

OneWireSensor

OneWireSensor

Appendix Almanac

com.dalsemi.onewire.container

byte[]

void

readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OTPMemoryBank
OTPMemoryBank

com.dalsemi.onewire.container

PagedMemoryBank

booTlean
booTlean
booTlean

int

boolean

boolean

void

void

void

canLockPage ()

canLockRedirectPage ()

canRedirectPage()

getRedirectedPage(int page)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

isPagelLocked(int page)
throws com.dalsemi.onewire.
reIOException, com.dalsemi
WireException

isPageRedirected(int page)
throws com.dalsemi.onewire.
reIOException, com.dalsemi
WireException

isRedirectPageLocked(int page)
throws com.dalsemi.onewire.
reIOException, com.dalsemi
WireException

lockPage(int page)
throws com.dalsemi.onewire.
reIOException, com.dalsemi
WireException

lockRedirectPage(int page)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

redirectPage(int page, int newPage)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

adapter.OneWi
.onewire.One-

adapter.OneWi
.onewire.One-

adapter.OneWi
.onewire.One-

adapter.OneWi
.onewire.One-

OWFile

Object
L] OwWFile

Appendix Almanac 321

com.dalsemi.onewire.utils

boolean

boolean

void

int

int

boolean

boolean

boolean

boolean

void

OWFile

String

OWFile

String
OWFiTeDescriptor
int

int
com.dalsemi.one-
wire.con-
tainer.PagedMemor

yBank
String

com.dalsemi.one-
wire.con-
tainer.OneWireCon
tainer

int[]

String

OWFile

String

int

boolean

boolean

boolean

boolean

Tong

Tong

String[]

OWFiTe[]

O OWFiTe[]

boolean

canRead ()

canWrite()

close() throws java.io.IOException
compareTo(Object o)

compareTo(OWFile pathname)

createNewFile() throws java.io.IOException
delete()

equals(Object obj)

exists()

format() throws java.io.IOException
getAbsoluteFile()

getAbsolutePath()

getCanonicalFile() throws java.io.IOException
getCanonicalPath() throws java.io.IOException
getFD() throws java.io.IOException
getFreeMemory() throws java.io.IOException
getLocalPage(int page)
getMemoryBankForPage(int page)

getName()
getOneWireContainer()

getPageList() throws java.io.IOException
getParent()
getParentFile()
getPath()
hashCode ()
isAbsolute()
isDirectory()
isFile()
isHidden()
lastModified()
length()

Tist(
TistFiles()

TistRoots(com.dalsemi.onewire.container.OneW
ireContainer owc)
mkdir(Q)

322 Appendix Almanac

boolean
O
O
O
] String
'] char
booTlean
] String
'] char
booTlean
booTlean
String

mkdirs()

OWFile(com.dalsemi.onewire.container.OneWire
Container owd, String pathname)

OWFile(com.dalsemi.onewire.container.OneWire
Container owd, String parent,
String child)

OWFile(OWFile parent, String child)

pathSeparator

pathSeparatorChar

renameTo(OWFile dest)

separator

separatorChar

setLastModified(long time)

setReadOnly()

toString()

OWFileDescriptor

com.dalsemi.onewire.utils

Object
L] OWFileDescriptor
]
void
booTlean

OWFileDescriptor()
sync() throws java.io.SyncFailedException
valid(Q)

OWFileInputStream

Object

com.dalsemi.onewire.utils

[ljava.io.InputStream
L] OWFiTeInputStream

int

void

void

° OWFiTleDescriptor
void

booTlean

int
int
int

void
Tong

available() throws java.io.IOException
close() throws java.io.IOException
finalize() throws java.io.IOException
getFD() throws java.io.IOException
mark(int readlimit)

markSupported()

OWFileInputStream(com.dalsemi.onewire.contai
ner.OneWireContainer owd, String name)
throws java.io.FileNotFoundException

OWFileInputStream(OWFile file)
throws java.io.FileNotFoundException

OWFileInputStream(OWFileDescriptor fdObj)

read() throws java.io.IOException

read(byte[] b) throws java.io.IOException
read(byte[] b, int off, int len)
throws java.io.IOException

reset() throws java.io.IOException

skip(long n) throws java.io.IOException

Appendix Almanac 323

OWFileOutputStream com.dalsemi.onewire.utils

Object

[ljava.io.OutputStream
L] OWFileOutputStream

void
void
OWFiTeDescriptor

O

O

0

O
void
void
void

close() throws java.io.IOException
finalize() throws java.io.IOException
getFD() throws java.io.IOException
OWFileOutputStream(com.dalsemi.onewire.conta
iner.OneWireContainer owd, String name)
throws java.io.FileNotFoundException
OWFileOutputStream(com.dalsemi.onewire.conta
iner.OneWireContainer owd, String name,
boolean append)
throws java.io.FileNotFoundException
OWFileOutputStream(OWFile file)
throws java.io.FileNotFoundException
OWFileOutputStream(OWFiTleDescriptor fdObj)
write(byte[] b) throws java.io.IOException
write(byte[] b, int off, int len)
throws java.io.IOException
write(int b) throws java.io.IOException

OWPath com.dalsemi.onewire.utils

Object
[owPath

void

void

void
boolean

java.util.Enumer-
ation
void

String

add(com.dalsemi.onewire.container.0OneWireCon
tainer owc, int channel)

close()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException

copy (OWPath currentOwPath)

equals(OWPath compareOwWPath)
getAl110WPathElements ()

open()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException
OWPath(com.dalsemi.onewire.adapter.DSPortAda
pter adapter)
OWPath(com.dalsemi.onewire.adapter.DSPortAda
pter adapter, OWPath currentOWPath)
toString()

324

OWPathElement

Object
L] owPathElement

Appendix Almanac

com.dalsemi.onewire.utils

int
com.dalsemi.one-
wire.con-
tainer.OneWireCon
tainer

getChannel O
getContainer()

OWPathElement(com.dalsemi.onewire.container.
OneWireContainer owcInstance,
int channelNumber)

PagedMemoryBank

com.dalsemi.onewire.container

PagedMemoryBank MemoryBank
String getExtraInfoDescription()
int getExtraInfoLength()
int getMaxPacketDatalLength()
int getNumberPages()
int getPagelLength()
boolean hasExtraInfo()
boolean hasPageAutoCRC()
boolean haveExtraInfo()
void readPage(int page, boolean readContinue,
byte[] readBuf, int offset)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
void readPage(int page, boolean readContinue,
byte[] readBuf, int offset,
byte[] extralnfo)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
void readPageCRC(int page, boolean readContinue,
byte[] readBuf, int offset)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
void readPageCRC(int page, boolean readContinue,

byte[] readBuf, int offset,

byte[] extralnfo)

throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

Appendix Almanac 325

int readPagePacket(int page,
boolean readContinue, byte[] readBuf,
int offset)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

int readPagePacket(int page,
boolean readContinue, byte[] readBuf,
int offset, byte[] extraInfo)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void writePagePacket(int page, byte[] writeBuf,

int offset, int Ten)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

Object
O Ping
] byte DEFAULT_TTL
O boolean pingNode(java.net.InetAddress addr)
O Tong pingNode(java.net.InetAddress addr,
byte ttl, byte[] response)
0 int pingNode(java.net.InetAddress addr,
int count)
com.dalsemi.onewire.container
PotentiometerContainer OneWireSensor

int decrement()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

int decrement(boolean reselect)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

int getCurrentWiperNumber(byte[] state)

int getWiperPosition()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

int dincrement()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

326 Appendix Almanac

int

booTlean
booTlean
int

int

int
void

void

boolean

booTlean

increment(boolean reselect)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
isChargePumpOn(byte[] state)
isLinear(byte[] state)
numberOfPotentiometers(byte[] state)
numberOfWiperSettings (byte[] state)
potentiometerResistance(byte[] state)

setChargePump (boolean charge_pump_on,
byte[] state)

setCurrentWiperNumber (int wiper_number,
byte[] state)

setWiperPosition(int position)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

wiperSettingsAreVolatile(byte[] state)

Object
U Thread
[ppp

com.dalsemi.tininet.ppp

Runnable

void

void
void
void
void
void
int
booTlean
booTlean
byte[]
int

int

int
booTlean
String
String
byte[]
int

O int
int

addEventListener (PPPEventListener eventListe
ner)
throws java.util.TooManylListenersExcepti
on

addInterface(String name)

authenticate(boolean value)
close()

down()
freelnterfaceWrapper()
getACCM()
getAuthenticate()
getDefaultInterface()
getLocalAddress ()
getMaxConfig()
getMaxFailure()
getMaxTerminate()
getPassive()

getPeerID()
getPeerPassword()
getRemoteAddress ()
getRestartPeriod()
getTransmitter(byte index)

getUsernamePassword(int option,
byte[] value)

Appendix Almanac 327

=

0O

boolean

void
byte
byte

void

void
void
void
void
void
void
void
void
void

void
void

void
void

void

void
void
void

getXonXoffEscape()

open()

PEER_ID

PEER_PASSWORD

PPP()

removeEventListener (PPPEventListener eventLi
stener)

removelnterface(String name)

run()

setACCM(int newACCM)

setAuthenticate(boolean value)

setDefaultInterface(boolean value)

setLocalAddress(byte[] address)

setMaxConfig(int count) throws PPPException

setMaxFailure(int count) throws PPPException

setMaxTerminate(int count)

throws PPPException
setPassive(boolean value)
setPassword(String password)
throws PPPException
setRemoteAddress (byte[] address)
setRestartPeriod(int timeout)
throws PPPException
setUsername(String userName)
throws PPPException
setXonXoffEscape(boolean value)
stopPPPThread()
up(javax.comm.SerialPort sp)

PPPEvent

Object

[ljava.util.EventObject

U PPPEvent

com.dalsemi.tininet.ppp

java.io.Serializable

T

e e

int
int
int
int
int
int
int
int
int
int
int
int

ADDR

AUTH
AUTHENTICATION_REQUEST
CLOSED
getEventType()
getLastError()
NONE

REJECT
STARTING
STOPPED

TIME

upP

328 Appendix Almanac

PPPEventListener com.dal sem'i.t'in'inet.ppp|

PPPEventListener java.util.EventListener
void pppEvent(PPPEvent ev)

PPPException com.dalsemi .t1'n1'net.ppp|
Object
Ll Throwable java.io.Serializable

L] Exception
L] PPPException
PPPException()

PPPException(String s)

|

com.dalsemi.onewire.container
Object
[l ResponseAPDU
° byte getByte(int index)
° byte[] getBytes()
byte[] getData()
° int getlLength()
° int getSWQ
° byte getSW1()
° byte getSW2()
O ResponseAPDU(byte[] buffer)

String toString()

Security com.dalsemi.system
Object
[Security
O int getRandom()
O byte[] hashMessage(byte[] MsgStr)

SerialInputStream com.dalsemi.comm

Object
[java.io.InputStream
[SerialInputStream
int available() throws java.io.IOException
void close() throws java.io.IOException

Appendix Almanac 329

int read() throws java.io.IOException
int read(byte[] barr, int offset, int len)
throws java.io.IOException
void unread(byte b) throws java.io.IOException

SerialOQutputStream com.dalsemi.comm

Object
[java.io.OutputStream
[SerialOutputStream
void close() throws java.io.IOException
O SerialOutputStream(InternalSerialPort sp)

void write(byte[] barr, int offset, int len)
throws java.io.IOException
void write(int ch) throws java.io.IOException

SerialServer com.dalsemi.shell.server.serial
Object
[l Thread Runnable

[J com.dalsemi.shell.server.Server
[JSerialServer
void broadcast(String sendThis)
void closeAll1Ports() throws java.io.IOException

O SerialServer(String portName, int speed,
int dataBits, int stopBits, int parity)
throws Exception

SerialSession com.dalsemi.shell.server.serial
Object
[Thread Runnable

[J com.dalsemi.shell.server.Session
[JSerialSession
String getNextCommand() throws java.io.IOException

void Togin() throws java.io.IOException
void updatePrompt(String withThis)

Server com.dalsemi.shell.server
Object
U Thread RunnabTle
[Server

void broadcast(String sendThis)
String[] getConnectedUsers()

330 Appendix Almanac

void
void
void

run()
sessionEnded(Session session)
shutDown () throws java.io.IOException

Session

Object
U Thread
[] Session

com.dalsemi.shell.server

Runnable

void

void

String

String

void

void
java.util.Hash-
table
java.io.Print-
Stream

String

String

String

java.io.Print-
Stream
O Object[]

String

boolean

void

m String
° void
String

String

boolean

void

m String

e ¢« B H

addToHistory(String str)
broadcast(String sendThis)
CURRENT_COMMAND
CURRENT_DIRECTORY
endSession()
forceEndSession()
getEnvironment()

getErrStream()

getFromEnvironment(String key)
getHistoryNumber (int number)
getNextCommand () throws java.io.IOException
getOutputStream()

getParams(String str)

getUserName()

inCommand ()
printHistory(java.io.PrintStream out)
PROMPT

run()

stepDownHistory ()

stepUpHistory()

su(String userName, String password)
updatePrompt (String withThis)
welcomeMessage

SHAiButton

Object
[J SHAiButton

com.dalsemi.onewire.container

int

] int
] int

answerChallenge(byte[] challenge,
byte[] mac, byte[] pagedata)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException
AUTHENTICATION_FAILED_ERROR

BIND_SECRET_ERROR

Appendix Almanac 331

=

int
[m int
boolean

byte[]
byte[]
int
int
String
boolean
int
int
int
int
int
int
int

v e

void
void
void
void
void
void

void

void

boolean

void

[m int

boolean

String
[int

CRC_ERROR
ERASE_SCRATCHPAD_ERROR

generateChallenge(int page_number,
int offset, byte[] ch)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

getBindCode()

getBindData()

getLastError()

getUserFileExtension()

getUserFileName()

isCoprocessor()

NO_COPROCESSOR_ERROR

NO_ERROR

NO_USER_ERROR

READ_AUTHENTICATED_ERROR

READ_MEMORY_PAGE_ERROR

READ_SCRATCHPAD_ERROR

readFile(int start_page, byte[] page)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

setAuthenticationPageNumber(int pg)

setBindCode(byte[] buf, int offset)
setBindData(byte[] buf, int offset)
setFilename(byte[] buf, int start)
setiButton(OneWireContainerl8 1ibc)
setInitialSignature(byte[] sig_ini,
int start)
setSigningChallenge(byte[] ch, int start)
setSigningPageNumber(int pg)
setUser(int file_page_number)
setWorkspacePageNumber (int pg)
SHA_FUNCTION_ERROR
SHAiButton()
SHAiButton(OneWireContainerl8 ibc)

signDataFile(SHAiButton user,
int newbalance,
int write_cycle_counter,
byte[] pagedata)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

toString()

VERIFICATION_FAILED_ERROR

332 Appendix Almanac

int

boolean

m int
m int

verifyAuthentication(SHAiButton user,
byte[] pagedata)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException

verifyUserMoney(byte[] userpage,
SHAiButton user, int wcc)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

WRITE_MEMORY_PAGE_ERROR

WRITE_SCRATCHPAD_ERROR

SwitchContainer

SwitchContainer

com.dalsemi.onewire.container

OneWireSensor

void

boolean
boolean

int
boolean

booTlean
booTlean
booTlean
booTlean
booTlean

void

clearActivity()
throws com.dalsemi.onewire.OneWireExcept
ion

getLatchState(int channel, byte[] state)

getLevel (int channel, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

getNumberChannels(byte[] state)

getSensedActivity(int channel, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

hasActivitySensing()

hasLevelSensing()

hasSmartOn()

isHighSideSwitch()

onlySingleChannel0On()

setLatchState(int channel,
boolean latchState, boolean doSmart,
byte[] state)

SystemInputStream

Object

com.dalsemi.shell.server

[] java.io.InputStream
[SystemInputStream

° int
booTlean
O String

java.io.Input-

Stream

° int
int

String

available() throws java.io.IOException
errorOccurred()

fileInName

getRootStream()

read() throws java.io.IOException
read(byte[] buff, int off, int len)

throws java.io.IOException
readLine()

Appendix Almanac 333

void
void
void
void
void

setEcho(boolean echo)
setEchoStream(java.io.PrintStream echo)
setRawMode (boolean rawMode)
setRootStream(java.io.InputStream newIn)
setSession(Session session)

SystemInputStream(java.io.InputStream in,
java.io.PrintStream out)
SystemInputStream(java.io.InputStream in,
java.io.PrintStream out,
String fileInName)

SystemPrintStream com.dalsemi.shell.server

Object

[java.io.OutputStream
[J java.io.FilterOutputStream
[l java.io.PrintStream
[J SystemPrintStream

O boolean
boolean

O String
java.io.Output-

Stream

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

O boolean

append

checkError()
fileOutName
getRootOutputStream()

print(boolean b)
print(char c)
print(char[] s)
print(double d)
print(float f)
print(int i)
print(long 1)
print(Object obj)
print(String s)
println(Q
println(boolean x)
println(char x)
printin(char[] x)
printin(double x)
printin(float x)
println(int x)
printin(long x)
println(Object x)
println(String x)
setRootStream(java.io.OutputStream root)
setSession(Session s)
shieldsUp
SystemPrintStream(java.io.OutputStream root)

334 Appendix Almanac

O SystemPrintStream(java.io.OutputStream out,
boolean autoFlush)
O SystemPrintStream(java.io.OutputStream root,

String fileOutName, boolean append)
void write(byte[] buf, int off, int len)
void write(int b)

TelnetServer com.dalsemi.shell.server.telnet

Object
L Thread Runnable
[l com.dalsemi.shell.server.Server
[l TelnetServer
String getWelcomeFile()
booTlean 1isRootAllowed()
TelnetServer() throws java.io.IOException

TelnetServer(int port)
throws java.io.IOException

Oo0Ooo

TelnetSession com.dalsemi.shell.server.telnet
Object
U Thread Runnable

[com.dalsemi.shell.server.Session
L TelnetSession
void Togin() throws java.io.IOException
void updatePrompt(String withThis)

TemperatureContainer com.dalsemi.onewire.container
TemperatureContainer OneWireSensor
[m int ALARM_HIGH
[m int ALARM_LOW

void doTemperatureConvert(byte[] state)

throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

double getMaxTemperature()

double getMinTemperature()

double getTemperature(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException

double getTemperatureAlarm(int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

double getTemperatureAlarmResolution()
throws com.dalsemi.onewire.OneWireExcept
ion

Appendix Almanac 335

doubTe
double[]
boolean
boolean
void

void

getTemperatureResolution(byte[] state)
getTemperatureResolutions ()
hasSelectableTemperatureResolution()
hasTemperatureAlarms ()
setTemperatureAlarm(int alarmType,
double alarmValue, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion
setTemperatureResolution(double resolution,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

TINIExternalAdapter com.dalsemi.onewire.adapter

Object
L] DSPortAdapter
[J TINIAdapter

] TINIExternalAdapter

booTlean
boolean
boolean
boolean

String
String
String

java.util.Enumer-
ation

String

boolean

void

boolean

canDeliverPower () throws OneWireIOException,
com.dalsemi.onewire.OneWireException

canFlex() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

canHyperdrive() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

canOverdrive() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

getAdapterName()

getClassVersion()

getPortName()
throws com.dalsemi.onewire.OneWireExcept
ion

getPortNames ()

getPortTypeDescription()

selectPort(String portName)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
setProgramPulseDuration(int timeFactor)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
startProgramPulse(int changeCondition)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
TINIExternalAdapter()

336

TINIInternalAdapter

Object
[l DSPortAdapter
L] TINIAdapter

Appendix Almanac

com.dalsemi.onewire.adapter

LI TINIInternalAdapter

booTean
boolean
booTlean
booTlean

String
String
String

java.util.Enumer-
ation

String

boolean

canDeliverPower () throws OneWireIOException,
com.dalsemi.onewire.OneWireException

canFlex() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

canHyperdrive() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

canOverdrive() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

getAdapterName()

getClassVersion()

getPortName()
throws com.dalsemi.onewire.OneWireExcept
ion

getPortNames ()

getPortTypeDescription()
selectPort(String portName)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException
TINIInternalAdapter()

TININet

Object
[TININet

com.dalsemi.tininet

O void

O void

int
byte[]
String
void
int
int
int
byte[]
byte[]
String

ooo"eE oW

addInterfaceEntry(byte[] name,
byte[] ipAddr, byte[] subnet,
byte[] gateway, byte flags, byte type,
int transmitter)

commitNetworkState()
throws com.dalsemi.system.CommitExceptio
n

COMMITTED

createIPFromString(String fromThis)
createIPString(byte[] fromThis)
disableNetworkRestore()
ETH_STATUS_LINK

ETH_STATUS_RX

ETH_STATUS_TX

getARPCacheTable()
getConnectionTable()
getDHCPServerIP()

Appendix Almanac

337

OOoOooooooOooOoaoao

|

OO0 oao

OOoOooooooOooOoaoao

O DI:II:II:II:II:II:I“I:I

O 0Oooag

void
int
String
String
void
int
String
void
String
void

String
boolean

String
void
String
void

String
int
String
int
String
String
String
void
String
void

void
int
boolean
boolean
boolean
boolean
boolean
boolean
boolean

boolean

boolean
boolean
boolean
boolean

getDHCPServerIP(byte[] address)
getDNSTimeout()

getDomainname()
getEthernetAddress ()
getEthernetAddress (byte[] address)
getEthernetStatus()

getGatewayIP()

getGatewayIP(byte[] address)
getGatewayIP(String interfaceName)

getGatewayIP(String interfaceName,
byte[] address)
getHostname()

getInterfaceInfo(int interfaceNum,
byte[] data)
getIPAddress ()

getIPAddress(byte[] address)
getIPAddress(String interfaceName)

getIPAddress(String interfaceName,
byte[] address)
getMailhost()

getNetworkCommitState()
getPrimaryDNS ()

getProxyPort()

getProxyServer()

getSecondaryDNS ()

getSubnetMask ()
getSubnetMask(byte[] address)
getSubnetMask(String interfaceName)

getSubnetMask(String interfaceName,
byte[] address)
removelInterfaceEntry(byte[] name)

RESTORE_DISABLED
setDefaultInterface(byte[] name)
setDHCPServerIP(String dhcpServer)
setDNSTimeout(int dnsTimeout)
setDomainname(String domain)
setGatewayIP(byte[] gateway)
setGatewayIP(String gateway)
setGatewayIP(String interfaceName,
byte[] gateway)
setGatewayIP(String interfaceName,
String gateway)
setHostname(String host)
setIPAddress(byte[] localIP)
setIPAddress(String localIP)

setIPAddress(String interfaceName,
byte[] locallP)

338

Appendix Almanac

O

O OO0oooooag

O

booTlean

boolean
boolean

boolean
boolean
boolean
boolean
boolean
boolean
boolean

boolean

int
void

setIPAddress(String interfaceName,
String TocallIP)
setMailhost(String mailhost)
setOptions(byte[] dhcp, byte[] iip,
byte[] gateway, byte[] subnet,
byte[] dnsl, byte[] dns2,
byte[] domain, byte[] mailhost)
setPrimaryDNS(String primaryDNS)
setProxyPort(int proxyPort)
setProxyServer(String proxyServer)
setSecondaryDNS(String secondDNS)
setSubnetMask (byte[] subnetMask)
setSubnetMask (String subnetMask)
setSubnetMask(String interfaceName,
byte[] subnetMask)
setSubnetMask(String interfaceName,
String subnetMask)
TININet()
UNCOMMITTED
update()

TINIOS com.dalsemi.system

Object

L] TINIOS

W

O®m m m m

oo ¥ o

Oo0ooo

int

int
void
void
void
void
void

void

int

int
java.util.Hash-
table

byte

String

int

boolean

BLAST_ALL

BLAST_HEAP

blastHeapOnReboot(int blastType)
disablePowerFailRecovery()
enableSerialPortl()
enableSerialPortl(boolean enable)

execute(Object[] commandLine,
com.dalsemi.shell.server.SystemInputStr
eam in,
com.dalsemi.shell.server.SystemPrintStr
eam out,
com.dalsemi.shell.server.SystemPrintStr
eam err, java.util.Hashtable env)
throws Exception

feedWatchdog()

FS_MODIFICATION_OCCURRED

getBootState()

getCurrentEnvironment ()

getCurrentUID()

getCurrentUserName ()
getExternalSerialPortAddress(int portNum)
getExternalSerialPortEnable(int portNum)

Appendix Almanac 339

O ® OO0 oom O

i |

DDDDDDDDDﬁDD.DDDDDD

W

O m Omnm

O

boolean
int
String
int

int
boolean
boolean
boolean
com.dalsemi.shell
.TINIShell
String
String
java.util.Hash-
table
int
String[]
int[]
String
String
String
String
int
String
int
boolean
boolean
boolean
boolean
boolean
void
void

int

void

int

int

void
void
void
void

void
void

void
void
void

getExternalSerialPortSearchEnable()
getFreeRAM()
getFromCurrentEnvironment(String key)
getLCDAddress ()

getOwnerIDByTaskID(int taskid)
getRecoveryHash(byte[] recoveryHash)
getRTSCTSFlowControlEnable(int portNumber)
getSerialBootMessagesState()

getShell1 ()

getShel1Name()
getShellVersion()
getSystemEnvironment ()

getTaskID()

getTaskTable()

getTaskTableIDs ()

getTimeZone()

getTINIHWVersion()
getTINIOSFirmwareVersion()
getTINISerialNumber ()
getUIDByUserName(String username)
getUserNameByUID (byte uid)
HEAP_CLEAR_OCCURRED

isAdmin(byte uid)
isConsoleOQutputEnabled()
isCurrentTaskInit()
isCurrentUserAdmin()
isTaskRunning(int taskid)
kil1Task(int taskID)
TlockInitProcesses()

login(String userName, String password)
Togout(Object info)
MASTER_ERASE_OCCURRED
NETWORK_CONFIGURATION_RESTORED
reboot ()
setConsoleQutputEnabled(boolean set)
setDebugMessagesState(boolean on)

setExternalSerialPortAddress(int portNum,
int address)

setExternalSerialPortEnable(int portNum,
boolean enable)

setExternalSerialPortSearchEnable(boolean en
able)

setIrDAClockPinState(boolean on)

setLCDAddress(int address)
setRecoveryHash(byte[] recoveryHash)

340 Appendix Almanac

O booTlean

[void
void

O void

void
void
Tong

setRTSCTSFlowControlEnable(int portNumber,
boolean enable)
throws javax.comm.UnsupportedCommOperati
onException
setSerialBootMessagesState(boolean on)
setShell(com.dalsemi.shel1.TINIShell newShel
1) throws SecurityException
setTimeZone(String zone)
throws I1legalArgumentException
setWatchdogTimeout(int mstimeout)

sleepProcess(int ms)
uptimeMillis()

TINIShell com.dalsemi.shell

Object
[l TINIShell
m byte adminUID
O void execute(Object[] commandLine,
server.SystemInputStream in,
server.SystemPrintStream out,
server.SystemPrintStream err,
java.util.Hashtable env)
throws Exception
0 java.util.Hash- getCurrentEnvironment()
table
O byte getCurrentUID()
O String getCurrentUserName()
O String getFromCurrentEnvironment(String key)
O String getName()
java.util.Hash- getSystemEnvironment()
table
0 int getUIDByUserName(String username)
O String getUserNameByUID(byte uid)
0 String getVersion()
boolean 1isAdmin(byte uid)
boolean -{dsCurrentUserAdmin()
O int login(String userName, String password)
O void Togout(Object info)
O TINIShell1()

Index

+ operator, 234
1-Wire. SeeOne (1-Wire) network

A

accept() method, 152
ACCM (asynchronous control character
map), 141
Acquiring serial ports, 56-59
Adapter instance (object), 96
AdapterFeatures program, 91-92
Adapters (1-Wire), 88—96
adapter instance (object), 96
AdapterFeatures program, 91-92
“alarm search,” 95
beginExclusive() method, 96
capabilities determination, 91-92
Census program, 94
com.dalsemi.onewire package, 12, 89,
279-280, 318
com.dalsemi.onewire.adapter package,
89, 269-272, 318-319, 335-336
CreateAdapters program, 89-90
default adapters, 90

DSPortAdapter class, 89, 91-93, 95-96,
269-272
endExclusive() method, 96
enumerateAllAdapters () method, 89
excludeFamily() method, 95
external adapters, 91
Family Census program, 94—-95
FindAdapters program, 89
getAddressAsString() method, 93
getAllOneWireDevices() method, 92
getDefaultAdapter() method, 90
internal adapters, 90-91
locking adapters, 96
multiple threads/processes and, 95-96
mutual exclusion, 95-96
OneWireAccessProvider class, 89, 279—
280
OneWireContainer classes, 92-93, 102—
104, 280-318
OneWireException class, 89, 96, 318
ownership, 95-96
port adapters, 95-96
searching for 1-Wire devices, 92-95
setSearchAllDevices() method, 95

341

342 Index

setSearchOnlyAlarmingDevices()
method, 95
targetAllFamilies() method, 95
targetFamily() method, 94
TINIExternalAdapter class, 89-90, 92,
335
TINIlInternalAdapter class, 89, 92, 336
See alsd.-Wire network
ADContainer class, 257-258
addEventListener() method, 63, 140,
221-222
addinterface() method, 144, 164, 179
addinterfaceEntry() method, 114
Address bus, 183
Address class, 258
Address discovery process, 84, 86—-88
Address match (device selection), 86—-88
address parameter, DataPort class, 186
Address search (device discovery), 86—-87
Addressing phase of a 1-Wire transaction, 84
Alarm search 95
API classes, PPP, 139-142
API portion of runtime environment, 10-13
append() method, 234
Application hardening, 248—-253
application startup, 251-252
blastHeapOnReboot() method, 251-252
boot-up problem detection, 251
data persistence, 249
disablePowerFailRecovery() method,
251-252
electrically erasable programmable read
only memory (EEPROM), 4, 249
flash ROM memory, 4-5, 249-250
forced heap initialization, 251-252
getBootState() method, 251
heap initialization, forced, 251-252
memory technology, 249-250
persistence storage, 249
resetDefaultStreams() method, 250
starting applications, 251-252
static RAM (SRAM) memory, 4-5,
249
TINIOS class, 251-252, 338-340
watchdog, starting, 252
See als@\pplication programming opti-
mization

Application programming, 39-49

1-Wire applications, debugging, 48

background processes, 44, 46, 73

BitPort class, 43, 201-203, 207,
259-260

Blinky program, 42—-45, 200

class file conversion, 40-41

clear() method, 43

compiling source files, 40

converting class files, 40-42

creating source files, 39-40

debugging tips, 48—49

expanded I/O capabilities, debugging, 49

HelloWeb program, 45-48

HellowWorld program, 39—42

hosts for debugging, 48

HTTPServer class, 45, 48, 127-128, 274
275

I/O example, 42—-45
kill command, 44-45

loading converted image, 41-42
ports and port pins, 43

ps (process) command, 44-45, 47

running converted image, 42

serial communication applications,
debugging, 48

set() method, 43

source file creation, 39—-40

TCP/IP (Transmission Control Protocol/
Internet Protocol) applications, debug-
ging, 48

TINIConvertor, 40-41

Web server example, 45-48

See als@\pplication programming opti-
mization; Hardware; Ports and port
pins; Runtime environment; Serial
communication applications; Slush
command shell; TINI (Tiny InterNet
Interface) platform

Application programming optimization,

225-253

arithmetic operations, 244-245
arrayComp() method, 247
arraycopy() method, 246247
arrayCopyUnequal() method, 246
arrayFill() method, 247

ArrayUtils class, 246-247, 258

com.dalsemi.system package, 12, 185,
187, 201, 206, 210-211, 216, 225,
246, 258-260, 262—-266, 273, 276,
328, 338-340
common operations, relative cost of,
238-239
currentTimeMillis() method, 226
data processing and, 237-238
doubles, 245
floating point calculations, 245
getLong() method, 247
int primitive type, 245
integer operations, 245
java.lang.System class, 246
Measuring elapsed time program,
226-227
performance profiling, 225-227
profiling code, 225-227
quick operations, measuring, 227
setLong() method, 247
shift operations, 245
strategy for, 248
TINIOS class, 225, 338-340
uptimeMillis() method, 225-226
See als@pplication hardening; I/O
efficiency; Loop optimization; Mem-
ory usage
Arithmetic operations, 244245
Array comparison, loop optimization,
243
arrayComp() method, 247
arraycopy() method, 246-247
arrayCopyUnequal() method, 246
arrayFill() method, 247
ArraylndexOutOfBounds exception, 131
arraylenth opcode, 244
ArrayUtils class, 246-247, 258
Asynchronous control character map
(ACCM), 141
Asynchronous serial protocol supportSge
also Serial communication applications
AUTH error, 144
Authenticating peer node, 140-141
Authentication (login) information, 140
AUTHENTICATION_REQUESTED event,
140, 143, 164
available() method, 64

Index 343

Background processes, 44, 46, 73
Battery-back circuitry, 5-6
Baud rate, 58
beginExclusive() method, 96
Binary one (MARK) bit, 52-53
Binary zero (SPACE) bit, 52-53
Bit class, 259
BitPort class, 43, 201-203, 207, 259-260
BitTwiddler program, 204-206
BlackBox program, 54, 67, 73, 80
blastHeapOnReboot() method, 251-252
Blinky program, 42-45, 200
Block data transfer
byte-banging versus, 227-232
1-Wire communication, 98-102
read/write operations, 188
Bogus class, 239-240
Boot-up problem detection, 251
BOOTP protocol, 121
Bootstrap loader, 18-20, 29, 31, 251
Bosch-Siemens, 8
Broadcast (skip address) command, 88
Buffered streams, 1/O efficiency, 232
BufferedOutputStream, 151-152
Buffers
Java Communications API, 62
parallel 1/0, 182

serial communication applications, 79-80

Bus timing control, 188-189
Byte-banging, 152, 207, 227-232
ByteBlast program, 97—99
BytePort class, 206—-208, 260

C

Caching

instance fields in local variables, 243-244

length in a local variable, 240-241
CAN (controller area network) support, 8,
260-262
CanBus class, 260-261
CanBusException class, 261-262
CanFrame class, 262
Capabilities determination of adapters,
91-92
Capacitive loading, 6

344 Index

captureSample() method, 154-157

Carrier Detect (CD) signal, 53, 65, 67, 170

cat command, 34, 48

Catch blocks, 152

cd (change directory) command, 33, 35

Census program, 94

CEs (chip enables), 183-186, 190

Change directory (cd) command, 33, 35

charAt() method, 241

charCounter() method, 239-240, 242

Chip enables (CEs), 183-186, 190

Chips, 88

Class
files conversion, 40-41
initializer methods, 13
loading, 13-14
TINI specific, 10

Class object, 103

clear() method, 43, 201-203

Clear To Send (CTS) signal, 54, 60, 65, 67

Clock.SeeRTC (Real-time clock)

Clock class, 210, 262—263

ClockContainer class, 263

close() method, 58

CLOSED event, 144-145, 164, 167

Code segment of memory map, 5-7, 18-19

Collecting data, 152-158

Collisions, 54

com.dalsemi packages, 12, 255-340

com.dalsemi.comm package, 12, 56, 260—
262, 266, 277, 279, 328-329

com.dalsemi.fs package, 268—-269

com.dalsemi.onewire package, 12, 89, 279—
280, 318

com.dalsemi.onewire.adapter package, 89,
269-272, 318-319, 335-336

com.dalsemi.onewire.container package,
102, 257-258, 263-264, 277-278, 280—
318, 320, 324-326, 328, 330-332, 334—
335

com.dalsemi.onewire.utils package, 108,
258-259, 265, 278-279, 319, 321-324

com.dalsemi.shell package, 12, 267, 340

com.dalsemi.shell.server package, 274, 329—

330, 332-334
com.dalsemi.shell.server.ftp package, 112,
274

com.dalsemi.shell.server.serial package, 329

com.dalsemi.shell.server.telnet package,
112,334

com.dalsemi.system package, 12, 185, 187
201, 206, 210-211, 216, 225, 246, 258—
260, 262—-266, 273, 276, 328, 338-340

com.dalsemi.tininet package, 12, 112, 117,
336-338

com.dalsemi.tininet.dhcp package, 122,
267

com.dalsemi.tininet.dns package, 126, 268

com.dalsemi.tininet.http package, 127,
274-275

com.dalsemi.tininet.icmp package, 325

com.dalsemi.tininet.ppp package, 139,
326-328

comm APl.SeeJava Communications API

Command shell application, 16

CommandAPDU class, 264

CommitException class, 120, 264

commitNetworkState() method, 119-120

Committing static network parameters,
119-121

Common interrupt source sharing, 224

Common operations, relative cost of,
238-239

Common (Signal Ground) signal, 54

CommPort object, 56-58, 71

CommPortldentifier object, 56-57

Communication (1-Wire), 96—-102

block transfer methods, 98-102

ByteBlast program, 97-99

dataBlock() method, 99

DS2502 device, 100

Ethernet address, 100

EthernetAddressReader program,
100-102

FastCensus program, 99-100

findFirstDevice() method, 99-100

findNextDevice() method, 99

getBlock() method, 101

getByte() method, 97-98

ipconfig (network configuration) com-
mand, 100, 102

OneWirelOException class, 97-99, 110,
318-319

putByte() method, 97-98

reset() method, 97-98

Seealso 1-Wire network

CommunicationsSeeDHCP (Dynamic Host
Configuration Protocol); DNS (Domain
Name System); HTTP (HyperText Trans-
fer Protocol); ICMP (Internet Control

Message Protocol); Java Communications

API (comm API); Network parameters,
setting; 1-Wire network; PPP (Point-to-
Point Protocol) network; Serial communi-
cation applications; TCP/IP (Transmis-
sion Control Protocol/Internet Protocol)
network
Compiling source files, 40
compute() methods, 108-109
Configuring networkSeeNetwork parame-
ters, setting
Configuring serial ports, 56-59
baud rate, 58
close() method, 58
CommPort object, 56-58
CommPortldentifier object, 56-57
data bits, 58
getPortldentifier() method, 56
open() method, 58
ownership of communications ports, 58
parallel /0, 57
parity checking, 58
PortinUSeexception class, 58
PortLister class, 57
SerialPort object, 56, 58, 60-61, 64, 66
setSerialPortParams() method, 58-59
stop bits, 58
See als@ava Communications API
(comm API)
Constructor
DataPort class, 186
remote data logger, 154
Containers (1-Wire), 102—-108
Class object, 103

com.dalsemi.onewire.container package,

102, 257-258, 263-264, 277-278,
280-318, 320, 324-326, 328, 330-
332, 334-335

creating container instances, 102-104

defined, 84

doADConvert() method, 105

DS2438 A/D (Analog to Digital) con-
verter, 104-108

DSPortAdapter() methods, 102-103

Index 345

FindContainers program, 103—-104
getFirstDeviceContainer() method,
103, 107
getNextDeviceContainer() method, 103
getSensorRH() method, 107
getTrueRH() method, 107
HumiditySensor program, 104—-108
instances, creating, 102—-104
newlnstance() method, 103
OneWireContainer classes, 92-93,
102-104, 280-318
overhead of, 96
setupContainer() methods, 104
targetFamily() method, 107
transactions and, 84
See alsd.-Wire network
Contention, 54
Control signals, 183
Controller area network (CAN) support, 8,
260-262
Converting class files, 40-42
Convertor utility (TINIConvertor), 13
Coordinated universal time (UTC), 212
Core Java packages, 11-12
CRC (Cyclic Redundancy Check) part of
address, 86, 108-110
CRCS8 class, 265
CRC16 class, 265
CRCCalculator program, 109-110
CreateAdapters program, 89-90
Creating
container instances, 102-104
initial processes, 20
source files, 39-40
CTS (Clear To Send) signal, 54, 60, 65,
67
CTSMonitor program, 6567
currentTimeMillis() method, 156, 174, 226
Cyclic Redundancy Check (CRC) part of
address, 86, 108-110

D

daemonError interface, 160, 175
Dallas Semiconductor, 1, 23, 27
Data bits, 58

Data bus, 183

Data collection, 152-158

346 Index

Data Communications Equipment (DCE)
serial port, 52-53
Data exchange phase of transaction, 84
Data integrity, 108-110
Data loggerSeeRemote data logger
Data persistence, 249
Data processing application optimization,
237-238
Data rates of serial communication, 68
Data segment of memory map, 5-7, 16
Data Set Ready (DSR) signal, 54, 65
Data Terminal Equipment (DTE) serial port,
52-54
Data Terminal Ready (DTR) signal, 53, 63
Data transfer, DataPort class, 186-187
DATA_AVAILABLE event, 64-65, 72
dataBlock() method, 99
DatagramPacket, 123
DatagramSocket object and DNS, 124-125
DatalnputStream, 158
dataLinkError() method, 167, 170
DataLinkException class, 164, 169,
171-172, 175
DatalLinkListener interface, 160, 167
DatalLogger class, 149-152, 175-176, 232
DataLoggerClient class, 158-160, 177
DataOutputStream, 151-152, 158
DataPort class, 185-189
address parameter, 186
block read/write operations, 188
bus timing control, 188—189
chip enables (CEs) and, 186
com.dalsemi.system package, 185, 187
constructor, 186
data transfer, 186-187
defined, 181, 185-189
First In First Out (FIFO), 187-188, 193
getFIFOMode() method, 188
getStretchCycles() method, 189

lllegalAddressException class, 187, 203—

204, 276
lllegalArgumentException class, 189
memory access modes, 187-188
read() method, 186-188, 198
sequential memory mode, 188
setAddress() method, 186-188
setFIFOMode() method, 188, 196
setStretchCycles() method, 189

speed of data transfer, 187
stretch cycles, 188-189
write() method, 186-188, 198
See alsdParallel 1/0; Ports and port pins
Date class, 209-211
date command, 211-212, 214
DCE (Data Communications Equipment)
serial port, 52-53
Debug class, 266
Debug statements, 178
Debugging tips for applications, 48—49
DebugOutputStream class, 266
Decoder chips, 190-192
Default
adapters, 90
serial ports, 53, 67—69
time zone, 211
user accounts, slush command shell, 32
DefaultTINIShell class, 267
Development platform requirements, 26—-28
Development tool of TBM390, 9
Device discovery (address search), 86—-87
Device driver initialization, 20
Device id part of address, 86
Device reset (DRST), 184
Device selection (address match), 86—88
DHCP (Dynamic Host Configuration Proto-
col), 121-124
address setting, 123
application layer protocol, 112-113
BOOTP protocol, 121
com.dalsemi.tininet.dhcp package, 122,
267
DHCPClient class, 122-123, 267
DHCPDISCOVER message, 121
DHCPListener class, 122, 124, 267
DHCPOFFER message, 121
DHCPRELEASE message, 123-124
DHCPREQUEST message, 121-122
IP address, 118, 123
ipconfig (network configuration) com-
mand, 122
ipError() method, 124
ipLeased() method, 124
ipLost() method, 124
ipRenewed() method, 124
“leased” IP addresses, 121-123
start() method, 123

stopDHCPThread() method, 123-124
subnet mask, 123
See alsa’CP/IP (Transmission Control
Protocol/Internet Protocol) network
DHCPClient class, 122-123, 267
DHCPDISCOVER message, 121
DHCPListener class, 122, 124, 267
DHCPOFFER message, 121
DHCPRELEASE message, 123-124
DHCPREQUEST message, 121-122
Dial-up networking SeePPP (Point-to-Point
Protocol) network
Directly accessing character data, 241
disableNetworkRestore() method, 120
disablePowerFailRecovery() method,
251-252
disableReceiveThreshold() method, 62
disableReceiveTimeout() method, 61
displayRAM() method, 236
DNS (Domain Name System), 124-127

Index 347

Socket object and, 124-125
time-out value, 117
UnknownHostException class, 126-127
See als@CP/IP (Transmission Control
Protocol/Internet Protocol) network

DNSClient class, 126, 268

DNSTest program, 126-127

doADConvert() method, 105

Domain name, 117

Domain Name SystenSeeDNS

doubles, 245

down() method, 145

DRST (device reset), 184

DS18S20 temperature sensor example, 85,
102

DS80C390 microcontroller, 4

DS2438 A/D (Analog to Digital) converter,
104-108

DS2502 device, 100

DSFile class, 268—-269

address setting, slush command shell, 38 DSPortAdapter class, 89, 91-93, 95-96,

application layer protocol, 112-113

com.dalsemi.tininet.dns package, 126,
268

DatagramSocket object and, 124-125

DNSClient class, 126, 268

DNSTest program, 126-127

Dynamic Host Configuration Protocol
(DHCP) and address setting, 123

forward lookups, 124, 126

getAllByName() method, 127

getByIP() method, 126

getByName() method, 125-126

InetAddress class, 124-126

IP addresses mapping, 124

IP addresses of primary and secondary
servers, 125
lookups, 124-126

nslookup (lookup) command, 126

Ping (ICMP echo request/reply), 125

public methods, 126

resolver, 124

reverse lookups, 124, 126

server IP address, 123

setDNSTimeout() method, 126

setDomainName() method, 125

slush command shell for setting address,
38

269-272

DSPortAdapter() methods, 102-103

DSR (Data Set Ready) signal, 54, 65

DTE (Data Terminal Equipment) serial port,
52-54

DTR (Data Terminal Ready) signal, 53, 63

Dynamic Host Configuration Protoc&@ee
DHCP

Dynamic loading of class files (omitted func-
tionality), 13

E10 socket, 25-26, 53
Echo client/server program, 230-232
ECHO_REPLY message, 136
EchoWorker program, 228-229
Edge triggering, 220-221
EEPROM (electrically erasable programma-
ble read only memory), 4, 249
enableReceiveThreshold() method, 62
enableReceiveTimeout() method, 61-62
enableSerialPortl1() method, 68
endExclusive() method, 96
enumerateAllAdapters () method, 89
Environmental monitors applications, 2
Error and control information, 130

348 Index

Ethernet
address, 1-Wire communication, 100
address, slush command shell, 36
controller, 4, 6
converter, 74-80
runtime environment support of, 18
SerialToEthernet program, 74-80, 231
TCP/IP (Transmission Control Protocol/
Internet Protocol) network, 113-115
EthernetAddressReader program, 100-102
Event listeners, 63-67
Events, 142-145
Exceptions
ArraylndexOutOfBounds exception, 131
CanBusException class, 261-262
CommitException class, 120, 264
DataLinkException class, 164, 169,

171-172, 175
ExternallnterruptException class, 221,
273

HTTPServerException class, 128, 275
lllegalAddressException class, 187,
203-204, 276
lllegalArgumentException class, 189
IOException class, 152
NoSuchPortException class, 71
OneWireException class, 89, 96, 318
OneWirelOException class, 97-99, 110,
318-319
PortInU Seexception class, 58, 71
PPPEXxception class, 328
UnknownHostException class, 126-127
UnsupportedCommOperationException
class, 59, 61-62, 71
excludeFamily() method, 95
Executable files in file system, 17
Execution error detectio®eéWatchdog
exit command, 37
Expanded I/O capabilities, debugging, 49
External adapters, 91
External device interface to bus, 182
External interrupt, 219-224
addEventListener() method, 221-222
common interrupt source sharing, 224
defined, 209
edge triggering, 220-221
Externallnterrupt class, 221, 273

externallnterruptEvent() method,
221-223
ExternallnterruptEventListener interface,
221, 223
ExternallnterruptException class, 221,
273
falling edge, 220, 222
getTrigger() method, 221
Interrupt Service Routine (ISR), 15, 220
interrupts versus polling, 219-220
latched interrupts, 220
level triggering, 220-221
“low true” pin interrupt, 220
notification of interrupts, 221-224
ordering of event listeners, 224
polling versus interrupts, 219-220
“power fail” interrupt, 220
priority levels, 220
PushButton program, 222224
receiving notification of interrupts,
221-224
removeEventListener() method, 221-222
setTrigger() method, 221
sharing a common interrupt source, 224
triggering, 220-221
See alsdPorts and port pins
External memory, reading/writing, 196-198
External pins, 202—-206
External reset, 19-20
External serial ports configuration, 67—69
Externalinterrupt class, 221, 273
ExternalinterruptEvent class, 273
externallnterruptEvent() method, 221-223
ExternallnterruptEventListener class, 273
ExternalinterruptEventListener interface,
221, 223
ExternalinterruptException class, 221, 273

F

Falling edge, 220, 222

Family Census program, 94-95
Family code part of address, 86
FastCensus program, 99-100

Faster loop, 241-242, 244
feedWatchdog() method, 216217
FIFO (First In First Out), 187-188, 193

File system
exploration using slush command shell,
33-35
integrity check, 20
manager, 17
File Transfer Protocol (FTP), 112-113
FindAdapters program, 89
FindContainers program, 103-104
findFirstDevice() method, 99-100
findNextDevice() method, 99
Finite State Machine (FSM), 162-164
First In First Out (FIFO), 187-188, 193
Flash ROM memory, 4-5, 249-250
Floating point calculations, 245
Flow control (hardware handshake), 53,
59-63, 68, 80
flush() method, 232
for loop, 240
Forced heap initialization, 251-252
Foreground processes, 73
Forward lookups, 124, 126
freeMemory() method, 235
FSM (Finite State Machine), 162-164
FTP (File Transfer Protocol), 112-113
FTPServer class, 274
FTPSession class, 274
Full-duplex throughput, 229

G

Garbage collector (gc) process, 16-17,
20-21, 234, 237

Gateway (router) address setting, 38, 117,
123

gc (garbage collector) process, 16-17,
20-21, 234, 237

Gender changer, 55

General purpose 1/0, 200-201

getAddressAsString() method, 93

getAllByName() method, 127

getAllOneWireDevices() method, 92

getAvailableTablelDs() method, 211

getBlock() method, 101

getBootState() method, 120, 251

getBylIP() method, 126

getByName() method, 125-126

getByte() method, 97-98

Index 349

getCommPortldentifier() method, 71
getDefaultAdapter() method, 90
getEthernetAddress() method, 115
getEventType() method, 64, 72, 140
getFIFOMode() method, 188
getFirstDeviceContainer() method, 103, 107
getFlowControlMode() method, 60
getFreeRAM() method, 235-236
getinputBufferSize() method, 62
getinputStream() method, 61, 158, 228
getlPAddress() methods, 118
getLastError() method, 144

getLong() method, 247
getNetworkCommitState() method, 119
getNewValue() method, 65
getNextDeviceContainer() method, 103
GetOpt class, 274

getOutputStream() method, 61, 71, 151, 228
getPeerlD() method, 143
getPeerPassword() method, 143
getPort() method, 166-167
getPortldentifier() method, 56
getRTC() method, 210
getSensorRH() method, 107
getStretchCycles() method, 189
getTimeZone() method, 211
getTrigger() method, 221
getTrueRH() method, 107

GMT (Greenwich Mean Time), 211

H

“Hard” reset countdown, 215
“Hard-wired” devices, 108
Hardening application&eeApplication
hardening
Hardware, 3-9, 23-26
asynchronous serial protocol support, 8
battery-back circuitry, 5-6
capacitive loading, 6
code segment of memory map, 5-7,
18-19
configuration, 1-Wire, 82
controller area network (CAN) support, 8,
260-262
data segment of memory map, 5-7, 16
DS80C390 microcontroller, 4

350 Index

E10 socket, 25-26, 53
electrically erasable programmable read
only memory (EEPROM), 4, 249
Ethernet controller, 4, 6
flash ROM memory, 4-5, 249-250
hardware reference design, 8-9
integrated I/O, 7-8
Java methods and the real-time clock,
4
large-scale integration (LSI) chips, 3-5
lithium cell for clock, 5
memory map, 5-7, 184-185, 191
microcontroller, 4-5, 7
nonvolatized static RAM (NVSRAM),
4-5, 17
parallel /0O expansion, 4-7
peripheral chip enable (PCE) space, 7,
183-185, 194-195
peripheral devices, 4—7
peripheral segment of memory map, 5-7
reference implementation of TBM390, 9
serial communication support, 7-8
static RAM (SRAM) memory, 4-5, 249
synchronous serial protocol support, 8
TINI Board Model 390 (TBM390), 9,
24
TTL I/O support, 8, 189-196
Universal Asynchronous Receiver Trans-
mitter (UART), 8, 52, 67
watchdog, 216
See alsd.-Wire network; Parallel 1/O;
Ports and port pins; RTC (Real-time
clock); Serial communication applica-
tions
Hardware handshake (flow control), 53,
59-63, 68, 80
Heap
initialization, forced, 251-252
runtime environment, 16-17, 20, 30-31
sizes, 233
HelloWeb program, 45-48
HelloWorld program, 39-42
help command, 35-36
Host name, 118
Hosts for debugging, 48
HTTP (HyperText Transfer Protocol),
127-130

application layer protocol, 112-113
com.dalsemi.tininet.http package, 127,
274-275
HTTPServer class, 45, 48, 127-128,
274-275
HTTPServerException class, 128, 275
MiniBrowser program, 129-130
proxy port/server setting, 118, 128-130
ServerSocket object, 128
serviceRequests() method, 128
setHTTPRoot() method, 128
setindexPage() method, 128
SetProxyServer() method, 129
URL and, 128-130
Web root, 128
See alsd@ CP/IP (Transmission Control
Protocol/Internet Protocol) network
HTTPServer class, 45, 48, 127-128,
274-275
HTTPServerException class, 128, 275
Human interfaces and TINI, 3
HumidityLogger class, 149, 156-157
HumiditySample class, 155-156
HumiditySensor class, 152, 157
HumiditySensor program, 104—-108
“Hung” code, 215-216
HyperText Transfer ProtocdbeeHTTP

I/O efficiency, 227-232

Blinky program, 42—-45

block data transfer versus byte-banging,
227-232

buffered streams, 232

byte-banging, 152, 207, 227-232

DatalLogger class, 149-152, 175-176,
232

echo client/server program, 230-232

EchoWorker program, 228-229

flush() method, 232

full-duplex throughput, 229

getinputStream() method, 228

getOutputStream() method, 228

InputStream object, 228, 231

MemoryTester program, 196-198, 231

method invocations, expense of, 230-23:

OutputStream, 228, 231
read() method, 227-228, 230
SerialToEthernet program, 74-80, 231
SocketlnputStream, 228, 230
SocketOutputStream, 228-230
throughput of server, 229
TiniTerm program, 69-73, 231
write() method, 227-229, 232
See als@pplication programming opti-
mization
I/O management subsystem, 11, 15, 17-18
I2CPort class, 276
iButtons, 88
ICMP (Internet Control Message Protocol),
130-137
ArraylndexOutOfBounds exception, 131
com.dalsemi.tininet.icmp package, 325
ECHO_REPLY message, 136
error and control information, 130
ICMP data, 132
ICMP header, 132-134
IP data area, 132
IP header, 132-133, 136

Index 351

InetAddress class, 124-126

Initialization phase of transaction, 84

initializeLink() method, 164, 166-167, 169,
171-172

Initializing runtime environment, 20-21,
29-31

InputStream object, 61-62, 228, 231

Instance fields, RTC, 210

Instances of containers, creating, 102-104

int primitive type, 245

intDump() method, 236

Integer operations, 245

Integrated 1/0, 7-8

Integrity checks, 20

Inter-Process Communication (IPC), 16, 117

Internal adapters, 90-91

Internal serial ports configurations, 67—-68

Internet Control Message ProtocBke
ICMP

Interrupt Service Routine (ISR), 15, 220

Interrupts versus polling, 219—228ee also
External interrupt

IOException class, 152

message within an IP datagram, 131-132 IP address

module, 112-113, 130
Ping (ICMP echo request/reply), 37-38,
112-113, 116, 125
Pinger program, 134-137
pingNode() method, 130-131, 136
PORT_UNREACHABLE message, 134
round-trip time (RTT), 131
TIME_EXCEEDED message, 133-134,
136
TTL field, 133-134, 136
TYPE byte, 132-133
See als@ CP/IP (Transmission Control
Protocol/Internet Protocol) network
IEEE (Institute of Electrical and Electronics
Engineers), 114
lllegalAddressException class, 187, 203—
204, 276
lllegalArgumentException class, 189
Immutable strings and loop optimization,
240-241
index.html file, 46, 48
indexOf() method, 242-243
Industrial controls applications, 2

DHCP (Dynamic Host Configuration Pro-
tocol), 118, 123
DNS (Domain Name System) mapping,
123-125
gateway (router), 38, 117, 123
“leased,” 121-123
network parameters, setting, 117, 119
slush command shell for setting, 37
IP data/header area, ICMP, 132
IP datagram transmissions, 116
IPC (Inter-Process Communication), 16, 117
ipconfig (network configuration) command
communication (1-Wire), 100, 102
DHCP (Dynamic Host Configuration Pro-
tocol), 122
network parameters, setting, 117, 120—
121
PPP (Point-to-Point Protocol144
remote data logger, 178
slush command shell, 36—-39
TCP/IP (Transmission Control Protocol/
Internet Protocol) network, 113-114,
117, 120-122

352 Index

ipError() method, 124

ipLeased() method, 124

ipLost() method, 124

ipRenewed() method, 124

isEqual() method, 243

ISR (Interrupt Service Routine), 15, 220
isValidUser() method, 160, 164, 175-176

J

java command, 35
Java Communications APl (comm API),
5667
addEventListener() method, 63
available() method, 64
buffer sizes, 62
com.dalsemi.comm package, 12, 56,
260-262, 266, 277, 279, 328-329
core packages, 11-12
CTSMonitor program, 65-67
DATA_AVAILABLE event, 64—65, 72
defined, 27, 56
disableReceiveThreshold() method, 62
disableReceiveTimeout() method, 61
enableReceiveThreshold() method, 62
enableReceiveTimeout() method, 61-62
event listeners, 63-67
flow control, 58-63
getEventType() method, 64
getFlowControlMode() method, 60
getinputBufferSize() method, 62
getinputStream() method, 61
getNewValue() method, 65
getOutputStream() method, 61
InputStream object, 61-62
javax.comm package, 56
notifyOn() method, 63-64
OUTPUT_BUFFER_EMPTY event,
64—65
OutputStream object, 61
receive time-outs and thresholds, 61-62,
65
receiving serial data, 61-63
removeEventListener() method, 63
RTS/CTS (hardware flow control), 59-61,
63, 68, 168
sending serial data, 61-63
serial port events, 6367

serialEvent() method, 64
SerialPortEvent object, 64-65, 72
SerialPortEventListener interface, 64,
170
setDTR() method, 63
setFlowControlMode() method, 60-61
setlnputBufferSize() method, 62
setRTS() method, 63
UnsupportedCommOperationException
class, 59, 61-62
XON/XOFF (software flow control),
59-60, 68, 141
See als&Configuring serial ports; Parallel
I/0O; Serial communication applica-
tions
Java Developer’s Kit (JDK), 10, 27
Java Native Interface (JNI), 14
Java Virtual Machine (JVM), 10, 13-14, 17
java.io.lOException class, 76, 214
JavaKit launching, 29-30
java.lang.System class, 246
java.util package, 209, 211
java.util.Date class, 209-214
java.util.Hashtable, 125
javax.comm package, 56
JDK (Java Developer’s Kit), 10, 27
JNI (Java Native Interface), 14
JVM (Java Virtual Machine), 10, 13-14, 17

K

Kernel processes, 18
kill command, 44-45
“Knocking back,” 216, 219

L

LANSs (Local Area Networks), 114
Large-scale integration (LSI) chips, 3-5
Latched interrupts, 220
LCDOutputStream class, 277
LCDPort class, 277

LCP (Line Control Protocol), 142, 164
“Leased” IP addresses, 121-123
length() method, 240

Level translators, 52

Level triggering, 220-221

Limitations, 14

Line Control Protocol (LCP), 142, 164
Link errors, 167, 169-175
Linux, 26-27
List (Is) command, 33
Listeners
Java Communications API, 63-67
Point-to-Point Protocol (PPP) network,
140
Lithium cell for clock, 5
Loading
converted image, applications program-
ming, 41-42
runtime environment, 29-31
loadlibrary method, 14
Local Area Networks (LANs), 114
Locking adapters, 96
Log file, 45, 48
Logging on, 32-33
LoggingDaemon class, 153-154, 157-158
Login (authentication) information, 140
Lookup (nslookup) command, 126
Lookups, 124-126
Loop optimization, 239-244
array comparison, 243
arraylenth opcode, 244
Bogus class, 239-240
caching instance fields in local variables,
243-244
caching length in a local variable,
240-241
charAt() method, 241
charCounter() method, 239-240, 242
directly accessing character data, 241
faster loop, 241-242, 244
for loop, 240
immutable strings and, 240-241
indexOf() method, 242-243
isEqual() method, 243
length() method, 240
opcodes, 241
unrolling loops, 242—-243
See als@®pplication programming opti-
mization
Loopback interface, 113-114, 116-117
“Low true” pin interrupt, 220
Is (list) command, 33
LSI (large-scale integration) chips, 3-5

Index 353

M

MAC id, 114
Mailhost IP address, 118, 123
main() method, 149-150, 176
Malloc (memory allocation operation), 233
MARK (binary one) bit, 52-53
Masters, 1-Wire adapters, 88
Measuring elapsed time program, 226-227
Memory
access modes, DataPort class, 187-188
blocks, 16
constrained environment, remote data
logger, 153
management subsystem, 7, 11, 15-17
map, 5-7, 184-185, 191
technology and application hardening,
249-250
See alsdMemory usage
Memory allocation operation (malloc), 233
Memory usage, 233-237
+ operator, 234
append() method, 234
displayRAM() method, 236
freeMemory() method, 235
garbage collector (gc) process, 16-17,
20-21, 234, 237
getFreeRAM() method, 235-236
heap sizes, 233
intDbump() method, 236
malloc (memory allocation operation),
233
MemReporter program, 235-236
multi-thread/multi-process systems and,
234
new operator, 233
object creation and, 233
PrintStream, 236
profiling memory usage, 234-236
StringBuffers, 233-234, 236
TCP process and, 234
See als@pplication programming opti-
mization
MemoryBank class, 277-278
MemoryTester program, 196-198, 231
MemReporter program, 235-236
Message within an IP datagram, 131-132
Method invocations, expense of, 230-232

354 Index

Microcontrollers, 4-5, 7See alsd?orts and
port pins
MiniBrowser program, 129-130
Modem control, 167, 169-175
ModemCommand class, 170-173
Module, ICMP, 112-113, 130
Multi-thread/multi-process systems
memory usage and, 234
slush command shell, 32

Multiple threads/processes and adapters, 95—

96
Mutual exclusion, 95-96

N

Native code, 184, 207
Native method interface (TNI), 11, 14
Native methods, 10-11, 14
Network I/0, 11, 17-18
Network parameters, setting, 117-124
com.dalsemi.tininet package, 12, 112,
117, 336-338
CommitException class, 120, 264
commitNetworkState() method, 119-120
committing static network parameters,
119-121
disableNetworkRestore() method, 120
domain name, 117
Domain Name System (DNS) time-out
value, 117

subnet mask, 37, 117, 119, 123

TININet class, 112, 117-118, 336-338

TINIOS class, 120, 338-340

See als®HCP (Dynamic Host Configu-
ration Protocol); DNS (Domain Name
System); HTTP (HyperText Transfer
Protocol); ICMP (Internet Control
Message Protocol); Java Communica-
tions APl (comm API); 1-Wire net-
work; PPP (Point-to-Point Protocol)
network; Serial communication appli-
cations; TCP/IP (Transmission Con-
trol Protocol/Internet Protocol)
network

Network server creation, 148-152

Network time server, 212-214

NETWORK_CONFIGURATION_RESTOR
ED mask, 120

NetworkMonitor class, 278

NetworkMonitorEvent class, 278-279

NetworkMonitorEventListener class, 279

new operator, 233

newlnstance() method, 103

Non-network 1/0, 11, 17-18

Nonvolatized static RAM, 4-5, 17

NoSuchPortException class, 71

Notification of interrupts, 221-224

notifyOn() method, 63-64

nslookup (lookup) command, 126

Null modems, 54-55, 73

gateway (router) IP address, 38, 117, 123 NyllinputStream class, 279

getBootState() method, 120

getlPAddress() methods, 118

getNetworkCommitState() method, 119

host name, 118

HTTP proxy port/server, 118, 128-130

IP address, 117, 119

ipconfig (network configuration) com-
mand, 117, 120-121

loopback interface, 113-114, 116-117

mailhost IP address, 118, 123

NETWORK_CONFIGURATION_REST
ORED mask, 120

primary DNS address, 117

secondary DNS address, 117

setlPAddress() methods, 118

slush command shell for configuring,
36-39

NullOutputStream class, 279
Numbers and names of ports, 200-201

o

Object
creation and memory usage, 233
finalization/serialization, 12—13

1-Wire network, 81-110
address discovery process, 84, 86—88
addressing phase of transaction, 84
broadcast (skip address) command, 88
chips, 88
com.dalsemi.onewire.utils package, 108,

258-259, 265, 278-279, 319, 321-32¢

compute() methods, 108-109
CRCCalculator program, 109-110

Index 355

Cyclic Redundancy Check (CRC) part of PPP (Point-to-Point Protocol) daemon,

address, 86, 108-110 162
data exchange phase of transaction, 84 PPP (Point-to-Point Protocol) network,
data integrity, 108—-110 142-143
debugging, 48 OpenSource Project RXTX, 27
device discovery (address search), 86—87 Opening a serial port, 29
device id part of address, 86 Operating systems, 11, 15-18, 26

device selection (address match), 86-88 Optimization.SeeApplication programming
DS18S20 temperature sensor example, optimization

85, 102 Ordering of event listeners, 224
family code part of address, 86 Organizationally Unique Identifier (OUI),
“hard-wired” devices, 108 114-115
hardware configuration, 82 OTPMemoryBank class, 320
iButtons, 88 OUI (Organizationally Unique Identifier),
initialization phase of transaction, 84 114-115

OneWirelOException class, 97-99, OutOfMemoryError, 153

110, 318-319 OUTPUT_BUFFER_EMPTY event, 64—65
open drain driven, 83 OutputStream object, 61, 228, 231
overdrive speed, 83 Overdrive speed, 1-Wire, 83
read data time slot, 83 Overhead of containers, 96
regular speed, 83 OWFile class, 321-322
reset sequence signal, 83 OWTFileDescriptor class, 322
roaming devices, 98, 108 OWTFilelnputStream class, 322
“selected” device, 84 OWPFileOutputStream class, 323
signaling (waveforms), 82—84 Ownership
temperature conversion example, 85 adapters, 95-96
time slots, 83-84 communications ports, 58
transactions, 84—-85 OWPath class, 323
write O time slot, 83—-84 OWPathElement class, 324

write 1 time slot, 83-84
See als®\dapters (1-Wire); Communica- P
tion (1-Wire); Containers (1-Wire);

OneWireAccessProvider class, 89, 279-280 PAP (Password Authentication Protocol),
OneWireContainer classes, 92-93, 102-104, 140, 176

280-318 Parallel bus, 7, 182-185
OneWireException class, 89, 96, 318 Parallel I/O, 181-198
OneWirelOException class, 97-99, 110, additional TTL /0, 8, 189-196

318-319 address bus, 183
OneWireMonitor class, 319 block move operations, 184
OneWireMonitorEvent class, 319 buffers, 182
OneWireMonitorEventListener class, 319 chip enables (CEs), 183-186, 190
OneWireSensor class, 320 control signals, 183
Opcodes, 241 data bus, 183
Open drain driven devices, 83 address decoder chips, 190-192
open() method defined, 181

Java Communications API (comm API), device reset (DRST), 184

58 don't carebits, 192, 195

356 Index

examples, 189-198
expansion, 4—7
external device interface to bus, 182
external memory, reading/writing, 196—
198
memory map, 5-7, 184-185, 191
MemoryTester program, 196-198, 231
native code, 184
parallel bus, 7, 182—-185
ParallelLoopBack program, 192-193
peripheral chip enables (PCEs), 7,
183-185, 194-195
ports and port pins, 185, 198
program store enable (PSEN), 184
read strobe (RD), 184
reading/writing external memory,
196-198
speed of data transfer, 187
swapping overhead, 184
TTL I/O, additional, 8, 189-196
write strobe (WR), 184
See alsdataPort class
ParallelLoopBack program, 192—-193
Parity checking, 58
Passive mode, 142
Password Authentication Protocol (PAP),
140, 176
Passwords, 32, 34, 37

PCEs (peripheral chip enables), 7, 183-185,

194-195
Performance
ports, 207-208
profiling, 225-227
See als@\pplication programming opti-
mization

POR (power-on reset), 19
Port adapters, 95-96ee als®\dapters
(1-Wire)
PortinUSeexception class, 58, 71
PortLister class, 57
Ports and port pins, 199-208
application programming and, 43
BitPort class, 43, 201-203, 207, 259-26(
bitpos parameter, 203
BitTwiddler program, 204—206
Blinky program, 42—45, 200
byte-banging, 152, 207, 227-232
BytePort class, 206—208, 260
clear() method, 201-203
com.dalsemi.system package, 201, 206
creating additional outputs example,
204-206
defined, 7
external pins, 202—-206
general purpose 1/0, 200-201
lllegalAddressException class, 187,
203-204, 276
native code, 207
numbers and names of, 200-201
parallel /0 and, 185, 198
performance, 207-208
read() method, 207
readBit() method, 203
readLatch() method, 202-204
set() method, 201-203, 207
synthetic port pins, 202—-206
write() method, 207
See als®ataPort class; External inter-
rupt; Parallel I/O
PORT_UNREACHABLE message, 134

Peripheral chip enables (PCEs), 7, 183—-185, PotentiometerContainer class, 325-326

194-195
Peripheral devices, 4-7
Persistence storage, 249
Ping class, 325
Ping (ICMP echo request/reply), 37-38,
112-113, 116, 125
Pinger program, 134-137
pingNode() method, 130-131, 136
Pinout, 53-54
Point-to-Point ProtocoSeePPP
Polling versus interrupts, 219-220

“Power fail” interrupt, 220

Power-on reset (POR), 19

PPP class, 140, 161-162, 326-327

PPP (Point-to-Point Protocol) daemon,
160-166
adding to remote data logger, 175-176
addInterface() method, 164
AUTHENTICATION_REQUESTED

event, 140, 143, 164

class, 140, 161-162, 326327
CLOSED event, 144-145, 164, 167

Index 357

daemonError interface, 160, 175 serial link, 167-169
DatalLinkException class, 164, 169, 171- serialEvent() method, 170
172, 175 SerialPortEventListener interface, 64,
DataLinkListener interface, 160 170
Finite State Machine (FSM), 162-164 waitForMatch() method, 174-175
initializeLink() method, 164 See alsdPP (Point-to-Point Protocol)
isValidUser() method, 160, 164, 175-176 daemon; PPP (Point-to-Point Proto-
Line Control Protocol (LCP), 142, 164 col) network; Remote data logger
open() method, 162 PPP (Point-to-Point Protocol) network,
PPPDataLink interface, 162, 166 139-145
pppEvent program, 164—-166 addEventListener() method, 140
PPPEventListener interface, 140, 160, addInterface() method, 144
162, 175 ADDR error, 144
PPPModemLink class, 161-162, API classes, 139-142
169-170 application layer protocol, 113-116
PPPSerialLink class, 161-162, 167-169 asynchronous control character map
startDaemon() method, 162-163 (ACCM), 141
STARTING event, 143, 162, 164 AUTH error, 144
STOPPED event, 141-144, 164 authenticating peer node, 140-141
UP event, 144-145, 164-165 AUTHENTICATION_REQUESTED
See alsd®®PP (Point-to-Point Protocol) event, 140, 143, 164
data link; PPP (Point-to-Point Proto- CLOSED event, 144-145, 164, 167
col) network; Remote data logger com.dalsemi.tininet.ppp package, 139,
PPP (Point-to-Point Protocol) data link, 326-328
166-176 down() method, 145
Carrier Detect (CD) signal, 170 events, 142-145
CLOSED event, 144-145, 164, 167 getEventType() method, 140
currentTimeMillis() method, 174 getLastError() method, 144
dataLinkError() method, 167, 170 getPeerlD() method, 143
DataLinkException class, 164, 169, getPeerPassword() method, 143
171-172, 175 IP datagram transportation, 139
DataLinkListener interface, 167 ipconfig (network configuration) com-
getPort() method, 166-167 mand, 144
initializeLink() method, 166-167, 169, Line Control Protocol (LCP), 142, 164
171-172 listeners, 140
link errors, 167, 169-175 login (authentication) information, 140
modem control, 167, 169-175 NONE error, 144
ModemCommand class, 170-173 open() method, 142-143
PPPDatalink interface, 162, 166 passive mode, 142
PPPModemLink class, 161-162, Password Authentication Protocol (PAP),
169-170 140, 176
PPPSerialLink class, 161-162, 167-169 PPP class, 140
receiveMatch() method, 172 PPPEvent class, 144
resetModem() method, 171-172 PPPEvent interface, 142-143
RTS/CTS (hardware flow control), 59-61, pppEvent() method, 140
63, 68, 168 PPPEventListener interface, 140, 160,

sendCommand() method, 171-172 162, 175

358 Index

REJECT error, 144
removeEventListener() method, 140
removelnterface() method, 145
runtime environment support of, 18
setACCM() method, 141
setAuthenticate() method, 140
setLocalAddress() method, 141
setPassive() method, 142
setPassword() method, 140
setRemoteAddress() method, 141
setUsername() method, 140
setXonXoffEscape() method, 141
STARTING event, 143, 162, 164
STOPPED event, 141-144, 164
TIME error, 144
UP event, 144-145, 164-165
up() method, 143
XON/XOFF (software flow control), 59—
60, 68, 141
See alsdPP (Point-to-Point Protocol)
daemon; PPP (Point-to-Point Proto-
col) data link; Remote data logger
PPPDataLink interface, 162, 166
PPPEvent interface, 142-143
pppEvent() method, 140
pppEvent program, 164—-166
PPPEventListener class, 328
PPPEventListener interface, 140, 160, 162,
175
PPPEXxception class, 328
PPPModemLink class, 161-162, 169170
PPPSerialLink class, 161-162, 167—-169
Primary
Domain Name System (DNS) address,
117
JAVA application, 18-19, 21-22
Printstream, 236
Priority levels, external interrupt, 220
Process (ps) command, 44-45, 47
Process schedulers, 11, 15-16
Profiling
code, 225-227
memory usage, 234-236
Program store enable (PSEN), 184
Progress messages, 69
Protocol conversion (link) applications, 2—-3
Proxy port/server setting, 118, 128-130

ps (process) command, 44-45, 47
PSEN (program store enable), 184
Public methods, 126

PushButton program, 222—-224
putByte() method, 97-98

Q

Quick operations, measuring, 227

RamdomAccessFile, 153
RD (read strobe), 184
RD (Receive Data) signal, 53-54
Read data time slot, 83
read() method
DataPort class, 186-188, 198
I/0 efficiency, 227-228, 230
ports and port pins, 207
serial communication applications, 72,
77-78
Read strobe (RD), 184
readBit() method, 203
ReadClockRaw program, 210-211
Reading/writing external memory, 196-198
readint() method, 214
readLatch() method, 202-204
readLong() method, 214
README..txt file, 28
Real-time clockSeeRTC
reboot() method versus, 219
Receive Data (RD) signal, 53-54
Receive time-outs and thresholds, 61-62, 6
receiveMatch() method, 172
Receivers, 52-53
Receiving
notification of interrupts, 221-224
serial data, 61-63
Reference implementation of TINI
(TBM390), 9
Reflection (omitted), 12
Register set, 210
Regular speed, 1-Wire, 83
REJECT error, 144
Remote data logger, 147-180
accept() method, 152

adding Point-to-Point Protocol (PPP) to,
175-176

addInterface() method, 179

BufferedOutputStream, 151-152

byte-banging, 152, 207, 227-232

captureSample() method, 154-157
collecting data, 152—-158

constructor, 154

currentTimeMillis() method, 156

data collection, 152—-158

DatalnputStream, 158

DatalLogger class, 149-152, 175-176,
232

DatalLoggerClient class, 158-160, 177

DataOutputStream, 151-152, 158

debug statements, 178

getinputStream() method, 158

getOutputStream() method, 151

HumidityLogger class, 149, 156-157

HumiditySample class, 155-156

HumiditySensor class, 152, 157

IOException class, 152
LoggingDaemon class, 153-154,

157-158

main() method, 149-150, 176

memory constrained environment of, 153

network server creation, 148-152

OutOfMemoryError, 153

overview, 147-148

RamdomAccessFile, 153

removelnterface() method, 179

run() method, 150-151, 154-155

sample client for testing, 158-160

ServerSocket object, 150-151

SocketOutputStream, 151-152

start() method, 150

storage of data samples, 153

testing application, 176-180

testing sample, 158-160

toString() method, 159

writeDouble() method, 158

writeLog() method, 152

writeLogEntry() method, 154-156, 158

writeLong() method, 158

See alsd.-Wire network; PPP (Point-to-
Point Protocol) daemon; PPP (Point-
to-Point Protocol) data link; PPP

Index 359

(Point-to-Point Protocol) network;
Serial communication applications;
TCP/IP (Transmission Control Proto-
col/Internet Protocol) network
removeEventListener() method, 63, 140,
221-222
removelnterface() method, 145, 179
removelnterfaceEntry() method, 114

Request To Send (RTS) signal, 54, 60, 63, 67

reset() method, 97-98

Reset sequence signal, 83

resetDefaultStreams() method, 250

resetModem() method, 171-172

Resets, 19

Resetting watchdog, 215-219

Resolver, 124

ResponseADPU class, 328

Reverse lookups, 124, 126

RFC868 (Time Protocol) server, 212—-213

RI (Ring Indicator) signal, 54, 65

Roaming devices, 98, 108

“Rolled back” transactions, 20

Root account, 32, 37

Round-trip time (RTT), 131

Router (gateway) address setting, 38, 117,
123

RS-232-C standard, 51-52

RS232 serial port, 26

RTC (real-time clock), 209-214
Clock class, 210, 262—-263
com.dalsemi.system package, 210-211
coordinated universal time (UTC), 212
Date class, 209-211
date command, 211-212, 214
default (local) time zone, 211
defined, 4-6, 209
getAvailableTablelDs() method, 211
getRTC() method, 210
getTimeZone() method, 211
Greenwich Mean Time (GMT), 211
instance fields, 210

java.util package, 209, 211

java.util.Date class, 209-214
millis parameter, 212
network time server, 212-214
ReadClockRaw program, 210-211
readint() method, 214

360 Index

readLong() method, 214

register set, 210

SetClock program, 213-214
setRTC() method, 212
setTickCount() method, 212-214
setTimeZone() method, 211
setting date and time, 212

Time Protocol (RFC868) server, 212—-213

“well-known port,” 212
RTS/CTS (hardware flow control), 59-61,
63, 68, 168

RTS (Request To Send) signal, 54, 60, 63, 67

RTT (round-trip time), 131
run() method
I/O efficiency, 228—-232

Remote data logger, 150-151, 154-155

serial communication applications, 72,
76-77
“Runaway” code, 215
Running converted image, 42
Runtime binaries loading, 29-30
Runtime environment, 10-22
API portion of, 10-13
bootstrap loader, 18-20, 29, 31, 251
class loading, 13-14
classes specific to TINI, 10
com.dalsemi packages, 12, 255-340
command shell application, 16
convertor utility (TINIConvertor), 13
core Java packages, 11-12
creation of initial processes, 20
device driver initialization, 20
Ethernet support, 18
executable files in file system, 17
external reset, 19-20
file system integrity check, 20
file system manager, 17

garbage collector (gc) process, 16-17,

20-21, 234, 237

heap, 16-17, 20, 30-31

I/O management subsystem, 11, 15,
17-18

initializing runtime environment, 20-21,

29-31
integrity checks, 20

Inter-Process Communication (IPC), 16,

117

Interrupt Service Routine (ISR), 15, 220

Java core packages, 11-12

Java Developer’s Kit (JDK), 10, 27

Java Native Interface (JNI), 14

Java Virtual Machine (JVM), 10, 13-14,
17

JavaKit launching, 29-30

kernel processes, 18

limitations, 14

loading the runtime environment, 29-31

loadlibrary method, 14

memory blocks, 16

memory management subsystem, 7, 11,
15-17

native method interface (TNI), 11, 14

native methods, 10-11, 14

network 1/0, 11, 17-18

non-network 1/O, 11, 17-18

object finalization (omitted functionality),
13

object serialization (omitted functional-
ity), 12

opening a serial port, 29

operating systems, 11, 15-18, 26

Point-to-Point Protocol (PPP) support, 18

power-on reset (POR), 19

primary JAVA application, 18-19, 21-22

process schedulers, 11, 15-16

public static void main() method, 10

reflection (omitted), 12

resets, 19

“rolled back” transactions, 20

runtime binaries loading, 29-30

“sandbox” restrictions, 10

schedulers, 11, 15-16

serial port opening, 29

slush command shell and, 22

sweeper, 20-21

synchronization, 16

tagging memory, 17

thread execution limits, 14

thread schedulers, 11, 15-16

Transmission Control Protocol/Internet
Protocol (TCP/IP) stack, 11, 18

See als@\pplication programming;
Application programming optimiza-
tion; External interrupt; Hardware;

1-Wire network; Parallel I/O; Ports
and port pins; PPP (Point-to-Point
Protocol) network; Remote data log-
ger; RTC (Real-time clock); Serial
communication applications; Slush
command shell; TCP/IP (Transmission
Control Protocol/Internet Protocol)
network; TINI (Tiny InterNet Inter-
face) platform; Watchdog

RXTX Open Source Project, 27

S

Sample client for testing, 158-160
“Sandbox” restrictions, 10
Schedulers, 11, 15-16
SDK (Software Development Kit), 27—-28
Searching for 1-Wire devices, 92-95
Secondary DNS address, 117
Secure Hash Algorithm (SHAI), 34
Security class, 328
“Selected” device, 84
sendCommand() method, 171-172
Sending serial data, 61-63
Sequential memory mode, 188
Serial communication applications, 51-80
BlackBox program, 54, 67, 73, 80
buffer sizes, 79-80
Carrier Detect (CD) signal, 53, 65, 67
Clear To Send (CTS) signal, 54, 60, 65,
67
collisions, 54
Common (Signal Ground) signal, 54
CommPort object, 71
contention, 54
Data Communications Equipment (DCE)
serial port, 52-53
data rates supported, 68
Data Set Ready (DSR) signal, 54, 65
Data Terminal Equipment (DTE) serial
port, 52-54
Data Terminal Ready (DTR) signal, 53,
63
DATA_AVAILABLE event, 64-65, 72
debugging, 48
defaults, 53, 67-69
E10 socket, 25-26, 53

Index 361

enableSerialPortl1() method, 68

Ethernet converter, 74—-80

external serial ports configuration, 67—69

flow control (hardware handshake), 53,
59-63, 68, 80

foreground processes, 73

gender changer, 55

getCommPortldentifier() method, 71

getEventType() method, 72

getOutputStream() method, 71

hardware support of, 7-8

internal serial ports configurations, 67-68
level translators, 52

MARK (binary one) bit, 52-53

NoSuchPortException class, 71

null modems, 54-55, 73

pinout, 53-54

PortinUSeexception class, 71

progress messages, 69

read() method, 72, 77-78

Receive Data (RD) signal, 53-54

receivers, 52-53

Request To Send (RTS) signal, 54, 60, 63,
67

Ring Indicator (RI) signal, 54, 65

RS-232-C standard, 51-52

run() method, 72, 76-77

serial port events, 63-67

serial port opening, 29

serial ports, 56-59, 67-69

serialEvent program, 72—73

SerialPort object, 56, 58, 60—61, 64, 66,
71

SerialPortEvent object, 64-65, 72

SerialReader program, 76-78, 80

SerialToEthernet program, 74-80, 231

SerialWriter program, 76—79

setExternalSerialPortAddress() method,
69

setExternalSerialPortEnable() method,
68—69

setlnputBufferSize() method, 79

setRawMode() method, 72

setRTSCTSFlowControlEnable() method,
68

signal ground, 52, 54

SPACE (binary zero) bit, 52-53

362 Index

switching region, 52-53 setFIFOMode() method, 188, 196
System.in, 72—-73 setFlowControlMode() method, 60-61
terminal example, 69—-73 setHTTPRoot() method, 128
test configuration, 55 setindexPage() method, 128
throughput, 79-80 setlnputBufferSize() method, 62, 79
TiniTerm program, 69-73, 231 setlPAddress() methods, 118
Transistor Transistor Logic (TTL), 52 setLocalAddress() method, 141
Transmit Data (TD) signal, 53-54 setLong() method, 247
Universal Asynchronous Receiver Trans- setPassive() method, 142
mitter (UART), 8, 52, 67 setPassword() method, 140
UnsupportedCommOperationException SetProxyServer() method, 129
class, 71 setRawMode() method, 72
voltage levels, 52-53 setRemoteAddress() method, 141

See als@pplication programming; Java setRTC() method, 212
Communications APl (comm API); setRTS() method, 63

Remote data logger setRTSCTSFlowControlEnable() method, 6€
Serial link, 167-169 setSearchAllDevices() method, 95
Serial port events, 63-67 setSearchOnlyAlarmingDevices() method,
Serial port opening, 29 95
Serial ports, 56-59, 67—69 setSerialPortParams() method, 58-59
serial0 and slush, 69 setStretchCycles() method, 189
serialEvent() method, 64, 170 setTickCount() method, 212-214
serialEvent program, 72—73 setTimeZone() method, 211
SeriallnputStream class, 328—-329 Setting date and time, 212
SerialOutputStream class, 329 setTrigger() method, 221
SerialPort object, 56, 58, 60-61, 64, 66, 71 setupContainer() methods, 104
SerialPortEvent object, 64-65, 72 setUsername() method, 140
SerialPortEventListener interface, 64, 170 setWatchdogTimeout() method, 216
SerialReader program, 76-78, 80 setXonXoffEscape() method, 141
SerialServer class, 329 SHAL (Secure Hash Algorithm), 34
SerialSession class, 329 SHAIiButton class, 330-332
SerialToEthernet program, 74-80, 231 Sharing a common interrupt source, 224
SerialWriter program, 76—79 Shift operations, 245
Server class, 329-330 Signal ground, 52, 54
ServerSocket object, 128, 150-151 Signaling (waveforms), 82—-84
serviceRequests() method, 128 Simple Network Management Protocol
Session class, 330 (SNMP), 112
set() method, 43, 201-203, 207 SimpleEthernetAddressReader program, 11
setACCM() method, 141 Skip address (broadcast) command, 88
setAddress() method, 186-188 Slush command shell, 31-39
setAuthenticate() method, 140 cat command, 34, 48
SetClock program, 213-214 cd (change directory) command, 33, 35
setDNSTimeout() method, 126 configuring the network, 36—-39
setDomainName() method, 125 date command, 211-212, 214
setDTR() method, 63 defaults, user accounts, 32
setExternalSerialPortAddress() method, 69 defined, 31-32
setExternalSerialPortEnable() method, Domain Name Server (DNS) address set

68—-69 ting, 38

Dynamic Host Configuration Protocol
(DHCP), 37
Ethernet address, 36
exit command, 37
file system exploration, 33—35
gateway (router) address setting, 38
help command, 35-36
IP address setting, 37
ipconfig (network configuration) com-
mand, 36-39, 100, 102, 113-114, 117,
120-122, 144, 178
java command, 35
logging on, 32—-33
Is (list) command, 33
memory usage, 234
multi-threaded, multi-user system, 32
network configuration, 36—39
nslookup (lookup) command, 126
passwords, 32, 34, 37
Ping (ICMP echo request/reply), 37-38,
116
primary Java application and, 22
root account, 32, 37
runtime environment and, 22
Secure Hash Algorithm (SHA1), 34
serial0 and, 69
slush.tbin file, 28—29
starting a new session, 32—-33
subnet mask setting, 37
“super user,” 32
Telnet session, 37-39
testing network settings, 37—-38
tini.passwd file, 34
tini.startup file, 34—-35
user accounts defaults, 32
slush.tbin file, 28—-29
SNMP (Simple Network Management Proto-
col), 112
SocketlnputStream, 228, 230
SocketOutputStream, 151-152, 228-230
Software.SeeApplication programming
Software and watchdog, 215-216
Software Development Kit (SDK), 27-28
Software flow control (XON/XOFF), 59-60,
68, 141
Solaris, 26-27
Source files creation, 39-40
SPACE (binary zero) bit, 52-53

Index 363

Speed of data transfer, 187
SRAM (static RAM) memory, 4-5, 249
start() method, 123, 150
startDaemon() method, 162-163
Starting
applications, 251-252
new session, 32—33
STARTING event, 143, 162, 164
Static RAM (SRAM) memory, 4-5, 249
Status reportingSeeRemote data logger
Stop bits, 58
stopDHCPThread() method, 123-124
STOPPED event, 141-144, 164
Storage of data samples, 153
Stretch cycles, 188-189
StringBuffers, 233-234, 236
Subnet mask, 37, 117, 119, 123
Sun Microsystems, 10, 27, 56
“Super user,” 32
Swapping overhead, 184
Sweeper, 20-21
SwitchContainer class, 332
Switching region, 52-53
Synchronization, 16
Synchronous serial protocol support, 8
Synthetic port pins, 202—-206
System component of TBM390, 9
System resourceSeeExternal interrupt;
RTC (Real-time clock); Watchdog
System.in, 72—73
SystemInputStream class, 332—-333
SystemPrintStream class, 333-334

T

Tagging memory, 17
targetAllFamilies() method, 95
targetFamily() method, 94, 107
TBM390 (TINI Board Model 390), 9, 24
TCP/IP (Transmission Control Protocol/
Internet Protocol) network, 111-137
addInterfaceEntry() method, 114
com.dalsemi.shell.server.ftp package,
112,274
com.dalsemi.shell.server.telnet package,
112, 334
com.dalsemi.tininet package, 12, 112,
117, 336-338

364

Index

debugging applications, 48

Ethernet, 113-115

File Transfer Protocol (FTP), 112-113

getEthernetAddress() method, 115

Inter-Process Communication (IPC), 16,
117

IP datagram transmissions, 116

ipconfig (network configuration) com-
mand, 113-114, 117, 120-122

Local Area Networks (LANs), 114

MAC id, 114

memory usage, 234

Organizationally Unique Identifier (OUI),
114-115

Ping (ICMP echo request/reply), 37-38,
112-113, 116, 125

removelnterfaceEntry() method, 114

Simple Network Management Protocol
(SNMP), 112

SimpleEthernetAddressReader program,
115

stack, 11, 18

Telnet, 112-113

TININet class, 112, 117-118, 336—-338

See als®NS (Domain Name System);
DHCP (Dynamic Host Configuration
Protocol); HTTP (HyperText Transfer
Protocol); ICMP (Internet Control
Message Protocol); Network parame-
ters, setting; PPP (Point-to-Point Pro-
tocol) network; Remote data logger

Thread schedulers, 11, 15-16
Throughput, 79-80, 229
TIME error, 144
Time-out values, 216-217, 219
Time Protocol (RFC868) server, 212-213
Time slots, 83-84
TIME_EXCEEDED message, 133-134, 13€
TINI Board Model 390 (TBM390), 9, 24
TINI (Tiny InterNet Interface) platform,
1-39
development platform requirements,
26-28
environmental monitors applications, 2
human interfaces, 3
industrial controls applications, 2
operating systems, 11, 15-18, 26
protocol conversion (link) applications,
2-3
README.txt file, 28
RS232 serial port, 26
slush.tbin file, 28—-29
Software Development Kit (SDK), 27-28
tiniclasses.jar file, 28
tini.db file, 28
tini.jar file, 28
tini.tbin file, 28—-29
Web-based equipment monitoring and
control applications, 2
See als@pplication programming;
Application programming optimiza-
tion; External interrupt; Hardware; 1-

TD (Transmit Data) signal, 53-54
Telnet session, 37-39, 112-113
TelnetServer class, 334
TelnetSession class, 334
Temperature conversion example, 85
TemperatureContainer class, 334—-335
Terminal example, 69-73

Testing

Wire network; Parallel I/O; Ports and
port pins; PPP (Point-to-Point Proto-
col) network; Remote data logger;
RTC (Real-time clock); Runtime envi-
ronment; Serial communication appli-
cations; Slush command shell; TCP/IP
(Transmission Control Protocol/Inter-
net Protocol) network; Watchdog

application programming, debugging,
48-49

network settings, 37-38

remote data logger application, 176-180

sample for remote data logger, 158—-160

serial communication applications, 55

Thermocron iButton, 93
Thread execution limits, 14

tiniclasses.jar file, 28

TINIConvertor, 40-41

TINIConvertor (convertor utility), 13

tini.db file, 28

TINIExternalAdapter class, 89-90, 92, 335
TINIInternalAdapter class, 89, 92, 336
tini.jar file, 28

TININet class, 112, 117-118, 336—338

TINIOS class, 120, 216, 219, 225, 251-252,
338-340

TINIShell class, 340

tini.startup file, 34-35

tini.tbin file, 28-29

TiniTerm program, 69-73, 231

Tiny InterNet InterfaceSe€TINI

Transactions and containers, 84—85

Transistor Transistor Logic (TTL), 52

Transmission Control Protocol/Internet Pro-
tocol. SeeTCP/IP

Transmit Data (TD) signal, 53-54

Triggering, 220-221

TTL field, ICMP, 133-134, 136

TTL I/O, 8, 189-196

TTL (Transistor Transistor Logic), 52

TYPE byte, ICMP, 132-133

U

UART (Universal Asynchronous Receiver
Transmitter), 8, 52, 67

UnknownHostException class, 126127

Unrolling loops, 242—-243

UnsupportedCommOperationException
class, 59, 61-62, 71

UP event, 144-145, 164-165

up() method, 143

uptimeMillis() method, 225-226

URL and HTTP, 128-130

User accounts defaults, 32

UTC (coordinated universal time), 212

v

\oltage levels, 52-53

w

waitForMatch() method, 174-175
Watchdog, 215-219
com.dalsemi.system package, 216

Index 365

defined, 209
feedWatchdog() method, 216217
“hard” reset countdown, 215
hardware watchdog, 216
“hung” code, 215-216
“knocking back,” 216, 219
optimization for, 252
reboot() method versus, 219
resetting, 215-219
“runaway” code, 215
setWatchdogTimeout() method, 216
software problems, 215
software watchdog, 216
starting, 252
time-out values, 216-217, 219
TINIOS class, 216, 219, 338-340
Watchdog Timer program, 217-219
Waveforms (signaling), 82—-84
Web-based equipment monitoring and con-
trol applications, 2
Web root, 128
Web server example, 45-48
“Well-known port,” 212
Wwin32, 26-27
WR (write strobe), 184
Write 1 time slot, 83-84
write() method
DataPort class, 186-188, 198
1/0 efficiency, 227-229, 232
ports and port pins, 207
Write strobe (WR), 184
writeDouble() method, 158
writeLog() method, 152
writeLogEntry() method, 154-156,
158
writeLong() method, 158

X

XON/XOFF (software flow control), 59-60,
68, 141

