
__ Maxim Integrated Products 1

TABLE OF CONTENTS

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

x3
SERIAL
UARTs

COMMUNICATE WITH
NEW AND LEGACY

EQUIPMENT

REMOTE MONITORING
AND CONTROL

VIA THE NETWORK
8051 µC

WITH TCP/IPv4/6
NETWORK STACK IN

ROM

10/100
ETHERNET

MAC

DS80C400/DS80C410/DS80C411

NETWORKED MICROCONTROLLER

ADDENDUM TO SECTION 1: INTRODUCTION 14
This document is provided as a supplement to the High-Speed Microcontroller User’s Guide, covering new or modified features spe-
cific to the DS80C400/DS80C410/DS80C411. This document must be used in conjunction with the High-Speed
Microcontroller User’s Guide, available from Dallas Semiconductor. Addenda are arranged by section number, which
correspond to sections in the High-Speed Microcontroller User’s Guide.

Unless otherwise specified, the references to the DS80C400 and its features also apply to the DS80C410 and DS80C411. Exceptions
include differences in the amount of internal memory and the inclusion/exclusion of the CAN module.

The following additions and changes, with respect to the High-Speed Microcontroller User’s Guide, are contained in this document.
This document is a work in progress, and updates/additions are added when available.

Features 14

Rev: 8, 8/06

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

ADDENDUM TO SECTION 2: ORDERING INFORMATION 15
Refer to the device-specific data sheet(s) for more information.

ADDENDUM TO SECTION 3: ARCHITECTURE 15
CPU Core and CPU Registers 15

ADDENDUM TO SECTION 4: PROGRAMMING MODEL 16
Memory Map 16
Register Map 17

Bit-Addressable Locations 17
Working Registers 17
Stack 17

Special-Function Register Maps 17
Special-Function Register Map 18
Special-Function Register Location 18
Special-Function Register Reset Values 21

Special-Function Registers 24
Port 4 (P4) 24
Stack Pointer (SP) 26
Data Pointer Low 0 (DPL) 26
Data Pointer High 0 (DPH) 26
Data Pointer Low 1 (DPL1) 27
Data Pointer High 1 (DPH1) 27
Data Pointer Select (DPS) 28
Power Control (PCON) 29
Timer/Counter Control (TCON) 30
Timer Mode Control (TMOD) 31
Timer 0 LSB (TL0) 32
Timer 1 LSB (TL1) 32
Timer 0 MSB (TH0) 32
Timer 1 MSB (TH1) 32
Clock Control (CKCON) 33
Port 1 (P1) 34
External Interrupt Flag (EXIF) 35
Port 4 Control Register (P4CNT) 36
Data Pointer Extended Register 0 (DPX) 37
Data Pointer Extended Register 1 (DPX1) 37
CAN 0 Receive Message Stored Register 0 (C0RMS0) 38
CAN 0 Receive Message Stored Register 1 (C0RMS1) 39
Serial Port 0 Control (SCON0) 40
Serial Data Buffer 0 (SBUF0) 41

__ 2

Extended Stack Pointer Register (ESP) 41
Address Page Register (AP) 41
Address Control Register (ACON) 42
CAN 0 Transmit Message Acknowledgment Register 0 (C0TMA0) 44
CAN 0 Transmit Message Acknowledgment Register 1 (C0TMA1) 45
Port 2 (P2) 46
Port 5 (P5) 46
Port 5 Control Register (P5CNT) 47
CAN 0 Control Register (C0C) 48
CAN 0 Status Register (C0S) 51
CAN 0 Interrupt Register (C0IR) 55
CAN 0 Receive-Error Register (C0RE) 58
Interrupt Enable (IE) 59
Slave Address Register 0 (SADDR0) 59
Slave Address Register 1 (SADDR1) 60
CAN 0 Message Center 1 Control Register (C0M1C) 60
CAN 0 Message Center 2 Control Register (C0M2C) 63
CAN 0 Message Center 3 Control Register (C0M3C) 63
CAN 0 Message Center 4 Control Register (C0M4C) 63
CAN 0 Message Center 5 Control Register (C0M5C) 63
Port 3 (P3) 64
Port 6 (P6) 65
Port 6 Control Register (P6CNT) 66
CAN 0 Message Center 6 Control Register (C0M6C) 68
CAN 0 Message Center 7 Control Register (C0M7C) 68
CAN 0 Message Center 8 Control Register (C0M8C) 68
CAN 0 Message Center 9 Control Register (C0M9C) 68
CAN 0 Message Center 10 Control Register (C0M10C) 68
Interrupt Priority (IP) 69
Slave Address Mask Enable Register 0 (SADEN0) 69
Slave Address Mask Enable Register 1 (SADEN1) 70
CAN 0 Message Center 11 Control Register (C0M11C) 70
CAN 0 Message Center 12 Control Register (C0M12C) 70
CAN 0 Message Center 13 Control Register (C0M13C) 70
CAN 0 Message Center 14 Control Register (C0M14C) 70
CAN 0 Message Center 15 Control Register (C0M15C) 71
Serial Port Control (SCON1) 71
Serial Data Buffer 1 (SBUF1) 72
Power-Management Register (PMR) 72
Status Register (STATUS) 74
Memory Control Register (MCON) 75

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

3 __

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

Timed-Access Register (TA) 76
Timer 2 Control (T2CON) 77
Timer 2 Mode (T2MOD) 78
Timer 2 Capture LSB (RCAP2L) 79
Timer 2 Capture MSB (RCAP2H) 79
Timer 2 LSB (TL2) 79
Timer 2 MSB (TH2) 79
Clock Output Register (COR) 80
Program Status Word (PSW) 81
Multiplier Control Register 0 (MCNT0) 82
Multiplier Control Register 1 (MCNT1) 83
Multiplier A Register (MA) 83
Multiplier B Register (MB) 84
Multiplier C Register (MC) 85
Memory Control Register 1 (MCON1) 85
Memory Control Register 2 (MCON2) 87
Watchdog Control (WDCON) 88
Slave Address Register 2 (SADDR2) 89
Breakpoint Address Register 1 (BPA1) 89
Breakpoint Address Register 2 (BPA2) 89
Breakpoint Address Register 3 (BPA3) 89
Accumulator (AC) 90
One’s Complement Adder Data (OCAD) 90
CSR Data (CSRD) 90
CSR Address (CSRA) 90
Ethernet Buffer Size (EBS) 91
Buffer Control Unit Data (BCUD) 91
Buffer Control Unit Control (BCUC) 92
Extended Interrupt Enable (EIE) 93
MOVX Address Extended Register (MXAX) 93
Data Pointer Extended Register 2 (DPX2) 94
Data Pointer Extended Register 3 (DPX3) 94
1-Wire Master Address Register (OWMAD) 94
1-Wire Master Data Register (OWMDR) 95
B Register (B) 95
Slave Address Mask Enable Register 2 (SADEN2) 95
Data Pointer Low Register 2 (DPL2) 95
Data Pointer High Register 2 (DPH2) 96
Data Pointer Low Register 3 (DPL3) 96
Data Pointer High Register 3 (DPH3) 96
Data Pointer Select Register 1 (DPS1) 96

__ 4

Status Register 1 (STATUS1) 97
Extended Interrupt Priority (EIP) 97
Parallel I/O Port (P7) 98
Timer 3 LSB (TL3) 98
Timer 3 MSB (TH3) 98
Timer 3 Control/Mode Register (T3CM) 99
Serial Port 2 Control Register (SCON2) 100
Serial Data Buffer 2 (SBUF2) 100

ADDENDUM TO SECTION 5: CPU TIMING 101
External Clock Source 101
System Clock Selection 101
Changing the System Clock/Machine Cycle Clock Frequency 102

ADDENDUM TO SECTION 6: MEMORY ACCESS 103
Internal Program Memory 103
Internal Data Memory 104

DS80C400 104
DS80C410/DS80C411 105

External Memory Access 106
Using the Combined Chip-Enable Signals 110
Write-Protection Feature (DS80C400 Only) 114
Enhanced Quad Data Pointers 114

ADDENDUM TO SECTION 7: POWER MANAGEMENT 115
Precision Voltage Monitor 115
Early Warning Power-Fail Interrupt 116
Power-Fail Reset 116
Power-On Reset 116
Bandgap Select 116
Power-Management Summary 116
Power-Management Modes 116
PMM and Peripheral Functions 116
Switchback 117
Stop Mode 117
Pin States in Idle or Stop Mode 117
Switching Between Clock Sources 117

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

5 __

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

ADDENDUM TO SECTION 8: RESET CONDITIONS 117
Reset Sources 117

Power-On/Power-Fail Reset 118
Watchdog Timer Reset 118
External Reset 118
Oscillator Fail-Detect Reset 118

Reset Outputs 119
Reset Output Low (RSTOL) 119

Reset State 119
In-System Disable Mode 119

ADDENDUM TO SECTION 9: INTERRUPTS 120

ADDENDUM TO SECTION 10: PARALLEL I/O 122
Port 0 122
Ports 4–7 122
General-Purpose I/O 122
Alternate Functions A0–A7, A16–A21, CE0–7, and PCE0–3 122
Current-Limited Transitions 122
5V-Tolerant I/O 123

ADDENDUM TO SECTION 11: PROGRAMMABLE TIMERS 124
Divide-by-13 Option 128
Programmable Clock Output 129
IrDA Clock Output 129

ADDENDUM TO SECTION 12: SERIAL I/O 130
Serial Mode Summary 130
Baud Rates 130

Mode 0 131
Mode 2 132
Mode 1 or 3 132
Using Timer 1 or Timer 3 for Baud-Rate Generation 133
Using Timer 2 for Baud-Rate Generation 133

ADDENDUM TO SECTION 13: TIMED-ACCESS PROTECTION 135

ADDENDUM TO SECTION 14: REAL-TIME CLOCK 135
Refer to the High-Speed Microcontroller User’s Guide. Not applicable to the DS80C400/410/411.

__ 6

ADDENDUM TO SECTION 15: BATTERY BACKUP 135
Refer to the High-Speed Microcontroller User’s Guide. Not applicable to the DS80C400/410/411.

ADDENDUM TO SECTION 16: INSTRUCTION SET DETAILS 136
16-Bit (8051 Standard) Addressing Mode 136
24-Bit Paged Addressing Mode 136
24-Bit Contiguous Addressing Mode 138

ADDENDUM TO SECTION 17: TROUBLESHOOTING 139
Software Breakpoint Mode 139
Generating a Breakpoint 139
Exiting a Breakpoint 139

ADDENDUM TO SECTION 18: MICROCONTROLLER DEVELOPMENT
SUPPORT 141
Refer to the High-Speed Microcontroller User’s Guide.

SECTION 19: CONTROLLER AREA NETWORK (CAN) MODULE 142
MOVX Message Centers for CAN 0 143
CAN MOVX Register Description 144

CAN 0 Media ID Mask Register 0 (COMID0) 145
CAN 0 Media ID Mask Register 1 (COMID1) 145
CAN 0 Media Arbitration Register 0 (C0MA0) 145
CAN 0 Media Arbitration Register 1 (C0MA1) 145
CAN 0 Bus Timing Register 0 (C0BT0) 146
CAN 0 Bus Timing Register 1 (C0BT1) 147
CAN 0 Standard Global Mask Register 0 (C0SGM0) 148
CAN 0 Standard Global Mask Register 1 (C0SGM1) 148
CAN 0 Extended Global Mask Register 0 (C0EGM0) 148
CAN 0 Extended Global Mask Register 1 (C0EGM1) 148
CAN 0 Extended Global Mask Register 2 (C0EGM2) 148
CAN 0 Extended Global Mask Register 3 (C0EGM3) 149
CAN 0 Message Center 15 Mask Register 0 (C0M15M0) 149
CAN 0 Message Center 15 Mask Register 1 (C0M15M1) 149
CAN 0 Message Center 15 Mask Register 2 (C0M15M2) 149
CAN 0 Message Center 15 Mask Register 3 (C0M15M3) 150

CAN Message Center MOVX Register Descriptions 150
CAN 0 Message Center y Arbitration Register 0 (C0MyAR0) 150
CAN 0 Message Center y Arbitration Register 1 (C0MyAR1) 150
CAN 0 Message Center y Arbitration Register 2 (C0MyAR2) 150

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

7 __

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 8

CAN 0 Message Center y Arbitration Register 3 (C0MyAR3) 151
CAN 0 Message Center y Format Register (C0MyF) 152
CAN 0 Message Center y Data Byte 0 (C0MyD0) 153
CAN 0 Message Center y Data Byte 1 (C0MyD1) 153
CAN 0 Message Center y Data Byte 2 (C0MyD2) 153
CAN 0 Message Center y Data Byte 3 (C0MyD3) 153
CAN 0 Message Center y Data Byte 4 (C0MyD4) 153
CAN 0 Message Center y Data Byte 5 (C0MyD5) 153
CAN 0 Message Center y Data Byte 6 (C0MyD6) 153
CAN 0 Message Center y Data Byte 7 (C0MyD7) 153

Frame Types 154
Initializing the CAN Controller 158
CAN Interrupts 158
Arbitration/Masking Considerations 159
Message Center 15 160

Transmitting and Receiving Messages 160
Transmitting Data Messages 160
Receiving Data Messages 161
Transmitting Remote Frame Requests 161
Receiving/Responding to Remote Frame Requests 161

Remote Frame Handling in Relation to the DTBYC Bits 164
Overwrite Enable/Disable Feature 164

Case 1: WTOE = 1 (Overwrites allowed) 165
Case 2: WTOE = 0 (Overwrites disabled) 165

Special Considerations for Message Center 15 165
Using the Autobaud Feature 165
Bus-Off/Bus-Off Recovery and Error Counter Operation 167
Bit Timing 168
Threefold Bit Sampling 169
Bus Rate Timing Example 170
Additional Bit Timing Examples 170

SECTION 20: ARITHMETIC ACCELERATOR 171
Divide (32-bit by 16-bit or 16-bit by 16-bit) 172
Multiply (16-bit by 16-bit) 172
Shift right/left 172
Normalize 173
40-Bit Accumulator 173

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

9 __

SECTION 21: 1-WIRE BUS MASTER 174
Hardware Setup 174
Setting Up and Using the 1-Wire Master 174

Setting Up the 1-Wire Master 175
Sending a 1-Wire Reset 175
Sending a Byte 175

Search ROM Accelerator 176
Accelerated ROM Search Example 177

SECTION 22: ETHERNET CONTROLLER 178
Assigning a Physical MAC Address 179
Configuring the MAC Operational Mode 179
Media Independent Interface (MII) 180
ENDEC Operation 181
ENDEC Mode—Heartbeat Signal Quality Generator 182
MAC Primary Functions—Packet Filtering 182
Using the MII Serial Management Bus 183
Half-Duplex Operation—CSMA/CD and Flow Control 183
Deferral Check 184
Disable Retry 184
Back-Off Limit 184
Late Collision Control 184
Flow Control 185
Full-Duplex Operation 185
Pause Control Frame 185
Loopback Modes 186
Address Filtering Control 187
Using the Hash Table 188
VLAN Support 188
Partitioning the 8kB Ethernet Data Buffer Memory 188
Transmit/Receive Data Buffer Word Orientation: Edianess 190

Transmitting Data 190
Receiving Data 192

Using Wake-Up Frames 193
Magic Packet Mode 193
Network Wake-Up Frame 193

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 10

SECTION 23: EMBEDDED DS80C400 SILICON SOFTWARE 195
Serial Loader 195
Autobaud-Rate Detection 195
Command Line Interface 195
Command Summary 195
Exported RAM Functions 196
Utility Functions 197
Memory Manager Functions 199
Socket Function Calling Conventions 201

Input Parameter Buffer 202
Socket Functions/Pointers 202

PARAMBUFFER 202
DHCP Functions 209
TFTP Functions/Pointers 210
Task Scheduler Functions 211
Task Scheduler User Hooks 214
1-Wire Master 215
Additional Functions Available in ROM Version 1.2.0 216
Initialization Functions 220
Asynchronous TCP/IP Maintenance Functions 222
ROM Redirect Function Table 223
ROM Redirect Functions 224
Timeslice and Task Scheduler Timing 226

REVISION HISTORY 227

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

11 ___

Figure 5-1. System Clock Control Diagram 101

Figure 6-1. Program Memory Map Options 103

Figure 6-2. Example Data Memory Map Configurations (DS80C400) 104

Figure 6-3. Example Data Memory Map Configurations (DS80C400/DS80C411) 105

Figure 6-4. Multiplexed Address/Data Bus 109

Figure 6-5. Demultiplexed Address/Data Bus 110

Figure 6-6. Merged Program/Data Access Under CE0, CE2, PCE0–PCE3
Becomes Inaccessible 111

Figure 6-7. Merged Program/Data Access Under CE2, CE3, PCE2, and PCE3 Becomes
Inaccessible 112

Figure 6-8. Merged Program/Data Access Under CE1, CE2, PCE1, and PCE2 Becomes
Inaccessible 112

Figure 6-9. Merged Program/Data Access Under CE0 and PCE0 Becomes Partially
Inaccessible 113

Figure 6-10. Full 16MB Program/Data Memory Map Options 113

Figure 9-1. 1-Wire Interrupt Source 120

Figure 9-2. Interrupt Functional Diagram 121

Figure 10-1. 5V-Tolerant I/O Pad 123

Figure 11-1. Timers/Counters 0, 1, and 3, Modes 0 and 1 124

Figure 11-2. Timers/Counters 0, 1, and 3, Mode 2 125

Figure 11-3. Timer/Counter 0, Mode 3 125

Figure 11-4. Timer/Counter 2 Clock-Out Mode 126

Figure 11-5. Timer/Counter 2 Baud-Rate Generator Mode 126

Figure 11-6. Timer/Counter 2 Autoreload Mode, DCEN = 0 127

Figure 11-7. Timer/Counter 2 Autoreload Mode, DCEN = 1 127

Figure 11-8. Timer/Counter 2 with Optional Capture 128

Figure 11-9. Operation of Divide-by-13 Bits 128

Figure 11-10. Sample IrDA Implementation 129

Figure 12-1. Serial Port Mode 0 Block Diagram Change 131

Figure 12-2. Serial Port Mode 2 Block Diagram Change 132

Figure 12-3. Serial Port Modes 1, 3 Block Diagram Change 134

LIST OF FIGURES

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 12

Figure 17-1. Force Feeding a Breakpoint During An Instruction Other Than MOVC or MOVX 140

Figure 17-2. Force Feeding a Breakpoint During a MOVX (2-Cycle) 140

Figure 17-3. Force Feeding a Breakpoint MOVC 141

Figure 19-1. CAN 2.0A (Standard) Format 154

Figure 19-2. CAN 2.0B (Extended) Format 154

Figure 19-3. Control Field 155

Figure 19-4. CRC Field 155

Figure 19-5. Acknowledge Field 156

Figure 19-6. Intermission 156

Figure 19-7. Remote Frame 156

Figure 19-8. Error Frame 157

Figure 19-9. Overload Frame 157

Figure 19-10. CAN Interrupt Logic 159

Figure 19-11. Bit Timing 168

Figure 21-1. Typical 1-Wire External Hardware Configuration 174

Figure 22-1. Ethernet Controller Block Diagram 179

Figure 22-2. MII Signal Diagram 181

Figure 22-3. MII Mode-Byte/Bit Transmit and Receive Order 181

Figure 22-4. ENDEC Signal Diagram 182

Figure 22-5. Serial ENDEC Mode-Byte/Bit Transmit and Receive Order 182

Figure 22-6. MII Management Frame Format 183

Figure 22-7. Half-Duplex Transmit Deferral/Collision Handling 185

Figure 22-8. Internal Loopback Mode (MAC Control OM1:0 = 01b) 186

Figure 22-9. External Loopback Mode (MAC Control OM1:0 = 10b) 187

Figure 22-10. Example 8kB Data Memory Partition 189

Figure 22-11. Big/Little-Endian Data Buffers 190

Figure 22-12. Transmit Flow Diagram 191

Figure 22-13. Receive Flow Diagram 192

Figure 22-14. Wake-Up Frame Filter 0 Programming Example 194

Figure 23-1. Timer 0 Interrupt Routing (WOS_tick) Flow 226

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

13 ___

LIST OF TABLES
Table 5-1. System Clock Configuration 102

Table 5-2. Effect of Clock Modes on Timer Operation 102

Table 6-2. External Memory Addressing Pin Assignments 106

Table 6-3. Extended Address Generation 107

Table 6-4. Chip-Enable Generation 107

Table 6-5. Peripheral Chip-Enable Generation 107

Table 6-6. Program Memory Chip-Enable Boundaries 108

Table 6-7. Write-Protection Range 114

Table 6-8. Data Pointer SFR Locations 114

Table 11-1. Timer 3 SFR Bit Summary 124

Table 12-1. Serial Port 2 Special Function Registers/Bits 130

Table 12-2. Serial I/O Modes 130

Table 12-3. Baud-Rate Generation, Mode 0 131

Table 12-4. Baud-Rate Generation, Mode 2 132

Table 12-5. Relationship Between External Crystal Frequency and Timer 1 133

Table 12-6. Relationship Between External Crystal Frequency and Timer 2 134

Table 20-1. Arithmetic Accelerator Execution Times 171

Table 21-1. ROM ID Read Time Slot Possibilities 176

Table 21-2. Transmit/Receive Byte Sequence 177

Table 22-1. Source of MAC Addresses 179

Table 22-2. MAC Control Register Bit Summary 180

Table 22-3. Packet Filter and Filter Fail Status for Various Received Frames 187

Table 22-4. Network Wake-Up Frame Patterns 193

Table 23-1. ROM Redirect Functions 223

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 14

ADDENDUM TO SECTION 1: INTRODUCTION

The DS80C400 is the third-generation microcontroller in the Dallas Semiconductor 8051 family. It is derived from the DS87C520, but
adds a full CAN 2.0B controller, a 16/32-bit arithmetic accelerator, a 1-Wire® bus master, and an IEEE 802.3-compliant Ethernet media
access controller. It incorporates the 8051-compatible high-speed microcontroller core, which has been redesigned to reduce the orig-
inal 8051’s 12 clocks per instruction cycle to four clocks, while using less power. The DS80C400 offers a maximum system clock speed
of 75MHz. The DS80C400 also supports a larger program space, data memory space, and stack memory.

The DS80C400 supports three programmable address modes. The 16-bit 8051 address mode of operation is identical with the origi-
nal 8051 operation. The 24-bit paged address mode is fully compatible with the 8051 operation, but is still capable of supporting a
larger memory address range within a multiple page mode configuration. The 24-bit contiguous address mode is supported by a full
24-bit program counter and has eight instructions modified to operate in the 24-bit address range. The 24-bit contiguous address mode
requires assembler, compiler, and linker support. The DS80C400 also supports an extended stack in 1kB of internal data RAM.

The DS80C400 provides four data pointers, and implements programmable features that are capable of modifying the INC DPTR
instruction to actually decrement the active data pointer, automatically toggle the selection of the data pointer, and automatically incre-
ment/decrement the select data pointer.

FEATURES

Seven bidirectional parallel ports
Four 16-bit timers/counters with one up/down timer, capture, and baud-rate generation features
Power-on reset flag
Stop mode exit on interrupts, reset, and CAN bus activity
256 bytes of scratchpad memory
Low-power CMOS

High-speed, four clocks-per-machine cycle architecture

Clock rates: DC to 75MHz (18.75 MIPS)

Minimum instruction cycle of 53ns

24-bit program/data address memory access

Program counter with selectable 16-bit, 24-bit paged, or 24-bit contiguous mode

16MB external interface

64kB on-chip ROM for bootstrap loader

Supports network boot over Ethernet using DHCP and TFTP

Full application-accessible TCP/IP network stack

Supports IPv4 and IPv6

Implements UDP, TCP, DHCP, ICMP, and IGMP

Preemptive, priority-based task scheduler

MAC address acquisition from IEEE-registered DS2502-E48

9kB(DS80C400) / 65kB(DS80C410/411) data SRAM

Four data pointers with auto INC/DEC function

Extended 1kB stack

High-speed math accelerator for 16/32-bit multiply and divide calculations

One’s complement adder

1-Wire bus master

Ethernet controller supports 100/10Mbps full-duplex and half-duplex operation

Three serial port UARTs with framing error detection and automatic address recognition

1-Wire is a registered trademark of Dallas Semiconductor.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

15 ___

DeviceNet is a trademark of OpenDeviceNet Vendor Association Inc.

16 interrupt sources, 6 external and 10 internal with three levels of interrupt nesting and two programmable priority levels

Crash-proof, bandgap-referenced power-fail warning; voltage sense reset; and automatic power-up reset timeout

Programmable system clock divide control of crystal oscillator. Options include:

Divide-by-1–18.75MHz max. crystal

Divide-by-2–37.5MHz max. crystal

Divide-by-4–Standard operation

Divide-by-1024–Low-speed/power

Status register to verify active-interrupt nesting and real-time serial port transmit/receive activity

User-selectable multiplexed or nonmultiplexed external address/data interface

Programmable watchdog timer

Programmable clock-out and reset-out for additional external stand-alone CAN support

Full CAN 2.0B controller (DS80C400 and DS80C410):

15 message centers

Standard 11-bit or extended 29-bit identification modes

Two data byte masks and associated IDs for DeviceNet™, SDS, and other higher-layer CAN protocol

External transmit disable for autobaud

SIESTA low-power mode
100-pin QFP package

ADDENDUM TO SECTION 2: ORDERING INFORMATION
Refer to the individual data sheets for the available versions.

ADDENDUM TO SECTION 3: ARCHITECTURE
The DS80C400 is designed to provide direct compatibility to all of the traditional 80C32 functions, including a 256-byte special func-
tion register (SFR) SRAM memory, a third timer (timer 2), and serial port framing-error detection and automatic address recognition.
Features on the DS80C400 that are compatible with the DS87C520 include a bandgap-based power monitor for interrupt and reset,
timed-access protection, programmable on-board data memory (expanded to 9kB x 8 on the DS80C400, 65kB on the DS80C410/411),
programmable system-clock divide ratios, two serial ports, and a programmable watchdog timer. Expanding on these features, the
DS80C400 also contains an expanded interrupt capability of 16 interrupts with two programmable interrupt priorities, levels for 15 of
the interrupts, and a third-level interrupt priority for power-fail. Additional features include, a math accelerator, a one’s complement
adder, a 1-Wire bus master, a full CAN 2.0B processor (DS80C400/410), an IEEE 802.3-compliant Ethernet media access controller, a
selectable external multiplexed or nonmultiplexed address/data interface, 16-bit, 24-bit paged or 24-bit contiguous addressing oper-
ation, and internally decoded chip enables.

The DS80C400 is designed to function similarly to the DS80C390 and run with external program and data memory. The DS80C400 has
been designed to operate with an extended 24-bit address map and to support external memories with a minimum of external logic.
The DS80C400 also supports an optional extended stack pointer and a 1kB stack memory.

CPU CORE AND CPU REGISTERS
The CPU core of the DS80C400 executes the same binary-compatible instruction set as that of the 80C32. The principal difference
between the core of the DS80C400 and the 80C32 is the number of clocks required to execute specific instructions. The DS80C400
uses a divide-by-4 of the crystal oscillator, and the 80C32 functions with a divide-by-12 of the crystal oscillator. A machine cycle in the
DS80C400 defaults to four periods of the crystal oscillator. A machine cycle in the 80C32 is interpreted as 12 cycles of the oscillator.
The four MOVX data memory instructions of the DS80C400 have the additional capability of being stretched (external data memory
bus access only) from the original data memory access (read or write) time. The MOVX instruction ranges from two machine cycles to
12 machine cycles across eight programmable settings. This MOVX stretch control is user-selectable with the MD2, MD1, and MD0
bits in the clock control register. The ability to do an instruction-based decrement of the DPTR registers is also now supported, through
additional control bits in the DPS1 and DPS SFRs.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 16

The DS80C400 supports one of three different addressing modes, as selected by software through the AM1 and AM0 bits in the ACON
SFR. The microcontroller functions in either the traditional 16-bit address mode, a 24-bit paged address mode, or in a 24-bit contigu-
ous program mode. The microprocessor defaults after a reset to the traditional 16-bit mode, which is identical to the DS80C320
(A23–A16 are forced to 00h). The 24-bit paged address mode is binary code compliant with traditional compilers for the standard 16-
bit address range, but allows for up to 16MB of program and 4MB of data memory. A new address page SFR implements an internal
bank-switching mechanism in response to a certain set of call/return instructions. The 24-bit contiguous mode requires a 24-bit address
compiler that supports contiguous program flow over the entire 24-bit address range by the addition of an operand and/or cycles to
eight basic instructions (without the need of bank switching).

The instruction is fetched and sent over the 8-bit internal data bus to the instruction register. The ALU performs math functions, logical
operations, and makes comparisons and general decisions. The ALU primarily uses the accumulator and the B register as either the
source or destination for most operations.

All peripherals and operations that are not explicit instructions in the DS80C400 are controlled by SFRs. The accumulator is the pri-
mary register used in the CPU. It is the source or destination for most operations. The B register is used as the second 8-bit argument
in multiply and divide operations. When not used in these operations, the B register can be used as a general-purpose register.

The program status word (PSW) contains a selection of bit flags that include the carry flag, auxiliary carry flag, general-purpose flag,
register bank select, overflow flag, and parity flag.

The data pointers are used in accessing program or data memory with the MOVC or MOVX instruction. Two pairs of pointers are pro-
vided, simplifying source and destination address tracking when moving data from one memory area to another memory area or to a
memory-mapped peripheral.

The DS80C400 provides a stack in either the original 8052 scratchpad area or a 1kB programmable area of the on-chip SRAM. The
stack pointer register or register pair, when using the extended 1kB stack, denotes the last used location at the top of the stack.

There are three internal buses, which include a 24-bit address bus and two 8-bit data buses. The address bus provides addresses for op
code/operand fetching. The DA data bus is used for addressing SFRs, fetching instructions and operands from external memory, and pro-
viding addresses for the internal stack. The DB data bus is used for data exchange between SFRs and the output of all ALU operations.

ADDENDUM TO SECTION 4: PROGRAMMING MODEL
The DS80C400 microprocessor is based on the industry-standard 80C32. The core is an accumulator-based architecture using inter-
nal registers for data storage and peripheral control. It executes the standard 8051 instruction set. This section provides a brief descrip-
tion of each architecture feature. Details concerning the programming model, instruction set, and register description are provided in
Section 4.

The high-speed microcontroller uses several distinct memory areas. These are registers, program memory, and data memory. Registers
serve to control on-chip peripherals and as RAM. Note that registers (on-chip RAM) are separate from data memory. Registers are
divided into three categories including directly addressed on-chip RAM, indirectly addressed on-chip RAM, and SFRs. As follows, the
program and data memory areas are discussed under Memory Map, and the registers are discussed under Registers Map.

MEMORY MAP
The DS80C400 microcontroller defaults to the memory compatibility of the 8051. This device can address up to 1kB of on-chip SRAM.
In addition to the standard 16-bit address mode, the DS80C400 can operate in 24-bit paged or 24-bit contiguous address mode. The
DS80C400 has four internal memory areas: 256 bytes of scratchpad RAM, 9kB(DS80C400) / 65kB(DS80C410/411) SRAM, 256 bytes
of RAM reserved for the CAN message centers, and 64kB of embedded ROM firmware. A 22-bit address bus and an 8-bit data bus
operating in multiplexed or demultiplexed mode can address 16MB of external memory. By configuring the SFRs, eight available chip-
enable pins are used to access 16MB of external program memory. Also, 4MB of external data memory is accessible by configuring
four peripheral chip-enable bits in the SFRs. The addresses of the program and data segments can overlap since they are accessed
in different ways. Program memory is fetched by the microprocessor automatically. These addresses are never written by software.
There is one instruction (MOVC) that is used to explicitly read the program area. This is commonly used to read look-up tables. The
data memory area is accessed explicitly using the MOVX instruction. This instruction provides multiple ways of specifying the target
address. In addition, the DS80C400 can be configured to permit a merged von Neumann-style program/data memory space. Detailed
descriptions of the memory mapping alternatives are discussed in a separate section of this user’s guide supplement.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

17 ___

REGISTER MAP
The register map is separate from the program and data memory areas mentioned above. A separate class of instructions is used to
access the registers. There are 256 potential register location values. In practice, the high-speed microcontroller has 256 bytes of
scratchpad RAM and up to 128 SFRs. This is possible since the upper 128 scratchpad RAM locations can only be accessed indirectly.
That is, the contents of a working register, described later, designate the RAM location. Thus, a direct reference to one of the upper
128 locations must be an SFR access. Direct RAM is reached at locations 0 to 7Fh (0–127). SFRs are accessed directly between 80h
and FFh (128–255). The RAM locations between 128 and 255 can be reached through an indirect reference to those locations.

Scratchpad RAM is available for general-purpose data storage. It is commonly used in place of off-chip RAM when the total data con-
tents are small. When off-chip RAM is needed, the scratchpad area still provides the fastest general-purpose access. Within the 256
bytes of RAM, there are several special-purpose areas, which are described as follows.

Bit-Addressable Locations
In addition to direct register access, some individual bits in both the RAM and SFR area are also accessible. In the scratchpad RAM
area, registers 20h to 2Fh are bit addressable. This provides 128 (16 x 8) individual bits available to software. The type of instruction
distinguishes a bit access from a full register access. In the SFR area, any register location ending in a 0 or 8 is bit addressable.

Working Registers
As part of the lower 128 bytes of RAM, there are four banks of general-purpose working registers, each bank containing registers
R0–R7. The bank is selected by bits in the program status word register. Since there are four banks, the currently selected bank is used
by any instruction using R0–R7. This allows software to change context by switching banks. The working registers also allow their con-
tents to be used for indirect addressing of the upper 128 bytes of RAM. Thus, an instruction can designate the value stored in R0, for
example, to address the upper RAM. This value might be the result of another calculation.

Stack
Another use of the scratchpad area is for the programmer’s stack. This area is selected using the stack pointer (SP: 81h) SFR.
Whenever a call or interrupt is invoked, the return address is placed on the stack. It also is available to the programmer for variables,
etc. The stack pointer defaults to 07h on reset, but can be relocated as needed. A convenient location would be the upper RAM area
(> 7Fh), since this is only available indirectly. The SP points to the last used value. Therefore, the next value placed on the stack is put
at SP + 1. Each PUSH or CALL increments the SP by the appropriate value. Each POP or RET decrements, as well.

The DS80C400 supports an optional 10-bit (1kB) stack. This greatly increases programming efficiency and allows the device to sup-
port large programs. When enabled by setting the stack address (SA) bit in the ACON register, 1kB of the internal SRAM is allocated
for use as the stack. The 10-bit address is formed by concatenating the lower 2 bits of the extended stack pointer (ESP: 9Bh) and the
8-bit stack pointer (SP: 81h). The exact address of the 1kB is dependent on the setting of the IDM1-0 bits.

SPECIAL-FUNCTION REGISTER MAPS
Most of the unique features of the high-speed microcontroller family are controlled by bits in SFRs located in unused locations in the
8052 SFR map. This allows for increased functionality, while maintaining complete instruction set compatibility. The SFRs reside in reg-
ister locations 80h–FFh and are accessed using direct addressing. SFRs that end in 0h or 8h are bit addressable.

The Special Function Register Map table indicates the names and locations of the SFRs used by the DS80C400. The Special Function
Register Location table shows individual bits in those registers. Bits protected by the timed-access function are shaded. The Special
Function Register Reset Values table indicates the reset state of all SFR bits. Following these tables is a complete description of
DS80C400 SFRs that are new to the 8051 architecture, or have new or modified functionality.

SPECIAL-FUNCTION REGISTER MAP

SPECIAL-FUNCTION REGISTER LOCATION

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 18

START
ADDRESS

SFR NAMES
END

ADDRESS
80 P4 SP DPL DPH DPL1 DPH1 DPS PCON 87
88 TCON TMOD TL0 TL1 TH0 TH1 CKCON 8F
90 P1 EXIF P4CNT DPX DPX1 C0RMS0 C0RMS1 97
98 SCON0 SBUF0 ESP AP ACON C0TMA0 C0TMA1 9F
A0 P2 P5 P5CNT C0C C0S C0IR C0TE C0RE A7
A8 IE SADDR0 SADDR1 C0M1C C0M2C C0M3C C0M4C C0M5C AF
B0 P3 P6 P6CNT C0M6C C0M7C C0M8C C0M9C C0M10C B7
B8 IP SADEN0 SADEN1 C0M11C C0M12C C0M13C C0M14C C0M15C BF
C0 SCON1 SBUF1 PMR STATUS MCON TA C7
C8 T2CON T2MOD RCAP2L RCAP2H TL2 TH2 COR CF
D0 PSW MCNT0 MCNT1 MA MB MC MCON1 MCON2 D7
D8 WDCON SADDR2 BPA1 BPA2 BPA3 DF
E0 ACC OCAD CSRD CSRA EBS BCUD BCUC E7
E8 EIE MXAX DPX2 DPX3 OWMAD OWMDR EF
F0 B SADEN2 DPL2 DPH2 DPL3 DPH3 DPS1 STATUS1 F7
F8 EIP P7 TL3 TH3 T3CM SCON2 SBUF2 FF

REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS

P4 80h

SP 81h

DPL 82h

DPH 83h

DPL1 84h

DPH1 85h

DPS ID1 ID0 TSL AID SEL1 — — SEL 86h

PCON SMOD_0 SMOD0 OFDF OFDE GF1 GF0 STOP IDLE 87h

TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 88h

TMOD GATE C/ T M1 M0 GATE C/T M1 M0 89h

TL0 8Ah

TL1 8Bh

TH0 8Ch

TH1 8Dh

CKCON WD1 WD0 T2M T1M T0M MD2 MD1 MD0 8Eh

P1 90h

EXIF IE5 IE4 IE3 IE2 CKRY RGMD RGSL BGS 91h

P4CNT — — P4CNT.5 P4CNT.4 P4CNT.3 P4CNT.2 P4CNT.1 P4CNT.0 92h

DPX 93h

DPX1 95h

C0RMS0* 96h

C0RMS1* 97h

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

19 ___

REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS

SCON0 SM0/FE_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 98h

SBUF0 99h

ESP — — — — — — ESP.1 ESP.0 9Bh

AP 9Ch

ACON — — MROM BPME BROM SA AM1 AM0 9Dh

C0TMA0* 9Eh

C0TMA1* 9Fh

P2 A0h

P5 A1h

P5CNT* — CAN0BA — — C0_I/O P5CNT.2 P5CNT.1 P5CNT.0 A2h

C0C* ERIE STIE PDE SIESTA CRST AUTOB ERCS SWINT A3h

C0S* BSS EC96/128 WKS RXS TXS ER2 ER1 ER0 A4h

C0IR* INTIN7 INTIN6 INTIN5 INTIN4 INTIN3 INTIN2 INTIN1 INTIN0 A5h

C0TE* A6h

C0RE* A7h

IE EA ES1 ET2 ES0 ET1 EX1 ET0 EX0 A8h

SADDR0 A9h

SADDR1 AAh

C0M1C* MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP ABh

C0M2C* MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP ACh

C0M3C* MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP ADh

C0M4C* MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP AEh

C0M5C* MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP AFh

P3 B0h

P6 B1h

P6CNT — — P6CNT.5 P6CNT.4 P6CNT.3 P6CNT.2 P6CNT.1 P6CNT.0 B2h

C0M6C* MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP B3h

C0M7C* MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP B4h

C0M8C* MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP B5h

C0M9C* MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP B6h

C0M10C* MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP B7h

IP — PS1 PT2 PS0 PT1 PX1 PT0 PX0 B8h

SADEN0 B9h

SADEN1 BAh

C0M11C* MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP BBh

C0M12C* MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP BCh

C0M13C* MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP BDh

C0M14C* MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP BEh

C0M15C* MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP BFh

SCON1 SM0/FE_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TI_1 RI_1 C0h

SBUF1 C1h

PMR CD1 CD0 SWB CTM 4X/2X ALEOFF — — C4h

STATUS PIP HIP LIP — SPTA1 SPRA1 SPTA0 SPRA0 C5h

MCON* IDM1 IDM0 CMA — PDCE3 PDCE2 PDCE1 PDCE0 C6h

TA C7h

T2CON TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2 C8h

T2MOD — — — D13T1 D13T2 — T2OE DCEN C9h

SPECIAL-FUNCTION REGISTER LOCATION (CONTINUED)

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 20

REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS

RCAP2L CAh

RCAP2H CBh

TL2 CCh

TH2 CDh

COR* IRDACK — — C0BPR7 C0BPR6 COD1 COD0 XCLKOE CEh

PSW CY AC F0 RS1 RS0 OV F1 P D0h

MCNT0 LSHIFT CSE SCE MAS4 MAS3 MAS2 MAS1 MAS0 D1h

MCNT1 MST MOF SCB CLM — — — — D2h

MA D3h

MB D4h

MC D5h

MCON1* IRAMD PRAME — — PDCE7 PDCE6 PDCE5 PDCE4 D6h

MCON2* WPIF WPR2 WPR1 WPR0 WPE3 WPE2 WPE1 WPE0 D7h

WDCON SMOD_1 POR EPF1 PF1 WDIF WTRF EWT RWT D8h

SADDR2 D9h

BPA1 DAh

BPA2 DBh

BPA3 DCh

ACC E0h

OCAD E1h

CSRD E3h

CSRA E4h

EBS FPE RBF — BS4 BS3 BS2 BS1 BS0 E5h

BCUD E6h

BCUC BUSY EPMF TIF RIF BC3 BC2 BC1 BC0 E7h

EIE* EPMIE C0IE EAIE EWDI EWPI ES2 ET3 EX2-5 E8h

MXAX EAh

DPX2 EBh

DPX3 EDh

OWMAD — — — — — A2 A1 A0 EEh

OWMDR EFh

B F0h

SADEN2 F1h

DPL2 F2h

DPH2 F3h

DPL3 F4h

DPH3 F5h

DPS1 ID3 ID2 — — — — — — F6h

STATUS1 — — — — V1PF V3PF SPTA2 SPRA2 F7h

EIP* EPMIP C0IP EAIP PWDI PWPI PS2 PT3 PX2-5 F8h

P7 F9h

TL3 FBh

TH3 FCh

T3CM TF3 TR3 T3M SMOD_2 GATE C/T3 M1 M0 FDh

SCON2 SM0/FE_2 SM1_2 SM2_2 REN_2 TB8_2 RB8_2 TI_2 RI_2 FEh

SBUF2 FFh

*Bits in this SFR may have different functions depending on the specific device. Consult the SFR description for details.

SPECIAL-FUNCTION REGISTER LOCATION (CONTINUED)

SPECIAL-FUNCTION REGISTER RESET VALUES

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

21 ___

REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS

P4 1 1 1 1 1 1 1 1 80h

SP 0 0 0 0 0 1 1 1 81h

DPL 0 0 0 0 0 0 0 0 82h

DPH 0 0 0 0 0 0 0 0 83h

DPL1 0 0 0 0 0 0 0 0 84h

DPH1 0 0 0 0 0 0 0 0 85h

DPS 0 0 0 0 0 1 0 0 86h

PCON 0 0 SPECIAL 0 0 0 0 0 87h

TCON 0 0 0 0 0 0 0 0 88h

TMOD 0 0 0 0 0 0 0 0 89h

TL0 0 0 0 0 0 0 0 0 8Ah

TL1 0 0 0 0 0 0 0 0 8Bh

TH0 0 0 0 0 0 0 0 0 8Ch

TH1 0 0 0 0 0 0 0 0 8Dh

CKCON 0 0 0 0 0 0 0 1 8Eh

P1 1 1 1 1 1 1 1 1 90h

EXIF 0 0 0 0 SPECIAL SPECIAL SPECIAL 0 91h

P4CNT 1 1 1 1 1 1 1 1 92h

DPX 0 0 0 0 0 0 0 0 93h

DPX1 0 0 0 0 0 0 0 0 95h

C0RMS0* 0 0 0 0 0 0 0 0 96h

C0RMS1* 0 0 0 0 0 0 0 0 97h

SCON0 0 0 0 0 0 0 0 0 98h

SBUF0 0 0 0 0 0 0 0 0 99h

ESP 1 1 1 1 1 1 0 0 9Bh

AP 0 0 0 0 0 0 0 0 9Ch

ACON 1 1 0 0 SPECIAL 0 0 0 9Dh

C0TMA0* 0 0 0 0 0 0 0 0 9Eh

C0TMA1* 0 0 0 0 0 0 0 0 9Fh

P2 1 1 1 1 1 1 1 1 A0h

P5 1 1 1 1 1 1 1 1 A1h

P5CNT* 1 0 0 0 0 0 0 0 A2h

C0C* 0 0 0 0 1 0 0 1 A3h

C0S* 0 0 0 0 0 0 0 0 A4h

C0IR* 0 0 0 0 0 0 0 0 A5h

C0TE* 0 0 0 0 0 0 0 0 A6h

C0RE* 0 0 0 0 0 0 0 0 A7h

IE 0 0 0 0 0 0 0 0 A8h

SADDR0 0 0 0 0 0 0 0 0 A9h

SADDR1 0 0 0 0 0 0 0 0 AAh

C0M1C* 0 0 0 0 0 0 0 0 ABh

C0M2C* 0 0 0 0 0 0 0 0 ACh

C0M3C* 0 0 0 0 0 0 0 0 ADh

C0M4C* 0 0 0 0 0 0 0 0 AEh

C0M5C* 0 0 0 0 0 0 0 0 AFh

P3 1 1 1 1 1 1 1 1 B0h

P6 1 1 1 1 1 1 1 1 B1h

P6CNT 0 0 0 0 0 0 0 0 B2h

C0M6C* 0 0 0 0 0 0 0 0 B3h

C0M7C* 0 0 0 0 0 0 0 0 B4h

C0M8C* 0 0 0 0 0 0 0 0 B5h

C0M9C* 0 0 0 0 0 0 0 0 B6h

C0M10C* 0 0 0 0 0 0 0 0 B7h

SPECIAL-FUNCTION REGISTER RESET VALUES (CONTINUED)

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 22

REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS

IP 1 0 0 0 0 0 0 0 B8h

SADEN0 0 0 0 0 0 0 0 0 B9h

SADEN1 0 0 0 0 0 0 0 0 BAh

C0M11C* 0 0 0 0 0 0 0 0 BBh

C0M12C* 0 0 0 0 0 0 0 0 BCh

C0M13C* 0 0 0 0 0 0 0 0 BDh

C0M14C* 0 0 0 0 0 0 0 0 BEh

C0M15C* 0 0 0 0 0 0 0 0 BFh

SCON1 0 0 0 0 0 0 0 0 C0h

SBUF1 0 0 0 0 0 0 0 0 C1h

PMR 1 0 0 0 0 0 1 1 C4h

STATUS 0 0 0 1 0 0 0 0 C5h

MCON* 0 0 0 1 0 0 0 0 C6h

TA 1 1 1 1 1 1 1 1 C7h

T2CON 0 0 0 0 0 0 0 0 C8h

T2MOD 1 1 0 0 0 1 0 0 C9h

RCAP2L 0 0 0 0 0 0 0 0 CAh

RCAP2H 0 0 0 0 0 0 0 0 CBh

TL2 0 0 0 0 0 0 0 0 CCh

TH2 0 0 0 0 0 0 0 0 CDh

COR* 0 1 1 0 0 0 0 0 CEh

PSW 0 0 0 0 0 0 0 0 D0h

MCNT0 0 0 0 0 0 0 0 0 D1h

MCNT1 0 0 0 0 1 1 1 1 D2h

MA 0 0 0 0 0 0 0 0 D3h

MB 0 0 0 0 0 0 0 0 D4h

MC 0 0 0 0 0 0 0 0 D5h

MCON1 SPECIAL SPECIAL 1 1 0 0 0 0 D6h

MCON2 0 0 0 0 0 0 0 0 D7h

WDCON 0 SPECIAL 0 SPECIAL 0 SPECIAL SPECIAL 0 D8h

SADDR2 0 0 0 0 0 0 0 0 D9h

BPA1 0 0 0 0 0 0 0 0 DAh

BPA2 0 0 0 0 0 0 0 0 DBh

BPA3 0 0 0 0 0 0 0 0 DCh

ACC 0 0 0 0 0 0 0 0 E0h

OCAD 0 0 0 0 0 0 0 0 E1h

CSRD 0 0 0 0 0 0 0 0 E3h

CSRA 0 0 0 0 0 0 0 0 E4h

EBS 0 1 1 0 0 0 0 0 E5h

BCUD 0 0 0 0 0 0 0 0 E6h

BCUC 0 0 0 0 0 0 0 0 E7h

EIE* 0 0 0 0 0 0 0 0 E8h

MXAX 0 0 0 0 0 0 0 0 EAh

DPX2 0 0 0 0 0 0 0 0 EBh

DPX3 0 0 0 0 0 0 0 0 EDh

OWMAD 0 0 0 0 0 1 1 1 EEh

OWMDR 0 0 0 0 0 0 0 0 EFh

B 0 0 0 0 0 0 0 0 F0h

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

23 ___

REGISTER BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 ADDRESS

SADEN2 0 0 0 0 0 0 0 0 F1h

DPL2 0 0 0 0 0 0 0 0 F2h

DPH2 0 0 0 0 0 0 0 0 F3h

DPL3 0 0 0 0 0 0 0 0 F4h

DPH3 0 0 0 0 0 0 0 0 F5h

DPS1 0 0 1 1 1 1 1 1 F6h

STATUS1 1 1 1 1 0 0 0 0 F7h

EIP* 0 0 0 0 0 0 0 0 F8h

P7 1 1 1 1 1 1 1 1 F9h

TL3 0 0 0 0 0 0 0 0 FBh

TH3 0 0 0 0 0 0 0 0 FCh

T3CM 0 0 0 0 0 0 0 0 FDh

SCON2 0 0 0 0 0 0 0 0 FEh

SBUF2 0 0 0 0 0 0 0 0 FFh

*Bits in this SFR may have different functions depending on the specific device. Consult the SFR description for details.

SPECIAL-FUNCTION REGISTER RESET VALUES (CONTINUED)

SPECIAL-FUNCTION REGISTERS
The DS80C400 has many unique features as compared to the standard 8052 microcontroller. These features are controlled by use of
the SFRs located in the unused locations of the 8052 SFR map. While maintaining complete instruction set compatibility with the 8052,
increased functionality is achieved with the DS80C400. The description for each bit indicates its read and write access, as well as its
reset state.

P4.7–0 Port 4 bit 7–0. This port is composed of eight pins that are user programmable as I/O, extended
program memory chip enables, or extended address lines. The configuration of the eight pins is
established through the programming of the port 4 control register (P4CNT). Following a reset,
and if EA is low, P4.3–P4.1 are driven high and are assigned as chip enables; port pins P4.7–P4.4
and P4.0 are cleared to low state and are assigned as addresses and chip enable, respectively.
Additional information on external memory interfacing is found in the port 4 control register SFR
description and later sections of this user’s guide supplement.

Programmable parallel port. When programmed to function as a general I/O port (through
the P4CNT.7–P4CNT.0 in the port 4 control register), data written to the P4.7–P4.0 SFR bits results
in setting the port I/O configuration, as well as setting the state on the corresponding port pin. A 1
written to a port 4 latch, previously programmed low (0), activates a high-current, one-shot pullup
on the corresponding pin. This is followed by a static, low-current pullup, which remains on until
the port is changed again. The final high state of the port pin is considered a pseudo-input mode,
and can be easily overdriven from an external source. Port latches previously in a high-output state
do not change, nor does the high-current one-shot fire when a 1 is loaded. Loading a 0 to a port
latch results in a static, high-current pulldown on the corresponding pin. This mode is termed the
I/O output state, since no weak devices are used to drive the pin. Port 4 pins, which have previously
been assigned to function as an external memory interface (by the PCNT.7–PCNT.0 control bits),
are not altered by a write to the port 4 SFR register.

Port 4 alternate function. Port 4 alternate function is established through the programming
of the port 4 control register.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 24

7 6 5 4 3 2 1 0

SFR 80h
P4.7
A19

P4.6
A18

P4.5
A17

P4.4
A16

P4.3
CE3

P4.2
CE2

P4.1
CE1

P4.0
CE0

RW-0 RW-0 RW-0 RW-0 RW-1 RW-1 RW-1 RW-1

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Port 4 (P4)

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

25 ___

A19 Program/data memory address 19. When this bit is set to logic 1 and the P4CNT register is Bit 7
configured correctly, the corresponding device pin represents the A19 memory signal.

A18 Program/data memory address 18. When this bit is set to logic 1 and the P4CNT register is Bit 6
configured correctly, the corresponding device pin represents the A18 memory signal.

A17 Program/data memory address 17. When this bit is set to logic 1 and the P4CNT register is Bit 5
configured correctly, the corresponding device pin represents the A17 memory signal.

A16 Program/data memory address 16. When this bit is set to logic 1 and the P4CNT register is Bit 4
configured correctly, the corresponding device pin represents the A16 memory signal.

CE3 Program memory chip enable 3. When this bit is set to logic 1 and the P4CNT register is
Bit 3 configured correctly, the corresponding device pin represents the memory signal.

CE2 Program memory chip enable 2. When this bit is set to logic 1 and the P4CNT register is
Bit 2 configured correctly, the corresponding device pin represents the memory signal.

CE1 Program memory chip enable 1. When this bit is set to logic 1 and the P4CNT register is
Bit 1 configured correctly, the corresponding device pin represents the memory signal.

CE0 Program memory chip enable 0. When this bit is set to logic 1 and the P4CNT register is
Bit 0 configured correctly, the corresponding device pin represents the memory signal.

SP.7–0 Stack pointer. This stack pointer identifies current location of the stack. The stack pointer is
Bits 7–0 incremented before every PUSH operation. This register defaults to 07h after reset. The reset value

is used when the stack is in 8051 stack mode. When the 10-bit stack is enabled (SA = 1), this reg-
ister is combined with the extended stack pointer (ESP: 9Bh) to form the 10-bit address.

DPL.7–0 Data pointer low 0. This register is the low byte of the standard 8051 data pointer and contains
Bits 7–0 the low-order byte of the 24-bit data address. The data pointer low byte 0 is cleared to 00h on all

forms of reset.

DPH.7–0 Data pointer high 0. This register is the high byte of the standard 8051 data pointer and
Bits 7–0 contains the middle-order byte of the 24-bit data address. The data pointer high byte 0 is cleared

to 00h on all forms of reset.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 26

7 6 5 4 3 2 1 0

SFR 83h DPH.7 DPH.6 DPH.5 DPH.4 DPH.3 DPH.2 DPH.1 DPH.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Data Pointer High 0 (DPH)

7 6 5 4 3 2 1 0

SFR 81h SP.7 SP.6 SP.5 SP.4 SP.3 SP.2 SP.1 SP.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-1 RW-1 RW-1

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Stack Pointer (SP)

7 6 5 4 3 2 1 0

SFR 82h DPL.7 DPL.6 DPL.5 DPL.4 DPL.3 DPL.2 DPL.1 DPL.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Data Pointer Low 0 (DPL)

DPL1.7–0 Data pointer low 1. This register is the low byte of auxiliary data pointer 1 and contains the
Bits 7-0 low-order byte of the 24-bit data address. When the SEL1: 0 bits (DPS.1:0) are set to 01b, DPX1,

DPL1 and DPH1 are used during DPTR operations. The data pointer low byte 1 is cleared to 00h
on all forms of reset.

DPH1.7–0 Data pointer high 1. This register is the high byte of auxiliary data pointer 1 and contains the Bits
7–0 middle-order byte of the 24-bit data address. When the SEL1:0 bits (DPS1:0) are set to 01b, DPX1,

DPL1 and DPH1 are used during DPTR operations. The data pointer high byte 1 is cleared to 00h
on all forms of reset.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

27 ___

7 6 5 4 3 2 1 0

SFR 85h DPH1.7 DPH1.6 DPH1.5 DPH1.4 DPH1.3 DPH1.2 DPH1.1 DPH1.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Data Pointer High 1 (DPH1)

7 6 5 4 3 2 1 0

SFR 84h DPL1.7 DPL1.6 DPL1.5 DPL1.4 DPL1.3 DPL1.2 DPL1.1 DL1H.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Data Pointer Low 1 (DPL1)

ID1, ID0 Increment/decrement function select. These bits define whether the INC DTPR
Bits 7-6 instruction 7-6increments or decrements the active data pointer when DPTR1 or DPTR are

selected by the SEL1, SEL bits.

ID1 ID0 SEL1, SEL = 00 SEL1, SEL = 01
0 0 Increment DPTR Increment DPTR1
0 1 Decrement DPTR Increment DPTR1
1 0 Increment DPTR Decrement DPTR1
1 1 Decrement DPTR Decrement DPTR1

TSL Toggle select enable. When set, this bit allows the following five DPTR-related instructions to
Bit 5 toggle the SEL bit, followingexecution of the instruction. When TSL = 0, DPTR-related instructions

do not affect the state of the SEL bit. DPTR-related instructions are:

INC DPTRz
MOV DPTR, #data16
MOVC A, @A+DPTR
MOVX @DPTR, A
MOVX A, @DPTR

AID Automatic increment/decrement enable. This bit allows three of the DPTR-related
Bit 4 instructions to increment (or decrement) the content of the active DPTR, if enabled. The

actual function (increment or decrement) is dependent on the setting of the ID3, ID2, ID1,
and ID0 bits. The active data pointer is incremented (or decremented) by 1 after execution
of DPTR-related instruction when AID bit is set to logic 1. When AID is cleared to 0, a DPTR-
related instruction does not affect the content of the active DPTR.

This option is affected by the following instructions:

MOVC A, @A+SPTR
MOVX @SPTR, A
MOVX A, @DPTR

Reserved Reserved. (Returns 10b when read.) These bits are needed to prevent carry passing through the
Bits 2, 1 other SFR bits in the register when using INC DPS to toggle the pointer selection.

SEL1, SEL Data pointer select 1, data pointer select. These bits select the active data pointer.
Bits 3, 0

SEL1, SEL = 00: Use DPX, DPH and DPL as DPTR

SEL1, SEL = 01: Use DPX1, DPH1 and DPL1 as DPTR

SEL1, SEL = 10: Use DPX2, DPH2 and DPL2 as DPTR

SEL1, SEL = 11: Use DPX3, DPH3 and DPL3 as DPTR

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 28

7 6 5 4 3 2 1 0

SFR 86h ID1 ID0 TSL AID SEL1 — — SEL

RW-0 RW-0 RW-0 R-0 R-0 R-1 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Data Pointer Select (DPS)

SMOD_0 Serial port 0 baud-rate doubler enable. This bit enables/disables the serial baud-rate doubling
Bit 7 function for serial port 0.

0 = Serial port 0 baud rate is defined by the baud-rate generation equation.

1 = Serial port 0 baud rate is double that defined by the baud-rate generation equation.

SMOD0 Framing error detection enable. This bit selects the function of the SCON0.7 and SCON1.7, and
Bit 6 SCON2.7.

SMOD0 = 0: SCON0.7, SCON1.7, and SCON2.7 function as SM0 as defined for serial port control
registers.

SMOD0 = 1: SCON0.7, SCON1.7, and SCON2.7 are converted to the framing error (FE) flag for the
respective serial port.

OFDF Oscillator fail-detect flag. When set, this bit indicates that the preceding reset was caused by the
Bit 5 detection of the crystal oscillator frequency falling below approximately 30kHz, if OFDE = 1. OFDF

bit must be cleared by software, and it is not altered by the crystal oscillator frequency falling below
30kHz when OFDE = 0. OFDF is not set when the processor forces the crystal to stop operation
by the stop mode.

OFDE Oscillator fail-detect enable. When the OFDE = 1, a system reset is generated any time the
Bit 4 crystal oscillator frequency falls below approximately 30kHz. This bit does not force a reset when

the oscillator is stopped by the software-enabled stop mode, or if the crystal is stopped when the
processor is running from the internal ring oscillator. When the OFDE bit is cleared to logic 0, no
reset is issued when the crystal falls below the 30kHz.

GF1 General-purpose user flag 1. This is a bit-addressable, general-purpose flag for software
Bit 3 control.

GF0 General-purpose user flag 0. This is a bit-addressable, general-purpose flag for software
Bit 2 control.

STOP Stop mode select. Setting this bit stops program execution, halts the CPU oscillator and internal
Bit 1 timers, and places the CPU in a low-power mode. This bit is cleared and operation is resumed by

an external reset, or execution of an enabled external interrupt. This bit is always read as 0. Setting
this bit while IDLE = 1 places the device in an undefined state. Setting this bit also clears the CTM
bit. This bit cannot be set while either CAN module is active, i.e., SWINT = CRST = PDE = 0. The fol-
lowing sequence should be used to activate Stop mode: (1) set (CRST or SWINT or PDE) = 1 for
both CANs, (2) clear all CAN bus activity bits for both CANs, (3) set STOP = 1.

IDLE Idle mode select. Setting this bit stops program execution, but leaves the CPU oscillator, timers,
Bit 0 serial ports, and interrupts active. This bit is cleared by a reset, or any of the external interrupts,

and resumes normal program execution.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

29 ___

7 6 5 4 3 2 1 0

SFR 87h SMOD_0 SMOD0 OFDF ODFE GF1 GF0 STOP IDLE

RW-0 RW-0 RW-0* RW-0 RW-0 RW-0 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset, * = See description

Power Control (PCON)

TF1 Timer 1 overflow flag. This bit indicates when timer 1 overflows its maximum count as defined
Bit 7 by the current mode. This bit can be cleared by software and is automatically cleared when the

CPU vectors to the timer 1 interrupt service routine.

0 = No timer 1 overflow has been detected.
1 = Timer 1 has overflowed its maximum count.

TR1 Timer 1 run control. This bit enables/disables the operation of timer 1.
Bit 6

0 = Timer 1 is halted.
1 = Timer 1 is enabled.

TF0 Timer 0 overflow flag. This bit indicates when timer 0 overflows its maximum count as defined
Bit 5 by the current mode. This bit can be cleared by software and is automatically cleared when the

CPU vectors to the timer 0 interrupt service routine, or by software.

0 = No timer 0 overflow has been detected.

1 = Timer 0 has overflowed its maximum count.

TR0 Timer 0 run control. This bit enables/disables the operation of timer 0.
Bit 4

0 = Timer 0 is halted.
1 = Timer 0 is enabled.

IE1 Interrupt 1 edge detect. This bit is set when an edge/level of the type defined by IT1 is
Bit 3 detected. If IT1 = 1, this bit remains set until cleared in software or until the start of the external

interrupt 1 service routine. If IT1 = 0, this bit inversely reflects the state of the INT1 pin.

IT1 Interrupt 1 type select. This bit selects whether the INT1 pin detects edge- or level-triggered
Bit 2 interrupts.

0 = INT1 is level triggered.
1 = INT1 is edge triggered.

IE0 Interrupt 0 edge detect. This bit is set when an edge/level of the type defined by IT0 is
Bit 1 detected. If IT0 = 1, this bit remains set until cleared in software or the start of the external inter-

rupt 0 service routine. If IT0 = 0, this bit inversely reflects the state of the INT0 pin.

IT0 Interrupt 0 type select. This bit selects whether the INT0 pin detects edge- or level-triggered
Bit 0 interrupts.

0 = INT0 is level triggered.
1 = INT0 is edge triggered.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 30

7 6 5 4 3 2 1 0

SFR 88h TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Timer/Counter Control (TCON)

GATE Timer 1 gate control. This bit enables/disables the ability of timer 1 to increment.
Bit 7

0 = Timer 1 clocks when TR1 = 1, regardless of the state of INT1.
1 = Timer 1 clocks only when TR1 = 1 and INT1 = 1.

C/T Timer 1 counter/timer select.
Bit 6

0 = Timer 1 is incremented by internal clocks.
1 = Timer 1 is incremented by pulses on T1 when TR1 (TCON.6) is 1.

M1, M0 Timer 1 mode select. These bits select the operating mode of timer 1.
Bits 5-4

M1 M0 Mode
0 0 Mode 0: 8 bits with 5-bit prescale
0 1 Mode 1: 16 bits
1 0 Mode 2: 8 bits with autoreload
1 1 Mode 3: Timer 1 is halted, but holds its count

GATE Timer 0 gate control. This bit enables/disables the ability of timer 0 to increment.
Bit 3

0 = Timer 0 clocks when TR0 = 1, regardless of the state of INT0.
1 = Timer 0 clocks only when TR0 = 1 and INT0 = 1.

C/T Timer 0 counter/timer select.
Bit 2

0 = Timer incremented by internal clocks.
1 = Timer 0 is incremented by pulses on T0 when TR0 (TCON.4) is 1.

M1, M0 Timer 0 mode select. These bits select the operating mode of timer 0. When timer 0 is in mode 3,
Bits 1-0 TL0 is started/stopped by TR0 and TH0 is started/stopped by TR1. Run control from timer 1 is then

provided through the timer 1 mode selection.

M1 M0 Mode

0 0 Mode 0: 8 bits with 5-bit prescale

0 1 Mode 1: 16 bits

1 0 Mode 2: 8 bits with autoreload

1 1 Mode 3: Two 8-bit timers for timer 0;

timer 1 is stopped.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

31 ___

7 6 5 4 3 2 1 0

SFR 89h GATE C/T M1 M0 GATE C/T M1 M0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0
R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Timer Mode Control (TMOD)

TL0.7–0 Timer 0 LSB. This register contains the least significant byte of timer 0.
Bits 7–0

TL1.7–0 Timer 1 LSB. This register contains the least significant byte of timer 1.
Bits 7–0

TH0.7–0
Bits 7–0 Timer 0 MSB. This register contains the most significant byte of timer 0.

TH1.7–0
Bits 7–0 Timer 1 MSB. This register contains the most significant byte of timer 1.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 32

7 6 5 4 3 2 1 0

SFR 8Ah TL0.7 TL0.6 TL0.5 TL0.4 TL0.3 TL0.2 TL0.1 TL0.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Timer 0 LSB (TL0)

7 6 5 4 3 2 1 0

SFR 8Bh TL1.7 TL1.6 TL1.5 TL1.4 TL1.3 TL1.2 TL1.1 TL1.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Timer 1 LSB (TL1)

7 6 5 4 3 2 1 0

SFR 8Ch TH0.7 TH0.6 TH0.5 TH0.4 TH0.3 TH0.2 TH0.1 TH0.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Timer 0 MSB (TH0)

7 6 5 4 3 2 1 0

SFR 8Dh TH1.7 TH1.6 TH1.5 TH1.4 TH1.3 TH1.2 TH1.1 TH1.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Timer 1 MSB (TH1)

WD1, WD0 Watchdog timer mode select 1-0. These bits are used to select watchdog timeout periods
Bits 7-6 for the watchdog timer function. The watchdog timer generates interrupt timeout at this periodic

rate, when enabled. All watchdog timer reset timeouts follow the interrupt timeouts by 512 system
clock cycles.

The system clock relates to the external clock as follows:

T2M Timer 2 clock select. This bit controls the division of the system clock that drives timer 2. This
Bit 5 bit has no effect when the timer is in baud-rate generator or clock output modes. Clearing this bit

to 0 maintains 8051 compatibility. This bit has no effect on instruction cycle timing.

0 = Timer 2 uses a divide-by-12 of the crystal frequency.
1 = Timer 2 uses a divide-by-4 of the system clock frequency.

T1M Timer 1 clock select. This bit controls the division of the system clock that drives timer 1.
Bit 4 Clearing this bit to 0 maintains 8051 compatibility. This bit has no effect on instruction cycle timing.

0 = Timer 1 uses a divide-by-12 of the crystal frequency.
1 = Timer 1 uses a divide-by-4 of the system clock frequency.

T0M Timer 0 clock select. This bit controls the division of the system clock that drives timer 0.
Bit 3 Clearing this bit to 0 maintains 8051 compatibility. This bit has no effect on instruction cycle timing.

0 = Timer 0 uses a divide-by-12 of the crystal frequency.
1 = Timer 0 uses a divide-by-4 of the system clock frequency.

MD2, MD1, MD0 Stretch MOVX select 2-0. These bits select the control timing for external MOVX instructions. All
Bits 2-0 internal MOVX instructions to the internal MOVX SRAM, as well as CAN 0 data memory registers,

occur at the fastest two-machine cycle rate. The internal MOVX rate to the SRAM is not programmable.

CLOCK MODE
EXTERNAL CLOCKS PER

SYSTEM CLOCK

Frequency multiplier (4x) 0.25

Frequency multiplier (2x) 0.5

Divide-by-4 1

Power-management mode 256

WD1 WD0
INTERRUPT

TIMEOUT
RESET TIMEOUT

0 0 217 system clocks 217 + 512 system clocks

0 1 220 system clocks 220 + 512 system clocks

1 0 223 system clocks 223 + 512 system clocks

1 1 226 system clocks 226 + 512 system clocks

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

33 ___

7 6 5 4 3 2 1 0

SFR 8Eh WD1 WD0 T2M T1M T0M MD2 MD1 MD0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-1

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Clock Control (CKCON)

P1.7–0 General-purpose I/O port 1. When serving as a general-purpose I/O port, all the pins have an
Bits 7–0 alternative function as described later. P1.2–7 contains functions that are new to the 80C32 archi-

tecture. The timer 2 functions on pins P1.1-0 are available on the 80C32, but not on the 80C31.
Each of the functions is controlled by several other SFRs. The associated port 1 latch bit must con-
tain a logic 1 before the pin can be used in its alternate function capacity.

INT5 External interrupt 5. A falling edge on this pin causes an external interrupt 5, if enabled.
Bit 7

INT4 External interrupt 4. A rising edge on this pin causes an external interrupt 4, if enabled.
Bit 6

INT3 External interrupt 3. A falling edge on this pin causes an external interrupt 3, if enabled.
Bit 5

INT2 External interrupt 2. A rising edge on this pin causes an external interrupt 2, if enabled.
Bit 4

TXD1 Serial port 1 transmit. This pin transmits the serial port 1 data in serial port modes 1, 2, and
Bit 3 3, and emits the synchronizing clock in serial port mode 0.

RXD1 Serial port 1 receive. This pin receives the serial port 1 data in serial port modes 1, 2, and 3,
Bit 2 and is a bidirectional data transfer pin in serial port mode 0.

T2EX Timer 2 capture/reload trigger. A 1-to-0 transition on this pin causes the value in the T2
Bit 1 registers to be transferred into the capture registers, if enabled by EXEN2 (T2CON.3). When in

autoreload mode, a 1-to-0 transition on this pin reloads the timer 2 registers with the value in
RCAP2L and RCAP2H, if enabled by EXEN2 (T2CON.3).

T2 Timer 2 external input. A 1-to-0 transition on this pin causes timer 2 increment or
Bit 0 decrement, depending on the timer configuration.

MD2 MD1 MD0
STRETCH

VALUE
MOVX DURATION

0 0 0 0 2 machine cycles

0 0 1 1
3 machine cycles
(reset default)

0 1 0 2 4 machine cycles

0 1 1 3 5 machine cycles

1 0 0 4 9 machine cycles

1 0 1 5 10 machine cycles

1 1 0 6 11 machine cycles

1 1 1 7 12 machine cycles

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 34

7 6 5 4 3 2 1 0

SFR 90h
P1.7
INT5

P1.6
INT4

P1.5
INT3

P1.4
INT2

P1.3
TXD1

P1.2
RXD1

P1.1
T2EX

P1.0
T2

RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Port 1 (P1)

IE5 External interrupt 5 flag. This bit is set when a falling edge is detected on INT5. This bit must be
Bit 7 cleared manually by software. Setting this bit in software causes an interrupt if enabled. Please

note that, when the EOWMI bit internal to the 1-Wire bus master is set to 1, the IE5 flag serves as
the 1-Wire bus master interrupt flag.

IE4 External interrupt 4 flag. This bit is set when a rising edge is detected on INT4. This bit must be
Bit 6 cleared manually by software. Setting this bit in software causes an interrupt, if enabled.

IE3 External interrupt 3 flag. This bit is set when a falling edge is detected on INT3. This bit must be
Bit 5 cleared manually by software. Setting this bit in software causes an interrupt, if enabled.

IE2 External interrupt 2 flag. This bit is set when a rising edge is detected on INT2. This bit must be
Bit 4 cleared manually by software. Setting this bit in software causes an interrupt, if enabled.

CKRY Clock ready. The CKRY bit indicates the status of the startup period delay used by the crystal
Bit 3 oscillator and the crystal clock multiplier warmup period. CKRY = 0 indicates the startup delay is

still counting. When the CKRY = 1, the counter has completed. This bit is cleared each time the
CTM bit in the PMR register is changed from low to high to start the crystal multiplier. Once the
CKRY is set, the lockout is removed on the CD1, CD0 bits to select the multiplied crystal clock as
a system clock source. This status bit is also cleared each time the crystal oscillator is restarted
when exiting stop mode.

RGMD Ring mode status. This bit indicates the current clock source for the device. This bit is cleared to
Bit 2 0 after a power-on reset, and is unchanged by all other forms of reset.

0 = Device is operating from the external crystal or oscillator.

1 = Device is operating from the ring oscillator.

RGSL Ring oscillator select. This bit selects the clock source following a resume from stop mode.
Bit 1 Using the ring oscillator to resume from stop mode allows almost instantaneous startup. This bit

is cleared to 0 after a power-on reset, and is unchanged by all other forms of reset. The state of
this bit is undefined on devices that do not incorporate a ring oscillator.

0 = The device holds operation until the crystal oscillator has warmed up.

1 = The device begins operating from the ring oscillator and, when the crystal warmup is complete,
it switches to the external clock source or oscillator.

BGS Bandgap select. This bit enables/disables the bandgap reference during stop mode. Disabling
Bit 0 the bandgap reference provides significant power savings in stop mode, but sacrifices the ability

to perform a power-fail interrupt or power-fail reset while stopped. This bit can only be modified
with a timed access procedure.

0 = The bandgap reference is disabled in stop mode, but functions during normal operation.

1 = The bandgap reference operates in stop mode.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

35 ___

7 6 5 4 3 2 1 0

SFR 91h IE5 IE4 IE3 IE2 CKRY RGMD RGSL BGS

RW-0 RW-0 RW-0 RW-0 R-* R-* RW-* RT-0

R = Unrestricted read, W = Unrestricted write, T = Timed-access write only, -n = Value after reset, * = Bits 1, 2 and 3 are cleared to 000b by a power-on reset, but are
unchanged by all other forms of reset.

External Interrupt Flag (EXIF)

P4CNT.5–0 Port 4 control register. P4CNT bits provide the configuration for the alternate addressing modes
on port 4 and 6. These settings, in turn, establish the size of the external program memory that can
be accessed. To prevent an unauthorized change in the external memory configuration, all writes
to the P4CNT must use the timed-access function. Programming the bit combinations given in this
section converts the designated port pins to I/O, address or chip enables. Once any bit combina-
tion containing a 1 is programmed into P4CNT.2-P4CNT.0, the corresponding port pins that are
then assigned to chip enables are locked out from being programmed as I/O in the port 4 SFR. In
a similar fashion, any bit combination containing a 1 programmed into P4CNT.5-P4CNT.3 locks out
the corresponding port pins (P6.5-P6.4, P4.7–P4.4) assigned to addresses. This allows the normal
use of the port SFR, without the concern that a byte write to the SFR alters any of the external chip
enables or addresses. Following a reset, the P4CNT is set to FFh, which, in turn, assigns all of the
port 4 and P6.5-4 pins to address bits and chip enables. This register should be programmed to
reflect the actual system memory configuration.

Bit 7 Reserved.

Bit 6 Reserved.

P4CNT.5-P4CNT.3 Port pin P6.5, P6.4, P4.7–4 configuration control bits for CEx. Bits 5-0 configure the external
memory control signals. P4CNT.5-3 determine whether specific P6 and P4 pins function as
A21–A16 or I/O. The number of external address lines enabled establishes the range for each pro
gram chip enable (CE0-3) and data chip enable (PCE0-3). When P4CNT.5-3 = 000b, CE0–CE3
are decoded on 32kB block boundaries.

CE0–CE7 can be individually configured as program or program/data memory by the MCON and
MCON1 SFRs. When CE0–CE7 are converted from program to program/data memory, PCE0–PCE3
are disabled if the corresponding data memory area is covered by CEx. The internally decoded
range for each program chip enable (CE0–CE7) is established by the number of external address
lines (A21–A16) enabled by the P4CNT.5–P4CNT.3 control bits. The following table outlines the
assigned memory boundaries of each chip enable (CEx) as determined by the P4CNT.5-P4CNT.3
control bits. (The memory boundaries of each peripheral chip enable (PCEx) are determined by
P6CNT.5-P6CNT.3.) Note that, when the external address bus is limited to A0–A15, the chip
enables are internally decoded on a 32kB x 8 block boundary. This is to allow the use of the more
common 32kB memories, as opposed to using a less common 64kB block size memory.

PORT PIN FUNCTION

P4CNT.5-3 P6.5 P6.4 P4.7 P4.6 P4.5 P4.4

MAX
MEMORY
SIZE PER

CEx

000 I/O I/O I/O I/O I/O I/O 32kB

001 I/O I/O I/O I/O I/O A16 128kB

010 I/O I/O I/O I/O A17 A16 256kB

011 I/O I/O I/O A18 A17 A16 512kB

100 I/O I/O A19 A18 A17 A16 1MB

101 I/O A20 A19 A18 A17 A16 2MB

110 or 111 A21 A20 A19 A18 A17 A16 4MB

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 36

7 6 5 4 3 2 1 0

SFR 92h - - P4CNT.5 P4CNT.4 P4CNT.3 P4CNT.2 P4CNT.1 P4CNT.0

RT-1 RT-1 RT-1 RT-1 RT-1 RT-1 RT-1 RT-1

R = Unrestricted read, T = Timed-access write only, -n = Value after reset

Port 4 Control Register (P4CNT)

Program Memory Chip-Enable Boundaries

P4CNT.2-P4CNT.0 Port pin P4.3–P4.0 configuration control bits. P4CNT.2-0 determines whether specific P4 pins
function as program chip-enable signals or I/O. The memory ranges for each CEx signal are deter-
mined by P4CNT.5-3. Note that, when the appropriate PDCEx bit (MCON.3–0) is set, the corre-
sponding CEx pin functions as a combined program/peripheral chip enable, and the respective
PCE0–PCE3 is disabled. CE4–CE7 are enabled via P6CNT.2–0.

CE0–CE3 CHIP-ENABLE FUNCTION SELECTION

DPX.7–0 Data pointer extended register 0. This register contains the high-order byte of the extend-
Bits 7–0 ed 24-bit address for data pointer 0. This register is used only in the 24-bit paged and contiguous

addressing modes. This register is not used for addressing the data memory in the 16-bit address
ing ing mode and, therefore, can be utilized as a scratchpad SRAM register.

DPX1.7–0 Data pointer extended register 1. This register contains the high-order byte of the
Bits 7–0 extended 24-bit address for auxiliary data pointer 1. This register is used only in the 24-bit paged

and contiguous addressing modes. This register is not used for addressing the data memory in the
16-bit addressing mode and, therefore, can be utilized as a scratchpad SRAM register.

P4CNT.2-0 P4.3 P4.2 P4.1 P4.0
000 I/O I/O I/O I/O
100 I/O I/O I/O CE0
101 I/O I/O CE1 CE0
110 I/O CE2 CE1 CE0
111 CE3 CE2 CE1 CE0

P4CNT.5-3 CE0 CE1 CE2 CE3 CE4 CE5 CE6 CE7

000 32K 32-64K 64-96K 96-128K 128-160K 160-192K 192-224K 224-256K

001 128K 128-256K 256-384K 384-512K 512-640K 640-768K 768-896K 896-1024K

010 256K 256-512K 512-768K 768-1024K 1024-1280K 1280-1536K 1536-1792K 1792-2048K

011 512K .512-1M 1-1.5M 1.5-2M 2-2.5M 2.5-3M 3-3.5M 3.5-4M

100 1M 1-2M 2-3M 3-4M 4-5M 5-6M 6-7M 7-8M

101 2M 2-4M 4-6M 6-8M 8-10M 10-12M 12-14M 14-16M

110 or 111 4M 4-8M 8-12M 12-16M — — — —

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

37 ___

7 6 5 4 3 2 1 0

SFR 93h DPX.7 DPX.6 DPX.5 DPX.4 DPX.3 DPX.2 DPX.1 DPX.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Data Pointer Extended Register 0 (DPX)

7 6 5 4 3 2 1 0

SFR 95h DPX1.7 DPX1.6 DPX1.5 DPX1.4 DPX1.3 DPX1.2 DPX1.1 DPX1.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Data Pointer Extended Register 1 (DPX1)

C0RMS0.7–0 CAN 0 receive message stored register 0. The C0RMS0 bits indicate which message center
(1–8) has successfully received and stored the last incoming message. The content of the C0RMS0
register is updated each time a new message is successfully received and stored. The contents of
the C0RMS0 register are automatically cleared following each read of C0RMS0 by the microcon
troller. A bit value 1 indicates that the assigned message center has successfully received and
stored new data since the last read of the C0RMS0 register. A bit value 0 indicates that no new
message has been successfully received and stored since the last read of the RMS0 register. No
interrupts are asserted because of the C0RMS0 settings. This register works fully independent of
the status bits in the CAN status register and the INTIN7–0 vector in the CAN interrupt register, as
well as of the INTRQ bit in the CAN message control registers.

C0RMS0.7 Message center 8, message received and stored.
Bit 7

C0RMS0.6 Message center 7, message received and stored.
Bit 6

C0RMS0.5 Message center 6, message received and stored.
Bit 5

C0RMS0.4 Message center 5, message received and stored.
Bit 4

C0RMS0.3 Message center 4, message received and stored.
Bit 3

C0RMS0.2 Message center 3, message received and stored.
Bit 2

C0RMS0.1 Message center 2, message received and stored.
Bit 1

C0RMS0.0 Message center 1, message received and stored.
Bit 0

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 38

7 6 5 4 3 2 1 0

SFR 96h C0RMS0.7 C0RMS0.6 C0RMS0.5 C0RMS0.4 C0RMS0.3 C0RMS0.2 C0RMS0.1 C0RMS0.0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

R = Unrestricted read, -n = Value after reset. The C0RMS0 is cleared to 00h on all forms of reset, including the reset established by the CRST bit.

This SFR is not present on the DS80C411.

CAN 0 Receive Message Stored Register 0 (C0RMS0)

C0RMS1.7–0 CAN 0 receive message stored register 1. The C0RMS1 bits indicate which message center
(9–15) has successfully received and stored the last incoming message. The content of the
C0RMS1 register is updated each time a new message is successfully received and stored. The
contents of the C0RMS1 register are automatically cleared following each read of C0RMS1 by the
microcontroller. A bit value 1 indicates that the assigned message center has successfully received
and stored new data since the last read of the C0RMS1 register. A bit value 0 indicates that no new
message has been successfully received and stored since the last read of the RMS1 register. No
interrupts are asserted because of the C0RMS1 settings. This register works fully independent of
the status bits in the CAN status register and the INTIN7–0 vector in the CAN interrupt register, as
well as of the INTRQ bit in the CAN message control registers.

C0RMS1.7 Reserved.
Bit 7

C0RMS1.6 Message center 15, message received and stored.
Bit 6

C0RMS1.5 Message center 14, message received and stored.
Bit 5

C0RMS1.4 Message center 13, message received and stored.
Bit 4

C0RMS1.3 Message center 12, message received and stored.
Bit 3

C0RMS1.2 Message center 11, message received and stored.
Bit 2

C0RMS1.1 Message center 10, message received and stored.
Bit 1

C0RMS1.0 Message center 9, message received and stored.
Bit 0

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

39 ___

7 6 5 4 3 2 1 0

SFR 97h CORMS1.7 CORMS1.6 CORMS1.5 CORMS1.4 CORMS1.3 CORMS1.2 CORMS1.1 CORMS1.0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

R = Unrestricted read, -n = Value after reset. The C0RMS0 is cleared to 00h on all forms of reset, including the reset established by the CRST bit.

This SFR is not present on the DS80C411.

CAN 0 Receive Message Stored Register 1 (C0RMS1)

SM0/FE_0 Serial port 0 mode bit 0. (When SMOD0 is logic 0.) When SMOD0 is logic 1, it is the framing error
Bit 7 flag that is set upon detection of an invalid stop bit and must be cleared by software. When SMOD0

is set, modification of this bit has no effect on the serial mode setting.

SM1_0 Serial port 0 mode bit 1.
Bit 6

SM2_0 Serial port 0 mode bit 2. Setting of this bit in mode 1 ignores reception if an invalid stop bit is
Bit 5 detected. Setting this bit in mode 2 or 3 enables multiprocessor communications. This prevents the

RI_0 bit from being set, and interrupt being asserted, if the 9th bit received is 0.

REN_0 Receiver enable. This bit enable/disables the serial port 0 receiver shift register.
Bit 4

0 = Serial port 0 reception disabled.

1 = Serial port 0 receiver enabled (modes 1, 2, and 3). Initiate synchronous reception (mode 0).

TB8_0 9th transmission bit state. This bit defines the state of the 9th transmission bit in serial port 0
Bit 3 modes 2 and 3.

RB8_0 9th received bit state. This bit identifies that state of the 9th reception bit of received data in ser-
Bit 2 ial port 0 modes 2 and 3. When SM2_0 = 0, RB8_0 is the state of the stop bit in mode 1. RB8_0 is

not used in mode 0.

TI_0 Transmitter interrupt flag. This bit indicates that data in the serial port 0 buffer has been
Bit 1 completely shifted out. In serial port mode 0, TI_0 is set at the end of the 8th data bit. In all other

modes, this bit is set at the end of the last data bit. This bit must be cleared by software.

RI_0 Receiver interrupt flag. This bit indicates that a byte of data has been received in the serial port
Bit 0 0 buffer. In serial port mode 0, RI_0 is set at the end of the 8th bit. In serial port mode 1, RI_0 is set

after the last sample of the incoming stop bit subject to the state of SM2_0. In modes 2 and 3, RI_0
is set after the last sample of RB8_0. This bit must be cleared by software.

MODE SM2 SM1 SM0 FUNCTION LENGTH PERIOD
0 0 0 0 Synchronous 8 bits 12 tCLK
0 1 0 0 Synchronous 8 bits 4 tCLK
1 x 1 0 Asynchronous 10 bits Timer 1 or 2
2 0 0 1 Asynchronous 11 bits 64 tCLK (SMOD_0 = 0)
2 0 0 1 Asynchronous 11 bits 32 tCLK (SMOD_0 = 1)
2 1 0 1 Asynchronous (MP) 11 bits 64 tCLK (SMOD_0 = 0)
2 1 0 1 Asynchronous (MP) 11 bits 34 tCLK (SMOD_0 = 1)
3 0 1 1 Asynchronous 11 bits Timer 1 or 2
3 1 1 1 Asynchronous (MP) 11 bits Timer 1 or 2

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 40

7 6 5 4 3 2 1 0

SFR 98h SM0/FE_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Serial Port 0 Control (SCON0)

SBUF0.7–0 Serial data buffer 0. Data for serial port 0 is read from or written to this location. The serial
Bits 7–0 transmit and receive buffers are separate registers, but both are addressed at this location.

Bits 7–2 Reserved.

ESP.1-0 Extended stack pointer. These extended stack pointer bits are used with SP to form a 10-bit
Bits 1-0 stack pointer to support the use of the 1kB of the internal data memory as stack memory.

When SA = 1, any overflow of the SP from FFh to 00h increments the ESP by 1, and any under
flow of the SP from 00h to FFh decrements the ESP by 1. The ESP register is not used as part of
the stack pointer when the default stack memory location is selected (SA = 0), but is still read/
write accessible. Relocating the internal MOVX SRAM through the IDM1: 0 bits does not alter the
ability of the ESP and SP registers to properly access the internal memory. See MCON register
for more detail.

AP.7–0 Address page register. The address page register (AP) is a paging register, which is used with
Bits 7–0 the 24-bit paged addressing mode to support extended 24-bit program and data addressing

capabilities, and is fully compatible with the original 8052 16-bit addressing operation. The AP reg-
ister and the higher-order byte of the program counter (PC23: 16) are cleared to 00 hex, following
a system reset, to establish initial program execution in the first 64kB byte page (page 0). When
the microcontroller is programmed to operate in the 24-bit paged addressing mode (AM1, AM0 =
01b), data programmed into the AP register is loaded into the program counter high-order byte
when theprocessor executes an LJMP or LCALL instruction. Execution of any of these two instruc-
tions loads the AP into the high-order byte of the program counter (PC23: 16) to allow the program
counter (PC) to drive address lines A23–A16 with the previous AP value at the same time as the
lower 16 bits (A0–A15) of the PC are updated.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

41 ___

7 6 5 4 3 2 1 0

SFR 99h SBUF0.7 SBUF0.6 SBUF0.5 SBUF0.4 SBUF0.3 SBUF0.2 SBUF0.1 SBUF0.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Serial Data Buffer 0 (SBUF0)

7 6 5 4 3 2 1 0

SFR 9Bh — — — — — — ESP.1 ESP.0

RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Extended Stack Pointer Register (ESP)

7 6 5 4 3 2 1 0

SFR 9Ch AP.7 AP.6 AP.5 AP.4 AP.3 AP.2 AP.1 AP.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Address Page Register (AP)

In this manner, software compiled using the standard 16-bit addressing scheme uses the contents
of the AP to establish the page to which the program flow is to jump. The AP register can be loaded
at any time prior to the execution of the above two instructions to establish the address vector,
which is used when the LJMP or LCALL instruction is used to cross page boundaries. Note that the
third byte of the program counter (PC23: 16) does not increment when the lower 16 bits in the lower
two bytes of the PC roll over from FFFF hex to 0000 hex. PC23: 16 functions only as a holding reg-
ister to issue high-order address (A23–A16) when the 24-paged addressing mode is enabled. All
interrupts are handled by pushing the high byte of the program counter (PC23: 16) along with the
standard push of the standard 16-bit program counter on to the stack before the hardware gener-
ated interrupt LCALL instruction is executed. The AP register is not altered during the interrupt and
must be taken into consideration when doing another LJMP or LCALL instruction within the inter-
rupt routine.

Typically, it is best to do a PUSH AP when entering the interrupt routine, and a POP AP when exit
ing, if either LJMP or LCALL instructions are to be used inside the routine with a new page address
assigned to the AP. The additional loading of PC23: 16 on to the stack results in one additional
machine cycle during an interrupt and three bytes being stored on the stack. Following the exe-
cution of a RETI instruction, the processor automatically reloads the entire 24 value of the PC with
the original address from the stack. Again, the RETI or RET requires one additional machine cycle
when compared to the standard 16-bit address-only operation.

The address page register is not used with the PC when the AM0 and AM1 bits are programmed
for either the 16-bit addressing or 24-bit contiguous addressing mode, but it is accessible as a
general-purpose SFR register.

Bits 7-6 Reserved.

MROM Merge ROM assignment. The MROM bit provides a software mechanism for mapping the lower
Bit 5 32kB internal ROM block to one of the two following address locations. The upper 32kB internal

ROM block is always mapped to FF8000h–FFFFFFh of the program memory space.

BPME Breakpoint mode enable. Setting this bit to 1 enables the software breakpoint mode. Once
Bit 4 enabled, the processor can enter or exit the breakpoint mode by executing an A5h instruction.

Clearing this bit to 0 disables the A5h instruction to the processor, and no breakpoint mode oper-
ation is allowed.

MROM LOWER 32kB ROM MEMORY LOCATION (HEX)

0 000000–007FFF (reset default)

1 FF0000–FF7FFF

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 42

7 6 5 4 3 2 1 0

SFR 9Dh — — MROM BPME BROM SA AM1 AM0

RT-1 RT-1 RT-0 RT-0 RT-X RT-0 RT-0 RT-0

R = Unrestricted read, T = Timed access write only, -n = Value after reset. The address control register is cleared to 1100 x 000b on all forms of reset, but bit 3 is reset to
0 on power-on reset.

Address Control Register (ACON)

BROM Bypass ROM. This bit determines whether the program flow is to start in the external user program
Bit 3 or the internal ROM after a reset. A 0 forces the processor to start execution at location 000000h

of internal ROM after a reset if the EA pin is connected high. A 1 forces the processor to start user
program execution at location 000000h of the program memory after a reset if the EA pin is con-
nected high. Connecting the EA pin to ground always forces the processor to start user program
execution at location 000000h of the program memory after a reset, regardless of the logic state of
the BROM bit. This bit is reset to 0 upon power-on. Changing this bit from a 0 to a 1 when the EA
pin is connected high causes a reset immediately. Changing this bit from a 1 to a 0 has no imme-
diate effect on the system function until a reset occurs.

SA Extended stack address mode enable. Programming the SA bit to a 0 enables the standard
Bit 2 256 scratchpad SRAM bytes as the default stack. In this mode, the standard 8-bit stack pointer

value is supplied by the SP register. ESP is not used in this mode. Programming the SA bit to a 1
enables the alternate use of 1kB of the internal data memory as the stack memory. In this mode,
the 2 least significant bits of the ESP register are used as the two most significant bits of the
10-bit stack pointer.

AM1, AM0 Address mode control bits.

Bits 1-0 The AM0 and AM1 bits establish the addressing mode for the microcontroller.

Programming AM1 and AM0 to a 00 leaves the microcontroller in the traditional 8051 16-bit
addressing mode. In this mode, the processor operates with a 16-bit address field with the high-
er-order program counter byte (PC23:16) forced to 00h.

Programming AM1 and AM0 to a 01 enables the 24-bit paged addressing mode. In this mode, the
processor operates with a 24-bit address field with the address page register (AP) functioning as
the input source to load the high-order program counter byte (PC23:16) during the execution of
specific instructions.

Programming AM1 and AM0 to 10 or 11 enables the fully contiguous 24-bit program counter-
addressing mode. In this mode, the processor addresses program memory with a full 24-bit pro-
gram counter (A23–A0) and does not utilize the AP register as an input to the program counter. AP
is converted into a general-purpose read/write SFR, and does not have any relationship to the pro-
gram counter or address field. Note that AM1 and AM0 bits default to 00 on all resets, so the 24-
bit contiguous address mode must be enabled before executing the following four instructions:

1) MOV DPTR, #data24
2) ACALL addr19
3) LCALL addr24
4) LJMP addr24

AM1 AM0 ADDRESSING MODE

0 0
16-bit addressing mode
(A23–A16 are locked to 00h)

0 1 24-bit paged addressing mode
1 x 24-bit contiguous addressing mode

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

43 ___

C0TMA0.7–0 CAN 0 transmit message acknowledgment register 0. The C0TMA0 bits indicate which mes-
sage center (1–8) has successfully transmitted a message since the last read of the register. The
contents of the C0TMA0 register are updated each time a new message is successfully transmit
ted. The contents of the C0TMA0 register are automatically cleared following each read of C0TMA0
by the microcontroller. A bit value of 1 indicates that the assigned message center has been suc-
cessfully transmitted since the last read of the C0TMA0 register. A bit value of 0 indicates that no
new message has been successfully transmitted since the last read of the C0TMA0 register.
Interrupts are not generated as a result of bits being set in the C0TM0 register. This register works
fully independent of the status bits in the CAN status register, the INTIN7–0 vector in the CAN inter-
rupt register, and the INTRQ bit in the CAN message control registers.

C0TMA0.7 Message center 8, message transmitted.
Bit 7

C0TMA0.6 Message center 7, message transmitted.
Bit 6

C0TMA0.5 Message center 6, message transmitted.
Bit 5

C0TMA0.4 Message center 5, message transmitted.
Bit 4

C0TMA0.3 Message center 4, message transmitted.
Bit 3

C0TMA0.2 Message center 3, message transmitted.
Bit 2

C0TMA0.1 Message center 2, message transmitted.
Bit 1

C0TMA0.0 Message center 1, message transmitted.
Bit 0

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 44

7 6 5 4 3 2 1 0

SFR 9Eh C0TMA0.7 C0TMA0.6 C0TMA0.5 C0TMA0.4 C0TMA0.3 C0TMA0.2 C0TMA0.1 C0TMA0.0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

R = Unrestricted read, -n = Value after reset. The C0TMA0 is cleared to 00h on all forms of reset, including the reset established by the CRST bit.

This SFR is not present on the DS80C411.

CAN 0 Transmit Message Acknowledgment Register 0 (C0TMA0)

C0TMA1.6–0 CAN 0 transmit message acknowledgment register 1. The C0TMA1 bits indicate which mes-
sage center (1–8) has been successfully transmitted. The contents of the C0TMA1 register are
updated each time a new message is successfully transmitted. The contents of the C0TMA1 reg-
ister are automatically cleared following each read of C0TMA1 by the microcontroller. A bit value
of 1 indicates that the assigned message center has been successfully transmitted since the last
read of the C0TMA1 register. A bit value of 0 indicates that no new message has been success-
fully transmitted since the last read of the C0TMA1 register. The corresponding C0TMA1 bits are
assigned to the following message centers. No interrupts are asserted because of the C0TMA1
settings. This register works fully independent of the status bits in the CAN status register and the
INTIN7–0 vector in the CAN interrupt register, as well as of the INTRQ bit in the CAN message con-
trol registers (same as C0TMA0).

Bit 7 Reserved.

C0TMA1.6 Message center 15, message transmitted.
Bit 6

C0TMA1.5 Message center 14, message transmitted.
Bit 5

C0TMA1.4 Message center 13, message transmitted.
Bit 4

C0TMA1.3 Message center 12, message transmitted.
Bit 3

C0TMA1.2 Message center 11, message transmitted.
Bit 2

C0TMA1.1 Message center 10, message transmitted.
Bit 1

C0TMA1.0 Message center 9, message transmitted.
Bit 0

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

45 ___

7 6 5 4 3 2 1 0

SFR 9Fh — C0TMA1.6 C0TMA1.5 C0TMA1.4 C0TMA1.3 C0TMA1.2 C0TMA1.1 C0TMA1.0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

R = Unrestricted read, -n = Value after reset. The C0TMA0 is cleared to 00h on all forms of reset, including the reset established by the CRST bit.

This SFR is not present on the DS80C411.

CAN 0 Transmit Message Acknowledgment Register 1 (C0TMA1)

P2.7–0 Port 2. This port functions as an address bus during external memory access and as a general-
Bits 7–0 purpose I/O port on devices that incorporate internal program memory. During external memory

cycles, this port contains the MSB of the address. The only instructions to access the P2 SFR are
MOVX A, @Ri and MOVX @Ri, A when port 2 is used as the MSB of an external address.

P5.7–0 Port 5. This port can function as a programmable parallel I/O port, a CAN interface, timer 3 input,
Bits 7–0 and/or peripheral enable signals. Data written to the port latch serves to set both logic level and

direction of the data on the pin. A 1 written to a port latch, previously programmed low (0), acti-
vates a high-current, one-shot pullup on the corresponding pin. This is followed by a static, low-
current pullup that remains on until the port is changed again. The final high state of the port pin
is considered a pseudo-input mode, and can be easily overdriven from an external source. Port
latches previously in a high-output state do not change, nor does the high-current one-shot fire
when a 1 is loaded. Loading a 0 to a port latch results in a static, high-current pulldown on the cor-
responding pin. This mode is termed the I/O output state, since no weak devices are used to drive
the pin.

Writes to P5.1–P5.0 are disabled when the P5CNT.3 bit in the port 5 control SFR is programmed to
a 1. These bits read as a 1 when assigned to the CAN processor. The P5.2 latch bit must be set to
1 before the pin can be used for the alternate function of T3. The value of the port latch is not
altered by a read operation, except the read-modify-write instructions that perform a read followed
by a write. See P5CNT SFR (A2h) for more details.

PCE3 Peripheral chip enable 3. When enabled by the P5CNT register, this pin asserts the fourth chip-
Bit 7 enable signal.

PCE2 Peripheral chip enable 2. When enabled by the P5CNT register, this pin asserts the third chip-
Bit 6 enable signal.

PCE1 Peripheral chip enable 1. When enabled by the P5CNT register, this pin asserts the second chip-
Bit 5 enable signal.

PCE0 Peripheral chip enable 0. When enabled by the P5CNT register, this pin asserts the first chip-
Bit 4 enable signal.

Bit 3 Reserved.

T3 Timer/counter 3 external input. This pin functions as an external input to timer 3 when config-
Bit 2 ured as such with the T3CM SFR. A 1-to-0 transition on this pin increments timer 3.

C0RX CAN 0 receive. This pin is connected to the receive data-output pin of the CAN 0 transceiver
Bit 1 device.

C0TX CAN 0 transmit. This pin is connected to the transmit data-input pin of the CAN 0 transceiver
Bit 0 device.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 46

7 6 5 4 3 2 1 0

SFR A1h
P5.7
PCE3

P5.6
PCE2

P5.5
PCE1

P5.4
PCE0

P5.3
—

P5.2
T3

P5.1
C0RX

P5.0
C0TX

RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Port 5 (P5)

7 6 5 4 3 2 1 0

SFR A0h A15/P2.7 A14/P2.6 A13/P2.5 A12/P2.4 A11/P2.3 A10/P2.2 A9/P2.1 A8/P2.0

RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Port 2 (P2)

Bit 7 Reserved. Read returns logic 1.

CAN0BA CAN 0 bus active status. The CAN0BA signal is a latched status bit that is set if the respective
Bit 6 CAN 0 I/O-enabled (P5CNT.3) bit is set and bus activity is detected on the CAN 0 bus. Once

activity is detected and the bit is set, it remains set until cleared by application software or a
reset.

Bit 5 Reserved. Read returns logic 0.

Bit 4 Reserved. Read returns logic 0.

C0_I/O CAN 0 I/O enable. The P5CNT.3 bit configures P5.0 and P5.1 as either standard I/O or CAN
Bit 3 receive input (P5.1–C0RX) and CAN transmit output (P5.0–C0TX). Programming P5CNT.3 to a 0

places P5.1 and P5.0 into the standard I/O mode. Programming P5CNT.3 to a 1 places P5.1 and
P5.0 into the CAN transmit and receive mode. When P5CNT.3 is programmed to a 1, all I/O inter-
action through the port 5 SFR with P5.1 and P5.0 is disabled.

P5CNT.2-P5CNT.0 Port pin P5.7–P5.4 configuration control bits. Once any bit combination containing a 1 is pro-
Bits 2-0 grammed into P5CNT.2-P5CNT.0, the corresponding port pins that are then assigned to peripher-

al chip enable are locked out from being programmed as I/O in the port 5 SFR. The internally
decoded range for each peripheral chip enable (PCE0–PCE3) is established by the number of
external address lines (A19–A16), which are enabled by the P6CNT.5-P6CNT.3 control bits. This
can be different than the program memory CE0–CE7 decoding. The following table outlines the
assigned data memory boundaries of each chip enable as determined by the P6CNT.5-P6CNT.3
control bits. Note that, when the external address bus is limited to A0–A15, the chip enables are
internally decoded on a 32kB x 8 block boundary. This is to allow the use of the more common
memories, as opposed to using a less common 64kB block size memory.

PCEx CHIP-ENABLE SELECTION FUNCTION

PCE0–PCE3 are internally decoded to data memory address block boundaries as determined by
the P6CNT.5–P6CNT.3 control bits. When any of CE0–CE7 are converted from a program chip
enable to program/data chip enables through the MCON and MCON1 registers, data memory
areas assigned to PCE0–PCE3 are automatically disabled when the corresponding memory area
is covered by CE0–CE7. Enabling merged program/data memory access under CE0–CE7 does not
alter the port 5 control register bit states. Returning the CE0–CE7 enables back to the program
memory automatically reenables the respective PCE0–PCE3 relationship.

P5CNT.2-0 P5.7 P5.6 P5.5 P5.4
000 I/O I/O I/O I/O
100 I/O I/O I/O PCE0
101 I/O I/O PCE1 PCE0
110 I/O PCE2 PCE1 PCE0
111 PCE3 PCE2 PCE1 PCE0

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

47 ___

7 6 5 4 3 2 1 0

SFR A2h — CAN0BA — — C0_I/O P5CNT.2 P5CNT.1 P5CNT.0

RW-1 RW-0 RW-0 RW-0 RW-0 RT-0 RT-0 RT-0

R = Unrestricted read, W = Unrestricted write, T = Timed Access Write Only, -n = Value after reset

This SFR is not present on the DS80C411.

Port 5 Control Register (P5CNT)

ERIE CAN 0 error interrupt enable. Programming the ERIE bit to a 1 enables the CAN 0 status bus
Bit 7 status (BSS) or error count greater than 96 bit (EC96) to issue an interrupt to the microcontroller,

if the C0IE bit in the EIE SFR is also set. When ERIE is cleared to a 0, the error interrupt is dis-
abled.

STIE CAN 0 status interrupt enable. Programming the STIE bit to a 1 allows the CAN 0 status error
Bit 6 bits (ER0-ER2), the transmit status bit (TXS), the receive status bit (RXS), or the wake-up status

bit (WKS) to issue an interrupt to the microcontroller, if the C0IE bit in the EIE SFR is also set.
When STIE is cleared to a 0, the status interrupt is disabled.

PDE CAN 0 power-down enable. Programming the PDE bit to a 1 places the CAN 0 controller into a
Bit 5 fully static power-down mode after completion of the last reception, transmission, or after the arbi-

tration was lost or an error condition occurred. Note that the term ‘after arbitration lost’ denotes
the fact the arbitration was lost and the reception following this lost arbitration is completed.
Recall that the CAN processor immediately becomes a receiver after it has lost its arbitration on
the CAN bus. Programming PDE = 0 disables the power-down mode. The PDE mode forces all
of the CAN 0 logic to a static state. The PDE mode can only be removed by either software
reprogramming the PDE bit or through a system reset. A read of PDE establishes when the
power-down mode has been enabled or removed as per the PDE bit. In all cases, the CAN con-
troller begins operation after 11 recessive bits (a power-up sequence) on the CAN bus per the
configuration settings for bit timing, which were programmed prior to entering the power-down
mode. Since WKS reflects when the CAN has entered the low-power state, as per the SIESTA
and/or PDE bit states, a read of the PDE bit establishes when the PDE bit is actually allowed to
enable the low-power state. If the low-power state was previously enabled by setting the SIESTA
bit, a read of PDE reflects the actual PDE bit value and not the low-power mode. If the low-power
mode has not been previously enabled and the PDE bit is set to a 1 by software, a read of PDE
returns a 0, until such time the PDE bit actually enables the low-power mode following an active
transmit or receive operation. When the PDE and SIESTA bit are not used together, a read of the
PDE bit, by default, also reflects the actual state of the low-power mode. Setting PDE does not
alter any CAN block controls or error status relationships.

SIESTA Low-power mode. Setting the SIESTA bit to a 1 places the CAN 0 controller into a low-
Bit 4 power static state after completion of the last reception, transmission, or after the arbitration was

lost or an error condition occurred. Note that the term ‘after arbitration lost’ denotes the fact the
arbitration was lost and the reception following this lost arbitration is completed. Recall that
the CAN processor immediately becomes a receiver after it has lost its arbitration on the CAN
bus. Programming SIESTA = 0 disables the low-power mode. The state of when the SIESTA
mode is actually enabled or removed, as per the SIESTA bit programmed value, is reflected in
the read of the SIESTA bit. The SIESTA mode is removed when the CAN 0 controller detects CAN
0 bus activity, by reprogramming the SIESTA bit to a 0, or by setting either CRST or SWINT to a
1. When the SIESTA bit is cleared by either a microcontroller write or activity on the CAN 0 bus,
the CAN controller begins operation after 11 recessive bits on the CAN bus (after a power-up
sequence) using the configuration settings that were programmed prior to entering the power-
down mode. Changing the SIESTA bit from a 0 to a 1 does not disrupt a currently active receive
or transmit, but allows the completion of CAN 0 bus activity prior to entering into the static state.
If the CAN 0 logic issues an interrupt as a result of an active CAN 0 receive or transmit while
SIESTA is being set, the SIESTA bit is cleared, and the CAN 0 logic does not enter the low-power
mode. Since WKS reflects when the CAN has entered the low-power state, as per the SIESTA

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 48

7 6 5 4 3 2 1 0

SFR A3h ERIE STIE PDE SIESTA CRST AUTOB ERCS SWINT

RW-0 RW-0 RW-0 RW-0 RT-1 RW-0 RW-0 RT-1

R = Unrestricted read, W = Unrestricted write, T = Timed-access write only, -n = Value after reset

This SFR is not present on the DS80C411.

CAN 0 Control Register (C0C)

and/or PDM bit states, a read of the SIESTA bit establishes when the SIESTA bit is actually
allowed to enable the low-power state. If the low-power state was previously enabled by setting
the PDM bit, a read of SIESTA reflects the actual SIESTA bit value, and not the low-power mode.
If the low-power mode has not been previously enabled and the SIESTA bit is set to a 1 by soft
ware, a read of SIESTA returns a 0 until such time that the SIESTA bit actually enables the low-
power mode, following an active transmit or receive operation. When the PDE and SIESTA bit are
not used together, a read of the SIESTA bit, by default, also reflects the actual state of the low-
power mode. Setting SIESTA does not alter any CAN block controls or error status relationships.
Note that the PDE and SIESTA bits act independent of each other. Setting both bits leaves the
CAN processor in a low-power state until both bits have been cleared by their respective mecha-
nisms.

CRST CAN 0 reset. (Requires a timed-access write.) When CRST is set to a 1 and after completion
Bit 3 of the last reception, transmission, or after arbitration was lost or an error condition occurred,

all CAN registers located in the SFR memory map, with the exception of the CAN 0 control regis-
ter are cleared to a 00 hex. The CAN 0 control register is set to 09 hex. Note that the term ‘after
arbitration lost’ denotes the fact the arbitration was lost and the reception following this lost arbi-
tration is completed. Recall that the CAN processor immediately becomes a receiver after it has
lost its arbitration on the CAN bus. In accordance with waiting until after the completion of the
last reception, transmission, or after arbitration was lost or an error condition occurred, a read of
the CRST bit, when previously programmed to a 1, returns a 0, until such time that the CRST = 1
state is actually allowed to place the CAN processor into the reset state. As such, a read of the
CRST bit verifies when the CAN reset has been engaged or removed. CAN registers located in
the MOVX memory map are left in the last state prior to setting CRST. Setting CRST also clears
both the receive- and transmit-error counters in the CAN controllers and sets the SWINT bit to a
1. CRST must be cleared by software to remove the CAN reset and allow the CAN 0 processor to
be initialized. When the CAN processor is not in a bus-off mode (BSS = 0) and the CAN proces-
sor exits either the software initialization mode (SWINT programmed from a 1 to a 0) or when the
CAN reset is removed (CRST bit is cleared from a 1 to a 0 and the SWINT bit is cleared from 1 to
0), the CAN processor performs a power-up sequence of 11 consecutive recessive bits before
the CAN controller enters into normal operation. If the CAN reset is removed and SWINT is left in
the software initialization state, the microcontroller is allowed to immediately start programming
the CAN registers and MOVX data memory prior to the completion of the power-up sequence.
Exiting the software initialization mode (SWINT ≥ 0) requires a power-up sequence of 11 conse-
cutive recessive bits before the CAN controller enters into normal operation. Clearing CRST to a
0 from a previous 0 state does not alter CAN processor operation. All writes to the CRST bit
require a timed-access function.

AUTOB Autobaud. When AUTOB is set to a 1, an internal loopback is enabled to AND the data from
Bit 2 the external CAN bus with the transmitted data of the CAN 0 processor. The “ANDed’ data is

then connected to the internal input of the CAN 0 processor. At the same time, the transmitted
data is disabled from reaching the external C0TX pin. The C0TX pin is placed into a recessive
state when AUTOB = 1. The purpose of the internal loopback and the disabled C0TX pin is to
allow the CAN processor to establish the proper CAN bus timing without disrupting the normal
data flow between other nodes on the CAN bus. Disabling the C0TX pin and setting the C0TX
pin to a recessive state prevents the CAN processor from driving nonsynchronized data onto the
CAN bus (creating CAN bus errors to other nodes) when being programmed with various fre
quencies to synchronize the processor with the CAN bus. With AUTOB = 1, the microcontroller
autobaud algorithm makes use of the CAN 0 status register RXS and error status bits to deter
mine when a message is successfully received (when AUTOB = 1, a successful receive, a store
is not required). Each successive baud-rate attempt is proceeded by the microcontroller clearing
the transmit- and receive-error counters by a write of 00 to the transmit-error SFR register and a
read of the CAN 0 status register to clear the previous status-change interrupt. Note that a write
to the transmit-error SFR register automatically resets the CAN fault confinement state machine to
an initial (error-active) state if the error counters are cleared to 00 hex. If, however, the error

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

49 ___

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 50

counters are programmed to a value greater than 128, the CAN processor is in an error-passive
state. Appropriate flags are set when the error counter is written with any value. A write of the
status register is also used to remove the previous error value in the ER2–ER0 bits. Clearing the
error counters also clears the EC96 bit, if set. When BSS = 1, the CAN processor locks out the
ability for the microcontroller to write to the error counters by virtue of the fact that the SWINT bit
is also forced to a 0 state during the period that the CAN processor performs a bus recovery and
power-up sequence. Once the CAN processor has removed itself from the bus-off condition, it
also clears BSS = 0, sets SWINT = 1, and clears both the transmit- and receive-error counters to
00 hex. Imagine a system with only two nodes on the CAN bus.

The following two situations are examples of how the autobaud function works on the CAN
processor. In the first case, consider three nodes, A, B, and C, with nodes A and B operating in
the normal CAN operational mode (nonautobaud) and node C (a DS80C400 CAN processor)
attempting to establish a proper baud rate using the autobaud features. If node A transmits a
message, node B acknowledges this message, and node C also receives the acknowledged
message if it has the same baud rate. If node C does not have the same baud rate as nodes A
and B, node C detects the mismatch by the respective error count. Node C then proceeds to
adapt its baud rate and attempt to receive the following message.

In the second case, consider a system with only two nodes on the CAN bus. Consider node A in
the autobaud mode and the second node on the bus in the normal CAN operational mode. Node
B transmits a message and does not receive an acknowledgment, since there is no third node on
the bus that is also properly synchronized with the bus and in the normal CAN operational mode.
Once node B enters into an error-passive mode (after 16 repeated messages), it begins to send
passive error flags. Note that, when node B is operating in an error-passive mode, it does not send
any dominant errors flags to the bus. Once node A has established the proper baud rate, it
receives the correct message. The internal autobaud loopback path also allows the passive
acknowledgment error sent by node B to be “ANDed” with the dominant, internally transmitted
acknowledgment bit from node A. As such, node A sees no errors, which establishes the fact that
it is properly synchronized with the bus. Node A now exits out of the autobaud mode
(AUTOB = 0) and enters into the normal CAN operational mode (with full transmit capability to the
CAN bus). In this mode, node A then acknowledges the next message from node B.

ERCS Error count select. The ERCS bit establishes in which level the error counters set or clear the
Bit 1 EX96/128 bit in the CAN 0 status register. When ERCS = 0, the EC96/128 flag operates in an

EC96 mode. In this mode, the EC96/128 bit is set to a 1 whenever the error count of either the
transmit- or receive-error counters exceed 96. When ERCS = 1, the EC96/128 flag operates in an
EC128 mode. In the EC128 mode, the EC96/128 flag is set to a 1 whenever the error count of
either the transmit- or receive-error counters reach a level of 128 or greater.

SWINT Software initialization. (Unrestricted read/write if BSS = 0, and read only if BSS = 1.) The
Bit 0 SWINT bit establishes the initialization state for CAN 0, which disables CAN 0 bus activity to

allow the processor to modify the MOVX SRAM assigned to the message centers without corrupt
ing messages. When SWINT is set to 1 and after completion of the last reception or transmission,
after arbitration was lost, or after an error condition occurred, all CAN 0 bus activity is disabled,
allowing the processor to initialize any or all of the CAN 0 MOVX SRAM. Note that the term ‘after
arbitration lost’ denotes the fact the arbitration was lost and the reception following this lost arbi-
tration is completed. Recall that the CAN processor immediately becomes a receiver after it has
lost its arbitration on the CAN bus. A read of the SWINT bit verifies when the CAN processor soft-
ware initialization mode has been engaged or removed. Although the transmit- and receive-error
counters are not cleared when the SWINT bit is set, the CAN 0 transmit- and receive-error coun-
ters can be altered by software through the use of the CAN 0 transmit-error SFR register, as long
as SWINT = 1. Setting SWINT to a 1 also clears the SIESTA bit independent of what is stored to
the SIESTA bit location during or prior to the write of the C0C register. Clearing SWINT = 0 also

hardware also disables the microcontroller from writing to the first 16 bytes of the CAN MOVX
memory. These 16 locations make up the CAN 0 control/status/mask registers. When SWINT = 0,
the microcontroller is allowed to write to any of the MOVX CAN register sites. All MOVX registers
are readable at any time, independent of the SWINT bit. Also note that the SWINT bit does not
alter the read or write access to any of the CAN 0 SFR registers or MOVX CAN message center
registers. SWINT is programmed to a 0 when the processor has completed the MOVX SRAM ini-
tialization and CAN 0 bus activity has started. Software write access to the error counters is dis-
abled when SWINT is cleared to a 0. A bus-off condition is caused by a high number of errors on
the CAN bus. When a bus-off condition occurs, the CAN processor clears the SWINT bit to a 0
and immediately starts a bus recover and power-up sequence. During this time, the microcon-
troller is limited to only reading this bit. All microcontroller write access to SWINT is disabled when
BSS = 1.

If the SWINT bit is set by a system reset, programming the CRST bit or setting the SWINT bit with-
out the prior detection of a bus-off condition can cause an adverse condition. Clearing SWINT by
software allows the CAN processor to synchronize itself to the CAN bus after the CAN processor
executes a power-up sequence (11 recessive bits). The power-up sequence requires the CAN
processor to detect 11 consecutive recessive bits. (In CAN protocol, this is termed a power-up
sequence.) When SWINT = 0 by a bus-off condition, bus off forces the CAN processor to initiate a
standard bus-off recovery sequence (128kB x 11 recessive bits). This is followed by entering into
a reset state, requiring a power-up sequence (11 recessive bits), after which the CAN processor
enters into the idle state (normal operation, BSS = 0) and sets the SWINT bit to a 1. This bit is not
intended for use in changing data within the message centers after the CAN processor is placed
into operation. Changes to the arbitration or data fields in the message centers should be done
through the use of the MSRDY bit in the respective message (1–15) control registers. The SWINT
bit is locked into the SWINT = 1 state until the bus timing registers are programmed to valid states.
(The invalid states are 00 hex. See the CAN bus timing registers in the CAN control/status/mask
registers.)

C0S.7–0 CAN 0 status register. The first three bits, BSS, EC96, and WKS, and the last 3 bits, ER2–ER0, in
the CAN status register are read only by the microcontroller. The CAN processor sets or clears
these flags (and interrupt sources) as defined by the system aspects associated with each bit. A
CAN status register read clears the internal status-change interrupt flag. Unlike RXS and TXS, how-
ever, the individual mechanisms that set the ER2, ER0, BSS, EC96, and WKS bits do not reoccur
without first being removed by the CAN processor. As a result, a new (0 ≥ 1) change by BSS, EC96,
or (1 ≥ 0) change by WKS is required to set a new internal status change interrupt flag through
these bits. In a similar fashion, a read of the CAN status register (which automatically sets ER2–ER0
to 111), followed by a new transmit or receive error, is required to set a new internal status change
interrupt flag. If any one of these bits changes state from a previous 0 to a 1 (other than WKS, which
changes from a 1 to a 0) and STIE is set to 1 with no other interrupt pending, the INTIN vector in
the CAN interrupt register is set to 01 hex. If TXS or RXS is set to a 1 and a second message is
successfully transmitted or received, and STIE is set to 1 while no other interrupt is pending, the
INTIN vector in the CAN interrupt register is also set to 01 hex. If ER[2:0] changes from either a 000
or 111 binary state to any state other than 000 or 111, the INTIN vector in the CAN interrupt regis-
ter is also set to 01 hex. This issues a status change interrupt request if at least one of the follow-
ing conditions is valid and no other interrupt is pending.

7 6 5 4 3 2 1 0

SFR A4h BSS EC96/128 WKS RXS TXS ER2 ER1 ER0

R-0 R-0 R-0 RW-0 RW-0 RW-0 R-0 R-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

This SFR is not present on the DS80C411.

CAN 0 Status Register (C0S)

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

51 ___

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 52

BSS CAN 0 bus status. (Read only.) The BSS bit reflects the current status of the CAN 0 bus. When
Bit 7 BSS = 1, the CAN 0 bus is disabled (bus off) and is not capable of receiving or transmitting mes

sages. This condition is the result of the transmit-error counter reaching a count of 256. When the
CAN processor detects an error count of 256, the CAN processor automatically sets BSS = 1
and clears SWINT = 0. BSS is cleared to a 0 to enable CAN 0 bus activity when the CAN proces
sor completes both the bus-off recovery (128kB x 11 consecutive recessive bits) and the power-
up sequence (11 consecutive recessive bits). Once the CAN processor has completed this rela
tionship, it sets SWINT = 1 and enters into the software initialization state. Once the microcon
troller has cleared SWINT to a 0, the CAN processor is enabled to transmit and receive mes
sages. BSS is set to a 1 whenever the transmit error counter for CAN 0 reaches the 256 limit.
When BSS = 0, the CAN 0 bus is enabled to receive or transmit messages. A change in the state
of BSS from a previous 0 to a 1 generates an interrupt if the ERIE, C0IE, and IE SFR register bits
are set. All microcontroller writes to the SWINT bit are disabled when BSS = 1. Both the transmit-
and receive-error counters are cleared to 00 hex when the bus-off condition is cleared by the
CAN module and BSS is cleared to 0.

EC96/128 CAN 0 error count greater than 96/128 status. (Read only.) The EC96/128 bit operates
Bit 6 in one of two modes. These two modes are determined by the state of the C0C.1 bit in the CAN

0 control register. Following a system or CAN reset, the C0C.1 bit is cleared to a 0, which in turn
enables the EC96 mode.

C0C.1 = 0, EC96/128 = EC96. In this mode, when EC96/128 = 1, the interrupt flag indicates that
either the CAN 0 transmit error counter or the CAN 0 receive error counter has exceeded an error
count of 96, an exceptional high number of errors. EC96/128 = 0 indicates that the current trans-
mit error counter and receive error counter both have an error count of less than 97. A change in
the state of EC96/128 from a previous 0 to a 1 generates an interrupt if the ERIE, C0IE, and IE SFR
register bits are set. When C0C.1 is programmed to a 1, the EC96/128 bit is reconfigured into an
EC128 bit flag mode.

C0C.1 = 1, EC96/128 = EC128. In this mode, when EC96/128 = 1, the interrupt flag indicates that
either the CAN 0 transmit error counter or the CAN 0 receive error counter has reached an error
count of 128, an exceptional number of errors. EC96/128 = 0 indicates that the current transmit
error counter and receive error counter both have an error count of less than 128. A change in the
state of EC96/128 from either a previous 0 to a 1 or from a previous 1 to a 0 generates an interrupt
if the ERIE, C0IE and IE SFR register bits are set.

WKS CAN 0 wake-up status. (Read only.) WKS = 0 indicates that the CAN 0 is not in a low-power
Bit 5 mode. WKS = 1 indicates that CAN 0 is in a low-power mode, based on the setting of either the

SIESTA bit or the power-down mode bit to a 1. Clearing both the SIESTA bit and power-down
enable (PDE) bit forces the WKS bit to a 0. A change in the state of WKS from a previous 1 to
a 0 generates an interrupt if the STIE, C0IE, and IE SFR register bits are set.

RXS Receive status. The RXS bit functions in two modes. When the AUTOB bit is set to a 1,
Bit 4 RXS = 1 indicates that a message has been successfully received by CAN 0 since the last

read of the CAN 0 status register. Note that this does not mean that the incoming message was
or was not stored in a message center, but means that the message did not have any errors
associated with it during the reception. Messages that are successfully received but are not
stored do not pass the arbitration filtering tests required by the internal message centers. When
the AUTOB bit is cleared to a 0, RXS = 1 indicates that a message has been both successfully
received and stored in one of the message centers by CAN 0 since the last read of the CAN 0
status register.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

53 ___

RXS = 0 indicates that no message has been successfully received since the last read of the CAN
0 status register. RXS is set only by the CAN 0 logic and is not cleared by the CAN controller. It is
cleared only by the microcontroller software, the CRST bit, or a system reset.

When the RXS bit (0 > 1) provides the interrupt source for an interrupt, the microcontroller is
required to read the CAN status register to clear the internal status-change interrupt flag. This flag
is seen externally by the presence of the 01 state in the CAN interrupt register. Once this flag is
cleared, the 01 state in the CAN interrupt register is replaced with either the 00 state for no inter-
rupts pending, or a lower-priority interrupt code related to one of the message centers. If a second
successful reception is detected prior to or after the clearing of the RXS bit in the status register, a
second status-change interrupt flag is set to allow a second interrupt to be issued. Each new suc-
cessful reception generates an interrupt request independent of the previous state of the RXS bit,
as long as the CAN status register has been read to clear the previous status-change interrupt flag.
Note that if the microcontroller sets the RXS bit from a previous low, it generates an artificial status-
change interrupt (STIE = 1).

Thus, if RXS is previously set to 0 and a reception was successful, RXS is set to 1 and an interrupt
can be asserted if enabled. If the microcontroller writes a 1 to RXS when RXS was previously a 0,
RXS is set to a 1 and an interrupt can be asserted if enabled. If RXS is previously set to 1 and a
reception was successful, RXS stays set to a 1 and an interrupt can be asserted if enabled. If the
microcontroller writes a 1 to RXS when RXS was previously a 1, RXS remains 1 and no interrupt is
asserted.

TXS Transmit status. TXS = 1 indicates that a message has been successfully transmitted by CAN
Bit 3 0 (error free and acknowledged) since the last read of the CAN 0 status register. TXS = 0 indicates

that no message has been successfully transmitted since the last read of the CAN 0 status regis-
ter. TXS is set only by the CAN 0 logic and is not cleared by the CAN controller, but is cleared only
by the microcontroller software, the CRST bit, or a system reset.

When the TXS bit (0 > 1) provides the interrupt source for an interrupt, the microcontroller is
required to read the CAN status register to clear the internal status-change interrupt flag (this flag
is seen externally by the presence of the 01 state in the CAN interrupt register). Once this flag is
cleared, the 01 state in the CAN interrupt register is replaced with either the 00 state for no inter-
rupts pending or a lower-priority interrupt code related to one of the message centers. If a second
successful transmission is detected prior to or after the clearing of the TXS bit in the status regis-
ter, a second status-change interrupt flag is set to allow a second interrupt to be issued. Each new
successful transmission generates an interrupt request independent of the previous state of the
TXS bit, as long as the CAN status register has been read to clear the previous status-change inter-
rupt flag. Note that, if the microcontroller sets the TXS bit from a previous low, it generates an arti-
ficial status-change interrupt (STIE = 1).

Thus, if TXS is previously set to 0 and a transmission was successful, TXS is set to 1 and an inter-
rupt can be asserted if enabled. If the microcontroller writes a 1 to TXS when TXS was previously
a 0, TXS is set to a 1 and an interrupt can be asserted if enabled. If TXS is previously set to 1 and
a transmission was successful, TXS stays set to a 1 and an interrupt can be asserted if enabled. If
the microcontroller writes a 1 to TXS when TXS was previously a 1, TXS remains 1 and no interrupt
is asserted.

ER2-0 CAN 0 bus error status 2-0. The ER2–ER0 bits indicate the first type of error that is encoun-
Bits 2-0 tered within a CAN 0 bus frame. The following states outline the specific error type. The eighth

state (111 binary) is automatically programmed into ER2–ER0, following a read of the CAN 0 sta-
tus register to establish if there has been a change in an error condition when doing a future
read of the CAN 0 status register. The status data (ER2–ER0) read by the processor must be
analyzed or stored in a separate SRAM location, since the ER2–ER0 bits are automatically set to
the 111 state following a read. The 111 state remains in the register until a new frame is either

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 54

transmitted or received, at which time the ER2–ER0 data is undated in relation to the associated
transmit or receive message. The ER2–ER0 bits are read only. Any attempted write to these bits
does not affect the bits or the interrupt relationship associated with their value.

The interrupt error represented by the ER2–ER0 bus error bits is updated following each reception
or transmission. Since the stored error from one reception or transmission can be reproduced in
the next attempted reception or transmission, a new interrupt is generated whenever a new error
condition is detected. This occurs during a reception or transmission, as long as the previous error
condition was removed by a read of the CAN 0 status register.

Thus, if ER2-ER0 is set to 000 or 111 and an error condition occurs, this error condition is stored in
the ER2-ER0 bits. An interrupt request is made to the microcontroller whenever the ER2-ER0 val-
ues change from either a 000 or 111 binary state to any state other than 000 or 111. If a second
error occurs prior to the microcontroller performing a read of the CAN status register, then the sec-
ond error is not stored and the first error condition continues to reside in the ER2-ER0 bits. Once
the CAN status register is read by the microcontroller, the error status bits are set to 111. If anoth-
er error occurs after the microcontroller read of the CAN status register, the ER2-ER0 bits are
updated with the new error condition.

If two errors come up at the same time, only the one with the higher priority (as in the following table)
is shown. Priority 1 is the highest and 6 is the lowest priority. The format error is higher than the bit
1 error, since the format error is always a bit 1 error, but a bit 1 error is not necessarily a format error.
The error value displayed is selected according to relevance, if the two errors occur at the same
time. This is based on which error is the main error and which one is an accompanying error.

The following is a description of error types:

Bit stuff error: The CAN controller detects more than five consecutive bits of an identical state in
an incoming message.

Format error: A received message has the wrong format.

Transmit not acknowledged error: A data frame was sent and the requested node did not
acknowledge the message.

Bit 1 error: The CAN attempted to transmit a message and that, when a recessive bit was trans-
mitted, the CAN bus was found to have a dominant bit level. This error is not generated when the
bit is a part of the arbitration field (identifier and remote retransmission request).

Bit 0 error: The CAN attempted to transmit a message and that, when a dominant bit was trans-
mitted, the CAN bus was found to have a recessive bit level. This error is not generated when the
bit is a part of the arbitration field. The bit 0 error is set each time a recessive bit is received dur-
ing the period that the CAN processor is recovering from a bus-off recovery period.

CRC error: The calculated CRC of a received message does not match the CRC embedded in the
message.

ER2 ER1 ER0 PRIORITY ERROR CONDITIONS
0 0 0 N/A No error in last frame
0 0 1 2 Bit stuff error
0 1 0 5 Format error

0 1 1 4
Transmit not
acknowledged error

1 0 0 6 (lowest) Bit 1 error
1 0 1 1 (highest) Bit 0 error
1 1 0 3 CRC error

1 1 1 N/A
No change since last C0S
read

INTIN7–0 CAN 0 interrupt indicator 7–0. The C0IR register indicates the status of the interrupt sources Bits
7–0 in the CAN 0 processor. The contents of C0IR indicate that no interrupt is pending (00 hex), if an

interrupt is due to a change in the CAN 0 status register (01 hex), or if an interrupt has been gen-
erated from the successful reception or transmission of one of the 15 message centers (02–10
hex). The C0IR register is cleared to 00 hex following a reset.

To properly reflect the value of each interrupt source in the C0IR register, each source must be
enabled by the respective interrupt enable. These include ERIE and/or STIE enable in the case of
status-change-related interrupt (01) sources, and either the ETI or ERI enable for each message
center interrupt (02–10 hex) source. The status values of the interrupt sources in C0IR do not, how-
ever, require setting either the EA or C0IE bits in the IE and EIE SFR registers.

There are two methods for verifying message center interrupts. One method uses the ETI/ERI inter-
rupt enable in the CAN status register, and the other method uses the STIE interrupt enables with-
in each CAN message control register.

STIE = 1. When a transmission or a reception by the corresponding message center was suc-
cessfully completed, the status-change interrupt and the RXS/TXS bit are asserted. To understand
how each bit in the status register acts as an interrupt source, review the descriptions of each bit
in the status register. Note that a successful receive in relation to the RXS bit is dependent on the
AUTOB bit (AUTOB = 1 is successful receive only, and AUTOB = 0 is successful receive and
store). This is not the case with the following ERI relationship, in which a receive is considered suc-
cessful only if the data was stored in the respective message center. The STIE interrupt method
requires the microcontroller to poll each message center to establish the respective interrupt
source following each status-change interrupt.

ETI = 1 and/or ERI = 1. When a successful transmission or a successful reception and store by
the corresponding message center are completed, the interrupt is asserted according to its prior-
ity. This method relies on the hardwired priority of the message centers. Minimal microcontroller
intervention is required.

Terms used in the following description:

Value A is the value that was indicated before and is not zero.

MCV (message center’s value) is the interrupt indicator value, which corresponds to the message
center that received or transmitted a message (i.e., 02 for MC15, 03 for MC1, etc.).

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

55 ___

7 6 5 4 3 2 1 0

SFR A5h INTIN7 INTIN6 INTIN5 INTIN4 INTIN3 INTIN2 INTIN1 INTIN0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

This SFR is not present on the DS80C411.

CAN 0 Interrupt Register (C0IR)

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 56

Description:
1A. STIE = 1 only (polling method: ETI = ERI 0) with no prior interrupt active:

It is important to note that additional changes in bits 4–0 (RXS, TXS) of the CAN 0 status register
can be detected even if these bits have not been cleared by the microcontroller. The only require-
ment for the second status-change interrupt is for the microcontroller to read the CAN 0 status reg-
ister in order to clear the previous interrupt. Multiple changes in the CAN 0 status register, which
are read from the CAN 0 status register and occur without the microcontroller clearing the status-
change interrupt, appear as one interrupt. The WKS bit is a read-only bit and is not altered by a
write from the microcontroller, and the ER2-ER0 bits are automatically set to 111 following a read
of the CAN status register.

Although not related to a successful transmission or reception, ERIE = 1 also enables a similar
interrupt relationship when bits 6 or 7 are changed in the CAN status register, with ERIE = 1.

1B. ERIE = 1 with no prior interrupt active:

2. ERI = 1 and/or ETI = 1 only (hardwired method: STIE = 0) with no prior interrupt active:

CASE ERI
RECEPTION

SUCCESSFUL?
INTIN

VECTOR
INTRQ

CAN 0
INT

A 0 No
Value A

or 0
0 Inactive

B 0 Yes
Value A

or 0
0 Inactive

C 1 No
Value A

or 0
0 Inactive

D 1 Yes
Value A
or (MCV
> INTIN)

1 Active

CASE ERIE

CHANGE
DETECTED IN
BIT 7 OR 6 OF

C0S SFR?

INTIN
VECTOR

INTRQ CAN 0 INT

A 0 No
Value A

or 0
Not

affected
Inactive

B 0 Yes
Value A

or 0
Not

affected
Inactive

C 1 No
Value A

or 0
Not

affected
Inactive

D 1 Yes
Value A
or 0 > 1

Not
affected

Active

CASE STIE

CHANGE
DETECTED IN
BIT 5-0 OF C0S

SFR?

INTIN
VECTOR

INTRQ CAN 0 INT

A 0 No
Value A

or 0
Not

affected
Inactive

B 0 Yes
Value A

or 0
Not

affected
Inactive

C 1 No
Value A

or 0
Not

affected
Inactive

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

57 ___

General Issues:
The INTIN vector value does not change when a new interrupt source becomes active and the pre-
vious one has not yet been acknowledged and removed (i.e., microcontroller read of CAN 0 status
register or microcontroller clear of the appropriate INTRQ bit in the respective CAN 0 message
control register), regardless of the fact that the new interrupt has a higher priority or not.

If two properly enabled interrupt sources become active at the same time, the interrupt of highest
priority is indicated. For example, if a message center completes a successful transmission or
reception and both STIE and ERI, ETI are set, the interrupt indicated by the INTIN7–0 vector is that
of the status-change interrupt (i.e., INTIN07 = 01 hex and not the message center interrupt; i.e.,
INTIN7–0 = MCV).

RXS and TXS are always activated when a transmission or reception is successfully completed.
These bits are reset by the microcontroller writing a 0 to them. Reading the CAN 0 status register
removes only the INTIN7–0 = 01 hex vector, but does not clear these bits. These bits (RXS and
TXS) can be set by either the CAN processor or microcontroller, but are never reset by the CAN
controller.

The CAN 0 interrupt is active when an active-interrupt source is indicated in the interrupt vector
INTIN7–0. Changes in the INTIN7–0 value from a previous 00 hex state indicate the interrupt source
first detected by the CAN processor following the nonactive-interrupt state. The INTIN7–0 interrupt
values displayed in C0IR remain in place until the respective interrupt source is removed, inde-
pendent of other higher- or lower-priority interrupts that become active prior to clearing the cur-
rently displayed interrupt source. The CAN 0 interrupt to the microcontroller is not active when
INTIN7–0 = 00 hex. In all the other cases, the interrupt line is asserted and the INTIN7–0 vector
must be read to determine the current interrupt source.

When the current (INTIN7–0) interrupt source is cleared, INTIN7–0 is changed to reflect the next
active interrupt with the highest priority. The status-change interrupt is asserted if there has been
a change in the CAN 0 status register (if enabled by the appropriate ERIE and/or STIE bit) and the
CAN status interrupt state is set. A message center interrupt is indicated if the INTRQ bit in the
respective CAN message control register is set.

The priority of the next interrupt displayed is fixed. As an example, consider the case in which the
current INTIN7–0 value is that of a message center interrupt. The current INTIN7–0 interrupt source
is cleared (INTRQ = 0), and the status-change interrupt and another message center interrupt are
both active. The next interrupt indicated by INTIN7–0 should be the status-change interrupt, which
has a higher priority than that of the message center interrupt.

When the current INTIN7–0 interrupt indicated is a status interrupt, and the status register is read,
the INTIN7–0 vector is changed to the next lowest INTIN7–0 value (which is the next highest prior-
ity) of the corresponding message center whose INTRQ bit is set to 1. During this time, the inter-
rupt line to the microcontroller remains active. The microcontroller either does an RETI and then is
forced back into the same interrupt routine by the active-interrupt line, or remains in the interrupt
routine until the microcontroller has cleared all active-interrupt sources (INTIN7–0 = 00 hex).

An active message center interrupt is cleared by writing a 0 to the INTRQ bit in the respective CAN
message control register. The interrupt line to the microcontroller goes to an inactive state, and the
INTIN7–0 vector is reset to 00 hex, if no other interrupts are active and enabled.

Example case:

t<i>: moment in time

STIE = 1, ERI = 1, ETI = 1

t1: INTRQ[1] = 1, RXS = 1 INTIN = 1, interrupt line = active

t2: INTRQ[15] = 1, TXS = 1 INTIN = 1, interrupt line = active

t3: ERR[2:0] = 3’b101 INTIN = 1, interrupt line = active

t4: Begin processing interrupts by micro INTIN = 1, interrupt line = active

t5: TXS = 1 ≥ 0 INTIN = 1, interrupt line = active

t6: RXS = 1 ≥ 0 INTIN = 1, interrupt line = active

t7: ERR[2:0] = 101 ≥ 111 INTIN = 2, interrupt line = active

t8: INTRQ[15] = 1 ≥ 0 INTIN = 3, interrupt line = active

t9: INTRQ[1] = 1 ≥ 0 INTIN = 0, interrupt line = inactive

The following are the values of the INTIN7–0 bits for each interrupt source along with the respec-
tive priority of each.

C0RE.7–0 CAN 0 receive-error register. The CAN 0 receive-error register provides a means of reading the Bits
7–0 CAN 0 receive-error counter. New values can be loaded into the receive error counter through the CAN

0 transmit error register. CORE is cleared to a 00 hex following all hardware resets and software resets
enabled by the CRST bit in the CAN 0 control register.

INTERRUPT
 SOURCE

INTIN7–0
HEX VALUE

INTERRUPT
PRIORITY

No pending interrupt 00 N/A

CAN 0 status register 01 Highest = 1

Message 15 02 2

Message 1 03 3

Message 2 04 4

Message 3 05 5

Message 4 06 6

Message 5 07 7

Message 6 08 8

Message 7 09 9

Message 8 0A 10

Message 9 0B 11

Message 10 0C 12

Message 11 0D 13

Message 12 0E 14

Message 13 0F 15

Message 14 10 Lowest = 16

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 58

7 6 5 4 3 2 1 0

SFR A7h CORE.7 CORE.6 CORE.5 CORE.4 CORE.3 CORE.2 CORE.1 CORE.0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

This SFR is not present on the DS80C411.

CAN 0 Receive-Error Register (C0RE)

EA Global interrupt enable. This bit controls the global masking of all interrupts except power-
Bit 7 fail interrupt, which is enabled by the EPFI bit (WDCON.5).

0 = Disable all interrupt sources. This bit overrides individual interrupt mask settings.

1 = Enable all individual interrupt masks. Individual interrupts occur if enabled.

ES1 Enable serial port 1 interrupt. This bit controls the masking of the serial port 1 interrupt.
Bit 6 0 = Disable all serial port 1 interrupts.

1 = Enable interrupt requests generated by the RI_1 (SCON1.0) or TI_1 (SCON1.1) flags.

ET2 Enable timer 2 interrupt. This bit controls the masking of the timer 2 interrupt.
Bit 5 0 = Disable all timer 2 interrupts.

1 = Enable interrupt requests generated by the TF2 flag (T2CON.7).

ES0 Enable serial port 0 interrupt. This bit controls the masking of the serial port 0 interrupt.
Bit 4 0 = Disable all serial port 0 interrupts.

1 = Enable interrupt requests generated by the RI_0 (SCON0.0) or TI_0 (SCON0.1) flags.

ET1 Enable timer 1 interrupt. This bit controls the masking of the timer 1 interrupt.
Bit 3 0 = Disable all timer 1 interrupts.

1 = Enable all interrupt requests generated by the TF1 flag (TCON.7).

EX1 Enable external interrupt 1. This bit controls the masking of external interrupt 1.
Bit 2 0 = Disable external interrupt 1.

1 = Enable all interrupt requests generated by the INT1 pin.

ET0 Enable timer 0 interrupt. This bit controls the masking of the timer 0 interrupt.
Bit 1 0 = Disable all timer 0 interrupts.

1 = Enable all interrupt requests generated by the TF0 flag (TCON.5).

EX0 Enable external interrupt 0. This bit controls the masking of external interrupt 0.
Bit 0 0 = Disable external interrupt 0.

1 = Enable all interrupt requests generated by the INT0 pin.

SADDR0.7–0 Slave address register 0. This register is programmed with the given or broadcast address
Bits 7–0 assigned to serial port 0.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

59 ___

7 6 5 4 3 2 1 0

SFR A8h EA ES1 ET2 ES0 ET1 EX1 ET0 EX0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Interrupt Enable (IE)

7 6 5 4 3 2 1 0

SFR A9h SADDR0.7 SADDR0.6 SADDR0.5 SADDR0.4 SADDR0.3 SADDR0.2 SADDR0.1 SADDR0.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Slave Address Register 0 (SADDR0)

SADDR1.7–0 Slave address register 1. This register is programmed with the given or broadcast address
Bits 7–0 assigned to serial port 1.

COM1C Read/write access. MSRDY, ETI, ERI, and INTRQ are unrestricted read/write bits. EXTRQ is
Bits 7–0 read/clear only. When T/R = 0, ROW is read only. When T/R = 1, TIH is unrestricted read/write.

MTRQ is unrestricted read and can only be set to a 1 when written to by the microcontroller or by
the CAN controller, in case of a remote frame reception in a transmit message center. A write of a
0 to MTRQ leaves the MTRQ bit unchanged. DTUP is unrestricted read. When T/R = 0, DTUP can
only be cleared to a 0 when written to by the microcontroller. A write of a 1 to DTUP with T/R = 0
leaves the DTUP bit unchanged. DTUP is unrestricted read/write when T/R = 1.

MSRDY CAN 0 message center 1 ready. (MSRDY is unrestricted read/write.) MSRDY is programmed
Bit 7 by the microcontroller to notify the CAN 0 logic when the associated message is ready for com-

munication on the CAN 0 bus. When MSRDY = 0, the CAN 0 processor does not access this mes
sage center for transmissions or to receive data or remote frame requests. MSRDY = 1 indicates
the message is ready for communication, and MSDRY = 0 indicates either that the associated mes
sage is not configured for use or that it is not required at the present time. This bit is used by the
microcontroller to prevent the CAN 0 logic from accessing a message while the microcontroller is
updating message attributes. These include as identifiers: arbitration registers 0–3, data byte reg
isters 0–7, data byte count (DTBYC3, DTBYC0), direction control (T/R), the extended or standard
mode bit (EX/ST), and the mask enables (MEME and MDME) associated with message 1. MSRDY
is cleared to a 0 following a microcontroller hardware reset or a reset generated by the CRST bit in
the CAN 0 control register, and must also remain in a cleared mode until all the CAN 0 initialization
has been completed. Individual message MSRDY controls can be changed after initialization
to reconfigure specific messages, without interrupting the communication of other messages on
the CAN 0 bus.

ETI CAN 0 message center 1 enable transmit interrupt. (ETI is unrestricted read/write.)
Bit 6 When ETI is cleared to 0, a successful transmission does not set INTRQ and, as such, does not

generate an interrupt. Setting ETI to a 1 enables a successful CAN 0 transmission to set the
INTRQ bit, which in turn issues an interrupt to the microcontroller. Note that the ETI bit located in
message center 15 is ignored by the CAN processor, since the message center 15 is a receive-
only message center.

ERI CAN 0 message center 1 enable receive interrupt. (ERI is unrestricted read/write.)
Bit 5 When ERI is cleared to 0, a successful reception does not set the INTRQ and, as such, does not

generate an interrupt. When the ERI is set to a 1, the INTRQ bit is only set when the CAN proces-
sor successfully receives and stores the incoming message into one of the message centers.
Setting INTRQ, in turn, issues an interrupt request to the microcontroller.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 60

7 6 5 4 3 2 1 0

SFR ABh MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

RW-0 RW-0 RW-0 RW-0 RC-0 R*-0 R*-0 R*-0

R = Unrestricted read, C = Clear only, * = See description, -n = Value after reset

This SFR is not present on the DS80C411.

CAN 0 Message Center 1 Control Register (C0M1C)

7 6 5 4 3 2 1 0

SFR A9h SADDR0.7 SADDR0.6 SADDR0.5 SADDR0.4 SADDR0.3 SADDR0.2 SADDR0.1 SADDR0.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Slave Address Register 1 (SADDR1)

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

61 ___

INTRQ Interrupt request. (INTRQ is unrestricted read/write.) INTRQ is automatically set to a 1 by the CAN 0
Bit 4 logic when the ERI is set and the CAN 0 logic completes a successful reception and store. The INTRQ

bit is also set to a 1 when the ETI is set and the CAN 0 logic completes a successful transmission. The
INTRQ interrupt request must also be enabled by the EA global mask in the IE SFR register if the inter-
rupt is to be acknowledged by the microcontroller interrupt logic.

EXTRQ External transmit request. (Read/clear only.) When EXTRQ is cleared to a 0, there are no pending
Bit 3 requests by external CAN nodes for this message. When EXTRQ is set to a 1, a request has been made

for this message by an external CAN node, but the service request has not been completed by the CAN
0 controller at the time of the read of EXTRQ. Following the completion of a requested transmission by a
message center programmed for transmission (T/R = 1), the EXTRQ bit is cleared by the CAN 0 con-
troller. A remote request is only answered by a message center programmed for transmission (T/R =
1) when DTUP = 1 and TIH = 0 (i.e., when new data was loaded and is not being currently modified by
the micro). Note that a message center programmed for a receive mode (T/R = 0) also detects a remove
frame request and sets the EXTRQ bit in a similar manner, but does not automatically transmit a data
frame and, as such, does not automatically clear the EXTRQ bit.

MTRQ Microcontroller transmit request. MTRQ is unrestricted read and can only be set to a 1 when
Bit 2 written to by the microcontroller. A write of a 0 to MTRQ leaves the MTRQ bit unchanged. MTRQ can

only be cleared as a result of a successful transmission by the respective message center, or when the
CRST bit is set or the CAN processor experiences a system reset from the reset sources outlined in the
functional description in the reset option and reset timing section of this user’s guide supplement.

The MTRQ is a read-limited write bit, and is designed to allow the microcontroller to request a message to
be transmitted. MTRQ is programmed to a 1 when the microcontroller is requesting the respective mes-
sage to be transmitted. MTRQ remains set until such time that the message transmission is successfully
completed, at which time the CAN 0 controller clears the MTRQ bit. Setting MTRQ with T/R = 1 (directional
= transmit) results in the sending of a data frame for the transmitted message, and setting MTRQ with
T/R = 0 (directional = receive) results in the sending of a remote frame request. When the associated
message is programmed for transmit (T/R = 1), the MTRQ bit is also set by the CAN 0 controller at the
same time that the EXTRQ bit is set by a message request from an external node. MTRQ is cleared by the
CAN 0 controller at the same time as the EXTRQ bit, once a successful transmission of the message is
completed. Note that the MTRQ bit located in message center 15 is ignored by the CAN processor, since
the message center 15 is a receive-only message center.

ROW/TIH Receive overwrite/transmit inhibit. The receive overwrite (ROW) and transmit inhibit (TIH) bits
Bit 1 share the same bit 1 location in the CAN 0 message control register. The ROW function is only support

ed when the associated message is programmed by the T/R = 0 bit in the message format register to
function in the receive mode. Similarly, the TIH function is only supported when the associated message
is programmed by the T/R = 1 bit in the message format register to function in the transmit mode.

Receive overwrite. (T/R = 0, ROW is read only.) The ROW is automatically set to a 1 by the CAN 0 con-
troller if a new message is received and stored while the DTUP bit is still set. When set, ROW indicates that
the previous message was potentially lost and may not have been read, since the microcontroller had not
cleared the DTUP bit prior to the new load. When ROW = 0, no new message has been received and
stored while DTUP was set to 1 since this bit was last cleared. Note that the ROW bit is not set when the
WTOE bit is cleared to a 0, since all overwrites are disabled. Thus, if the incoming message matches the
respective message center and DTUP = 1 in the respective message center, the combination of WTOE =
0 and DTUP = 1 forces the CAN processor to ignore the respective message center when the CAN is pro-
cessing the incoming data.

ROW is cleared by the CAN processor when the microcontroller clears the DTUP bit associated with the
same message center. It must be pointed out that the ROW bit for message center 15 is related to the over-
write of the buffer associated with message center 15, as opposed to the actual message center 15. ROW
reflects the actual message center relationships for message centers 1–14. The ROW bit for the message
center 15 shadow buffer is cleared, once the shadow buffer is loaded into the message center 15 and the
shadow buffer is cleared to allow a new message to be loaded. The shadow buffer is automatically loaded
into message center 15 when the microcontroller clears the DTUP and EXTRQ bits in message center 15.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 62

Transmit inhibit. (T/R = 1, TIH is unrestricted read/write.) The TIH allows the microcontroller to disable the
transmission of the message when the data contents of the message are being updated. TIH = 1 directs
the CAN 0 controller not to transmit the associated message. TIH = 0 enables the CAN 0 controller to trans-
mit the message. If TIH = 1, EXTRQ is set to a 1 when a remote frame request is received by the message
center. Following the remote frame request and after the microcontroller has established the proper data to
be sent, the microcontroller clears the TIH bit to a 0, which allows the CAN processor to send the data
requested by the previous remote frame request. Note that the TIH bit located in message center 15 is
ignored by the CAN processor, since the message center 15 is a receive-only message center.

If the message center being set up with WTOE = 1 was previously a transmit message center, ensure that
the TIH bit is cleared to 0 (TIH can only be written while T/R is set to 1). If TIH is set to 1 and that message
center is changed to receive with WTOE = 1, the ROW bit will always read back a 1, even though a receive
overwrite condition may not have occurred.

DTUP Data updated. (DTUP is unrestricted read.) When T/R = 0, DTUP can only be cleared to a 0 when
Bit 0 written by the microcontroller. A write of a 1 to DTUP with T/R = 0 leaves the DTUP bit unchanged. A

write of a 1 to DTUP with T/R = 1 leaves the MTRQ bit unchanged. DTUP is unrestricted read/write when
T/R = 1.

The DTUP bit has a dual function depending on whether a message is configured for transmit or receive
by the T/R bit in the CAN 0 message format register. The DTUP bit is set to a 1 by either the microcontroller
(when in transmit), or by the CAN 0 controller (when in receive), to signify that new data has been loaded
into the data portion of the message.

Transmission mode (T/R = 1). The microcontroller sets TIH = 1 and clears DTUP = 0 prior to doing an
update of the associated message center. This prevents the CAN processor from transmitting the data
while the microcontroller is updating it. Once the microcontroller has finished configuring the message
center, the microcontroller clears TIH = 0 and sets MSRDY = 1, MTRQ = 1 and DTUP = 1 to enable the
CAN processor to transmit the data.The CAN processor does not clear the DTUP after the transmission,
but the microcontroller is able to determine that the transmission has been completed by checking the
MTRQ bit, which is cleared (MTRQ = 0) after the transmission has been successfully completed.

Receive mode (T/R = 0). The CAN processor sets the DTUP bit when it has completed a successful
reception and storage of the incoming message to the respective message center. The CAN processor
does not clear the DTUP after the microcontroller has read the associated data. That function is left to the
microcontroller.

When operating in the receive mode (T/R = 0), the DTUP = 1 signal notifies the microcontroller that the
respective message center has new data to be read by the microcontroller. The DTUP bit is used in two
ways when doing the read of the message center, as determined by the WTOE bit in the CAN 0 message
1 arbitration register 3 (C0M1AR3).

When WTOE = 1 and the CAN processor is allowed to perform overwrites of respective message centers,
the microcontroller uses the DTUP bit to establish the validity of each message read. Clearing DTUP = 0
before a read of a receive message center and then reading the DTUP bit after finishing the message cen-
ter read, the microcontroller can determine if new data was loaded (DTUP = 1) or not (DTUP = 0) into the
message center during the microcontroller read of the message center.

If DTUP = 1, then there was new data stored to the message center while the microcontroller was perform-
ing the message center read. This status condition requires the microcontroller to again clear the DTUP bit
and perform a second read of the message center to verify that the data it reads is completely updated.

If DTUP = 0, the message center data read by the microcontroller had not been updated while it was being
read by the microcontroller, and the data is complete.

When WTOE = 0 and the CAN processor is not allowed to perform overwrites of respective message cen-
ters, the microcontroller only needs to clear DTUP = 0 after performing the read of the message center.
The CAN processor is not allowed to write into a message center where the DTUP = 1 state exists.

The DTUP bit is never cleared by the CAN processor, but is set as per the above discussion. The only mech-
anism used to clear the DTUP bit is the microcontroller or a system reset or the setting of the CRST bit.

When T/R = 1, all message center transmissions are automatically disabled until both DTUP = 1 and TIH
= 0. This mechanism prevents the CAN from sending incomplete data.

Remote frame transmissions are not affected by the TIH bit in the receive mode (T/R = 0), since this func-
tion does not exist in this mode. In a similar fashion, the state of the DTUP bit does not inhibit remote frame
request transmissions in the receive mode. The only gating item for remote frame transmissions in the
receive mode (T/R = 0) is the setting of both the MSRDY = 1 and MTRQ = 1 bits.

C0M2C Operation of the bits in this register are identical to those found in the CAN 0 message 1 control
Bits 7–0 register (C0M1C: ABh) SFR. Consult the description of that register for more information.

C0M3C Operation of the bits in this register are identical to those found in the CAN 0 message 1 control
Bits 7–0 register (C0M1C: ABh). Consult the description of that register for more information.

C0M4C Operation of the bits in this register are identical to those found in the CAN 0 message 1 control
Bits 7–0 register (C0M1C: ABh). Consult the description of that register for more information.

C0M5C Operation of the bits in this register are identical to those found in the CAN 0 message 1 control
Bits 7–0 register (C0M1C: ABh). Consult the description of that register for more information.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

63 ___

7 6 5 4 3 2 1 0

SFR ACh MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

RW-0 RW-0 RW-0 RW-0 RC-0 R*-0 R*-0 R*-0

R = Unrestricted read, C = Clear only, * = See description, -n = Value after reset

This SFR is not present on the DS80C411.

CAN 0 Message Center 2 Control Register (C0M2C)

7 6 5 4 3 2 1 0

SFR ADh MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

RW-0 RW-0 RW-0 RW-0 RC-0 R*-0 R*-0 R*-0

R = Unrestricted read, C = Clear only, * = See description, -n = Value after reset

This SFR is not present on the DS80C411.

CAN 0 Message Center 3 Control Register (C0M3C)

7 6 5 4 3 2 1 0

SFR AEh MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

RW-0 RW-0 RW-0 RW-0 RC-0 R*-0 R*-0 R*-0

R = Unrestricted read, C = Clear only, * = See description, -n = Value after reset

This SFR is not present on the DS80C411.

CAN 0 Message Center 4 Control Register (C0M4C)

7 6 5 4 3 2 1 0

SFR AFh MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

RW-0 RW-0 RW-0 RW-0 RC-0 R*-0 R*-0 R*-0

R = Unrestricted read, C = Clear only, * = See description, -n = Value after reset

This SFR is not present on the DS80C411.

CAN 0 Message Center 5 Control Register (C0M5C)

P3.7–0 General-Purpose I/O port 3. This register functions as a general-purpose I/O port. In addition, all
Bits 7–0 the pins have an alternative function listed as follows. Several other SFRs control each of the func

tions. The associated port 1 latch bit must contain a logic 1 before the pin can be used in its alter
nate function capacity.

RD External data memory read strobe. This pin provides an active-low read strobe to an external
Bit 7 memory device.

WR External data memory write strobe. This pin provides an active-low write strobe to an external
Bit 6 memory device

T1 Timer/counter external input. A 1-to-0 transition on this pin increments timer 1.
Bit 5

T0 Counter external input. A 1-to-0 transition on this pin increments timer 0.
Bit 4

INT1 External interrupt 1. A falling edge/low level on this pin causes an external interrupt 1 if
Bit 3 enabled.

INT0 External interrupt 0. A falling edge/low level on this pin causes an external interrupt 0 if
Bit 2 enabled.

TXDO Serial port 0 transmit. This pin transmits the serial port 0 data in serial port modes 1, 2, and 3
Bit 1 and emits the synchronizing clock in serial port mode 0.

RXDO Serial port 0 receive. This pin receives the serial port 0 data in serial port modes 1, 2, and 3
Bit 0 and emits the synchronizing clock in serial port mode 0.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 64

7 6 5 4 3 2 1 0

SFR B0h
P3.7
RD

P3.6
WR

P3.5
T1

P3.4
T0

P3.3
INT1

P3.2
INT0

P3.1
TXD0

P3.0
RXD0

RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Port 3 (P3)

P6.7–0 Parallel I/O port 6. Any port 6 pin assigned to function as an external memory interface through
Bits 7–0 the port 6 control register cannot be altered by a write to the port 6 SFR. All bits assigned a stan

dard I/O are programmed as per the data value. In addition, all pins have an alternate function listed as
follows. A read of a bit assigned to function as an external memory interface reads back a 1 when read by
the port 6 SFR. A read of a bit assigned to standard I/O produces the value of the respective port 6 pin
when that port pin was previously programmed with a 1 pseudo-input state or previously programmed as
a 0 output state. Note that the use of read-modify-write instructions on ports 1, 2, 3, 4, 5, 6, and 7 on the
DS80C400 read the state of the port latch, as opposed to the port pin data. These instructions are outlined
in the High-Speed Microcontroller User’s Guide.

TXD2 Serial port 2 transmit. This pin transmits the serial port 2 data in serial port modes 1, 2, and 3 and
Bit 7 emits the synchronizing clock in serial port mode 0.

RXD2 Serial port 2 receive. This pin receives the serial port 2 data in serial port modes 1, 2, and 3 and is a
Bit 6 bidirectional data transfer pin in serial port mode 0.

A21 Program/data memory address 21. When this bit is set to logic 1 and the P4CNT register is config-
Bit 5 ured correctly, the corresponding device pin represents the A21 memory signal.

A20 Program/data memory address 20. When this bit is set to logic 1 and the P4CNT reg-
Bit 4 ister is configured correctly, the corresponding device pin represents the A20 memory signal.

CE7 Program memory chip enable 7. When this bit is set to logic 1 and the P6CNT register is configured
Bit 3 correctly, the corresponding device pin represents the CE7 memory signal.

CE6 Program memory chip enable 6. When this bit is set to logic 1 and the P6CNT register is configured
Bit 2 correctly, the corresponding device pin represents the CE6 memory signal.

CE5 Program memory chip enable 5. When this bit is set to logic 1 and the P6CNT register is configured
Bit 1 correctly, the corresponding device pin represents the CE5 memory signal.

CE4 Program memory chip enable 4. When this bit is set to logic 1 and the P6CNT register is configured
Bit 0 correctly, the corresponding device pin represents the CE4 memory signal.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

65 ___

7 6 5 4 3 2 1 0

SFR B1h
P6.7
TXD2

P6.6
RXD2

P6.5
A21

P6.4
A20

P6.3
CE7

P6.2
CE6

P6.1
CE5

P6.0
CE4

R-1 R-1 R-1 R-1 R-1 R-1 R-1 R-1

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Port 6 (P6)

P6.7–0 Port 6 control register. P6CNT bits provide the configuration for the alternate addressing modes
on port 6. These settings, in turn, establish the size of the external program memory that can be
accessed. Programming the bit combinations given in this section converts the designated port 6
pins to I/O, address, or chip enables. Once any bit combination containing a 1 is programmed into
P6CNT.2–P6CNT.0, the corresponding port pins that are then assigned to peripheral chip enables
are locked out from being programmed as I/O in the port 6 SFR. In a similar fashion, any bit com-
bination containing a 1 programmed into P6CNT.5–P6CNT.3 locks out the corresponding port pins
assigned to addresses for respective peripheral chip enables. This allows the normal use of the
port 6 SFR, without the concern that a byte write to the SFR would alter either any of the external
chip enables or addresses.

Bit 7 Reserved.

Bit 6 Reserved.

P6CNT.5–P6CNT.3 Port pin P4.7–P4.4 configuration control bit for PCEx. Note that setting these bits to values
Bits 5–3 other than those listed in the following table causes them to be treated as value of 000b and

specifies peripheral memory chip size to 32kB. The peripheral chip enables are configured by
P5CNT.2–0, and are alternate function of P5.7–4.

PCEx ADDRESS LINE SELECTION

When CE0–CE7 are converted from program to program/data memory, PCE0–PCE3 is disabled if
the corresponding data memory area is covered by CEx. The internally decoded range for each pro-
gram chip enable (CE0–CE7), is established by the number of external address lines (A21–A16)
enabled by the P4CNT.5-P4CNT.3 control bits. The following table outlines the assigned memory
boundaries of each peripheral chip enable (PCEx) as determined by the P6CNT.5-P6CNT.3 control
bits. Note that, when the external address bus is limited to A0–A15, the chip enables are internally
decoded on a 32kB x 8-block boundary. The peripheral chip-enable boundaries of the DS80C410/411
are different because the internal 64kB occupy the lower data memory space of the DS80C410/410.
The setting of the PRAME bit does not change the boundaries defined in these tables.

P6CNT.5–3 P4.7 P4.6 P4.5 P4.4
MAX. MEMORY
SIZE PER PCEx

000 I/O I/O I/O I/O 32kB

001 I/O I/O I/O A16 128kB

010 I/O I/O A17 A16 256kB

011 I/O A18 A17 A16 512kB

100 A19 A18 A17 A16 1MB

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 66

7 6 5 4 3 2 1 0

SFR B2h — — P6CNT.5 P6CNT.4 P6CNT.3 P6CNT.2 P6CNT.1 P6CNT.0

RT-1 RT-1 RT-1 RT-1 RT-1 RT-1 RT-1 RT-1

R = Unrestricted read, T = Timed-access write only, -n = Value after reset

Port 6 Control Register (P6CNT)

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

67 ___

PERIPHERAL CHIP-ENABLE BOUNDARIES—DS80C400

PERIPHERAL CHIP-ENABLE BOUNDARIES—DS80C410/411

P6CNT.2–P6CNT.0 Port pin P6.3–P6.0 configuration control bits. P6CNT.2-0 determine whether specific P6
Bits 2–0 pins function as program chip-enable signals or as I/O.

CE4–CE7 CHIP-ENABLE FUNCTION SELECTION

P6CNT.2–0 P6.3 P6.2 P6.1 P6.0

000 I/O I/O I/O I/O

100 I/O I/O I/O CE4

101 I/O I/O CE5 CE4

110 I/O CE6 CE5 CE4

111 CE7 CE6 CE5 CE4

P6CNT.5–3 PCE0 PCE1 PCE2 PCE3

000 —- — 64kB–96kB 96kB–128kB

001 64kB–128kB 128kB–256kB 256kB–384kB 384kB–512kB

010 64kB–256kB 256kB–512kB 512kB–768kB 768kB–1MB

011 64kB–512kB 512kB–1MB 1MB–1.5MB 1.5MB–2MB

100 64kB–1MB 1MB–2MB 2MB–3MB 3MB–4MB

P6CNT.5–3 PCE0 PCE1 PCE2 PCE3

000 0–32kB 32kB–64kB 64kB–96kB 96kB–128kB

001 0–128kB 128kB–256kB 256kB–384kB 384kB–512kB

010 0–256kB 256kB–512kB 512kB–768kB 768kB–1MB

011 0–512kB 512kB–1MB 1MB–1.5MB 1.5MB–2MB

100 0–1MB 1MB–2MB 2MB–3MB 3MB–4MB

C0M6C Operation of the bits in this register are identical to those found in the CAN 0 message 1 control
Bits 7–0 register (C0M1C: ABh). Consult the description of that register for more information.

C0M7C Operation of the bits in this register are identical to those found in the CAN 0 message 1 control
Bits 7–0 register (C0M1C: ABh). Consult the description of that register for more information.

C0M8C Operation of the bits in this register are identical to those found in the CAN 0 message 1 control
Bits 7–0 register (C0M1C: ABh). Consult the description of that register for more information.

C0M9C Operation of the bits in this register are identical to those found in the CAN 0 message 1 control
Bits 7–0 register (C0M1C: ABh). Consult the description of that register for more information.

C0M10C Operation of the bits in this register are identical to those found in the CAN 0 message 1 control
Bits 7–0 register (C0M1C: ABh). Consult the description of that register for more information.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 68

7 6 5 4 3 2 1 0

SFR B3h MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

RW-0 RW-0 RW-0 RW-0 RC-0 R*-0 R*-0 R*-0

R = Unrestricted read, C = Clear only, * = See description, -n = Value after reset

This SFR is not present on the DS80C411.

CAN 0 Message Center 6 Control Register (C0M6C)

7 6 5 4 3 2 1 0

SFR B4h MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

RW-0 RW-0 RW-0 RW-0 RC-0 R*-0 R*-0 R*-0

R = Unrestricted read, C = Clear only, * = See description, -n = Value after reset

This SFR is not present on the DS80C411.

CAN 0 Message Center 7 Control Register (C0M7C)

7 6 5 4 3 2 1 0

SFR B4h MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

RW-0 RW-0 RW-0 RW-0 RC-0 R*-0 R*-0 R*-0

7 6 5 4 3 2 1 0

SFR B6h MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

RW-0 RW-0 RW-0 RW-0 RC-0 R*-0 R*-0 R*-0

CAN 0 Message Center 8 Control Register (C0M8C)

R = Unrestricted read, C = Clear only, * = See description, -n = Value after reset

This SFR is not present on the DS80C411.

7 6 5 4 3 2 1 0

SFR B5h MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

RW-0 RW-0 RW-0 RW-0 RC-0 R*-0 R*-0 R*-0

CAN 0 Message Center 9 Control Register (C0M9C)

R = Unrestricted read, C = Clear only, * = See description, -n = Value after reset

This SFR is not present on the DS80C411.

CAN 0 Message Center 10 Control Register (C0M10C)

R = Unrestricted read, C = Clear only, * = See description, -n = Value after reset

This SFR is not present on the DS80C411.

Bit 7 Reserved. Read data is indeterminate.

PS1 Serial port 1 interrupt. This bit controls the priority of the serial port 1 interrupt.
Bit 6 0 = Serial port 1 is a low priority.

1 = Serial port 1 is a high-priority interrupt.

PT2 Timer 2 interrupt. This bit controls the priority of timer 2 interrupt.
Bit 5 0 = Timer 2 is a low priority.

1 = Timer 2 is a high-priority interrupt.

PS0 Serial port 0 interrupt. This bit controls the priority of the serial port 0 interrupt.
Bit 4 0 = Serial port 0 is a low priority.

1 = Serial port 0 is a high-priority interrupt.

PT1 Timer 1 interrupt. This bit controls the priority of timer 1 interrupt.
Bit 3 0 = Timer 1 is a low priority.

1 = Timer 1 is a high-priority interrupt.

PX1 External interrupt 1. This bit controls the priority of external interrupt 1.
Bit 2 0 = External interrupt 1 is a low priority.

1 = External interrupt 1 is a high-priority interrupt.

PT0 Timer 0 interrupt. This bit controls the priority of timer 0 interrupt.
Bit 1 0 = Timer 0 is a low priority.

1 = Timer 0 is a high-priority interrupt.

PX0 External interrupt 0. This bit controls the priority of external interrupt 0.
Bit 0 0 = External interrupt 0 is a low priority.

1 = External interrupt 0 is a high-priority interrupt.

Slave Address Mask Enable Register 0 (SADEN0)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

SADEN0.7–0 Slave address mask enable register 0. This register is a mask enable when comparing serial port
Bits 7–0 0 addresses for automatic address recognition. When a bit is set in this register, the correspond

ing bit location in the SADDR0 register is exactly compared with the incoming serial port 0 data to
determine if a receive interrupt should be generated. When a bit in this register is cleared, the cor-
responding bit in the SADDR0 register becomes a “don’t care” and is not compared against the
incoming data. All incoming data generates a receive interrupt when this register is cleared.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

69 ___

7 6 5 4 3 2 1 0

SFR B8h — PS1 PT2 PS0 PT1 PX1 PT0 PX0

— RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Interrupt Priority (IP)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset, IP is set to 80h on all forms of reset.

7 6 5 4 3 2 1 0

SFR B9h SADEN0.7 SADEN0.6 SADEN0.5 SADEN0.4 SADEN0.3 SADEN0.2 SADEN0.1 SADEN0.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Slave Address Mask Enable Register 1 (SADEN1)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

SADEN1.7–0 Slave address mask enable register 1. This register is a mask enable when comparing serial port
Bits 7–0 1 addresses for automatic address recognition. When a bit is set in this register, the corresponding

bit location in the SADDR1 register is exactly compared with the incoming serial port 1 data to
determine if a receive interrupt should be generated. When a bit in this register is cleared, the cor
responding bit in the SADDR1 register becomes a “don’t care” and is not compared against the
incoming data. All incoming data generates a receive interrupt when this register is cleared.

CAN 0 Message Center 11 Control Register (C0M11C)

R = Unrestricted read, C = Clear only, * = See description, -n = Value after reset

This SFR is not present on the DS80C411.

C0M11C Operation of the bits in this register are identical to those found in the CAN 0 message 1 control
Bits 7–0 register (C0M1C: ABh). Please consult the description of that register for more information.

CAN 0 Message Center 12 Control Register (C0M12C)

R = Unrestricted read, C = Clear only, * = See description, -n = Value after reset

This SFR is not present on the DS80C411.

C0M12C Operation of the bits in this register are identical to those found in the CAN 0 message 1 control
Bits 7–0 register (C0M1C: ABh). Please consult the description of that register for more information.

CAN 0 Message Center 13 Control Register (C0M13C)

R = Unrestricted read, C = Clear only, * = See description, -n = Value after reset

This SFR is not present on the DS80C411.

C0M13C Operation of the bits in this register are identical to those found in the CAN 0 message 1 control
Bits 7–0 register (C0M1C: ABh). Please consult the description of that register for more information.

CAN 0 Message Center 14 Control Register (C0M14C)

R = Unrestricted read, C = Clear only, * = See description, -n = Value after reset

This SFR is not present on the DS80C411.

C0M14C Operation of the bits in this register are identical to those found in the CAN 0 message 1 control
Bits 7–0 register (C0M1C: ABh). Please consult the description of that register for more information.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 70

7 6 5 4 3 2 1 0

SFR BAh SADEN1.7 SADEN1.6 SADEN1.5 SADEN1.4 SADEN1.3 SADEN1.2 SADEN1.1 SADEN1.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR BBh MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

RW-0 RW-0 RW-0 RW-0 RC-0 R*-0 R*-0 R*-0

7 6 5 4 3 2 1 0

SFR BCh MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

RW-0 RW-0 RW-0 RW-0 RC-0 R*-0 R*-0 R*-0

7 6 5 4 3 2 1 0

SFR BDh MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

RW-0 RW-0 RW-0 RW-0 RC-0 R*-0 R*-0 R*-0

7 6 5 4 3 2 1 0

SFR BEh MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

RW-0 RW-0 RW-0 RW-0 RC-0 R*-0 R*-0 R*-0

CAN 0 Message Center 15 Control Register (C0M15C)

R = Unrestricted read, C = Clear only, * = See description, -n = Value after reset

This SFR is not present on the DS80C411.

C0M15C Operation of the bits in this register are identical to those found in the CAN 0 message 1 control
Bits 7–0 register (C0M1C: ABh). Please consult the description of that register for more information.

Serial Port Control (SCON1)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

SM0-2 Serial port 1 mode. These bits control the mode of serial port 1 as follows.
Bits 7-5

SM0/FE_1 Serial port 1 mode bit 0. When SMOD0 is set to 1, it is the framing error flag that is set upon
Bit 7 detection of an invalid stop bit and must be cleared by software. Modification of this bit when

SMOD0 is set has no effect on the serial mode setting.

SM1_1 Serial port 1 mode bit 1.
Bit 6

SM2_1 Serial port 1 mode bit 2. Setting of this bit in mode 1 ignores reception if an invalid stop bit is
Bit 5 detected. Setting this bit in mode 2 or 3 enables multiprocessor communications. This prevents

the RI_1 bit from being set and interrupt being asserted, if the 9th bit received is 0.

REN_1 Receive enable.
Bit 4 REN_0 = 0: serial port 1 reception disabled.

REN_0 = 1: serial port 1 receiver enabled for modes 1, 2, and 3.
Initiate synchronous reception for mode 0.

TB8_1 9th transmission bit state. This bit defines the state of the 9th transmission bit in serial port 1,
Bit 3 modes 2 and 3.

RB8_1 9th received bit state. This bit identifies the state of the 9th bit of received data in serial port 1,
Bit 2 modes 2 and 3. When SM2_1 is 0, it is the state of the stop bit in mode 1. This bit has no mean-

ing in mode 0.

TI_1 Transmitter interrupt flag. This bit indicates that the data in the serial port 1 buffer has been
Bit 1 completely shifted out. It is set at the end of the last data bit for all modes of operation and must

be cleared by software.

9th received bit state. This bit identifies the state of the 9th bit of received data in serial port 1,
modes 2 and 3. When SM2_1 is 0, it is the state of the stop bit in mode 1. This bit has no mean-
ing in mode 0.

RI_1 Receive interrupt flag. This bit indicates that a data byte has been received in the serial port 1
Bit 0 buffer. It is set at the end of the 8th bit for mode 0, after the last sample of the incoming stop bit

for mode 1 subject to the value of the SM2_1 bit, or after the last sample of RB8_1 for modes 2
and 3. This bit must be cleared by software.

SM0 SM1 SM2 MODE FUNCTION LENGTH PERIOD

0 0 0 0 Synchronous 8 bits 12 tCLK
0 0 1 0 Synchronous 8 bits 4 tCLK
0 1 X 1 Asynchronous 10 bits Timer 1

1 0 0 2 Asynchronous 11 bits
64 tCLK (SMOD=0)
32 tCLK (SMOD=1)

1 0 1 2 Asynchronous w/ multiprocessor communication 11 bits
64 tCLK (SMOD=0)
32 tCLK (SMOD=1)

1 1 0 3 Asynchronous 11 bits Timer 1

1 1 1 3 Asynchronous w/ multiprocessor communication 11 bits Timer 1

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

71 ___

7 6 5 4 3 2 1 0

SFR BFh MSRDY ETI ERI INTRQ EXTRQ MTRQ ROW/TIH DTUP

RW-0 RW-0 RW-0 RW-0 RC-0 R*-0 R*-0 R*-0

7 6 5 4 3 2 1 0

SFR C0h SM0/FE_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TI_1 RI_1

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Serial Data Buffer 1 (SBUF1)

SBUF1.7–0 Serial data buffer 1. Data for serial port 1 is read from or written to this location. The serial
Bits 7–0 transmit and receive buffers are separate registers, but both are addressed at this location.

Power-Management Register (PMR)

CD1, CD0 Clock divide control bits 1 and 0. These bits select the number of crystal oscillator clocks
Bits 7–6 required to generate one machine cycle. Switching between modes requires a transition through

the divide-by-4 mode (CD1, CD0 = 01). For example, to go from 1 to 1024 clocks-per-machine
cycle, the device must first go from 1 to 4 clocks per cycle, and then from 4 to 1024 clocks per
cycle. Attempts to perform an invalid transition are ignored. The setting of these bits affects the
timers and serial ports, as shown in the following table:

Attempts to change these bits to the frequency multiplier setting (one or two clocks per cycle) fail
when running from the internal ring oscillator. In addition, it is not possible to change these bits to
the 1024 clocks-per-machine cycle setting while the switchback enable bit (SWB) is set and any
of the switchback sources (external interrupts or serial port transmit or receive activity) are active.

SWB Switchback enable. When set to 1, SWB allows mask-enabled external interrupts, as well as
Bit 5 enabled serial port receive functions, to force the clock divide control (CD1 and CD0) bits from

11b (1024 oscillator cycles per machine cycle) to 10b (four oscillator cycles per machine cycle).
When SWB is cleared to 0, switchback mode is disabled. Switchback is supported only from the
divide-by-1024 mode. The first switchback condition is initiated by the detection of a low on
INT0, INT1, INT3 or INT5, or high on INT2 or INT4, when the respective pin has been program-
enabled to issue an interrupt. Note that the switchback interrupt relationship requires that the
respective external interrupt source be allowed to generate an interrupt as defined by
the priority of the interrupt and the state of nested interrupts, before the switchback actually
occurs. The second switchback condition occurs when the serial port is enabled to receive data
and is found to have an active-low start bit on the receive input pin. Serial port transmit activity
also forces a switchback if the SWB is set. Note that the serial port activity, as related to the
switchback, is independent of the serial port interrupt relationship. The automatic switchback is
only enabled when the clock divide control bits has established a divide-by-1024 mode and the
SWB is set to 1.

OSC CYCLES PER
TIMER 0/1/2 CLOCK

OSC CYCLES PER
SERIAL PORT CLK,

MODE 0

OSC CYCLES PER
SERIAL PORT CLK,

MODE 2CD1:0 4X/2X

OSCILLATOR
CYCLES PER

MACHINE
CYCLE TXM = 0 TXM = 1

OSC CYCLES
PER TIMER 2
CLK, BAUD
RATE GEN SM2 = 0 SM2 = 1 SMOD = 0 SMOD = 1

00 1 1 12 1 2 3 1 64 32

00 0 2 12 2 2 6 2 64 32

01 x Reserved

10 x 4 12 4 2 12 4 64 32

11 x 1024 3072 1024 512 3072 1024 64 32

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 72

7 6 5 4 3 2 1 0

SFR C1h SBUF1.7 SBUF1.6 SBUF1.5 SBUF1.4 SBUF1.3 SBUF1.2 SBUF1.1 SBUF1.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR C4h CD1 CD0 SWB CTM 4X/2X ALEOFF — —

R*-1 R*-0 RW-0 R*-0 R*-0 RW-0 R-1 R-0

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

R = Unrestricted read, W = Unrestricted write, * = See description, -n = Value after reset

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

73 ___

CTM Crystal multiplier enable. The CTM bit is used to enable the crystal clock multiplier. The CTM
Bit 4 bit can be changed only when the CD1 and CD0 bits are set to divide-by-4 mode and the RGMD

is cleared to 0. When programmed to 0, the CTM bit disables the crystal clock multiplier to save
energy and, when programmed to 1, the CTM bit enables the crystal clock multiplier. The crystal
clock multiplier requires a startup stabilization period. Setting CTM to 1 from a previous 0 auto-
matically clears the CKRY bit in the EXIF register and starts the crystal clock warmup period.
During the startup count, the CKRY bit remains cleared and the CD1: 0 bits should not be
changed to select the crystal clock multiplier until the CKRY has indicated the startup time has
elapsed (CKRY = 1). CTM cannot be changed from a 1 to a 0 while the crystal clock multiplier
option is selected by the CD1 and CD0 clock control bits. Setting the CTM bit enables the crystal
clock multiplier to run at the programmed 2X or 4X multiply rate established by the 4X/2X bit. The
4X/2X bit cannot be altered unless the CTM bit is cleared. The CTM is also automatically cleared
to logic 0 when the processor enters into a stop mode.

4X/2X System clock multiplier. The 4X/2X bit establishes the multiplication factor associated with the
Bit 3 internal crystal oscillator multiplier. Clearing this bit to a logic 0 sets the multiply function as a fre-

quency doubler (2X crystal frequency). Setting this bit to a logic 1 adjusts the multiply function to
operate as a frequency quadrupler (4X crystal frequency). This bit must be established for the
preferred multiplication factor before setting the crystal multiplier (CTM) bit. The 4X/2X bit can
only be altered when the CTM bit is cleared. This prevents the system from changing the multipli-
cation factor while the clock multiplier is enabled, and forces such a change to be made from the
divide-by-4 mode.

ALEOFF ALE disable. When set to 1, this bit disables ALE (set high externally) during all on-board pro-
Bit 2 gram and data memory access times. External multiplexed address/data (off-chip) memory

access (MUX = 0) automatically enables ALE, independent of ALEOFF. External demultiplexed
address/data (off-chip) memory access (MUX = 1) automatically disables ALE if ALEOFF = 1, or
leaves ALE toggling if ALEOFF = 0. When ALEOFF is cleared to 0, ALE toggles normally at all
times.

Bits 1-0 Reserved.

Status Register (STATUS)

R = Unrestricted read, -n = Value after reset

PIP Power-fail priority interrupt status. When set, this bit indicates that software is currently
Bit 7 servicing a power-fail interrupt. It is cleared when the program executes the corresponding RETI

instruction.

HIP High-priority interrupt status. When set, this bit indicates that software is currently servicing a
Bit 6 high-priority interrupt. It is cleared when the program executes the corresponding RETI instruc

tion.

LIP Low-priority interrupt status. When set, this bit indicates that software is currently servicing a
Bit 5 low-priority interrupt. It is cleared when the program executes the corresponding RETI

instruction.

Bit 4 Reserved. Read value is indeterminate.

SPTA1 Serial port 1 transmit activity monitor. When set, this bit indicates that data is currently being
Bit 3 transmitted by serial port 1. It is cleared when the internal hardware sets the TI_1 bit.

SPRA1 Serial port 1 receive activity monitor. When set, this bit indicates that data is currently being
Bit 2 received by serial port 1. It is cleared when the internal hardware sets the RI_1 bit.

SPTA0 Serial port 0 transmit activity monitor. When set, this bit indicates that data is currently being
Bit 1 transmitted by serial port 0. It is cleared when the internal hardware sets the TI_0 bit.

SPRA0 Serial port 0 receive activity monitor. When set, this bit indicates that data is currently being
Bit 0 received by serial port 0. It is cleared when the internal hardware sets the RI_0 bit.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 74

7 6 5 4 3 2 1 0

SFR C5 PIP HIP LIP — SPTA1 SPRA1 SPTA0 SPRA0

R-0 R-0 R-0 — R-0 R-0 R-0 R-0

Memory Control Register (MCON)

R = Unrestricted read, T = Timed-access write only, -n = Value after reset

IDM1, IDM0 Internal data memory configuration and memory. The IDM1 and IDM0 bits establish the
Bits 7-6 address location of the internal MOVX SRAM memory. Use of the SRAM for extended stack

memory (SA = 1 in the ACON SFR) is not disrupted by the memory relocation assignment. These
bits do not exist in the DS80C410/411.

CMA CAN data memory assignment. The CMA bit provides a software mechanism for moving the
Bit 5 data memory blocks associated with the CAN controller. The 256 bytes of data memory can be

located at one of the two following address locations. This bit does not exist in the
DS80C410/411.

Bit 4 Reserved.

PDCE3 Program/data chip enable 3. PDCE3 provides the software selection for CE3 to be used with
Bit 3 either program or program and data memory when CE3 is enabled by the port 4 control register

(P4CNT). PDCE3 becomes a “don’t care” when CE3 is not enabled. The port 4 control register
SFR establishes the specific address range for CE3. Write access to the memory block, which is
connected to CE3 as data memory (PDCE3 = 1), comes from the P3.6 WR signal. A read of the
memory block connected to CE3 as program and data memory (PDCE3 = 1) comes from the
PSEN signal, as opposed to the normal P3.7 RD signal when doing data memory reads.

PDCE3 = 0 enables CE3 as a program memory chip enable.

PDCE3 = 1 enables CE3 as a merged program and data memory chip enable.

CMA CAN MEMORY LOCATION (HEX)

0 00DB00–00DBFF - Reset default

1 FFDB00–FFDBFF

IDM1 IDM0
INTERNAL SRAM MEMORY

LOCATION (HEX)

0 0
00DC00–00FFFF (1kB = 00DC00–00DFFF,
8kB = 00E000–00FFFF)

0 1
000000–0023FF (8kB = 000000–001FFF,
1kB = 002000–0023FF)

1 0
FFDC00–FFFFFF (1kB = FFDC00–FFDFFF,
8kB = FFE000–FFFFFF)

1 1
Reserved, trying to write 11b does not change
the previous setting.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

75 ___

7 6 5 4 3 2 1 0

SFR C6h IDM1 IDM0 CMA — PDCE3 PDCE2 PDCE1 PDCE0

RT-0 RT-0 RT-0 R-1 RT-0 RT-0 RT-0 RT-0

PDCE2 Program/data chip enable 2. PDCE2 provides the software selection for CE2 to be used with
Bit 2 either program or program and data memory when CE2 is enabled by the port 4 control register

(P4CNT). PDCE2 becomes a “don’t care” when CE2 is not enabled. The port 4 control register
SFR establishes the specific address range for CE2. Write access to the memory block, which is
connected to CE2 as data memory (PDCE2 = 1), comes from the P3.6 WR signal. A read of the
memory block connected to CE2 as program and data memory (PDCE2 = 1) comes from the
PSEN signal, as opposed to the normal P3.7 RD signal when doing data memory reads.

PDCE2 = 0 enables CE2 as a program memory chip enable.

PDCE2 = 1 enables CE2 as a merged program and data memory chip enable.

PDCE1 Program/data chip enable 1. PDCE1 provides the software selection for CE1 to be used with
Bit 1 either program or program and data memory when CE1 is enabled by the port 4 control register

(P4CNT). PDCE1 becomes a “don’t care” when CE1 is not enabled. The port 4 control register
SFR establishes the specific address range for CE1. Write access to the memory block, which is
connected to CE1 as data memory (PDCE1 = 1), comes from the P3.6 WR signal. A read of the
memory block connected to CE1 as program and data memory (PDCE1 = 1) comes from the
PSEN signal, as opposed to the normal P3.7 RD signal when doing data memory reads.

PDCE1 = 0 enables CE1 as a program memory chip enable.

PDCE1 = 1 enables CE1 as a merged program and data memory chip enable.

PDCE0 Program/data chip enable 0. PDCE0 provides the software selection for CE0 to be used with
Bit 0 either program or program and data memory when CE0 is enabled by the port 4 control register

(P4CNT). PDCE0 becomes a “don’t care” when CE0 is not enabled. The port 4 control register
SFR establishes the specific address range for CE0. Write access to the memory block, which is
connected to CE0 as data memory (PDCE0 = 1), comes from the P3.6 WR signal. A read of the
memory block connected to CE0 as program and data memory (PDCE0 = 1) comes from the
PSEN signal, as opposed to the normal P3.7 RD signal when doing data memory reads.

PDCE0 = 0 enables CE0 as a program memory chip enable.

PDCE0 = 1 enables CE0 as a merged program and data memory chip enable.

Timed-Access Register (TA)

W = Unrestricted write, -n = Value after reset

TA.7–0 This register provides a timed-control sequence for software writes to some special register bits,
Bits 7–0 in order to protect against inadvertent changes to configuration and to the program memory in

the event of a loss of software control.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 76

7 6 5 4 3 2 1 0

SFR C7h TA.7 TA.6 TA.5 TA.4 TA.3 TA.2 TA.1 TA.0

RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1

Timer 2 Control (T2CON)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

TF2 Timer 2 overflow flag. This bit is set when timer 2 overflows from FFFFh, or the count is equal to
Bit 7 the capture register in down-count mode. It must be cleared by software. This bit can only be set

if RCLK and TCLK are both cleared to 0.

EXF2 Timer 2 external flag. A negative transition on the T2EX (P1.1) causes this flag to be set if
Bit 6 (CP/PL2 = EXEN2 = 1) or (CP/PL2 = DCEN = 0 and EXEN2 = 1). When CP/PL2 = 0 and DCEN =

1, this bit toggles whenever timer 2 underflows or overflows. In this mode, EXF2 can be used as
the 17th timer bit and does not cause an interrupt. If set by a negative transition, this flag must
be cleared by software. Setting this bit forces a timer interrupt, if enabled.

RCLK Receive clock flag. This bit determines the serial port 0 time base when receiving data in serial
Bit 5 modes 1 or 3. Setting this bit to 1 causes timer 2 overflow to be used to determine receive baud

rate and forces timer 2 into baud-rate generation mode, which operates from divide-by-2 of the
external clock. Clearing this bit to 0 causes timer 1 overflow to be used.

TCLK Transmit clock flag. This bit determines the serial port 0 time base when transmitting data in
Bit 4 serial modes 1 or 3. Setting this bit to 1 causes timer 2 overflow to be used to determine transmit

baud rate and forces timer 2 into baud-rate generation mode, which operates from divide-by-2 of
the external clock. Clearing this bit to 0 causes timer 1 overflow to be used.

EXEN2 Timer 2 external enable. Setting this bit to 1 enables the capture/reload function on the T2EX
Bit 3 (P1.1) pin for a negative transition, if timer 2 is not generating baud rates for the serial port.

Clearing this bit to 0 causes timer 2 to ignore all external events on T2EX pin.

TR2 Timer 2 run control. This bit enables timer 2 operation when set to 1. Clearing this bit to 0 halts
Bit 2 timer 2 operation and preserves the current count in TH2 and TL2.

C/T2 Counter/timer select. This bit determines whether timer 2 functions as a timer or counter. Setting
Bit 1 this bit to 1 causes timer 2 to count negative transitions on the T2 (P1.0) pin. Clearing this bit to 0

causes timer 2 to function as a timer. The speed of timer 2 is determined by the T2M (CKCON.5)
bit. Timer 2 operates from divide-by-2 external clock when used in either baud-rate generator or
clock output mode.

CP/RL2 Capture/reload select. This bit determines whether the capture or reload function is used for
Bit 0 timer 2. If either RCLK or TCLK is set, timer 2 functions in an autoreload mode following each

overflow. Setting this bit to 1 causes a timer 2 capture to occur when a falling edge is detected
on T2EX if EXEN2 is 1. Clearing this bit to 0 causes an autoreload to occur when timer 2 over-
flow, or a falling edge, is detected on T2EX if EXEN2 is 1.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

77 ___

7 6 5 4 3 2 1 0

SFR C8h TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Timer 2 Mode (T2MOD)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Bits 7-5 Reserved.

D13T1 Divide-by-13 clock option for timer 1. The D13T1 bit provides an alternate clock source to the
Bit 4 timer 1 in place of the normal external T1 input pin. When D13T1 is cleared to 0, the clock

source for timer 1 is supplied through the standard T1 external input pin, the divide-by-12
of the oscillator (T1M = 0), or the divide-by-4 of the oscillator (T1M = 1), as controlled by T1M
and C/T. When D13T1 is set to a 1, the clock source for timer 1 is supplied through a separate
divide-by-13 of the system clock, independent of T1M. The C/T bit must also be programmed to
a 1 to select the divide-by-13 counter.

D13T2 Divide-by-13 clock option for timer 2. The D13T2 bit provides an alternate clock source to the
Bit 3 timer 2 in place of the normal external T2 input pin. When D13T2 is cleared to 0, the clock

source for timer 2 is supplied through the standard T2 external input pin, the divide-by-12 of the
oscillator (T2M = 0), or the divide-by-4 of the oscillator (T2M = 1), as controlled by T2M and
C/T2. When D13T2 is set to a 1, the clock source for timer 2 is supplied through a separate
divide-by-13 of the system clock independent of T2M. The C/T2 bit must also be programmed to
a 1 to select the divide-by-13 counter.

Bit 2 Reserved.

T2OE Timer 2 output enable. Setting this bit to 1 enables the clock output function of T2 (P1.0) pin if
Bit 1 C/T2 = 0. Timer 2 rollovers do not cause interrupts. Clearing this bit to 0 causes the T2 pin to

function either as a standard port pin or a counter input for timer 2.

DCEN Down-count enable. This bit, in conjunction with the T2EX pin, controls the direction that timer 2
Bit 0 counts in 16-bit autoreload mode. Clearing this bit to 0 causes timer 2 to count up. Setting this bit

to 1 causes timer 2 to count up if the T2EX pin is 1, and timer 2 to count down if the T2EX pin is 0.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 78

7 6 5 4 3 2 1 0

SFR C9h — — — D13T1 D13T2 — T2OE DCEN

RW-1 RW-1 RW-1 RW-0 RW-0 RW-1 RW-0 RW-0

Timer 2 Capture LSB (RCAP2L)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

RCAP2L.7–0 Timer 2 capture LSB. This register is used to capture the TL2 value when timer 2 is configured
Bits 7–0 in capture mode. RCAP2L is also used as the LSB of a 16-bit reload value when timer 2 is con-

figured in autoreload mode.

Timer 2 Capture MSB (RCAP2H)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

RCAP2H.7–0 Timer 2 capture MSB. This register is used to capture the TH2 value when timer 2 is configured
Bits 7–0 in capture mode. RCAP2H is also used as the MSB of a 16-bit reload value when timer 2 is con-

figured in autoreload mode.

Timer 2 LSB (TL2)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

TL2.7–0 Timer 2 LSB. This register contains the least significant byte of timer 2.
Bits 7–0

Timer 2 MSB (TH2)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

TH2.7–0 Timer 2 MSB. This register contains the most significant byte of timer 2.
Bits 7–0

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

79 ___

7 6 5 4 3 2 1 0

SFR CAh RCAP2L.7 RCAP2L.6 RCAP2L.5 RCAP2L.4 RCAP2L.3 RCAP2L.2 RCAP2L.1 RCAP2L.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR CCh TL2.7 TL2.6 TL2.5 TL2.4 TL2.3 TL2.2 TL2.1 TL2.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR CBh RCAP2H.7 RCAP2H.6 RCAP2H.5 RCAP2H.4 RCAP2H.3 RCAP2H.2 RCAP2H.1 RCAP2H.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR CDh TH2.7 TH2.6 TH2.5 TH2.4 TH2.3 TH2.2 TH2.1 TH2.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Clock Output Register (COR)

R = Unrestricted read, T = Timed-access write only, -n = Value after reset

IRDACK IRDA clock output enable. When XCLKOE = 0, IRDACK bit assumes a “don’t care” condition.
Bit 7 When XCLKOE = 1 and IRDACK = 1, the clock output pad issues a clock that is 16 times the

baud rate of the programmed baud rate associated with serial port 0. When XCLKOE = 1 and
IRDACK = 0, the clock output pad is controlled by the clock output divide select bits, COD1 and
COD0. Note that the appropriate baud rate must be established by use of timer 1, programmed
for the baud-rate generator mode 2.

Bits 6-5 Reserved.

C0BPR7, C0BPR6 CAN 0 baud-rate prescaler bits. The C0BPR7 and C0BPR6 bits establish the two high-order bits
Bits 4-3 associated with the 8-bit baud-rate prescaler in the CAN 0 controller. Note that the C0BPR7 and

C0BPR6 bits cannot be written when the SWINT bit in the CAN 0 control register is cleared to 0.
These bits do not exist in the DS80C411.

COD1, COD0 Clock output divide select bits. The clock output divide bits are used to establish the output
Bits 2-1 clock frequency from the CLKO function on port pin P3.5, when enabled by the COR.0

(XCLKOE) bit. Consult the description of the XCLKOE bit for more information.

XCLKOE External clock output enable. XCLKOE = 1 enables a clock defined by COD1-COD0 and
Bit 0 IRDACK to be driven from the port pin P3.5. XCLKOE = 1 provides a full push-pull driver on

P3.5. COD1 and COD0 are in “don’t care” states when XCLKOE and IRDACK are set to logic 1,
causing the serial port baud rate to be multiplied by 16. XCLKOE = 0 disables the clock output
and leaves the P3.5 pin to function as a general-purpose I/O port (GPIO), or as the T1 alternate
function.

COD1 COD0 P3.5 OUTPUT FREQUENCY

0 0 System clock divided by 2

0 1 System clock divided by 4

1 0 System clock divided by 6

1 1 System clock divided by 8

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 80

7 6 5 4 3 2 1 0

SFR CEh IRDACK — — C0BPR7 C0BPR6 COD1 COD0 XCLKOE

RT-0 RT-1 RT-1 RT-0 RT-0 RT-0 RT-0 RT-0

Program Status Word (PSW)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

CY Carry flag. This bit is set when if the last arithmetic operation resulted in a carry (during addition)
Bit 7 or a borrow (during subtraction). Otherwise, it is cleared to 0 by all arithmetic operations.

AC Auxiliary carry flag. This bit is set to 1 if the last arithmetic operation resulted in a carry into (dur-
Bit 6 ing addition), or a borrow from (during subtraction) the high-order nibble. Otherwise, it is cleared

to 0 by all arithmetic operations.

F0 User flag 0. This is a bit-addressable, general-purpose flag for software control.
Bit 5

RS1, RS0 Register bank select 1-0. These bits select which register bank is addressed during register
Bits 4-3 accesses.

OV Overflow flag. This bit is set to 1 if there is a carry-out of bit 6, but not out of bit 7, or if there is a
Bit 2 carry-out of bit 7, but not out of bit 6 for addition. When adding signed integers, OV indicates a

negative number resulted as the sum of two positive operands, or a positive sum from two nega-
tive operands. OV is set if a borrow is needed into bit 6, but not into bit 7, or is needed into bit 7,
but not into bit 6 for subtraction. When subtracting signed integers, OV indicates a negative num-
ber produced when a negative value is subtracted from a positive value, or a positive result when
a positive value is subtracted from a negative value. OV is also set if the product is greater than
0FFh for multiplication. This bit is always cleared for division operations.

F1 User flag 1. This is a bit-addressable, general-purpose flag for software control.
Bit 1

P Parity flag. This bit is set to 1 if there is an odd number of 1’s in the accumulator, and is cleared to
Bit 0 0 if there is an even number of 1’s in the accumulator.

RS1 RS0
REGISTER

BANK
ADDRESS

0 0 0 00h–07h

0 1 1 08h–0Fh

1 0 2 10h–17h

1 1 3 18h–1Fh

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

81 ___

7 6 5 4 3 2 1 0

SFR D0h CY AC F0 RS1 RS0 0V F1 P

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Multiplier Control Register 0 (MCNT0)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

LRSFT Left/right shift. The LRSFT bit is cleared to 0 following either a system reset or the initialization of
Bit 7 the accelerator. The LRSFT bit is programmed to 0 when a left shift is required, and is pro-

grammed to 1 for a right shift. LRSFT does not alter any other type of calculation other than the
shift function.

CSE Circular shift enable. The CSE bit is cleared to 0 following a system reset. When CSE and SCE
Bit 6 are cleared to 0’s, all left or right shifts performed on the MA register, as per the programming of

LRST and MAS4–MAS0, shift clear bit values into the most significant bit for a right shift and the
least significant bit for a left shift. The least significant bit is also lost when doing a right shift, and
the most significant bit is lost when doing a left shift. When CSE is set to 1 and SCE is cleared to
0, the most significant bit of the MA register is shifted into the least most significant bit for a left
shift. Similarly, the least significant bit of the MA register is shifted into the most significant bit for
a right shift. When CSE is cleared to 0 and SCE is set to 1, the shift carry bit is shifted into the
most significant bit for the right shift and the least significant bit for a left shift. The least
significant bit is also lost when doing a right shift, and the most significant bit is lost when doing
a left shift. When CSE and SCE are set to 1, the most significant MA bit is shifted into the shift
carry bit. The shift carry bit is shifted into the least significant MA bit when doing a left shift. The
least significant MA bit is shifted into the shift carry bit, while the shift carry bit is shifted into the
most significant MA bit when doing a right shift.

SCE Shift carry enable. The SCE bit is cleared to 0 following a system reset. When SCE is cleared to
Bit 5 a 0, all left or right shifts performed on the MA register, as per the programming of CSE, LRST,

and MAS4–MAS0, do not incorporate the shift carry bit SCB (MCNT1.5) as a part of the shifting
process. When SCE is set to a 1, the shift carry bit is shifted into the least significant bit for a left
shift and into the most significant bit for a right shift. If CSE is cleared to a 0, the shift carry bit
remains unchanged during the shift process. If CSE is set to a 1, the most significant MA bit is
shifted into the shift carry bit when doing a left shift, and least most significant MA bit is shifted
into the shift carry bit when doing a right shift.

MAS4–0 Multiplier register shift bits. These bits determine the number of shifts performed when a shift
Bits 4–0 operation is performed with the arithmetic accelerator, and are also used to indicate how many

shifts were performed during a previous normalization operation. These bits are cleared to
00000b following a system reset or the initialization of the arithmetic accelerator.

When these bits are cleared to 00000b after loading the arithmetic accelerator, the device nor-
malizes the 32-bit value loaded into the arithmetic accelerator accumulator, rather than shifting it.
Following the normalization operation, the MAS4–0 bits are modified to indicate how many shifts
were performed.

MAS4 MAS3 MAS2 MAS1 MAS0

NUMBER OF
SHIFTS OF

ARITHMETIC
ACCELERATOR
ACCUMULATOR

0 0 0 0 0 Normalization
0 0 0 0 1 Shift by 1
0 0 0 1 0 Shift by 2
0 0 0 1 1 Shift by 3
— — — — — —
1 1 1 1 0 Shift by 30
1 1 1 1 1 Shift by 31

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 82

7 6 5 4 3 2 1 0

SFR D1h LRSFT CSE SCE MAS4 MAS3 MAS2 MAS1 MAS0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Multiplier Control Register 1 (MCNT1)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

MST Multiply/accumulate status flag. The MST bit indicates the current status of the multiplier. When
Bit 7 MST is set to a 1 by the multiplier/accumulator hardware, it indicates that the multiplier/accumu-

lator has not completed an assigned task. Immediately after the processor begins loading data
into the MA or MB register, MST is automatically set and remains set until the assigned task is
completed. There are no restrictions on how quickly data is entered into the MA or MB registers.
The only requirement to do a calculation is to perform the load of MA, MB, and/or MCNT1 within
the specified sequential relationship associated with the requested task. MST is automatically
cleared by the multiplier/accumulator hardware once an assigned task is completed and the
results are ready for the processor to read. A cleared value in MST (0) also indicates that the
accelerator is in an initialized state and can be loaded with new values. Any data previously
stored in MA or MB as the result or remainder of a previous calculation is lost once new data is
loaded into MA or MB. Data in the message center register is continually updated by the accu-
mulation function and is preserved from one calculation to another. The processor software can
also clear the MST bit from a previous high state when the processor needs to initialize the multi-

- plier prior to the completion of a current operation. This action initializes the state machine action
within the accelerator, which allows the processor to immediately begin loading new data into
MA and/or MB to perform a new calculation. An additional initialization can be achieved if the MA
register or MB register is loaded prior to the completion of a current calculation. All previous cal-
culation results are lost as the accelerator resets the registers to begin accepting new data. In
either of these forced clearing methods, stored data in the message center accumulator register
can become invalid.

MOF Multiply overflow flag. The MOF flag bit is cleared to 0, following either a system reset or the
Bit 6 initialization of the accelerator. The MOF bit is automatically set when the accelerator detects a

divide-by-0, or when the result of the calculation is larger than FFFF hex.

SCB Shift carry bit. The SCB is used as a carry bit for shift operation when SCE (MCNT0.5) bit is set
Bit 5 to 1. Note that the SCB is not cleared at the beginning of a new operation and must be cleared

by a write to this bit or a system reset.

CLM Clearing the MA, MB, and MC (accumulator) register. Setting the CLM bit clears the MA, MB,
Bit 4 and MC registers, and CLM is automatically cleared to a zero state following the clear operation.

Writing a 0 to this bit results no operation.

Bits 3-0 Reserved.

Multiplier A Register (MA)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

MA.7–0 Multiplier A register. The multiplier A (MA) register is used to load the 32-bit or 16-bit numerator
Bits 7–0 when the math accelerator is configured in a 32-bit by 16-bit or 16-bit by 16-bit divide mode. The

multiplier A register is also used to load the second value associated with a 16-bit by 16-bit cal-
culation when the accelerator is used in the multiply mode. A read of the MA register, following a
completed function, provides the 32-bit result of a 32-bit by 16-bit divide, the 16-bit result of a
16-bit by 16-bit divide, the result of a 16-bit by 16-bit multiplication calculation, the result of a
normalized 32-bit calculation, or the result of a shifted 32-bit calculation.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

83 ___

7 6 5 4 3 2 1 0

SFR D2h MST MOF SCB CLM — — — —

RW-0 R-0 RW-0 RW-0 R-1 R-1 R-1 R-1

7 6 5 4 3 2 1 0

SFR D3h MA.7 MA.6 MA.5 MA.4 MA.3 MA.2 MA.1 MA.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

A read pointer and a write pointer keep track of which of the four bytes is read or written to when
accessing or loading the 32 or 16 bits of the MA register. The pointer is set to the most signifi-
cant byte for reads and the least significant byte for writes following a system reset, the comple-
tion of a calculation, the setting of the CLM bit, or the setting of the MST bit in the MCNT1 SFR.
Following each read of MA, the read pointer is moved to the next most significant byte until the
entire contents of MA are read. Similarly, each write moves the write pointer to the next least sig-
nificant byte until the entire 32 bits of the MA register is written. Neither of the pointers wrap
around, but rather lock at the extreme end of associated read or write 32-bit word size. Note
that, in loading or reading a 16-bit value, only two reads or writes are required. In loading a 16-
bit value, ensure that the remaining 16 bits of the 32-bit value are completely cleared.

When accessing data from the MA register, the most significant byte is the first byte read from
MA when downloading the contents of a completed multiply or divide, as determined by the MST
bit in the MCNT1 SFR. All subsequent reads of MA, after completing the appropriate reads to
secure the respective results of the above calculations, produce a 00 hex value. MA is also
cleared to 00 hex following either a system reset, the setting of CLM, or the setting of the MST bit
in the MCNT1 SFR. When loading the MA register, data must be written with the least significant
byte first and most significant byte last.

Multiplier B Register (MB)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

MB.7–0 Multiplier B register. The multiplier B register is used to load the 16-bit denominator when the
Bits 7–0 math accelerator is configured in a 32-bit by 16-bit or 16-bit by 16-bit divide mode. The multiplier

B register is also used to load the first value associated with a 16-bit by 16-bit calculation when
the accelerator is used in the multiply mode. A read of the MB register following a completed
function provides the 16-bit remainder of a 32-bit by 16-bit divide or the 16-bit remainder of a 16-
bit by 16-bit divide.

A read pointer and a write pointer keep track of which of the two bytes is read or written to when
accessing or loading the 16 bits of the MB register. The pointer is set to the most significant byte
for reads and the least significant byte for writes following a system reset, the completion of a
calculation, the setting of the CLM bit, or the setting of the MST bit in the MCNT1 SFR. Following
each read of MB, the read pointer is moved to the least significant byte. Similarly, a write moves
the write pointer to the most significant byte of the MB register. Neither of the pointers wrap
around, but rather lock at the extreme end of associated read or write 16-bit word size.

When accessing data from the MB register, the most significant byte is the first byte read from
MB when downloading the contents of a completed multiply or divide, as determined by the MST
bit in the MCNT1 SFR. The next read of MB produces the least significant byte, and any subse-
quent read produces a 00 hex value. MB also reads as 00 hex, following either a system reset or
the initialization of the accelerator. When loading the MB register, data must be written with the
least significant byte first and most significant byte last.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 84

7 6 5 4 3 2 1 0

SFR D4h MB.7 MB.6 MB.5 MB.4 MB.3 MB.2 MB.1 MB.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Multiplier C Register (MC)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

MC.7–0 Multiplier C register. The multiplier C register is also termed the accumulator register within the
Bits 7–0 math accelerator. Each time a multiply or divide is performed with the MA and MB registers, the

resulting value is added to the previous value of the accumulator, and is then stored back into
the accumulator. All shift or normalization tasks are not added to the accumulator. The MC regis-
ter is a full read/write register that provides direct access to the accumulator. The accumulator is
40-bits long, and is accessed by five reads or writes of the MC register. The accumulator is
cleared following a system reset, setting the CLMC bit in the MCNT1 SFR, or by loading five con-
secutive 00 hex values into the MC register.

A read pointer and a write pointer keep track of which of the five bytes is read or written to when
accessing or loading the 40 bits of the accumulator. The pointer is set to the most significant
byte for reads and the least significant byte for writes following a system reset, the completion of
a calculation, the setting of the CLM bit, or the setting of the MST bit in the MCNT1 SFR.
Following each read of MC, the read pointer is moved to the next less significant byte until the
entire contents of MC are read. Similarly, each write moves the write pointer to the next more sig
nificant byte until the entire 40 bits of the MC register is written. Neither of the pointers wrap
around, but rather lock at the extreme end of associated read or write 40-bit word size. Note that,
in loading or reading a 16-bit (or 32-bit) value, only two (or four) reads or writes are required. In
loading a 16-bit (or 32-bit) value, it is important to make sure that the remaining 16 bits (or 8 bits)
of the 40-bit value are all cleared.

The most significant byte is the first byte read from MC when downloading the contents of a
completed addition of the accumulator, as determined by the MST bit in the MCNT1 SFR. Unlike
the MA and MB registers, data in the accumulator is not cleared during a read. All subsequent
reads of MB, after completing the appropriate reads to secure the respective results of the above
calculations, produce the contents of the fifth byte of data associated with the 40-bit accumulator
value. When loading the MC register, data must be written with the least significant byte first and
most significant byte last.

Memory Control Register 1 (MCON1)

R = Unrestricted read, T = Timed-access write, -n = Value after reset

IRAMD Internal RAM Disable. IRAMD provides a software option to disable the 64kB internal SRAM.
Bit 7 When IRAMD is 0, the 64kB internal SRAM is active as data or merged program/data memory,

dependent on the logical state of the PRAME bit. When IRAMD is 1, the 64kB internal SRAM is dis-
abled and removed from the memory map. This bit affects the 64kB internal SRAM only; other inter-
nal data segments (the 8kB Ethernet buffer, the 1kB extended stack, and the 256 CAN buffer). This
bit is only present on the DS80C410/411.

PRAME Program RAM Enable. PRAME provides a software selection to use the 64kB internal SRAM as
Bit 6 merged program and data memory. When PRAME is 0, the 64kB internal SRAM is used as data

memory only. When PRAME is 1, the 64kB internal SRAM is mapped to the lower 64kB program
and data memory spaces and functions as both program and data memory. This bit has no mean
ing when IRAMD is set to logic 1 which disables the internal SRAM. This bit is only present on the
DS80C410/411.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

85 ___

7 6 5 4 3 2 1 0

SFR D5h MC.7 MC.6 MC.5 MC.4 MC.3 MC.2 MC.1 MC.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR D6h IRAMD PRAME — — PDCE7 PDCE6 PDCE5 PDCE4

RT-1 RT-1 RT-1 RT-1 RT-0 RT-0 RT-0 RT-0

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 86

Bits 5, 4 Reserved.

PDCE7 Program/data chip enable 7. PDCE7 provides the software selection for CE7 to be used with
Bit 3 either program or program and data memory when CE7 is enabled by the port 6 control register

(P6CNT). PDCE7 becomes a “don’t care” when CE7 is not enabled. The port 4 control register
SFR establishes the specific address range for CE7. Write access to the memory block, which is
connected to CE7 as data memory (PDCE7 = 1), comes from the P3.6 WR signal. A read of the
memory block connected to CE7 as program and data memory (PDCE7 = 1) comes from the
PSEN signal, as opposed to the normal P3.7 RD signal when doing data memory reads.

PDCE7 = 0 enables CE7 as a program memory chip enable.

PDCE7 = 1 enables CE7 as a merged program and data memory chip enable.

PDCE6 Program/data chip enable 6. PDCE6 provides the software selection for CE6 to be used with
Bit 2 either program or program and data memory when CE6 is enabled by the port 6 control register

(P6CNT). PDCE2 becomes a “don’t care” when CE6 is not enabled. The port 4 control register
SFR establishes the specific address range for CE6. Write access to the memory block, which is
connected to CE6 as data memory (PDCE6 = 1), comes from the P3.6 WR signal. A read of the
memory block connected to CE6 as program and data memory (PDCE6 = 1) comes from the
PSEN signal, as opposed to the normal P3.7 RD signal when doing data memory reads.

PDCE6 = 0 enables CE6 as a program memory chip enable.

PDCE6 = 1 enables CE6 as a merged program and data memory chip enable.

PDCE5 Program/data chip enable 5. PDCE5 provides the software selection for CE5 to be used with
Bit 1 either program or program and data memory when CE5 is enabled by the port 6 control register

(P6CNT). PDCE1 becomes a “don’t care” when CE5 is not enabled. The port 4 control register
SFR establishes the specific address range for CE5. Write access to the memory block, which is
connected to CE5 as data memory (PDCE5 = 1), comes from the P3.6 WR signal. A read of the
memory block connected to CE5 as program and data memory (PDCE5 = 1) comes from the
PSEN signal, as opposed to the normal P3.7 RD signal when doing data memory reads.

PDCE5 = 0 enables CE5 as a program memory chip enable.

PDCE5 = 1 enables CE5 as a merged program and data memory chip enable.

PDCE4 Program/data chip enable 4. PDCE4 provides the software selection for CE4 to be used with
Bit 0 either program or program and data memory when CE04 is enabled by the port 6 control register

(P6CNT). PDCE4 becomes a “don’t care” when CE4 is not enabled. The port 4 control register
SFR establishes the specific address range for CE4. Write access to the memory block, which is
connected to CE4 as data memory (PDCE4 = 1), comes from the P3.6 WR signal. A read of the
memory block connected to CE4 as program and data memory (PDCE4 = 1) comes from the
PSEN signal, as opposed to the normal P3.7 RD signal when doing data memory reads.

PDCE4 = 0 enables CE4 as a program memory chip enable.

PDCE4 = 1 enables CE4 as a merged program and data memory chip enable.

Memory Control Register 2 (MCON2)

R = Unrestricted read, T = Timed-access write, -n = Value after reset

This register is not present on the DS80C41/411.

WPIF Write-protected interrupt flag. This flag is set by hardware when an MOVX instruction attempts
Bit 7 to write to a write-protected memory area. Once set, this bit must be cleared by software.

WPR2-0 Write-protected range bits 2-0. These bits specify the write-protection range when any write-
Bits 6-4 protected enable bits are set:

WPE3 Write-protected enable 3. Setting the WPE3 to 1 enables write protection on the lower memory
Bit 3 locations controlled by CE3 when PDCE3 (MCON.3) is set. Any MOVX write attempt to these

locations sets the WPIF bit and leaves the data unaltered. Clearing this bit to 0 disables the write
protection. The protection range is specified by the WPR2-0 bits.

WPE2 Write-protected enable 2. Setting the WPE2 to 1 enables write protection on the lower memory
Bit 2 locations controlled by CE2 if PDCE2 in the MCON register is also set. Any MOVX write to these

locations sets the WPIF bit and no data is altered. Clearing this bit to 0 disables the write protec-
tion. The protection range is specified by the WPR2-0 bits.

WPE1 Write-protected enable 1. Setting the WPE1 to 1 enables write protection on the lower memory
Bit 1 locations controlled by CE1 if PDCE1 in the MCON register is also set. Any MOVX write to these

locations sets the WPIF bit and no data is altered. Clearing this bit to 0 disables the write protec-
tion. The protection range is specified by the WPR2-0 bits.

WPE0 Write-protected enable 0. Setting the WPE0 to 1 enables write protection on the lower memory
Bit 0 locations controlled by CE0 if PDCE0 in the MCON register is also set. Any MOVX write to these

locations sets the WPIF bit and no data is altered. Clearing this bit to 0 disables the write protec-
tion. The protection range is specified by the WPR2-0 bits.

WPR2 WPR1 WPR0 PROTECTION RANGE(kB)

0 0 0 0–2

0 0 1 0–4

0 1 0 0–6

0 1 1 0–8

1 0 0 0–10

1 0 1 0–12

1 1 0 0–14

1 1 1 0–16

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

87 ___

7 6 5 4 3 2 1 0

SFR D7h WPIF WPR2 WPR1 WPR0 WPE3 WPE2 WPE1 WPE0

RT-0 RT-0 RT-0 RT-0 RT-0 RT-0 RT-0 RT-0

Watchdog Control (WDCON)

R = Unrestricted read, W = Unrestricted write, T = Timed-access write only, -n = Value after reset, * = See description

SMOD_1 Serial modification. Setting this bit to 1 causes the baud rate for serial port 1 to be doubled in
Bit 7 modes 1, 2, and 3. Clearing this bit disables the doubler.

POR Power-on reset flag. This bit indicates whether the last reset was a power-on reset. This bit is
Bit 6 typically interrogated following a reset. It must be cleared before the next reset of any kind for

software to work correctly. This bit is set following a power-on reset and is unaffected by all other
resets.

EPFI Enable power-fail interrupt. Setting this bit to 1 enables the internal bandgap reference to
Bit 5 generate a power-fail interrupt when VCC falls below minimum VCC in normal operation. In stop

mode, BGS (EXIF.0) bit has to be set to enable a power-fail interrupt. Clearing this bit to 0 dis-
ables the power-fail interrupt.

PFI Power-fail interrupt flag. This bit is set to a logic 1 when Vcc3 power-fail (V3PF) or Vcc1 power-
Bit 4 fail (V1PF) flags are set. Setting of PFI generates a power-fail interrupt request if enabled (EPFI =

1). The V3PF (STATUS1.2) is set when VCC3 falls below Vpfw3, and the V1PF (STATUS1.3) is set
when Vcc1 falls below Vpfw1. The PFI bit must be cleared in software before exiting the interrupt
service routine, or another interrupt is generated. Clearing the PFI bit also clears the V3PF and
V1PF flags. Setting this bit by software generates a power-fail interrupt, if enabled. This bit is
cleared by software or a power-fail reset if Vcc3 is greater than Vpfw3 and Vcc1 is greater than
Vpfw1 following the crystal startup time.

WDIF Watchdog interrupt flag. This bit is set to 1 by a watchdog timeout, which indicates a
Bit 3 watchdog timer event has occurred. When set, EWT (WDCON.1) and EWDI (EIE.4) determine the

action to be taken. This bit can only be modified using a timed-access procedure. Setting this bit
in software generates a watchdog interrupt, if enabled. This bit must be cleared in software
before exiting the interrupt service routine, or another interrupt, is generated.

WTRF Watchdog timer reset flag. When set, this bit indicates that a watchdog timer reset has
Bit 2 occurred. It is typically interrogated to determine if a reset was caused by the watchdog timer. It

is cleared by power-on reset, but otherwise, it must be cleared by software before the next reset
of any kind to allow software to work correctly. Setting this bit by software does not generate a
watchdog timer reset. If the EWT bit is cleared, the watchdog timer has no effect on this bit.

EWT Enable watchdog timer reset. Setting this bit to 1 enables the watchdog timer to reset the
Bit 1 device; clearing this bit to 0 disables the watchdog timer reset. It has no effect on the timer itself

and its ability to generate a watchdog interrupt. This bit can only be modified using timed-access
procedure. The EWT bit is cleared to a logic 0 on power-on reset, and is unchanged by all other
resets.

RWT Reset watchdog timer. Setting this bit resets the watchdog timer count. This bit must be set
Bit 0 using a timed-access procedure before the watchdog timer expires, or a watchdog timer reset

and/or interrupt is generated if enabled. The timeout period is defined by CKCON.7-6 watchdog
timer mode select bits. When read, this bit is always 0.

EWT EWDI ACTIONS

0 0 No interrupt has occurred.

0 1 Watchdog interrupt has occurred.

1 0
No interrupt has been generated. Watchdog
reset occurs in 512 cycles if RWT is not set.

1 1
Watchdog interrupt has occurred. Watchdog
reset occurs in 512 cycles if RWT is not set.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 88

7 6 5 4 3 2 1 0

SFR D8h SMOD_1 POR EPFI PFI WDIF WTRF EWT RWT

RW-0 RT-* RW-0 RW-* RT-0 RW-* RT-* RT-0

Slave Address Register 2 (SADDR2)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

SADDR2.7–0 Slave address register 2. This register is programmed with the given or broadcast address
Bits 7–0 assigned to serial port 2.

Breakpoint Address Register 1 (BPA1)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset, unrestricted read/write in the emulation mode.

BPA1.7–0 Breakpoint LSB address register. This register is intended to be used only by the internal
Bits 7–0 breakpoint hardware to store the least significant address byte of the return address when an A5h

software breakpoint is issued. Modification of this register is allowed during the breakpoint routine.

Breakpoint Address Register 2 (BPA2)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset, unrestricted read/write in the emulation mode.

BPA2.7–0 Breakpoint MSB address register. This register is intended to be used only by the internal
Bits 7–0 breakpoint hardware to store the most significant address byte of the return address when an A5h

software breakpoint is issued. Modification of this register is allowed during the breakpoint routine.

Breakpoint Address Register 3 (BPA3)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset, unrestricted read/write in the emulation mode.

BPA3.7–0 Breakpoint XSB address register. This register is intended to be used only by the internal
Bits 7–0 breakpoint hardware to store the extended address byte of the return address when an A5h

software breakpoint is issued. Modification of this register is allowed during the breakpoint routine.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

89 ___

7 6 5 4 3 2 1 0

SFR D9h SADDR2.7 SADDR2.6 SADDR2.5 SADDR2.4 SADDR2.3 SADDR2.2 SADDR2.1 SADDR2.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR DAh BPA1.7 BPA1.6 BPA1.5 BPA1.4 BPA1.3 BPA1.2 BPA1.1 BPA1.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR DBh BPA2.7 BPA2.6 BPA2.5 BPA2.4 BPA2.3 BPA2.2 BPA2.1 BPA2.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR DCh BPA3.7 BPA3.6 BPA3.5 BPA3.4 BPA3.3 BPA3.2 BPA3.1 BPA3.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Accumulator (ACC)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

ACC.7–0 Accumulator. This register serves as the accumulator for arithmetic operations. It is functionally
Bits 7–0 identical to the accumulator found in the 80C32.

One’s Complement Adder Data (OCAD)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

OCAD.7–0 One’s complement adder data. This register serves as the data register for the one’s complement
Bits 7–0 adder. Two writes to the OCAD initiate a summation by the one’s complement adder. When loading

the OCAD, data must be written with the least significant byte first and then the most signifi-
cant byte. When accessing data from the accumulator, the most significant byte is the first byte
read from the OCAD. Four reads are required to fully download the contents of the accumulator.

CSR Data (CSRD)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

CSRD.7–0 CSR data. This register serves as the CSR data register for accessing CSR registers inside the
Bits 7–0 MAC core. For a CSR write operation, data to be written to a CSR register is loaded to the 32-bit

CSR platform register through the CSRD. Data is accessed by the CSRD after a CSR read
operation.

CSR Address (CSRA)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

CSRA.7–0 CSR address. This register serves as the CSR address register for accessing CSR registers inside
Bits 7–0 the MAC core. The lower 8-bit address of the desired CSR register is input through the CSRA to

the BCU.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 90

7 6 5 4 3 2 1 0

SFR E0h ACC.7 ACC.6 ACC.5 ACC.4 ACC.3 ACC.2 ACC.1 ACC.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR E1h OCAD.7 OCAD.6 OCAD.5 OCAD.4 OCAD.3 OCAD.2 OCAD.1 OCAD.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR E3h CSRD.7 CSRD.6 CSRD.5 CSRD.4 CSRD.3 CSRD.2 CSRD.1 CSRD.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR E4h CSRA.7 CSRA.6 CSRA.5 CSRA.4 CSRA.3 CSRA.2 CSRA.1 CSRA.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Ethernet Buffer Size (EBS)

R = Unrestricted read, T = Timed-access write only, -n = Value after reset

FPE Flush filter failed-packet enable. Setting this bit to 1 enables the BCU to abort the current
Bit 7 receive operation and flush data received for the current frame from the receive buffer if the

packet fails the address filtering. The receive interrupt flag is not set and no receive interrupt is
generated. Clearing this bit to 0 allows the BCU to receive all packets, regardless of its address-
filtering result. This bit is overridden if the receive-all bit in the MAC control register is set.

RBF Receive buffer full. This bit is a read-only bit and is set by hardware when there is no open
Bit 6 page in the receive buffer. When RBF is set, the BCU ignores any new frame received by the

MAC. Under this condition, the BCU has to acknowledge the receive status word, but the receive
data buffer and receive FIFO are not updated, the receive interrupt flag is not set, and no
receive interrupt is generated. The RBF bit is set when the BCU aborts an incoming frame that
overflows the receive buffer. The RBF bit is cleared by hardware when there are enough open
pages (>4) in the receive buffer.

Bit 5 Reserved.

BS4–0 Buffer size bits. The BS4:0 bits can be programmed to any value n between 0 and 31, inclusive.
Bit 4–0 The receive buffer occupies the first n pages of the 8kB memory, while the transmit buffer

occupies the remaining (32 - n) pages. Changing the BS4:0 bits automatically flushes the con
tents of the receive buffer and receive FIFO. Note that, when BS4:0 = 00000b (default value),
there are no receive buffers. When BS4:0 = 00001b, this is the first receive buffer and the rest
are transmit buffers.

Buffer Control Unit Data (BCUD)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

BCUD.7–0 BCU data. This register serves as the BCU data register for packet transmit and receive operation.
Bits 7–0 For transmit operation, the 11-bit byte count and the starting page address of the transmit packet

are loaded to the BCU through the BCUD register. For receive operation, the page information of
the current packet can be read by the BCUD register.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

91 ___

7 6 5 4 3 2 1 0

SFR E5h FPE RBF — BS4 BS3 BS2 BS1 BS0

RT-0 R-1 RT-0 RT-0 RT-0 RT-0 RT-0 RT-0

7 6 5 4 3 2 1 0

SFR E6h BCUD.7 BCUD.6 BCUD.5 BCUD.4 BCUD.3 BCUD.2 BCUD.1 BCUD.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Buffer Control Unit Control (BCUC)

R = Read returns page information of the first packet in the receive FIFO, W = Unrestricted write, -n = Value after reset

BUSY Busy. This read-only busy indicator is set by the hardware when the BCU is in the process of
Bit 7 executing a CSR read/write operation. It is cleared by the BCU when it is done. Data writes to

this bit are ignored.

EPMF Ethernet power mode interrupt flag. This flag is set when the power-management block
Bit 6 detects a wake-up frame or a magic packet. Setting this flag causes an Ethernet power mode

interrupt to be generated. This flag must be cleared by software once set. If this flag is set by
software, an Ethernet power mode interrupt is generated if enabled.

TIF Transmit interrupt flag. This flag is set when the BCU has stored a transmit status word in the
Bit 5 transmit buffer after a packet transmission. Setting this flag causes an Ethernet activity interrupt

to be generated if enabled. This flag must be cleared by software once set. If this flag is set by
software, an Ethernet activity interrupt is generated if enabled.

RIF Receive interrupt flag. This flag is set by hardware when the BCU has stored a receive status
Bit 4 word to the receive buffer, and updated the receive FIFO after it has received a packet from the

MAC. This flag is also set by an invalidate current frame command whenever the receive FIFO is
not empty and the flag is not currently set. Setting RIF causes an Ethernet activity interrupt to
be generated if enabled. This flag is cleared by hardware whenever: 1) the receive FIFO
becomes empty, 2) a BCU command empties the receive buffer (invalidating the only packet or
flushing buffer), 3) the EBS register is updated to change the size of the buffers, or 4) a reset
condition occurs. Otherwise, this flag must be cleared by software once set. If this flag is set by
software, an Ethernet activity interrupt is generated if enabled. Note that there is potential of
missing an interrupt when RIF is cleared immediately following an invalidate current frame com-
mand if there is another frame in the receive buffer. It is recommended to clear the flag before
invalidation.

BC3-0 BCUC control bits. These bits are used as the BCU command bits to provide communication
Bits 3-0 between the BCU and CPU. The following BCU commands are supported. All other BC3:0

command values are reserved and are ignored by the BCU.

BCUC3:BCUC0 COMMANDS

0000 No operation (default)

0010 Invalidate current receive packet

0011 Flush receive buffer

0100 Transmit request—Normal

0101 Transmit request—Disable padding

0101 Transmit request—Add CRC disabled

1000 Write CSR

1001 Read CSR

1100 Enable sleep mode

1101 Disable sleep mode

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 92

7 6 5 4 3 2 1 0

SFR E7h BUSY EPMF TIF RIF BC3 BC2 BC1 BC0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Extended Interrupt Enable (EIE)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

EPMIE Ethernet power mode interrupt enable.
Bit 7 EPMIE = 1 enables the Ethernet power mode interrupt.

EPMIE = 0 disables the Ethernet power mode interrupt.

C0IE CAN 0 interrupt enable. C0IE = 1 enables a change in the CAN 0 status register to initiate an
Bit 6 interrupt if the corresponding ERIE or STIE bit in the CAN 0 control register is set. C0IE = 0 dis-

ables a change in the CAN 0 status register from generating an interrupt. This bit does not exist in
the DS80C411.

EAIE Ethernet activity interrupt enable. EAIE = 1 enables the Ethernet activity interrupt if the RIF or TIF
Bit 5 bit in the BCUC register is set. EAIE = 0 disables generating an interrupt.

EWDI Watchdog interrupt enable. Setting this bit to 1 enables interrupt requests generated by the
Bit 4 watchdog timer. Clearing this bit to 0 disables the interrupt requests by the watchdog timer.

EWPI Write-protected interrupt enable. Setting this bit to 1 enables interrupt requests generated by the
Bit 3 WPIF flag in the MCON2. Clearing this bit to 0 disables the write-protected interrupt request. This

bit does not exist in the DS80C410/411.

ES2 Serial port 2 interrupt enable. Setting this bit to 1 enables interrupt requests generated by the
Bit 2 RI_2 or TI_2 flags in SCON2. Clearing this bit to 0 disables serial port 2 interrupts.

ET3 Timer 3 interrupt enable. Setting this bit to 1 enables interrupts from timer 3 TF3 flag in T3CM.
Bit 1 Clearing this bit to 0 disables all timer 3 interrupts.

EX2-5 External interrupt 2-5 enable. Setting this bit to 1 enables interrupt requests generated by the
Bit 0 IE2, IE3, IE4, or IE5 flag in EXIF. Clearing this bit to 0 disables the external interrupt 2 to 5.

MOVX Address Extended Register (MXAX)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

MXAX.7–0 MOVX address extended register. This register is used to provide the extended address byte to
Bits 7–0 complement the low byte address provided by the indirect addressing of the Ri register. Using the

address values in the P2 and MXAX and the address value indirectly specified by the Ri register
allows the processor to access the full 24-bit data address range when executing a MOVX @Ri, A
or MOVX A, @Ri instruction. The DPTR-related MOVX instructions do not utilize the P2 and MXAX
register. Note that the MXAX register is only used for 24-bit addressing when the processor is oper-
ating in either the 24-bit paged or 24-bit contiguous modes. It can be utilized as a scratchpad
SRAM register in 16-bit address mode.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

93 ___

7 6 5 4 3 2 1 0

SFR E8h EPMIE C0IE EAIE EWDI EWPI ES2 ET3 EX2-5

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR EAh MXAX.7 MXAX.6 MXAX.5 MXAX.4 MXAX.3 MXAX.2 MXAX.1 MXAX.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Data Pointer Extended Register 2 (DPX2)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

DPX2.7–0 Data pointer extended byte 2. This register contains the high-order byte of the extended 24-bit
Bits 7–0 address for auxiliary data pointer 2. This register is used only in the 24-bit paged and contiguous

addressing modes. This register is not used for addressing the data memory in the 16-bit address-
ing mode and, therefore, can be utilized as a scratchpad SRAM register.

Data Pointer Extended Register 3 (DPX3)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

DPX3.7–0 Data pointer extended byte 3. This register contains the high-order byte of the extended 24-bit
Bits 7–0 address for auxiliary data pointer 3. This register is used only in the 24-bit paged and contiguous

addressing modes. This register is not used for addressing the data memory in the 16-bit address-
ing mode and, therefore, can be utilized as a scratchpad SRAM register.

1-Wire Master Address Register (OWMAD)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

Bits 7–3 Reserved. (Read returns all zeros.)

OWMAD.2-0 1-Wire master address select bits 2-0. These bits are used to select one of the five 1-Wire
Bits 2-0 master registers to be accessed by the OWMDR SFR. Prior to accessing any of the 1-Wire

master’s registers, the address of the target register must be specified as following:

The 1-Wire master supports only the above address values. When these bits are set to states other
than those listed above, read data in the OWMDR is invalid, and write data to the OWMDR does
not change the logic state of any of the five registers. Note that the default values for these bits are
set to 111b.

A2 A1 A0 REGISTER ACCESS MODE

0 0 0 Command register Read/write

0 0 1 Receive/transmit buffer Read (receive)/write (transmit)

0 1 0 Interrupt flag register Read

0 1 1 Interrupt enable register Read/write

1 0 0 Clock divisor register Read/write

1 0 1 Control register Read/write

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 94

7 6 5 4 3 2 1 0

SFR EDh DPX3.7 DPX3.6 DPX3.5 DPX3.4 DPX3.3 DPX3.2 DPX3.1 DPX3.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR EBh DPX2.7 DPX2.6 DPX2.5 DPX2.4 DPX2.3 DPX2.2 DPX2.1 DPX2.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR EEh — — — — — OWMAD.2 OWMAD.1 OWMAD.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-1 RW-1 RW-1

1-Wire Master Data Register (OWMDR)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

OWMDR.7–0 1-Wire master data register. This register contains the data value of the target register as
Bits 7–0 selected by the A2:A0 bits in the OWMAD SFR, when read to the OWMDR. A write to the

OWMDR causes a write access to the target register as selected by the A2:A0 bit in the
OWMAD SFR, and updates the target register with the new data.

B Register (B)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

B.7–0 B register. This register serves as a second accumulator for certain arithmetic operations. It is
Bits 7–0 functionally identical to the B register found in the 80C32.

Slave Address Mask Enable Register 2 (SADEN2)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

SADEN2.7–0 Slave address mask enable register 2. This register is a mask enable when comparing serial
Bits 7–0 port 2 addresses for automatic address recognition. When a bit is set in this register, the corre-

sponding bit location in the SADDR2 register is exactly compared with the incoming serial port 2
data to determine if a receive interrupt should be generated. When a bit in this register is
cleared, the corresponding bit in the SADDR2 register becomes a “don’t care” and is not com-
pared against the incoming data. All incoming data generates a receive interrupt when this regis-
ter is cleared.

Data Pointer Low Register 2 (DPL2)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

DPL2.7–0 Data pointer low byte 2. This register is the low byte of the auxiliary data pointer, and contains
Bits 7–0 the low-order byte of the 24-bit data address.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

95 ___

7 6 5 4 3 2 1 0

SFR EFh OWMDR.7 OWMDR.6 OWMDR.5 OWMDR.4 OWMDR.3 OWMDR.2 OWMDR.1 OWMDR.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR F1h SADEN2.7 SADEN2.6 SADEN2.5 SADEN2.4 SADEN2.3 SADEN2.2 SADEN2.1 SADEN2.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR F0h B.7 B.6 B.5 B.4 B.3 B.2 B.1 B.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR F2h DPL2.7 DPL2.6 DPL2.5 DPL2.4 DPL2.3 DPL2.2 DPL2.1 DPL2.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Data Pointer High Register 2 (DPH2)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

DPH2.7–0 Data pointer high byte 2. This register is the high byte of auxiliary data pointer 2, and contains the
Bits 7–0 middle-order byte of the 24-bit data address.

Data Pointer Low Register 3 (DPL3)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

DPL3.7–0 Data pointer low byte 3. This register is the low byte of the auxiliary data pointer 3, and contains
Bits 7–0 the low-order byte of the 24-bit data address.

Data Pointer High Register 3 (DPH3)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

DPH3.7–0 Data pointer high byte 3. This register is the high byte of auxiliary data pointer 3, and contains
Bits 7–0 the middle-order byte of the 24-bit data address.

Data Pointer Select Register 1 (DPS1)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

ID3 Increment/decrement data pointer 3. This bit defines how the INC DPTR instruction functions in
Bit 7 relation to data pointer 3 when it is selected by SEL1 and SEL bits (SEL1, SEL = 11). When ID3 is

set to logic 1, the INC DPTR instruction actually decrements the content of data pointer 3 by 1.
When ID3 is cleared to 0, the INC DPTR instruction increments the content of data pointer 3 by 1.

ID2 Increment/decrement data pointer 2. This bit defines how the INC DPTR instruction functions in
Bit 6 relation to data pointer 2, when it is selected by SEL1 and SEL bits (SEL1, SEL = 10). When ID2 is

set to logic 1, the INC DPTR instruction actually decrements the content of data pointer 2 by 1.
When ID2 is cleared to 0, the INC DPTR instruction increments the content of data pointer 2 by 1.

Bits 5–0 Reserved. (Read returns all one’s.)

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 96

7 6 5 4 3 2 1 0

SFR F5h DPH3.7 DPH3.6 DPH3.5 DPH3.4 DPH3.3 DPH3.2 DPH3.1 DPH3.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR F6h ID3 ID2 — — — — — —

RW-0 RW-0 R-1 R-1 R-1 R-1 R-1 R-1

7 6 5 4 3 2 1 0

SFR F4h DPL3.7 DPL3.6 DPL3.5 DPL3.4 DPL3.3 DPL3.2 DPL3.1 DPL3.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR F3h DPH2.7 DPH2.6 DPH2.5 DPH2.4 DPH2.3 DPH2.2 DPH2.1 DPH2.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Status Register 1 (STATUS1)

R = Unrestricted read, -n = Value after reset

Bits 7–0 Reserved.

V1PF Vcc1 power-fail. When set, this bit indicates that the voltage level of Vcc1 has fallen below Vpfw1.
Bit 3 Hardware setting of this bit forces PFI bit (WDCON.4) to 1. V1PF is cleared when PFI bit is cleared.

V3PF Vcc3 power-fail. When set, this bit indicates that the voltage level of Vcc3 has fallen below Vpfw3.
Bit 2 Hardware setting of this bit forces PFI bit (WDCON.4) to 1. V3PF is cleared when PFI bit is cleared.

SPTA2 Serial port 2 transmit activity monitor. When set, this bit indicates that data is currently being
Bit 1 transmitted by serial port 2. It is cleared when TI_2 is set.

SPRA2 Serial port 2 receive activity monitor. When set, this bit indicates that data is currently being
Bit 0 received by serial port 2. It is cleared when RI_2 bit is set.

Extended Interrupt Priority (EIP)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

EPMIP Ethernet power mode interrupt priority.
Bit 7 EPMIP = 1 selects the Ethernet power mode interrupt source as a high priority.

EPMIP = 0 selects the Ethernet power mode interrupt source as a low priority.

C0IP CAN 0 interrupt LSB priority control. This bit does not exist in the DS80C411.
Bit 6 C0IP = 1 selects the CAN 0 status register source as a high priority.

C0IP = 0 selects the CAN 0 status register source as a low priority.

EAIP Ethernet activity interrupt priority.
Bit 5 EAIP = 1 selects the Ethernet activity interrupt as a high priority.

EAIP = 0 selects the Ethernet activity interrupt as a low priority.

PWDI Watchdog interrupt priority. Watchdog interrupt is a high priority when this bit is set to 1, and is
Bit 4 a low priority when this bit is cleared to 0.

PWPI Write-protected interrupt priority. Write-protected interrupt is a high priority when this bit is set to
Bit 3 1, and is a low priority when this bit is cleared to 0. This bit does not exist in the DS80C410/411.

PS2 Serial port 2 interrupt priority. Setting this bit to 1 selects serial port 0 interrupt source as a high
Bit 2 priority, a 0 selects it as a low priority.

PT3 Timer 3 interrupt priority. Setting this bit to 1 selects timer 3 interrupt source as a high priority, a
Bit 1 0 selects it as a low priority.

PX2-5 External interrupt 2–5 priority. External interrupts 2–5 and 1-Wire bus master interrupt (if EOWMI
Bit 0 = 1) are high priority when this bit is set to 1, and are low priority when this bit is cleared to 0.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

97 ___

7 6 5 4 3 2 1 0

SFR F7 — — — — V1PF V3PF SPTA2 SPRA2

R-1 R-1 R-1 R-1 R-0 R-0 R-0 R-0

7 6 5 4 3 2 1 0

SFR F8h EPMIP C0IP EAIP PWDI PWPI PS2 PT3 PX2-5

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Parallel I/O Port 7 (P7)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset (P7._ above)

P7.7–0 Port 7 bits 7–0. This port is a programmable parallel I/O port. Data written to the port latch
Bits 7–0 serves to set both logic level and direction of the data on the pin. A 1 written to a port latch, pre-

viously programmed to a 0, activates a high-current, one-shot pullup on the corresponding pin.
This is followed by a static, low-current pullup, which remains on until the port is changed again.
The final high state of the port pin is considered a pseudo-input mode, and can be easily over
driven from an external source. Port latches previously in a high-output state do not change, nor
does the high-current one-shot fire when a 1 is loaded. Loading a 0 to a port latch results in a
static, high-current pulldown on the corresponding pin. This mode is termed the I/O output state,
since no weak devices are used to drive the pin. Port 7 functions as the nonmultiplexed external
address output port for addresses A0–A7 when MUX = 1.

Timer 3 LSB (TL3)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

TL3.7–0 Timer 3 LSB. This register is used to load and read the least significant 8-bit value in timer 3.
Bits 7–0

Timer 3 MSB (TH3)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

TH3.7–0 Timer 3 MSB. This register is used to load and read the most significant 8-bit value in timer 3.
Bits 7–0

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

___ 98

7 6 5 4 3 2 1 0

SFR F9h P7.7 P7.6 P7.5 P7.4 P7.3 P7.2 P7.1 P7.0

RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1

7 6 5 4 3 2 1 0

SFR FBh TL3.7 TL3.6 TL3.5 TL3.4 TL3.3 TL3.2 TL3.1 TL3.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR FCh TH3.7 TH3.6 TH3.5 TH3.4 TH3.3 TH3.2 TH3.1 TH3.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Timer 3 Control/Mode Register (T3CM)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

TF3 Timer 3 overflow flag. This bit is set to 1 when timer 3 overflows its maximum count, as defined
Bit 7 by the current mode. It is cleared either by software, or by the start of the timer 3 interrupt

service routine. A zero on this bit indicates that no timer 3 overflow has been detected.

TR3 Timer 3 run control. Setting this bit enables timer 3. Clearing this bit halts the timer 3.
Bit 6

T3M Timer 3 clock select. This bit controls the division of the system clock that drives timer 3. This
Bit 5 bit has no effect on instruction cycle timing.

0 = Timer 3 uses a divide-by-12 of the crystal frequency.
1 = Timer 3 uses a divide-by-4 of the system clock frequency.

SMOD_2 Serial port 2 baud-rate doubler enable. Setting this bit enables the serial baud-rate doubling
Bit 4 function in mode 1, 2 and 3 for serial port 2. A 0 disables the doubler.

GATE Timer 3 gate control.
Bit 3 GATE = 0: Timer 3 clocks when TR3 is 1, regardless of INT3.

GATE = 1: Timer 3 clocks only when TR1 and INT3 are 1.

C/T3 Counter/timer 1 select.
Bit 2 C/T3 = 0: Selects timer function with internal clock for timer 3.

C/T3 = 1: Selects counter function with input from T3 when TR3 is 1.

M1-0 Timer 3 mode-select bits 1 and 0.
Bits 1-0

M1 M0 TIMER MODE
0 0 Mode 0: 8-bit with 5-bit prescale
0 1 Mode 1: 16-bit with no prescale
1 0 Mode 2: 8-bit with autoreload
1 1 Mode 3: Timer 3 is halted, but its count is held.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

99 ___

7 6 5 4 3 2 1 0

SFR FDh TF3 TR3 T3M SMOD_2 GATE C/T3 M1 M0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

Serial Port 2 Control Register (SCON2)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

SM0/FE_2 Serial port 2 mode bit 0. When SMOD0 is set to 1, it is the framing error flag that is set upon
Bit 7 detection of an invalid stop bit and must be cleared by software. Modification of this bit when

SMOD0 is set has no effect on the serial mode setting.

SM1_2 Serial port 2 mode bit 1.
Bit 6

SM2_2 Serial port 2 mode bit 2. Setting of this bit in mode 1 ignores reception if an invalid stop bit is
Bit 5 detected. Setting this bit in mode 2 or 3 enables multiprocessor communications. This prevents the

RI_2 bit from being set and an interrupt being asserted, if the 9th bit received is 0.

REN_2 Receive enable.
Bit 4 REN_0 = 0: Serial port 2 reception disabled.

REN_0 = 1: Serial port 2 receiver enabled for modes 1, 2, and 3. Initiate synchronous reception
for mode 0.

TB8_2 9th transmission bit state. This bit defines the state of the 9th transmission bit in serial port 2,
Bit 3 modes 2 and 3.

RB8_2 9th received bit state. This bit identifies the state of the 9th bit of received data in serial port 2,
Bit 2 modes 2 and 3. When SM2_2 is 0, it is the state of the stop bit in mode 1. This bit has no meaning

in mode 0.

TI_2 Transmit interrupt flag. This bit indicates that the data in the serial port 2 buffer has been
Bit 1 completely shifted out. It is set at the end of the last data bit for all modes of operation and must

be cleared by software.

RI_2 Receive interrupt flag. This bit indicates that a data byte has been received in the serial port 2
Bit 0 buffer. It is set at the end of the 8th bit for mode 0, after the last sample of the incoming stop bit for

mode 1 subject to the value of the SM2_2 bit, or after the last sample of RB8_2 for modes 2 and 3.
This bit must be cleared by software.

Serial Data Buffer 2 (SBUF2)

R = Unrestricted read, W = Unrestricted write, -n = Value after reset

SBUF2.7–0 Serial data buffer 2. Data for serial port 2 is read from or written to this location. The serial
Bits 7–0 transmit and receive buffers are separate registers, but both are addressed at this location.

MODE SM2 SM1 SM0 FUNCTION LENGTH PERIOD
0 0 0 0 Synchronous 8 bits 12 tCLK
0 1 0 0 Synchronous 8 bits 4 tCLK
1 — 1 0 Asynchronous 10 bits Timer 3

2 0 0 1 Asynchronous 11 bits
64 tCLK (SMOD_1 = 0)
32 tCLK (SMOD_1 = 1)

2 1 0 1 Asynchronous (MP) 11 bits
64 tCLK (SMOD_1 = 0)
32 tCLK (SMOD_1 = 1)

3 0 1 1 Asynchronous 11 bits Timer 3
3 1 1 1 Asynchronous (MP) 11 bits Timer 3

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 100

7 6 5 4 3 2 1 0

SFR FEh SM0/FE_2 SM1_2 SM2_2 REN_2 TB8_2 RB8_2 TI_2 RI_2

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

7 6 5 4 3 2 1 0

SFR FFh SBUF2.7 SBUF2.6 SBUF2.5 SBUF2.4 SBUF2.3 SBUF2.2 SBUF2.1 SBUF2.0

RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0

ADDENDUM TO SECTION 5: CPU TIMING
EXTERNAL CLOCK SOURCE
The DS80C400 supports a maximum operating frequency of 75MHz. However, when using an external crystal, the frequency must not
exceed 40MHz in order for the internal oscillator circuitry to work properly. Thus, the maximum operating frequency can be achieved
in one of two ways: 1) use of a stand-alone clock oscillator or clock source (up to 75MHz) to directly drive the XTAL1 pin or 2) use of
the on-chip clock multiplier circuitry (described later) to 4X/2X multiply the external crystal frequency.

SYSTEM CLOCK SELECTION
The internal clocking options of the DS80C400 differ slightly from that described in the High-Speed Microcontroller User’s Guide. Most
members of the family offer the option of 4, 256, or 1024 clocks per machine cycle. The DS80C400 can operate at 1, 2, 4, or 1024
oscillator clocks per machine cycle. The system clock divide control function is shown in Figure 5-1. A 3:1 multiplexer, controlled by
CD1, CD0 (PMR.7-6), selects one of three sources for the internal system clock:

• Crystal oscillator or external clock source

• Crystal oscillator or external clock source divided by 256

• Crystal oscillator or external clock source frequency multiplied by 2 or 4

The system clock control circuitry generates two clock signals that are used by the microcontroller. The internal system clock provides
the time base for timers and internal peripherals. The system clock is run through a divide-by-4 circuit to generate the machine cycle
clock that provides the time base for CPU operations. All instructions execute in one to six machine cycles. It is important to note the
distinction between these two clock signals as they are sometimes confused, creating errors in timing calculations.

Setting CD1:0 to 00b enables the frequency multiplier, either doubling or quadrupling the frequency of the crystal oscillator or external
clock source. The 4X/2X bit controls the multiplying factor, selecting two or four times the frequency when set to 0 or 1, respectively.
Enabling the frequency multiplier results in apparent instruction execution speeds of 2 or 1 oscillator clocks. Regardless of the con-
figuration of the frequency multiplier, the system clock of the microcontroller can never be operated faster than 75MHz. This means
that the maximum crystal oscillator or external clock source is 18.75MHz when using the 4X setting, and 37.5MHz when using the 2X
setting.

The primary advantage of the clock multiplier is that it allows the microcontroller to use slower crystals to achieve the same perfor-
mance level. This reduces EMI and cost, as slower crystals are generally more available and, therefore, less expensive.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

101 __

Figure 5-1. System Clock Control Diagram

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 102

Table 5-1. System Clock Configuration

The system clock and machine cycle rate changes one machine cycle after the instruction that changes the control bits. Note that the
change affects all aspects of system operation, including timers and baud rates. The use of the switchback feature, described later,
can eliminate many of the issues associated with the power-management mode’s affect on peripherals such as the serial port. Table
5-2 illustrates the effect of the clock modes on the operation of the timers:

Table 5-2. Effect of Clock Modes on Timer Operation

CHANGING THE SYSTEM CLOCK/MACHINE CYCLE CLOCK FREQUENCY
The microcontroller incorporates a special locking sequence to ensure “glitch-free” switching of the internal clock signals. All changes
to the CD1, CD0 bits must pass through the 10 (divide-by-4) state. For example, to change from 00 (frequency multiplier) to 11 (PMM),
the software must change the bits in the following sequence: 00 ⇒ 10 ⇒ 11. Attempts to switch between invalid states fail, leaving the
CD1, CD0 bits unchanged.

The following sequence must be followed when switching to the frequency multiplier as the internal time source. This sequence can
only be performed when the device is in divide-by-4 operation. The steps must be followed in this order, although it is possible to have
other instructions between them. Any deviation from this order causes the CD1, CD0 bits to remain unchanged. Switching from fre-
quency multiplier to nonmultiplier mode requires no steps other than the changing of the CD1, CD0 bits.

1) Ensure that the CD1, CD0 bits are set to 10, and the RGMD (EXIF.2) bit = 0.

2) Clear the Crystal Multiplier Enable (CTM) bit.

3) Set the 4X/2X bit to the appropriate state.

4) Set the CTM bit.

5) Poll the CKRDY bit (EXIF.3), waiting until it is set to 1. This takes approximately 65536 cycles of the external crystal or clock source.

6) Set CD1, CD0 to 00. The frequency multiplier is engaged on the machine cycle following the write to these bits.

OSC CYCLES
PER TIMER

0/1/2/3 CLOCK

OSC CYCLES
PER TIMER 2

CLOCK, BAUD
RATE GEN

OSC CYCLES
PER SERIAL

PORT CLOCK
MODE 0

OSC CYCLES PER
SERIAL PORT CLOCK

MODE 2CD1 CD0 4X/2X

OSC CYCLES
PER

MACHINE
CYCLE

TXM = 0 TXM = 1 TXM=0 TXM = 1 SM2=0 SM2 = 1 SMOD = 0 SMOD = 1

0 0 1 1 12 1 2 2 3 1 64 32

0 0 0 2 12 2 2 2 6 2 64 32

0 1 N/A 4 (reserved) 12 4 2 2 12 4 64 32

1 0 N/A 4 (default) 12 4 2 2 12 4 64 32

1 1 N/A 1024 3072 1024 512 512 3072 1024 16,384 8192

CD1 CD0 4X/2X NAME CLOCKS/MC MAX EXTERNAL FREQUENCY (MHZ)

0 0 1 Frequency Multiplier (4x) 1 18.75

0 0 0 Frequency Multiplier (2x) 2 37.5

0 1 N/A Reserved — —

1 0 N/A Divide-by-four (default) 4 75

1 1 N/A Power Management Mode 1024 75

ADDENDUM TO SECTION 6: MEMORY ACCESS
INTERNAL PROGRAM MEMORY
The DS80C400 incorporates 64kB of on-chip ROM program memory. The 64kB block of memory is logically divided into two 32kB
blocks. The upper 32kB block, which is reserved for internal use, is always mapped to the very top of the 16MB program memory
space (FF8000h–FFFFFFh). The logical address location for the lower 32kB block, the TINI®400 (Tiny InterNet Interfaces) ROM, is con-
trolled by the merge ROM (MROM) bit of the address control (ACON: 9Dh) register. The functionality implemented by the TINI400 ROM
is covered in a separate section of this supplement. The reset default location for the 32kB TINI400 ROM, when MROM = 0, is
000000h–007FFFh. When MROM is set (MROM = 1), the 32kB block is then logically mapped to the range FF0000h–FF7FFFh.

Two control mechanisms, the EA pin and the bypass ROM (BROM) SFR bit, dictate whether the ROM is executed, or even included in
the memory map. No matter the state of the BROM bit, if the EA pin is held at a logic low level, the TINI400 ROM code is not entered
and is not accessible as program memory. If the EA pin is at a logic high level, the BROM bit is then examined to determine whether
the internal TINI400 firmware should be executed or bypassed. If BROM = 0, the TINI400 code is executed. Otherwise, (BROM = 1),
the TINI400 code is bypassed, and execution is transferred to external user code at address 000000h. The BROM bit defaults to 0 on
a power-on reset, but is unaffected by other reset sources. Figure 6-1 shows the possible program memory map alternatives.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

103 __

EA\ = 1
BROM = 0
MROM = 0

EA\ = 1
BROM = 0
MROM = 1

EA\ = 0
BROM = X or
MROM = X

EA\ = 1
BROM = 1
MROM = X

Addressable
External
Memory

000000h

FFFFFFh

Addressable
External
Memory

000000h

FFFFFFh

Addressable
External
Memory

000000h

FFFFFFh

007FFFh

FF8000h

FF0000h

FF8000h
FF7FFFh

~
~

~
~

~
~

~
~

Internal
Test mode

ROM

Internal
Test Mode

ROM

Internal
TINI400

ROM

Internal
TINI400

ROM

TINI is a registered trademark of Dallas Semiconductor.

Figure 6-1. Program Memory Map Options

INTERNAL DATA MEMORY
DS80C400
The DS80C400 incorporates 9472 bytes of internal SRAM memory, in addition to the standard 256-byte scratchpad memory. This addi-
tional on-chip SRAM is logically divided into three memory blocks: a 1kB block usable as data memory and extended stack memory,
an 8kB block usable as data memory and Ethernet transmit/receive buffer memory, and a 256-byte block usable as data memory and
CAN controller memory. In order for the 1kB internal SRAM to be used as extended stack memory, the stack address mode (SA) bit,
contained in the ACON register, must be set to 1. The logical address location for each block is determined by the settings of the IDM1,
IDM0 bits and the CMA bit, all contained in the MCON (C6h) register. The following table summarizes the six possible configurations
for the three internal SRAMs, while Figure 6-2 illustrates three data memory map possibilities.

Table 6-1. Internal Data Memory Address Locations

IDM1:0 CMA
1kB SRAM

(OPTIONAL STACK)
8kB SRAM

(ETHERNET BCU)
256–BYTE SRAM

(CAN)

00 0 00DC00h–00DFFFh 00E000h–00FFFFh 00DB00h–00DBFFh

00 1 00DC00h–00DFFFh 00E000h–00FFFFh FFDB00h–FFDBFFh

01 0 002000h–0023FFh 000000h–001FFFh 00DB00h–00DBFFh

01 1 002000h–0023FFh 000000h–001FFFh FFDB00h–FFDBFFh

10 0 FFDC00h–FFDFFFh FFE000h–FFFFFFh 00DB00h–00DBFFh

10 1 FFDC00h–FFDFFFh FFE000h–FFFFFFh FFDB00h–FFDBFFh

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 104

Figure 6-2. Example Data Memory Map Configurations (DS80C400)

IDM1:0 = 10b; CMA = 1

Addressable
External
Memory

000000h

FFFFFFh

FFDC00h
FFDBFFh

FFE000h
FFDFFFh

~
~

~
~

Internal
8kB SRAM

(Ethernet BCU)

Internal
1kB SRAM

(Optional Stack)

256-byte SRAM
(CAN)FFDB00h

FFDAFFh

IDM1:0 = 00b; CMA = 0
(DEFAULT)

Addressable
External
Memory

Addressable
External
Memory

000000h

FFFFFFh

00DC00h
00DBFFh

00E000h
00DFFFh

~
~

~
~

Internal
8kB SRAM

(Ethernet BCU)

Internal
1kB SRAM

(Optional Stack)

256-byte SRAM
(CAN)00DB00h

00DAFFh

010000h
00FFFFh

IDM1:0 = 01b; CMA = 0

Addressable
External
Memory

Addressable
External
Memory

000000h

FFFFFFh

002400h
0023FFh

00DB00h
00DAFFh

~
~

~
~

256-byte SRAM
(CAN)

002000h
001FFFh

00DC00h
00DBFFh

Internal
1kB SRAM

(Optional Stack)

Internal
8kB SRAM

(Ethernet BCU)

DS80C410/DS80C411
Similar to the DS80C400, the DS80C410 and DS80C411 incorporate three internal SRAM memory blocks: a 1kB block usable as data
memory and extended stack memory, a 64kB block usable as data memory and Ethernet transmit/receive buffer memory, and a 256-
byte block usable as data memory and CAN controller memory. For the 1kB internal SRAM to be used as extended stack memory, the
stack address mode (SA) bit, contained in the ACON register, must be set to 1. Unlike the DS80C400, the logical addresses of these
blocks are fixed, as follows:

CAN SRAM (256 byte): FFDB00h–FFDBFFh

Data/Extended Stack (1kB) FFDC00h–FFDFFFh

Internal Data memory (64kB) 0000000h–00FFFFh

The 64kB memory block can be enabled or disabled by the Internal RAM Disable bit, IRAMD (MCON1.7). When enabled, the 64kB
memory block appears in the MOVX address space at locations 0000000h–00FFFFh. All MOVX memory operations in that range auto-
matically access internal memory, and no external memory signals (address bus, RD or WR strobes) will be active. When disabled, all
MOVX memory operations over that range are directed onto the external bus and the internal locations are ignored.

The DS80C410/411 incorporate a new feature that allows the 64kB memory block to be mapped from data into program memory
space. The Program RAM Enable bit, PRAME (MCON1.6) controls whether the 64kB memory block, if enabled by the IRAMD bit, will
either be located at 0000000h–00FFFFh in data space or program space. This very useful feature allows the designer to create self-
modifying code by using MOVC instructions to read existing code space into the 64kB data memory block, modify it, and then use the
PRAME bit to map the 64kB block back into program memory space. These features are illustrated in Figure 6-3.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

105 __

Figure 6-3. Example Data Memory Map Configurations (DS80C410/DS80C411)

Addressable
External

Data Memory

IRAMD = 1, PRAME = X

Internal 8kB SRAM
(Ethernet BCU)

FFFFFFh

Internal 1kB SRAM
(Optional Stack)

FFE000h
FFDFFFh

FFDC00h
FFDBFFh

FFDB00h
FFDAFFh

000000h

256 Byte SRAM
(CAN)

Addressable
External

Data Memory

Internal 65kB
Data SRAM

IRAMD = 0, PRAME = 0

* This memory should not be
 accessed on the DS80C411.

* This memory should not be
 accessed on the DS80C411.

Internal 8kB SRAM
(Ethernet BCU)

FFFFFFh

Internal 1kB SRAM
(Optional Stack)

FFE000h
FFDFFFh

FFDC00h
FFDBFFh

FFDB00h
FFDAFFh

010000h
00FFFFh

000000h

010000h
00FFFFh

256 Byte SRAM*
(CAN)

Addressable
External

Data Memory

Internal merged
64kB Data

and Program SRAM

Internal 8kB SRAM
(Ethernet BCU)

Internal 1kB SRAM
(Optional Stack)

256 Byte SRAM*
(CAN)

IRAMD = 0, PRAME = 1

FFFFFFh

FFE000h
FFDFFFh

FFDC00h
FFDBFFh

FFDB00h
FFDAFFh

000000h

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 106

EXTERNAL MEMORY ACCESS
The DS80C400 follows the memory interface convention established by the industry standard 80C32/80C52, but with many added
improvements. Most notably, the device incorporates a 24-bit addressing capability that directly supports up to 16MB of program mem-
ory and 4MB of data memory. Externally, the memory is accessed through a multiplexed or demultiplexed 22-bit address bus/8-bit data
bus and eight chip-enable signals (active during program memory access) or four peripheral-enable signals (active during data mem-
ory access). Multiplexed addressing mode mimics the traditional 8051 memory interface, with the address MSB presented on port 2
and the address LSB and data multiplexed on port 0. The multiplexed mode requires an external latch to demultiplex the address LSB
and data. When the MUX pin is pulled high, the address LSB and data are demultiplexed, with the address MSB presented on port 2,
the address LSB on port 7, and the data on port 0. The elimination of the demultiplexing latch removes a delay element in the memo-
ry timing and can, in some cases, allow the use of slower, less expensive memory devices. The following table illustrates the locations
of the external memory control signals.

Table 6-2. External Memory Addressing Pin Assignments

Each upper-order address line (A16–A21) and chip or peripheral enable is individually enabled by the P4CNT, P5CNT, and P6CNT reg-
isters. Enabling upper-order address lines increases the maximum size of the external memories that can be addressed, and enabling
chip or peripheral enables controls the number of external memories that can be addressed. For example, if P4CNT.5-3 are set to 010b,
A17 and A16 are enabled (along with A15–A0), permitting each chip-enable access a maximum memory device size of 218 or 256kB.
Note that the desired chip-enable signals must be enabled in order to become active for a defined memory range.

The configurable program/code chip-enable (CEx) and MOVX chip-enable (PCEx) signals issued by the microcontroller are used when
accessing multiple external memory devices. External chip-enable lines are only required if more than one physical block of memory
are used. In the standard 8051 configuration, PSEN is used as the output enable for the program memory device, and RD and WR
control the input or output functions of the data (SRAM) device. Typically, the chip enables of the program and data memory devices
can be connected to their active state if only one of each is used. To support a larger amount of memory, however, the microcontroller
must generate chip or data enables to select one of several memory devices. The following tables demonstrate how to enable various
combinations of high-order address lines and chip enables.

SIGNAL MULTIPLEXED (MUX = 0) DEMULTIPLEXED (MUX = 1)

A21 P6.5 P6.5

A20 P6.4 P6.4

A19 P4.7 P4.7

A18 P4.6 P4.6

A17 P4.5 P4.5

A16 P4.4 P4.4

A15–A8 P2.7–P2.0 P2.7–P2.0

ADDRESS

A7–A0 P0.7–P0.0 P7.7–P7.0

DATA D7–D0 P0.7–P0.0 P0.7–P0.0

CE7 P6.3 P6.3

CE6 P6.2 P6.2

CE5 P6.1 P6.1

CE4 P6.0 P6.0

CE3 P4.3 P4.3

CE2 P4.2 P4.2

CE1 P4.1 P4.1

CHIP ENABLES

CE0 P4.0 P4.0

PCE2 P5.7 P5.7

PCE1 P5.6 P5.6

PCE0 P5.5 P5.5
PERIPHERAL

CHIP ENABLES

P5.4 P5.4

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

107 __

Table 6-3. Extended Address Generation

1 Only 32kB of memory is accessible per chip enable for the P4CNT.5-3 = 000b setting, which means at least two chip enables are needed to address the standard 16-bit
(0–FFFFh) address range.

2 The default P4CNT.5-3 = 111b setting (4MB accessible per CE) requires only four chip enables to access the maximum 24-bit (0–FFFFFFh) address range.

Table 6-4. Chip-Enable Generation

Table 6-5. Peripheral Chip-Enable Generation

P5CNT.2-0 P5.7 P5.6 P5.5 P5.4 P6CNT.5-3
MAX MEMORY

ACCESSIBLE PER PCE

000 (default) I/O I/O I/O I/O 000 32kB

100 I/O I/O I/O PCE0 001 128kB

101 I/O I/O PCE1 PCE0 010 256kB

110 I/O PCE2 PCE1 PCE0 011 512kB

111 PCE3 PCE2 PCE1 PCE0 100 1MB

PORT PIN 6 FUNCTION PORT PIN 4 FUNCTION

P6CNT.2-0 P6.3 P6.2 P6.1 P6.0 P4CNT.2-0 P4.3 P4.2 P4.1 P4.0

000 (default) I/O I/O I/O I/O 000 I/O I/O I/O I/O

100 I/O I/O I/O CE4 100 I/O I/O I/O CE0

101 I/O I/O CE5 CE4 101 I/O I/O CE1 CE0

110 I/O CE6 CE5 CE4 110 I/O CE2 CE1 CE0

111 CE7 CE6 CE5 CE4 111 (default) CE3 CE2 CE1 CE0

P4CNT.5-3 P6.5 P6.4 P4.7 P4.6 P4.5 P4.4
MAX MEMORY ACCESSIBLE

PER CE

000 I/O I/O I/O I/O I/O I/O 32kB1

001 I/O I/O I/O I/O I/O A16 128kB

010 I/O I/O I/O I/O A17 A16 256kB

011 I/O I/O I/O A18 A17 A16 512kB

100 I/O I/O A19 A18 A17 A16 1MB

101 I/O A20 A19 A18 A17 A16 2MB

110 or 111 (default) A21 A20 A19 A18 A17 A16 4MB2

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 108

The following table illustrates how program memory is segmented based on the setting of the port 4 configuration control bits
(P4CNT.5-3).

Table 6-6. Program Memory Chip-Enable Boundaries

Following any reset, the device defaults to 16-bit mode addressing (ACON.1-0 = 00b), with P6.5, P6.4, and P4.7–P4.4 serving as
address lines (P4CNT.5-3 = 111b) and P4.3–P4.0 configured as CE3-0 (P4CNT.2-0 = 111b). The first program fetch is performed from
000000h with CE0 active (low).

Figures 6-4 and 6-5 illustrate the multiplexed (MUX = 0) and demultiplexed (MUX = 1) external memory interfaces. Both examples
access 512kB of program memory and 256kB of data memory.

P4CNT.5-3
➞

000h
(32kB/CE)

001h
(128kB/CE)

010h
(256kB/CE)

011h
(512kB/CE)

100h
(1MB/CE)

101h
(2MB/CE)

101h
(4MB/CE)

CE0
0h–

7FFFh
0h–

1FFFFh
0h–

3FFFFh
0h–

7FFFFh
0h–

FFFFFh
0h–

1FFFFFh
0h–

3FFFFFh

CE1
8000h–
FFFFh

20000h–
3FFFFh

40000h–
7FFFFh

80000h–
FFFFFh

100000h–
1FFFFFh

200000h–
3FFFFFh

400000h–
7FFFFFh

CE2
10000h–
17FFFh

40000h–
5FFFFh

80000h–
BFFFFh

100000h–
17FFFFh

200000h–
2FFFFFh

400000h–
5FFFFFh

800000h–
BFFFFFh

CE3
18000h–
FFFFh

60000h–
7FFFFh

C0000h–
FFFFFh

180000h–
1FFFFFh

300000h–
3FFFFFh

600000h–
7FFFFFh

C00000h–
FFFFFFh

CE4
20000h–
27FFFh

80000h–
9FFFFh

100000h–
13FFFFh

200000h–
27FFFFh

400000h–
4FFFFFh

800000h–
9FFFFFh

—

CE5
28000h–
2FFFFh

A0000h–
BFFFFh

140000h–
17FFFFh

280000h–
2FFFFFh

500000h–
5FFFFFh

A00000h–
BFFFFFh

—

CE6
30000h–
37FFFh

C0000h–
DFFFFh

180000h–
1BFFFFh

300000h–
37FFFFh

600000h–
6FFFFFh

C00000h–
DFFFFFh

—

CE7
38000h–
3FFFFh

E0000h–
FFFFFh

1C0000h–
1FFFFFh

380000h–
3FFFFFh

700000h–
7FFFFFh

E00000h–
FFFFFFh

—

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

109 __

Figure 6-4. Multiplexed Address/Data Bus

DS80C400

P7.3/A3
P7.4/A4
P7.5/A5
P7.6/A6
P7.7/A7
Vcc1
EA\
ALE
PSEN\
P2.0\A8
P2.1\A9
P2.2\A10
Vss
Vcc3
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14
P2.7/A15
P6.0/CE4\
P6.1/CE5\
P6.2/CE6\
P6.3/CE7\
P6.4/A20
P6.5/A21

CRS
COL

TXD.3
TXD.2
TXD.1
TXD.0

TX_EN
TXCLK
RX_ER
RXCLK
RX_DV

Vcc3
Vss

RXD.0
RXD.1
RXD.2
RXD.3

MDC
MDIO

P3.0/RXD0
P3.1/TXD0
P3.2/INT0\
P3.3/INT1\

P3.4/T0
P3.5/T1/CLKO

O
W

ST
P\

O
W

R
ST

O
L

R
ST

P1
.7

/I
N

T
5\

P1
.6

/I
N

T
4

P1
.5

/I
N

T
3\

P1
.4

/I
N

T
2

P1
.3

/T
X

D
1

P1
.2

/R
X

D
1

P1
.1

/T
2E

X
P1

.0
/T

2
V

ss
V

cc
3

P0
.0

/D
0

P0
.1

/D
1

P0
.2

/D
2

P0
.3

/D
3

P0
.4

/D
4

P0
.5

/D
5

P0
.6

/D
6

P0
.7

/D
7

P7
.0

/A
0

P7
.1

/A
1

P7
.2

/A
2

P3
.6

/W
R

\
P3

.7
/R

D
\

P5
.7

/P
C

E
3\

P5
.6

/P
C

E
2\

P5
.5

/P
C

E
1\

P5
.4

/P
C

E
0\

P5
.3

P5
.2

/T
3

P5
.1

/C
0R

X
P5

.0
/C

0T
X

V
cc

3
X

T
A

L
2

X
T

A
L

1
V

ss
M

U
X

\
P4

.7
/A

19
P4

.6
/A

18
P4

.5
/A

17
P4

.4
/A

16
P4

.3
/C

E
3\

P4
.2

/C
E

2\
P4

.1
/C

E
1\

P4
.0

/C
E

0\
P6

.7
/T

X
D

2
P6

.6
/R

X
D

2

D0–D7

256kB x 8
Flash program

memory
(configurable

as data
memory)

A0–A7
A8–A15
A16
A17

OE\
CE\
WE\

74

37
3

LE\

D0–D7

256kB x 8
Flash program

memory
(configurable

as data
memory)

A0–A7
A8–A15
A16
A17

OE\
CE\
WE\

D0–D7

256kB x 8
Dedicated

data memory
or peripheral

memory

A0–A7
A8–A15
A16
A17

OE\
CE\
WE\

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 110

DS80C400

P7.3/A3
P7.4/A4
P7.5/A5
P7.6/A6
P7.7/A7
Vcc1
EA\
ALE
PSEN\
P2.0\A8
P2.1\A9
P2.2\A10
Vss
Vcc3
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14
P2.7/A15
P6.0/CE4\
P6.1/CE5\
P6.2/CE6\
P6.3/CE7\
P6.4/A20
P6.5/A21

CRS
COL

TXD.3
TXD.2
TXD.1
TXD.0

TX_EN
TXCLK
RX_ER
RXCLK
RX_DV

Vcc3
Vss

RXD.0
RXD.1
RXD.2
RXD.3

MDC
MDIO

P3.0/RXD0
P3.1/TXD0
P3.2/INT0\
P3.3/INT1\

P3.4/T0
P3.5/T1/CLKO

O
W

ST
P\

O
W

R
ST

O
L

R
ST

P1
.7

/I
N

T
5\

P1
.6

/I
N

T
4

P1
.5

/I
N

T
3\

P1
.4

/I
N

T
2

P1
.3

/T
X

D
1

P1
.2

/R
X

D
1

P1
.1

/T
2E

X
P1

.0
/T

2
V

ss
V

cc
3

P0
.0

/D
0

P0
.1

/D
1

P0
.2

/D
2

P0
.3

/D
3

P0
.4

/D
4

P0
.5

/D
5

P0
.6

/D
6

P0
.7

/D
7

P7
.0

/A
0

P7
.1

/A
1

P7
.2

/A
2

P3
.6

/W
R

\
P3

.7
/R

D
\

P5
.7

/P
C

E
3\

P5
.6

/P
C

E
2\

P5
.5

/P
C

E
1\

P5
.4

/P
C

E
0\

P5
.3

P5
.2

/T
3

P5
.1

/C
0R

X
P5

.0
/C

0T
X

V
cc

3
X

T
A

L
2

X
T

A
L

1
V

ss
M

U
X

\
P4

.7
/A

19
P4

.6
/A

18
P4

.5
/A

17
P4

.4
/A

16
P4

.3
/C

E
3\

P4
.2

/C
E

2\
P4

.1
/C

E
1\

P4
.0

/C
E

0\
P6

.7
/T

X
D

2
P6

.6
/R

X
D

2

D0–D7

256kB x 8
Flash program

memory
(configurable

as data
memory)

A0–A7
A8–A15
A16
A17

OE\
CE\
WE\

D0–D7

256kB x 8
Flash program

memory
(configurable

as data
memory)

A0–A7
A8–A15
A16
A17

OE\
CE\
WE\

D0–D7

256kB x 8
Dedicated

data memory
or peripheral

memory

A0–A7
A8–A15
A16
A17

OE\
CE\
WE\

Vcc3

Figure 6-5. Demultiplexed Address/Data Bus

USING THE COMBINED CHIP-ENABLE SIGNALS
The DS80C400 incorporates a feature allowing PCEx and CEx signals to be combined to provide a merged external program/data
memory area. Setting the one or more PDCE7–PDCE0 bits (MCON1.3–0 and MCON.3–0) causes the corresponding chip-enable sig-
nal to be asserted for both MOVC and MOVX operations. Write access to combined program and data memory blocks is controlled
by the WR signal, and read access is controlled by the PSEN signal. This feature is especially useful if the design achieves in-system
reprogrammability through external flash memory, where a single device can be accessed through both MOVC instructions (program
fetch) and MOVX write operations (updates to code memory). The following figures illustrate some examples of merged program/data
memory configurations.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

111 __

CE0 =4Mx8

PCE0 =1Mx8

PCE1 =1Mx8

PCE2 =1Mx8

PCE3 =1Mx8

CE1 =4Mx8

CE3 =4Mx8

CE2 =4Mx8

PROGRAM
MEMORY

DATA
MEMORY

Non-
Addressable

CE0 =4Mx8

CE1 =4Mx8

CE3 =4Mx8

CE2 =4Mx8

PROGRAM
MEMORY

DATA
MEMORY

Non-
Addressable

PROGRAM
/DATA

MEMORY

PDCE2 =1

PDCE0 =1

BEFORE AFTER

Figure 6-6. Merged Program/Data Access Under CE0, CE2, PCE0–PCE3 Becomes Inaccessible

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 112

CE0 = 32kB x 8 PCE0 = 32kB x 8

PCE1 = 32kB x 8

PCE2 = 32kB x 8

PCE3 = 32kB x 8

CE1 = 32kB x 8

CE3 = 32kB x 8

CE2 = 32kB x 8

PROGRAM
MEMORY

DATA
MEMORY

PROGRAM
MEMORY

DATA
MEMORY

PROGRAM/
DATA

MEMORY

PDCE3 = 1

PDCE2 = 1

BEFORE AFTER

CE0 = 32kB x 8 PCE0 = 32kB x 8

PCE1 = 32kB x 8CE1 = 32kB x 8

CE3 = 32kB x 8

CE2 = 32kB x 8

Non-
Addressable

Non-
Addressable

Non-
Addressable

Non-
Addressable

CE0 = 128kB x 8 PCE0 = 128kB x 8

PCE1 = 128kB x 8

PCE2 = 128kB x 8

PCE3 = 128kB x 8

CE1 = 128kB x 8

CE3 = 128kB x 8

CE2 = 128kB x 8

PROGRAM
MEMORY

DATA
MEMORY

PROGRAM
MEMORY

DATA
MEMORY

PROGRAM/
DATA

MEMORY

PDCE1 = 1

PDCE2 = 1

BEFORE AFTER

CE0 = 128kB x 8 PCE0 = 128kB x 8

PCE3 = 128kB x 8

CE1 = 128kB x 8

CE3 = 128kB x 8

CE2 = 128kB x 8

Non-
Addressable

Non-
Addressable

Non-
Addressable

Non-
Addressable

Figure 6-7. Merged Program/Data Access Under CE2, CE3, PCE2, and PCE3 Becomes Inaccessible

Figure 6-8. Merged Program/Data Access Under CE1, CE2, PCE1, and PCE2 Becomes Inaccessible

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

113 __

CE0 = 512kB x 8

Non-
Addressable

Non-
Addressable

PCE0 = 1MB x 8

PCE1 = 1MB x 8

Non-
Addressable

PDCE0 = 1

Non-
Addressable

PROGRAM
MEMORY

DATA
MEMORY

PROGRAM
MEMORY

DATA
MEMORY

BEFORE AFTER

CE0 = 512kB x 8

PCE0 = 512kB x 8

PCE1 = 1MB x 8

PROGRAM/
DATA

MEMORY

CE0 = 512kB x 8

Non-
Addressable

Non-
Addressable

PCE0 = 1MB x 8

PCE1 = 1MB x 8

Non-
Addressable

PDCE0 = 1

Non-
Addressable

PROGRAM
MEMORY

DATA
MEMORY

PROGRAM
MEMORY

DATA
MEMORY

BEFORE AFTER

CE0 = 512kB x 8

PCE0 = 512kB x 8

PCE1 = 1MB x 8

PROGRAM/
DATA

MEMORY

Figure 6-9. Merged Program/Data Access Under CE0 and PCE0 Becomes Partially Inaccessible

Figure 6-10. Full 16MB Merged Program/Data Memory Map Options

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 114

WRITE-PROTECTION FEATURE (DS80C400 ONLY)
When combined program/data memory access is enabled, there is the potential to inadvertently modify code that one meant to leave
fixed. For this reason, the DS80C400 provides the ability to write protect the first 0–16kB of memory accessible through each of the
chip enables CE3, CE2, CE1, and CE0. The write-protection feature for each chip enable is invoked by setting the appropriate WPE3–0
(MCON2.3–0) bit. The protected range is defined by the WPR2-0 (MCON2.6-4) bit settings as shown in Table 6-7. Any MOVX instruc-
tions attempting to write to a protected area is disallowed and the write-protected interrupt flag (WPIF–MCON2.7) is set by hardware.

Table 6-7. Write-Protection Range

ENHANCED QUAD DATA POINTERS
The DS80C400 offers enhanced features for accelerating the access and movement of data. The DS80C400 contains four data point-
ers (DPTR0, DPTR1, DPTR2, and DPTR3) instead of the single data pointer offered on the original 8051. DPTR0 is located at the same
address as the original 8051 data pointer, allowing the DS80C400 to execute standard 8051 code with no modifications. The registers
making up the second, third, and fourth data pointers are located at SFR address locations not used in the original 8051. To access
the extended 24-bit address range supported by the DS80C400, a third, high-order byte (DPXn) has been added to each pointer, so
that each data pointer is now comprised of the SFR combination DPXn + DPHn + DPLn. Table 6-8 summarizes the SFRs that make up
each data pointer.

Table 6-8. Data Pointer SFR Locations

Two bits, SEL1 and SEL, both located in the data pointer select (DPS: 86h) register, select which one of the four pointers is active. For
the SEL1, SEL bits, the 00b state selects DPTR0, 01b selects DPTR1, 10b selects DPTR2, and 11b selects DPTR3. To allow for code
compatibility with previous dual data pointer microcontrollers, the bits adjacent to SEL are not implemented so that the INC DPS instruc-
tion can still be used to quickly toggle between DPTR0 and DPTR1 or between DPTR2 and DPTR3. Each data pointer also has an asso-
ciated increment/decrement control bit. This bit defines, for each data pointer, whether the INC DPTR instruction increments or decre-
ments the pointer when it is selected. When the active data pointer ID (increment/decrement) control bit is clear (= 0), the INC DPTR
instruction increments the pointer, whereas a decrement occurs if the active pointer’s ID bit is set (= 1) when the INC DPTR instruction
is performed. The increment/decrement control bits for DPTR0, DPTR1 and ID0, ID1 respectively, can be found in the DPS (86h) reg-
ister, while controls for DPTR2, DPTR3 and ID2, ID3 are found in the DPS1 (F6h) register.

ID0 = DPS.6

ID1 = DPS.7

ID2 = DPS1.6

ID3 = DPS1.7

To expedite data transfer and copy routines, the DS80C400 features the ability to automatically advance the data pointer and/or auto-
matically toggle to a different data pointer in response to execution of certain instructions. The autotoggle feature does not toggle

DATA POINTER DPX + DPH + DPL COMBINATION

DPTR0 DPX (93h) + DPH (83h) + DPL (82h)

DPTR1 DPX1 (95h) + DPH1 (85h) + DPL1 (84h)

DPTR2 DPX2 (EBh) + DPH2 (F3h) + DPL2 (F2h)

DPTR3 DPX3 (EDh) + DPH3 (F5h) + DPL3 (F4h)

MCON2.6-4 RANGE PROTECTED

000 0–2kB

001 0–4kB

010 0–6kB

011 0–8kB

100 0–10kB

101 0–12kB

110 0–14kB

111 0–16kB

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

115 __

between all four data pointers, nor does it allow the user to select which data pointers to toggle between. When the toggle select bit
(TSL: DPS.5) is set to 1, the SEL bit (DPS.0) is automatically toggled every time one of the following DPTR instructions is executed.
Thus, depending upon the state of the SEL1 bit (DPS.3), the active data pointer toggles between the DPTR0, DPTR1 pair or the DPTR2,
DPTR3 pair.

Auto-Toggle (if TSL=1)
INC DPTR
MOV DPTR, #data16
MOV DPTR, #data24
MOVC A, @A+DPTR
MOVX A, @DPTR
MOVX @DPTR, A

When the autoincrement/decrement bit (AID: DPS.4) is set to 1, the active data pointer is automatically incremented or decremented
every time one of the following DPTR instructions is executed.

Autoincrement/Decrement (if AID=1)
MOVC A, @A+DPTR
MOVX A, @DPTR
MOVX @DPTR, A

When used in conjunction, the autotoggle and auto-increment/decrement features can produce very fast routines for copying or mov-
ing data. For example, the basic loop needed to copy data between two different MOVX data memory ranges can be simplified to the
following code:

;R6:R7 are loop variables controlling copy length
LOOP:
MOVX A, @DPTR ;read from source
MOVX @DPTR, A ;write to destination
DJNZ R7, LOOP
DJNZ R6, LOOP

The advantage to having four data pointers is that the second pair of data pointers can be selected for use whenever the first pair is
already in use. This allows the application to: 1) conserve stack space that would normally be needed to save the data pointer(s) prior
to another task that needs the data pointer(s), and 2) respond more quickly to a task that requires use of the data pointer(s).

For example, suppose that a pair of data pointers are being used to load data into Ethernet transmit buffer memory. While loading
transmit buffer memory, an Ethernet receive interrupt request occurs that needs servicing. Servicing the interrupt requires that a
received packet be transferred from internal data buffer memory to external data memory. Normally, the dual data pointer values would
be pushed onto the stack and restored following the interrupt service routine to resume the loading of transmit buffer memory. With an
additional pair of data pointers (DPTR2 and DPTR3) with which to work, the application need not push the current data pointer values
onto the stack; it can simply select the second pair.

ADDENDUM TO SECTION 7: POWER MANAGEMENT
The DS80C400 supports the general power-management features of the DS87C520. Exceptions are noted as follows.

PRECISION VOLTAGE MONITOR
The DS80C400 does incorporate a precision bandgap reference, but unlike previous high-speed microcontrollers, it requires dual
power supplies. The core power supply (VCC1) is a nominal 1.8V supply, and the I/O power supply (VCC3) is a nominal 3.3V supply.
Therefore, two sets of voltage thresholds (one for each supply) have been implemented. The respective power-fail and reset voltage
thresholds for VCC1 are VPFW1 and VRST1, while the VCC3 thresholds are VPFW3 and VRST3. The minimum, typical, and maximum values
for these thresholds are specified in the DC Electrical Characteristics section of the DS80C400 data sheet.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 116

EARLY WARNING POWER-FAIL INTERRUPT
The PFI status bit is set if either VCC1 < VPFW1 or VCC3 < VPFW3. Two additional status bits, V1PF (STATUS1.3) and V3PF (STATUS1.2),
have been implemented so that the application can assess whether the VCC1 or VCC3 supply caused the PFI bit to be set. Manually
setting either V1PF or V3PF status bit causes the PFI bit to be set. Clearing the PFI bit automatically clears both status bits.

POWER-FAIL RESET
The DS80C400 automatically invokes a reset if either VCC1 < VRST1 or VCC3 < VRST3. The only exception is if the device is in stop mode
and BGS = 0. For this exception, the bandgap voltage reference is disabled, leaving the microcontroller unable to detect if either sup-
ply falls below its power-fail reset threshold.

POWER-ON RESET
The DS80C400 power-on reset sequence does not begin until both supplies are above their respective reset thresholds (i.e., VCC1 >
VRST1 and VCC3 > VRST3). Once this condition is met, the 65536 oscillator clock warmup period begins. If either supply falls below its
reset threshold during this warmup period, the process restarts.

BANDGAP SELECT
Refer to the DC Electrical Characteristics section of the DS80C400 data sheet for stop mode current specifications when the bandgap
circuitry is enabled (BGS = 1) and disabled (BGS = 0).

POWER-MANAGEMENT SUMMARY
In addition to the bits listed in the High-Speed Microcontroller User’s Guide, the following bits have been added:

STATUS1.3 V1PF—VCC1 power-fail. This bit is set to indicate that VCC1 has fallen below VPFW1. The bit is cleared automati-
cally when the PFI (WDCON.4) bit is cleared. Writing a 1 to this bit causes the PFI bit to be set.

STATUS1.2 V3PF—VCC3 power-fail. This bit is set to indicate that VCC3 has fallen below VPFW3. The bit is cleared automati-
cally when the PFI (WDCON.4) bit is cleared. Writing a 1 to this bit causes the PFI bit to be set.

POWER-MANAGEMENT MODES
A single power-management mode, referenced as PMM2 in the High-Speed Microcontroller User’s Guide, is supported by the
DS80C400. This PMM provides a machine cycle equal to the oscillator frequency divided by 1024. Power-management mode 1
(PMM1) is not supported on the DS80C400. A STATUS1 (F7h) register has been added, which contains transmit and receive activity
indicators for serial port 2. These status indicators can be interrogated to prevent entry into PMM at an inopportune time.

STATUS1.1 SPTA2—Serial port 2 transmit activity. This bit indicates that data is currently being transmitted by serial port 2.

STATUS1.0 SPRA2—Serial port 2 receive activity. This bit indicates that data is currently being received by serial port 2.

PMM AND PERIPHERAL FUNCTIONS
Invoking PMM alters the system clock and those peripheral functions that derive their timing from the system clock. In addition to the
peripherals mentioned in the High-Speed Microcontroller User’s Guide, the following DS80C400 peripherals are affected by use of PMM:

• Timer 3

• Serial port 2

• CAN controller

• Ethernet controller

• 1-Wire bus master

The user is advised against using these peripheral functions while in PMM. The switchback feature, detailed in the High-Speed
Microcontroller User’s Guide, provides a means of quickly exiting PMM so that these peripherals can be operated at the default divide-
by-4 system clock.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

117 __

SWITCHBACK
In addition to the switchback sources listed in the High-Speed Microcontroller User’s Guide, the following sources can also trigger a
switchback:

• Serial start bit detected, serial port 2

• Transmit buffer loaded, serial port 2

• Ethernet activity, when the Ethernet controller is in sleep mode and the Ethernet power-management
interrupt has been enabled

• CAN 0 bus activity (CAN0BA = 1), provided that the CAN controller is in one of the following states: CRST = 1, SWINT = 1, or
PDE = 1

STOP MODE
Stop mode can only be invoked if the CAN processor has been disabled (by either the CRST or SWINT bits) and the Ethernet controller
is in sleep mode. The stop (PCON.1) bit cannot be set until both of these conditions have been met.

PIN STATES IN IDLE OR STOP MODE
When either idle or stop modes are invoked, the pins exhibit the following states:

Note 1: Pin continues driving the same output state as was present when idle or stop modes were invoked. Since idle mode does not stop internal clocks, it does not nec-
essarily force static states on alternate function pins with dedicated hardware driven by internal clocks (e.g., timer 2 clock output, 1-Wire master, Ethernet MII outputs,
etc.) if that hardware has been configured to operate before Idle mode was invoked.
Note 2: Port reflects the data stored in the corresponding Port SFR.

Switching Between Clock Sources
The ring oscillator on the DS80C400 is similar to that on the DS80C320. As such, it does not support the run from ring feature, which
allows the microcontroller to use the ring oscillator as a clock source after the external crystal has stabilized (CKRY = 1). The ring oscil-
lator is used exclusively for resumption from stop mode when this feature has been enabled (RGSL = 1). The DS80C400 ring oscilla-
tor operates at approximately 15MHz.

ADDENDUM TO SECTION 8: RESET CONDITIONS
This section supersedes the corresponding section in the High-Speed Microcontroller User’s Guide.

The microcontroller provides several ways to place the CPU in a reset state. It also offers the means for software to determine the cause
of a reset. The reset state of most register bits is independent of the cause of the reset, but selected bits do depend on the reset source.
The reset sources, the reset state, and the function of the RSTOL pin are described in this section.

RESET SOURCES
The microcontroller has four ways of entering a reset state, described as follows:

• Power-on/power-fail reset

• Watchdog timer reset

• External reset

• Oscillator fail-detect reset

PIN PIN STATE DRIVE STRENGTH

ALE, PSEN 1 IOH3

MII Outputs
(TX_EN, TXD[3:0], MDC, MDIO)

No change (Note 1) IOH3 or IOL2

1-Wire Master I/O (OW, OWSTP) No change (Note 1) Open drain or IOL3

Memory Interface Pins
Port 0, Port 2, and Ports 3, 4, 5, 6, 7 (when used as any
of the following: A21–A0, WR, RD, CE0–7, PCE0-3)

1 IOH1

Port I/O pin Port data (Note 2) IOHI or IOL1

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 118

Power-On/Power-Fail Reset
The DS80C400 incorporates an internal voltage reference that holds the CPU in the power-on reset state if VCC1 is below VRST1 or VCC3
is below VRST3. Once both supplies have risen above the respective thresholds (i.e., VCC1 > VRST1 and VCC3 > VRST3), the microcon-
troller then restarts the oscillation of the external crystal and counts 65,536 clock cycles. This helps the system maintain reliable oper-
ation by permitting operation only when both supply voltages are in a known good state.

The CPU exits the reset condition once the above conditions are met. This happens automatically, needing no external components or
action. Execution begins at the standard reset vector address of 000000h. Software can determine when a power-on reset has occurred
using the power-on reset flag (POR) located at WDCON.6. The POR flag is set only by a power-on reset and is unaffected by other reset
sources. Since all resets cause a vector to location 000000h, software can read the POR flag to assess whether power failure was the rea-
son for the reset. If the POR bit is intended to identify a power-on reset, software must clear the POR bit after reading it. This ability to dis-
tinguish a power-on reset from other reset sources allows different processing routines in accordance to the reset source.

When either power supply fails (VCC1 < VRST1 or VCC3 < VRST3), the power monitoring circuitry invokes the reset state again. This reset con-
dition remains while the power is below the threshold. When the power supply rises above the reset threshold, a full power-on reset is per-
formed. Thus, a brownout that causes one of the supplies to drop below the specified minimum threshold appears the same as a power-up.

Watchdog Timer Reset
The watchdog timer is a free-running timer with a programmable interval. The watchdog supervises CPU operation by requiring soft-
ware to reset it before the timeout expires. If the timer is enabled, and software fails to clear it before this interval expires, a watchdog
interrupt can be generated, if enabled. Furthermore, if the watchdog reset function has been enabled, the CPU can be placed into a
reset state. The reset state is maintained for two machine cycles. Once the reset is removed, the software resumes execution at
000000h.

The watchdog timer is fully described in Section 11 of the High-Speed Microcontroller User’s Guide. Software can determine that a
watchdog timeout was the reason for the reset by using the watchdog timer reset flag (WTRF) located at WDCON.2. Hardware sets
this bit to a logic 1 if the watchdog timer generates a reset. If a watchdog timer reset occurs, software should clear this flag manually.
This allows software to detect the event if it occurs again.

External Reset
If the RST input is taken to a logic 1, the CPU is forced into a reset state. This does not occur instantaneously, as the condition must
be detected and then clocked into the microcontroller. It requires between one and two machine cycles to detect and invoke the reset
state. Thus, the reset is a synchronous operation and the internal CPU clock (derived from the external crystal oscillator or the ring
oscillator) must be active to detect an external reset.

Once the reset state is invoked, it is maintained as long as RST = 1. When the RST is removed, the CPU exits the reset state within one
to two machine cycles and begins execution at address 000000h. All registers default to their reset state. There is no flag to indicate
that an external reset was applied. However, since the other three sources have associated flags, the RST pin is the default source
when neither POR, WTRF, nor OFDF is set.

If an RST is applied while the processor is in the stop mode, the scenario changes slightly. As mentioned above, the reset is synchro-
nous and requires a clock to be running. Since the stop mode stops all clocks, the RST initially causes the oscillator to begin running
and forces the program counter to 000000h. Rather than the two-machine cycle delay described above, the processor applies the full
power-on delay (65536 clocks) to allow the oscillator to stabilize.

Oscillator Fail-Detect Reset
Most members of the high-speed microcontroller family contain a watchdog timer. The intent of this timer is to force the processor into
a known good state (reset) if it ever entered a runaway situation where it was not executing code properly. This is very powerful fea-
ture, but could be made stronger with a simple addition. Since the watchdog timer clock was derived from the main crystal oscillator,
it was possible (though very unlikely) that the oscillator would fail (stop), leaving the processor in an undesirable state. Since the watch-
dog timer runs from the same clock, the timer would stop counting, which would prevent a watchdog timeout and the generation of a
watchdog reset. This possibility is eliminated in the DS80C400 by the inclusion of an oscillator fail-detection circuit. When enabled, this
circuit causes the processor to be reset if the oscillator frequency falls below 100kHz. This puts the processor into a known good state,
regardless of the watchdog timer, if the main crystal oscillator should ever fail. Although the oscillator has failed when this reset occurs,
the CPU is clocked into the normal reset state by other internal clocks.

The oscillator fail-detect feature is enabled by setting the OFDE (PCON.4) bit with software. This bit can be modified at any time. When
an oscillator fail detection occurs, the flag OFDF (PCON.5) bit is set by hardware when the processor enters reset. This bit must be
cleared by software. The oscillator fail-detection circuit is not active during the crystal warmup period, and is not triggered when the
oscillator is stopped upon entering stop mode.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

119 __

RESET OUTPUTS
The microcontroller has one reset output, the RSTOL pin.

Reset Output Low (RSTOL)
This external output pin is active low whenever the microcontroller is in a reset state. It can be used to signal to external devices that
an otherwise invisible internal reset is in progress. It is active under the following conditions:

• When the processor has entered reset through the RST pin

• During the crystal warmup period following a power-on reset, or exit from stop mode (if RGMD = 0)

• During a watchdog timer reset (RSTOL active for two machine cycles)

• During an oscillator failure (if OFDE = 1)

RESET STATE
Regardless of the source of the reset, the state of the microcontroller is the same while in reset. When in reset, the oscillator is running,
but no program execution is allowed. When the reset source is external, the user must remove the reset stimulus. Anytime power is
applied to the device, completion of the power-on delay removes the reset state automatically.

Resets do not affect the scratchpad RAM. Thus, any data stored in RAM is preserved. The contents of internal MOVX data memory
also remain unaffected by a reset. However, the minimum data retention voltage for these internal memories is not specified, so RAM
data must be assumed lost whenever the POR bit has been set.

The reset state of SFR bits is described in Section 4. Bits that are marked SPECIAL have conditions that can affect their reset state.
Consult the individual bit descriptions for more information. Note that the stack pointer is also reset. Thus, the stack is effectively lost
during a reset, even though the RAM contents cannot be altered. Interrupts and timers are disabled. The watchdog timeout defaults
to its shortest interval on any reset. I/O ports are taken to a weak high state (FFh). This leaves each port pin configured with the data
latch set to a 1. Ports do not go to the 1 state instantly when a reset is applied, but are taken high within two machine cycles of assert-
ing a reset (unless the reset was applied while the device was in stop mode). If the reset is applied while the device is in stop mode,
ports 0 and 2 (and port 7, when MUX = 1) are taken high only after the 65,536 crystal oscillator warmup period has elapsed. When the
reset stimulus is removed, program execution begins at address 000000h.

IN-SYSTEM DISABLE MODE
The in-system disable (ISD) feature allows the device to be three-stated for in-circuit emulation or board testing. During ISD mode,
the device pins take on the following states:

The following procedure is used to enter ISD mode at power-up:
1. Assert reset by pulling RST high.
2. Pull ALE low and pull PSEN high.
3. Verify that at least one of the following pins is high: P2.7, P2.6, and P2.5.
4. Release RST.
5. Device is now in ISD mode; release ALE and PSEN, if desired.

Note: Pins P2.7, P2.6, and P2.5 should not be driven low when RST is released. This places the device into a reserved test mode.
Because these pins have a weak pullup during reset, they can be left floating. The test mode is only sampled on the falling edge of
RST and, once RST is released, its state does not affect device operation. In a similar manner, the ALE, PSEN and RST pins can be
released, once their state does not affect device operation, and ISD mode is invoked. Power must be cycled to exit ISD mode.

DEVICE PIN STATE DURING ISD
XTAL1, XTAL2 Oscillator remains active
RSTOL Driven per IOH3 specification
All other pins True tri-state

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 120

INT5

1-WIRE

EOWMI

FLAG
BITS

1-WIRE INTERRUPT
ENABLE BITS

TBE

OW_LOW

OW_SHORT

RSRF

RBF

TEMT

PD

IE5

Figure 9-1. 1-Wire Interrupt Source

ADDENDUM TO SECTION 9: INTERRUPTS

Unless marked, all flags must be cleared by the application software.
1Cleared automatically by hardware when the service routine is entered.
2If edge triggered, the flag is cleared automatically by hardware when the service routine is entered. If level triggered, the flag follows the state of the interrupt pin.
3The global 1-Wire interrupt enable bit (EOWMI) and individual 1-Wire interrupt source enables are located in the internal 1-Wire registers and must be accessed by the
OWMAD and OWMDR SFRs. Individual 1-Wire interrupt source flag bits located in the internal 1-Wire bus master interrupt flag register are accessed in the same way.

NAME DESCRIPTION VECTOR
NATURAL
PRIORITY

FLAG BIT ENABLE BIT
PRIORITY CONTROL

BIT

PFI Power-fail interrupt 33h 0 PFI(WDCON.4) EPFI(WDCON.5) N/A

INT0 External interrupt 0 03h 1 IE0(TCON.1)2 EX0(IE.0) PX0(IP.0)

TF0 Timer 0 0Bh 2 TF0(TCON.5) 1 ET0(IE.1) PT0(IP.1)

INT1 External interrupt 1 13h 3 IE1(TCON.3) 2 EX1(IE.2) PX1(IP.2)

TF1 Timer 1 1Bh 4 TF1(TCON.7) 1 ET1(IE.3) PT1(IP.3)

TI0 or RI0 Serial port 0 23h 5
RI_0(SCON0.0),
TI_0(SCON0.1)

ES0(IE.4) PS0(IP.4)

TF2 or EXF2 Timer 2 2Bh 6 TF2(T2CON.7) ET2(IE.5) PT2(IP.5)

TI1 or RI1 Serial port 1 3Bh 7
RI_1(SCON1.0),
TI_1(SCON1.1)

ES1(IE.6) PS1(IP.6)

INT2
INT3
INT4

INT5/OWMI

External interrupts 2–5
1-Wire bus master

interrupt
43h 8

IE2 (EXIF.4),
IE3 (EXIF.5),
IE4 (EXIF.6),
IE5 (EXIF.7) 3

EX2–5 (EIE.0)
EOWMI 3

PX2–5 (EIP.0)

TF3 Timer 3 4Bh 9 TF3 (T3CM.7) ET3 (EIE.1) PT3 (EIP.1)

TI2 or RI2 Serial port 2 53h 10 IE4 (EXIF.6) ES2 (EIE.2) PS2 (EIP.2)

WPI Write-protect interrupt 5Bh 11 WPIF (MCON2.7) EWPI (EIE.3) PWPI (EIP.3)

C0I CAN 0 interrupt 6Bh 12 Various C0IE (EIE.6) C0IP (EIP.6)

EAI Ethernet activity 73h 13
TIF (BCUC.5),
RIF (BCUC.4)

EAIE (EIE.5) EAIP (EIP.5)

WDTI Watchdog timer 63h 14 WDIF (WDCON.3) EWDI (EIE.4) PWDI (EIP.4)

EPMI Ethernet power mode 7Bh 15 EPMF (BCUC.6) EPMIE (EIE.7) EPMIP (EIP.7)

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

121 __

EOWMI

INTERRUPT
ENABLE BITS

FLAG
BITS

INTERRUPT
PRIORITY BITS

INTERRUPT
SELECTION
HARDWARE

INTERRUPT
VECTOR

PFI

INT0

TF0

TF1

RI_0
TI_0

RI_1
TI 1

TF2
EXE2

INT2

INT4

EPMF

IT1

HIGHEST
PRIORITY

INDIVIDUAL
ENABLES

GLOBAL
ENABLE

INT1

INT3

IT0

INT5

1-WIRE

TF3

RI_2
TI 2

WPI

TIF
RIF

CAN

WATCHDOG

Figure 9-2. Interrupt Functional Diagram

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 122

ADDENDUM TO SECTION 10: PARALLEL I/O
Changes to this section primarily involve the additional functionality associated with ports 4–7.

Port 0
Ports 0 cannot be used for general-purpose I/O, hence no directly addressable SFR is provided for P0. The traditional P0 SFR address
(80h) has been assigned to port 4.

Ports 4–7
Ports 4–7 are general-purpose I/O ports with optional special functions associated with each pin. Enabling the special function auto-
matically converts the I/O pin to that function. To ensure proper operation, each alternate function pin should be programmed to a logic
1. The alternate functions for each port pin are listed as follows:

Port Pin Alternate Function Port Pin Alternate Function

P4.7 A19–Address 19 P6.7 TXD2–Serial port 2 TXD

P4.6 A18–Address 18 P6.6 RXD2–Serial port 2 RXD

P4.5 A17–Address 17 P6.5 A21–Address 21

P4.4 A16–Address 16 P6.4 A20–Address 20

P4.3 CE3–Chip enable 3 P6.3 CE7–Chip enable 7

P4.2 CE2–Chip enable 2 P6.2 CE6–Chip enable 6

P4.1 CE1–Chip enable 1 P6.1 CE5–Chip enable 5

P4.0 CE0–Chip enable 0 P6.0 CE4–Chip enable 4

P5.7 PCE3–Peripheral chip enable 3 P7.7 A7–Address 7

P5.6 PCE2–Peripheral chip enable 2 P7.6 A6–Address 6

P5.5 PCE1–Peripheral chip enable 1 P7.5 A5–Address 5

P5.4 PCE0–Peripheral chip enable 0 P7.4 A4–Address 4

P5.3 —— None —— P7.3 A3–Address 3

P5.2 T3–Timer/counter 3 input P7.2 A2–Address 2

P5.1 C0RX–CAN receive input P7.1 A1–Address 1

P5.0 C0TX–CAN transmit output P7.0 A0–Address 0

General-Purpose I/O
All of the above port pins (P4–P7) can serve as a general-purpose I/O. Data written to the port latch serves to set both level and direc-
tion of the data on the pin. Details on the function of port pins, when configured as general-purpose I/O, are provided in the High-Speed
Microcontroller User’s Guide. The DC electrical specifications for these pins, when used as I/O, can be found in the DS80C400 data
sheet.

Alternate Functions A0–A7, A16–A21, CE0–CE7, and PCE0–PCE3
When any P4, P5, P6, or P7 pin is configured in its alternate function, and that function concerns memory interfacing (A0–A7, A16–A21,
PCE0–3 or CE0–7), the pin is driven using the stronger memory interface values (IOL2, IOH3), as shown in the DC Electrical
Characteristics section of the DS80C400 data sheet.

Current-Limited Transitions
The DS80C400 does not employ the current-limited transition feature described in the High-Speed Microcontroller User’s Guide.

5V-Tolerant I/O
In order for the DS80C400 to provide 5V-tolerant I/O, additional circuitry has been incorporated to detect I/O pad voltages that exceed
VCC3. When these levels are detected, the circuitry enables protective switching to prevent undesirable voltages from reaching inter-
nal VCC3 logic. During the protective switching process, the pin sinks additional current, not to exceed 100µA, to VCC3. I/O signals with
long rise or fall times spend more time transitioning through the protective switching process, drawing more current, and should be
avoided in 5V-tolerant mode. Steady state voltages on I/O between (VCC3 + 0.3V) and (VCC3 + 0.7V) draw excessive current in 5V-tol-
erant mode. When the switch completes, the external pad input is required to source ~2µA in order to sustain the internal switching
circuit. Following the protective switch, the pad input cannot drive the internal logic nodes completely to VCC3, therefore resulting in
some additional static VCC3 current draw. The amount of additional current depends upon factors that include I/O pad voltage, VCC3
voltage, and temperature, but again should not exceed 100µA per pin and typically is in the ~1-10µA range. If the I/O are limited to
the VCC3 supply range, these additional currents are not present. A simplified depiction of the 5V-tolerant I/O protection scheme is
shown in Figure 10-1.

Figure 10-1. 5V-Tolerant I/O Pad

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

123 __

VCC3 = 3.3V

INTERNAL LOGIC
(VCC3 = 3.3V)

PAD
I/O

3.3V INPUT

PAD
I/O

5V INPUT

Pch device of transmission

gate gets switched off.

Internal voltage = VCC3 - VT(Nch device)

INTERNAL LOGIC
(VCC3 = 3.3V)

VCC3 = 3.3V

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 124

ADDENDUM TO SECTION 11: PROGRAMMABLE TIMERS
The timers of the DS80C400 are very similar to those described in the High-Speed Microcontroller User’s Guide. The primary changes
concern the removal of the PMM2 option, the inclusion of the clock multiplier settings (CD1:0, 4X/), and the addition of a fourth timer,
timer 3. Timer 3 supports three modes of operation: 13-bit timer/counter, 16-bit timer/counter, and 8-bit timer/counter with autoreload.
Timer 3 is accessible to serial port 2 for baud-rate generation in serial modes 1 and 3. The SFR bits controlling the function of timer 3
are summarized in Table 11-1 and Figures 11-1 through 11-8.

Table 11-1. Timer 3 SFR Bit Summary

Figure 11-1. Timers/Counters 0, 1, and 3, Modes 0 and 1

BIT NAMES DESCRIPTION REGISTER LOCATION BIT POSITIONS

GATE Gate control enable for INT3 pin T3CM–FDh T3CM.3

C/T Counter/timer select T3CM–FDh T3CM.2

M1, M0 Timer mode select bits T3CM–FDh T3CM.1

TF3 Timer overflow flag T3CM–FDh T3CM.7

TR3 Timer run control T3CM–FDh T3CM.6

T3M Input clock select (/ 4) T3CM–FDh T3CM.5

Timer LSB TL0–FBh

Timer MSB TH0–FCh

MODE 0

 M1, M0=TMOD.1:0
 (M1, M0=TMOD.5:4)
 (M1, M0 = T3CM.1:0)

MODE 1

T0 = P3.4
(T1 = P3.5)
(T3 = P5.2)

TR0 = TCON.4
(TR1 = TCON.6)
(TR3 = T3CM.6)

GATE = TMOD.3
(GATE = TMOD.7)
(GATE = T3CM.3)

INT0 = P3.2

(INT1 = P3.3)

(INT3= P1.5)

TF0 = TCON.5
(TF1 = TCON.7)
(TF3 = T3CM.7)

TIMER 1 and TIMER 3 FUNCTIONS
SHOWN IN PARENTHESES ()

INTERRUPT

TL0
(TL1)
(TL3)

0 4 7

00

01

0 7

TH0
(TH1)
(TH3)

CLK
0

1

T0M = CKCON.3
(T1M = CKCON.4
(T3M = T3CM.5)

C/ T = TMOD.2

(C/ T = TMOD.6

(C/ T = T3CM.2)
0

CD1:0 CLK OUT
11 /3,072

 other /12

1

4X/ X2 CD1:0 CLK OUT
 1 00 /1
 0 00 /2
 x 10 /4
 x 11 /1,024

OSC

Figure 11-2. Timers/Counters 0, 1, and 3, Mode 2

Figure 11-3. Timer/Counter 0, Mode 3

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

125 __

T0 = P3.4
(T1 = P3.5)
(T3 = P5.2)

TR0 = TCON.4
(TR1 = TCON.6)
(TR3 = T3CM.6)

GATE = TMOD.3
(GATE = TMOD.7)
(GATE = T3CM.3)

INT0 = P3.2

(INT1 = P3.3)

(INT3= P1.5)

TF0 = TCON.5
(TF1 = TCON.7)
(TF3 = T3CM.7)

TIMER 1 and TIMER 3 FUNCTIONS
SHOWN IN PARENTHESES ()

INTERRUPT

TL0
(TL1)
(TL3) 0 7

TH0
(TH1)
(TH3)

CLK
0

1

T0M = CKCON.3
(T1M = CKCON.4
(T3M = T3CM.5)

C/ T = TMOD.2

(C/ T = TMOD.6

(C/ T = T3CM.2)
0

CD1:0 CLK OUT
11 /3,072

 other /12

1

4X/ X2 CD1:0 CLK OUT
 1 00 /1
 0 00 /2
 x 10 /4
 x 11 /1,024

OSC

0 7

T0 = P3.4

TR0 = TCON.4

GATE = TMOD.3

INT0 = P3.2

TF0 = TCON.5

INTERRUPT

TL0 0 7

TH0

CLK
0

1

T0M = CKCON.3

C/ T = TMOD.2
0

1

OSC

0 7
TR1 = TCON.6

TF1 = TCON.7

CD1:0 CLK OUT
11 /3,072

 other /12

4X/ X2 CD1:0 CLK OUT
 1 00 /1
 0 00 /2
 x 10 /4
 x 11 /1,024

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 126

Figure 11-4. Timer/Counter 2 Clock-Out Mode

Figure 11-5. Timer/Counter 2 Baud-Rate Generator Mode

EXF2 =
T2CON.6

DIVIDE
BY 2

T2EX = P1.1

EXEN2 = T2CON.3

RCAP2L RCAP2H

0 15
TL2 TH2

0 7 8 15 T2 = P1.0

7 8

C/T2 = T2CON.1 = 0 TR2 =
T2CON.2

T2OE =
T2MOD.1

TIMER 2
INTERRUPT

 OSC INPUT TO TIMER
CLK MODE TIMER INPUT
DIVIDE BY 1 OSC/2
2X OSC/2
4X OSC/2
PMM (/1024) OSC/512

T2 FREQUENCY OUT = TIMER CLOCK INPUT / (2 * (65536 – RCAP2H, RCAP2L))

 OSC INPUT TO TIMER
CLK MODE TIMER INPUT
DIVIDE-BY-1 OSC/2
2X OSC/2
4X OSC/2
PMM (/1024) OSC/512

DIVIDE-
BY-2

T2 = P1.0

TR2 = T2CON.2

EXEN2 = T2CON.3
EXF2 =

T2CON.6
TIMER 2
INTERRUPT

0

1

TL2
0 7

TH2
8 15

RCLK =
T2CON.5

0 7 8 15
RCAP2L RCAP2HT2EX = P1.1

Tx
CLOCK

DIVIDE-
BY-16

Rx
CLOCK

DIVIDE-
BY-16

SMOD =
PCON.7

TCLK =
T2CON.4

1 0

1 0

0 1

TIMER 1
OVERFLOW

C/T2 = T2CON.1

CLK

NOTE: CPRL2 (T2CON.0) = 0.

NOTE: CPRL2 (T2CON.0) = 0, TCLK (T2CON.4) = 1, OR RCLK (T2CON.5) = 1.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

127 __

Figure 11-6. Tiimer/Counter 2 Autoreload Mode, DCEN = 0

Figure 11-7. Timer/Counter 2 Autoreload Mode, DCEN = 1

CLK

EXEN2 = T2CON.3
EXF2 =

T2CON.6

TIMER 2
INTERRUPT

TL2
0 7

TH2
8 15

TF2 =
T2CON.7

0 7 8 15
RCAP2L RCAP2H

T2EX = P1.1

T2 = P1.0
TR2 = T2CON.2

1

0CD1:0 4X/ 2X CLKOUT
00 1 /1
00 0 /2
10 X /4
11 X /1024

0
OSC

1

CD1:0 CLKOUT
11 /1024
other /3072

T2M = CKCON.5

C/T2 = T2CON.1

T2 = P1.0

TR2 = T2CON.2

1

RCAP2L RCAP2H

0FFH 0FFH

0 7 8 15
TL2 TH2

(DOWN COUNTING RELOAD VALUE)

0 7 8 15

T2EX = P1.1

(UP COUNTING RELOAD VALUE)

TF2 =
T2CON.7

TIMER 2
INTERRUPT

EXF2 =
T2CON.6

COUNT DIRECTION
(1 = UP, 0 = DOWN)

C/T2 = T2CON.1

0 CD1:0 4X/2X CLKOUT
00 1 /1
00 0 /2
10 X /4
11 X /1024

0
OSC

1

T2M = CKCON.5 CD1:0 CLKOUT
12 /1024
other /3072

CLK

NOTE: CPRL2 (T2CON.0) = 0.

NOTE: CPRL2 (T2CON.0) = 0.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 128

Figure 11-8. Timer/Counter 2 with Optional Capture

Divide-by-13 Option
Another change to the timers associated with the DS80C400 is the inclusion of a divide-by-13 option for timer 1 and timer 2. The option
is independently enabled for each timer by setting the D13T1 (for timer 1) or D13T2 (for timer 2) bits. When enabled by setting the
appropriate bits, the timer input from the T1 or T2 external pins is replaced by a time base equal to the system clock frequency divid-
ed by 13. Figure 11-9 illustrates the operation of these bits.

The setting of the divide-by-13 bits affects all operations of timer 1 and all operations of timer 2 except baud-rate generator mode. The
baud-rate generator mode of timer 2 is not affected by the setting of the D13T2 bit.

The divide-by-13 settings of Timer 1 and Timer 2 allow the microprocessor to simultaneously generate standard serial baud rates and
standard CAN baud rates within generally acceptable error tolerances. In an original divide-by-12 timer an 11.0592MHz crystal fre-
quency (or multiple thereof) was usually needed to generate standard serial baud rates. The divide-by-13 setting offers the additional
option of selecting the microprocessor clock frequency by 12/13. Thus, using a 12MHz crystal and the divide-by-13 setting, the effec-
tive baud rate becomes (12/13) x 12 = 11.0769MHz. This differs from the ideal baud rate frequency by only 0.16%, an insignificant dif-

EXEN2 = T2CON.3
EXF2 =

T2CON.6
CAPTURE TIMER 2

INTERRUPT

TL2
0 7

TH2
8 15

TF2 =
T2CON.7

0 7 8 15
RCAP2L RCAP2H

T2EX = P1.1

CLK

T2 = P1.0
TR2 = T2CON.2

1

0CD1:0 4X/ 2X CLKOUT
00 1 /1
00 0 /2
10 X /4
11 X /1024

0
OSC

1

CD1:0 CLKOUT
13 /1024
other /3072

T2M = CKCON.5

C/T2 = T2CON.1

NOTE: CPRL2 (T2CON.0) = 1.

0

1

D13T1 = T2MOD.4
(D13T2 = T2MOD.3)

SYSCLK / 13
INPUT

T1 = P3.5
(T2 = P1.0)

T1 = P3.5
(T2 = P1.0)

To C/T selector

To C/T selector

As shown in High-Speed Microcontroller User's Guide

As implemented in DS80C400 with divide-by-13 option

Figure 11-9. Operation of Divide-by-13 Bits

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

129 __

ference, but allows the use of a crystal frequency that is acceptable for serial port and CAN operation. Using this feature, standard ser-
ial rates of up to 38.4k baud are available with a 16MHz crystal. A 24MHz crystal allows serial rates up to 115.2k baud.

Programmable Clock Output
When enabled, the DS80C400 can output a 50% duty cycle square wave on external pin P3.5. This signal is free running, and not syn-
chronized to the external clock source. To enable this feature, three conditions must be met:

1.) Select the output frequency of the system clock divided by 2, 4, 6, or 8 through the clock output divide select bits (COR.2-1).

2.) The external clock output enable bit, CLKOE, must be set (COR.0). Steps 1 and 2 can be combined and must use the timed-acc-
ess procedure.

3.) The P3.5 latch bit (P3.5) must be set.

IrDA Clock Output
The Infrared Data Association (IrDA) communication protocol is a popular way to connect physically separated devices up to a dis-
tance of 1m. The physical layer of the protocol is very easy to implement: configure the DS80C400’s serial port 0 by selecting crystal
speed, baud rate, etc. The microcontroller is then connected to an external IR encoder/decoder (ENDEC), which modulates the out-
put of the serial port and communicates with an infrared transceiver.

The DS80C400 incorporates special circuitry that makes it simple to add IR capability to your design. Most IR encoders require the
controlling microprocessor to supply a 16x clock to perform the modulation. The DS80C400 can provide this special 16x clock to the
encoder without requiring the use of a timer. After the serial port is configured, set the IRDACK (COR.7) and CLKOE (COR.0) bits using
the timed-access procedure. The P3.5 latch bit (P3.5) must also be set. At this point, a clock signal with a frequency of 16 times the
serial port 0 baud rate is presented on P3.5.

Figure 11-10 illustrates how to add IrDA capability to a DS80C400-based system. The receive and transmit signals of serial port 0 are
connected directly to an ENDEC chip that, in turn, interfaces to an infrared transceiver. The external clock output pin (P3.5) is con-
nected to the 16XCLK pin of the ENDEC to provide the modulation clock.

Figure 11-10. Sample IrDA Implementation

P3.5

P3.1

P3.0
RXD

TXD

16x clock

Ir RXD

Ir TXD

HSDL-7000
encoder/
decoder

HSDL-3610
transceiver

DS80C400

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 130

ADDENDUM TO SECTION 12: SERIAL I/O
The DS80C400 high-speed microcontroller provides a third fully independent UART (serial port 2) nearly identical to the second seri-
al port (serial port 1). The transmit and receive pins associated with the third serial port are alternate functions for P6.7 (TXD2) and
P6.6 (RXD2). The primary functional difference between the third serial port and the previous two is that it can only use timer 3 for baud
clock generation in asynchronous serial modes 1 and 3.

The third UART has its own control register (SCON2: FEh) and transmit/receive buffer (SBUF2: FFh). These two registers, and others
related to operation of the third serial port, are summarized in Table 12-1.

Table 12-1. Serial Port 2 Special Function Registers/Bits

SERIAL MODE SUMMARY
All three serial ports provide four operating modes. These serial modes offer different communication protocols and baud rates. The
four serial operating modes are shown in Table 12-2. Full details of each serial mode of operation are provided in the High-Speed
Microcontroller User’s Guide. The DS80C400 includes a clock multiplier that, when utilized, can affect the serial baud clock for certain
modes. Provisions for use of the serial ports in conjunction with the clock multiplier and power-management mode are discussed later
in this section.

Table 12-2. Serial I/O Modes

†Use of the clock multiplier or power-management mode affects the baud clock.

BAUD RATES
Each serial mode has baud-rate-generating hardware associated with it. This hardware must be properly configured by the user prior
to operation of the serial port. The following baud-rate descriptions are separated by mode. Block diagrams have also been included
to show any deviations from the diagrams included in the High-Speed Microcontroller User’s Guide. Note that the baud clock input cor-
responding to the power-management mode has been omitted from each of the block diagrams. Reference Table 12-3 for power-man-
agement mode baud clock rates.

BAUD CLOCK OPTIONS LISTED
BY SERIAL PORT†SERIAL

MODE
SYNC/
ASYNC

0 1 2

DATA
BITS

START/STOP BITS
9TH BIT

FUNCTION

0 Sync 4tCLK or 12tCLK 8 None None

1 Async Timer 1 or 2 Timer 1 Timer 3 8 1 start, 1 stop None

2 Async 32tCLK or 64tCLK 9 1 start, 1 stop 0, 1, parity

3 Async Timer 1 or 2 Timer 1 Timer 3 9 1 start, 1 stop 0, 1, parity

BIT NAMES DESCRIPTION REGISTER LOCATION BIT POSITIONS

SM0/FE_2 Serial mode select 0 or framing error SCON2–FEh SCON2.7

SM1_2 Serial mode select 1 SCON2–FEh SCON2.6

SM2_2 Serial mode select 2 SCON2–FEh SCON2.5

REN_2 Receive enable SCON2–FEh SCON2.4

TB8_2 9th transmit data bit SCON2–FEh SCON2.3

RB8_2 9th receive data bit SCON2–FEh SCON2.2

TI_2 Transmit interrupt flag SCON2–FEh SCON2.1

R1_2 Receive interrupt flag SCON2–FEh SCON2.0

SMOD_2 Baud-rate doubler bit T3CM–FDh T3CM.4

SPTA2 Serial port 2 transmit activity STATUS1–F7h STATUS1.1

SPRA2 Serial port 2 receive activity STATUS1–F7h STATUS1.0

SMOD0 Framing error-detection enable PCON–87h PCON.6

Serial data buffer SBUF2–FFh

Slave address mask enable SADEN2–F1h

Slave address SADDR2–D9h

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

131 __

Mode 0
Mode 0 is synchronous, so the shift clock output frequency is the baud rate. Table 12-3 summarizes baud-rate generation as a func-
tion of the external oscillator frequency.

Table 12-3. Baud-Rate Generation, Mode 0

The default case is divide-by-12. The user can select the shift clock frequency using the SM2 bit in the associated SCON register. For
serial port 0, the SM2_0 bit is SCON0.5. For serial port 1, the SM2_1 bit is SCON1.5. For serial port 2, the SM2_2 bit is SCON2.5.

When SM2 is set to a logic 0, the baud rate is a divide-by-12 of the system clock frequency, unless power-management mode is
invoked. When operating in power-management mode with the SM2 bit clear (= 0), the serial port clock frequency is the oscillator fre-
quency divided by 3072.

When SM2 is set to a logic 1, the baud rate is generated using the system clock frequency divided by 4, unless power-management
mode is invoked. When power-management mode is used with the SM2 bit set (= 1), the serial port clock frequency tracks the system
clock frequency. Note that this use of SM2 differs from a standard 80C32. In that device, SM2 had no valid use when the UART was in
mode 0. Since the bit was generally set to a 0 and no clock multiplication was available on the 80C32, there should be no compatibil-
ity problems. The DS80C400 defaults to an oscillator divided by 12 serial port clock frequency.

Figure 12-1. Serial Port Mode 0 Block Diagram Change

1 This change is due to the addition of the third serial port (serial port 2).
2 This change is directly related to the inclusion of the clock multiplier.

MODE 0
SERIAL PORT CLOCK FREQUENCYOSCILLATOR CYCLES PER

MACHINE CYCLE
PMR REGISTER BITS

4X/2X, CD1, CD0
SM2 = 0 (default) SM2 = 1

1 (4x mode) 100 OSC / 3 OSC / 1

2 (2x mode) 000 OSC / 6 OSC / 2

4 (default) X01, X10 OSC / 12 OSC / 4

1024 (PMM) X11 OSC / 3072 OSC / 1024

 DS80C400 High-Speed Microcontroller User's Guide

SM2 = SCONx.5
(x = 0, 1, or 2)1

DIVIDE-
BY-12

DIVIDE-
BY-4

0 1

SYSTEM CLOCK2

DIVIDE-
BY-12

DIVIDE-
BY-4

0 1
SM2 =
SCONx.5

OSC

BAUD
CLOCK

BAUD
CLOCK

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 132

Mode 2
In this asynchronous mode, baud rates are always derived from the oscillator input. Table 12-4 summarizes baud-rate generation as a
function of the external oscillator frequency. This mode works identically to the original 8051 family.

The default case is divide-by-64. The user can effectively double the serial port clock frequency by setting the SMOD bit to a logic 1
for the associated UART. For serial port 0, the SMOD_0 bit is PCON.7. This is the original location in the 8051 family. For serial port 1,
the SMOD_1 bit is WDCON.7. For serial port 2, the SMOD_2 bit is T3CM.4. When operating in the power-management mode (CD1:0
= 11b), the serial port clock frequency is the oscillator frequency divided by 16384 when the SMOD bit is a logic 0, and twice that fre-
quency (OSC / 8192) when the SMOD doubler bit is a logic 1. SMOD bits default to a logic 0 on all resets.

Table 12-4. Baud-Rate Generation, Mode 2

Mode 1 or 3
These asynchronous modes are commonly used for communication with PCs, modems, and other similar interfaces. The baud rates
and bit timing are generated using timer 1, timer 2, or timer 3. The respective timer is placed in autoreload mode. When the timer reach-
es its rollover condition (timer 2: FFFFh, or timer 1, timer 3: FFh), a clock is sent to the baud-rate circuit. The baud-rate circuit gener-
ates the exact baud rate by further dividing the clock by 16 or 32 (depending upon the UART baud-rate doubler bit).

For serial port 0, either timer 1 or 2 can be used to generate baud rates. For serial port 1, only timer 1 can be used as the baud-rate
generator. For serial port 2, only timer 3 can be used as the baud-rate generator.

MODE 2
SERIAL PORT CLOCK FREQUENCYOSCILLATOR CYCLES PER

MACHINE CYCLE
PMR REGISTER BITS

4X/2X, CD1, CD0
SMOD = 0 SMOD = 1

1 (4x mode) 100 OSC / 64 OSC / 32

2 (2x mode) 000 OSC / 64 OSC / 32

4 (default) X01, X10 OSC / 64 OSC / 32

1024 (PMM) X11 OSC / 16384 OSC / 8192

 DS80C400 High-Speed Microcontroller User's Guide

1 This change is due to the addition of the third serial port (serial port 2)

DIVIDE-
BY-2

OSC/2 =
CRYSTAL/2

10

DIVIDE-
BY-2

SMOD_0 = PCON.7
or
SMOD_1 = WDCON.7
or
SMOD_2 = T3CM.41

OSC/2 =
CRYSTAL/2

1
0

SMOD_0 = PCON.7
or
SMOD_1 = WDCON.7

Figure 12-2. Serial Port Mode 2 Block Diagram Change

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

133 __

Using Timer 1 or Timer 3 for Baud-Rate Generation
The following text and table describe the use of timer 1 for baud-rate generation. This information can also be used to describe the
use of timer 3 for baud-rate generation by replacing every timer 1 reference with a corresponding timer 3 reference (timer 3 ≥ timer 1,
TH3 ≥ TH1, T3M ≥ T1M).

To use timer 1 as the baud-rate generator, it is commonly put into the 8-bit autoreload mode. In this way, the CPU is not involved in
baud-rate generation. Note that the timer interrupt should not be enabled. In the 8-bit autoreload mode (timer 1, mode 2), the reload
value is stored in TH1. Thus, the combination of timer 1 input clock frequency and TH1 determines the baud rate.

The timer 1 input clock, relative to the external crystal clock, can be altered in two ways: 1) by changing the system clock, or 2) by
changing the timer input clock divide ratio. Modifying the system clock is accomplished using the clock divide bits (CD1:0) found in
the PMR SFR. This procedure is discussed in Section 5. The timer 1 input clock divide ratio is configurable using the T1M (CKCON.4)
register bit. For the default T1M setting (= 0), a system clock frequency divided by 12 signals drives timer 1. Setting the T1M bit to a
logic 1 provides a system clock divided by 4 input to timer 1. When using power-management mode, setting T1M to a logic 1 results
in the system clock (OSC / 1024) being used as the input clock to timer 1. If T1M is clear (= 0) in power-management mode, the sys-
tem clock divided by 3 (OSC / 3072) is provided to timer 1. Table 12-5 summarizes the relationship between the external crystal fre-
quency and the timer 1 input clock for the various configurations.

Table 12-5. Relationship Between External Crystal Frequency and Timer 1

Using timer 1 in the 8-bit autoreload mode, serial port baud rates for mode 1 or 3 can be calculated using the following formula:

Timer 1 input clock frequency can be found in Table 12-5, SMOD_x is the logic state of the baud-rate doubler bit for the associated
UART, and TH1 is the user-assigned timer 1 reload value.

Often, users already know what baud rate is desired and need to calculate the timer reload value. An equation to calculate the timer
reload value, TH1, follows:

Note that the 8-bit autoreload mode for timer 1 is the one most commonly used for serial port applications, but that it can actually be
configured in any mode, even as a counter.

Using Timer 2 for Baud-Rate Generation
To use timer 2 as baud-rate generator for serial port 0, the timer is configured in autoreload mode. Then, either the TCLK or RCLK bit
(or both) is set to a logic 1. TCLK = 1 selects timer 2 as the baud-rate generator for the transmitter and RCLK = 1 selects timer 2 for
the receiver. Thus, serial port 0 can have the transmitter and receiver operating at different baud rates by choosing timer 1 for one data
direction and timer 2 for the other. RCLK and TCLK reside in T2CON.4 and TCON.5, respectively.

Although the timer 2 input clock can be configured similarly to timer 1, it must be placed into a baud-rate generator mode in order to
be used by serial port 0. Setting either RCLK or TCLK to a logic 1 selects timer 2 for baud-rate generation. When this is done, the timer
2 input clock becomes fixed to the oscillator frequency divided by 2. This is compatible with the 80C32. The only exception is when
timer 2 is used for baud-rate generation within power-management mode. For PMM, the system clock (OSC / 1024) is used as the input
clock for timer 2. The timer 2 interrupt is automatically disabled when either RCLK or TCLK is set. Also, the TF2 (TCON.7) flag cannot
be set on a timer rollover. The manual reload pin, T2EX (P1.1), does not cause a reload either. Table 12-6 illustrates this relationship.

TH
timer input clock frequency

baud rate

SMOD X
1 256

2 1
32

_
= − ×

×

Mode baud rate
Timer input clock frequency

TH

SMOD X
 ,

()

_
1 3

2
32

1
256 1

= ×
−

MODE 1, 3
SERIAL PORT CLOCK FREQUENCYOSCILLATOR CYCLES PER

MACHINE CYCLE
PMR REGISTER BITS

4X/2X, CD1, CD0
T1M = 0 T1M = 1

1 (4x mode) 100 OSC / 12 OSC / 1

2 (2x mode) 000 OSC / 12 OSC / 2

4 (default) X01, X10 OSC / 12 OSC / 4

1024 (PMM) X11 OSC / 3072 OSC / 1024

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 134

Table 12-6. Relationship Between External Crystal Frequency and Timer 2

When using timer 2 to generate baud rates, the formula is as follows. Note that the reload value is a 16-bit number as compared with
timer 1, which uses only 8 bits. A second equation is provided here so that the timer 2 reload value can be calculated for a given baud
rate:

Timer 2 input clock frequency can be found in Table 12-6, and RCAP2H, RCAP2L is the user-assigned timer 2 reload value.

Figure 12-3. Serial Port Modes 1, 3 Block Diagram Change

Mode baudrate
Timer Input Clock Frequency

RCAP H RCAP L

RCAP H RCAP L
Timer Input Clock Frequency

Baud Rate

 ,

, ,

, ,

1 3
1

16
2

65 536 2 2

2 2 65 536
2
16

= ×
−

= −
×

OSCILLATOR CYCLES
PER MACHINE CYCLE

PMR REGISTER BITS
4X/2X, CD1, CD0

TIMER 2 INPUT CLOCK FREQUENCY
BAUD-RATE GENERATOR MODE (RCLK or TCLK = 1)

1 (4x mode) 100 OSC / 2

2 (2x mode) 000 OSC / 2

4 (default) X01, X10 OSC / 2

1024 (PMM) X11 OSC / 1024

DS80C400 High-Speed Microcontroller User's Guide

1 This change is due to the addition of the third serial port (serial port 2).

DIVIDE-
BY-2

SMOD_x
(x = 0, 1, or 2)1

TIMER 2
OVERFLOW

TIMER 1 OVERFLOW
(SERIAL PORT 0 or 1)

or
TIMER 3 OVERFLOW1

(SERIAL PORT 2)

A
V

A
IL

A
B

LE
 T

O
 S

E
R

IA
L

P
O

R
T

 0
 O

N
LY

10

10

10

TCLK =
T2CON.4

RCLK =
T2CON.5

DIVIDE-
BY-2

SMOD_x

TIMER 2
OVERFLOWTIMER 1 OVERFLOW

(SERIAL PORT 0 or 1)

A
V

A
IL

A
B

LE
 T

O
 S

E
R

IA
L

P
O

R
T

 0
 O

N
LY

10

10

10

TCLK =
T2CON.4

RCLK =
T2CON.5

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

135 __

ADDENDUM TO SECTION 13: TIMED-ACCESS PROTECTION
A number of timed-access-protected bits are associated with the new features of the DS80C400. Please consult the High-Speed
Microcontroller User’s Guide for complete information on the use of the timed-access feature.

SFR BIT(S) BIT NAME FUNCTION

EXIF (91h) EXIF.0 BGS Bandgap select

P4CNT (92h) P4CNT.5–0 Port 4 pin configuration control bits
ACON (9Dh) ACON.5 MROM Merge ROM assignment

ACON.4 BPME Breakpoint mode enable

ACON.3 BROM Bypass ROM

ACON.2 SA Stack address mode

ACON.1-0 AM1-AM0 Address mode-select bits

P5CNT (A2h) P5CNT.2-0 Port 5 pin configuration control bits
C0C (A3h) C0C.3 CRST CAN 0 reset
P6CNT (B2h) P6CNT.5–0 Port 6 pin configuration control bits

MCON (C6h) MCON.7-6 IDM1-IDM0 Internal memory configuration bits
MCON.5 CMA CAN data memory assignment
MCON.3–0 PDCE3–PDCE0 Program/data chip enables

COR (CEh) COR.7 IRDACK IRDA clock output enable

COR.4-3 C0BPR7-C0BPR6 CAN 0 baud-rate prescale bits

COR.2-1 COD1-COD0 CAN clock output divide bits

COR.0 CLKOE CAN clock output enable

MCON1 (D6h) MCON1.3–0 PDCE7–PDCE4 Program/data chip enable

MCON2 (D7h) MCON2.6-4 WPR2-WPR0 Write-protect range bits

MCON2.3–0 WPE3–WPE0 Write-protect enable bits

WDCON (D8h) WDCON.6 POR Power-on reset flag

WDCON.3 WDIF Watchdog interrupt flag

WDCON.1 EWT Watchdog reset enable

WDCON.0 RWT Reset watchdog timer

EBS (E5h) EBS.7 FPE Flush filter failed-packet enable

EBS.4–0 BS4–BS0 Buffer size configuration bits

ADDENDUM TO SECTION 14: REAL-TIME CLOCK
No changes. Not applicable to the network microcontroller.

ADDENDUM TO SECTION 15: BATTERY BACKUP
No changes. Not applicable to the network microcontroller.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 136

ADDENDUM TO SECTION 16: INSTRUCTION SET DETAILS
The DS80C400 supports one of three different address modes, selected by the AM1 and AM0 bits in the ACON register. The proces-
sor operates in either the traditional 16-bit address mode, 24-bit paged address mode, or in a 24-bit contiguous address mode. When
operating in the 16-bit addressing mode (AM1, AM0 = 00b), all instruction cycle timing and byte counts are identical to that found in
Section 16 of the High-Speed Microcontroller User’s Guide, with the exception of the INC DPTR instruction. The INC DPTR instruction for
the DS80C400 executes in one machine cycle instead of three machine cycles, as required by previous high-speed microcontrollers.

The modification of the INC DPTR instruction is as follows.

Use of the 24-bit paged address mode is binary code-compliant with the traditional (16-bit) 8051 compilers, but allows for up to 16MB
of program and 16MB of data memory to be supported by a new address page (AP) SFR, which controls an internal bank switch mech-
anism. The 24-bit contiguous mode requires a compiler that supports contiguous program flow over the entire 24-bit address range by
the addition of an operand and/or cycles to seven basic instructions.

16-BIT (8051 STANDARD) ADDRESSING MODE
This addressing mode is identical to that used by the 8051 family and most members of the high-speed microcontroller. The micro-
controller defaults to this mode following a reset. This mode can also be used to run code compiled or assembled for the 24-bit con-
tiguous mode, as long as the following five instructions are not executed:

MOV DPTR, #data24
ACALL addr19
LCALL addr24
AJMP addr19
LJMP addr24

These five branch instructions are the only instructions that cause the compiler to generate additional operands relative to the 16-bit
addressing mode. Note that the number of cycles per instruction can appear different from other instructions, but this is ignored by
most assemblers or compilers and, as such, does not pose a problem with the binary output.

By selecting the 24-bit contiguous mode prior using any one of these five branch instructions, it is possible to run 24-bit contiguous
compiled code in the default 16-bit address configuration. Once the AM0 and AM1 bits are set to the 24-bit contiguous address mode,
the previously mentioned instructions execute properly. When the 24-bit paged address mode is selected, all instructions compiled
under the traditional 16-bit address mode execute normally at any point in code.

24-BIT PAGED ADDRESSING MODE
The DS80C400 incorporates an internal 8-bit address page register (AP), four 8-bit extended data pointer registers (DPX, DPX1, DPX2,
DPX3), and an 8-bit MOVX extended address register (MXAX) as hardware support for 24-bit addressing in the paged address mode
(AM1, AM0 = 01b). This mode has four differences in code execution from the traditional 16-bit mode.

1) The first difference is the addition of one machine cycle when executing the ACALL, LCALL, RET, and RETI instructions, as well as
when hardware vectors to and returns from an interrupt. This change should be transparent to most compilers, as the byte count
remains identical for these instructions.

2) The second involves register-indirect MOVX instructions such as MOVX @Ri, A or MOVX A, @Ri. When in this mode, the MXAX
register supplies the upper 8 bits of the 24-bit MOVX address. The complete address is formed by concatenating MXAX, P2, and
R1 or R0 in this mode. The DPTR-related MOVX instructions do not utilize the P2 and MXAX registers.

3) The third involves MOVX and MOVC operations that utilize one of the four data pointers. When DPTR is referenced by a MOVX or
MOVX instruction, the complete address is formed by concatenating the DPX, DPH, and DPL registers for the actively selected data
pointer.

4) The fourth involves the LJMP instruction. Although the byte count and cycle count are identical to the 16-bit addressing mode, exe-
cution of the LJMP results in the AP register being used as the upper byte of the 24-bit program counter for the jump destination.

INSTRUCTION CODE
MNEMONIC

D7 D6 D5 D4 D3 D2 D1 D0
HEX BYTE CYCLE EXPLANATION

INC DPTR 1 0 1 0 0 0 1 1 A3 1 1 (DPTR) = (DPTR) + 1

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

137 __

The DS80C400 supports interrupts from any location in the 24-bit address field. When an interrupt request is acknowledged, the cur-
rent contents of the 24-bit program counter (PC) are pushed onto the stack, and the page value (00h) and the lower 16-bit address of
the interrupt vector are then written to the PC before the execution of the hardware LCALL. This means that all interrupt vectors are
fetched from address 0000xxh, rather than the current page as defined by the AP register. The RETI instruction pops the three address
bytes from the stack and restores these bytes back to the PC at the conclusion of the interrupt service routine. Interrupt service rou-
tines that branch over page boundaries must save the current contents of AP before altering the AP register, as it is not automatically
saved on the stack. This mechanism supports up to three levels of nesting for interrupts.

One extra machine cycle is required to handle the additional byte associated with the extension to 24-bit addressing. The storage of the
24-bit address during an interrupt, LCALL, or ACALL instruction also requires three bytes of stack memory, as opposed to the tradition-
al two bytes in the 16-bit address mode. In this mode, the third byte of the PC (PC[23:16]) is not incremented when the lower 16 bits in
the lower two bytes of the PC (PC[15:0]) rolls over from FFFFh to 0000h. In the 24-bit paged address mode, PC[23:16] functions only as
a storage register, which is loaded by the address page (AP) register whenever the processor executes an ACALL, LCALL, or LJMP
instruction. PC[23:16] is stored and retrieved from the stack with the lower 16-bit of address in PC[15:0] when stack operation is required.

In paged address mode, MOVX instructions that utilize the data pointers (such as MOVX @DPTR, A) form the 24-bit data address by
concatenating the contents of the currently selected extended DPTR register (DPX, DPX1, DPX2, or DPX3) with the contents of the
DPTR. The extended data pointer register values are not affected when the lower 16 bits of the selected DPTR overflows or underflows.

To maintain compatibility with existing 8051 compilers, the JMP @A+DPTR and MOVC A, @A+DPTR instructions from 24-bit paged
address mode are limited to the current 64kB page, as specified by the upper 8 bits of the current instruction execution address reg-
ister. There is not a carry function into the contents of the extended data pointer register (DPX, DPX1, DPX2, or DPX3).

The modification of instructions in the 24-bit paged address mode is summarized in the following table.

INSTRUCTION CODE
MNEMONIC

D7 D6 D5 D4 D3 D2 D1 D0
HEX BYTE CYCLE EXPLANATION

ACALL
addr11

a10
a7

a9
a6

a8
a5

1
a4

0
a3

0
a2

0
a1

1
a0

Byte 1
Byte 2

2 4 (PC15:0) = (PC15:0) + 2
(SP) = (SP) + 1
((SP)) = (PC7:0)
(SP) = (SP) + 1
((SP)) = (PC15-8)
(SP) = (SP) + 1
((SP)) = (PC23:16)
(PC10:0) = addr11
(PC23:16) = (AP7:0)

LCALL
addr16

0
a15
a7

0
a14
a6

0
a13
a5

1
a12
a4

0
a11
a3

0
a10
a2

1
a9
a1

0
a8
a0

12
Byte 2
Byte 3

3 5 (PC15:0) = (PC15:0) + 3
(SP) = (SP) + 1
((SP)) = (PC7:0)
(SP) = (SP) + 1
((SP)) = (PC15-8)
(SP) = (SP) + 1
((SP)) = (PC23:16)
(PC) = addr16
(PC23:16) = (AP7:0)

LJMP
addr16

0
a15
a7

0
a14
a6

0
a13
a5

0
a12
a4

0
a11
a3

0
a10
a2

1
a9
a1

0
a8
a0

02
Byte 2
Byte 3

3 4
(PC) = addr16
(PC23:16) = (AP7:0)

RET 0 0 1 0 0 0 1 0 22 1 5 (PC23:16) = ((SP))
(SP) = (SP) - 1
(PC15-8) = ((SP))
(SP) = (SP) - 1
(PC7:0) = ((SP))
(SP) = (SP) - 1

RETI 0 0 1 1 0 0 1 0 32 1 5 (PC23:16) = ((SP))
(SP) = (SP) - 1
(PC15-8) = ((SP))
(SP) = (SP) - 1
(PC7-0) = ((SP))
(SP) = (SP) - 1

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 138

24-BIT CONTIGUOUS ADDRESSING MODE
When the AM1 bit is set, the DS80C400 operates in its 24-bit contiguous addressing mode. This addressing mode supports a full 24-
bit program counter and eight modified instructions that operate over the full 24-bit address range. All modified branching instructions
automatically store and restore the entire contents of the 24-bit program counter. The 24-bit DPTR, DPTR1, DPTR2, and DPTR3 regis-
ters function identically to the program counter to allow access to the full 24-bit data memory range.

All the DS80C400 instruction op codes retain binary compatibility to the 8051. Modified instructions are different only with respect to
their cycle/byte/operand count and operate within a contiguous 24-bit address field. Note that all instructions utilizing the DPTR regis-
ter now make use of a full 24-bit register (DPTR = DPXn + DPHn + DPLn where n = 0, 1, 2, or 3). This mode of operation requires soft-
ware tools (assembler or compiler) specifically designed to accept the modified length of the new instructions.

In addition, the 24-bit contiguous mode utilizes the MXAX register to supply the upper 8 bits of the 24-bit MOVX address during reg-
ister-indirect MOVX instructions such as MOVX @Ri, A or MOVX A, @Ri. In this mode, the complete MOVX address is formed by
concatenating MXAX, P2, and R1 or R0. The DPTR-related MOVX instructions do not utilize the P2 and MXAX register.

The instructions modified to operate in the 24-bit contiguous address mode are summarized in the following table.

INSTRUCTION CODE
MNEMONIC D7 D6 D5 D4 D3 D2 D1 D0 HEX BYTE CYCLE EXPLANATION

ACALL addr 19 a18
a15
a7

a17
a14
a6

a16
a13
a5

1
a12
a4

0
a11
a3

0
a10
a2

0
a9
a1

1
a8
a0

Byte 1
Byte 2
Byte 3

3 5 (PC) = (PC) + 3
(SP) = (SP) + 1
((SP)) = (PC7:0)
(SP) = (SP) + 1
((SP)) = (PC15:8)
(SP) = (SP) + 1
((SP)) =
(PC23:16)
(PC18:0) =
addr19

AJMP addr 19 a18
a15
a7

a17
a14
a6

a16
a13
a5

0
a12
a8

0
a11
a3

0
a10
a2

0
a9
a1

1
a8
a0

Byte 1
Byte 2
Byte 3

3 5 (PC) = (PC) + 3
(PC18:0) =
addr19

LCALL addr24 0
a23
a15
a7

0
a22
a14
a6

0
a21
a13
a5

1
a20
a12
a4

0
a19
a11
a3

0
a18
a10
a2

1
a17
a9
a1

0
a16
a8
a0

12
Byte 2
Byte 3
Byte 4

4 6 (PC) = (PC) + 4
(SP) = (SP) + 1
((SP)) = (PC7:0)
(SP) = (SP) + 1
((SP)) = (PC15:8)
(SP) = (SP) + 1
((SP)) =
(PC23:16)
(PC23:0) =
addr24

LJMP addr24 0
a23
a15
a7

0
a22
a14
a6

0
a21
a13
a5

0
a20
a12
a4

0
a19
a11
a3

0
a18
a10
a2

1
a17
a9
a1

0
a16
a8
a0

02
Byte 2
Byte 3
Byte 4

4 5 (PC23:0) =
addr24

MOV DPTR,
#data24

1
d23
d15
d7

0
d22
d14
d6

0
d21
d13
d5

1
d20
d12
d4

0
d19
d11
d3

0
d18
d10
d2

0
d17
d9
d1

0
d16
d8
d0

90
Byte 2
Byte 3
Byte 4

4 3 (DPX) =
#data23:9
(DPH) =
#data15:8
(DPL) = #data7:0

RET 0 0 1 0 0 0 1 0 22 1 5 (PC23:16) =
((SP))
(SP) = (SP) - 1
(PC15:8) = ((SP))
(SP) = (SP) - 1
(PC7:0) = ((SP))
(SP) = (SP) - 1

RETI 0 0 1 1 0 0 1 0 32 1 5 (PC23:16) =
((SP))
(SP) = (SP) - 1
(PC15:8) = ((SP))
(SP) = (SP) - 1
(PC7:0) = ((SP))
(SP) = (SP) - 1

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

139 __

SECTION 17: TROUBLESHOOTING
SOFTWARE BREAKPOINT MODE
The DS80C400 provides a special breakpoint mode of operation to promote greater visibility and control during the code development
cycle. When a breakpoint is generated, the following occurs:

• Clocks to Timers 0, 1, 2, 3 and watchdog timer are halted.

• Serial port activity, if driven by any of the Timers, will be halted.

• Timed Access state machine (for limiting access time to certain registers) is disabled.

• Hardware LCALL to 000083h.

• Return address (address immediately following the breakpoint instruction) is placed in the BPA3, BPA2, and BPA1 special func-
tion registers instead of the stack.

Temporarily disabling the clock driven functions allows execution of breakpoint code without disrupting the relationship between orig-
inal program code and hardware timed functions. Insertion of breakpoint code will, however, alter the absolute timing relationship
between the DS80C400 and externally interfaced devices. Issuing a breakpoint while transmitting or receiving serial data, for exam-
ple, might easily stop the bit timing clocks needed for proper transmission/reception. Special attention should be paid to placement
of breakpoints if critical peripheral interaces rely upon the clock sources which are halted during the breakpoint.

GENERATING A BREAKPOINT
In order to generate a breakpoint, breakpoint operation must first be enabled. The breakpoint mode of operation can be enabled by
setting the BPME bit (ACON.4) to a ‘1’. Write access to this register bit requires Timed Access. Once enabled, a breakpoint can be
generated by executing the breakpoint opcode (A5h). This opcode can physically be placed in the user code or can be force fed to
the CPU using external hardware. The A5h instruction generates what could be considered a software interrupt. Much the same as
an interrupt, code execution always branches to a fixed address location (000083h) and can jump/branch to other locations in order
to service the breakpoint. Unlike an interrupt, the processor does not store the return address on the stack, but instead places them
in special Breakpoint Address Registers. This prevents the stack and the stack pointer from being altered when issuing a breakpoint.
The three Breakpoint Address SFR Registers, located at DAh, DBh and DCh, are provided to store the breakpoint address LSB, MSB
and XSB values respectively. These registers are accessible during the breakpoint routine to allow the breakpoint software to return
control to a different point than the original breakpoint, if so desired. These registers are not available outside the breakpoint routine
and are always overwritten when a new breakpoint is initiated.

EXITING A BREAKPOINT
Execution of the same ‘A5h’ instruction that was used to generate the breakpoint is used to exit the breakpoint. When exiting a break-
point, the processor returns to the address pointed to by the Breakpoint Address Registers. When BPME=1, the ‘A5h’ instruction serves
as the start/stop toggle switch for execution of breakpoint code.

As noted earlier, the ‘A5h’ breakpoint opcode can be phsically inserted in the user code for the purpose of generating a breakpoint or
it can be force fed to the processor in place of an opcode which exists in physical memory. If being force fed to the processor, it is
important to note specific timing issues with respect to the processor opcode sampling.

All instructions other than MOVC and MOVX latch the incoming opcode during C4 time of the last machine cycle of the current instruc-
tion. Since the instruction fetch and memory access machine cycles for the MOVC and MOVX instructions are not contiguous in time,
the incoming instruction is actually sampled on C4 of the first machine cycle for the MOVX and C4 of the first and second machine
cycle of the MOVC. The three instruction timing possibilities are shown in the figures below. Note also that interrupts are sampled dur-
ing the C3 time period of the last machine cycle of each instruction. A pending interrupt takes control of the system at the start of the
next machine cycle. As a result, the sampled incoming instruction is ignored until the interrupt vectoring process has been complet-
ed. Monitoring of the address can determine if the force-fed ‘A5h’ or an interrupt was processed.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 140

Figure 17-1. Force Feeding a Breakpoint During An Instruction Other Than MOVC Or MOVX

Figure 17-2 Force Feeding a Breakpoint During a MOVX (2-Cycle)

XTAL1

C1

C2

C3

C4

ALE

PSEN

Port0 A5hOpcode AddressAddress Address Opcode AddressOpcode

C4 of the last machine
cycle of the instruction

XTAL1

C1

C2

C3

C4

ALE

PSEN

Port0 A5h XAddressAddress Address Opcode AddressMOVX

C4 of the 1st machine cycle of
the MOVX instruction

XData

MOVX

ADDENDUM TO SECTION 18: MICROCONTROLLER DEVELOPMENT
SUPPORT
Refer to the High-Speed Microcontroller User’s Guide.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

141 __

Figure 17-3. Force Feeding a Breakpoint MOVC
Note: The figures above are intended to provide a high-level overview of where the instruction sampling occurs for various instruction possibilities. For exact timing con-
straints, refer to the the AC specs contained in the microcontroller’s data sheets.

XTAL1

C1

C2

C3

C4

ALE

PSEN

Port0 A5hA5h AddressAddress CAddress CData AddressMOVC

C4 of the 1st and 2nd machine
cycles of the MOVC instruction

MOVC

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 142

SECTION 19: CONTROLLER AREA NETWORK (CAN) MODULE
The DS80C400 and DS80C410 incorporate a single CAN controller (CAN 0), which provides operating modes that are fully compliant
with the CAN 2.0B specification. The microcontroller interface to the CAN controller is broken into two groups of registers. To simplify
the software associated with the operation of the CAN controller, all of the global CAN status and controls, as well as the individual
message center control/status registers, are located in the SFR map. The remaining registers associated with the data identification,
identification masks, format and data are located in the MOVX space. Each of the SFR and MOVX registers are configured as dual port
memories to allow both the CAN controller and the microcontroller access to the required functions.

The basic functions covered by the CAN controller begin with the capability to use 11-bit standard or 29-bit extended acceptance iden-
tifiers, as programmed by the microcontroller for each message center. The CAN unit provides 15 message centers, each having a
standard 8-byte data field. The first 14 message centers are programmable in either a transmit or receive mode. Message center 15
is designed as a receive-only message center and implements a second data buffer to prevent the inadvertent loss of data when the
microcontroller is busy. This FIFO buffer is utilized when the microcontroller is not allowed time to retrieve the incoming message prior
to the acceptance of a second message into message center 15. Message center 15 also utilizes an independent set of mask regis-
ters and identification registers, which are only applied once an incoming message has not been accepted by any of the first 14 mes-
sage centers. A second filter test is also supported for all message centers (1–15) to allow the CAN controller to use two separate 8-
bit media masks and media arbitration fields to verify the contents of the first two bytes of data of each incoming message, before
accepting an incoming message. This feature allows the CAN unit to directly support the use of higher CAN protocols, which make
use of the first and/or second byte of data as a part of the acceptance layer for storing incoming messages. Each message center can
also be programmed independently to perform testing of the incoming data, with or without the use of the global masks.

Global controls and status registers in the CAN module allow the microcontroller to evaluate error messages, validate new data and
the location of such data, establish the bus timing for the CAN bus, establish the identification mask bits, and verify the source of indi-
vidual messages. In addition, each message center is individually equipped with the necessary status and controls to establish direc-
tions, interrupt generation, identification mode (standard or extended), data field size, data status, automatic remote frame request and
acknowledgment, and masked or nonmasked identification acceptance testing.

The priority order associated with the CAN module transmitting or receiving a message is determined by the inverse of the number of
the message center and is independent of the arbitration bits assigned to the message center. Thus, message center 2 has a higher
priority than message center 14. To avoid a priority inversion, the CAN module is designed to reload the transmit buffer with the mes-
sage of the highest priority (lowest message center number) whenever an arbitration is lost or an error condition occurs.

The following tables illustrate the locations of the MOVX SRAM registers and bits used by the CAN controller. Following the tables are
descriptions of the function of the bits and registers.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

143 __

MOVX MESSAGE CENTERS FOR CAN 0

CAN 0 CONTROL/STATUS/MASK REGISTERS

REGISTER 7 6 5 4 3 2 1 0
MOVX DATA
ADDRESS1

C0MID0 MID07 MID06 MID05 MID04 MID03 MID02 MID01 MID00 xxxx00h

C0MA0 M0AA7 M0AA6 M0AA5 M0AA4 M0AA3 M0AA2 M0AA1 M0AA0 xxxx01h

C0MID1 MID17 MID16 MID15 MID14 MID13 MID12 MID11 MID10 xxxx02h

C0MA1 M1AA7 M1AA6 M1AA5 M1AA4 M1AA3 M1AA2 M1AA1 M1AA0 xxxx03h

C0BT0 SJW1 SJW0 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 xxxx04h

C0BT1 SMP TSEG26 TSEG25 TSEG24 TSEG13 TSEG12 TSEG11 TSEG10 xxxx05h

C0SGM0 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 xxxx06h

C0SGM1 ID20 ID19 ID18 0 0 0 0 0 xxxx07h

C0EGM0 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 xxxx08h

C0EGM1 ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13 xxxx09h

C0EGM2 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 xxxx0Ah

C0EGM3 ID4 ID3 ID2 ID1 ID0 0 0 0 xxxx0Bh

C0M15M0 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 xxxx0Ch

C0M15M1 ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13 xxxx0Dh

C0M15M2 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 xxxx0Eh

C0M15M3 ID4 ID3 ID2 ID1 ID0 0 0 0 xxxx0Fh

CAN 0 MESSAGE CENTER 1

Reserved xxxx10h-11h

C0M1AR0 CAN 0 MESSAGE 1 ARBITRATION REGISTER 0 xxxx12h

C0M1AR1 CAN 0 MESSAGE 1 ARBITRATION REGISTER 1 xxxx13h

C0M1AR2 CAN 0 MESSAGE 1 ARBITRATION REGISTER 2 xxxx14h

C0M1AR3 CAN 0 MESSAGE 1 ARBITRATION REGISTER 3 WTOE xxxx15h

C0M1F DTBYC3 DTBYC2 DTBYC1 DTBYC0 T/R EX/ST MEME MDME xxxx16h

C0M1D0–7 CAN 0 MESSAGE 1 DATA BYTES 0–7 xxxx17h–1Eh

Reserved xxxx1Fh

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 144

1The first 2 bytes of the CAN 0 MOVX memory address are dependent on the setting of the CMA bit (MCON.5) CMA = 0, xxxx = 00DB; CMA = 1, xxxx = FFDB.

CAN MOVX Register Description
Most of the SRAM control registers, including the message centers proper, are mapped into a special location in the MOVX SRAM
space. The specific location of the registers is a function of the CMA bit (MCON.5), which controls whether the CAN SRAM begins at
location FFDBxxh or 00DBxxh.

The MOVX CAN registers consist of a set of one control/status/mask register and 15 message centers. Write access to the control/sta-
tus/mask registers is possible only when the SWINT bit is set to 1. All message centers for a given CAN module are identical, with the
exception of 15, which has some minor differences noted in the register descriptions. To simplify the documentation, only one set of
registers is shown, with the following generic notation used for register names and addresses:

xxxx First four hexadecimal digits of register MOVX address

y Address based on message center number

Y MESSAGE CENTER NUMBER

1 1

2 2

— —

A 10

F 15

CMA CAN 0

0 00DB (reset default)

1 FFDB

CAN 0 CONTROL/STATUS/MASK REGISTERS

REGISTER 7 6 5 4 3 2 1 0
MOVX DATA
ADDRESS1

CAN 0 MESSAGE CENTERS 2–14

MESSAGE CENTER 2 REGISTERS (similar to message center 1) xxxx20h–2Fh

MESSAGE CENTER 3 REGISTERS (similar to message center 1) xxxx30h–3Fh

MESSAGE CENTER 4 REGISTERS (similar to message center 1) xxxx40h–4Fh

MESSAGE CENTER 5 REGISTERS (similar to message center 1) xxxx50h–5Fh

MESSAGE CENTER 6 REGISTERS (similar to message center 1) xxxx60h–6Fh

MESSAGE CENTER 7 REGISTERS (similar to message center 1) xxxx70h–7Fh

MESSAGE CENTER 8 REGISTERS (similar to message center 1) xxxx80h–8Fh

MESSAGE CENTER 9 REGISTERS (similar to message center 1) xxxx90h–9Fh

MESSAGE CENTER 10 REGISTERS (similar to message center 1) xxxxA0h–AFh

MESSAGE CENTER 11 REGISTERS (similar to message center 1) xxxxB0h–BFh

MESSAGE CENTER 12 REGISTERS (similar to message center 1) xxxxC0h–CFh

MESSAGE CENTER 13 REGISTERS (similar to message center 1) xxxxD0h–DFh

MESSAGE CENTER 14 REGISTERS (similar to message center 1) xxxxE0h–EFh

CAN 0 MESSAGE CENTER 15
— Reserved xxxxF0h–F1h

C0M15AR0 CAN 0 MESSAGE 15 ARBITRATION REGISTER 0 xxxxF2h

C0M15AR1 CAN 0 MESSAGE 15 ARBITRATION REGISTER 1 xxxxF3h

C0M15AR2 CAN 0 MESSAGE 15 ARBITRATION REGISTER 2 xxxxF4h

C0M15AR3 CAN 0 MESSAGE 15 ARBITRATION REGISTER 3 WTOE xxxxF5h

C0M15F DTBYC3 DTBYC2 DTBYC1 DTBYC0 0 EX/ST MEME MDME xxxxF6h

C0M15D0–7 CAN 0 MESSAGE 15 DATA BYTE 0–7 xxxxF7h–FEh

Reserved xxxxFFh

MOVX MESSAGE CENTERS FOR CAN 0 (continued)

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

145 __

CAN 0 Media ID Mask Register 0 (C0MID0)

CAN 0 Media ID Mask Register 1 (C0MID1)

CAN 0 media ID mask registers 1-0. These registers function as the mask when performing the
media identification test. This register can be only modified during a software initialization (SWINT
= 1). If MDME = 0, the media identification test cannot be performed, and the contents of these
registers is ignored. If MDME = 1, the CAN module performs an additional qualifying test on data
bytes 0 and 1 of the incoming message, regardless of the state of the EX/ST bit. Data byte 1 is
compared against CAN media byte arbitration register 1 utilizing C0MID1 as a mask, and data byte
0 is compared against CAN media byte arbitration register 0 utilizing C0MID0 as a mask. Any bit
in the C0MID1, C0MID0 masks programmed to 0 ignores the state of the corresponding data byte
bit when performing the test. Any bit in the C0MID1, C0MID0 masks programmed to 1 forces the
state of the corresponding data byte bit and CAN media byte arbitration registers 1 and 0 to match
before considering the incoming message a match. Programming either media ID mask register to
00h effectively disables the media ID test for that byte. As such, the C0MID1, C0MID0 masks act
as a “don’t care” following a system reset.

CAN 0 Media Arbitration Register 0 (C0MA0)

CAN 0 Media Arbitration Register 1 (C0MA1)

CAN 0 media arbitration register 1-0. These registers function as the arbitration field when per-
forming the media identification test. If MDME = 0, the media identification test cannot be per-
formed and the contents of these registers is ignored. If MDME = 1, the CAN module performs an
additional qualifying test on data bytes 0 and 1 of the incoming message, as mentioned in the
description of the CAN media ID mask registers. This register can be modified only during a soft-
ware initialization (SWINT = 1).

MOVX Address1 7 6 5 4 3 2 1 0

xxxx03h

MOVX Address1 7 6 5 4 3 2 1 0

xxxx01h

MOVX Address1 7 6 5 4 3 2 1 0

xxxx02h

MOVX Address1 7 6 5 4 3 2 1 0

xxxx00h

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 146

CAN 0 Bus Timing Register 0 (C0BT0)

SJW1, SJW0 CAN synchronization jump width select. These bits specify the maximum number of time
Bits 7–6 quanta (tqu) cycles that a bit can be lengthened or shortened in one resynchronization to com-

pensate for phase errors detected by the CAN controller when receiving data. These bits can
be modified only during a software initialization (SWINT = 1).

BPR5–BPR0 CAN baud-rate prescaler. These bits specify the lower 6 bits (BPR5–BPR0) of the 8-bit
Bits 5–0 prescale value (BPR7–BPR0). The 256 states defined by the binary combinations of the

BPR7–BPR0 bits determine the value of the prescale that, in turn, defines the cycle time associ-
ated with one-time quanta. These bits can be modified only during a software initialization
(SWINT = 1). The BPR7, BPR6 bits are located in the COR (CEh) SFR.

BPR7,
BPR6

BPR5 BPR4 BPR3 BPR2 BPR1 BPR0
BAUD-RATE PRESCALE VALUE

(BRPV)

00 0 0 0 0 0 0 1
00 0 0 0 0 0 1 2
— — — — — — — —
— — — — — — — —
11 1 1 1 1 1 0 255
11 1 1 1 1 1 1 256

SJW1 SJW0

SYNCHRONIZATION
JUMP WIDTH

(Number in parentheses
is SJW value used in bit
timing calculations)

0 0 1 tqu (1)

0 1 2 tqu (2)

1 0 3 tqu (3)

1 1 4 tqu (4)

MOVX Address1 7 6 5 4 3 2 1 0

xxxx04h SJW1 SJW0 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

147 __

CAN 0 Bus Timing Register 1 (C0BT1)

SMP
Bit 7 CAN sampling rate. The sampling rate (SMP) bit determines the number of samples to be taken

during each receive bit time. Programming SMP = 0 takes only one sample during each bit time.
Programming SMP = 1 directs the CAN logic to take three samples during each bit time, and to
use a majority voting circuit to determine the final bit value. When SMP is set to a 1, two addition
al tqu clock cycles are added to time segment 1. SMP should not be set to 1 when the baud-rate
prescale value (BRPV) is less than 4. This bit can be modified only during a software initialization
(SWINT = 1).

TSEG26–24 CAN time segment 2 select. The eight states defined by the TSEG26–TSEG24 bits determine
Bits 6–4 the number of clock cycles in the phase segment 2 portion of the nominal bit time, which occurs

after the sample time. These bits can be modified only during a software initialization
(SWINT = 1).

TSEG13–10 CAN time segment 1 select. The 16 states defined by the TSEG13–TSEG10 bits determine the
Bits 3–0 number of clock cycles in the phase segment 1 portion of the nominal bit time, which occurs

before the sample time. These bits can be modified only during a software initialization
(SWINT = 1).

TSEG13 TSEG12 TSEG11 TSEG10

TIME SEGMENT 1 LENGTH
(Number in parentheses is
TS1_LEN value used in bit
timing calculations)

0 0 0 0 Invalid

0 0 0 1 2 tqu (2)

0 0 1 0 3 tqu (3)

– – – – –

1 1 1 0 15 tqu (15)

1 1 1 1 16 tqu (16)

TSEG26 TSEG25 TSEG24

TIME SEGMENT 2 LENGTH
(Number in parentheses is
TS2_LEN value used in bit
timing calculations)

0 0 0 Invalid
0 0 1 2 tqu (2)
0 1 0 3 tqu (3)
— — — —
1 1 0 7 tqu (7)
1 1 1 8 tqu (8)

MOVX Address1 7 6 5 4 3 2 1 0

xxxx05h SMP TSEG26 TSEG25 TSEG24 TSEG13 TSEG12 TSEG11 TSEG10

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 148

CAN 0 Standard Global Mask Register 0 (C0SGM0)

CAN 0 Standard Global Mask Register 1 (C0SGM1)

CAN standard global mask registers 1–0. These registers function as the mask when perform-
ing the 11-bit global identification test on incoming messages for message centers 1–14. If mes-
sage identification masking is disabled (MEME = 0), the incoming message ID field must match
the corresponding message center arbitration value exactly, effectively ignoring the contents of
these registers. These registers are used only when performing the message identification test for
message centers configured as standard receivers (EX = 0) having message ID masking enabled
(MEME = 1). Thus, the contents are ignored by message centers configured to receive messages
with extended identifiers (EX = 1). These registers can be modified only during a software initial-
ization (SWINT = 1).

When MEME = 1, any mask bit in the C0SGM1, C0SGM0 mask programmed to a 0 creates a “don’t
care” condition when the respective bit in the incoming message ID field is compared with the cor-
responding arbitration bits in message centers 1–14. Any bit in these masks programmed to a 1
forces the respective bit in the incoming message ID field to match identically with the corre-
sponding arbitration bits in message centers 1–14 before said message is loaded into message
centers 1–14.

The 5 least significant bits in the C0SGM1 register are not used and do not perform any compari-
son of these bit locations. A read of the bits will return 0, writes are ignored.

CAN 0 Extended Global Mask Register 0 (C0EGM0)

CAN 0 Extended Global Mask Register 1 (C0EGM1)

CAN 0 Extended Global Mask Register 2 (C0EGM2)

MOVX Address1 7 6 5 4 3 2 1 0

xxxx0Ah MASK12 MASK11 MASK10 MASK9 MASK8 MASK7 MASK6 MASK5

MOVX Address1 7 6 5 4 3 2 1 0

xxxx09h MASK20 MASK19 MASK18 MASK17 MASK16 MASK15 MASK14 MASK13

MOVX Address1 7 6 5 4 3 2 1 0

xxxx08h MASK28 MASK27 MASK26 MASK25 MASK24 MASK23 MASK22 MASK21

MOVX Address1 7 6 5 4 3 2 1 0

xxxx07h MASK20 MASK19 MASK18 0 0 0 0 0

MOVX Address1 7 6 5 4 3 2 1 0

xxxx06h MASK28 MASK27 MASK26 MASK25 MASK24 MASK23 MASK22 MASK21

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

149 __

CAN 0 Extended Global Mask Register 3 (C0EGM3)

CAN 0 extended global mask registers 0–3. These registers function as the mask when per-
forming the extended global identification test (EX/ST= 1) when message ID masking is enabled
(MEME = 1) for message centers 1–14. When EX/ST= 0 or MEME = 0 for a given message cen-
ter, the contents of this register are ignored. These registers can be modified only during a soft-
ware initialization (SWINT = 1).

When EX/ST= 1, the 29 bits of the message ID are compared against the 29 bits of the CAN mes-
sage center y arbitration registers, using the 29 bits of the CAN extended global mask registers as
a mask. Any bit in the extended global mask registers set to 0 ignores the state of the corre-
sponding bit in the incoming message ID field when performing the test. Any bit in the extended
global mask registers set to 1 forces the state of the corresponding bit in the incoming message
ID field and CAN message center arbitration registers 0–3 to match before considering the incom-
ing message a match.

The 3 least significant bits in the C0EGM3 are not used and do not perform any comparison of
these bit locations. A read of these bits always returns 0, and writes to these bits are ignored.

Programming all mask registers to 00h effectively disables the global ID test for that message,
accepting all messages. As such, the global mask registers act as a “don’t care” following a sys-
tem reset.

CAN 0 Message Center 15 Mask Register 0 (C0M15M0)

CAN 0 Message Center 15 Mask Register 1 (C0M15M1)

CAN 0 Message Center 15 Mask Register 2 (C0M15M2)

MOVX Address1 7 6 5 4 3 2 1 0

xxxx0Eh MASK12 MASK11 MASK10 MASK9 MASK8 MASK7 MASK6 MASK5

MOVX Address1 7 6 5 4 3 2 1 0

xxxx0Eh MASK12 MASK11 MASK10 MASK9 MASK8 MASK7 MASK6 MASK5

MOVX Address1 7 6 5 4 3 2 1 0

xxxx0Ch MASK28 MASK27 MASK26 MASK25 MASK24 MASK23 MASK22 MASK21

MOVX Address1 7 6 5 4 3 2 1 0

xxxx0Bh MASK4 MASK3 MASK2 MASK1 MASK0 0 0 0

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 150

CAN 0 Message Center 15 Mask Register 3 (C0M15M3)

MASK28–MASK0 CAN message center 15 mask registers 0–3. These registers function as the mask for the stan-
dard (EX/ST = 0) or extended (EX/ST = 1) global identification test (EX/ST = 1) when message ID
masking has been enabled (MEME = 1) for message center 15. These registers can only be
modified during a software initialization (SWINT = 1).

When EX/ST = 1, the 29 bits of the message ID are compared against the 29 bits of the CAN mes-
sage center 15 arbitration registers, using the 29 bits of the CAN message center 15 mask regis-
ters as as mask. When EX/ST = 0, the 11 bits of the message ID are compared against the most sig-
nificant 11 bits of the CAN message center 15 arbitration registers, using the most significant 11
bits of the CAN message center 15 mask registers as a mask. Any bit in the CAN 0 message cen-
ter 15 mask registers set to 0 ignores the state of the corresponding bit in the incoming message
ID field when performing the test. Any bit in the CAN message center 15 mask registers set to 1
forces the state of the corresponding bit in the incoming message ID field and CAN message cen-
ter arbitration registers 0–3 to match before considering the incoming message a match.
The 3 least significant bits in the CnM15M3 register are not used and do not perform any compar-
ison of these bit locations. A read of these bits always returns 0, and writes to these bits are
ignored.

Programming all mask registers to 00h effectively disables the message center 15 ID test, accept-
ing all messages. As such, the message center 15 mask registers act as a “don’t care” following
a system reset.

CAN MESSAGE CENTER MOVX REGISTER DESCRIPTIONS
CAN 0 Message Center y Arbitration Register 0 (C0MyAR0)

CAN 0 Message Center y Arbitration Register 1 (C0MyAR1)

CAN 0 Message Center y Arbitration Register 2 (C0MyAR2)

MOVX Address1 7 6 5 4 3 2 1 0

Xxxxy4h ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5

MOVX Address1 7 6 5 4 3 2 1 0

Xxxxy3h ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13

MOVX Address1 7 6 5 4 3 2 1 0

xxxxy2h ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21

MOVX Address1 7 6 5 4 3 2 1 0

xxxx0Fh MASK4 MASK3 MASK2 MASK1 MASK0 0 0 0

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

151 __

CAN 0 Message Center y Arbitration Register 3 (C0MyAR3)

ID28–ID0 CAN 0 message center y arbitration registers 0–3. These bits form the arbitration value/iden-
tification number for message center y. When the message center is configured in a transmit mode,
these registers are the source of the 29-bit ID message field (when EX/ST = 1) or the 11-bit ID mes
sage field (when EX/ST = 0). When EX/ST = 1, the 29 message ID bits correspond to ID28–ID0 as
shown above. When EX/ST = 0, the message ID bits 10–0 correspond to ID28–18 in C0MyAR0 and
C0MyAR1.

When configured in a receive mode, these registers serve as the arbitration value for message cen-
ter y, against which incoming messages are compared to ascertain if they are valid for that mes
sage center. When EX/ST = 1, all 29 bits of the arbitration are used, but when EX/ST = 0, only the
most significant 11 bits are used.

Note that when a message is successfully loaded, the entire message is loaded to the message
center. So, if message ID masking was enabled (MEME = 1), it is possible to overwrite the arbitra-
tion register bits that were defined as “don’t care” for incoming message acceptance.

Bits 2–1 Reserved. Bits 2 and 1 of the C0MyAR3 register are not used in arbitration. These bits can be
(C0MyAR3 only) modified by the application software.

WTOE Write-over enable. This bit controls the ability of a new message to overwrite an existing
Bit 0 (C0MxAR3 only) message in the corresponding message center in receive mode. The DTUP and EXTRQ bits for t

he message center in question must also be considered to determine the effect of this bit as
follows. The WTOE bit should only be programmed when the SWINT bit is set.

WTOE DTUP EXTRQ RESULT WHEN NEW MESSAGE DETECTED

0 0 0
There is currently no unread message or pending external frame
request in the message center, so the matching message is written to
appropriate message center (1–15).

0 1 x

The message center (1–15) has an unread message or pending
external frame request. The incoming matching message is ignored
and the message center remains unchanged. The CAN module
proceeds to the next lower-priority message center to evaluate the
incoming message ID and arbitration bits and related masking
operations. (No overwrite.)

0 x 1

The message center (1–15) has an unread message or pending
external frame request. The incoming matching message is ignored
and the message center remains unchanged. The CAN module
proceeds to the next lower-priority message center to evaluate the
incoming message ID and arbitration bits and related masking
operations. (No overwrite.)

1 0 x
There is currently no unread message or pending external request in
the message center, so the matching message is written to
appropriate message center (1–15).

1 1 x
The new matching message is stored, overwriting the previously
stored message. The ROW bit is set to indicate the overwrite
operation.

MOVX Address1 7 6 5 4 3 2 1 0

Xxxxy5h ID4 ID3 ID2 ID1 ID0 0 0 WTOE

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 152

Special notes for message center 15. The ROW bit in message center 15 is associated with an
overwrite of the shadow buffer for message center 15. The EXTRQ and DTUP bits are also shad-
ow buffered to allow the buffered message and the message center 15 value to take on different
relationships. The EXTRQ and DTUP values read by software are the current message center 15
values, rather than those of the shadow buffer, as is the case with the ROW bit. The shadow buffer
is automatically loaded into message center 15 when both the DTUP bit and EXTRQ bit are
cleared. If either DTUP = 1 or EXTRQ = 1 when clearing the other, any message in the shadow
buffer is not transferred to the message 15 registers, and any incoming messages for message 15
are stored in the shadow buffer if WTOE = 1, or are lost if WTOE = 0.

Special notes concerning remote frames. For remote frames, which can be received by transmit
message centers (1–14) in case of a matching identifier, WTOE and EXTRQ are evaluated. If
(WTOE = 1) OR (WTOE = 0 and EXTRQ = 1), the respective transmit message center (1–14) arbi-
tration bits can be overwritten.

CAN 0 Message Center y Format Register (C0MyF)

DTBYC3–0 Data byte count. These bits indicate the number of bytes within the data field of the message.
Bits 7–4 When performing a transmit, software sets the DTBYC bits to establish the number of bytes that are

to be transmitted. When receiving a message, the DTBYC bits indicate the (binary) number of
bytes of data in the incoming message (i.e., 0000b = 0 data bytes and 1000b = 8 data bytes).

T/R Transmit/receive select. This bit is programmed by the application software to indicate if the mes-
Bit 3 sage is to be transmitted (T/R = 1) or received (T/R = 0). This bit can only be modified when

MSRDY = 0. This bit does not exist for message center 15, and always returns 0 when read from
message center 15.

EX/ST Extended or standard identifier. This bit determines whether the respective message is to utilize
Bit 2 the extended 29-bit identification format (EX/ST = 1) or the standard 11-bit identification format

(EX/ST = 0). Message centers programmed for only one format receive/send extended messages
in that format and ignore the alternate format. This bit can only be modified when MSRDY = 0.

MEME Message identification mask enable. The MEME bit enables (MEME = 1) or disables (MEME = 0)
Bit 1 the use of the message identification masking process, associated with the testing of the identifi

cation field in the incoming message. This bit can only be modified when MSRDY = 0.

0 = The mask registers are ignored when evaluating the identification bits of the incoming mes-
sage, and the identification bits of the incoming message and the message center arbitration
bits must match exactly to allow receipt of the incoming message. This is equivalent to pro-
gramming the mask with all zeros. An exact match is also required before a remote data
request is allowed.

1 = The mask registers are enabled, comparing only those bits message identification and arbi-
tration bits that correspond to a 1 in the mask register. Since the entire message is loaded on
a successful ID match, note that it is possible to overwrite the corresponding arbitration reg-
ister bits that were defined as “don’t cares” (0) in the standard or extended global ID mask.

MDME Media identification mask enable. The MDME bit enables (MDME = 1) or disables (MDME = 0)
Bit 0 the use of the first 2 bytes of the data field as a message qualifier. This bit can be only modified

when MSRDY = 0.

0 = The first 2 bytes of the data field are ignored and not compared.

1 = The first 2 data bytes are masked by the respective media mask ID register and then compared
with the media arbitration register 0 and 1 bytes. Only those bits in the first 2 data bytes and
the arbitration registers corresponding to a 1 in the mask register are compared. When MDME
= 1 the test is also performed before a remote request of data from a remote node is
accepted.

MOVX Address1 7 6 5 4 3 2 1 0

Xxxxy6h DTBYC3 DTBYC2 DTBYC1 DTBYC0 T/R EX/ST MEME MDME

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

153 __

CAN 0 Message Center y Data Byte 0 (C0MyD0)

CAN 0 Message Center y Data Byte 1 (C0MyD1)

CAN 0 Message Center y Data Byte 2 (C0MyD2)

CAN 0 Message Center y Data Byte 3 (C0MyD3)

CAN 0 Message Center y Data Byte 4 (C0MyD4)

CAN 0 Message Center y Data Byte 5 (C0MyD5)

CAN 0 Message Center y Data Byte 6 (C0MyD6)

CAN 0 Message Center y Data Byte 7 (C0MyD7)

C0MyD0–C0MyD7 CAN 0 message center y data bytes 0–7. These bytes hold data to be transmitted or received data.

MOVX Address1 7 6 5 4 3 2 1 0

XxxxyEh

MOVX Address1 7 6 5 4 3 2 1 0

XxxxyDh

MOVX Address1 7 6 5 4 3 2 1 0

XxxxyCh

MOVX Address1 7 6 5 4 3 2 1 0

XxxxyBh

MOVX Address1 7 6 5 4 3 2 1 0

XxxxyAh

MOVX Address1 7 6 5 4 3 2 1 0

Xxxxy9h

MOVX Address1 7 6 5 4 3 2 1 0

Xxxxy8h

MOVX Address1 7 6 5 4 3 2 1 0

Xxxxy7h

1The first 2 bytes of the CAN 0 MOVX memory address are dependent on the setting of the CMA bit (MCON.5) CMA = 0, xxxx = 00DB; CMA = 1, xxxx = FFDB.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 154

Frame Types
The CAN 2.0B protocol specifies two different message formats, the standard 11-bit (CAN 2.0A) and the extended 29-bit (CAN 2.0B),
and four different frame types for CAN bus communications.

The standard format makes use of an 11-bit identifier, as follows.

Figure 19-1. CAN 2.0A (Standard) Format

The following extended format makes use of a 29-bit identifier.

Figure 19-2. CAN 2.0B (Extended) Format

The four frame types for CAN bus communications are the data frame, the remote frame, the error frame, and the overload frame.

Data frame: The data frame is formulated to carry data from a transmitter to a receiver. The preceding two figures are examples of
data frames in the standard and extended formats. The data frame is composed of seven fields. These are the start of frame, arbitra-
tion field, control field, data field, CRC field, acknowledge field, and end of frame. A description of these fields follows.

Start of frame (SOF): (Standard and extended format) The start of frame (SOF) is a dominant bit, which signals the start of a data or
remote frame. The dominant bit forces a hard synchronization, initiating the CAN controller receive mode.

Arbitration field: (Standard and extended format) The arbitration field contains the identifier of the message and a dominant remote
request (RTR) bit. The identifier is composed of one field in the standard 11-bit format or two fields in the extended 29-bit format. Two addi-
tional bits, the substitution remote request (SRR) bit and the identifier extension (IDE) bit, separate the two fields in the extended format.

Remote request (RTR) bit: (Standard and extended format) The remote request (RTR) bit is a dominant bit in data frames and a reces-
sive bit in remote frames.

Substitution remote request (SRR) bit: (Extended format) The substitution remote request (SRR) bit is a recessive bit and is substi-
tuted for the RTR bit when using the extended format.

Identifier extension (IDE) bit: (Extended format) The identifier extension (IDE) bit is a dominant bit in the standard format and a reces-
sive bit in the extended format. The IDE bit is located in the arbitration field in the standard format and is located in the control field in
the extended format.

S
O
F

R
T
R

I
D
E

r
011-bit Identifier 0 to 8 BytesDLC 15-bit CRC

Arbitration Field Control Field Data Field CRC Field
ACK
Field INTER

Bus
Idle

End of
Frame

S
O
F

R
T
R

I
D
E

r
011-bit Identifier 0 to 8 BytesDLC 15-bit CRC

Arbitration Field
Control
 Field Data Field CRC Field

ACK
Field INTER

End of
Frame

18-bit Identifier
S
R
R

r
1

Bus
Idle

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

155 __

Control field: (Standard and extended format) The control field is made up of 6 bits in two fields. The first field is made up of 2 reserved
bits, which are transmitted as dominant bits. The second field contains 4 bits, which make up the data length code (DLC). The DLC
determines the number of data bytes in the data field of the data frame, and is programmed through the use of the CAN message for-
mat registers, located in each of the 15 message centers.

Figure 19-3. Control Field

Data field: (Standard and extended format) The data field is made up of 0 to 8 bytes in a data frame and 0 bytes in a remote frame.
The number of data bytes associated with a message center is programmed through the use of the CAN message format registers,
located in each of the 15 message centers. The data field contents are saved to the respective message center. If the identifier test is
successful, no errors are detected through the last bit of the end of frame, and an error frame does not immediately follow the data or
remote frame. The data field is transmitted least significant byte first, with the most significant bit value of each byte transmitted first.

CRC field: (Standard and extended format) The CRC field is made up of a 15-bit code, which is the computed cyclic redundancy
check (after destuffing bits) from the start of frame, through the arbitration, control, data fields (when present), and a CRC delimiter.
The CRC calculation is limited to 127-bit maximum code word (a shortened BCH code) with a CRC sequence length of 15 bits.

Figure 19-4. CRC Field

Acknowledge (ACK) field: (Standard and extended format) The acknowledge (ACK) field is made up of 2 bits. The transmitting node
sends 2 recessive bits in the ACK field. The receiving nodes, which have received the message and found the CRC sequence to be
correct, reply by driving the ACK slot with a dominant bit. The ACK delimiter is always a recessive bit.

IDE/r1

Control Field
Data Field or
Control Field

Arbitration
 Field

r0 DLC3 DLC2 DLC1 DLC0

Reserved Bits Data Length Code

CRC Field

CRC Sequence

CRC Delimiter

Data Field or
Control Field ACK Field

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 156

Figure 19-5. Acknowledge Field

End of frame: (Standard and extended format) The end of frame for both the data and remote frame is established by the transmitter
sending 7 recessive bits.

Interframe spacing (intermission): (Standard and extended format) Data frames and remote frames are separated from preceding
frames by three recessive bits termed the intermission. During the intermission, the only allowed signaling to the bus is by an overload
condition. No node is allowed to start a message transmission of a data or remote frame during this period. If no node becomes active
following the interframe space, an indeterminate number of recessive bit times transpire in the bus idle condition until the next trans-
mission of a new data or remote frame by a node.

Figure 19-6. Intermission

Remote frame: (Standard and extended format) The remote frame is transmitted by a CAN controller to request the transmission of
the data frame with the same identifier. The remote frame is composed of seven fields. These are the start of frame, arbitration field,
control field, data field, CRC field, acknowledge field, and an end of frame.

Figure 19-7. Remote Frame

The remote frame is used when a CAN processor wishes to request data from another node. Sending a remote frame initiates a trans-
mission of data from a source node with the same identifier (masked groups included). The primary bit pattern difference between a
data frame and a remote frame is the RTR bit, which is sent as a recessive bit in the remote frame, and is sent as a dominant bit in the
data frame. The remote frame also does not contain a data field, being independent of the programmed values in the
DTBYC3–DTBYC0 bits in the respective CAN message format register.

S
O
F

Arbitration Field

Remote Frame

ACK Field

Interframe Space
or Overload Frame

End of
Frame

Control Field CRC Field

Interframe
Space

ACK
Slot

ACK Delimiter

End of FrameCRC Field ACK Field

Bus Idle

FrameFrame Interframe Space

Intermisson

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

157 __

Error frame: The error frame is transmitted by a CAN controller when the CAN processor detects a bus error. The error frame is
composed of two different fields. These are 1) the superposition of the error flags from different nodes and 2) the error delimiter.

Figure 19-8. Error Frame

The error frame is composed of 6 dominant bits, which violates the CAN specification bit-stuffing rule. If either of the CAN processors
detects an error condition, that CAN processor transmits an error frame. When this happens, all nodes on the bus detect the bit stuff
error condition and transmit their own error frame. The superpositioning of all of these error frames leads to a total error frame length
between 6 and 12 bits, depending on the response time and number of nodes in the system. Any messages (data or remote frame)
received by the CAN processors (successful or not) that are followed by an error frame are discarded. After the transmission of an error
flag, each CAN processor sends an error delimiter (8 recessive bits) and monitors the bus until it detects the change from the domi-
nant to recessive bit level. The CAN modules issues an error frame each time an error frame is detected. Following a series of error
frames, the CAN modules enter into an error-passive mode. In the error-passive mode, the CAN processors transmit 6 recessive bits,
and wait until 6 equal bits of the same polarity have been detected. At this point, the CAN processor begins the next internal receive
or transmission operation.

Overload frame: The overload frame provides an extra delay between data or remote frames. The overload frame is composed of
two fields: the overload flag and the overload delimiter.

Figure 19-9. Overload Frame

Three conditions lead to the transmission of an overload flag:

1) The internal conditions of a CAN receiver require a delay before the next data or remote frame is sent. The DS80C400 CAN con
troller is designed to prevent this condition for data rates at or below the 1MB per second data rate.

2)The CAN processor detects a dominant bit at the first and second bit positions of the intermission.

3) If the CAN processor detects a dominant bit at the eighth bit of an error delimiter or overload delimiter, it starts transmitting an over
load frame.

Error Frame

Superposition of Error Flags from other nodes

Interframe Space
or Overload FrameData Frame

Error Flag

Error Delimiter

Overload Frame

Superposition of Overload Flags from other nodes

Interframe Space
or Overload Frame

End of Frame or
Error Delimiter or
Overload Delimiter

Overload Flag

Overload Delimiter

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 158

The error counters are not incremented as a result of number 3. The CAN processor starts an overload frame at the first bit of an expect-
ed intermission only if initiated by condition 1. Conditions 2 and 3 result in the CAN processor transmitting an overload frame starting
one bit after detecting the dominant bit. The overload flag consists of 6 dominant bits that correspond to an error flag. Because the
overload frame is only transmitted at the first bit time of the interframe space, it is possible for the CAN processor to discriminate
between an error frame and an overload frame. The overload flag destroys the intermission field. When such a condition is detected,
the CAN processor detects the overload condition and begins transmitting an overload frame. After the transmission of an overload
frame, the CAN processors monitor the bus for a dominant to recessive level change. The CAN processor then begins the transmis-
sion of 6 additional recessive bits, for a total of 7 recessive bits on the bus. The overload delimiter consists of 8 recessive bits.

Initializing the CAN Controller
Software initialization of the CAN controller begins with the setting of the software initialization bit (SWINT) in the CAN 0 control SFR
register. When SWINT = 1, the CAN module is disabled and the CAN transmit output (C0TX) is placed in a recessive state. This, in turn,
allows the microcontroller to write information into the CAN MOVX SRAM control/status/mask registers without the possibility of cor-
rupting data transmissions or receptions in progress. Setting SWINT does not clear the receive- and transmit-error counters, but does
allow the microcontroller to write a common value to both error counters through the CAN 0 transmit-error SFR register. Consult the
description of the SWINT bit for specifics of the software initialization process.

All CAN registers located in the SFR memory map, with the exception of the CAN 0 control register, are cleared to a 00 hex following
a system reset. The CAN 0 control register is set to 07 hex following a system reset. CAN registers located in the MOVX memory map
are indeterminate following a system reset. A system reset also clears both the receive- and transmit-error counters in the CAN con-
troller, takes the CAN processor off line, and sets the SWINT bit in the CAN 0 control register.

Following a reset, the following CAN related registers must be initialized for proper operation of the CAN module. These registers are
in addition to specific registers associated with mask, format, or specific message centers.

CAN Interrupts
The CAN processor is assigned an interrupt that is individually enabled by the C0IE bit in the EIE register and globally enabled/dis-
abled by the EA bit in the IE SFR register. A CAN 0 interrupt can be generated by either a receive/transmit acknowledgment from one
of the 15 message centers or by a change in the CAN 0 status register.

CAN 0 transmit/receive interrupt sources are derived from a successful transmit or receive of data within one of the 15 message cen-
ters, as signaled by the INTRQ bit in the associated CAN 0 message (1–15) control register. Each message center (1–15) provides a
separate receive interrupt enable (ERI) and transmit interrupt enable (ETI) bits in the respective CAN 0 message (1–15) control regis-
ter to allow setting of the INTRQ bit in response to successful transmission or reception. The CAN 0 interrupt register (C0IR; A5h) SFR
can then be used to determine which message center generated the interrupt request. Software must clear the respective INTRQ bit
in the associated CAN 0 message (1–15) control register in order to clear the interrupt source before leaving the interrupt routine.

The CAN 0 interrupt source can also be connected to a change in the CAN 0 status register. Each of the bits in the CAN 0 status reg-
ister represents a potential source for the interrupt. To simplify the application and testing of a device, these sources are broken into
two groups that, for interrupt purposes, are enabled separately by the ERIE and STIE bits of the CAN 0 control (C0C) register. This
allows the nonstandard errors typically associated with development to be grouped under the STIE enable. These include the suc-
cessful receive RXS, successful transmit TXS, wake status WKS, and general set of error conditions reported by ER2–ER0. Also note
that, since the RXS and TXS bit are cleared by software, if a second message is received or transmitted before the RXS or TXS bits are
cleared and, after a read of the CAN 0 status register, a second interrupt is generated. The remaining error sources comprise the BSS
and EC96/128 bits in the CAN 0 status register. These read-only bits are separately enabled by the ERIE bit in the CAN 0 control reg-
ister. A read of the CAN 0 status register is required to clear either of the two groups of error interrupts. It is possible that multiple
changes to the status register can occur before the register is read; in that case, the status register generates only one interrupt. Figure
19-10 provides a graphical illustration of the interrupt sources and their respective interrupt enables.

REGISTER SIGNIFICANCE

P5CNT (SFR A2h) C0_I/O (P5CNT.3) must be set to enable CAN 0 pins P5.1 and P5.0.

C0BT0, C0BT1
(MOVX SRAM xxxx04-5)

These MOVX SRAM control registers must be set to configure CAN 0 (C0BT0, C0BT1) bus timing. The
exact values are dependent on the network configuration and environment.

COR (SFR CEh) C0BPR7-6 (COR.4-3) must be configured as part of the CAN 0 bus timing.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

159 __

Figure 19-10. CAN Interrupt Logic

Arbitration/Masking Considerations
The CAN processor is designed to evaluate and determine if an incoming message is loaded into one of the 15 message centers.
Acceptance of a message is determined by comparing the message’s ID and/or data field against the corresponding arbitration infor-
mation defined for each message center. Messages that contain bit errors or fail arbitration are discarded. The incoming message is
tested in order against each enabled message center (enabled by the MSRDY bit in the CAN message control register) from 1 to 15.
The first message center to successfully pass the test receives the incoming message and ends the testing, and the message is loaded
into the respective message center.

The DS80C400 CAN module supports two types of arbitration: basic and media. Basic arbitration compares either the 29-bit (EX/ST =
1) or 11-bit (EX/ST = 0) incoming message ID against the corresponding bits in the message center CAN arbitration registers
(C0MxAR0–3). This depends upon whether the message center has been configured for 29-bit or 11-bit operation. An optional mask-
ing feature can also be utilized in conjunction with basic arbitration. The format register (C0MxF) for each message center contains a
message identification mask enable bit (MEME). If MEME is set, the CAN module factors in the standard global mask registers

C

QD

R

CAN 0 STATUS
REGISTER READ

C
A

N
 0

/1
 S

T
A

T
U

S
 R

E
G

IS
T

E
R

CAN 0
CONTROL
REGISTER

B
S

S

ERIE STIE

EA IN
T

E
R

R
U

P
T

P
R

IO
R

IT
Y

 L
O

G
IC

INTERRUPT
VECTOR
63 HEX

C0IE

UPDATECAN 0
INTERRUPT
REGISTER

ETI ERI
CAN 0 MESSAGE 1
CONTROL REGISTER

SUCCESSFULTRANSMIT
MESSAGE CENTER 1

SUCCESSFULRECEIVE
MESSAGE CENTER 1

MESSAGE CENTER 1

MESSAGE CENTER 15

INTRQ

1

E
C

96
 W

K
S

R
X

S
T

X
S

E
R

2
E

R
1

E
R

0

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 160

(C0SGM0–1) when EX/ST = 0, or the extended global mask registers (C0EGM0–3) when EX/ST = 1, when deciding if there is an ID
match. A comparison between bits in the incoming message ID and arbitration register bits is only made for bit positions that corre-
spond to a 1 in the appropriate mask register. Bits corresponding to 0 in the mask register are ignored, creating a “don’t care” condi-
tion. Filling the mask register with all 0s while MEME = 1 causes the arbitration circuitry to automatically match all message IDs. Filling
the mask register with all 1s while MEME = 1 requires an exact match between the incoming message ID and the arbitration registers,
just as is the case when MEME = 0.
Media arbitration is an optional second arbitration performed if the media identification mask enable bit (MDME) is set in the C0MxF
message center register. Media arbitration compares the first and second byte of the data field in each incoming message against two
8-bit media arbitration bytes (stored at locations C0MA0, C0MA1). Each media arbitration byte has an associated media identification
mask: C0MID0 for C0MA0 and C0MID1 for C0MA1. Media byte comparison is made only for those bits corresponding to a 1 in the
media identification mask registers. When MDME = 1, the first two data bytes of the incoming message must pass media byte arbi-
tration as defined by C0MA0:1 and C0MID0:1 before being loaded into the respective message center. However, unlike the identifica-
tion mask enable (MEME), when MDME = 0, no testing is performed of the first two bytes of the incoming data field.

MESSAGE CENTER 15
Message center 15 supports an additional set of masks to supplement basic arbitration. While this message center performs basic
and media arbitration as per message centers 1–14, it also uses the C015M3–0 mask registers to perform an additional level of filter-
ing during basic (i.e., not media) arbitration. When determining arbitration for message center 15, the contents of C015M3–0 are log-
ically ANDed with either C0EGM3–0 (if EX/ST = 1 for message center 15) or C0SGM1-0 (if EX/ST = 0 for message center 15). This
ANDed value is then used in place of C0EGM3–0 or C0SGM1-0 when performing basic arbitration as described previously. If the
MDME bit is set, then the incoming message must also pass the media arbitration test.
Message center 15 has a buffered FIFO arrangement to allow up to two received messages to be received without being lost prior to
the microcontroller reading of the first message. The first message received by message center 15 is stored in the normal MOVX mem-
ory location for message center 15, if the previous message has been already read by the microcontroller. If the first message has not
been read, then the incoming message is buffered internally until the first message is read, at which time the second message is auto-
matically loaded into the first (MOVX) message 15 slot, allowing software to then read the second message. The CAN module deter-
mines that the first message has been read (allowing the buffered message to be transferred) when software clears the DTUP and
EXTRQ bits. If a third message arrives before the second message has been copied into the MOVX message 15 slot, then the third
message writes over the second buffered message. Software should clear the INTRQ bit, as well as the DTUP and EXTRQ bits, after
reading each message in the MOVX message 15 center. The WTOE bit associated with message center 15 has unique operating con-
siderations, described later in the section.

Transmitting and Receiving Messages
All CAN data is sent and received through message centers. All CAN message centers are identical, with the exception of message
center 15. Message center 15 has been designed as a receive-only center and is shadow-buffered to help prevent the loss of incom-
ing messages when software is unable to read one message before the next one should be loaded. All message centers, with the
exception of message center 15, are capable of four operations:

• Transmitting a data message

• Receiving a data message

• Transmitting a remote frame request

• Receiving a remote frame request

Transmitting Data Messages
Starting with the lowest-numbered message center (highest priority), each CAN module sequentially scans each message center until
it finds a message center that is proper enabled for transmission (T/R = 1, TIH = 0, DTUP = 1, MSRDY = 1, and MTRQ = 1). The con-
tents of the respective message center are then transferred to the transmit buffer, and the CAN module attempts to transmit the mes-
sage. If successful, the appropriate MTRQ bit is cleared to 0, indicating that the message was successfully sent. Following a successful
transmission, loss of arbitration, or an error condition, the CAN module again searches for a properly configured message center, start-
ing with the lowest-numbered message center. This search relationship always allows the highest priority message center to be trans-
mitted independent of the last successful (MTRQ = 0) or unsuccessful (MTRQ = 1) message transmission.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

161 __

Receiving Data Messages
Each incoming data message is compared sequentially with each receive enabled (T/R = 0) message center starting with the lowest-
numbered message center (highest priority) and proceeding to the highest-numbered message center. This testing continues until a
match is found (incorporating masking functions as required), at which time the incoming message is stored in the respective mes-
sage center. Higher numbered message centers that are not reviewed prior to the match are not evaluated during the current message
test. When the WTOE = 1, the CAN module can overwrite receive message centers that have DTUP = 1, which, in turn, sets ROW = 1.
When WTOE = 0, incoming messages do not overwrite receive message centers that have DTUP = 1.

Message center 15 is a special receive-only, FIFO-buffered message center designed to receive messages not accepted by the other
message centers. The ROW bit in message center 15 is associated with the overwrite of the shadow buffer for message center 15. The
EXTRQ and DTUP bits are shadow-buffered to allow the buffered message and the message center 15 values to take on different rela-
tionships. The EXTRQ and DTUP values read by the microcontroller are not those of the shadow buffer, as is the case with the ROW
bit, but are the current values associated with message center 15. The shadow buffer is automatically loaded into message center 15
when both the DTUP bit and the EXTRQ bit are cleared. If either DTUP or EXTRQ are left set when clearing the other, any message in
the shadow buffer is not transferred to the message 15 registers, and any incoming messages for message 15 are stored in the shad-
ow buffer (if WTOE = 1) or are lost (if WTOE = 0).

Transmitting Remote Frame Requests
Starting with the lowest-numbered message center (highest priority), each CAN module sequentially scans each message center.
When it finds a message center properly enabled to transmit a remote frame (T/R = 0, MSRDY = 1, and MTRQ = 1), the contents of
the respective message center is then transferred to the transmit buffer and the CAN module attempts to transmit the message. If suc-
cessful, the appropriate MTRQ bit is cleared to 0, indicating that the message was successfully sent. Following a successful trans-
mission, loss of arbitration, or an error condition, the CAN module again searches for a properly configured message center, starting
with the lowest-numbered message center. This search relationship always allows the highest priority message center to be transmit-
ted, independent of the last successful (MTRQ = 0) or unsuccessful (MTRQ = 1) message transmission. The state of the TIH bit does
not affect the transmission of a remote frame request.

If the microcontroller wants to request data from another node, it first clears the respective MSRDY bit to 0 and then writes the identi-
fier and control bits in this message center, configures the message center as a receive message center (T/R = 0), and then sets the
MTRQ bit. After a successful transmission, the CAN module clears MTRQ = 0 and sets TXS = 1. In addition to the TXS bit, if the ETI
bit is set, the successful transmission also sets the corresponding INTRQ bit. Requesting data from another node is possible in mes-
sage centers 1–14. As seen above, the CAN module sends a remote frame request and receives the data frame in any other mailbox
for which the answering incoming data frame passes the acceptance filtering of identifier and first two data bytes. Therefore, only one
mailbox is necessary to do a remote request. Remote frame requests are not supported during autobaud mode.

Receiving/Responding to Remote Frame Requests
The remote frame request is handled like a data frame with data length zero and the EXTRQ and RXS bits are set. Each incoming
remote frame request (RFR) message is compared sequentially with each enabled (MSRDY = 1) message center starting with the low-
est-numbered message center (highest priority) and proceeding to the highest-numbered message center. Testing continues until a
match is found (incorporating masking functions as required), at which time the incoming RFR message is stored in the respective
message center, the DTBYC bits are updated to indicate the requested number of return bytes, and EXTRQ and MTRQ are both set
to 1. When the message is successfully received and stored, an interrupt of the corresponding message center is asserted, if enabled
by the ERI bit. The EXTRQ bit can be left set if the message center is reconfigured to perform a transmit (T/R = 1) and used in the stan-
dard reply of a remote frame operating with transmit message centers. EXTRQ can also be cleared by software if the current message
center is not being used to reply to the remote frame request. Higher-numbered message centers (lower priority) that are not reviewed
prior to the match are not evaluated during the current message test. Depending on the state of the transmit/receive bit for that mes-
sage center, the CAN module performs one of two responses.
When a remote frame request is successfully received, message centers enabled for transmission (T/R = 1) set the EXTRQ and MTRQ
bits in the corresponding message center to mark the message as a ‘to be sent’ message. The CAN module attempts to automatical-
ly transmit the requested message if the message center is fully enabled to do so (MSRDY = 1, TIH = 0, DTUP = 1). After the trans-
mission, the TXS bit in the status register is set, the EXTRQ and MTRQ bits are reset to a 0, and a message center interrupt of the cor-
responding message center is asserted, if enabled by the respective ETI bit. If the transmit inhibit bit is set (TIH = 1), the message
center receives the RFR, modifying the DTBYC and/or arbitration bits if necessary, but the return data is not transmitted until TIH = 0.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 162

If software wants to modify the data in a message center configured for transmission of an answer to a remote request (EXTRQ set to
a 1), the microcontroller must set the TIH = 1 and DTUP = 0. The microcontroller can then access the data byte registers 0–7, data
byte count (DTBYC3–0), the extended or standard mode bit (EX/ST), and the mask enables (MEME and MDME) of the message cen-
ter to load the required settings. Following the setup, the software should reset TIH to a 0 and sets DTUP to a 1 bit to signal the CAN
that the access is finished. Until the DTUP = 1 and TIH = 0, the transmission of this mailbox is not permitted. Thus, the CAN transmits
the newest data and resets EXTRQ = 0 after the transmission is complete. The message center must first be disabled to change the
identifier or the direction control (T/R).
Message centers enabled for reception (T/R = 0) do not automatically transmit the requested data. The remote frame request does,
however, continue to store the requested number of return bytes in DTBYC and set EXTRQ = 1. No data bytes are received or stored
from a remote frame request. The message center can then be configured by software to function as transmitter (T/R = 1) and trans-
mit the requested data, or the microcontroller can configure another message center in a transmit mode (T/R = 1) to send the request-
ed data. Note that, when T/R = 0, the MTRQ bit is not set upon loading of a matching remote frame request.

When a remote frame is received, the CAN module can be configured to either automatically transmit data back to the remote node or
allow the microcontroller to intervene and establish the conditions for the transmission of the return message. The following examples
outline various options to respond to remote frame requests.

Case 1: Automatic reply. CAN controller receives a remote frame request (RFR) and automatically transmits data without
additional software intervention.

1. Software sets T/R= 1, MSRDY = 0, DTUP = 0, and TIH = 1.

2. Software loads data into respective message center.

3. Software sets MSRDY = 1, DTUP = 1, and TIH = 0 in same instruction.
Note: Software does not change MTRQ = 0 from previously completed transmission

4. CAN does not transmit data (MTRQ = 0), but waits for RFR.

5. CAN successfully receives RFR.

6. CAN forces MTRQ = 1 and EXTRQ = 1.

7. CAN loads DTBYC from RFR and ID into arbitration registers.

8. CAN automatically transmits data in respective message center.

9. CAN clears EXTRQ = 0 and MTRQ = 0.

Case 2: Software-initiated reply. (Using TIH as gating control.) CAN module wants to receive an RFR and wait for soft
ware to determine when and what is transmitted in reference to RFR.

1. Software sets T/R = 1, MSRDY = 0, DTUP = 0, and TIH = 1.

2. Software loads data into respective message center.

3. Software sets MSRDY = 1, DTUP = 1, and TIH = 1 in same instruction.
Note: Software does not change MTRQ = 0 from previous completed transmission

4. CAN does not transmit data (MTRQ = 0), but waits for RFR.

5. CAN successfully receives RFR.

6. CAN forces MTRQ = 1 and EXTRQ = 1.

7. CAN loads DTBYC from RFR and ID into arbitration registers.

8. CAN waits for software to read message center and determine the fact that EXTRQ = 1.

9. Software can load data into message center (or it can already have the data established).

10. Software writes MSRDY = 1, DTUP = 1, and TIH = 0 in same instruction.

11. CAN automatically transmits data (as per RFR DTBYC) in respective message center.

12. CAN clears EXTRQ = 0 and MTRQ = 0.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

163 __

Case 3: Software-initiated reply. (Reply through same message center, using TIH as gating control.) CAN module wants to
receive an RFR in a receive-configured (T/R = 0) message center. When the data is received, the message center
is reconfigured send data back to the remote request node. This relationship is not possible for message center 15.

1. Software sets T/R = 0, MSRDY = 1, and DTUP = 0 and awaits either data frame or RFR.
Note: Software does not change MTRQ = 0 from previous completed transmission.

2. CAN successfully receives RFR.

3. CAN forces EXTRQ = 1 and DTUP = 1.

4. MTRQ cannot be written to a 1 by the CAN when T/R = 0 and is left as MTRQ = 0.

5. CAN loads DTBYC from RFR and ID into arbitration registers.

6. CAN waits for software to read message center and to determine the fact that EXTRQ = 1.

7. Software disables message center and converts message center into transmit message center.

Software clears MSRDY = 0 to disable message center. Software leaves EXTRQ = 1.

Software forces message center to transmit mode, T/R = 1.
8. Software writes MSRDY = 0, DTUP = 0, and TIH = 1 in preparation to load data.

9. Software loads data into message center.

10. Software writes MSRDY = 1, MTRQ = 1, DTUP = 1, and TIH = 0 in same instruction.

Note that software leaves EXTRQ = 1.

11. CAN automatically transmits data (as per RFR DTBYC) into the respective message center.

12. CAN clears EXTRQ = 0 and MTRQ = 0.

Case 4: Software-initiated reply. (Reply through different a message center, using TIH as a gating control.) CAN controller
wants to receive an RFR in a message center (denoted MC1) configured to receive data (T/R = 0) and to wait for soft
ware to select another message center (denoted MC2) to send data back to remote request node.

1. Software sets T/R = 0, MSRDY = 1, and DTUP = 0 in MC1 and awaits either data frame or RFR.
Note: Software does not change MTRQ = 0 in MC1 from previously completed transmission.

2. CAN successfully receives RFR in MC1.

3. CAN forces EXTRQ = 1 and DTUP = 1 in MC1.
MTRQ cannot be written to a 1 by the CAN when T/R = 0 and is left as MTRQ = 0.

4. CAN loads DTBYC from RFR and ID into arbitration registers in MC1.

5. CAN waits for software to read message center and determine the fact that EXTRQ = 1.

6. Software disables MC1 to transfer information to MC2.

Software clears MSRDY = 0 to disable MC1. Software leaves EXTRQ = 1.

Software clears MSRDY = 0 in MC2.

7. Software forces MC2 to transmit mode T/R = 1.

8. Software loads ID and DTBYC value from MC1 into ID and from MC2 into DTBYC.

9. Software writes MSRDY = 0, DTUP = 0, and TIH = 1 in MC2 in preparation to load data to MC2.

10. Software loads data into MC2.

11. Software writes MSRDY = 1, MTRQ = 1, EXTRQ = 0, DTUP = 1, and TIH = 0 in MC2 in same instruction. Note that
CAN has not set EXTRQ in MC2, and is not required to be set for transmission of data from MC2.

12. CAN automatically transmits data (as per RFR requested DTBYC) in MC2.

13. CAN clears MTRQ = 0 (leaving previous EXTRQ = 0 cleared).

14. Software sets T/R = 0, MSRDY = 1, EXTRQ = 0, and DTUP = 0 in MC1 and awaits either next RFR or date frame

Note that MTRQ is still cleared in MC1, since MC1 has not been set to a transmit mode.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 164

Remote Frame Handling in Relation to the DTBYC Bits
The DTBYC bits function slightly differently when remote frames are used. The data length code currently programmed in message
center is overwritten by the data length code field of the incoming remote request frame so that the requested number of data bytes
can be sent in response to the remote request. The following example demonstrates how the DTBYC bits are modified by a received
remote frame request.

1. Assume the microcontroller has programmed the following into a message center:
DTBYC = 5, data field = 75 AF 43 2E 12 78 90 00
(Note that only the first through the fifth data bytes are recognized because DTBYC = 5.)

2. When the CAN module successfully receives a remote frame with the following data:
Identifier = ID, DTBYC = 2, RTR = 1.

3. The incoming message overwrites the identifier and the data length code. The new data in the message center is:
DTBYC = 2, data field = 75 AF 43 2E 12 78 90 00
(Note that only the first and second data bytes are recognized because DTBYC is now 2.)

4. The outgoing response is a data frame containing the following information:
DTBYC = 2, data field = 75 AF

Important Information Concerning ID Changes when Awaiting Data from a Previous Remote
Frame Request
The use of acceptance filtering (MEME = 1) in conjunction with remote frame requests can result in a modification of the message cen-
ter arbitration registers. Suppose that, for example, a message center is configured to transmit a remote frame request (MTRQ = 1,
EXTRQ = 0, T/R = 0, and MSRDY = 1). If arbitration masks are used, it is possible for a second frame request from an external node
to modify this requesting node’s arbitration register value prior to reception of the previously requested data. When a remote frame
request is received, the message ID is loaded into that message center’s arbitration registers. When message identification masking
is not used (MEME = 0), the message ID always matches the arbitration value, so the process is transparent. If masking is used, how-
ever, the message ID ANDed with the appropriate mask is loaded into that message center’s arbitration registers, resulting in a change
of the arbitration values for that message center. To prevent this situation, acceptance filtering should be disabled (MEME = 0) for any
message center configured for remote frame handling.

Overwrite Enable/Disable Feature
The write-over enable bit (WTOE) located in each message center (C0MxAR3.0) enables or disables the overwriting of unread mes-
sages in message centers 1–15. Programming WTOE = 1 following a system reset or CRST bit-enabled reset allows newly received
messages that pass arbitration to overwrite unread (i.e., message centers with DTUP = 1) messages. When an overwrite occurs, the
receive overwrite (ROW) bit in the respective CAN message control register is set. When WTOE = 0, message centers that have data
waiting to be read (indicated by DTUP = 1) or transmitted (EXTRQ = 1) are not overwritten by incoming data.

Special care must be taken when reading data from a message center with the overwrite feature enabled (WTOE = 1). Caution is need-
ed because the WTOE bit, when set, allows an incoming message to overwrite the message center. If an overwrite occurs at the same
time that software is attempting to read several bytes from the message center (such as a multi-byte data field), it is possible that the
read could return a mix of information from the old and overwriting messages. If the message center being set up with WTOE = 1 was
previously a transmit message center, ensure that the TIH bit is cleared to 0 (TIH can only be written while T/R is set to 1). If TIH is set
to 1 and that message center is changed to receive with WTOE = 1, the ROW bit will always read back a 1, even though a receive
overwrite condition may not have occurred. To avoid this situation, software should clear the DTUP bit to 0 prior to reading the mes-
sage center, and then verify afterwards that the DTUP bit remained at 0. If DTUP remains cleared after the read, no overwrite occurred
and the returned data was correct. If DTUP = 1 after the read, software should again clear DTUP = 0 and reread the message center,
since a possible overwrite has occurred. The original message is lost (as planned since WTOE = 1), but a new message should be
available on the next read.

One important use of the WTOE bit is to allow the microcontroller to program multiple message centers with the same ID when oper-
ating in the receive mode, with WTOE = 0. This allows the CAN module to store multiple incoming messages in a series of message
centers, creating a large storage area for high-speed recovery of large amounts of data. The CPU is required to manage the use of
these message centers to keep track of the incoming data, but the use of multiple message centers and disabling of their overwrite
(WTOE = 0) function prevents the module from potentially losing data during a high-speed data transfer.

The following examples demonstrate the use of the WTOE and other bits when using multiple message centers with the same arbitra-
tion value. Case 2 illustrates the approach described above for configuring multiple message centers to capture a large amount of
data at a relatively high rate.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

165 __

Case 1: WTOE = 1 (Overwrites allowed)
1. Software configures message centers 1 and 2 with the same arbitration value (abbreviated AV).

2. Software configures message centers 1 and 2 to receive (T/R= 0) and allow message overwrite (WTOE = 1).

3. The first message received that matches AV is stored in message center 1, DTUP = 1.

4. The second message that matches AV is stored in message center 1, DTUP = ROW = 1.

5. The third message that matches AV is stored in message center 1.

6. Etc.

Note that in this example message center 2 never receives a message and that, if software does not read message center 1 before
the second message is received, the first message is lost.

Case 2: WTOE = 0 (Overwrites disabled)
1. Software configures message centers 1 and 2 with the same arbitration value (abbreviated AV).

2. Software configures message center, 1 and 2 to receive (T/R = 0) and to disable message overwrite (WTOE = 0).

3. The first message received that matches AV is stored in message center 1, DTUP = 1.

4. The second message received that matches AV is stored in message center 2, DTUP = 1

5. Software reads message center 1 and then programs message center 1, DTUP = 0.

6. The third message received that matches AV is stored into message center 1, DTUP = 1.

7. Software reads message center 2 and then programs message center 2, DTUP = 0.

8. The fourth message received that matches AV is stored into message center 2, DTUP = 1

9. Etc.

Note that, in this example, message center 1 or 2 is never overwritten. The user must ensure that the proper number of message cen-
ters be allocated to the same arbitration value when using this arrangement. If software fails to read the allocated message group, an
incoming message can be lost without software realizing it (ROW is never set when WTOE = 0). To put a message center back into
operation, software must force DTUP = 0 and EXTRQ = 0. This indicates that software has read the message center.

Special Considerations for Message Center 15
Message center 15 incorporates a shadow message center used to buffer incoming messages, in addition to the standard message
center registers. When the message center is empty (DTUP = EXTRQ = 0), incoming messages are loaded directly into the message
center registers. When the message center has unread data (DTUP = 1) or a pending remote frame request (EXTRQ = 1), incoming
messages are loaded into the shadow message center. Unread contents of the shadow message center are automatically loaded into
the message center when it becomes empty (DTUP = 0). An overwrite condition is possible when both the message center 15 and
shadow message centers are full.

The response of message center 15 to the overwrite condition is dependent on the write-over enable (WTOE) bit. When overwrite is
enabled (WTOE = 1) and there is unread data (DTUP = 1) or a pending remote frame request (EXTRQ = 1), successfully received mes-
sages are stored in the shadow message center, overwriting existing data. If the shadow message center contained previously unread
data at the time of the overwrite, the message center 15 ROW bit is set. If the shadow message center was empty at the time, then the
incoming message is simply loaded into the shadow buffer and ROW is not set to a 1. Note that the message center 15 ROW bit reflects
only an overwrite of the shadow message center, not the message center registers (as with message centers 1–14).

When WTOE = 0, there is unread data (DTUP = 1) or a pending remote frame request (EXTRQ = 1) in message center 15, and there
is already a message stored in the shadow buffer, incoming messages are not stored in either the message center or shadow buffer.

Using the Autobaud Feature
It is sometimes necessary to connect a CAN node to a network with an unknown baud rate. The autobaud feature of the DS80C400
provides a simple way for the CAN module to determine the baud rate of the network and reconfigure the DS80C400 to operate at that
baud rate. Special hardware inside the CAN module allows it to interface to a fully functional CAN bus and perform the autobaud fea-
ture without disturbing other CAN nodes.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 166

The theory behind the CAN autobaud feature is relatively simple. If a CAN module operating at a particular baud rate listens in on a
CAN bus operating at a different baud rate, it sees a random bit stream. Because the bit stream does not conform to the CAN 2.0B
protocol, a large number of bus errors (bit 0 error, bit 1 error, bit stuff error, etc.) are seen by the “listening” CAN. These errors incre-
ment the CAN error counter register. With only a moderate amount of CAN traffic, enough errors quickly accumulate to set the CAN
error count exceeded (EC96/128) bit in the CAN 0 status register (C0S; A4h). This can be used as an indicator that the DS80C400 is
not operating at the same baud rate as the CAN bus. The DS80C400 would then adjust its baud rate and repeat the process.

If, after a period of time, only a small number of errors have accumulated (most likely due to normal transmission noise), then the
DS80C400 is operating at the correct baud rate. The autobaud process is further simplified by the fact that most networks only oper-
ate at a small number of values. For example, DeviceNet operates at 125kbps, 250kbps, and 500kbps, so a device attempting to auto-
baud to a DeviceNet network would only have to test three baud rates.

The autobaud feature of the CAN module is enabled by setting the autobaud bit (C0C.2). Setting this bit activates a special loopback
circuit within the CAN module that logically ANDs incoming network data received on the RX pin with the TX pin of the CAN module.
While the autobaud bit is set, the CAN module disables its transmit output and places it in the recessive (high) state, so that error
frames generated by the autobauding CAN module do not disturb other devices on the network during the procedure.

The following user-defined software procedure can be used in conjunction with the autobaud feature to determine the baud rate of the
network.

1. Set CRST = 1 to disable bus activity. Setting this bit also sets the SWINT bit, enabling access to control/status registers, and
also clearing the C0RE and C0TE registers.

2. Configure bus timing registers to set desired baud rate.

3. Set autobaud bit = 1.

4. Set SWINT = 0 to enable CAN module and begin listening for errors.

5. Delay approximately 500ms (allow enough time for >128 errors to occur).

6. If CAN error count exceeded (EC96/128) bit is set, baud rate is incorrect. Select a new baud rate and repeat procedure. If
EC96/128 bit is not set, the DS80C400 CAN module is set to the correct baud rate.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

167 __

Bus-Off/Bus-Off Recovery and Error Counter Operation
The CAN module contains two SFRs that allow software to monitor and modify (under controlled conditions) the error counts associat-
ed with the transmit- and receive-error counters in each CAN module. These registers can be read at any time. Writing the CAN trans-
mit-error counter registers updates both the transmit-error counter registers and the receive-error counter registers with the same value.
Details are given in the SFR description of these registers. These counters are incremented or decremented according to CAN spec-
ification version 2.0B, summarized in the following rules. The error counters are initialized by a CRST = 1 or a system reset to 00h. The
error counters remain unchanged when the CAN module enters and exits from a low-power mode through the SIESTA or PDE bit.

Changes to the error counters are performed according to the following rules. This level of detail is not necessary for the average CAN
user, and full information is provided in the CAN 2.0B specification. More than one rule can apply to a given message.

A node is error active when the transmit- and receive-error counters are less than 128. When in an error-active state, an error condi-
tion causes the node to send an error frame on the bus. A node is error-passive when the transmit-error count equals or exceeds 128,
or when the receive-error count equals or exceeds 128. An error-passive node does not transmit an error frame on the bus. An error-
passive node becomes error-active again when both the transmit- and receive-error counts are less than or equal to 127.

A node is bus off when the transmit-error count is greater than or equal to 256. A bus-off node becomes error active (no longer bus off)
when its error counters are both set to 0 and after 128 occurrences of 11 consecutive recessive bits have been monitored on the bus.

After exceeding the error-passive limit (128), the receive-error counter is not increased further. When a message is received correctly,
the counter is set again to a value between 119 and 127 (compare with CAN 2.0B specification). After reaching bus-off status, the
transmit-error counter is undefined while the receive-error counter is cleared and changes its function. The receive-error counter is
incremented after every 11 consecutive recessive bits on the bus. These 11 bits correspond to the gap between two messages on the
bus. If the receive-error counter reaches count = 128 following the bus-off recovery sequence, the CAN module changes automatically
back to the status of bus on and then sets SWINT = 1. After setting SWINT, all internal flags of the CAN module are reset and the error
counters are cleared. A recovery from a bus-off condition does not alter the previously programmed MOVX memory values or SFR reg-
isters, apart from the transmit- and receive-error SFR registers and the error conditions displayed in CAN status register. The bus tim-
ing remains as previously programmed.

CONDITION EFFECT ON ERROR COUNTERS

Error detected by receiver, unless the detected error was a bit error during the
sending of an active error flag or an overload flag.

Receive-error counter incremented by 1.

Receiver detects a dominant bit as the first bit after sending an error flag. Receive-error counter incremented by 8.

Transmitter sends an error flag.
Note, however, that the transmit-error count does not change if:
The transmitter is error passive and detects an acknowledgement error because of
not detecting a dominant acknowledge, and does not detect a dominant bit while
sending its passive error flag.
Or, if the transmitter sends an error flag because a stuff error occurred during
arbitration, and has been sent as recessive, but monitored as dominant.

Transmit-error counter incremented by 8.

Transmitter detects a bit error while sending an active error flag or an overload flag. Transmit-error counter incremented by 8.

Receiver detects a bit error while sending an active error flag or an overload flag. Receive-error counter incremented by 8.

Node detects the 14th consecutive dominant bit (in case of an active error flag or an
overload flag), or detects the 8th consecutive dominant bit following a passive error
flag, or after a sequence of additional eight consecutive dominant bits.

Transmit-error counter incremented by 8.
Receive-error counter incremented by 8.

Message is successfully transmitted (acknowledge received and no error until end of
frame is complete)

Transmit-error counter is decremented by 1
(unless it was already 0).

A message has been successfully received (reception without error up to the
acknowledge slot and the successful sending of the acknowledge bit), and the
receive-error count was between 1 and 127.

Receive-error counter decremented by 1.

A message has been successfully received (reception without error up to the
acknowledge slot and the successful sending of the acknowledge bit), and the
receive-error count was greater than 127.

Receive-error counter is set to a value
between 119 and 127.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 168

Bit Timing
Bit timing in the CAN 2.0B specification is based on a unit called the nominal bit time. The nominal bit time is further subdivided into
four specific time periods.

1. The SYNC_SEG time segment is where an edge is expected when synchronizing to the CAN bus.

2. The PROP_SEG time segment is provided to compensate for the physical times associated with the CAN bus network

3. The PHASE_SEG1 and PHASE_SEG2 time segments compensate for edge phase errors.

4. The PHASE_SEG1 and PHASE_SEG2 time segments can be lengthened or shorted through the use of the SJW1 and SJW0
bits in the CAN 0 bus timing register 0.

The CAN bus bit data is evaluated at a specific sample point. A time quantum (tQU) is a unit of time derived from the division of the
microcontroller system clock by both the baud-rate prescaler (programmed by the BPR7–BPR0 bits of the clock output register and
CAN 0 bus timing register) and the system clock divider (programmed by the CD1:0 and 4X/2X bits of the PMR register). Combining
the PROP_SEG and PHASE_SEG1 time segments into one time period termed tTSEG1, and equating the SYNC_SEG time segment to
tSYNC_SEG and PHASE_SEG2 to tTSEG2, provides the basis for the time segments outlined in Figure 19-11, and the CAN bus timing SFR
register descriptions.

The CAN 0 bus timing register 0 (C0BT0) contains the control bits for the PHASE_SEG1 and PHASE_SEG2 time segments, as well as
the baud-rate prescaler (BPR5–0) bits. CAN 0 bus timing register 1 (C0BT1) controls the sampling rate, the time segment 2 bits that
control the number of clock cycles assigned to the phase segment 2 portion, and the time segment 1 bits that determine the number
of clock cycles assigned to the phase segment 1 portion. The value of both of the bus timing registers are automatically loaded into
the CAN module following each software change of the SWINT bit from a 1 to a 0 by the microcontroller. The bit timing parameters must
be configured before starting operation of the CAN module. These registers can be modified only during a software initialization (SWINT
= 1), when the CAN module is NOT in a bus-off mode, and after the removal of a system reset or a CAN reset. To avoid unpredictable
behavior of the CAN module, the bus timing registers should never be written with all zeros. To prevent this, the SWINT is forced to 0
when TSEG1 = TSEG2 = 00h.

1 Bit Time

1 tQU
Time Quanta

TRANSMIT SAMPLE
POINT

SYNC_SEG PROP_SEG PHASE_SEG1 PHASE_SEG2

Nominal Bit Time

tTSEG2tTSEG1tSYNC-SEG

SAMPLE
POINT

1 tQU
Time Quanta

2 tQU – 16 tQU 2 tQU – 8 tQU

Figure 19-11. Bit Timing

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

169 __

The timing of the various time segments is determined by using the following formulae. Most users never need to perform these cal-
culations, as other devices already attached to the network dictate the bus timing parameters.

(Only integer values are permitted.)

Where BPRV is the CAN baud-rate prescaler value found in the earlier description of the C0BT0 register, FOSC is the crystal or exter-
nal oscillator frequency of the microprocessor, and TS1_LEN and TS2_LEN are listed in the description of the TSEG26-24 and
TSEG13–10 bits in the CAN bus timing register 1. SJW is listed in the description of the SJW1-0 bits in the CAN bus timing register 0.
The CAN clock divide value (CCD) is a factor connected to the current microcontroller system clock selection and can be referenced
in the following table.

The following restrictions apply to the above equations:

tTSEG1 ≥ tTSEG2
tTSEG2 ≥ tSJW
tSJW < tTSEG1

2 ≤ TS1_LEN ≤ 16
2 ≤ TS2_LEN ≤ 8

(TS1_LEN + TS2_LEN + 1) ≤ 25

The nominal bit time applies when a synchronization edge falls within the tSYNC_SEG period. The maximum bit time occurs when the
synchronization edge falls outside of the tSYNC_SEG period, and the synchronization jump width time is added to perform the resyn-
chronization.

Threefold Bit Sampling
The DS80C400 supports the ability to perform one or three samplings of each bit, based on the SMP bit (C0BT1.7). The single sam-
ple mode (SMP = 0) is available in all settings and takes one sample during each bit time. The triple sampling mode (SMP = 1) sam-
ples each bit three times for increased noise immunity. This mode can be used only when the baud-rate prescale value (BPRV) is
greater than 3.

No al bit time t t t

BRPV CCD TS LEN TS LEN
Fosc

Maximum bit time t t t t

BRPV CCD TS LEN TS LEN SJW
Fosc

CAN baud rate
Fosc

BRPV

SYNC SEG TSEG TSEG

SYNC SEG TSEG TSEG SJW

min

()()[(_) (_)]

()()[(_) (_) ()]

(

_

_

= + +

= + +

= + + +

= + + +

=

1 2

1 2

1 1 2

1 1 2

)()()[(_) (_)CCD TS LEN TS LEN1 1 2+ +

CD1 CD0 4X/2222XXXX CCD
0 0 1 0.5
0 0 0 1
1 0 x 2
1 1 x 512

t
BRPV CCD

F
t t

t TS LEN t

t TS LEN t

t

t
BAUD RATE t

QU
OSC

SYNC SEG QU

TSEG QU

TSEG QU

SJW SJW t

QU PER BIT
QU

QU

 (_)

 (_)

_

 ()

= ×

= ×
= ×
= ×

=
×

= ×

1

1

2

1

1

2

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 170

Bus Rate Timing Example
The following table shows a few example bit timing settings for common oscillator frequency and baud-rate selections. Because of the
large number of variables, there are many combinations not shown that can achieve a desired baud rate. There are a number of
approaches to determining all the bit timing factors, but this uses the most common (i.e., the oscillator frequency and baud rate have
already been determined by system constraints.)

Additional Bit Timing Examples

The following is an explanation of how the table row illustrating an oscillator frequency of 16MHz and a CAN baud rate of 125kbps is
derived.

Various combinations of BRPV are selected until one is located that meets the tQU per bit criteria, i.e., an integer value less than 25.
Selecting BRPV = 4, the previously described equations state that there should be 16 tQU per bit. That leaves 16–1 or 15 tQU remain-
ing for TS1_LEN and TS2_LEN, which are arbitrarily assigned as shown. Because BRPV > 3, the triple sampling feature (SMP = 1) can
be used, if desired.

FOSC CCD BRPV TQU
BAUD
RATE

TQU
PER BIT

TS1_LEN TS2_LEN SJW
SMP = 1

PERMITTED?

2 2 100ns 1Mbps 10 5 4 3 NO

2 4 200ns 500kbps 10 5 4 3 YES

2 5 250ns 250kbps 16 10 5 4 YES
40MHz

2 10 500ns 125kbps 16 10 5 4 YES

0.5 2 125ns 1Mbps 16 10 5 4 NO

1 1 125ns 1Mbps 16 10 5 4 NO

2 1 125ns 1Mbps 8 4 3 2 NO

2 1 125ns 500kbps 16 10 5 4 NO

2 2 250ns 250kbps 16 10 5 4 NO

16MHz

2 4 500ns 125kbps 16 10 5 4 YES

1 1 125ns 1Mbps 8 4 3 2 NO

1 1 125ns 500kbps 16 10 5 4 NO

1 1 250ns 250kbps 16 10 5 4 NO
8MHz

2 2 500ns 125kbps 16 10 5 4 NO

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

171 __

SECTION 20: ARITHMETIC ACCELERATOR
The DS80C400 incorporates an arithmetic accelerator that performs 32-bit and 16-bit calculations while maintaining 8051 software
compatibility. Math operations are performed by sequentially loading three special registers. The mathematical operation is determined
by the sequence in which three dedicated SFRs (MA, MB, and MCNT0) are accessed, eliminating the need for a special step to choose
the operation. The arithmetic accelerator has four functions: multiply, divide, shift right/left, and normalize. The normalize function facil-
itates the conversion of 4-byte unsigned binary integers into floating point format. An integral 40-bit accumulator, described later, sup-
ports multiply-and-add and divide-and-add operations. The following table shows the operations supported by the math accelerator
and their time of execution.

Table 20-1. Arithmetic Accelerator Execution Times

The following is a brief summary of the bits and registers used in conjunction with arithmetic acceleration operations. Please consult
the SFR listing in Section 4 for a complete description of all these registers.

LSHIFT Left shift. This bit determines whether shift operations proceed from LSB to MSB, or vice-versa.
MCNT0.7

CSE Circular shift enable. This bit determines whether shift operations wrap between the LSB and
MCNT0.6 MSB.

SCE Shift carry enable. This bit determines whether the arithmetic accelerator carry bit is included in
MCNT0.5 the shift process.

MAS4–0 Multiplier register shift bits. When performing a shift operation, these bits determine how many
MCNT0.4–0 shifts to perform. Following a normalize operation, these bits indicate the number shifts per-

formed.

MST Multiply/accumulate status flag. This bit serves as a busy flag for the arithmetic accumulator
MCNT1.7 operations.

MOF Multiply overflow flag. This bit is set when a divide-by-0 is attempted or when the result of a
MCNT1.6 16-bit by 16-bit multiplication exceeds FFFFh.

SCB Shift carry bit. This bit serves as the carry bit during arithmetic accelerator shift operations when
MCNT1.5 SCE = 1. This bit must be cleared or set by software as desired before each new shift

operation.

CLM Clear math accelerator registers. Setting this bit clears the MA, MB, and MC registers.
MCNT1.4

MA Multiplier A register. This register is used as both a source and result register for various
MA.7–0 arithmetic accelerator functions.

MB Multiplier B register. This register is used as both a source and result register for various
MB.7–0 arithmetic accelerator functions.

MC Multiplier C register. This register serves as the 40-bit accumulator of the arithmetic accelerator.
MC.7–0

The following procedures illustrate how to use the arithmetic accelerator. The MA and MB registers must be loaded and read in the
order shown for proper operation, although accesses to any other registers can be performed between accesses to the MA or MB
registers. An access to the MA, MB, or MC registers out of sequence corrupts the operation, requiring the software to clear the MST
bit to restart the math accelerator-state machine.

OPERATION RESULT EXECUTION TIME

32-bit by 16-bit divide 32-bit quotient, 16-bit remainder 36 tCLCL

16-bit by 16-bit divide 16-bit quotient, 16-bit remainder 24 tCLCL

16-bit by 16-bit multiply 32-bit product 24 tCLCL

32-bit shift left/right 32-bit result 36 tCLCL

32-bit normalize 32-bit mantissa, 5-bit exponent 36 tCLCL

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 172

Divide (32-bit by 16-bit or 16-bit by 16-bit)
The divide operation utilizes a 32-bit or 16-bit dividend and a 16-bit divisor. The dividend is loaded into MA (4 bytes in the case of a
32-bit dividend, 2 bytes for a 16-bit dividend), and the 16-bit divisor is loaded into MB. The quotient is stored in MA and the remain-
der in MB. The optional test of the MOF bit can be performed to detect a divide-by-0 operation, if software has not previously checked
for a nonzero divisor.

1. Load MA with dividend LSB.

2. Load MA with dividend LSB + 1*.

3. Load MA with dividend LSB + 2*.

4. Load MA with dividend MSB.

5. Load MB with divisor LSB.

6. Load MB with divisor MSB.

7. Poll the MST bit until cleared (nine machine cycles for 32 by 16 divide, six machine cycles for 16 by 16 divide).

8. Check MOF bit (MCNT1.6) to see if divide-by-0 occurred (optional).

9. Read MA to retrieve the quotient MSB.

10. Read MA to retrieve the quotient LSB + 2*.

11. Read MA to retrieve the quotient LSB + 1*.

12. Read MA to retrieve the quotient LSB.

13. Read MB to retrieve the remainder MSB.

14. Read MB to retrieve the remainder LSB.

*Steps 2, 3, 10, and 11 not performed for 16-bit dividend.

Multiply (16-bit by 16-bit)
This function multiplies two 16-bit values in MA and MB and places the 32-bit product into MA. If the product exceeds FFFFh, then the
multiply overflow flag (MOF) is set.

1. Load MB with multiplier LSB.

2. Load MB with multiplier MSB.

3. Load MA with multiplicand LSB.

4. Load MA with multiplicand MSB.

5. Poll the MST bit until cleared (for six machine cycles).

6. Read MA for product MSB.

7. Read MA for product LSB + 2.

8. Read MA for product LSB + 1.

9. Read MA for product LSB.

10. Check MOF bit (MCNT1.6) to see if product exceeded FFFFh (optional).

Shift right/left
The shift function rotates the 32 bits of the MA register as directed by the control bits of the MCNT0 register. MA contains the shifted
results following the operation. Note that the multiplier register shift bits (MCNT.4–0) must be set to a nonzero value, or the normalize
function is performed instead of the desired shift operation.

1. Load MA with data LSB.

2. Load MA with data LSB + 1.

3. Load MA with data LSB + 2.

4. Load MA with data MSB.

5. Configure MCNT0 register as required.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

173 __

6. Poll the MST bit until cleared (for nine machine cycles).

7. Read MA for result MSB.

8. Read MA for result LSB + 2.

9. Read MA for result LSB + 1.

10. Read MA for result LSB.

Normalize
The normalize function is used to convert four byte-unsigned binary integers into floating point format by removing all leading zeros
through shift left operations. Following the operation, MA contains the normalized value (mantissa) and the MAS4–0 bits contain the
number of shifts performed (characteristic). The normalize function can only be used on nonzero values.

1. Load MA with data LSB.

2. Load MA with data LSB + 1.

3. Load MA with data LSB + 2.

4. Load MA with data MSB.

5. Write 00000b to the MAS4–0 bits in the MCNT0 register.

6. Poll the MST bit until cleared (for nine machine cycles).

7. Read MA for mantissa MSB.

8. Read MA for mantissa LSB + 2.

9. Read MA for mantissa LSB + 1.

10. Read MA for mantissa LSB.

11. Read MAS4–0 to determine the number of shifts performed.

40-BIT ACCUMULATOR
The accelerator also incorporates an automatic accumulator function, permitting the implementation of multiply-and-accumulate and
divide-and-accumulate functions without any additional delay. Each time the accelerator is used for a multiply or divide operation, the
result is transparently added to a 40-bit accumulator. This can greatly increase speed of DSP and other high-level math operations.

The accumulator can be accessed anytime the multiply/accumulate status flag (MCNT1.7) is cleared. The accumulator is initialized by
performing five writes to the multiplier C register (MC: D5h), LSB first. The 40-bit accumulator can be read by performing five reads of
the multiplier C register, MSB first.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 174

SECTION 21: 1-WIRE BUS MASTER
The 1-Wire master contained within the DS80C400 was designed to offload the task of 1-Wire communications from the microcontroller.
Its main target is a network between the DS80C400 and a small number of local 1-Wire devices. This would include any 1-Wire chips
or permanently attached iButtons® located on the same PC board as the DS80C400. A minimum of external devices must be con-
nected to the designated 1-Wire master pins in order to obtain proper function. This section discusses the hardware setup required,
as well as the minimum steps necessary, to bring the 1-Wire master up and running.

HARDWARE SETUP
The 1-Wire system typically requires the slave devices to obtain their power parasitically from the master or, more specifically, from the
1-Wire (OW) line coming from the master. This I/O line is historically rated to function between 2.8V and 5.25V. The DS80C400, howev-
er, is a low-voltage microcontroller with a nominal I/O supply voltage (VCC3) of 3.3V, leaving little operational headroom. This requires the
parasitic power supplied by 1-Wire line to come from an external source, namely a pullup resistor to an external supply. Some devices,
however, need a more direct connection to the parasite power source. This is necessary to obtain the large amounts of current they
require without dropping below the minimum input voltage. The direct connection is obtained through a strong pullup bypass transistor.

The two pads on the DS80C400 involving the 1-Wire master both require external pullup resistors. Each pad should be pulled up by
the same power-supply voltage that is used to power the slave devices. OWSTP is the control signal for the gate of the strong pullup
transistor. A 10kΩ resistor should pull up the OWSTP output to (a recommended) 5V. The drain of the transistor should be connected
to the OW line. In parallel with the strong pullup transistor is the OW weak pullup resistor. This resistor, typically being around 2.2kΩ,
provides the power supply to the slaves most of the time. The following figure shows the described circuit.

SETTING UP AND USING THE 1-WIRE MASTER
The default state of the 1-Wire master is to remain completely shut down until accessed. When an application calls for the master’s fea-
tures, certain steps must be taken to bring it out of this shutdown state. The following is a quick guide to show the minimum setup
requirements for the master to start communications followed by some basic communication code.

2.2kΩ

10kΩ

OWSTP

OW

5V

To slave
devicesVSS

DS80C400

NOTE: If not using the strong pullup feature, the
10kΩ resistor and the strong pullup transistor
can be omitted.

iButton is a registered trademark of Dallas Semiconductor.

Figure 21-1. Typical 1-Wire External Hardware Configuration

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

175 __

SETTING UP THE 1-WIRE MASTER
The first step is to determine the input crystal frequency to the DS80C400. Next, look up the appropriate divider ratio for that frequen-
cy in DS80C400 data sheet. This value, along with a logic 1 for the most significant bit, must be input into the clock divisor register
that, in turn, enables the input clock and divides it down to the proper frequency. The following code demonstrates enabling the clock
divider for a frequency of 10MHz.

MOV OWMAD, #004h ; Setup the address pointer
MOV OWMDR, #086h ; Set CLK_EN, and set divisor to 10MHz

SENDING A 1-WIRE RESET
The following code sends out a 1-Wire reset, waits for an interrupt to signal it has finished, and then checks the results to see if a part
was located.

ORG 43h
LJMP Interrupt
ORG 100h
.
.

Owrst:
MOV OWMAD, #003h ; Set the address pointer to the Interrupt Enable register
MOV OWMDR, #001h ; Enable the PD interrupt
MOV OWMAD, #005h ; Set the address pointer to the Control register
MOV OWMDR, #080h ; Set EOWMI to enable the OW interrupts
MOV OWMAD, #000h ; Set the address pointer to the Command register
MOV OWMDR, #001h ; Enable a 1-Wire Reset
MOV IE, #080h; Enable the 400’s interrupts
MOV EIE, #01h ; Enable external interrupts 2-5 as well as OWMI
LCALL Wait4int ; Call the wait routine
MOV OWMAD, #002h ; Set the address pointer to the Interrupt register
MOV A, OWMDR ; Read the value of the Interrupt register
ANL A, #002h ; Mask off all bits but the PD Result bit
CJNE A, #02h, Pdloop ; Check to see if a part was found, loop again if not
LJMP Cont ; Continue on with your program

Pdloop:
LJMP Owrst ; perform 1-Wire Reset again

Cont:
.
.

Wait4int:
MOV R1, #000h ; Clear flag

Waitloop:
MOV A, R1 ; Obtain the value in R1
CJNE A, #01h, Waitloop; ; Check flag and keep looping until set
RET

Interrupt:
MOV EXIF, #08h ; Turn off INT5 flag
MOV R1, #001h; Set loop flag
RETI
END

SENDING A BYTE
The following code can be used in conjunction with the 1-Wire reset code to send out a byte across the 1-Wire line. In order to read a
byte, the same program is used, but the byte value to send should be 0FFh. This, in turn, produces eight write 1’s, which are the same
as eight read-time slots.

MOV OWMAD, #003h ; Set the address pointer to the Interrupt Enable register
MOV OWMDR, #010h ; Enable the RBF interrupt
MOV OWMAD, #001h ; Set the address pointer to the TX/RX register

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 176

MOV OWMDR, #0AAh ; Load up the byte to be transmit
LCALL Wait4int ; Loop until the byte has been sent
MOV A, OWMDR ; Read the byte received to check against the value sent

As stated before, if performing a READ function, the byte transmitted should be 0FFh, and then the value read from the TX/RX regis-
ter would have reflected the value sent by the slave(s).

SEARCH ROM ACCELERATOR
The 1-Wire bus master supports a search ROM-accelerator mode to expedite learning of ROM IDs for those devices connected to the
bus. The bus master must determine the ROM IDs of the slave devices on the 1-Wire bus before it can address each slave device indi-
vidually.

The search ROM command (F0h) is used by the bus master to signal external 1-Wire devices that a ROM ID search will be conduct-
ed. The search ROM command can be issued immediately following a reset sequence initiated by the master. Once the search ROM
command has been issued by the bus master, slave devices simultaneously transmit, bit-by-bit, their unique ROM IDs. Listed below
are the three 1-Wire bus time slots associated with each ROM ID bit acquistion.

Time Slots for Each ROM ID Bit Acquisition:
1) Read time slot—each slave transmits a single bit of its ROM ID (LSB first).

2) Read time slot—each slave transmits a complementary bit to that transmitted in 1.

3) Write time slot—bus master transmits discrepancy decision bit if needed.

The ROM ID acquisition and selection process listed above starts with the least significant bit of each slave device. If the ROM ID bits
match for all currently selected slave devices, the two read time slots reflect complementary data and the bus master does not need
to deselect or remove any slave devices from the selection process. The bus master simply repeats the time slot 1 read data as its
write data for time slot 3, and continues to the next higher ROM ID bit acquistion period. Since it is expected that all 1-Wire devices
have unique ROM IDs, time slots 1 and 2 above inevitably result in conflicting data being driven on the bus for at least one bit position
when multiple slaves are connected. When this occurs, the wired-AND line state yields a 0 for time slots 1 and 2. At this point, the mas-
ter has to send a bit value 1 or 0 to select the devices that remain in the search process. All deselected devices are idle until they
receive a reset pulse. The four possible scenarios for slave ROM ID read time slots are shown in the table.

Table 21-1. ROM ID Read Time Slot Possibilities

The general principle of this search process is to deselect slave devices at every conflicting bit position. At the end of each ROM
search process, the master has learned another ROM ID. A pass of search process takes 64 reading/selection cycles for the master
to learn one device’s ROM ID. Each reading/selection cycle, as noted above, consists of two read time slots and a write time slot.
Subsequent search passes are performed identically to the last up until the point of the last decision. For details about search ROM
algorithm in the 1-Wire system, refer to The Book of iButton Standards.

To speed up this ROM ID search process, the 1-Wire bus master incorporates a search ROM accelerator. To enable the search ROM
accelerator, the SRA bit in the command register must be set immediately following the reset sequence and issuance of the search
ROM command. After the bus master is placed in search ROM accelerator mode, each byte loaded into the transmit buffer contains
one nibble (4 bits) worth of discrepancy decision data. The two slave read time slots are automatically generated by the bus master
as a part of the transmit sequence. After four reading/selection cycles, the receive buffer data reflects four newly acquired bits of the
ROM ID and four corresponding bits flagging whether a discrepancy existed in a given bit position. The format for the transmit and
receive data (when in search ROM accelerator mode) is detailed in Table 21-2.

READ TIME SLOT 1
(SLAVE)

READ TIME SLOT 2
(SLAVE)

WRITE TIME
SLOT (MASTER)

FUNCTION

0 1 0
All slave devices remaining in the selection process have a 0
in this ROM ID bit position.

1 0 1
All slave devices remaining in the selection process have a 1
in this ROM ID bit position.

0 0 0 or 1

ID discrepancy—slave devices remaining in the selection
process have both 0 and 1 in this ROM ID bit position. The
bus master write time slot dictates which devices remain in
the selection process.

1 1 1 Error—no slave devices responded during the read time slots.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

177 __

Table 21-2. Transmit/Receive Byte Sequence

rn = decision discrepancy data (write time slot selection data if ID discrepancy)
IDn = selected ROM ID bit (rn if discrepancy occurred, otherwise read time slot 1)
dn = discrepancy detected flag (ID discrepancy or no response)
x = don’t care data
The CPU must send and receive 16 bytes of data to complete a single search ROM pass on the 1-Wire bus. To perform a search ROM
sequence one starts with all decision discrepancy bits (rn) being 0. In case of bus error, all subsequent response bits IDn are 1s until
the search accelerator is deactivated by clearing the SRA bit in the command register. Thus, if ID63 and d63 are both 1, an error has
occurred during the search process and the last sequence has to be repeated. Otherwise, ID63:0 is the ROM code of the device that
has been found and addressed. For the next search ROM sequence one reuses the previous set rn (for n = 0:63), changing to 1 only
that bit position where the highest discrepancy was detected (dn flags). This process is repeated until the highest discrepancy occurs
in the same bit position for two passes, then the next lower discrepancy flag is used for next search. When the search ROM process
is completed, the SRA bit should be cleared in order to release the 1-Wire master from search ROM Accelerator mode.

Accelerated ROM Search Example
The following example should provide a better understanding of how the search ROM Accelerator functionality allows the 1-Wire mas-
ter to identify four different devices on the 1-Wire bus. The ROM contents of the devices is as shown (LSB first):

ROM1 = 00110101....
ROM2 = 10101010....
ROM3 = 11110101....
ROM4 = 00010001....

1) The host issues a reset pulse by writing 01h to the command register. All slave devices respond simultaneously with a pres-
ence detect.

2) The host issues a search ROM command by writing 0Fh to the transmit buffer.

3) The host places the 1-Wire master in search ROM Accelerator mode by writing 02h to the command register.

4) The host writes 00h to transmit buffer and reads the return data from the receive buffer. This process is repeated for total of
16 bytes. The data read contains ROM4 in the ID bit locations and the discrepancy flags d0 and d2 are set. This can easily
be seen by examining the ROM IDs bit by bit. The first discrepancy occurs in bit position 0 (d0). The bus master write time
slot contains a 0, thus deselecting ROM2 and ROM3. A discrepancy between ROM1 and ROM4 then occurs in bit position 2
(d2), leaving only ROM4 in the search. The receive data is as follows: (d0ID0 d1ID1 d2ID2 d3ID3 d4ID4 d5ID5
d6ID6 d7ID7 ….):

5) Receive Data = 10 00 10 01 00 00 00 01....

6) The host then deinterleaves the data to arrive at a ROM ID of 00010001... and discrepancy data (bold) of 10100000…. with
the last discrepancy at location d2.

7) The host writes 0x00h to the command register to exit accelerator mode. The host is now free to send a command or read
data directly from this device.

8) Steps 1 to 6 are now repeated to find the next device on the bus. The 16 bytes of data transmitted this time are identical to
ROM4 up until the last discrepancy flag (d2 in this case), which is inverted and all higher order decision discrepancy data
bits are set to 0 as shown: r0r1r2r3r4r5…. = 001000….. . For this search iteration, the receive data contains ROM1 in the ID
bit locations, again with discrepancy flags d0 and d2 set. Receive Data = 10 00 11 01 00 01 00 01….

BYTE BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

Byte 1

Transmit Buffer r3 x r2 x r1 x r0 x

Receive Buffer ID3 d3 ID2 d2 ID1 d1 ID0 d0

Byte 2

Transmit Buffer r7 x r6 x r5 x r4 x

Receive Buffer ID7 d7 ID6 d6 ID5 d5 ID4 d4

. . . .

Byte 16

Transmit Buffer r63 x r62 x r61 x r60 x

Receive Buffer ID63 d63 ID62 d62 ID61 d61 ID60 d60

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 178

9) Since the most significant discrepancy (d2) did not change, the next highest discrepancy (d0) is used for the next search
r0r1r2r3r4r5…. = 100000…..
Receive Data = 11 10 01 00 01 00 01 00....

10) Deinterleaving yields a ROM ID of 10101010.. (ROM2) and discrepancy flags of 11000000.. (d1 is the most significant flag).

11) The next search uses the ROM ID acquired in the previous search up until the most significant discrepancy: r0r1r2r3r4r5….
= 110000…

12) Receive Data = 11 11 01 01 00 01 00 01....

13) Deinterleaving yields a ROM ID of 11110101.. (ROM3) and discrepancy flags of 11000000.. (d1 is the most significant flag).

14) At this point, the most significant discrepancy (d1) did not change so the next highest discrepancy (d0) should be used.
However, d0 has now been reached for the second time and since there are no lesser significant discrepancies possible, the
search is completed and all four devices are identified.

SECTION 22: ETHERNET CONTROLLER
The 10/100Mbps Ethernet controller supports the protocol requirements for operating an Ethernet/IEEE802.3-compliant PHY device. It
provides receive, transmit, and flow control mechanisms through a media-independent interface (MII), including a serial management
bus to allow external PHY configuration. A block diagram of the on-chip Ethernet controller can be seen in Figure 22-1.

Central to the Ethernet controller are the command/status (CSR) registers, which serve to define the operational behavior. Through the
CSR registers, one is allowed to do such things as define the physical MAC address, set half- or full-duplex mode control, configure
address-checking/filtering mechanisms, and operate the serial PHY management bus. The CSR registers are accessible through the
SFR combination of BCUC (E7h), CSRA (E4h), and CSRD (E3h). Definitions for individual bits of each CSR register and the prescribed
method for writing/reading CSR registers are contained in the DS80C400 data sheet.

In addition to configuring the Ethernet controller and the external PHY through the CSR registers, an adjustable on-chip 8kB trans-
mit/receive data buffer, shared by the CPU and the Ethernet controller, is configurable by the Ethernet buffer size (EBS: E5h) SFR. The
logical address location for this 8kB data memory is determined by the setting of the IDM1:0 bits of the MCON register.

Two Ethernet interrupt sources are implemented: Ethernet power mode interrupt and Ethernet activity interrupt. Once the Ethernet controller,
external PHY, and packet buffer memory have been configured as desired, these two interrupt sources can be used to minimize CPU inter-
action with the Ethernet controller, thereby allowing the CPU more time to execute other tasks. By using interrupts, the CPU can conve-
niently manage Ethernet transmit and receive traffic using only the BCUC and BCUD SFR interface and the 8kB data buffer memory.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

179 __

Figure 22-1. Ethernet Controller Block Diagram

Assigning a Physical MAC Address
The 48-bit physical MAC address for the Ethernet controller is stored in the MAC address high (04h) and MAC address low (08h) CSR
registers. These on-chip registers are volatile memory locations and, following any reset, automatically default to a physical MAC
address of FF-FFFF- FF-FF-FF or the broadcast address.

An Ethernet-enabled system must be programmed with a unique MAC address, which can be acquired in several ways based on the
system software. Once a MAC address has been assigned to the network-enabled end product it is intended to be permanent.

If using the TINI runtime environment (programming in the JAVA language) or the NetBoot feature, the DS80C400/410/411 require an
external MAC ID device as shown in the Table 22-1. The software automatically searches the 1-Wire bus during initialization, and if the
device is found, the guaranteed unique 48-bit serial number is read out and programmed into the MAC address CSR registers. If a
valid 48-bit serial number is not found, the Ethernet send/receive functions are disabled but the other features of the device are func-
tional. Details of the NetBoot procedure and a list of acceptable 1-Wire devices for holding the 48-bit physical MAC address are avail-
able in Application Note 3398: DS80C400/DS80C410/DS80C411 Network Boot.

If the application code is written in the C language, user application code is responsible for programming the desired MAC address
directly into the CSR registers. The Dallas-supplied startup file (startup400.a51) for the Keil C compiler has options to set the MAC
address to a user-defined value, eliminating the need for an external MAC ID device.

Table 22-1. Source of MAC Addresses

CONFIGURING THE MAC OPERATIONAL MODE
The media access controller works autonomously based upon the settings that have been programmed into various command/status
(CSR) registers. The following table summarizes the MAC control (00h) CSR register bits for full-duplex, half-duplex, and loopback modes
of operation, ordering the bits according to function as related to PHY interface, address/packet filtering control, CSMA/CD functionality,
and data packet/buffer handling, respectively. Each mode of operation and associated function is covered in detail later in this section.

APPLICATION DS80C400 DS80C410/411

NetBoot DS2502-E48, DS2502P-E48 DS2502 or DS1982 (preprogrammed with
MAC ID), DS2502-E48, DS2502P-E48

TINI Runtime
Environment

DS2502 or DS1982 (preprogrammed with MAC ID),
DS2502-E48, DS2502P-E48

C Language DS2502 or DS1982 (preprogrammed with MAC ID), DS2502-E48, DS2502P-E48
(or user-defined MAC ID via startup400.a51 file)

MII
MANAGEMENT

BLOCK
(Serial interface bus
to external PHYs)

MII I/O BLOCK

(Transmit, receive,
and flow control)

CSR REGISTERS

ADDRESS CHECK
BLOCK

POWER
MANAGEMENT

 BLOCK

M
A

C
 H

O
ST

 I
N

T
E

R
F

A
C

E

BCU

TX/RX BUFFER
MEMORY

 (8kB)

EXTERNAL
PHY(s)

80C400 ON-CHIP ETHERNET CONTROLLER

80C400
CPU

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 180

Table 22-2. MAC Control Register Bit Summary

MEDIA INDEPENDENT INTERFACE (MII)
The DS80C400 fully supports the media-independent interface according to the IEEE 802.3 standard. The MII interface provides inde-
pendent transmit and receive datapaths, as well as input signals for monitoring network status. All standard PHY controller chips can
use this default 4-bit parallel interface for connection to the Ethernet cable.

The transmit interface is composed of TXCLK, TX_EN, and TXD[3:0]. The TXCLK input is the transmit clock provided by the PHY. For
10Mbps operation, the transmit clock (TXCLK) should be run at 2.5MHz. For 100Mbps, TXCLK should be run at 25MHz. The TXD[3:0]
outputs provide the 4-bit (nibble) data bus for transmitting frame data to the external PHY. Each transmission begins when the TX_EN
output is driven active-high, indicating to the PHY that valid data is present on the TXD[3:0] bus.

The receive interface is comprised of RXCLK, RX_DV, RX_ER, and RXD[3:0]. The RXCLK input is the receive clock provided by the
external PHY. This clock (RXCLK) should be run at 2.5MHz for 10Mbps operation and at 25MHz for 100Mbps operation. The RXD[3:0]
inputs serve as the 4-bit (nibble) data bus for receiving frame data from the external PHY. The reception begins when the external PHY
drives the RX_DV input high, signaling that valid data is present on the RXD[3:0] bus. During reception of a frame (RX_DV = 1), the
RX_ER input indicates whether the external PHY has detected an error in the current frame. The RX_ER input is ignored when not
receiving a frame (RX_DV = 0).

The MII also monitors two network status signals that are provided by the external PHY. The carrier sense (CRS) input is used to assess
when the physical media is idle. The collision detect (COL) input is required for half-duplex operation to signal when a collision has
occurred on the physical media. Following is diagram showing a full MII interface. Data transactions between the MAC and the exter-
nal PHY are done least significant nibble first as shown in Figure 22-2.

OPERATIONAL MODE ==> HALF-DUPLEX FULL-DUPLEX LOOPBACK

Bit 27: Port select 0 = MII, 1 = ENDEC

Bit 28: Heartbeat disable User-selectable ENDEC only Invalid–set to 1 Invalid–set to 1

Bit 23: Disable receive own 1 0 0

Bits 22-21: Loopback operating mode 00 00 01 or 10

Bit 20: Full-duplex mode 0 1 1

Bit 3: Transmitter enable MAC transmitter enable

Bit 2: Receiver enable MAC receiver enable

Bit 31: Receive all Address-filtering control

Bit 19: Pass all multicast Address-filtering control

Bit 18: Promiscuous Address-filtering control

Bit 17: Inverse filtering Address-filtering control

Bit 15: Hash only Address-filtering control

Bit 13: Hash/perfect filtering Address-filtering control

Bit 16: Pass bad frames Packet-filtering control

Bit 11: Disable broadcast frames Packet-filtering control

Bit 12: Late collision control CSMA/CD Invalid–set to 0 Invalid–set to 0

Bit 10: Disable retry CSMA/CD Invalid–set to 0 Invalid–set to 0

Bits 7-6: Back-off limit CSMA/CD Invalid–set to 00 Invalid–set to 00

Bit 5: Deferral check CSMA/CD Invalid–set to 0 Invalid–set to 0

Bit 30: Endian mode User-selectable User-selectable User-selectable

Bit 8: Automatic pad stripping User-selectable User-selectable User-selectable

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

181 __

Figure 22-2. MII Signal Diagram

Figure 22-3. MII MODE–Byte/Bit Transmit and Receive Order

ENDEC OPERATION
The DS80C400 supports a serial ENDEC mode of operation, which is a subset of the MII mode of operation. The ENDEC mode can
be used to support communication through GPSI (general-purpose serial interface) or SNI (serial network interface). The ENDEC mode
of operation is selected by setting the port select bit (bit 27) of the MAC control CSR register. When ENDEC mode has been selected,
only the lowest bit of each RXD3:0 and TXD3:0 nibble, RXD.0 and TXD.0, respectively, are used for data transactions. The only outputs
generated by the DS80C400 are the TXEN and TXD.0 signals. All other signals are sourced from the PHY, including the TXCLK and
RXCLK clocks, which must run at 10MHz to provide 10Mbps bandwidth. The RX_ER input signal is not used for ENDEC mode and
should be connected in the inactive state (logic low). Figure 22-4 shows an example ENDEC interface. Serial data transactions con-
ducted between the DS80C400 MAC and the external PHY over the TXD.0 and RXD.0 lines are done least significant bit first, as shown
in Figure 22-4. The MII serial management bus (MDC, MDIO pins) operates no differently in ENDEC mode than MII mode, and can still
be used for external PHY configuration.

RXD[3:0]

RXCLK

MDC

MII
MANAGEMENT

BLOCK
(Serial interface bus

to PHY)
MDIO

MII I/O BLOCK

(Transmit, receive,
and flow control)

EXTERNAL
PHY

DEVICE

TX_EN

TXD[3:0]

RX_DV

RX_ER

CRS

COL

TXCLK

DS80C400

7 0 7 0

1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 0

Bytes transmitted by the MAC

A1h E6h

TXD[3:0]
(to PHY) E1 6A

TXClk
(from PHY)

Increasing time

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 182

ENDEC MODE—HEARTBEAT SIGNAL QUALITY GENERATOR
When operating in ENDEC mode, the heartbeat signal quality generator (SQE) heartbeat function can optionally be enabled by clear-
ing (= 0) the heartbeat disable bit (bit 28) of the MAC control CSR register. When the SQE function has been enabled, after each trans-
mission, the MAC expects to receive a pulse on the COL pin after the TX_EN signal goes inactive. Failure to receive this SQE pulse
from the PHY results in the heartbeat fail bit of the transmit status word being set for the packet. In order to use the SQE function, the
PHY must support the SQE function and the function must be enabled.

MAC PRIMARY FUNCTIONS—PACKET FILTERING
The DS80C400 media access controller (MAC) provides programmable features designed to minimize host supervision and interac-
tion. The MAC independently handles all necessary Ethernet framing and error checking requirements.

For transmission, the MAC automatically generates preamble and start-of-frame delimiter bytes. If the minimum frame length is not met,
the MAC can automatically append zero-padding to the data field such that the frame length exceeds the required minimum length
(46 bytes). The CPU can optionally request, when submitting to the BCU, that the automatic zero-padding not be added to the trans-
mit packet. The MAC dynamically generates and appends the FCS to each transmit packet. Again, the CPU has the option of request-
ing that the FCS not be appended by the MAC. The MAC monitors the CRS and COL network status signals and, according to pro-
grammable MAC control register bit settings, can defer transmission temporarily or indefinitely, can automatically abort or retry collid-
ed frames, and can attempt retransmission according to a variable 1-bit to 10-bit back-off counter.

RXD[3:1]

RXD[0]

RXCLK
NC

MDC

MII
MANAGEMENT

BLOCK
(Serial interface bus

to PHY)
MDIO

MII I/O BLOCK

(Transmit, receive,
and flow control)

EXTERNAL
PHY

DEVICE

TX_EN

TXD[3:1]

RX_DV

RX_ER

CRS

COL

TXCLK

DS80C400

TXD[0]

NC

7 0 7 0

1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 0

Bytes transmitted by the MAC
A1h E6h

TXD[0]
(to PHY) 01 00

TXClk
(from PHY)

10 01 00 11 10 11

0 (lsb) 1 2 3 4 5 6 7(msb) 0(lsb) 1 2 3 4 5 6 7(msb) ==> bit order (lsb first)

increasing time

Figure 22-5. Serial ENDEC Mode–Byte/Bit Transmit and Receive Order

Figure 22-4. ENDEC Signal Diagram

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

183 __

For reception, the MAC automatically synchronizes on the preamble and start-of-frame delimiter bytes. The MAC distinguishes among
broadcast, multicast, and unicast frames. The MAC performs automatic minimum/maximum frame length and FCS checking on incom-
ing frames. The MAC interprets the type/length field for each frame and can extend the maximum frame length for VLAN1 and VLAN2
tagged frames. The MAC can optionally be configured to strip zero-padding and FCS information before receive packet data is trans-
ferred (by the BCU) to data buffer memory. Additionally, the MAC can detect unsupported control frames, dribbling bit errors, runt
frames, and any other errors signaled by the RX_ER input from the PHY. Bit 30 of the receive status word, the packet filter (PF) bit,
serves as an indication of whether the MAC detected any errors in the receive frame. The receive status word contains other status
bits such that the application can further discern what type of error was detected. One exception to this generalization is when the dis-
able broadcast frames (DBF) bit of the MAC control register has been set to 1. When broadcast frames have been disabled (DBF =
1), the PF bit is returned as 0 in the receive status word for any broadcast frame received.

USING THE MII SERIAL MANAGEMENT BUS
The DS80C400 provides a 2-wire, serial MII management interface for communication with external PHY devices. This interface is com-
prised of the MDC clock signal and the bidirectional MDIO data line. The MDC clock rate is derived from the system clock frequency,
and data is valid on the rising edge of the clock (MDC). The AC timing section of the DS80C400 data sheet contains detailed timing
information relative to the MDC, MDIO signals. The MII management frame format, as defined by clause 22 of the IEEE 802.3 standard,
is shown in Figure 22-6. The CSR registers MII address (14h) and MII data (18h) allow the CPU to execute read/write operations over
the two-wire serial bus. The MII address register supports a 5-bit address field and 5-bit register pointer field and therefore can address
up to 32 registers in as many as 32 PHY devices. The MII data register holds the returned 16-bit data following a read operation and
should be loaded with the desired 16-bit data prior to a write operation. The MII serial management bus operates identically for full-
duplex MII, half-duplex MII, and serial ENDEC mode.

HALF-DUPLEX OPERATION–CSMA/CD AND FLOW CONTROL
The CSMA/CD protocol specifies that each Ethernet station must wait until there is no signal on the channel. Then it can begin trans-
mitting. If there is a signal (carrier) on the channel, all other stations must wait until carrier ceases before trying to transmit. The proto-
col supports multiple accesses, allowing all Ethernet stations The equal ability to send frames onto the network. Because signals take
a finite time to travel from one end of an Ethernet system to the other, the first bits of a transmitted frame do not reach all parts of the
network simultaneously. Therefore, it is possible for more than one station to sense that the network is idle and to start transmitting their
frames simultaneously. When this happens, the Ethernet system has to be able to sense the “collision” of signals, stop the transmis-
sion, and resend the frame.

The CSMA/CD protocol is designed to provide fair access to the shared channel so that all stations get a chance to use the network.
After every packet transmission, all stations use the CSMA/CD protocol to determine which station gets to use the Ethernet channel
next. A collision occurs if more than one station transmits on the Ethernet channel at the same moment. The stations are notified of this
event, and instantly reschedule their transmission using a specially designed back-off algorithm. As part of this algorithm, the stations
involved choose a random time interval to schedule the retransmission of the frame, which keeps the nodes from making retransmis-
sion attempts simultaneously. Collisions are normal and expected events on an Ethernet. As more stations are added to a given
Ethernet, and as the traffic level increases, more collisions occur as part of the normal operation of an Ethernet. A normal collision does
not result in lost data. In the event of a collision, the Ethernet interface backs off for microseconds and then automatically retransmits
the data. On a network with heavy traffic loads, multiple collisions can occur for a given frame transmission attempt. If repeated colli-
sions occur for a given transmission attempt, then the stations involved begin expanding the set of potential back-off times (truncated
binary exponential back-off), from which they choose their random retransmission time. This provides an automatic method for Ethernet
controllers to adjust to traffic conditions on the network. Only after 16 consecutive collisions for a given transmission attempt does the sta-
tion finally discard the Ethernet packet. This can happen only if the Ethernet channel is overloaded for long period of time or is broken in
some way.

Preamble
(32 bits)

Start
(2 bits)

Op code
(2 bits)

PHY Address
(5 bits)

PHY Register
(5 bits)

Turn Around
(2 bits)

Data
(16 bits)

Idle
(1 bit)

Read 111…111 01 10 PHYA [4:0] PHYR[4:0] ZZ* ZZ….ZZ* Z

Write 111…111 01 01 PHYA [4:0] PHYR[4:0] 10 PHYD[15: Z

* During a read operation, the external PHY drives the MDIO line low for the second bit of the turnaround field to indicate proper synchronization,
and then drives the 16 bits of read data requested.

Figure 22-6. MII Management Frame Format

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 184

DEFERRAL CHECK
When a transmit request is queued, the MAC monitors the CRS line to determine when the physical carrier becomes idle. If the phys-
ical carrier is not initially idle, the MAC defers transmission until the carrier becomes idle. The deferred state persists as long as the
physical carrier remains busy (CRS = 1). Optionally, the MAC can be configured to abort a transmit request if deferred excessively.
Setting the deferral check (DC) bit, bit 5 of the MAC control (00h) CSR register, forces the MAC to abort a transmit attempt that has
been deferred for more than 24,288 bit times. The deferral timer resets once the MAC is able to begin the transmit attempt. The defer-
ral (DFR) bit of the transmit status word is set if the MAC must defer during the transmit attempt. The excessive deferral (XDFR) bit of
the transmit status word is set if a packet is aborted because of excessive deferral.

DISABLE RETRY
Once transmission begins, the MAC monitors the COL pin to detect when a collision occurs. If a collision occurs within the first 512-
bit time normal collision window, the MAC sends a jamming signal and, by default, waits some random number of timeslots (accord-
ing to an internal back-off counter) before attempting the transmission again. The MAC attempts to transmit the packet as many as 16
times before aborting the transmit request because of excessive collisions. The MAC can optionally be configured to abort the trans-
mit packet if a collision occurs on the first attempt. The disable retry bit, bit 10 of the MAC control register, forces the MAC to abort the
packet if the COL pin is asserted (= 1) at any time during the transmission. The excessive collisions (XCOL) bit of the transmit status
word is set if the MAC aborts the transmit attempt because of excessive collisions (DTRY = 1 for 1 collision; DRTY = 0 for 16 collisions).

BACK-OFF LIMIT
Whenever a collision occurs during transmission, the MAC sends a jamming signal and backs off for some amount of time before
attempting the transmission again (given that DRTY = 0). An internal 10-bit pseudorandom counter is used to generate the back-off
delay. The back-off limit bits, BOLMT1:0, define how many bits of the counter are used in determining the back-off delay. The four set-
tings for the back-off delay counter are given in the DS80C400 data sheet.

LATE COLLISION CONTROL
The maximum round-trip network delay gives a 512-bit time window within which normal network collisions can be expected to occur.
By default, the DS80C400 MAC aborts a transmit packet if a collision is detected beyond this normal collision window. Optionally, the
MAC can be configured to react to a late collision in a similar fashion as it would to a normal collision. By setting the late-collision con-
trol (LCC) bit of the MAC control register, the MAC attempts retransmission of the packet just as if the collision had occurred within the
normal collision window. The observed late collision (OLTCOL) bit of the transmit status word is set when a collision is observed beyond
the normal 512-bit time collision window. The late collision (LTCOL) bit of the transmit status word is set if the transmit packet was abort-
ed because of a late collision.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

185 __

Figure 22-7. Half-Duplex Transmit Deferral/Collision Handling

FLOW CONTROL
In half-duplex mode, the MAC supports receive side flow control through back pressure. The DS80C400 asserts back pressure when
the receive buffer has reached the threshold level of five or fewer available pages. Back pressure is asserted by transmitting a jam-
ming signal of four to 6 random bytes on to the bus. The jamming signal is intended to cause collisions for other nodes on the bus to
allow the DS80C400 to free additional receive buffer pages. Back pressure occurs only if the flow control enable (FCE) bit of the flow
control (1Ch) register is set to 1. Back pressure is not asserted if triggered during reception of a frame, but occurs for any subsequent
receive frames, assuming that the receive buffer is still below the threshold limit.

FULL-DUPLEX OPERATION
The DS80C400 supports full-duplex Ethernet operation, allowing simultaneous transmit and receive operation over the media inde-
pendent interface. When using full-duplex Ethernet, the physical media is not shared and therefore does not require CSMA/CD. For
this reason, the COL pin is ignored by the MAC and the interpacket gap (IPG) timer for the transmit side is based solely upon the TX_EN
signal instead of the CRS input. For receive side flow control, the PAUSE control frame is used.

PAUSE CONTROL FRAME
The pause control frame is used to inhibit transmission of data frames for a specified time (within the pause frame). A pause control
frame consists of the globally assigned multicast address 01-80-C2-00-00-01, the pause op code, and a parameter specifying the
quanta of slot time (512 bit times/slot) to inhibit data transmission. The pause parameter can range from 0 to 65,536 slot times. When
the MAC receives a frame with the reserved multicast address and pause op code, the MAC inhibits data frame transmission for the
length of time as indicated by the pause parameter. If a pause request is received while a transmission is in progress, then the pause
takes effect after the current transmission is completed. Pause control frames are automatically received and processed by the MAC,
and can be passed on to the application (PF bit of the receive status word is set) when the pass-pause control frame bit in the flow
control register is set.

CARRIER IDLE?
(CRS = 0?)

DEFERRED.
(> 24,288 BIT

TIMES & DC =
1?)

TRANSMIT
COLLISION?
(COL pin = 1?)

WRITE
TRANSMIT

STATUS WORD

No

No
TRANSMIT

Yes — Abort

Yes — Transmit

No — Success

RETRY
DISABLED?
(DRTY = 1?)

Yes—
Send jam
signalYes—Abort

LATE
COLLISION

AND LCC = 0?

No

Yes—Abort

COLLISION
COUNT = 16?

Yes—Abort

No

No—Back off

*Note: Flow diagram does not
show no carrier, carrier loss, or
jabber timeout possibilities.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 186

The MAC also can transmit a pause control frame on the request from the application. To initiate a pause control frame, the desired
pause time [15:0] interval should first be written to the flow control register. The application must then write a 1 to the BUSY bit of the
flow control register to trigger the transmission. The MAC constructs a pause control frame using these values and transmits the frame
to the MII interface. The transmission of the pause control frame does not affect, and is not affected by, the state of the pause timer,
which could be running because a previously received pause control frame. Upon the completion of the pause control frame trans-
mission, the FCB bit is cleared. Note that the user should check the state of the FCB bit before writing to the flow control register when
initiating a pause control frame. When the FCB is set to a 1, it signifies a pause control frame transmission is still in progress.

LOOPBACK MODES
The DS80C400 implements two diagnostic loopback modes: internal loopback through the MII, and external loopback through the PHY.
To support either of the loopback modes, the MAC must be configured identically to the normal full-duplex operating mode, except for
the bits used to select the loopback mode. The loopback mode is controlled by the loopback operating mode bits (OM[1:0]) of the
MAC control (00h) CSR register. The OM[1:0] bits default to the 00b state for normal operation with no loopback. Internal loopback
through the MII is selected by configuring the OM[1:0] bits to the 01b state. In the internal loopback mode, TXD[3:0] is looped back
internally to RXD[3:0], TX_EN is looped back internally to RX_DV and CRS, and TXCLK (sourced from the PHY) is looped back inter-
nally to RXCLK. RX_ER is internally sampled low by the MAC, and COL is ignored due to full-duplex operation. The internal loopback
mode maps the MII interface pins as diagrammed in Figure 22-8.

Figure 22-8. Internal Loopback Mode (MAC Control OM1:0 = 01b)

The external loopback mode is selected by configuring the OM[1:0] bits to the 10b state. The external loopback mode first requires
that the serial MII management bus (MDC, MDIO) be used to configure the external PHY for local loopback operation. Once the PHY
is placed into the loopback mode, it disregards activity on the physical layer but forces transmissions made by the DS80C400 trans-
mit interface to be looped back to the receive interface. In external loopback mode, the DS80C400 MAC behaves exactly as if it were
in the normal full duplex mode, requiring that the external PHY perform the signal loopback function. The external loopback mode is
diagrammed in the following figure.

MDC

MII MANAGEMENT
BLOCK

(Serial interface bus to
PHY)MDIO

 MII I/O BLOCK

 (Transmit, receive,
 and flow control)

EXTERNAL
PHY

DEVICE

TX_EN

TXD[3:0]

RXCLK

RX_DV

RX_ER

RXD[3:0]

CRS

COL

TXCLK

DS80C400

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

187 __

Figure 22-9. External Loopback Mode (MAC Control OM1:0 = 10b)

ADDRESS FILTERING CONTROL
The destination address of each Ethernet packet received by the MAC is examined by the address check block of the Ethernet con-
troller. The address check block and associated MAC control register bits that define the destination address-filtering mode are cov-
ered in the DS80C400 data sheet. The destination address is tested against the currently defined address filter, and the pass/fail sta-
tus is reported (by the BCU) to the filter fail (FF) bit of the receive status word. Additional status bits indicating whether the destination
address is a multicast or broadcast frame are also written by the BCU to the receive status word. Each receive packet, whether it pass-
es or fails the destination address filter, normally is written to the receive data buffer. In the same respect, as the PF bit is normally used
to indicate whether a frame was error-free, the FF bit normally is used to assess whether it passed the address filter, allowing the CPU
to quickly determine whether the packet should be processed or discarded. The following table summarizes the possible receive
frames and resulting PF, FF bit states reported in the receive status word.

Table 22-3. Packet Filter and Filter Fail Bit Status for Various Received Frames
RECEIVED FRAME

PF, FF
STATUS

BITS NO ERRORS
WITH

ERRORS

PASSED
ADDRESS

FILTER

FAILED
ADDRESS FILTER

SPECIAL FILTERING CONDITION
ENABLED?

00 X X

00 X don’t care don’t care Promiscuous mode (PM = 1)

00 don’t care don’t care X Broadcast frame AND DBF = 1

01 X X

10 X X

10 X don’t care don’t care Promiscuous mode (PM = 1)

10 X X Pass bad frames (PB = 1)

11 X X

11 X X Pass bad frames (PB = 1)

MDC

MII
MANAGEMENT

BLOCK
(Serial interface bus

to PHY)
MDIO

MII I/O BLOCK

(Transmit, receive,
and flow control)

EXTERNAL
PHY

DEVICE

(Configured to
loopback mode)

TX_EN

TXD[3:0]

RXCLK

RX_DV

RX_ER

RXD[3:0]

CRS

COL

TXCLK

DS80C400

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 188

One way to prevent receive packets from always being stored to the receive data buffer, and thus prevent needless interruption of the
CPU, is to use the flush filter failed-packet enable function. The flush filter failed-packet enable (FPE: EBS.7) bit of the EBS SFR is pro-
vided as a simple means to automatically manage consumption of the receive data buffer. The FPE bit enables the BCU to flush a
receive packet as soon as it fails the destination address filter. Setting the FPE bit to 1 causes the BCU to ignore any receive data once
the destination address filter has failed. Thus, no pages in the receive data buffer are consumed, the receive FIFO is not updated, and
the CPU is not interrupted. Note that the promiscuous mode (PM = 1) results in the FF bit always being returned clear (= 0), effective-
ly disabling the flush filter packet enable function. Setting the receive all (RA) bit of the MAC control CSR register to 1 overrides the
FPE bit but allows the FF bit to be set according to the current destination address filter. Clearing the FPE bit to 0 results in the BCU
receiving all incoming packets into the receive buffer, regardless of the destination address filter.

USING THE HASH TABLE
The MAC control (00h) CSR register contains two bits, hash only (HO, bit 15) and hash/perfect (HP, bit 13), that can be configured to
initiate hash filtering of destination addresses. These two filter mode control bits and the resulting address filtering mode are described
in the DS80C400 data sheet. Once hash filtering has been selected, the destination address is passed through the CRC-32 generator
circuitry in order to produce an index into the hash table formed by the multicast address high (0Ch) and multicast address low (10h)
CSR registers. The most significant bit of the resultant CRC-32 is used to select one of the two CSR registers just mentioned. The next
five most significant bits are used to select one of 32 programmable bits in the respective CSR register. If the selected bit per the 6-
bit indexing process just described is set to 1, the destination address passes the hash address filter. If the indexed bit is 0, the des-
tination address fails the hash address filter. Remember that each bit in the hash table corresponds to many addresses, so the appli-
cation must perform additional checking in order to make sure that the address matches with one that it wants to pass.

VLAN SUPPORT
The DS80C400 supports one-level and two-level tagged VLAN frames. A VLAN-tagged frame contains a tag protocol ID (TPID) in the
13th and 14th bytes (those bytes normally occupied by the type/length field). These 2 bytes are compared to the values programmed
in the VLAN1 (20h) and VLAN2 (24h) CSR registers. If a nonzero match occurs with the VLAN1 register, the maximum frame length is
extended by four bytes, two bytes for the TPID already received, plus 2 bytes for the tag control information that immediately follows
the TPID. If the 13th and 14th bytes match the VLAN2 register settings, the maximum frame length is extended by 20 bytes, 2 bytes
for the TPID already received, plus 18 bytes for any tag control information. The DS80C400 data sheet diagrams the VLAN1 and VLAN2
tagged frames. The absolute requirements for virtual LAN implementations are not rigidly defined by IEEE, thus the DS80C400s VLAN1
and VLAN2 register options provide the system administrator with the flexibility to accommodate different VLAN schemes.

PARTITIONING THE 8kB ETHERNET DATA BUFFER MEMORY
An on-chip 8kB SRAM is provided for Ethernet transmit/receive data packet buffering. The address location of this 8kB data memory
is determined by the setting of the IDM1:0 bits of the MCON (C6h) SFR. The 8kB data buffer memory is logically configured as 32 256-
byte pages. These 32 pages are partitioned between receive and transmit data buffer memory per the setting of the buffer size (BS4:0)
bits of the EBS (E5h) SFR. The BS4:0 bits can be programmed to any value n between 0 and 31, inclusive. The receive buffer occu-
pies the first n pages of the 8kB memory, while the transmit buffer occupies the remaining (32-n) pages. Changing the BS4:0 bits auto-
matically flushes the contents of the receive buffer and receive FIFO. The Ethernet buffer control unit directly accesses the 8kB data
buffer memory through its 32-bit wide datapath. The CPU must access the 8kB data buffer memory one byte at a time using MOVX
instructions. Each of the data buffers, receive and transmit, operate in a circular fashion. Following is a diagram showing how one could
partition the 8kB buffer memory for 8 receive pages and 24 transmit pages.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

189 __

Figure 22-10. Example 8kB Data Memory Partition

.

.

.

.

.

.

.

.

.

Page 31

Page 6

Page 7

Page 8

Page 0

Page 1
RECEIVE
BUFFER

(8 PAGES)

TRANSMIT
BUFFER

(24 PAGES)

Buffer size setting
(BS4:0 = 01000b)

8kB INTERNAL SRAM

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 190

TRANSMIT/RECEIVE DATA BUFFER WORD ORIENTATION: ENDIANESS
The big/little-endian (BLE) bit of the MAC control (00h) CSR register defines the endianess with which the MAC handles each 32-bit
word transaction made by the BCU to/from the 8kB data buffer memory. The BLE bit defaults to 0, causing the MAC to consider each
32-bit word to be represented in little-endian byte order. If BLE is set to 1, the MAC considers each 32-bit word to be represented in
big-endian byte order. The endianess defined by the BLE bit applies to all word transactions made by the BCU between the MAC and
buffer memory, including transmit and receive status words reports made to the respective data buffers. Since the DS80C400 CPU can
only access the data buffer memory one byte at a time using the MOVX operation, little-endian byte ordering (BLE = 0) generally allows
for the most efficient buffer handling routines by the CPU. The following figure illustrates the two endian alternatives.

Figure 22-11. Big/Little-Endian Data Buffers

TRANSMITTING DATA
To transmit data over the MII or ENDEC interface, the CPU needs only to load the data buffer, supply size, and location of the buffer,
and submit a transmit request to the buffer control unit (BCU) of the Ethernet controller. Data buffer memory should first be loaded with
the desired transmit data. After the data buffer has been loaded, the BCUD (E6h) and BCUC (E7h) SFR pair are used to communicate
size/location information and submit a transmit request to the BCU. The BCUD SFR needs to be written with the following information
about the data to be transmitted, in the following order: 1) MSByte of the length of the data, 2) LSByte of the length of data, and 3)
starting page for the data. Once this information has been written, the buffer command BC3:0 bits of the BCUC register can be writ-
ten with one of the three possible transmit requests: 0100b = normal, 0101b = disable automatic padding, or 0110b = disable FCS
field generation. Once the transmit request is submitted to the BCU, additional transmit requests submitted by writes to the BCUD,
BCUC registers are intentionally ignored (dropped) by the BCU until the current transmission completes or aborts. Data buffer memo-
ry remains accessible during transmission so that additional transmit/receive data buffers can be loaded or unloaded. When the trans-
mission has completed or has been aborted, the BCU returns a transmit status word for the given data buffer in the first word (32 bits)
of the starting page originally specified for the buffer. The transmit interrupt flag (TIF) is set after the transmit status word has been writ-
ten and an interrupt request to the CPU is generated, if the Ethernet activity interrupt source is enabled. A simple flow diagram for the
transmit process is provided in Figure 22-12.

Desired TX Buffer:
Dest Addr = 00-A0-00-01-02-03
Src Addr = 00-60-35-11-22-33
Length/type = 08 00
Data = 45 00 00 29 DB FB …….

.

.

Transmit status word

00 A0 00 01

02 03 00 60

35 11 22 33

08 00 45 00

00 29 DB FBM
A

C
 t

ra
ns

m
it

or
de

r

.

.

Transmit status word

01 00 A0 00

60 00 03 02

33 22 11 35

00 45 00 08

FB DB 29 00

M
A

C
 t

ra
ns

m
it

or
de

r

LITTLE ENDIAN
(BLE = 0)

BIG ENDIAN
(BLE = 1)

Ascending address Ascending address

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

191 __

Figure 22-12. Transmit Flow Diagram

CPU

Load transmit data buffer memory (MOVXs)

Write BCUD SFR
(Data buffer size/location)

1) msbyte of 11-bit transmit buffer byte count [00–06h]
2) lsbyte of 11-bit transmit buffer byte count [00–FFh]
3) Starting page of transmit buffer [00–1Fh]

Write BCUC SFR
With transmit request command:

BCUC.3-0 Command
 0100 Transmit — Normal
 0101 Transmit—No zero-padding of data
 0110 Transmit—No FCS appended

ETHERNET CONTROLLER
BCU

CPU RUNS OTHER
APPLICATION CODE

BCU services transmit request
1) Transmit attempt by MAC completes or aborts
2) Transmit status word written to the data buffer
3) Transmit interrupt flag (TIF) set to 1

Ethernet activity interrupt request (if enabled)
1) Read BCUC to find TIF = 1
2) Read transmit status word for packet handling

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 192

RECEIVING DATA
After configuring the Ethernet MAC and the defining the receive buffer size, reception, and storage of data from the MII or ENDEC, the
interface does not require CPU intervention. The MAC operates per the settings specified in the CSR registers. The BCU automatical-
ly stores received data and receive status words to the receive data buffer when open pages are available and updates the receive
FIFO. The CPU needs only to process receive data buffer entries and maintain sufficient open pages in the receive data buffer for addi-
tional packet storage by the BCU. From the CPUs perspective, the receive operation begins when the receive interrupt flag (RIF) is set
by the BCU. If the Ethernet activity interrupt source is enabled, this event generates an interrupt request to the CPU. If the Ethernet
activity interrupt source is not enabled, some polling scheme must be used to determine when an Ethernet packet has been received.
The CPU then reads the BCUD SFR to acquire packet size/location information from the receive FIFO. Using this information, the CPU
can locate the receive status word for the packet and process the packet accordingly. Once the CPU finishes processing the receive
data buffer, it must invalidate the current receive packet in order to release the associated receive buffer pages for future use. Once
the current receive packet has been invalidated, the next entry in the receive FIFO (if not empty) can then be accessed through the
BCUD SFR. Note that the RIF flag serves as an indicator as to whether the receive FIFO is empty and therefore should always be
cleared before invalidating the current receive packet to prevent missing an RIF = 1 condition. As an alternate means to free receive
data memory, the receive FIFO and all receive buffer pages can be flushed by issuing the flush receive buffer command. A simple flow
diagram for the receive process is provided in the following figure.

Figure 22-13. Receive Flow Diagram

Process receive data buffer memory (MOVXs)

Write BCUC SFR to free receive buffer memory
BCUC.3-0 Command
 0010 Invalidate current receive packet
 0011 Flush receive buffer

CPU ETHERNET CONTROLLER
BCU

CPU RUNS OTHER
APPLICATION CODE

BCU receives data from MAC*
1) Confirms open page in receive data buffer
2) Store receive data in receive buffer memory
3) Write receive status word
4) Update receive FIFO with start page, number of page
5) Receive interrupt flag (RIF) set to 1

Ethernet activity interrupt request (if enabled)
1) Read BCUC to find RIF = 1
2) Read receive FIFO (BCUD)

BCUD.7-5 = #pages [001–110b]
BCUD.4-0 = start page [00000–11111b]

3) Read receive status word for packet handling

* Notes for the above steps:
1) If the BCU determines that no open pages are

available in the receive data buffer (RBF = 1)
the receive operation cannot occur. Steps 2–5
are not executed. Enabling flow control
would require that at least five pages be
available to avoid assertion of back pressure.
Setting the FPE bit would mandate that the
destination address filter criteria be met
before storing to the receive data buffer.

2) If the receive data buffer becomes full during
a receive operation, RBF is set to 1 and the
current reception is aborted. Steps 2–5 are
executed for the aborted operation.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

193 __

USING WAKE-UP FRAMES
As discussed in the DS80C400 data sheet, the Ethernet controller can be placed into a low-power sleep mode such that it can be awak-
ened by a user-programmable network wake-up frame and/or magic packet. The magic packet must conform to a specific predefined
frame format, while the user-programmable network wake-up frame gives the application flexibility in defining the wake-up frame.

MAGIC PACKET MODE
When put into the magic packet mode, the power-management block constantly monitors each frame addressed to the device for a
specific magic packet pattern. Only packets that pass the current destination address filter are checked against the magic packet
requirement. Each frame received is checked for an FFFF_FFFF_FFFFh pattern after the destination and source address fields. This
pattern must be followed by 16 repetitions of physical MAC address without any breaks or interruptions. In case of a break in the 16
repetitions of the MAC physical address, the FFFF_FFFF_FFFFh pattern is scanned for again in the frame. The 16 repetitions can be
anywhere in the frame, but they must be preceded by the synchronization stream.

For example, if the MAC address of a device were 00-11-22-33-44-55, then the MAC would scan for the following frame data sequence:

[DestinationAddress][SourceAddress]FFFF FFFF FFFF 0011 2233 4455 0011 2233 4455

0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455

0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455

0011 2233 4455 0011 2233 4455CRC

NETWORK WAKE-UP FRAME
Before putting the MAC into sleep mode, the host provides a list of sample frames and the corresponding byte masks to the wake-up
frame filter register in the power-management block through the wake-up frame filter (28h) register. In order to know which bytes of
each receive frame should be included in the CRC-16 calculation, the power-management block uses a programmable byte mask and
a programmable pattern offset for each of the supported filters. In order to load the wake-up frame filter register, the host has to per-
form eight writes to the wake-up frame filter register. The wake-up frame filter structure is illustrated in the DS80C400 data sheet. The
first write loads the filter 0 byte mask, the second write loads the filter 1 byte mask and so on. The fifth write loads the filter command
nibble for each frame filter. Bit 3 of each filter [0,1,2,3] command nibble, wake source (WS), is used in conjunction with the global uni-
cast (GU) bit of the wake-up events control and status (2Ch) CSR register to define what type of frames are compared to the wake-up
frame filters. Bit 0 of each filter [0,1,2,3] command nibble enables the associated wake-up frame filter. The following table summarizes
the possible WS, GU bit combinations. Note that a broadcast frame is always compared versus the enabled wake-up frame filters. One
option to easily allow any broadcast frame to serve as a network wake-up frame is to disable all filter byte mask bits (= 00_00_00_00h)
and designate that the required filter CRC-16 be 0000h (default CRC-16 value). Following the table is an example sequence for pro-
gramming wake-up filter 0 and an accompanying diagram showing the resultant filter.

Table 22-4. Network Wake-Up Frame Patterns

GU, WS NETWORK WAKE-UP FRAME CRITERIA (IF FRAME FILTER ENABLED)

00 Unicast, pass destination address filter, pass wake-up frame filter

01 Multicast, pass destination address filter, pass wake-up frame filter

10 Unicast, pass wake-up frame filter

11 Multicast, pass wake-up frame filter

xx Broadcast, pass wake-up frame filter

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 194

Figure 22-14. Wake-Up Frame Filter 0 Programming Example

1. CSR write register (CSRA = 28h, CSRD = 00_00_00_73h) Filter 0 byte mask

2. CSR write register (CSRA = 28h, CSRD = xx_xx_xx_xxh) don’t care

3. CSR write register (CSRA = 28h, CSRD = xx_xx_xx_xxh) don’t care

4. CSR write register (CSRA = 28h, CSRD = xx_xx_xx_xxh) don’t care

5. CSR write register (CSRA = 28h, CSRD = x0_x0_x0_x1h) Filter 0–enabled, unicast only

6. CSR write register (CSRA = 28h, CSRD = xx_xx_xx_0Ch) Filter 0 offset = 12

7. CSR write register (CSRA = 28h, CSRD = xx_xx_[CRC-16]h) Filter 0 CRC-16

8. CSR write register (CSRA = 28h, CSRD = xx_xx_xx_xxh) don’t care

ETHERNET FRAME

Preamble SFD Destination Address Source Address Byte0 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6... CRC-32

CRC-16 OF BYTES SELECTED BY FILTER

CRC-16 generator
polynomial

Filter 0 offset = 0Ch (12)
0 1 4 5 6

Filter 0 Byte Mask = 00_00_00_73h
 = Select bytes 0, 1, 4, 5, 6

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

195 __

SECTION 23: EMBEDDED DS80C400 SILICON SOFTWARE
The DS80C400 silicon software has been designed and embedded into the DS80C400 to give developers a means to quickly and cost-
effectively network-enable any given application. The DS80C400 ROM firmware implements three major components: full TCP/IP
IPv4/v6 stack with industry standard/Berkeley socket interface, preemptive task scheduler, and NetBoot functionality. A basic summa-
ry of these components and a high-level overview of the DS80C400 silicon software capabilities can be found in the DS80C400 data
sheet. Section 23 provides more detailed information on usage of the functions provided by the DS80C400 silicon software.

SERIAL LOADER
The DS80C400 silicon software contains a serial bootloader to support in-system programming of external memory. The serial loader
can be invoked following an external reset (RST = 1), provided that certain conditions are met. First, the EA pin must be pulled high
externally in order to enable internal program memory. Next, the bypass ROM (BROM) bit must be set to 0, such that the ROM code
is executed and not bypassed. The BROM bit can serve to trigger a reset when changed from 0 to 1 by the application code. When
the application writes BROM from 0 to 1, the application expressly wants to generate a reset and bypass the ROM code and, there-
fore, the serial loader is not accessible. When both of the previous conditions are true following a reset, EA = 1 and BROM = 0, the
ROM code examines the state of port pin P1.7. If P1.7 is found to be a logic 0, the DS80C400 silicon software skips the serial loader
code, and proceeds to its check of the NetBoot (P5.3) pin. If P1.7 is in the logic 1 state, the DS80C400 silicon software code enters
the serial loader autobaud-rate detection code.

AUTOBAUD-RATE DETECTION
The serial loader can automatically detect certain external baud rates and configure itself to that speed. The auto-baud routine oper-
ates serial port 0 in asynchronous serial mode 1 (8-N-1 or 8 data bits, no parity, 1 stop bit) and monitors the receive pin (RXD0) for a
<CR> character (0Dh) at a supported baud rate. The auto-baud routine uses 16-bit Timer 1 to measure the duration of the (0Dh)
received data bits. This measured duration is translated into a corresponding reload value for timer 2, which is used by the ROM for
serial port timing generation. The functionality was designed to for external clock rates from 3.680MHz to 75.000MHz and baud rates
from 2400bps to 115,200bps. The following crystal speeds, however, have been shown to support a wide range of baud rates:
11.0592MHz, 14.7456MHz, 18.432MHz, 22.1184MHz, 29.4912MHz, and 36.864MHz. The autobaud-triggering carriage return charac-
ter must be received by the microprocessor in a time window following activation of the loader mode. If a DS2502 or equivalent is prop-
erly connected to the DS80C4xx, the time window opens 250ms after loader activation and stays open a minimum of 3.5 seconds to
a maximum of around 5 seconds.

If a DS2502 or equivalent is not detected, the time window opens 250ms after loader activation and stays open for approximately 10
seconds at 14.7456MHz (scale to your frequency).

If the auto-baud routine does not detect any serial activity during this period, it aborts the auto-baud process and proceeds to the next
decision point in the ROM code flow. If the auto-baud routine is successful, the TINI ROM transmits a startup banner and displays a
command prompt similar to what is shown below.

DS80C400 Silicon Software—Copyright (C) 2002 Maxim Integrated Products
Detailed product information available at http://www.maxim-ic.com

Welcome to the TINI DS80C400 Auto Boot Loader 1.0.1

COMMAND LINE INTERFACE
The serial loader supports an easy-to-use, ASCII command line interface that responds to the commands that are detailed later. Some
commands require arguments and some commands have optional arguments. In all cases, the arguments are expected to be hexa-
decimal numbers. The serial loader manages memory in 64kB blocks (or banks). The most significant 8 bits of the 24-bit memory
address are used to define the bank index. Most commands apply to the selected bank.

COMMAND SUMMARY
B bank

Bank Select—Selects the given bank of memory as the target for subsequent serial loader operations.
Example: B C0 (selects the 64kB bank of memory C00000h–CFFFFFh)

C [begin address [length]]
Calculates the CRC-16 (cyclic redundancy check) of length bytes within the currently selected memory bank, start-
ing at begin address.
Examples: C (calculates the CRC over the full 64kB bank xx0000h–xxFFFFh)

C 1000 (calculates the CRC for the range xx1000h–xxFFFFh)
C 1000 200 (calculates the CRC for the range xx1000h–xx1200h)

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 196

D [begin address [length]]
Dumps the selected memory range from the currently selected bank in hex format.
Examples: D (dumps memory for the full 64kB bank xx0000h–xxFFFFh)

D 1000 1200 (dumps memory for the range xx1000h–xx1200h)

E
Exit the serial loader and proceed to the find user code routine.

F byte [begin address [length]]
Fills the selected memory range in the currently selected bank with byte. Fill works for
SRAM banks only (not flash banks).
Examples: F 00 (fills the full 64kB bank xx0000h–xxFFFFh with 00h data)

F FF 1000 (fills the range xx1000h–xxFFFFh with FFh data)

G
Go—Starts executing at address 0000h of the currently selected memory bank.

H, ?
Help—Prints loader version and selected bank.

L
Load hex—Load standard ASCII Intel hex formatted data into the currently selected bank of external memory.

N
NetBoot—Transfers execution to the NetBoot code.

T2
Activates/deactivates the internal clock doubler. This command is only supported when the version number shown
when entering the loader is 1.2.0 or greater.

T8
Toggle IRAMD Bit—Toggles the state of the IRAMD (MCON1.7) bit. This enables/disables the internal 64KB SRAM
at address 000000h. This command is not supported on the DS80C400.

V
Verify—Verifies the incoming hex records versus the memory contents of the currently selected bank.

X [offset]
Execute—Executes the user code starting at offset in the currently selected bank. When the optional offset argu-
ment is not provided, a default offset of 0h is used. When an invalid offset is provided, the command is ignored.
Examples: X (executes code starting at address xx0000h)

X 1000 (executes code starting at address xx1000h)

Z bank
Zap—Erases the specified bank of flash memory. Zap should only be used on flash banks (not SRAM banks).

EXPORTED ROM FUNCTIONS
The DS80C400 makes many of its embedded ROM functions accessible to the user application. In the following pages, the exported
ROM functions have been grouped and are described in the following order:

• Utility
• Memory manager
• Socket
• DHCP
• TFTP
• Task scheduler and hooks
• 1-Wire master
• Initialization
• Other

A complete listing of the exported ROM functions and associated function index numbers is located in the DS80C400 data sheet.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

197 __

UTILITY FUNCTIONS
crc16

Description: int crc16(
int crc, /* initial CRC value */
unsigned char value); /* value to include in the CRC calculation */

The crc16 function computes the CRC-16 of a byte given an initial CRC value.

mem_clear

Description: void mem_clear(
void *target, /* pointer to start of target memory to clear */
int length); /* length (in number of bytes) to clear */

The mem_clear function clears a block of memory of length beginning at starting address specified by *target.

mem_copy

Description: void mem_copy(
void *source, /* pointer to the start of the source buffer */
void *target, /* pointer to the start of the target buffer*/
int length); /* length of data to be copied */

The mem_copy function copies a block of memory. If the source and target memory buffers overlap, there is no guarantee
that the source bytes are not overwritten prior to being copied to the target.

INPUT DESCRIPTION OUTPUT DESCRIPTION
B:ACC
DPTR0
DPTR1

length
*source
*target

DPTR0
DPTR1

*source+length
*target+length

Example: MOV B, #high(MEMLENGTH)
MOV A, #low(MEMLENGTH)
MOV DPTR, #SOURCE
INC DPS
MOV DPTR, #TARGET
INC DPS
ROMCALL mem_copy

INPUT DESCRIPTION OUTPUT DESCRIPTION

B:ACC
DPTR0

length
*target

-

Example: MOV B, #high(MEMLENGTH)
MOV A, #low(MEMLENGTH)
MOV DPTR, #MEMTOCLEAR
ROMCALL mem_clear

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC
R1:R0

value
crc

R1:R0 CRC-16 return value

Example: MOV R1, #0
MOV R0, #0
MOV DPTR, #bytelocation
MOVX A, @DPTR
ROMCALL crc16

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 198

mem_compare

Description: int mem_compare(
void *block0, /* pointer to the start of block0 */
void *block1, /* pointer to the start of block1 */
int length); /* length of data to be compared */

The mem_compare function compares two blocks of memory, block0 and block1, for length bytes. This function returns 0
in the accumulator if the two memory blocks are identical, nonzero otherwise.

add_dptr0/add_dptr1

Descriptions: void add_dptr0(
void *dptr0, /* dptr0 pointer */
int value); /* value to be added to pointer */
void add_dptr1(
void *dptr1, /* dptr1 pointer */
int value); /* value to be added to pointer */

The add_dptr0/add_dptr1 function adds a value to current dptr0 or dptr1, depending upon which function is called.

sub_dptr0/sub_dptr1

Descriptions: void sub_dptr0(
void *dptr0, /* dptr0 pointer */
int value); /* value to be subtracted from pointer */
void sub_dptr1(
void *dptr1, /* dptr1 pointer */
int value); /* value to be subtracted from pointer */

The sub_dptr0/sub_dptr1 function subtracts a value from current dptr0 or dptr1, depending upon which function is called.

INPUT DESCRIPTION OUTPUT DESCRIPTION

B:ACC
DPTR0 or
DPTR1

value
*dptr0 (for sub_dptr0) or
*dptr1 (for sub_dptr1)

DPTR0 or
DPTR1

Pointer return value

Example: MOV B, #01h
CLR A
MOV DPTR, #ENDPTR
ROMCALL sub_dptr0

INPUT DESCRIPTION OUTPUT DESCRIPTION

B:ACC
DPTR0 or
DPTR1

value
*dptr0 (for add_dptr0) or
*dptr1 (for add_dptr1)

DPTR0 or
DPTR1

Pointer return value

Example: MOV B, #01h
CLR A
MOV DPTR, #STARTPTR
ROMCALL add_dptr0

INPUT DESCRIPTION OUTPUT DESCRIPTION

B:ACC
DPTR0
DPTR1

length
*block0
*block1

ACC Return value (= 0 if equal)

Example: MOV B, #high(MEMLENGTH)
MOV A, #low(MEMLENGTH)
MOV DPTR, #BLOCK0
INC DPS
MOV DPTR, #BLOCK1
INC DPS
ROMCALL mem_compare

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

199 __

getpseudorandom

Description: unsigned char getpseudorandom(void);
The getpseudorandom function gets a pseudorandom byte from a CRC function.

MEMORY MANAGER FUNCTIONS
rom_kernelmalloc

Description: void rom_kernelmalloc(
int blocksize); /* requested memory blocksize */

The rom_kernelmalloc function allocates fast kernel memory. It allocates a block from the kernel memory pool without
incurring the overhead of the regular memory manager. This function returns 0 in the accumulator if successful, nonzero
otherwise. It is exported by the DS80C400 silicon software, and also serves as the default kernelmalloc in the function redi-
rect table.

rom_kernelfree

Description: void rom_kernelfree(
int blockhandle); /* blockhandle of memory to free. */

The rom_kernelfree function frees fast kernel memory. With blockhandle, this function frees a block of memory that had
previously been allocated by kernelmalloc. It returns 0 in the accumulator if successful, nonzero otherwise. This function is
exported by the DS80C400 silicon software, and also serves as the default kernelfree in the function redirect table.

rom_malloc

Description: void rom_malloc(
int blocksize); /* requested memory blocksize */

The rom_malloc function allocates memory from the heap and clears the allocated memory. It returns 0 in the accumulator
if successful, nonzero otherwise. This function is exported by the DS80C400 silicon software, and also serves as the default
malloc in the function redirect table.

INPUT DESCRIPTION OUTPUT DESCRIPTION

R3:R2 blocksize
ACC
R3:R2
DPTR0

Return value (= 0 for success)
Memory block handle
Pointer to memory block

Example: MOV R3, #high(MEMLENGTH)
MOV R2, #low(MEMLENGTH)
ROMCALL rom_malloc

INPUT DESCRIPTION OUTPUT DESCRIPTION

R3:R2 blockhandle ACC Return value (= 0 for success)

Example: MOV R3, #high(MEMHANDLE)
MOV R2, #low(MEMHANDLE)
ROMCALL rom_kernelfree

INPUT DESCRIPTION OUTPUT DESCRIPTION

R3:R2 blocksize
ACC
R3:R2
DPTR0

Return value (= 0 for success)
Memory block handle
Pointer to memory block

Example: MOV R3, #high(MEMLENGTH)
MOV R2, #low(MEMLENGTH)
ROMCALL rom_kernelmalloc

INPUT DESCRIPTION OUTPUT DESCRIPTION

— ACC Return value

Example: ROMCALL getpseudorandom

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 200

rom_malloc_dirty

Description: void rom_malloc_dirty(
int blocksize); /* requested memory blocksize */

The rom_malloc_dirty function allocates memory from the heap, but does not clear the allocated memory. It returns 0 in
the accumulator if successful, nonzero otherwise. This function is exported by the DS80C400 silicon software, and also
serves as the default mallocdirty in the function redirect table.

rom_free

Description: void rom_free(
int blockhandle); /* blockhandle of memory to free. */

The rom_free function frees a block of memory with a blockhandle that had previously been allocated with rom_malloc or
rom_malloc_dirty. This function returns 0 in the accumulator if successful, nonzero otherwise. It is exported by the
DS80C400 silicon software, and also serves as the default free in the function redirect table.

rom_deref

Description: void rom_deref(
int blockhandle); /* blockhandle of memory to derefence */

The rom_deref function dereferences a memory blockhandle into an absolute address pointer. It returns 0 in the accumula-
tor if successful, nonzero otherwise. This function is exported by the DS80C400 silicon software, and also serves as the
default deref in the function redirect table.

rom_getfreeram

Description: void rom_getfreeram(void);
The rom_getfreeram function returns the amount of memory that is still available in the heap. This function returns 0 in the
accumulator if successful, nonzero otherwise. It is exported by the DS80C400 silicon software, and also serves as the
default getfreeram in the function redirect table.

INPUT DESCRIPTION OUTPUT DESCRIPTION

-
ACC
R3:R0

Return value (= 0 for success)
Amount of free memory

Example: ROMCALL rom_getfreeram

INPUT DESCRIPTION OUTPUT DESCRIPTION

R3:R2 blockhandle
ACC
DPTR0

Return value (= 0 for success)
Pointer to memory block

Example: MOV R3, #high(MEMHANDLE)
MOV R2, #low(MEMHANDLE)
ROMCALL rom_deref

INPUT DESCRIPTION OUTPUT DESCRIPTION

R3:R2 blockhandle ACC Return value (= 0 for success)

Example: MOV R3, #high(MEMHANDLE)
MOV R2, #low(MEMHANDLE)
ROMCALL rom_free

INPUT DESCRIPTION OUTPUT DESCRIPTION

R3:R2 blocksize
ACC
R3:R2
DPTR0

Return value (= 0 for success)
Memory block handle
Pointer to memory block

Example: MOV R3, #high(MEMLENGTH)
MOV R2, #low(MEMLENGTH)
ROMCALL rom_malloc_dirty

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

201 __

SOCKET FUNCTION CALLING CONVENTIONS
The DS80C400 silicon software socket functions conform to the TINI Native Library calling (NatLib) conventions. The NatLib calling
conventions are described as follows.

Input Parameter Buffer
The input parameter buffer consists of up of six parameters (or arguments). Each parameter is 4 bytes wide; thus, a parameter buffer
spans 24 total bytes. Parameter 0 would be at offset 0 in the parameter buffer, parameter 1 at offset 4, etc., as shown here:

Parameter buffer:

Parameter0 (4 bytes) ⇒ Param0[0], Param0[1], Param0[2], Param0[3]

Parameter1 (4 bytes) ⇒ ….

Parameter2 (4 bytes) ⇒ ….

Parameter3 (4 bytes) ⇒ ….

Parameter4 (4 bytes) ⇒ ….

Parameter5 (4 bytes) ⇒ Param5[0], Param5[1], Param5[2], Param5[3]

Each argument passed to a socket function, no matter whether it is an 8-bit byte or 24-bit pointer, occupies a single parameter of the
parameter buffer as described:

Integer representation. 8-bit, 16-bit, and 32-bit values are stored LSB first in the corresponding parameter.

Pointer representation. Pointers are stored LSB first in bytes 0, 1, and 2 of the corresponding parameter. When a pointer to
an array is given, that data array should be of the format: type (one byte: ignored), array length (two bytes: LSB, MSB), and
array data (MSB: LSB bytes).

Prior to calling a given socket function, a parameter buffer should be loaded accordingly and a pointer to that parameter buffer should
be placed in working registers R7, R6, and R5 of working register bank 2 (R7_B2:R5_B2).

Output Return Values
Every socket function returns a success/failure indication in the accumulator (ACC). Success is signaled by ACC = 0. Socket functions
that return 8-bit, 16-bit, or 32-bit values store this value/pointer most significant byte first in working registers R3, R2, R1, and R0 of
working register bank 0 (R3_B0:R0_B0). The following registers potentially are used by the socket functions: ACC, B, DPTR0
(DPX:DPH:DPL), DPTR1 (DPX1:DPH1:DPL1), DPTR2 (DPX2:DPH2:DPL2), DPS, PSW, and register banks 0, 1, 2, and 3 (i.e., the user
must take care to save these registers across socket function calls when necessary).

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 202

SOCKET FUNCTIONS/POINTERS
PARAMBUFFER
The DS80C400 silicon software exports a pointer the six-argument parameter buffer (PARAMBUFFER) that is used by the DHCP task for
its socket function calls. The user application is free to use this parameter buffer, but should recognize that, if more than one task needs
to use a parameter buffer, separate buffers must be declared for each task or the PARAMBUFFER must be protected from concurrent
access.

socket

Description: int socket(

int domain, /* currently ignored */

int type, /* type of socket (UDP = 00h or TCP = 01h) */

int protocol); /* currently ignored */
The socket function creates a network socket (a local endpoint) for TCP or UDP communication. The type can either be
SOCK_STREAM for TCP sockets or SOCK_DGRAM for UDP sockets. The domain and protocol parameters are ignored. The
socket function returns a socket handle (i.e., an identifier for the new socket), but has no specific local address assigned to
it. To use it as a server socket, the use of bind is required. To use a streaming (TCP) socket, the socket must be connected
using either connect or listen/accept. To destroy/free a socket, use closesocket. This is the only function that returns a
socket number. All other socket functions require the socket number to be passed to them to access the correct socket.
Note: The socket function calls gettaskID through the function redirect table to get the current task ID.

closesocket

Description: int closesocket(
int s); /* closes socket with handle = s */

The closesocket function closes a socket. It closes the socket having handle, which was created by the socket call and
returns a success/failure code in the accumulator.

sendto

Description: int sendto(
int s, /* send to socket with handle s */
void *buf, /* datagram data array at *buf */
int len, /* size of datagram to be sent */
int flags, /* currently ignored */
struct sockaddr *addr, /* target address */
int addrlen); /* size of address structure */

The sendto function sends a UDP datagram to the specified address. The target address is specified at *addr; addrlen is
the size of the sockaddr structure. The datagram itself is referenced by *buf, and len is the size of the datagram. The flags
parameter is ignored. The sendto function is unable to detect whether the datagram has successfully reached the destina-
tion, and only returns a failure code on local errors. Use bind to specify a local port number. Without bind, sendto chooses
a random local port.

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

s
*buf
len
flags
*addr
addrlen

Param0[0]–socket handle #
Param1[0:2]–pointer to UDP data
Param2[0:1]–size of datagram
Param3–currently ignored
Param4[0:2]–pointer to target addr
Param5[0]–size of addr structure

ACC Return value (= 0 for success)

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

s Param0[0]–socket handle # ACC Return value (= 0 for success)

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

domain
type

protocol

Param0–currently ignored
Param1[0]–00h = UDP
 01h = TCP
Param2–currently ignored

ACC
R0

Return value (= 0 for success)
Socket handle

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

203 __

recvfrom

Description: int recvfrom(
int s, /* receive on socket with handle s */
void *buf, /* datagram data array at *buf */
int len, /* size of datagram received */
int flags, /* currently ignored */
struct sockaddr *addr, /* remote address */
int addrlen); /* size of address structure */

The recvfrom function receives a UDP datagram. This function receives a message on socket s, storing the message at
*buf. len is the size of buf. If addr is not NULL, the remote address is filled in at *addr. The flags parameter is ignored.
recvfrom returns the number of bytes read. If no data is available on the socket, recvfrom blocks for the amount of time
specified with the setsockopt/SO_TIMEOUT call. Note: It is generally required to use bind in order to first assign a local
port to the socket.

connect

Description: int connect(
int s, /* socket to connect to a specific address */
struct sockaddr *addr, /* address to which socket s should be connected */
int addrlen); /* size of address structure */

The connect function connects a TCP socket to the specified address. This function connects the sockets to the remote
address specified by the addr structure and returns a success/failure code in the accumulator. connect can only be used
once with each socket.

bind

Description: int bind(
int s, /* socket to bind to specified address/port */
struct sockaddr *addr, /* address to which socket s should be bound */
int addrlen); /* length of addr structure */

The bind function binds a socket to the specified address. This function assigns a local address and port at *addr to the
socket s. The combination of IP address and port is often referred to as “name”. Binding a socket is necessary for server
sockets. For client sockets, use bind if a specific source port is requested. s is the socket to be assigned a local name,
addr contains the local address (IP and port values). bind returns a success/failure code in the accumulator.

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

s
*addr
addrlen

Param0[0]–socket handle #
Param1[0:2]–pointer to target addr
Param2[0]–size of addr structure

ACC Return value (= 0 for success)

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

s
*addr
addrlen

Param0[0]–socket handle #
Param1[0:2]–pointer to target addr
Param2[0]–size of addr structure

ACC Return value (= 0 for success)

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

s
*buf
len
flags
*addr
addrlen

Param0[0]–socket handle #
Param1[0:2]–pointer to UDP data
Param2[0:1]–size of datagram
Param3–currently ignored
Param4[0:2]–pointer to target addr
Param5[0]–size of addr structure

ACC
R1:R0

Return value (= 0 for success)
Number of bytes received

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 204

listen

Description: int listen(
int s, /* socket on which to listen for connections */
int backlog); /* maximum queue length for pending connections */

The listen function listens for connections on the specified socket. It creates a queue of length backlog; backlog is the
maximum number of pending new incoming connections (max.16). This function returns a success/failure code. To move an
incoming connection request from the queue to an established state, accept must be called. It is generally required to use
bind to assign a local name to a socket before invoking listen.

accept

Description: int accept(

int s, /* socket on which to accept a pending connection */

struct sockaddr *addr, /* address for new socket connection */
int addrlen); /* length of addr structure */

The accept function accepts a TCP connection on the specified socket. This function moves the first pending new incoming
connection request from the listen queue into the established state. It assigns a new local socket (connection endpoint) to
the connection and returns its socket handle. Accept blocks if there are no pending new incoming connection requests.
The socket s must first be created by the socket call, bound to an address-using bind, and a listen queue must be created
for it using listen. If addr is not NULL, the remote address is filled in.

recv

Description: int recv(
int s, /* socket from which to receive data */
void *buf, /* pointer to receive data buffer */
int len, /* maximum number of bytes to receive */
int flags); /* currently ignored */

The recv function reads data from a connection-oriented (TCP) socket. This function reads up to len bytes from the socket
s, which must be in a connected state, into the buffer buf. It returns the number of bytes read. The flags parameter is
ignored. If there is no data on the socket, recv blocks infinitely unless a socket timeout is set using setsockopt.

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

s
*buf
len
flags

Param0[0]–socket handle #
Param1[0:2]–pointer to TCP data
Param2[0:1]–max bytes to read
Param3–currently ignored

ACC
R1:R0

Return value (= 0 for success)
Number of bytes read

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

s
*addr
addrlen

Param0[0]–socket handle #
Param1[0:2]–pointer to addr
Param2[0]–size of addr structure

ACC
R0

Return value (= 0 for success)
New socket handle #

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

s
backlog

Param0[0]–socket handle #
Param1[0]–max queue backlog

ACC Return value (= 0 for success)

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

205 __

send

Description: int send(
int s, /* socket on which to send data */
void *buf, /* pointer to transmit data buffer */
int len, /* number of bytes to send */
int flags); /* currently ignored */

The send function writes data to a connection-oriented (TCP) socket. It writes len bytes from the buffer buf to the socket s,
which must be in a connected state. The flags parameter is ignored. Send returns only a local success/failure code and
does not necessarily detect transmission errors.

getsockopt/setsockopt

Descriptions: int getsockopt(
int s, /* socket for which to get option */
int level, /* currently ignored */
int name, /* option to get */
void *buf, /* buffer to which socket option data is written */
int len); /* length of buf */
int setsockopt(
int s, /* socket for which to set option */
int level, /* currently ignored */
int name, /* option to set */
void *buf, /* buffer containing socket option data to set */
int len); /* length of buf */

The getsockopt and setsockopt functions get and set socket options. These functions get/set various options of a sockets.
The option to be read/written is specified by the name parameter. The *buf parameter points to the buffer to be filled (get
operation) or the option value to be written (set operation). len is the size of the buffer and modified to the size of the filled-
in data by getsockopt. buf can be NULL if a socket option needs no data. The level parameter is ignored. getsockopt and
setsockopt return a success/failure code in the accumulator.

The following option names are supported:

NAME VALUE DESCRIPTION

TCP_NODELAY 0 Gets/sets the TCP Nagle parameter

SO_LINGER 1 (ignored)

SO_TIMEOUT 2 Gets/sets the socket timeout

SO_BINDADDR 3 Gets the local socket IP (get operation only)

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

s
level
name
*buf
len

Param0[0]–socket handle #
Param1–currently ignored
Param2[0]–option to get/set
Param3[0:2]–pointer to buf
Param4–length of buf

ACC Return value (= 0 for success)

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

s
*buf
len
flags

Param0[0]–socket handle #
Param1[0:2]–pointer to TCP data
Param2[0:1]–# bytes to send
Param3–currently ignored

ACC Return value (= 0 for success)

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 206

getsockname

Description: int getsockname(
int s, /* socket for which to get local IP address and port */
struct sockaddr *addr, /* address where IP address and port should be stored */
int addrlen); /* size of addr structure */

The function getsockname returns the local IP and port of the socket s and stores it in the addr structure. It returns a suc-
cess/failure code in the accumulator.

getpeername

Description: int getpeername(
int s, /* socket for which to get the remote IP address */
struct sockaddr *addr, /* address where IP address should be stored */
int addrlen); /* length of addr structure */

The getpeername function returns the remote address of a connection-oriented (TCP) socket. If socket s is connected, get-
peername stores the remote address into the addr structure. This function returns a success/failure code in the accumulator.

cleanup

Description: int cleanup(
int pid); /* task ID of terminated task */

The cleanup function closes all sockets associated with a task ID. The user’s task manager should call this function when-
ever a task dies so as to ensure all associated resources are freed by the socket layer. pid is the task ID of the terminated
task. cleanup returns a success/failure code in the accumulator. Note: The DS80C400 silicon software task scheduler does
not call this function. The user should call cleanup after each task_kill call.

avail

Description: int avail(
int s); /* socket to check availability of received bytes */

The avail function reports the number of bytes available for recv on a connection-oriented (TCP) socket.

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

s Param0[0]–socket handle #
ACC
R1:R0

Return value (= 0 for success)
Bytes available for reading

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

pid
Param0[0]–task ID for which
 associated sockets
 should be closed

ACC Return value (= 0 for success)

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

s
*addr
addrlen

Param0[0]–socket handle #
Param1[0:2]–pointer to addr
Param2[0]–size of addr structure

ACC Return value (= 0 for success)

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

s
*addr
addrlen

Param0[0]–socket handle #
Param1[0:2]–pointer to addr
Param2[0]–size of addr structure

ACC Return value (= 0 for success)

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

207 __

join/leave

Descriptions: int join(
int s, /* socket to add to the multicast group */
struct sockaddr *addr, /* address of specified multicast group */
int addrlen); /* length of addr structure */
int leave(
int s, /* socket to remove from the multicast group */
struct sockaddr *addr, /* address of specified multicast group */
int addrlen); /* length of addr structure */

The join and leave functions add or remove, respectively, socket s to/from the specified multicast group. The multicast
group name is specified by the addr structure. Join and leave return a success/failure code in the accumulator. Note: The
current implementation does not support IPv6 multicasting.

ping

Description: int ping(
struct sockaddr *addr, /* address to ping */
int addrlen, /* size of addr structure */
int TTL, /* time-to-live */
unsigned char *response); /* data returned in response to ping */

The ping function pings the specified address and returns the result. It sends an ICMP echo request, or ping, to a remote
host specified by addr. The packets sent by ping have the specified time-to-live (TTL). Ping returns the response time and
the buffer pointed to by *response gets filled in with the returned data.

getnetworkparams/setnetworkparams

Descriptions: int setnetworkparams(
void *parameters); /* pointer to network parameters buffer */
int getnetworkparams(
void *parameters); /* pointer to network parameters buffer */

The setnetworkparams and getnetworkparams functions set/get the IPv4 address and configuration parameters. These
functions allow the user to set/get the IPv4 portion of the network configuration (Note: the IPv6 address is autoconfigured).
To autoconfigure IPv4, use the DHCP functionality instead of setnetworkparams. The address configured by DHCP can be
read using getnetworkparams. Both functions return a success/failure code in the accumulator. Network parameters is a
buffer containing the following data:

PARAMETER OFFSET LENGTH DESCRIPTION

(zero) 0 12 Must be 0

IP4ADDR 12 4 IP address

IP4SUBNET 16 4 Subnet mask

IP4PREFIX 20 1 Number of 1 bits in subnet mask

(zero) 21 12 Must be 0

IP4GATEWAY 33 4 IP address of default gateway

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

*parameters
Param0[0:2]–Pointer to
parameters buffer

ACC Return value (= 0 for success)

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

*addr
addrlen
TTL
*response

Param0[0:2]–pointer to addr
Param1[0]–size of addr structure
Param2[0]–time-to-live
Param3[0:2]–pointer to return data

ACC Return value (= 0 for success)

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

s
*addr
addrlen

Param0[0]–socket handle #
Param1[0:2]–pointer to addr
Param2[0]–size of addr structure

ACC Return value (= 0 for success)

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 208

getipv6params

Descriptions: getipv6params(
void *parameters); /* pointer to IPv6 parameters buffer */

The getipv6params function returns the IPv6 address of the Ethernet interface to the parameters buffer. The parameters
buffer contain the following data following the getipv6params function:

PARAMETER OFFSET LENGTH DESCRIPTION

IP6ADDR 0 16 IP address

IP6PREFIX 16 1 IP prefix length

getethernetstatus

Description: int getethernetstatus(void);
The getethernetstatus function returns the Ethernet status (link). The return value is a bit-wise OR of the following
flags:

FLAG* VALUE DESCRIPTION

ETH_STATUS_LNK 01h Ethernet link status

*(No other flags are currently defined.)

gettftpserver/settftpserver

Descriptions: int gettftpserver(
struct sockaddr *addr, /* address of TFTP server */
int *addrlen); /* length of addr structure */
int settftpserver(
struct sockaddr *addr, /* address of TFTP server */
int *addrlen); /* length of addr structure */

The gettftpserver and settftpserver functions get/set the IP address of the TFTP server. gettftpserver stores the address
of the TFTP server into the addr structure. settftpserver sets the TFTP server address to the value supplied in addr. The
settftpserver function must be used if the address of the TFTP server is not acquired by DHCP or 1-Wire. Both functions
return a success/failure code in the accumulator.

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

*addr
addrlen

Param0[0:2]–Pointer to addr
Param1[0]–Size of addr structure

ACC Return value (= 0 for success)

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

— ACC
R0

Return value (= 0 for success)
Return value (bit-wise OR of flags)

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

*parameters
Param0[0:2]–Pointer to
parameters buffer

ACC Return value (= 0 for success)

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

209 __

DHCP FUNCTIONS
dhcp_init

Description: int dhcp_init(void);
The dhcp_init function initializes the DHCP client. dhcp_init starts a DHCP client task and returns to the caller.
This function returns 0 in the accumulator if successful, nonzero otherwise. To read the address DHCP has config
ured (only valid if DHCP is in bound, renewing or rebinding state—see dhcp_status), use the socket layer function
getnetworkparams.

DHCP is implemented for IPv4 only. The IPv6 portion of the network stack uses neighbor discovery.

The DHCP client calls DHCPnotify from the function redirect table when it acquires or loses an IP. The default DHCPnotify rou-
tine supplied in the function redirect table (when ROM_redirect_init is executed by the DS80C400 silicon software) is
rom_dhcp_notify.

dhcp_setup

Description: The dhcp_setup function is used by dhcp_init and dhcp_stop.

dhcp_startup

Description: The dhcp_startup function is used by dhcp_init.

dhcp_run

Description: The dhcp_run function is used by dhcp_init.

dhcp_status

Description: int dhcp_status(void);

The dhcp_status function returns the DHCP state. The possible DHCP state return values are listed as follows. See
the RFC2131 for a description of these DHCP states.

DHCP STATE RETURN VALUE

INIT 0

SELECTING 1

REQUESTING 2

INITREBOOT 3

REBOOTING 4

BOUND 5

RENEWING 6

REBINDING 7

INPUT DESCRIPTION OUTPUT DESCRIPTION

— ACC Return value

Example: ROMCALL dhcp_status

INPUT PARAMETER#–DESCRIPTION OUTPUT DESCRIPTION

— ACC
R0

Return value (= 0 for success)
Return value (bit-wise OR of flags)

Example: ROMCALL dhcp_init

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 210

dhcp_stop

Description: void dhcp_stop(void);

The dhcp_stop function disables the DHCP functionality and kills the DHCP client task.

rom_dhcp_notify

Description: int rom_dhcp_notify(void)

This function notifies of a DHCP state change and sends the TASK_DHCPSLEEP signal to the task originally called
dhcp_init(). rom_dhcp_notify() is exported by the DS80C400 silicon software and serves as the default DHCPnotify
in the function redirect table. The DHCP client calls DHCPnotify from the function redirect table when it acquires or loses
an IP.

TFTP FUNCTIONS/POINTERS
TFTP_MSG

The DS80C400 silicon software exports a pointer to the data buffer that is configured by the tftp_first task, which is used by
the TFTP session.

tftp_init

Description: int tftp_init(void);

The tftp_init function initializes the TFTP client. It sets up the data structures required for the TFTP client, most importantly the
TFTP_MSG data buffer. This function returns 0 in the accumulator if successful, nonzero otherwise.

tftp_first

Description: int tftp_first(

char *filename); /* pointer to filename for TFTP request */

The tftp_first function requests the first TFTP data block and waits for data. This function requests the file name specified at
*filename from the TFTP server and returns the number of bytes read along with a success/failure indication in the accumu-
lator. If this number is less than 512, the TFTP transfer has ended.

INPUT DESCRIPTION OUTPUT DESCRIPTION

DPTR0 *filename
ACC
R1:R0

Return value (= 0 for success)
#bytes read

Example: MOV DPTR, #FILENAME
 ROMCALL tftp_first

INPUT DESCRIPTION OUTPUT DESCRIPTION

— ACC Return value (= 0 for success)

Example: ROMCALL tftp_init

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC New DHCP state —

Example: ROMCALL rom_dhcp_notify

INPUT DESCRIPTION OUTPUT DESCRIPTION

— —

Example: ROMCALL dhcp_stop

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

211 __

tftp_next

Description: int tftp_next(

int ack_only); /* flag to signal when ack_only should be sent */

The tftp_next function acknowledges a TFTP data block and waits for data. tftp_next(0) returns subsequent data blocks (until
the returned length is less than 512). Use ack_only <>0 (i.e., tftp_next(1)) to acknowledge the last data block without wait-
ing for additional data.

tftp_close

Description: int tftp_close(void);

This function closes a tftp socket allocated by tftp_first(). tftp_close(). It frees the socket handle allocated by
tftp_first() and should be called when a tftp data transfer has finished (or when a tftp data transfer has failed).

TASK SCHEDULER FUNCTIONS
task_genesis

Description: void task_genesis(

int savesize); /* buffer of savesize allocated to hold task state */

The task_genesis function sets up primordial and idle threads. This function creates the running task list and assigns the task
ID 1 to the current flow of execution. It calls malloc to allocate a buffer of savesize, which is used to save and restore the task
state. Note: This function does not change or enable the timer interrupt. Interrupt handlers must be installed and
corresponding interrupts must be enabled before calling this function.

task_getcurrent

Description: int task_getcurrent(void);

The task_getcurrent function returns the current task’s ID.

INPUT DESCRIPTION OUTPUT DESCRIPTION

— ACC Task ID

Example: ROMCALL task_getcurrent

INPUT DESCRIPTION OUTPUT DESCRIPTION

R1:R0 savesize —

Example: MOV R1, #high(SAVESIZE)
MOV R0, #low(SAVESIZE)
ROMCALL task_genesis

INPUT DESCRIPTION OUTPUT DESCRIPTION

— ACC return value (=0 for success)

Example: ROMCALL tftp_close

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC ack_only
ACC
R1:R0

Return value (= 0 for success)
#bytes read

Example: MOV A, #0h
ROMCALL tftp_next

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 212

task_getpriority

Description: int task_getpriority(

int id); /* id of the task for which we want to get priority */

The task_getpriority function returns the priority of a task. It returns the priority of the task with the given id. The current task
always has ID = 0. This function returns a success/failure code in the accumulator (ACC) SFR and the task priority
in the B SFR.

task_setpriority

Description: int task_setpriority(

int id, /* id of the task for which we want to set priority */

int priority); /* priority that we wish to assign to task with id */

The task_setpriority function changes a task priority. ID 0 means current task. The priority is a value in the range MIN_PRI
ORITY MAX_PRIORITY, with an idle task running at MIN_PRIORITY, a regular task running at NORM_PRIORITY. This function
returns a success/failure code in the accumulator (ACC) SFR.

task_fork

Description: int task_fork(

int priority, /* priority that we wish to assign to the task */

int savesize); /* buffer of savesize allocated */

The task_fork function creates and executes a new task. It creates a new task and links it into running task list with the given
priority. This function creates a duplicate of the current task and assigns it a new task id. The new task returns with a zero id,
the parent gets the child id as a return value. This function also returns a success/failure code in the accumulator (ACC). It
calls malloc to allocate a buffer of savesize, which is used to save and restore the task’s state. priority is a user-assigned value
in the range MIN_PRIORITY...MAX_PRIORITY.

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC
R1:R0

priority
savesize

ACC
R0

Success (= 00h) or failure code
Child task ID or 0h if child

Example: ; Create a DHCP task
MOV R1, #high(SAVESIZE)
MOV R0, #low(SAVESIZE)
MOV A, #NORM_PRIORITY
ROMCALL task_fork
JNZ dhcp_init_exit
; this is a child task – run the FSM
AJMP dhcp_run
Dhcp_init_parent:
;record the DHCP task id
MOV DPTR, #DHCP_TASKID
MOVX A, @DPTR

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC
B

id
priority

ACC Success (= 00h) or failure code

Example: CLR A
MOV B, #NORM_PRIORITY-1
ROMCALL task_setpriority

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC id
ACC
B

Success (= 00h) or failure code
task priority

Example: MOV A, #…
ROMCALL task_getpriority

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

213 __

task_kill

Description: int task_kill(

int id); /* id of the task to be killed */

The task_kill function kills a task. This function destroys a task and frees its state buffer. ID 0 means current task. It returns a
success/failure code in the accumulator (ACC). Note: This function does not interact with the socket code. Call the socket
function cleanup() to close all associated sockets.

task_suspend

Description: int task_suspend(

int id, /* id of task to be suspended */

int eventmask; /* eventmask to be satisfied before awakening */

The task_suspend function suspends a task. It suspends a task until all events in eventmask have been generated. ID 0
means current task. This function returns a success/failure code in the accumulator. Before task suspension, the switch_out()
hook is called. To wake up a task, use task_signal().

task_sleep

Description: int task_sleep(

int id, /* id of the task to be put to sleep */

int eventmask; /* eventmask to be satisfied before awakening */

int milliseconds); /* number of milliseconds the task must sleep */

The task_sleep function puts a task to sleep. It suspends a task until at least milliseconds milliseconds have elapsed or the
eventmask has occurred (use eventmask = 0 for regular sleep). ID 0 means current task. Before suspension, the
switch_out() hook is called. The function returns a success/failure code in the accumulator (ACC).

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC
B
R3:R0

id
eventmask
milliseconds

ACC Success (= 00h) or failure code

Example: CLR A
MOV B, A ;regular sleep for 10 seconds = 10000ms
MOV R3, #0
MOV R2, #1
MOV R1, #0
MOV R0, #0
ROMCALL task_sleep

INPUT DESCRIPTION OUTPUT DESCRIPTION
ACC
B

id
eventmask

ACC Success (= 00h) or failure code

Example: CLR A
MOV B, #TASK_DHCPSLEEP
ROMCALL task_suspend

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC id ACC Success (= 00h) or failure code

Example: MOV DPTR, #DHCP_TASKID
MOVX A, @DPTR
ROMCALL task_kill

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 214

task_signal

Description: int task_signal(

int id, /* id of task to send signal */

int eventmask); /* eventmask containing event(s) to signal */

The task_signal function signals a task. This function sends event(s) in eventmask to a task. If the task is waiting for no other
events, it wakes up and is electable to be run by the task switcher. ID 0 means current task. This function returns a suc
cess/failure code in the accumulator (ACC). It wakes up tasks that have been suspended by task_suspend().

TASK SCHEDULER USER HOOKS
To allow the user to expand upon implemented task scheduler i,e., to save and restore additional properties of a task the task sched-
uler calls hook functions. The user must make sure to preserve all of the parameters passed across the hook function call.

task_create

The task_create function is called when the very first task block is created by task_genesis. The DS80C400 silicon software imple-
mentation of this function does nothing. The parameters automatically passed to task_create by task_genesis are defined as follows.

task_duplicate

The task_duplicate function is called by the task_fork function. The DS80C400 silicon software implementation of this function does
nothing. The parameters automatically passed to task_duplicate by task_fork are defined as follows.

task_destroy

The task_destroy function is called when a task is destroyed by task_kill. The DS80C400 silicon software implementation of this func-
tion does nothing. The parameters automatically passed to task_destroy by task_kill are defined as follows.

rom_task_switch_in

The rom_task_switch_in function is called by the scheduler before a task is switched in. The DS80C400 silicon software implemen-
tation of this function restores the state buffer (stack and SFRs). This function is exported by the DS80C400 silicon software, and also
serves as the default taskswitchin in the function redirect table.

Note: This function does not return. However, it returns to the caller of rom_task_switch_out with ACC = 0. The parameters passed
to rom_task_switch_in are defined as follows.

INPUT DESCRIPTION OUTPUT DESCRIPTION

DPTR0 TCB of task to be switched in User-defined

INPUT DESCRIPTION OUTPUT DESCRIPTION

DPTR0 TCB of task to be removed User-defined

INPUT DESCRIPTION OUTPUT DESCRIPTION

R1: R0
R7
DPTR0

savesize
priority
Newly allocated TCB

User-defined

INPUT DESCRIPTION OUTPUT DESCRIPTION

R1: R0
DPTR0

savesize
Newly allocated TCB

User-defined

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC
B

id
eventmask

ACC Success (= 00h) or failure code

Example: MOV A, … ;regular sleep for 10 seconds = 10000ms
MOV B, #TASK_USER0 ;user defined event
ROMCALL task_signal

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

215 __

rom_task_switch_out

The rom_task_switch_out function is called before a task is suspended (either voluntarily because it waits for an event or because
its timeslice is over). The DS80C400 silicon software implementation of this function saves the task’s state (stack and SFRs) to the state
buffer. This function is exported by the DS80C400 silicon software, and also serves as the default taskswitchout in the function redi-
rect table. Note: It returns ACC ! = 0. rom_task_switch_in returns to the caller of this function with ACC = 0. The parameters passed
to rom_task_switch_in are defined as follows.

1-WIRE MASTER
OWM_First

The OWM_First function searches for the first 1-Wire device on the network and, if found, places the 8-byte unique ROM ID in the
OWM_ROMID buffer. A pointer to the OWM_ROMID buffer is provided in the ROM export table.

OWM_Next

The OWM_Next function searches for the next 1-Wire device on the network based upon the last known search ROM discrepancy and,
if found, places the 8-byte unique ROM ID in the OWM_ROMID buffer. A pointer to the OWM_ROMID buffer is provided in the ROM
export table.

OWM_Reset

The OWM_Reset function performs a 1-Wire reset on the network and returns device presence and line-short conditions.

OWM_Byte

The OWM_Byte function performs eight 1-Wire bit timeslots on the network and returns the response.

OWM_ROMID

OWM_ROMID is a memory buffer where 8-byte address (unique ROM ID) is stored after successful OWM_First or OWM_Next func-
tion call. A pointer to OWM_ROMID buffer is provided in the ROM export table. The 8-byte returned address is stored as follows:

@OWM_ROMID+0: Family Code

@OWM_ROMID+1: LSByte of 6-byte serial number

@OWM_ROMID+2: LSByte+1 of 6-byte serial number

@OWM_ROMID+3: LSByte+2 of 6-byte serial number

@OWM_ROMID+4: LSByte+3 of 6-byte serial number

@OWM_ROMID+5: LSByte+4 of 6-byte serial number

@OWM_ROMID+6: MSByte of 6-byte serial number

@OWM_ROMID+7: CRC

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC byte to transmit ACC byte received

INPUT DESCRIPTION OUTPUT DESCRIPTION

— ACC
line shorted (=00h)
presence detected (=01h)
no presence detected (=03h)

INPUT DESCRIPTION OUTPUT DESCRIPTION

— ACC
next device found (=01h)
otherwise (=00h)

INPUT DESCRIPTION OUTPUT DESCRIPTION

— ACC
device found (=01h)
otherwise (=00h)

INPUT DESCRIPTION OUTPUT DESCRIPTION

DPTR0 TCB of task to be switched in User-defined

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 216

ADDITIONAL FUNCTIONS AVAILABLE IN ROM VERSION 1.2.0
If the ROM version (as shown when entering the serial loader) is 1.2.0 or greater, the following additional ROM functions are available.
For earlier ROM versions, equivalent functionality is being made available via external C libraries, which can be found at:
ftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/index.html.

rom_netboot

The rom_netboot function initiates netboot, ignoring the state of the netboot port pin.

task_switcher

This function is the address of the default task scheduler built into the ROM, which is periodically called by the timer interrupt. The
address is exported to make replacement of the timer interrupt handler easier.

tick_calculatereload

This function calculates the reload value for the timer tick based on the CPU crystal speed. The result is saved into directs used by the
timer interrupt handler.

owm_probeclock

This function attempts to determine the processor crystal speed through 1-Wire timing measurements.

Example: If the crystal speed is 18.432MHz, the result is 1843. The result is zero if the bus is shorted, if there is no 1-Wire presence,
or an error occurred during measurement. The result is not very accurate and could be off by as much as +100% to -50%.

owm_calculatedivisor

This function calculates the initialization value for the 1-Wire master given a CPU speed.

info_sendstring

This function prints a zero-terminated string on serial port 0 using bit-bang routines.

info_sendtwohex

This functions prints a hexadecimal value on serial port 0 using bit-bang routines.

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC Value to print —

INPUT DESCRIPTION OUTPUT DESCRIPTION

DPTR0 String address in MOVC memory —

INPUT DESCRIPTION OUTPUT DESCRIPTION

R1:R0 Crystal speed (x 10kHz) ACC Divisor to use with 1-Wire master

INPUT DESCRIPTION OUTPUT DESCRIPTION

— R1:R0 Crystal speed (x 10kHz)

INPUT DESCRIPTION OUTPUT DESCRIPTION

R1:R0 Crystal speed (Function does not return a value)

INPUT DESCRIPTION OUTPUT DESCRIPTION

— (Function does not return a value)

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

217 __

info_convhex

This function converts 4-bit value into ASCII representation of its hexadecimal value.

info_sendcrlf

This function prints carriage return/line feed on serial port 0 using bit-bang routines.

copyright

This function is the location of the copyright message in ROM.

allrightsreserved

This function is the location of the second part of the copyright message in ROM.

util_pseudorand

This function gets a pseudorandom byte from a CRC function.

flash_sectorerase

This function erases a flash sector (AMD-compatible flash memories).

mem_writexram

This function writes a byte to SRAM or flash (AMD-compatible flash memories). The function auto-detects whether a memory address
is in flash and triggers a flash programming sequence.

arp_generaterequest

This function generates an ARP request for the specified IPv4 address.

INPUT DESCRIPTION OUTPUT DESCRIPTION

R3:R0 IPv4 address —

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC Byte to program —

AP:DPH0:DPL0 Address

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC Bits A23–A16 of sector address —

INPUT DESCRIPTION OUTPUT DESCRIPTION

— ACC Pseudorandom byte

INPUT DESCRIPTION OUTPUT DESCRIPTION

— —

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC Value to convert (0-F) ACC Converted ASCII digit

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 218

arp_checkcache

This function checks whether the system has an ARP cache entry for a specified IPv4 address.

netnat_subnet_to_prefix

This function calculates prefix length from an IPv4 subnet mask.

Example: 255.255.255.0 is converted to 24.

unbind

This function unbinds a UDP socket from a local port.

math_mul1024

This function multiplies a 32-bit integer by 1024. This function does not use the math accelerator.

math_div2

This function divides a 32-bit integer by 2. This function does not use the math accelerator.

math_div1024

This function divides a 32-bit integer by 1024. This function does not use the math accelerator.

math_longdiv1024

This function divides a 40-bit integer by 1024. This function does not use the math accelerator.

INPUT DESCRIPTION OUTPUT DESCRIPTION

R4:R0 Value R3:R0 Result

INPUT DESCRIPTION OUTPUT DESCRIPTION

R3:R0 Value R3:R0 Result

INPUT DESCRIPTION OUTPUT DESCRIPTION

R3:R0 Value R3:R0 Result

INPUT DESCRIPTION OUTPUT DESCRIPTION

R3:R0 Value R3:R0 Result

INPUT DESCRIPTION OUTPUT DESCRIPTION

R3:R0 Socket number ACC 0:Success

INPUT DESCRIPTION OUTPUT DESCRIPTION

DPTR0 Address of subnet mask (4 bytes) R0 Prefix length

INPUT DESCRIPTION OUTPUT DESCRIPTION

R3:R0 IPv4 address ACC
0: Entry exists;

1: Request pending;
0FFh: Otherwise

ACC
0: Check cache only;

1: Generate request if address
not in cache

DPTR0 Points to the first byte of MAC I
if ACC = 0.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

219 __

task_suspend_nc

This function is similar to task_suspend, but it does not enter/exit a critical section.

task_sleep_nc

This function is similar to task_sleep, but it does not enter/exit a critical section.

udp_testreceive

This function checks for datagrams received on the specified port. Note that this function should not be called by the user.

eth_readmii

This function reads the contents of an MII register (MII = Ethernet Media Independent Interface).

eth_writemii

This function writes a value to an MII register.

eth_readcsr

This function reads from an Ethernet CSR.

eth_writecsr

This function writes an Ethernet CSR.

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC Register address

R3:R0 32-bit register contents

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC Register address R3:R0 32-bit register contents

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC Register number —

B PHY number

R1:R0 Data to write

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC Register number R1:R0 Contents of register

B PHY number

INPUT DESCRIPTION OUTPUT DESCRIPTION

R1:R0 Port DPTR0 Datagram

ACC 0: Leave datagram in queue;
1: Remove datagram from queue R3:R2 Datagram handle

R7:R6 Length of datagram

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

__ 220

ip_checkheader

(IPv4 only) This function checks to see if the network stack is interested in the incoming IPv4 datagram. The function also checks basic
packet correctness.

Note: Before calling this function, the caller must ensure that:

1) the buffer contains at least 20 + 8 bytes (header + protocol) of IPv4 data

2) the total packet length reported in the IP header is smaller than or equal to the size of the buffer (minus frame length)

This function does not verify the header checksum.

ip_packetreceived

(IPv4 only) This function is called by network interface drivers when an IP datagram has been received. At least the IP header is
assumed to have been unloaded.

Note: It is assumed that IP_CheckHeader has been called and returned 0.

INITIALIZATION FUNCTIONS
Before using any DS80C400 silicon software function, the system must have a valid interrupt vector table and function redirect table,
and all memory must be cleared (directs, RAM). Additionally, other initialization functions for the memory manager, scheduler, and net-
working hardware/software drivers must be executed. The rom_init call takes care of required initialization. It is expected that using
the rom_init call is the preferred method for initializing the system, therefore, only high-level descriptions are given for the functions
called by rom_init.

rom_init

The rom_init function performs the initialization that provides functionality to the exported DS80C400 silicon software functions.
Supplying a lower address bound (R2:R0) of 000000h results in a default heap-memory allocation that afterward can be assessed by
examining the BOOT_MEMBEGIN and BOOT_MEMEND parameters. rom_init is automatically executed with default heap-memory
allocation when NetBoot is selected. Otherwise, the user code should supply the lower and upper address bounds for heap-memory
allocation when calling rom_init. The basic rom_init execution flow is given following the input/output parameter definition.

Init Function Description*

1. rom_copyivt Copies a default interrupt vector table from ROM to external memory starting at 000000h. The
default interrupt vector table executes a RETI for all interrupts except for the following:
Timer 0 (000Bh)—WOS_tick routine
Power-Fail (0033h)—Loops until the PFI bit can be cleared, signaling that power has returned to
a good state. Once PFI can be cleared, a jump is made to the start of ROM as if power had
been lost.
Ethernet Act (0073h)—ETH_ProcessInterrupt routine

INPUT DESCRIPTION OUTPUT DESCRIPTION

R2:R0 Lower address bound for heap memory allocation ACC return value (0 = success)

R5:R3 Upper address bound for heap memory allocation

INPUT DESCRIPTION OUTPUT DESCRIPTION

DPTR0 Address of IPv4 header —

R3:R2 Kernel memory buffer handle
for datagram

INPUT DESCRIPTION OUTPUT DESCRIPTION

DPTR0 IPv4 header ACC 0: Packet passes verification

B
(if ACC = 0): 0 for directed

datagram, non-zero for
broadcast/multicast

2. rom_redirect_init Copies the redirect call table from ROM to external memory 0100h–017Fh.

3. ---- SETB EPFI instruction enables power-fail interrupt

4. ---- Prints part of the opening message "DS80C400 Silicon Software "

5. ---- Clears internal direct memory (scratchpad) 00h–FFh

6. ---- Clears external system xdata memory between 0180h–(start address of BLOB - 1) that is used for
network and task manager data structures.

7. mm_init Initialize heap memory according to upper/lower bound addresses passed to

rom_init. If the default heap-memory allocation is used, the address range is ~(start address of
BLOB +1000h) – FFFFh.

8. km_init Initialize kernel memory

9. ---- Prints more of the opening message "- Copyright (C) "

10. ---- Internal functions to manipulate the 1-Wire bus, make timing measurements, and calculate an
appropriate setting for the 1-Wire clock divisor register.

11. ow_init Initialize 1-Wire master. As an input parameter, the ow_init function requires that ACC contain the
desired value to program into the 1-Wire clock divisor register. If ow_init is called as part of the
rom_init function, this input parameter is passed automatically from the previous internal functions.

12. network_init Initialize network layer

13. ---- Prints more of the opening message " S/N: "

14. eth_init Initialize driver

15. ---- Prints the 8-byte serial number "NNNNNNNNNNNNNNNN"

16. init_sockets Initialize socket layer

17. ---- Prints more of the opening message " MAC ID: "

18. tick_init Initialize Timer0 periodic interrupt

19. ---- Prints the 6-byte MAC address "MMMMMMMMMMMM"

20. task_genesis Initialize scheduler and create an idle thread

21. ---- SETB EA enables interrupts

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

221 __

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

ASYNCHRONOUS TCP/IP MAINTENANCE FUNCTIONS
The default timer-interrupt handler (WOS_tick) periodically calls the default task scheduler (WOS_IOPoll). This WOS_IOPoll routine
automatically calls certain asynchronous TCP/IP stack-maintenance functions and then calls the User_IOPoll redirect function. The
User_IOPoll hook provides a simple means for the user to extend the task scheduler if he/she desires. Since WOS_IOPoll is already
designed to handle the necessary TCP/IP maintenance function and can easily be supplemented with user-specific task-scheduler
code, it is the preferred method for ensuring proper and timely execution of the specified TCP/IP maintenance tasks. Therefore, only
high-level descriptions are given for the functions called by WOS_IOPoll.

MAINTENANCE FUNCTION DESCRIPTION

1) IP_ProcessReceiveQueues Drive all the protocol receive queues. Checks the ARP, TCP, UDP, and ICMP
receive queues for messages that need to be processed. Processing the receive
packet may involve passing the message to a higher level protocol handler or
building a response queuing the response for transmission.

2) IP_ProcessOutput Drive all the protocol transmit queues. Checks all active connections to deter
mine whether output is needed in the form of data, acknowledge, or both.

3) IP6_ProcessReceiveQueues Drive all the IPv6 protocol receive queues

4) IP6_ProcessOutput Drive all the IPv6 protocol transmit queues

5) TCP_RetryTop Run TCP retry process. Searches connections for unacknowledged segments.
Any found with expired retry timers are retransmitted.

6) ETH_ProcessOutput Age all entries in the ARP cache

7) IGMP_GroupMaintenance Let IGMP output run. Checks all groups to see if IGMP report messages need to
be generated.

OTHER FUNCTIONS/POINTERS
eth_processinterrupt—default Ethernet interrupt handler. The Ethernet interrupt handler unloads packets from the Ethernet hardware
buffer and enqueues them into the appropriate TCP/IP protocol queues.

arp_generaterequest—generates ARP request

MAC_ID—pointer to MAC ID, stored Big Endian

entercritsection—enter critical section. This function increments the variable wos_crit_count located in direct data memory at address 68h.

leavecritsection—leave critical section. This function decrements the variable wos_crit_count located in direct data memory at
address 68h.

WOS_tick—default timer interrupt handler. A flow diagram for this interrupt handler is provided in Figure 23-1.

BLOB—pointer to the start address of xdata memory ignored by NetBoot. The BLOB memory space, by default, occupies at least 4kB
of contiguous memory, ending at address (BOOT_MEMBEGIN - 1). Since this memory is not touched by the DS80C400 Silicon
Software, it is well suited for user xdata.

RAMTOP—reserved for use by Maxim/Dallas Semiconductor.

BOOT_MEMBEGIN—pointer to starting address of network stack buffers and heap memory. The user may define this starting address
as an input parameter to the rom_init function call or may allow a default assignment to be made by rom_init. The default starting
address for heap memory is the second 256-byte page boundary (i.e., 00xx00h) following address = BLOB + 1000h.

BOOT_MEMEND—pointer to the ending address of network stack buffers and heap memory. The user may define this ending address
as an input parameter to the rom_init function call or may allow a default assignment to be made by rom_init. The default ending
address for heap memory is 00FFFFh.

autobaud—The same autobaud procedure is executed as can be executed during the boot process. Please reference the earlier text
for a description of the autobaud function.

__ 222

ROM REDIRECT FUNCTION TABLE
Since the socket interface is used by both NetBoot (from DS80C400 silicon software) and the user code (possibly running under a run-
time environment or operating system), the code must be flexible enough to support all types of memory managers, as well as task
and thread schedulers. Therefore, the DS80C400 silicon software socket interface code does not call these functions directly, but it
makes use of a function redirect table. During a NetBoot, the DS80C400 silicon software provides its own minimal implementations of
these functions. However, to use the socket layer from an application, users can substitute their own implementations for the following
functions:

Table 23-1. ROM REDIRECT FUNCTIONS

Functions should be replaced in groups, e.g., if the user provides his/her own memory manager, all the memory manager functions
should be replaced. Note: All DS80C400 silicon software functions (including the exported functions) make heavy use of this table.
Therefore, it must always exist, either in its default state or modified by the user. The function redirect table that is contained in the
DS80C400 silicon software is copied to memory using the ROM_redirect_init function. NetBoot calls this function. If the user does not
use NetBoot, ROM_Redirect_Init must be called. ROM_Redirect_Init restores the function redirect table without altering any other state.

FUNCTION
TABLE

OFFSET
DESCRIPTION

bootstate 00h Reserved for use by Maxim/Dallas Semiconductor

kernelmalloc 03h see rom_kernelmalloc

kernelfree 06h see rom_kernelfree

malloc 09h see rom_malloc

free 0Ch see rom_free

mallocdirty 0Fh see rom_mallocdirty

deref 12h see rom_deref

M
E

M
O

R
Y

 M
A

N
A

G
E

R

underef 54h Opposite of deref (12h)

getfreeram 15h see rom_getfreeram

gettimemillis 18h Returns uptime since the system was initialized in milliseconds.

getthreadID 1Bh Returns thread ID.

threadresume 1Eh Resumes thread

threadIOsleep 21h Sleeps, waiting for I/O

threadIOsleepNC 24h Sleeps, waiting for I/O (run from critical section)

threadsave 27h Saves thread

threadrestore 2Ah Restores thread

T
A

S
K

 M
A

N
A

G
E

R

sleep 2Dh Sleeps for a number of milliseconds

gettaskID 30h see task_getcurrent

infosendchar 33h Prints debug character to debug port

IPchecksum 36h Computes IP checksum

reserved 39h Reserved for use by Maxim/Dallas Semiconductor

DHCPnotify 3Ch see rom_dhcp_notify

taskcreate 3Fh see task_create

taskduplicate 42h see task_duplicate

taskdestroy 45h see task_destroy

T
A

S
K

M
A

N
A

G
E

R
(H

O
O

K
S

)

taskswitchin 48h see rom_task_switch_in

taskswitchout 4Bh see rom_task_switch_out

getMACID 4Eh
Reads MAC ID from DS2502 1-Wire device and IP/gateway/TFTP server
from other 1-Wire device

reserved 51h Reserved for use by Maxim/Dallas Semiconductor
userIOpoll 57h Called by scheduler
errornotification 5Ah Called when out of memory or other error detected

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

223 __

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

ROM REDIRECT FUNCTIONS
The usage of those ROM redirect functions not previously described as a directly exported ROM function (i.e., member of the ROM
export table) are covered here.

gettimemillis

The gettimemillis function gets the current time in milliseconds. The DS80C400 silicon software does not support a real-time clock;
therefore, the DS80C400 silicon software version of this function returns the number of milliseconds since the system was initialized. A
user replacement of this function should return the absolute time.

getthreadID

The getthreadID function gets the current thread ID. The DS80C400 silicon software does not support threads; therefore, the
DS80C400 silicon software version of this function always returns ACC = 01h.

threadresume

The threadresume function resumes a suspended thread. The DS80C400 silicon software does not support threads; therefore, the
DS80C400 silicon software version of this function resumes the task.

threadIOsleep

threadIOsleepNC

The threadIOsleep and threadIOsleepNC functions put a thread to sleep, waiting for I/O. The NC version of this function does not
enter a critical section and is only called from critical sections. The DS80C400 silicon software does not support threads; therefore, the
DS80C400 silicon software version of this function works on the task.

threadsave

threadrestore

The threadsave and threadrestore functions save/restore (the state of) a thread. The DS80C400 silicon software does not support
threads and, therefore, the DS80C400 silicon software versions of these functions do nothing.

sleep

The sleep function sleeps, suspending a task for at least the requested amount of time.

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC
R3:R0

Task ID
Sleep time in milliseconds

ACC Success (= 00h) or failure code

INPUT DESCRIPTION OUTPUT DESCRIPTION

— —

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC
R3:R0

Set <> 00h for infinite timeout
Timeout value (if ACC = 00h)

ACC Success (= 00h) or failure code

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC
R0

Thread ID
Task ID

ACC Success (= 00h) or failure code

INPUT DESCRIPTION OUTPUT DESCRIPTION

— ACC Always returns 01h

INPUT DESCRIPTION OUTPUT DESCRIPTION

— R4:R0 Time in milliseconds

__ 224

infosendchar

The infosendchar function sends a character to the serial port 0. The DS80C400 silicon software version of this function accesses the
serial loader pin (P1.7) and does nothing if this pin is in the logic low state. The DS80C400 silicon software does not use interrupt-dri-
ven I/O to the serial port.

IPchecksum

The IPchecksum function calculates the IP checksum for an IP packet. The DS80C400 silicon software version of this function does
not use the checksum accelerator feature of the DS80C400.

getMACID

The getMACID function reads the MAC ID and stores it in the MAC_ID variable (a MAC_ID pointer is given in the ROM export table). The
DS80C400 silicon software version of this function accesses the 1-Wire port and searches for a DS2502-E48 1-Wire chip containing the MAC
ID.

underef

Resolves a physical address into a memory handle. This function undereferences an absolute address and returns a memory handle.

userIOpoll

Allows extension of the WOS_IOPoll mechanism. This function is called on every WOS_IOPoll, i.e., driven by the timer when no inter-
rupts are active. A user could add housekeeping functions, for example. The default implementation of this function does nothing.

errornotification

Provides a means for notification when an error occurs. This function is called when the system error occurs such as not having enough
memory. The list of error causes/reasons currently defined within the ROM is given below. The default implementation of this function
does nothing, however, a user implementation might print an error message or reset the system.

Error Cause Value Description

ERROR_KMEM 0 Kernel memory exhausted

ERROR_MRM 1 Heap memory exhausted

ERROR_TCP_MEM 2 TCP detected low memory

ERROR_TCP_RESEND 3 TCP packet has to be resent

ERROR_KFREE_FAIL 4 Attempt to free a kernel memory block failed

ERROR_FREE_NULL 5 Attempt to free a NULL pointer

ERROR_FREE_DEREF 6 Could not dereference a memory handle on free

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC Value for a given error cause —

INPUT DESCRIPTION OUTPUT DESCRIPTION

— —

INPUT DESCRIPTION OUTPUT DESCRIPTION

DPTR0 pointer to memory block
ACC
R3:R2

(destroyed)
blockhandle

INPUT DESCRIPTION OUTPUT DESCRIPTION

— ACC Success (= 00h) or failure code

INPUT DESCRIPTION OUTPUT DESCRIPTION

DPTR0
R5:R4

Pointer to data buffer
Size of data buffer

R1:R0 Checksum

INPUT DESCRIPTION OUTPUT DESCRIPTION

ACC Character to send —

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

225 __

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

TIMESLICE AND TASK SCHEDULER TIMING
The task scheduler is primarily driven by the timer 0. The exported ROM function tick_init handles the initial timer 0 configuration. The
tick_init routine configures timer 0 as a 16-bit timer running from an (oscillator frequency / 12) input clock, with an initial start value of
TH0:TL0 = FA00h. Timer 0 is then enabled as a high-priority interrupt source and started (TR0 = 1). Once running, the timer 0 interrupt
is triggered at a periodic interval so that it can be determined whether the scheduler needs to be run and whether it should be run
given the current CPU activity. This periodic interval is equal to (65,536d – FA00h) ✕ 1 / (crystal frequency) ✕ 12 and is defined as the
basic timeslice. The exported ROM function WOS_tick is the default timer 0 interrupt service routine that is executed each timeslice.
The WOS_tick routine updates its millisecond counter and signals that the task scheduler should be run, once the fourth timeslice has
elapsed. At this point, the task scheduler is run unless other interrupts are in progress, in which case, the task scheduler is deferred.
If the scheduler is deferred, its ability to run is reassessed on each of the following (timer 0 interrupt) timeslices or whenever a task is
suspended or put to sleep. Note that the tick_init function is automatically called by the rom_init function. Figure 23-1 illustrates the
general flow that occurs on each (timer 0 interrupt) timeslice.

Figure 23-1. Timer 0 Interrupt Routine (WOS_tick) Flow

__ 226

Stop TIMER 0
Software reload of TH0:TL0

Restart TIMER 0
Increment millisecond counter (ms_count_4:0)

Already know that task scheduler is required?
(need sched =1) from previous deferral?

Millisecond counter = 4?

Low-priority interrupt
currently in progress?

--OR
Critical task currently in

progress? (wos_crit_count>0)

Set bit need_sched = 1.

TASK SCHEDULER Return to application

Y

N

NY

Y

N

REVISION HISTORY
Rev 0: 12/02 Official document release.

Rev 1: 1/9/03 Figure 6-5 was replaced.

Rev 2: 3/5/03 Section 11: Programmable Timers (Divide-by-13 Option)

New paragraph added to the Divide-by-13 Option section to explain the options’ usefulness.

Rev 3: 11/12/03 Section 4: Programming Model (Special-Function Register Descriptions)

CAN 0 Status Register (C0S), Bit 6 (EC96/128): Description corrected to: "EC96/128 = 0 indicated that
the current transmit error counter and receive error counter both have an error count of less than 97."
(Previously 96.)

Section 19: Controller Area Network (CAN) Module

CAN 0 Standard Global Mask Register 1 (C0SGM1): Last sentence clarified to show that, "A read of
these bits will return a 0, writes are ignored."

CAN 0 Message Centery Arbitration Register 3 (C0MyAR3): The second sentence for the Reserved
bits was clarified to read, "These bits can be modified by the application software."

Second paragraph in the section Receiving/Responding to Remote Frame Requests was moved to end
of Transmitting Remote Frame Requests for clarification.

Rev 4: 2/5/04 Section 23: Embedded DS80C400 Silicon Software

Asynchronous TCP/IP Maintenance Functions section: Correction for wos_crit_count (in entercritsection
and leavecritsection). Located at address 68h, not 6Bh.

Rev 5: 2/18/04 Section 23: Embedded DS80C400 Silicon Software

Serial Loader section: Second sentence changed to reflect that an external reset (RST = 1).

Rev 6: 4/13/05 Added information on DS80C410/DS80C411.

Changed name of document to Network Microcontroller Supplement.

Rev 7: 10/05 Section 20: Arithmetic Accelerator

Normalize section: Added sentence to description saying the normalize function can only be used on
nonzero values.

Rev 8: 8/06 Corrected typo on pg. 31; updated Figure 19-11 and moved it to pg. 168; added crystal speeds to
Autobaud-Rate Detection section on pg. 195.

High-Speed Microcontroller User’s
Guide: Network Microcontroller

Supplement

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the
circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 __ 227

© 2006 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.

is a registered trademark of Dallas Semiconductor Corporation.

	Table of Contents
	List of Figures
	List of Tables
	Addendum to Section 1: Introduction
	Features

	Addendum to Section 2: Ordering Information
	Addendum to Section 3: Architecture
	CPU Core and CPU Registers

	Addendum to Section 4: Programming Model
	Memory Map
	Register Map
	Bit-Addressable Locations
	Working Registers
	Stack

	Special-Function Register Maps
	Special-Function Register Map
	Special-Function Register Location
	Special-Function Register Reset Values
	Special-Function Registers
	Port 4 (P4)
	Stack Pointer (SP)
	Data Pointer Low 0 (DPL)
	Data Pointer High 0 (DPH)
	Data Pointer Low 1 (DPL1)
	Data Pointer High 1 (DPH1)
	Data Pointer Select (DPS)
	Power Control (PCON)
	Timer/Counter Control (TCON)
	Timer Mode Control (TMOD)
	Timer 0 LSB (TL0)
	Timer 1 LSB (TL1)
	Timer 0 MSB (TH0)
	Timer 1 MSB (TH1)
	Clock Control (CKCON)
	Port 1 (P1)
	External Interrupt Flag (EXIF)
	Port 4 Control Register (P4CNT)
	Data Pointer Extended Register 0 (DPX)
	Data Pointer Extended Register 1 (DPX1)
	CAN 0 Receive Message Stored Register 0 (C0RMS0)
	CAN 0 Receive Message Stored Register 1 (C0RMS1)
	Serial Port 0 Control (SCON0)
	Serial Data Buffer 0 (SBUF0)
	Extended Stack Pointer Register (ESP)
	Address Page Register (AP)
	Address Control Register (ACON)
	CAN 0 Transmit Message Acknowledgement Register 0 (C0TMA0)
	CAN 0 Transmit Message Acknowledgement Register 1 (C0TMA1)
	Port 2 (P2)
	Port 5 (P5)
	Port 5 Control Register (P5CNT)
	CAN 0 Control Register (C0C)
	CAN 0 Status Register (C0S)
	CAN 0 Interrupt Register (C0IR)
	CAN 0 Receive-Error Register (C0RE)
	Interrupt Enable (IE)
	Slave Address Register 0 (SADDR0)
	Slave Address Register 1 (SADDR1)
	CAN 0 Message Center 1 Control Register (C0M1C)
	CAN 0 Message Center 2 Control Register (C0M2C)
	CAN 0 Message Center 3 Control Register (CoM3C)
	CAN 0 Message Center 4 Control Register (C0M4C)
	CAN 0 Message Center 5 Control Register (C0M5C)
	Port 3 (P3)
	Port 6 (P6)
	Port 6 Control Register (P6CNT)
	CAN 0 Message Center 6 Control Register (C0M6C)
	CAN 0 Message Center 7 Control Register (C0M7C)
	CAN 0 Message Center 8 Control Register (C0M8C)
	CAN 0 Message Center 9 Control Register (C0M9C)
	CAN 0 Message Center 10 Control Register C0M10C
	Interrupt Priority (IP)
	Slave Address Mask Enable Register 0 (SADEN0)
	Slave Address Mask Enable Register 1 (SADEN1)
	CAN 0 Message Center 11 Control Register (C0M11C)
	CAN 0 Message Center 12 Control Register (C0M12C)
	CAN 0 Message Center 13 Control Register (C0M13C)
	CAN 0 Message Center 14 Control Register (C0M14C)
	CAN 0 Message Center 15 Control Register (C0M15C)
	Serial Port Control (SCON1)
	Serial Data Buffer 1 (SBUF1)
	Power-Management Register (PMR)
	Status Register (STATUS)
	Memory Control Register (MCON)
	Timed-Access Register (TA)
	Timer 2 Control (T2CON)
	Timer 2 Mode (T2MOD)
	Timer 2 Capture LSB (RCAP2L)
	Timer 2 Capture MSB (RCAP2H)
	Timer 2 LSB (TL2)
	Timer 2 MSB (TH2)
	Clock Output Register (COR)
	Program Status Word (PSW)
	Multiplier Control Register 0 (MCNT0)
	Multiplier Control Register 1 (MCNT1)
	Multiplier A Register (MA)
	Multiplier B Register (MB)
	Multiplier C Register (MC)
	Memory Control Register 1 (MCON1)
	Memory Control Register 2 (MCON2)
	Watchdog Control (WDCON)
	Slave Address Register 2 (SADDR2)
	Breakpoint Address Register 1 (BPA1)
	Breakpoint Address Register 2 (BPA2)
	Breakpoint Address Register 3 (BPA3)
	Accumulator (ACC)
	One's Complement Adder Data (OCAD)
	CSR Data (CSRD)
	CSR Address (CSRA)
	Ethernet Buffer Size (EBS)
	Buffer Control Unit Data (BCUD)
	Buffer Control Unit Control (BCUC)
	Extended Interrupt Enable (EIE)
	MOVX Address Extended Register (MXAX)
	Data Pointer Extended Register 2 (DPX2)
	Data Pointer Extended Register 3 (DPX3)
	1-Wire Master Address Register (OWMAD)
	1-Wire Master Data Register (OWMDR)
	B Register (B)
	Slave Address Mask Enable Register 2 (SADEN2)
	Data Pointer Low Register 2 (DPL2)
	Data Pointer High Register 2 (DPH2)
	Data Pointer Low Register 3 (DPL3)
	Data Pointer High Register 3 (DPH3)
	Data Pointer Select Register 1 (DPS1)
	Status Register 1 (STATUS1)
	Extended Interrupt Priority (EIP)
	Parallel I/O Port 7 (P7)
	Timer 3 LSB (TL3)
	Timer 3 MSB (TH3)
	Timer 3 Control/Mode Register (T3CM)
	Serial Port 2 Control Register (SCON2)
	Serial Data Buffer 2 (SBUF2)

	Addendum to Section 5: CPU Timing
	External Clock Source
	System Clock Selection
	Figure 5-1. System Clock Control Diagram
	Table 5-1. System Clock Configuration
	Table 5-2. Effect of Clock Modes on Timer Operation

	Changing the System Clock/Machine Cycle Clock Frequency

	Addendum to Section 6: Memory Access
	Internal Program Memory
	Figure 6-1. Program Memory Map Options

	Internal Data Memory
	DS80C400
	Table 6-1. Internal Data Memory Address Locations
	Figure 6-2. Example Data Memory Map Configurations (DS80C400)

	DS80C410/DS80C411
	Figure 6-3. Example Data Memory Map Configurations (DS80c410/DS80C411)

	External Memory Access
	Table 6-2. External Memory Addressing Pin Assignments
	Table 6-3. Extended Address Generation
	Table 6-4. Chip-Enable Generation
	Table 6-5. Peripheral Chip-Enable Generation
	Table 6-6. Program Memory Chip-Enable Boundaries
	Figure 6-4. Multiplexed Address/Data Bus
	Figure 6-5. Demultiplexed Address/Data Bus

	Using the Combined Chip-Enable Signals
	Figure 6-6. Merged Program/Data Access Under CE0, CE2, PCE0-PCE3 Becomes Inaccessible
	Figure 6-7. Merged Program/Data Access Under CE2, CE3, PCE2, and PCE3 Becomes Inaccessible
	Figure 6-8. Merged Program/Data Access Under CE1, CE2, PCE1, and PCE2 Becomes Inaccessible
	Figure 6-9. Merged Program/Data Access Under CE0 and PCE0 Becomes Partially Inaccessible
	Figure 6-10. Full 16MB Merged Program/Data Memory Map Options

	Write-Protection Feature (DS80C400 Only)
	Table 6-7. Write-Protection Range

	Enhanced Quad Data Pointers
	Table 6-8. Data Pointer SFR Locations

	Addendum to Section 7: Power Management
	Precision Voltage Monitor
	Early Warning Power-Fail Interrupt
	Power-Fail Reset
	Power-On Reset
	Bandgap Select
	Power-Management Summary
	Power-Management Modes
	PMM and Peripheral Functions
	Switchback
	Stop Mode
	Pin States in Idle or Stop Mode
	Switching Between Clock Sources

	Addendum to Section 8: Reset Conditions
	Reset Sources
	Power-On/Power-Fail Reset
	Watchdog Timer Reset
	External Reset
	Oscillator Fail-Detect Reset

	Reset Outputs
	Reset Output Low (RSTOL)

	Reset State
	In-System Disable Mode

	Addendum to Section 9: Interrupts
	Figure 9-1. 1-Wire Interrupt Source
	Figure 9-2. Interrupt Functional Diagram

	Addendum to Section 10: Parallel I/O
	Port 0
	Ports 4-7
	General-Purpose I/O
	Alternate Functions A0-A7, A16-A21, CE0-CE7, and PCE0-PCE3
	Current-Limited Transactions
	5V-Tolerant I/O
	Figure 10-1. 5V-Tolerant I/O Pad

	Addendum to Section 11: Programmable Timers
	Table 11-1. Timer 3 SFR Bit Summary
	Figure 11-1. Timers/Counters 0, 1, and 3, Modes 0 and 1
	Figure 11-2. Timers/Counters 0, 1, and 3, Mode 2
	Figure 11-3. Timer/Counter 0, Mode 3
	Figure 11-4. Timer/Counter 2 Clock-Out Mode
	Figure 11-5. Timer/Counter 2 Baud-Rate Generator Mode
	Figure 11-6. Timer/Counter 2 Autoreload Mode, DCEN = 0
	Figure 11-7. Timer/Counter 2 Autoreload Mode, DCEN = 1
	Figure 11-8. Timer/Counter 2 with Optional Capture
	Divide-by-13 Option
	Figure 11-9. Operation of Divide-by-13 Bits

	Programmable Clock Output
	IrDA Clock Output
	Figure 11-10. Sample IrDA Implemention

	Addendum to Section 12: Serial I/O
	Table 12-1. Serial Port 2 Special Function Registers/Bits
	Serial Mode Summary
	Table 12-2. Serial I/O Modes

	Baud Rates
	Mode 0
	Table 12-3. Baud-Rate Generation, Mode 0
	Figure 12-1. Serial Port Mode 0 Block Diagram Change

	Mode 2
	Table 12-4. Baud-Rate Generation, Mode 2
	Figure 12-2. Serial Port Mode 2 Block Diagram Change

	Mode 1 or 3
	Using Timer 1 or Timer 3 for Baud-Rate Generation
	Table 12-5. Relationship Between External Crystal Frequency and Timer 1

	Using Timer 2 for Baud-Rate Generation
	Table 12-6. Relationship Between External Crystal Frequency and Timer 2

	Figure 12-3. Serial Port Modes 1, 3 Block Diagram Change

	Addendum to Section 13: Timed-Access Protection
	Addendum to Section 14: Real-Time Clock
	Addendum to Section 15: Battery Backup
	Addendum to Section 16: Instruction Set Details
	16-Bit (8051 Standard) Addressing Mode
	24-Bit Paged Addressing Mode
	24-Bit Contiguous Addressing Mode

	Addendum to Section 17: Troubleshooting
	Software Breakpoint Mode
	Generating a Breakpoint
	Exiting a Breakpoint
	Figure 17-1. Force Feeding a Breakpoint During An Instruction Other Than MOVC or MOVX
	Figure 17-2. Force Feeding a Breakpoint During a MOVX (2-Cycle)
	Figure 17-3. Force Feeding a Breakpoint MOVC

	Addendum to Section 18: Microcontroller Development Support
	Section 19: Controller Area Network (CAN) Module
	MOVX Message Centers for CAN 0
	CAN MOVX Register Description
	CAN 0 Media ID Mask Register 0 (C0MID0)
	CAN 0 Media ID Mask Register 1 (C0MID1)
	CAN 0 Media Arbitration Register 0 (C0MA0)
	CAN 0 Media Arbitration Register 1 (C0MA1)
	CAN 0 Bus Timing Register 0 (C0BT0)
	CAN 0 Bus Timing Register 1 (C0BT1)
	CAN 0 Standard Global Mask Register 0 (C0SGM0)
	CAN 0 Standard Global Mask Register 1 (C0SGM1)
	CAN 0 Extended Global Mask Register 0 (C0EGM0)
	CAN 0 Extended Global Mask Register 2 (C0EGM2)
	CAN 0 Extended Global Mask Register 3 (C0EGM3)
	CAN 0 Message Center 15 Mask Register 0 (C0M15M0)
	CAN 0 Message Center 15 Mask Register 1 (C0M15M1)
	CAN 0 Message Center 15 Mask Register 2 (C0M15M2)
	CAN 0 Message Center 15 Mask Register 3 (C0M15M3)

	CAN Message Center MOVX Register Descriptions
	CAN 0 Message Center y Arbitration Register 0 (C0MyAR0)
	CAN 0 Message Center y Arbitration Register 1 (C0MyAR1)
	CAN 0 Message Center y Arbitration Register 2 (C0MyAR2)
	CAN 0 Message Center y Arbitration Register 3 (C0MyAR3)
	CAN 0 Message Center y Format Register (C0MyF)
	CAN 0 Message Center y Data Byte 0 (C0MyD0)
	CAN 0 Message Center y Data Byte 1 (C0MyD1)
	CAN 0 Message Center y Data Byte 2 (C0MyD2)
	CAN 0 Message Center y Data Byte 3 (C0MyD3)
	CAN 0 Message Center y Data Byte 4 (C0MyD4)
	CAN 0 Message Center y Data Byte 5 (C0MyD5)
	CAN 0 Message Center y Data Byte 6 (C0MyD6)
	CAN 0 Message Center y Data Byte 7 (C0MyD7)

	Frame Types
	Figure 19-1. CAN 2.0A (Standard) Format
	Figure 19-2. CAN 2.0B (Extended) Format
	Figure 19-3. Control Field
	Figure 19-4. CRC Field
	Figure 19-5. Acknowledgement Field
	Figure 19-6. Intermission
	Figure 19-7. Remote Frame
	Figure 19-8. Error Frame
	Figure 19-9. Overload Frame

	Initializing the CAN Controller
	CAN Interrupts
	Figure 19-10. CAN Interrupt Logic

	Arbitration/Masking Considerations
	Message Center 15
	Transmitting and Receiving Messages
	Transmitting Data Messages
	Receiving Data Messages
	Transmitting Remote Frame Requests
	Receiving/Responding to Remote Frame Requests
	Remote Frame Handling in Relation to the DTBYC Bits
	Important Information Concerning ID Changes when Awaiting Data from a Previous Remote Frame Request
	Overwrite Enable/Disable Feature
	Special Considerations for Message Center 15
	Using the Autobaud Feature
	Figure 19-11. Bit Timing

	Bus-Off/Bus-Off Recovery and Error Counter Operation
	Bit Timing
	Threefold Bit Sampling
	Bus Rate Timing Example
	Additional Bit Timing Examples

	Section 20: Arithmetic Accelerator
	Table 20-1. Arithmetic Accelerator Execution Times
	Divide (32-bit by 16-bit or 16-bit by 16-bit)
	Multiply (16-bit by 16-bit)
	Shift right/left
	Normalize
	40-Bit Accumulator

	Section 21: 1-Wire Bus Master
	Hardware Setup
	Figure 21-1. Typical 1-Wire External Hardware Configuration
	Setting Up and Using the 1-Wire Master
	Setting Up and Using the 1-Wire Master
	Sending a 1-Wire Reset
	Sending a Byte

	Search ROM Accelerator
	Table 21-1. ROM ID Read Time Slot Possibilities
	Table 21-2. Transmit/Receive Byte Sequence
	Accelerated ROM Search Example

	Section 22: Ethernet Controller
	Figure 22-1. Ethernet Controller Block Diagram
	Assigning a Physical MAC Address
	Table 22-1. Source of MAC Addresses

	Configuring the MAC Operational Mode
	Table 22-2. MAC Control Register Bit Summary

	Media Independent Interface (MII)
	Figure 22-2. MII Signal Diagram
	Figure 22-3. MII Mode-Byte/Bit Transmit and Receive Order

	ENDEC Operation
	Figure 22-4. ENDEC Signal Diagram
	Figure 22-5. Serial ENDEC Mode-Byte/Bit Transmit and Receive Order

	ENDEC Mode--Heartbeat Signal Quality Generator
	MAC Primary Functions--Packet Filtering
	Using the MII Serial Management Bus
	Figure 22-6. MII Management Frame Format

	Half-Duplex Operation--CSMA/CD and Flow Control
	Deferral Check
	Disable Retry
	Back-Off Limit
	Late Collision Control
	Figure 22-7. Half-Duplex Transmit/Deferral/Collision Handling
	Flow Control

	Full-Duplex Operation
	Pause Control Frame
	Loopback Modes
	Figure 22-8. Internal Loopback Mode (MAC Control OM1:0 = 01b)
	Figure 22-9. External Loopback Mode (MAC Control OM1:0 = 10b)

	Address Filtering Control
	Table 22-4. Packet Filter and Filter Fail Bit Status for Various Received Frames

	Using the Hash Table
	VLAN Support
	Partitioning the 8kB Ethernet Data Buffer Memory
	Figure 22-10. Example 8kB Data Memory Partition

	Transmit/Receive Data Buffer Word Orientation: Endianess
	Figure 22-11. Big/Little-Endian Data Buffers

	Transmitting Data
	Figure 22-12. Transmit Flow Diagram

	Receiving Data
	Figure 22-13. Receive Flow Diagram

	Using Wake-Up Frames
	Magic Packet Mode
	Network Wake-Up Frame
	Table 22-4. Network Wake-Up Frame Patterns
	Figure 22-14. Wake-Up Frame Filter 0 Programming Example

	Section 23: Embedded DS80C400 Silicon Software
	Serial Loader
	Autobaud-Rate Detection
	Command Line Interface
	Command Summary
	Exported ROM Functions
	Utility Functions
	Memory Manager Functions
	Socket Function Calling Conventions
	Input Parameter Buffer
	Output Return Values

	Socket Functions/Pointers
	PARAMBUFFER

	DHCP Functions
	TFTP Functions/Pointers
	Task Scheduler Functions
	Task Scheduler User Hooks
	1-Wire Master
	Additional Functions Available in ROM Version 1.2.0
	Initialization Functions
	Asynchronous TCP/IP Maintenance Functions
	Other Functions/Pointers
	ROM Redirect Function Table
	Table 23-1. ROM Redirect Functions

	ROM Redirect Functions
	Timeslice and Task Scheduler Timing
	Figure 23-1. Timer 0 Interrupt Routine (WOS_tick) Flow

	Revision History

