
[1] [] 1 [Generated on Wed Jan 31 11:09:59 2007 for DS80C400CLibraries by Doxy-

gen ] []Generated on Wed Jan 31 11:09:59 2007 for DS80C400CLibraries by Doxygen

[1] [] 1 [Generated on Wed Jan 31 11:09:59 2007 for DS80C400CLibraries by Doxygen

] []Generated on Wed Jan 31 11:09:59 2007 for DS80C400CLibraries by Doxygen

1



DS80C400CLibraries Reference Manual
1

Generated by Doxygen 1.4.3

Wed Jan 31 11:09:59 2007



Contents

1 DS80C400CLibraries Module Index 1

2 DS80C400CLibraries Directory Hierarchy 1

3 DS80C400CLibraries Data Structure Index 3

4 DS80C400CLibraries File Index 5

5 DS80C400CLibraries Module Documentation 6

6 DS80C400CLibraries Directory Documentation 25

7 DS80C400CLibraries Data Structure Documentation 31

8 DS80C400CLibraries File Documentation 60

1 DS80C400CLibraries Module Index

1.1 DS80C400CLibraries Modules

Here is a list of all modules:

Initialization module 6

Configuration module 7

Data Access module 21

2 DS80C400CLibraries Directory Hierarchy

2.1 DS80C400CLibraries Directories

This directory hierarchy is sorted roughly, but not completely, alphabetically:

canbus 25

crypt 25

1



debugport 25

dhcp 25

dirent 25

dns 26

err 26

filesystem_lib 26

flash 26

ftpclient 26

http 27

i2c 27

isr 27

kmem 27

mem 27

mime 28

netif 28

netstat 28

ntlm 28

onewire_raw 28

pop3 29

rarp 29

rominit 29

rtc 29

smtp 29

sock 30

spi 30

2



task 30

tftp 30

time 30

useriopoll 31

util 31

xnetboot 31

xnetstack 31

3 DS80C400CLibraries Data Structure Index

3.1 DS80C400CLibraries Data Structures

Here are the data structures with brief descriptions:

_hostinfo 31

_http_request 32

_http_response 33

_http_session 34

_http_variable 35

_mail 35

_mailheader 36

_maillist 38

_pop3_session 38

_sbufhdr 39

_type1msg 39

_type1msghdr 40

_type2msg 41

_type2msghdr 41

3



_type3msg 42

_type3msghdr 43

_userheader 44

CanFrame(CAN Frame structure. Denotes the structure of a Transmitted
or received CAN frame ) 45

dirent 46

FARPTR 46

file_structure 47

hostent 47

in6_addr 48

in_addr 49

kmem_memory 49

mailhostent 50

MCConfig (CAN Message center configuration structure. Used for config-
uration of receive parameters of Message Centers ) 50

netstat_arp_entry 51

netstat_tcp_socket 52

netstat_udp_entry 55

pingdata 56

sockaddr 56

sockaddr_in 57

TCB 58

TIME 59

tm 59

4



4 DS80C400CLibraries File Index

4.1 DS80C400CLibraries File List

Here is a list of all documented files with brief descriptions:

dirent.h (Functions for directory listing ) 60

rom400_dhcp.h(DHCP functions in the DS80C400 ROM ) 65

rom400_err.h (Error codes used by functions in the DS80C400 ROM ) 73

rom400_flash.h(Flash programming functions for the TINIm400 module ) 75

rom400_http.h (Http Server functions in the DS80C400 ROM ) 77

rom400_init.h (ROM Initialization functions in the DS80C400 ROM ) 96

rom400_kmem.h (Kernel Memory initialization functions for the
DS80C400 ROM ) 110

rom400_mem.h(Memory management functions in the DS80C400 ROM )114

rom400_netif.h(Network interface library for the DS80C400 ) 118

rom400_netstat.h(Network statistics library for the DS80C400 ) 121

rom400_ow.h(Raw 1-Wire functions in the DS80C400 ROM ) 127

rom400_rarp.h (RARP library for the DS80C400 ) 130

rom400_sock.h(Socket functions in the DS80C400 ROM ) 132

rom400_task.h(Process scheduler functions in the DS80C400 ROM ) 174

rom400_tftp.h (TFTP Client functions in the DS80C400 ROM ) 191

rom400_useriopoll.h(User IO Poll registration routines for the DS80C400
ROM ) 195

rom400_util.h (Utility functions in the DS80C400 ROM ) 199

rom400_xnetstack.h(Enhanced network stack for the DS80C400 ROM ) 209

stdio.h (File and other IO functions ) 216

tini400_canbus.h(CAN Bus Interrupt Driver for DS80C390 / 400 ) 244

5



tini400_crypt.h (SHA-1 and MD4 functions for the DS80C400 ) 251

tini400_debugport.h (Functions supporting the debug port on the TI-
NIs400 module ) 253

tini400_dns.h(DNS Client functions for the DS80C400 ROM ) 255

tini400_ftpclient.h (FTP Client functions for DS80C400 ) 261

tini400_isr.h (Interrupt Service Routine installation functions ) 271

tini400_mime.h(MIME Library functions for DS80C400 processor ) 278

tini400_ntlm.h (NTLM Library functions for DS80C400 processor ) 280

tini400_pop3.h(Pop3 Library functions for DS80C400 processor ) 284

tini400_smtp.h(SMTP Library functions for DS80C400 processor ) 292

tini400_spi.h(SPI library for the TINIm400 module ) 300

tini400_time.h (Date/Time utilities, tailored for the DS80C400 C Libraries
) 304

tini400_xnetboot.h(External NetBoot library for the DS80C400 ) 307

tini_i2c.h (I2C function library ) 309

tini_rtc.h (RTC function library ) 313

5 DS80C400CLibraries Module Documentation

5.1 Initialization module

Functions

• uint16_tcan_version(void)

Returns the version number of this CAN library. this function is safe to be called from
multiple processes at the same time.

• void can_init(void)

Initializes CAN library.

6



5.1.1 Function Documentation

5.1.1.1 void can_init (void)

Initializes CAN library.

Initializes CAN library. This function has to be called as first function from application
before calling other serial library functions. If this function is not called, all other APIs
will return errorCAN_ERROR_NOT_INITIALIZED.

5.1.1.2 uint16_t can_version (void)

Returns the version number of this CAN library. this function is safe to be called from
multiple processes at the same time.

Returns:
Version number of this CAN library.

5.2 Configuration module

Functions

• int8_t can_resetcontroller(uint8_tCAN_No)

Resets CAN controller.

• int8_t can_setsiestamode(uint8_tCAN_No)

Puts the CAN Controller in SIESTA (low power) mode.

• int8_t can_disablecontroller(uint8_tCAN_No)

Disables the CAN controller.

• int8_t can_enablecontroller(uint8_tCAN_No)

Enables the CAN controller.

• int8_t can_enablecontrollerpassive(uint8_tCAN_No)

Enables the CAN controller, but doesn’t connect CAN transmit to the bus.

• int8_t can_setrxwriteoverenable(uint8_tCAN_No,booleanwriteover)

Sets the state of write over in the receiver buffer.

• int8_t can_set11bitglobalidmask(uint8_tCAN_No,uint32_t∗mask)

Sets the 11 bit Standard Global Id Mask.

• int8_t can_set29bitglobalidmask(uint8_tCAN_No,uint32_t∗mask)

7



Sets the 29 bit Standard Global Id Mask.

• int8_t can_set11bitmessagecenter15idmask(uint8_t CAN_No, uint32_t
∗mask)

Sets the global 11 Bit Message Center 15 ID Mask.

• int8_t can_set29bitmessagecenter15idmask(uint8_t CAN_No, uint32_t
∗mask)

Sets the global 29 Bit Message Center 15 ID Mask.

• int8_t can_setmediaidmask(uint8_tCAN_No,uint16_tmask)

Sets the global media ID mask.

• int8_t can_setmediaidarbitration(uint8_tCAN_No,uint16_tvalue)

Sets the global media ID arbitration.

• int8_t can_setbaudrateprescaler(uint8_tCAN_No,uint16_tprescaler)

Sets the basic time quantum (tqu) necessary for CAN communication.

• int8_t can_setsynchronizationjumpwidth(uint8_t CAN_No, uint8_t jump-
Width)

Sets the Synchronization Jump Width necessary for adjusting TSEG1 and TSEG2.

• int8_t can_setsamplerate(uint8_tCAN_No,uint8_tsampleRate)

Sets the sample rate which is whether to use one or three samples per bit time during
CAN communication.

• int8_t can_settseg1(uint8_tCAN_No,uint8_ttseg1)

Sets Timing Segment 1 to a specified number of time quanta.

• int8_t can_settseg2(uint8_tCAN_No,uint8_ttseg2)

Sets Timing Segment 1 to a specified number of time quanta.

• int8_t can_enablemessagecenter(uint8_tCAN_No,uint8_tmessageCenter)

Puts the message center into Active mode if disabled.

• int8_t can_disablemessagecenter(uint8_tCAN_No,uint8_tmessageCenter)

Puts the message center into Disabled mode if active.

• int8_t can_freemessagecenter(uint8_tCAN_No,uint8_tmessageCenter)

Returns the message center to the free pool.

• int8_t can_setmessagecentertx(uint8_tCAN_No,uint8_tmessageCenter)

8



Sets Tx/Rx bit of a specific message center to 1 (transmit).

• int8_t can_setmessagecenterrx(uint8_tCAN_No,uint8_tmessageCenter)

Sets Tx/Rx bit of a specific message center to 1 (receive).

• int8_t can_set11bitmessagecenterarbitrationid(uint8_t CAN_No, uint8_-
t messageCenter,uint32_t∗ID)

Sets the 11 bit Arbitration ID.

• int8_t can_set29bitmessagecenterarbitrationid(uint8_t CAN_No, uint8_-
t messageCenter,uint32_t∗ID)

Sets the 29 bit Arbitration ID.

• int8_t can_setmessagecentermessageidmaskenable(uint8_t CAN_No, uint8_-
t messageCenter,booleanmaskEnable)

Enables or disables Message ID Masking for a specific message center.

• int8_t can_setmessagecentermediaidmaskenable(uint8_t CAN_No, uint8_-
t messageCenter,booleanmaskEnable)

Enables or disables Media ID Masking for a specific message center.

5.2.1 Function Documentation

5.2.1.1 int8_t can_disablecontroller (uint8_t CAN_No)

Disables the CAN controller.

Disables the CAN controller so that the controller is disconnected from the bus pre-
venting any transmissions, or receptions. This is essential to change timing, global
masks and other communication critical parameters. Message centers, transmit & re-
ceive buffers and message center allotments remain intact.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).

9



5.2.1.2 int8_t can_disablemessagecenter (uint8_t CAN_No, uint8_t message-
Center)

Puts the message center into Disabled mode if active.

Puts the message center into Disabled mode if Active. i.e, If the message center is
in MC_RX_ACTIVE mode, then it is put into MC_RX_DISABLED mode, and if the
message center is in MC_AARFR_ACTIVE mode, then it is put into MC_AARFR_-
DISABLED mode. If the message center is in MC_TX_ACTIVE mode, then it is not
put into MC_TX_DISABLED mode, but is made as MC_IDLE.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter- Message Center number (1 to 15).

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).

5.2.1.3 int8_t can_enablecontroller (uint8_t CAN_No)

Enables the CAN controller.

Starts up the CAN controller, and connects to the bus. All critical timing parameters
and global masks must already be set. Message centers, transmit & receive buffers and
message center allotments remain intact.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_INVALID_TSEG- TSEG1 or TSEG2 not initialized

5.2.1.4 int8_t can_enablecontrollerpassive (uint8_t CAN_No)

Enables the CAN controller, but doesn’t connect CAN transmit to the bus.

Starts up the CAN controller, but doesn’t connect CAN transmit to the bus Becomes a
quiet listener on the bus. All critical timing parameters and global masks must already
be set. Message centers, transmit & receive buffers and message centre allotments
remain intact.

10



Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_INVALID_TSEG- TSEG1 or TSEG2 not initialized

5.2.1.5 int8_t can_enablemessagecenter (uint8_t CAN_No, uint8_t message-
Center)

Puts the message center into Active mode if disabled.

Puts the message center into Active mode if disabled. i.e, If the message center is
in MC_RX_DISABLED mode, then it is put into MC_RX_ACTIVE mode. If the
message center is in MC_TX_DISABLED mode, then it is put into MC_TX_ACTIVE
mode, and If the message center is in MC_AARFR_DISABLED mode, then it is put
into MC_AARFR_ACTIVE mode. All Message Center settings & changes must be
complete before this function is called.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter- Message Center number (1 to 15).

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_GENERIC- if message center is not in disabled mode.

5.2.1.6 int8_t can_freemessagecenter (uint8_t CAN_No, uint8_t messageCenter)

Returns the message center to the free pool.

Returns the message center to the free pool. The Message Centre will have to be
disabled before it can be freed. Else it will return errorCAN_ERROR_MC_ACTIVE.
In case of Transmit Message centres, it will get disabled as soon as the transmission
(of one CAN frame) is completed. In case of Receive Message Centres, it will have to
be explicitly disabled (to prevent further reception) using can_disableMessageCenter
before it can be freed.

11



Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter- Message Center number (1 to 15).

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_MC_ACTIVE- if Message Centre is in active transmit or receive
mode

5.2.1.7 int8_t can_resetcontroller (uint8_t CAN_No)

Resets CAN controller.

Resets the CAN controller to it’s power on default state. But it retains the Tx and Rx
buffer contents.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).

5.2.1.8 int8_t can_set11bitglobalidmask (uint8_t CAN_No, uint32_t ∗ mask)

Sets the 11 bit Standard Global Id Mask.

Sets the 11 bit Standard Global Id Mask. The Global ID Mask is used to denote which
bits to match in the incoming frame ID. This function requires the CAN port to be
disabled else will return errorCAN_ERROR_PORT_ENABLED.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

mask - pointer to mask value

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_PORT_ENABLED- if CAN port enabled (if SWINT is not set)

12



5.2.1.9 int8_t can_set11bitmessagecenter15idmask (uint8_t CAN_No, uint32_t ∗
mask)

Sets the global 11 Bit Message Center 15 ID Mask.

Sets the global 11 Bit Message Center 15 ID Mask. Message Center 15 has it’s own ID
Mask, which is used to denote which bits to match in the Message Center 15 ID. This
function requires the CAN port to be disabled else will return errorCAN_ERROR_-
PORT_ENABLED.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

mask - pointer to mask value

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_PORT_ENABLED- if CAN port enabled (if SWINT is not set)

5.2.1.10 int8_t can_set11bitmessagecenterarbitrationid (uint8_t CAN_No,
uint8_t messageCenter, uint32_t ∗ ID )

Sets the 11 bit Arbitration ID.

Sets the 11 bit Arbitration ID. When this value matches an incoming frame ID subject
to the Global ID Mask or Message Center 15 Mask, the incoming frame will be re-
ceived. This function will also change the specified message center to standard mode,
to only respond to 11 bit messages. The Message Centre must be either disabled or free
before this function is called, else it will return errorCAN_ERROR_MC_ACTIVE.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter- Message Center number (1 to 15).

∗ID - pointer to the 11 bit arbitration id.

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_MC_ACTIVE- if Message Centre is not disabled.

13



5.2.1.11 int8_t can_set29bitglobalidmask (uint8_t CAN_No, uint32_t ∗ mask)

Sets the 29 bit Standard Global Id Mask.

Sets the 29 bit Standard Global Id Mask. The Global ID Mask is used to denote which
bits to match in the incoming frame ID. This function requires the CAN port to be
disabled else will return errorCAN_ERROR_PORT_ENABLED.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

mask - pointer to mask value

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_PORT_ENABLED- if CAN port enabled (if SWINT is not set)

5.2.1.12 int8_t can_set29bitmessagecenter15idmask (uint8_t CAN_No, uint32_t
∗ mask)

Sets the global 29 Bit Message Center 15 ID Mask.

Sets the global 29 Bit Message Center 15 ID Mask. Message Center 15 has it’s own ID
Mask, which is used to denote which bits to match in the Message Center 15 ID. This
function requires the CAN port to be disabled else will return errorCAN_ERROR_-
PORT_ENABLED.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

mask - pointer to mask value

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_PORT_ENABLED- if CAN port enabled (if SWINT is not set)

5.2.1.13 int8_t can_set29bitmessagecenterarbitrationid (uint8_t CAN_No,
uint8_t messageCenter, uint32_t ∗ ID )

Sets the 29 bit Arbitration ID.

14



Sets the 29 bit Arbitration ID. When this value matches an incoming frame ID subject
to the Global ID Mask or Message Center 15 Mask, the incoming frame will be re-
ceived. This function will also change the specified message center to extended mode,
to only respond to 29 bit messages. The Message Centre must be either disabled or free
before this function is called, else it will return errorCAN_ERROR_MC_ACTIVE.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter- Message Center number (1 to 15).

∗ID - pointer to the 29 bit arbitration id.

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_MC_ACTIVE- if Message Centre is in active transmit or receive
mode.

5.2.1.14 int8_t can_setbaudrateprescaler (uint8_t CAN_No, uint16_t prescaler)

Sets the basic time quantum (tqu) necessary for CAN communication.

Sets the basic time quantum (tqu) necessary for CAN communication. It sets the baud
rate prescaler from the CPU crystal. The divisor divides straight off the external crystal
on the processor. For instance, at 18.432MHz, a divisor of 7 will give you a tqu of
379.774ns. i.e tqu = 7∗ 1/18.432MHz. This function requires the CAN port to be
disabled else will return errorCAN_ERROR_PORT_ENABLED.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

prescaler - Prescaler divisor value. Valid range is 1 to 256.

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_PORT_ENABLED- if CAN port enabled (if SWINT is not set)

15



5.2.1.15 int8_t can_setmediaidarbitration (uint8_t CAN_No, uint16_t value)

Sets the global media ID arbitration.

Sets sets the global media ID arbitration value which matches bits in the first two bytes
of the incoming frame data area. MSB is First Data byte, and LSB is second data
byte. This function requires the CAN port to be disabled else will return errorCAN_-
ERROR_PORT_ENABLED.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

value - media id arbitration value

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_PORT_ENABLED- if CAN port enabled (if SWINT is not set)

5.2.1.16 int8_t can_setmediaidmask (uint8_t CAN_No, uint16_t mask)

Sets the global media ID mask.

Sets the global media ID mask which determines what bits to match in the first two
bytes of the incoming frame data area. MSB of mask is First Data byte, and LSB is
second data byte. This function requires the CAN port to be disabled else will return
errorCAN_ERROR_PORT_ENABLED.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

mask - mask value

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_PORT_ENABLED- if CAN port enabled (if SWINT is not set)

5.2.1.17 int8_t can_setmessagecentermediaidmaskenable (uint8_t CAN_No,
uint8_t messageCenter, booleanmaskEnable)

Enables or disables Media ID Masking for a specific message center.

16



Enables or disables Media ID Masking for a specific message center. If masking is
disabled, no checks will occur on the first two data bytes. The Message Centre must
be either disabled or free before this function is called, else it will return errorCAN_-
ERROR_MC_ACTIVE.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter- Message Center number (1 to 15).

maskEnable - 0 to require exact match of ID, non-zero to enable Media ID mask.

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_MC_ACTIVE- if Message Centre is in active transmit or receive
mode.

5.2.1.18 int8_t can_setmessagecentermessageidmaskenable (uint8_t CAN_No,
uint8_t messageCenter, booleanmaskEnable)

Enables or disables Message ID Masking for a specific message center.

Enables or disables Message ID Masking for a specific message center. If masking is
disabled, the message center ID must match ALL bits of incoming ID. The Message
Centre must be either disabled or free before this function is called, else it will return
errorCAN_ERROR_MC_ACTIVE.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter- Message Center number (1 to 15).

maskEnable - 0 to require exact match of ID, non-zero to enable global mask.

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_MC_ACTIVE- if Message Centre is in active transmit or receive
mode.

17



5.2.1.19 int8_t can_setmessagecenterrx (uint8_t CAN_No, uint8_t message-
Center)

Sets Tx/Rx bit of a specific message center to 1 (receive).

Sets Tx/Rx bit of a specific message center to 0 (receive). It doesn’t affect the mode
of the Message Center. The Message Centre must be either disabled or free before this
function is called, else it will return the errorCAN_ERROR_MC_ACTIVE.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter- Message Center number (1 to 15).

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_MC_ACTIVE- if Message Centre is not disabled.

5.2.1.20 int8_t can_setmessagecentertx (uint8_t CAN_No, uint8_t message-
Center)

Sets Tx/Rx bit of a specific message center to 1 (transmit).

Sets Tx/Rx bit of a specific message center to 1 (transmit). It doesn’t affect the mode
of the Message Center. The Message Centre must be either disabled or free before this
function is called, else it will return the errorCAN_ERROR_MC_ACTIVE. Message
Center 15 can’t be set to transmit mode.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

messageCenter- Message Center number (1 to 15).

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_MC_ACTIVE- if Message Centre is not disabled.

5.2.1.21 int8_t can_setrxwriteoverenable (uint8_t CAN_No, boolean writeover)

Sets the state of write over in the receiver buffer.

18



Sets the state of write over in the receiver buffer. If writeover is set to 0, the latest
message will be discarded in case of receive buffer overflow. If set to 1, the oldest
message in the receive buffer will be discarded.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

writeover - 1 for enable & 0 for disable

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).

5.2.1.22 int8_t can_setsamplerate (uint8_t CAN_No, uint8_t sampleRate)

Sets the sample rate which is whether to use one or three samples per bit time during
CAN communication.

Sets SMP (Sample Rate) which is whether to use one or three samples per bit time
during CAN communication. This function requires the CAN port to be disabled else
will return errorCAN_ERROR_PORT_ENABLED.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

sampleRate- Sample Rate. Valid values are 1 and 3.

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_PORT_ENABLED- if CAN port enabled (if SWINT is not set)

5.2.1.23 int8_t can_setsiestamode (uint8_t CAN_No)

Puts the CAN Controller in SIESTA (low power) mode.

Puts the CAN Controller in SIESTA (low power) mode. When Bus activity is detected,
the controller will wake up and participate on the bus.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

19



Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).

5.2.1.24 int8_t can_setsynchronizationjumpwidth (uint8_t CAN_No, uint8_t
jumpWidth)

Sets the Synchronization Jump Width necessary for adjusting TSEG1 and TSEG2.

Sets the SJW (Synchronization Jump Width) necessary for adjusting TSEG1 and
TSEG2 to compensate for sync problems during CAN communication. This function
requires the CAN port to be disabled else will return errorCAN_ERROR_PORT_-
ENABLED.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

jumpWidth - SJW. valid range is 1 to 4 (1tqu to 4tqu).

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_PORT_ENABLED- if CAN port enabled (if SWINT is not set)

5.2.1.25 int8_t can_settseg1 (uint8_t CAN_No, uint8_t tseg1)

Sets Timing Segment 1 to a specified number of time quanta.

Sets TSEG1 (Timing Segment 1 = PROP_SEG + PHASE_SEG1) to a specified number
of time quanta. This is the timing segment before the bit sample. This function requires
the CAN port to be disabled else will return errorCAN_ERROR_PORT_ENABLED.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

tseg1 - Time quanta. Valid range is 2 to 16 (2tqu to 16tqu).

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_PORT_ENABLED- if CAN port enabled (if SWINT is not set)

20



5.2.1.26 int8_t can_settseg2 (uint8_t CAN_No, uint8_t tseg2)

Sets Timing Segment 1 to a specified number of time quanta.

Sets TSEG2 (Timing Segment 2 = PHASE_SEG2) to a specified number of time
quanta. This is the timing segment before the bit sample. This function requires the
CAN port to be disabled else will return errorCAN_ERROR_PORT_ENABLED.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

tseg2 - Time quanta. Valid range is 2 to 16 (2tqu to 16tqu).

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_PORT_ENABLED- if CAN port enabled (if SWINT is not set)

5.3 Data Access module

Functions

• int8_t can_sendframe(uint8_tCAN_No,CanFrame∗frame)

Transmits a data or RFR frame.

• int8_t can_getrxmessagecenter(uint8_tCAN_No,MCConfig∗config)

Gets the first available message centre and configure it for reception.

• int8_t can_receiveframesavailable(uint8_tCAN_No)

Gets the number of frames rending in the receive buffer.

• int8_t can_receiveframe(uint8_tCAN_No,CanFrame∗frame)

Gets a frame from the receive buffer.

• int8_t can_getautoanswerrfrmessagecenter(uint8_t CAN_No, CanFrame
∗frame)

Gets the first available message centre and configure it for Auto-answering Remote
RFRs.

• int16_tcan_gettxerrorcount(uint8_tCAN_No)

Gets the transmitter error count.

• int16_tcan_getrxerrorcount(uint8_tCAN_No)

Gets the receiver error count.

21



5.3.1 Function Documentation

5.3.1.1 int8_t can_getautoanswerrfrmessagecenter (uint8_t CAN_No, Can-
Frame ∗ frame)

Gets the first available message centre and configure it for Auto-answering Remote
RFRs.

Gets the first available message centre and configure it for Auto-answering Remote
RFRs. Once enabled, that message center keeps waiting for incoming messages match-
ing the configuration and auto-responds. If the user needs to enable MEME or MDME,
then it will have to be done manually after disabling the message center, doing the
changes and then re-enabling it. This function returns the Message center number. If
there is no free message center, then it returns errorCAN_ERROR_NOFREEMC.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

frame - Pointer to frame that has to be sent as response.

Returns:
Message center number 1 to 14 - if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_NOFREEMC- if free message center is available.

5.3.1.2 int16_t can_getrxerrorcount (uint8_t CAN_No)

Gets the receiver error count.

Gets the receiver error count.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).

5.3.1.3 int8_t can_getrxmessagecenter (uint8_t CAN_No, MCConfig ∗ config)

Gets the first available message centre and configure it for reception.

22



Gets the first available message centre and configure it for reception according to the
parameters specified by the config. Then that message center keeps waiting for in-
coming messages matching the configuration, which will then be put into the Receive
buffer. This function returns the Message center number. If there is no free message
center, then it returns errorCAN_ERROR_NOFREEMC.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

config - Pointer toMCConfigstructure.

Returns:
Message center number 1 to 14 - if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_NOFREEMC- if free message center is available.

5.3.1.4 int16_t can_gettxerrorcount (uint8_t CAN_No)

Gets the transmitter error count.

Gets the transmitter error count.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).

5.3.1.5 int8_t can_receiveframe (uint8_t CAN_No, CanFrame∗ frame)

Gets a frame from the receive buffer.

Gets a frame from the receive buffer. ReturnsCAN_ERROR_BUFEMPTYif the
receive buffer doesn’t contain any frames. Even if it returnsCAN_ERROR_-
FRAMESDROPPED, it returns the valid frame from the receive buffer.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

frame - Pointer toCanFramestructure to hold the received frame.

23



Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_BUFEMPTY- if receive buffer is empty.
CAN_ERROR_FRAMESDROPPED- if one or more frames had been dropped.

5.3.1.6 int8_t can_receiveframesavailable (uint8_t CAN_No)

Gets the number of frames rending in the receive buffer.

Gets the number of frames rending in the receive buffer. Returns Zero if no message is
pending.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

Returns:
Number of frames in the receive queue - if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).

5.3.1.7 int8_t can_sendframe (uint8_t CAN_No, CanFrame∗ frame)

Transmits a data or RFR frame.

Transmits a data or RFR frame through the first available message center. If no message
center is available, it then enqueues the frame into the Transmit buffer. If buffer if full,
then it returnsCAN_ERROR_BUFFULL. If a previous transmission has an error, then
it returns the appropriate error codes.

Parameters:
CAN_No - CAN Port number (0 for DS80C400, 0 or 1 for DS80C390)

frame - Pointer toCanFramestructure to be transmitted.

Returns:
CAN_ERROR_NOERROR- if successful.
CAN_ERROR_ARGUMENT- if improper argument.
CAN_ERROR_NOT_INITIALIZED- if CAN controller is not initialized (can_-
init() has not been called).
CAN_ERROR_PORT_DISABLED- If the CAN port is not enabled.
CAN_ERROR_BUFFULL- if transmit buffer is full.
transmit error code - if transmit error has occured.

24



6 DS80C400CLibraries Directory Documentation

6.1 canbus/ Directory Reference

Files

• file tini400_canbus.h

CAN Bus Interrupt Driver for DS80C390 / 400.

6.2 crypt/ Directory Reference

Files

• file tini400_crypt.h

SHA-1 and MD4 functions for the DS80C400.

6.3 debugport/ Directory Reference

Files

• file tini400_debugport.h

Functions supporting the debug port on the TINIs400 module.

6.4 dhcp/ Directory Reference

Files

• file rom400_dhcp.h

DHCP functions in the DS80C400 ROM.

6.5 dirent/ Directory Reference

Files

• file dirent.h

Functions for directory listing.

25



6.6 dns/ Directory Reference

Files

• file tini400_dns.h

DNS Client functions for the DS80C400 ROM.

6.7 err/ Directory Reference

Files

• file rom400_err.h

Error codes used by functions in the DS80C400 ROM.

6.8 filesystem_lib/ Directory Reference

Files

• file stdio.h

File and other IO functions.

6.9 flash/ Directory Reference

Files

• file rom400_flash.h

Flash programming functions for the TINIm400 module.

6.10 ftpclient/ Directory Reference

Files

• file tini400_ftpclient.h

FTP Client functions for DS80C400.

26



6.11 http/ Directory Reference

Files

• file rom400_http.h

Http Server functions in the DS80C400 ROM.

6.12 i2c/ Directory Reference

Files

• file tini_i2c.h

I2C function library.

6.13 isr/ Directory Reference

Files

• file tini400_isr.h

Interrupt Service Routine installation functions.

6.14 kmem/ Directory Reference

Files

• file rom400_kmem.h

Kernel Memory initialization functions for the DS80C400 ROM.

6.15 mem/ Directory Reference

Files

• file rom400_mem.h

Memory management functions in the DS80C400 ROM.

27



6.16 mime/ Directory Reference

Files

• file tini400_mime.h

MIME Library functions for DS80C400 processor.

6.17 netif/ Directory Reference

Files

• file rom400_netif.h

Network interface library for the DS80C400.

6.18 netstat/ Directory Reference

Files

• file rom400_netstat.h

Network statistics library for the DS80C400.

6.19 ntlm/ Directory Reference

Files

• file tini400_ntlm.h

NTLM Library functions for DS80C400 processor.

6.20 onewire_raw/ Directory Reference

Files

• file rom400_ow.h

Raw 1-Wire functions in the DS80C400 ROM.

28



6.21 pop3/ Directory Reference

Files

• file tini400_pop3.h

Pop3 Library functions for DS80C400 processor.

6.22 rarp/ Directory Reference

Files

• file rom400_rarp.h

RARP library for the DS80C400.

6.23 rominit/ Directory Reference

Files

• file rom400_init.h

ROM Initialization functions in the DS80C400 ROM.

6.24 rtc/ Directory Reference

Files

• file tini_rtc.h

RTC function library.

6.25 smtp/ Directory Reference

Files

• file tini400_smtp.h

SMTP Library functions for DS80C400 processor.

29



6.26 sock/ Directory Reference

Files

• file rom400_sock.h

Socket functions in the DS80C400 ROM.

6.27 spi/ Directory Reference

Files

• file tini400_spi.h

SPI library for the TINIm400 module.

6.28 task/ Directory Reference

Files

• file rom400_task.h

Process scheduler functions in the DS80C400 ROM.

6.29 tftp/ Directory Reference

Files

• file rom400_tftp.h

TFTP Client functions in the DS80C400 ROM.

6.30 time/ Directory Reference

Files

• file tini400_time.h

Date/Time utilities, tailored for the DS80C400 C Libraries.

30



6.31 useriopoll/ Directory Reference

Files

• file rom400_useriopoll.h

User IO Poll registration routines for the DS80C400 ROM.

6.32 util/ Directory Reference

Files

• file rom400_util.h

Utility functions in the DS80C400 ROM.

6.33 xnetboot/ Directory Reference

Files

• file tini400_xnetboot.h

External NetBoot library for the DS80C400.

6.34 xnetstack/ Directory Reference

Files

• file rom400_xnetstack.h

Enhanced network stack for the DS80C400 ROM.

7 DS80C400CLibraries Data Structure Documenta-
tion

7.1 _hostinfo Struct Reference

#include <tini400_smtp.h >

31



7.1.1 Detailed Description

Structure for host configuration information that has to be registered with smtp library

Data Fields

• longdns_primary_address

primary dns server IP address

• longdns_secondary_address

secondary dns server IP address

• longdns_timeout

dns server response timeout

• longmailqueue_timeinterval

interval time before resend queued mails

• longsmtp_host

IP address of SMTP host,if IP address is zero, smtp library look for IP address through
DNS library calls.

• char∗ localhostname

char pointer that holds local host name value

The documentation for this struct was generated from the following file:

• tini400_smtp.h

7.2 _http_request Struct Reference

#include <rom400_http.h >

7.2.1 Detailed Description

Structure for http request

32



Data Fields

• charpath[HTTP_MAX_URL]

URL path name.

• charrequest_method

Request method flag.

• char∗ query_string

Query string value passed in http request.

• char∗ req_headers

String holds http request headers.

• char∗ message_body

Message body value passed in http request.

• longcontentlength

Contains content length value passed in http request.

• http_variable∗ varlist

Http variable list.

The documentation for this struct was generated from the following file:

• rom400_http.h

7.3 _http_response Struct Reference

#include <rom400_http.h >

7.3.1 Detailed Description

Structure for http response

Data Fields

• char∗ res_headers

String holds http response headers.

33



• charresponse[HTTP_MAX_BUFSIZE]

Response code and string.

• charcontent_type[HTTP_MAX_BUFSIZE]

Content type of response message.

• int contentlength

Length of response message body.

The documentation for this struct was generated from the following file:

• rom400_http.h

7.4 _http_session Struct Reference

#include <rom400_http.h >

7.4.1 Detailed Description

Structure for http session

Data Fields

• int sock_handler

socket handler for client connection

• sockaddraddress

client socket address

• http_requestrequest

http request

• http_responseresponse

http response

The documentation for this struct was generated from the following file:

• rom400_http.h

34



7.5 _http_variable Struct Reference

#include <rom400_http.h >

7.5.1 Detailed Description

Structure for http variable names and values

Data Fields

• char∗ var_name

Http variable name.

• char∗ value

Http variable value.

• http_variable∗ next

Next http variable node address, NULL value to indicate end of the list.

The documentation for this struct was generated from the following file:

• rom400_http.h

7.6 _mail Struct Reference

#include <tini400_pop3.h >

7.6.1 Detailed Description

Structure for mail that contains standard mail header, user mail header, message and
attachment filename list

Data Fields

• _mailheadermailhdr

standard mailheader structure contains standard mail header values

• _userheaderuserhdr

user mailheader structure contains user defined mail header name list and value list

35



• char∗ msg

string holds mail message

• char∗ attachmentlist[POP3_MAXATTACHMENTSIZE]

array of string contains attachment file list

The documentation for this struct was generated from the following file:

• tini400_pop3.h

7.7 _mailheader Struct Reference

#include <tini400_pop3.h >

7.7.1 Detailed Description

Structure for standard mail header holds standard mail header values

Data Fields

• char∗ from_id

string contains from id mailheader value

• char∗ sendername

string contains sendername mailheader value

• char∗ to_id

string contains to id mailheader value

• char∗ recipientname

string contains recipientname mailheader value

• char∗ subject

string contains subject mailheader value

• char∗ reply_to_id

string contains reply_to_id mailheader value

• char∗ cc_id

string contains cc_id mailheader value

36



• char∗ bcc_id

string contains bcc_id mailheader value

• char∗ errors_to_id

string contains errors_to_id mailheader value

• char∗ date

string contains date mailheader value

• char∗ from_id

string contains from id mailheader value

• char∗ sendername

string contains sendername mailheader value

• char∗ to_id

string contains to_id mailheader value

• char∗ recipientname

string contains recipientname mailheader value

• char∗ subject

string contains subject mailheader value

• char∗ reply_to_id

string contains reply_to_id mailheader value

• char∗ cc_id

string contains cc_id mailheader value

• char∗ bcc_id

string contains bcc_id mailheader value

• char∗ errors_to_id

string contains errors_to_id mailheader value

• char∗ date

string contains date mailheader value

The documentation for this struct was generated from the following files:

• tini400_pop3.h
• tini400_smtp.h

37



7.8 _maillist Struct Reference

#include <tini400_pop3.h >

7.8.1 Detailed Description

Structure for maillist

Data Fields

• int numberofmails

number of mails value

• int ∗ mailnumberlist

array of integers with mail number list

• int ∗ mailsizelist

array of integers with size of each mail

The documentation for this struct was generated from the following file:

• tini400_pop3.h

7.9 _pop3_session Struct Reference

#include <tini400_pop3.h >

7.9.1 Detailed Description

Structure for pop3_session

Data Fields

• unsigned inthandle

socket handler

• char∗ user

username value

• char∗ pass

38



password value

• int status

status of pop3 session

• int(∗ pop3_authentication)()

address of pop3 authentication callback function

The documentation for this struct was generated from the following file:

• tini400_pop3.h

7.10 _sbufhdr Struct Reference

#include <tini400_ntlm.h >

7.10.1 Detailed Description

Structure for security buffer header

Data Fields

• unsigned intlen

length of the data

• unsigned intbuflen

length of the security buffer

• unsigned longstart_loc

starting address of the data

The documentation for this struct was generated from the following file:

• tini400_ntlm.h

7.11 _type1msg Struct Reference

#include <tini400_ntlm.h >

39



7.11.1 Detailed Description

Structure for type1 message

Data Fields

• type1msghdrt1hdr

type 1 message header

• unsigned charbuf [1024]

security buffer

• unsigned intbuf_index

security buffer length

The documentation for this struct was generated from the following file:

• tini400_ntlm.h

7.12 _type1msghdr Struct Reference

#include <tini400_ntlm.h >

7.12.1 Detailed Description

Structure for type1 message header

Data Fields

• charsignature[8]

char array to store NTLM signature

• unsigned longmsgtype

NTLM Message Type.

• unsigned longflags

The NTLM flags.

• sbufhdrusr

user name security buffer header

40



• sbufhdrdomain

domain name security buffer header

The documentation for this struct was generated from the following file:

• tini400_ntlm.h

7.13 _type2msg Struct Reference

#include <tini400_ntlm.h >

7.13.1 Detailed Description

Structure for type2 message

Data Fields

• type2msghdrt2hdr

char array to store NTLM signature

• unsigned charbuf [1024]

security buffer

• unsigned intbuf_index

security buffer length

The documentation for this struct was generated from the following file:

• tini400_ntlm.h

7.14 _type2msghdr Struct Reference

#include <tini400_ntlm.h >

7.14.1 Detailed Description

Structure for type2 message header

41



Data Fields

• charsignature[8]

char array to store NTLM signature

• unsigned longmsgtype

The NTLM message type.

• sbufhdrdomain

domain name security buffer header

• unsigned longflags

The NTLM flags.

• unsigned charchallenge[8]

the 8 byte server challenge

• unsigned charcontext[8]

reserved for future use

• sbufhdrtargetinfo

target information.

The documentation for this struct was generated from the following file:

• tini400_ntlm.h

7.15 _type3msg Struct Reference

#include <tini400_ntlm.h >

7.15.1 Detailed Description

Structure for type3 message

Data Fields

• type3msghdrt3hdr

char array to store NTLM signature

42



• unsigned charbuf [1024]

security buffer

• unsigned intbuf_index

security buffer length

The documentation for this struct was generated from the following file:

• tini400_ntlm.h

7.16 _type3msghdr Struct Reference

#include <tini400_ntlm.h >

7.16.1 Detailed Description

Structure for type3 message header

Data Fields

• charsignature[8]

char array to store NTLM signature

• unsigned longmsgtype

The NTLM message type.

• sbufhdrlmresponse

lan manager response

• sbufhdrntlmresponse

network lan manager response

• sbufhdrdomain

domain name buffer header

• sbufhdrusr

user name buffer header

• sbufhdrworkstation

workstation name buffer header

43



• sbufhdrsession

session buffer header.

• unsigned longflags

The NTLM flags.

The documentation for this struct was generated from the following file:

• tini400_ntlm.h

7.17 _userheader Struct Reference

#include <tini400_pop3.h >

7.17.1 Detailed Description

Structure for user defined mail header contains user header name list and user header
value list

Data Fields

• char∗ headernamelist[POP3_MAXUSERHEADERSIZE]

array of string contains user mail header name list

• char∗ headervaluelist[POP3_MAXUSERHEADERSIZE]

array of string contains user mail header value list

• char∗ headernamelist[SMTP_MAXUSERHEADERSIZE]

array of string contains user mail header name list

• char∗ headervaluelist[SMTP_MAXUSERHEADERSIZE]

array of string contains user mail header value list

The documentation for this struct was generated from the following files:

• tini400_pop3.h
• tini400_smtp.h

44



7.18 CanFrame Struct Reference

#include <tini400_canbus.h >

7.18.1 Detailed Description

CAN Frame structure. Denotes the structure of a Transmitted or received CAN frame.

Data Fields

• booleanRemoteFrameRequest
• booleanExtendedID
• uint32_tID
• uint8_tLength
• charData[8]

7.18.2 Field Documentation

7.18.2.1 charCanFrame::Data[8]

Array containing the transmitted/received data

7.18.2.2 booleanCanFrame::ExtendedID

Flag indicates whether the identifier is in Standard or Extended format

7.18.2.3 uint32_t CanFrame::ID

Common for 11-bit (standard) and 29-bit (extended) Arbitration IDs, selectable by the
ExtendedID flag (1 = Extended, 0 = Standard)

7.18.2.4 uint8_t CanFrame::Length

Number of bytes contained in the frame

7.18.2.5 booleanCanFrame::RemoteFrameRequest

Flag denotes to transmit a RFR in case of frame to be transmitted, and EXTRQ (RFR
received) in case of Received frame

The documentation for this struct was generated from the following file:

• tini400_canbus.h

45



7.19 dirent Struct Reference

#include <dirent.h >

7.19.1 Detailed Description

Structure used to return the name of a directory listing entry.

Data Fields

• unsigned longd_ino

File serial number.

• chard_name[256]

Name of the file.

The documentation for this struct was generated from the following file:

• dirent.h

7.20 FARPTR Struct Reference

#include <rom400_task.h >

7.20.1 Detailed Description

Structure that defines a raw 24-bit memory pointer. Unlike void far∗, this pointer can-
not be directly used in Keil C. To convert it into a far pointer, increase the highest byte
by 1 and set the top bit depending on the memory space.

Data Fields

• unsigned charmsb

Most significant (raw) byte of the memory address.

• unsigned shortoffset

Offset within the 64KB segment of msb.

The documentation for this struct was generated from the following file:

• rom400_task.h

46



7.21 file_structure Struct Reference

#include <stdio.h >

7.21.1 Detailed Description

Structure for FILE object. Includes file flags, last error code, file type, and a pointer to
the file descriptor.

Data Fields

• int flags

Flags for the file. Can denote the EOF is reached, or that file is temporary.

• int error

Last error code for the file.

• int type

File type. currently on theFILE_TYPE_TINIFSis supported.

• void ∗ fd

Pointer to the file descriptor, used internally by the TINI File System.

• unsigned char∗ fname_copy

Copy of the name of the file used internally. Destroyed onfclose.

The documentation for this struct was generated from the following file:

• stdio.h

7.22 hostent Struct Reference

#include <tini400_dns.h >

7.22.1 Detailed Description

Structure for host information that will be returned by the DNS client functions.

47



Data Fields

• char∗ h_name

String with the official name of the host.

• char∗∗ h_aliases

String with alternative host names.

• int h_addrtype

Address type (AF_INET or AF_INET6).

• int h_length

Length of the address.

• char∗∗ h_addr_list

List of network addresses, each ofh_lengthbytes. The list is null-terminated.

The documentation for this struct was generated from the following file:

• tini400_dns.h

7.23 in6_addr Struct Reference

#include <rom400_sock.h >

7.23.1 Detailed Description

Structure representing a 16 byte IPv6 address.

Data Fields

• unsigned chars6_addr[16]

IPv6 compatible address.

The documentation for this struct was generated from the following file:

• rom400_sock.h

48



7.24 in_addr Struct Reference

#include <rom400_sock.h >

7.24.1 Detailed Description

Structure representing a 4 byte IPv4 address, for use with thesockaddr_instructure.

Data Fields

• unsigned longs_addr

Address as an unsigned long (32 bits).

The documentation for this struct was generated from the following file:

• rom400_sock.h

7.25 kmem_memory Struct Reference

#include <rom400_kmem.h >

7.25.1 Detailed Description

Structure for storing kernel memory size and count.

Data Fields

• unsigned charsize_90

Count of blocks of size 90 bytes.

• unsigned charsize_256

Count of blocks of size 256 bytes.

• unsigned charsize_512

Count of blocks of size 512 bytes.

• unsigned charsize_768

Count of blocks of size 768 bytes.

• unsigned charsize_1024

49



Count of blocks of size 1024 bytes.

• unsigned charsize_1280

Count of blocks of size 1280 bytes.

• unsigned charsize_1600

Count of blocks of size 1600 bytes.

The documentation for this struct was generated from the following file:

• rom400_kmem.h

7.26 mailhostent Struct Reference

#include <tini400_dns.h >

7.26.1 Detailed Description

Structure for host information requested with an MX record type.

See also:
dns_getmx

Data Fields

• char∗ h_name

String with the name of a mail host.

• int preference

Preference value reported by the DNS query.

The documentation for this struct was generated from the following file:

• tini400_dns.h

7.27 MCConfig Struct Reference

#include <tini400_canbus.h >

50



7.27.1 Detailed Description

CAN Message center configuration structure. Used for configuration of receive para-
meters of Message Centers.

Data Fields

• booleanExtendedID
• uint32_tID
• booleanMemeEnable
• booleanMdmeEnable

7.27.2 Field Documentation

7.27.2.1 booleanMCConfig::ExtendedID

Flag indicates whether the identifier is in Standard or Extended format

7.27.2.2 uint32_t MCConfig::ID

Common for 11-bit (standard) and 29-bit (extended) Arbitration IDs, selectable by the
ExtendedID flag (1 = Extended, 0 = Standard)

7.27.2.3 booleanMCConfig::MdmeEnable

Flag indicates whether Media identification masking is enabled or disabled

7.27.2.4 booleanMCConfig::MemeEnable

Flag indicates whether Message identification masking is enabled or disabled

The documentation for this struct was generated from the following file:

• tini400_canbus.h

7.28 netstat_arp_entry Struct Reference

#include <rom400_netstat.h >

7.28.1 Detailed Description

Structure for a single ARP entry. The netstat_get_arp_table function returns a pointer
to a table that contains all system ARP entries. Each entry maps an Ethernet MAC
address to an IPv4 address.

51



Data Fields

• unsigned charflags

Flags: NETSTAT_ARP_USED, NETSTAT_ARP_REPLYPENDING or NETSTAT_-
ARP_STATIC.

• unsigned charttl

Time to live for this entry (in ticks).

• unsigned charmac[6]

MAC address associated with this entry.

• unsigned charip [4]

IPv4 address for the MAC address.

The documentation for this struct was generated from the following file:

• rom400_netstat.h

7.29 netstat_tcp_socket Struct Reference

#include <rom400_netstat.h >

7.29.1 Detailed Description

Structure for a TCP socket. The netstat_get_tcp_socket function returns a pointer to
this structure for a given socket number (up toNETSTAT_TCP_MAXSOCKETS).

Data Fields

• unsigned charflags

Flags: NETSTAT_TCP_OUTPUT_NEEDED_MASKto NETSTAT_TCP_SEND_-
FIN_MASK.

• unsigned charstate

Socket state – see NETSTAT_TCP_STATE_xxx (e.g.NETSTAT_TCP_STATE_-
CLOSED).

• unsigned charserver_sock

Server socket number (only valid for server).

52



• unsigned charack_timer

Timer for delayed ACKs.

• unsigned shortremote_port

Remote port (if not a server socket).

• unsigned charremote_addr[16]

Remote IP address (if not a server socket).

• unsigned shortlocal_port

Local port.

• unsigned charlocal_addr[16]

Local IP address (may be the wildcard address 0).

• unsigned longsequence_num

Current TCP sequence number.

• unsigned longack_num

Last ACK number.

• unsigned shortinput_retrieve_ptr

Tail pointer to input queue.

• unsigned shortinput_store_ptr

Head pointer to input queue.

• unsigned charinput_buffer_hpp[5]

Input queue.

• unsigned shortoutput_retrieve_ptr

Tail pointer to output queue.

• unsigned shortoutput_store_ptr

Head pointer to output queue.

• unsigned charoutput_buffer_hpp[5]

Output queue.

• unsigned shortreceiver_win_size

Receiver’s TCP windows size.

53



• unsigned shortsender_win_size

Sender’s TCP window size.

• unsigned shortreceiver_mss

Maximum segment size of receiver.

• unsigned shortsock

Socket number.

• unsigned longlast_ack_received

Largest (usually last) ACK.

• unsigned shortoutput_ack_ptr

Pointer to last acknowledged byte.

• unsigned charreload_retry_min

Lower bound on the retry timer reload.

• unsigned charretry_timer[2]

Retry timer (one byte counter with overflow bit).

• unsigned charretry_flags

(Reserved/unused)

• unsigned charretry_count

Number of times the last segment has been retried.

• unsigned charretry_timer_reload

Start value for the retry timer reload.

• unsigned shortdeath_timer

Time until a forced close of the connection.

• unsigned charoptions

TCP option flags – see NETSTAT_TCP_OPTION_xxx (e.g.NETSTAT_TCP_-
OPTION_NAGLE_ENABLED_MASK).

• unsigned charunacked_segs

Number of unacknowledged segments.

• unsigned charmax_unacked_segs

Maximum number of unacknowledged segments.

54



• unsigned charpersist_timer

TCP persist timer.

• unsigned charpersist_timer_cap

Current cap for TCP persist timer.

• unsigned shortsend_mss

Maximum segment size for sending.

The documentation for this struct was generated from the following file:

• rom400_netstat.h

7.30 netstat_udp_entry Struct Reference

#include <rom400_netstat.h >

7.30.1 Detailed Description

Structure for a single UDP port table entry. The netstat_get_udp_table function returns
a pointer to a table that containsNETSTAT_UDP_ENTRIESof this structure.

Data Fields

• unsigned charflags

Flags: NETSTAT_UDP_USED.

• unsigned shortport

Port number for this entry.

• unsigned charqueue_hpp[5]

Incoming packet queue for this port.

• unsigned charreserved

(Reserved)

The documentation for this struct was generated from the following file:

• rom400_netstat.h

55



7.31 pingdata Struct Reference

#include <rom400_sock.h >

7.31.1 Detailed Description

The ping return data structure

Data Fields

• unsigned charreserved[3]

Reserved field.

• unsigned charip_header[20]

The IP header of the return packet.

• unsigned charicmp_header[8]

icmp_header - The ICMP header of the return packet

• unsigned charicmp_data[32]

icmp_data - The ICMP data portion of the return packet (should be
0x20,0x21,0x22,...,0x3f)

The documentation for this struct was generated from the following file:

• rom400_sock.h

7.32 sockaddr Struct Reference

#include <rom400_sock.h >

7.32.1 Detailed Description

Structure for an IP address. For a normal, IPv4 (4 byte) address, set the address in
sin_addr[12,13,14,15], with the most significant byte at sin_addr[12]. Notice the 3
bytereservedto deal with the TNI native interface overhead.

56



Data Fields

• unsigned charreserved[3]

Overhead for TNI native interface.

• unsigned charsin_addr[16]

IP address. IPv4 address is in sin_addr[12-15] with MSB at sin_addr[12].

• unsigned shortsin_port

16 bit port number for the socket.

• unsigned charsin_family

Ignored by DS80C400 implementation.

The documentation for this struct was generated from the following file:

• rom400_sock.h

7.33 sockaddr_in Struct Reference

#include <rom400_sock.h >

7.33.1 Detailed Description

Alternate structure for an IP address. For a normal, IPv4 (4 byte) address, set the
address in sin_addr.s_addr, and set sin_zero to all 0’s. Notice the 3 bytereservedto
deal with the TNI native interface overhead.

Data Fields

• unsigned charreserved[3]

Overhead for TNI native interface.

• unsigned charsin_zero[12]

Zeroes in IP address due to IPv6 support.

• in_addrsin_addr

IPv4 address structure.

• unsigned shortsin_port

16 bit port number for the socket.

57



• unsigned charsin_family

Ignored by DS80C400 implementation.

The documentation for this struct was generated from the following file:

• rom400_sock.h

7.34 TCB Struct Reference

#include <rom400_task.h >

7.34.1 Detailed Description

Task control buffer.

Data Fields

• unsigned charPriority

Priority of the task.

• unsigned charID

ID of the task.

• FARPTRNext

Next task in the queue.

• unsigned shortMemHandle

KMalloc handle for this TCB.

• unsigned charFlags

Flags for the task.

• TIME WakeupTime

Time that the task is scheduled to wake from a sleep.

• unsigned shortStateSize

Size of the saved state for the task.

• FARPTRStatePtr

58



Pointer to the saved state for the task.

The documentation for this struct was generated from the following file:

• rom400_task.h

7.35 TIME Struct Reference

#include <rom400_task.h >

7.35.1 Detailed Description

Structure to be used when handling the DS80C400’s 5 byte time values.

See also:
task_gettimemillis

Data Fields

• unsigned charmsb

Most significant byte of the time stamp. The Keil compiler does not have data types
longer than 4 bytes.

• unsigned longmillis

The lower 4 bytes of a DS80C400 time stamp (in milliseconds). This will cover up to
49.7 days.

The documentation for this struct was generated from the following file:

• rom400_task.h

7.36 tm Struct Reference

#include <tini400_time.h >

7.36.1 Detailed Description

Structure for calendar time. Note that the computation of these values depends on the
time base year set by thetime_settimebasefunction.

59



Data Fields

• int tm_sec

Seconds after the minute (0..59).

• int tm_min

Minutes after the hour (0..59).

• int tm_hour

Hours since midnight (0..23).

• int tm_mday

Day of the month (1..31).

• int tm_mon

Months since January (0..11).

• int tm_year

Year.

• int tm_wday

Days since Sunday (0..6).

• int tm_yday

Days since January 1 (0..365).

• int tm_isdst

Daylight savings time flag, currently not supported.

The documentation for this struct was generated from the following file:

• tini400_time.h

8 DS80C400CLibraries File Documentation

8.1 dirent.h File Reference

8.1.1 Detailed Description

Functions for directory listing.

60



This library contains functions that allow applications to list the contents of a directory.
To use this library, the file system must also be installed and initialized.

Note that not all of the traditionaldirent functions are implemented.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
Some functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Data Structures

• structdirent

Defines

• #defineROM400_DIRENT_VERSION2

Typedefs

• typedef unsigned char∗ DIR

Functions

• int closedir(DIR ∗dir)

Close a directory stream.

• DIR ∗ opendir(const char∗name)

Open a directory stream.

• dirent∗ readdir(DIR ∗dir)

Read a directory entry from a directory stream.

• void rewinddir(DIR ∗dir)

Resets the directory stream.

• void seekdir(DIR ∗dir, long int ptr)

Sets the directory stream location.

61

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• long int telldir (DIR ∗dir)

Returns the current location in the directory stream.

• unsigned intdirent_version(void)

Returns the version number of this DIRENT library.

8.1.2 Define Documentation

8.1.2.1 #define ROM400_DIRENT_VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thedirent_versionfunction.

See also:
dirent_version

8.1.3 Typedef Documentation

8.1.3.1 typedef unsigned char∗ DIR

Type definition for a directory structure. This object must not be altered by the appli-
cation during use. Make sure to call theclosedirfunction when finished with any DIR
object.

8.1.4 Function Documentation

8.1.4.1 int closedir (DIR ∗ dir)

Close a directory stream.

Closes the directory streamdir , and frees the resources allocated to it.

Parameters:
dir Directory resource to free.

Returns:
0 on success, non-zero if the directory could not be closed.

See also:
opendir

62



8.1.4.2 unsigned int dirent_version (void)

Returns the version number of this DIRENT library.

Returns:
Version number of this DIRENT library.

8.1.4.3 DIR∗ opendir (const char∗ name)

Open a directory stream.

Opens a directory stream for the directoryname. The argumentname should not
have leading or trailing slashes. To open the root directory, use the empty string
(opendir("");).

Parameters:
name Name of the directory to open

Returns:
Pointer to a directory stream object, or NULL if the directory could not be found.

See also:
closedir

8.1.4.4 structdirent∗ readdir (DIR ∗ dir)

Read a directory entry from a directory stream.

Reads the current directory entry from the directory streamdir . This function also
increments the internal stream counter, so the next call toreaddir will read the next
directory entry.

Before using the returned file name, callfexiststo make sure the file still exists. It could
have been deleted between the time the directory stream was opened and now, which
would yield an invalid result.

Parameters:
dir Directory stream to read an entry from.

Returns:
Pointer to a directory entry, or NULL if the end of the directory stream has been
reached.

See also:
rewinddir
seekdir
telldir

63



8.1.4.5 void rewinddir (DIR ∗ dir)

Resets the directory stream.

Resets the directory stream to the beginning, so the first directory entry is read again.

Parameters:
dir Directory stream to be reset.

See also:
seekdir
telldir

8.1.4.6 void seekdir (DIR ∗ dir, long int ptr)

Sets the directory stream location.

Sets the current ’pointer’ into the directory stream to the valueptr. Internally, the
directory stream is simply an array of file pointers. This function sets the current index
into that array. Ifptr is beyond the bounds of the array, the next call toreaddir will
return NULL;

Parameters:
dir Directory stream to set location

ptr Location to point to in stream

See also:
readdir
telldir

8.1.4.7 long int telldir (DIR ∗ dir)

Returns the current location in the directory stream.

Returns the current location in the directory stream. Internally, the directory stream is
simply an array of file pointers. This function returns the current index into that array.

Parameters:
dir Directory stream to get location

See also:
readdir
seekdir

64



8.2 rom400_dhcp.h File Reference

8.2.1 Detailed Description

DHCP functions in the DS80C400 ROM.

This library contains functions that allow the DS80C400 to lease addresses from a
DHCP server. Only Ipv4 addresses can be leased using DHCP. Ipv6 addresses are
automatically configured. Once the DHCP client negotiates a lease on an address,
functions from the socket libraries (rom400_sock.h) can be used to get the current IP
address and communicate with other devices.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library are multi-process safe–that is, if you call the same
method from two different processes at the same time, the parameters to the func-
tion will not be destroyed. However, it is recommended that only one process
manage the DHCP client as it is a system-wide resource.

Note that the DHCP client requires a clock that is no slower than 133% of real time.
Otherwise, DHCP lease renewal might be problematic. Avoid blocking interrupts for
extended periods of time and useinit_setfrequencyto set the correct crystal frequency.

Defines

• #defineROM400_DHCP_VERSION12
• #defineDHCP_STATUS_INIT0
• #defineDHCP_STATUS_SELECTING1
• #defineDHCP_STATUS_REQUESTING2
• #defineDHCP_STATUS_INITREBOOT3
• #defineDHCP_STATUS_REBOOTING4
• #defineDHCP_STATUS_BOUND5
• #defineDHCP_STATUS_RENEWING6
• #defineDHCP_STATUS_REBINDING7
• #defineDHCP_MSG_DHCPDISCOVER1
• #defineDHCP_MSG_DHCPOFFER2
• #defineDHCP_MSG_DHCPREQUEST3
• #defineDHCP_MSG_DHCPDECLINE4
• #defineDHCP_MSG_DHCPACK5
• #defineDHCP_MSG_DHCPNAK6
• #defineDHCP_MSG_DHCPRELEASE7
• #defineDHCP_MSG_DHCPINFORM8

65

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Functions

• unsigned chardhcp_init(void)

Initializes the DHCP client.

• void dhcp_setrequestip(structsockaddr∗address, int len)

Sets the requested IP (and INITREBOOT state).

• unsigned intdhcp_status(void)

Gets the status of the DHCP client.

• void dhcp_stop(int releaseip)

Disabled the DHCP client.

• void dhcp_registernotify(void(∗functionptr)(unsigned int newstate, unsigned
char far∗packet))

Register a function to be notified when DHCP acquires or loses an IP.

• void dhcp_registerparseoption(void(∗functionptr)(unsigned char far∗option))

Register a function to be called when an unknown or unhandled DHCP option is
encountered.

• void dhcp_registerbuildpacket(unsigned char(∗functionptr)(unsigned char far
∗option, unsigned char msgtype))

Register a function to be called when a DHCP packet is about to be sent.

• unsigned intdhcp_version(void)

Returns the version number of this DHCP library.

• void dhcp_getserverip(structsockaddr∗address, int len)

Returns the IP address of the DHCP server.

• void dhcp_getprimarydns(structsockaddr∗address)

Returns the IP address of the primary DNS server.

• void dhcp_getsecondarydns(structsockaddr∗address)

Returns the IP address of the secondary DNS server.

• unsigned intdhcp_gettaskid()

Returns task ID of the DHCP process.

• int dhcp_getsocket()

Returns socket handle of the socket used in the DHCP process.

66



8.2.2 Define Documentation

8.2.2.1 #define DHCP_MSG_DHCPACK 5

DHCP message type ACK

8.2.2.2 #define DHCP_MSG_DHCPDECLINE 4

DHCP message type DECLINE

8.2.2.3 #define DHCP_MSG_DHCPDISCOVER 1

DHCP message type DISCOVER

8.2.2.4 #define DHCP_MSG_DHCPINFORM 8

DHCP message type INFORM

8.2.2.5 #define DHCP_MSG_DHCPNAK 6

DHCP message type NAK

8.2.2.6 #define DHCP_MSG_DHCPOFFER 2

DHCP message type OFFER

8.2.2.7 #define DHCP_MSG_DHCPRELEASE 7

DHCP message type RELEASE

8.2.2.8 #define DHCP_MSG_DHCPREQUEST 3

DHCP message type REQUEST

8.2.2.9 #define DHCP_STATUS_BOUND 5

DHCP status code returned bydhcp_status. The DHCP client is in theBOUND state:
it has been configured with a valid address.

See also:
dhcp_status

67



8.2.2.10 #define DHCP_STATUS_INIT 0

DHCP status code returned bydhcp_status. The DHCP client is in theINIT state: it
has not yet sent a DHCP_DISCOVER message.

See also:
dhcp_status

8.2.2.11 #define DHCP_STATUS_INITREBOOT 3

DHCP status code returned bydhcp_status. The DHCP client is in theINITREBOOT
state: it has rebooted, and is trying to acquire its old address.

See also:
dhcp_status

8.2.2.12 #define DHCP_STATUS_REBINDING 7

DHCP status code returned bydhcp_status. The DHCP client is in theREBINDING
state: it is attempting to get a new lease after its current lease expired.

See also:
dhcp_status

8.2.2.13 #define DHCP_STATUS_REBOOTING 4

DHCP status code returned bydhcp_status. The DHCP client is in theREBOOTING
state: after a reboot, it is waiting for permission to use its old address.

See also:
dhcp_status

8.2.2.14 #define DHCP_STATUS_RENEWING 6

DHCP status code returned bydhcp_status. The DHCP client is in theRENEWING
state: it is attempting to extend the current, valid lease of its address.

See also:
dhcp_status

68



8.2.2.15 #define DHCP_STATUS_REQUESTING 2

DHCP status code returned bydhcp_status. The DHCP client is in theREQUESTING
state: it has requested a DHCP address, and is awaiting a reply.

See also:
dhcp_status

8.2.2.16 #define DHCP_STATUS_SELECTING 1

DHCP status code returned bydhcp_status. The DHCP client is in theSELECTING
state: it is collecting DHCP offers.

See also:
dhcp_status

8.2.2.17 #define ROM400_DHCP_VERSION 12

Version number associated with this header file. Should be the same as the version
number returned by thedhcp_versionfunction.

See also:
dhcp_version

8.2.3 Function Documentation

8.2.3.1 void dhcp_getprimarydns (structsockaddr∗ address)

Returns the IP address of the primary DNS server.

Returns the IP address of the primary DNS server. The DNS server can be set by an
option received from a DHCP response, or by setting it manually from the DNS library
functiondns_setprimary. Note that this DNS server information entry is cleared out on
initialization.

Parameters:
addresswill fill in the primary DNS server IP address

See also:
dhcp_getsecondarydns
dns_setprimary
dns_getprimary

69



8.2.3.2 void dhcp_getsecondarydns (structsockaddr∗ address)

Returns the IP address of the secondary DNS server.

Returns the IP address of the primary DNS server. The DNS server can be set by an
option received from a DHCP response, or by setting it manually from the DNS library
functiondns_setprimary. Note that this DNS server information entry is cleared out on
initialization.

Parameters:
addresswill fill in the secondary DNS server IP address

See also:
dhcp_getprimarydns
dns_setsecondary
dns_getsecondary

8.2.3.3 void dhcp_getserverip (structsockaddr∗ address, int len)

Returns the IP address of the DHCP server.

Parameters:
addresswill fill in the DHCP server IP address

len length of the address structure (ignored)

8.2.3.4 int dhcp_getsocket ()

Returns socket handle of the socket used in the DHCP process.

Returns the socket handle of the socket used in the DHCP process. If the DHCP process
is not running, the return value is invalid.

Returns:
Socket handle of DHCP socket

See also:
dhcp_gettaskid

8.2.3.5 unsigned int dhcp_gettaskid ()

Returns task ID of the DHCP process.

Returns the task ID of the DHCP process. If the DHCP process has not been initialized
(but theinit_rom function has been called), this function returns 0.

The value returned by this function is suitable to use with the task library–for instance,
to alter the priority of the DHCP task.

70



Returns:
Task ID of the DHCP process.

See also:
dhcp_init
dhcp_getsocket

8.2.3.6 unsigned char dhcp_init (void)

Initializes the DHCP client.

Starts a DHCP Client task and returns to the caller. DHCP is implemented for IPv4
only. The IPv6 portion of the network stack uses neighbor discovery. To read the
address that the DHCP client has leased, use the socket library functiongetnetwork-
params. DHCP tries to request a previously leased IP (INITREBOOT state), seedhcp_-
setrequestip. This can cause dhcp_init to take a long time. Set a zero IP to force the
INIT state.

Returns:
0 for success, non-zero for failure.

See also:
dhcp_stop
getnetworkparams[in thesocketlibrary]
dhcp_setrequestip

8.2.3.7 void dhcp_registerbuildpacket (unsigned char(∗)(unsigned char far
∗option, unsigned char msgtype)functionptr)

Register a function to be called when a DHCP packet is about to be sent.

The function passed asfunctionptrwill be called when the DHCP client is about to send
a DHCP packet. The function pointed to byfunctionptrshould take two argumentis (a
pointer and a byte) and return a byte. Whenever the function at functionptr is called,
the pointer will be pointing to the first byte after the default options. The user can fill
in additional DHCP options, e.g. 0x0c,0x04,’T’,’I’,’N’,’I’ would be a DHCP hostname
option. The msgtype argument contains the current DHCP message type (DHCP_-
MSG_DISCOVER or DHCP_MSG_REQUEST). The return value is the number of
bytes added to the DHCP options, 6 in the hostname example above.

The function does not need to save/restore any registers.

Parameters:
functionptr Pointer to a function with the signature unsigned char fn(unsigned

char far∗ option, unsigned char msgtype)

71



8.2.3.8 void dhcp_registernotify (void(∗)(unsigned int newstate, unsigned char
far ∗packet) functionptr)

Register a function to be notified when DHCP acquires or loses an IP.

The function passed asfunctionptrwill be called when the DHCP client acquires or
loses an IP.

Parameters:
functionptr Pointer to a function with the signature void fn(unsigned int new-

state, unsigned char far∗packet). The function will be provided with the
new DHCP state and a pointer to the last DHCP packet received (the packet
pointer points to the beginning of the BOOTP data structure).

See also:
dhcp_status

8.2.3.9 void dhcp_registerparseoption (void(∗)(unsigned char far∗option) func-
tionptr)

Register a function to be called when an unknown or unhandled DHCP option is en-
countered.

The function passed asfunctionptr will be called when the DHCP client is parsing
an unknown DHCP option. The function pointed to byfunctionptr should take one
argument (a pointer) and return void. Whenever the function at functionptr is called,
the argument will be pointing to the current unhandled or vendor specific DHCP option.

The function does not need to save/restore any registers.

Parameters:
functionptr Pointer to a function with the signature void fn(unsigned char far∗

option).

8.2.3.10 void dhcp_setrequestip (structsockaddr∗ address, int len)

Sets the requested IP (and INITREBOOT state).

Whendhcp_init is called and the requested IP is not zero, the DHCP state machine
will start in INITREBOOT state and try to obtain a previously leased IP (if the DHCP
server doesn’t answer or the request is denied, it will ignore the requested IP). Setting
a requested IP can delay the IP lease if the DHCP server doesn’t respond (e.g. because
it didn’t retain the client record); set to zero to force the state machine to INIT state.

Parameters:
addressfill in the requested IP address

72



len length of the address structure (ignored)

See also:
dhcp_init

8.2.3.11 unsigned int dhcp_status (void)

Gets the status of the DHCP client.

Returns the current state of the DHCP Client. DHCP Clients that have leased a valid
address should returnDHCP_STATUS_BOUND.

Returns:
Status of the DHCP client.

8.2.3.12 void dhcp_stop (intreleaseip)

Disabled the DHCP client.

Kills the DHCP client task. Usedhcp_initto restart the DHCP client. If the "releaseip"
argument is non-zero, a DHCP release message is sent. Some DHCP servers don’t
retain client records, and releasing the IP will make it impossible/slower to get the
same IP after a reboot.

Parameters:
releaseip– 0: don’t send a DHCP release message

See also:
dhcp_init

8.2.3.13 unsigned int dhcp_version (void)

Returns the version number of this DHCP library.

Returns:
Version number of this DHCP library.

8.3 rom400_err.h File Reference

8.3.1 Detailed Description

Error codes used by functions in the DS80C400 ROM.

73



This file contains error codes that might be returned by functions that call into the
ROM.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Defines

• #defineROM400_ERR_VERSION1
• #defineROM400_IOEXCEPTION0x0B
• #defineROM400_INTERRUPTEDIOEXCEPTION0x36
• #defineROM400_ARRAYINDEXOUTOFBOUNDSEXCEPTION0x0D
• #defineROM400_INTERNALERROR0x2C
• #defineROM400_NULLPOINTEREXCEPTION0x08
• #defineROM400_OUTOFMEMORYERROR0x30
• #defineROM400_BINDEXCEPTION0x35
• #defineROM400_CONNECTEXCEPTION0x46
• #defineROM400_SOCKETEXCEPTION0x32

8.3.2 Define Documentation

8.3.2.1 #define ROM400_ARRAYINDEXOUTOFBOUNDSEXCEPTION 0x0D

Indicates that the index or offset to an array access was out of bounds.

8.3.2.2 #define ROM400_BINDEXCEPTION 0x35

Indicates that application cannot bind to address (interface unavailable, not a server
socket or socket not bound).

8.3.2.3 #define ROM400_CONNECTEXCEPTION 0x46

Indicates that an error occurred trying to connect to a remote port. The connection was
probably refused remotely.

8.3.2.4 #define ROM400_ERR_VERSION 1

Version number associated with this header file.

8.3.2.5 #define ROM400_INTERNALERROR 0x2C

Indicates a problem with the network queue.

74

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


8.3.2.6 #define ROM400_INTERRUPTEDIOEXCEPTION 0x36

Indicates that a sleep or wait was interrupted.

8.3.2.7 #define ROM400_IOEXCEPTION 0x0B

General error that is returned when a resource (memory, port) is not available or an
internal data structure (table) cannot hold more elements or is corrupted.

8.3.2.8 #define ROM400_NULLPOINTEREXCEPTION 0x08

Indicates that a pointer was not able to be dereferenced.

8.3.2.9 #define ROM400_OUTOFMEMORYERROR 0x30

Indicates that the system has run out of kernel or regular memory to allocate.

8.3.2.10 #define ROM400_SOCKETEXCEPTION 0x32

Indicates that a socket is not available (port in use or socket closed).

8.4 rom400_flash.h File Reference

8.4.1 Detailed Description

Flash programming functions for the TINIm400 module.

This library contains functions that allow applications to access the ROM’s flash eras-
ing and programming algorithms. Any flash that is compatible with the DS80C400
boot loader’s functions will be compatible with this library.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

The functions in this library are multi-process safe–that is, if you call the same method
from two different processes at the same time, the parameters to the function will not
be destroyed. However, multiple processes should not be performing flash altering
operations without some kind of synchronization control.

Defines

• #defineROM400_FLASH_VERSION2

75

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Functions

• unsigned charflash_eraseblock(unsigned char blocknum)

Erase a flash block.

• unsigned charflash_programbyte(void ∗location, unsigned char b)

Program a byte of flash.

• unsigned intflash_version(void)

Returns the version number of this flash library.

8.4.2 Define Documentation

8.4.2.1 #define ROM400_FLASH_VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by theflash_versionfunction.

See also:
flash_version

8.4.3 Function Documentation

8.4.3.1 unsigned char flash_eraseblock (unsigned charblocknum)

Erase a flash block.

Erases the block of flash that begins at addressblocknum:00:00. This operation checks
to see if the block is RAM or is the ROM (blocknumequals FF), in which case the
operation fails.

Parameters:
blocknum bank/block number of flash to erase

Returns:
0 if the erase was successful, 1 if the erase could not be performed.

8.4.3.2 unsigned char flash_programbyte (void∗ location, unsigned charb)

Program a byte of flash.

Programs the byteb to the addresslocation. If the location is unprogrammable (too
many zero bits have already been set) the operation fails.

76



Parameters:
location The address to write the valueb to

b The value to be programmed

Returns:
0 if the program is successful, 1 if the operation could not be performed.

8.4.3.3 unsigned int flash_version (void)

Returns the version number of this flash library.

Returns:
Version number of this flash library.

8.5 rom400_http.h File Reference

8.5.1 Detailed Description

Http Server functions in the DS80C400 ROM.

This library contains functions for implementing http server in DS80C400 ROM

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
Some functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Data Structures

• struct_http_variable
• struct_http_request
• struct_http_response
• struct_http_session

Defines

• #defineHTTP_VERSION8
• #defineHTTP_INSUFFICIENT_MEMORY-1
• #defineHTTP_LOGFILE_ERROR-2

77

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• #defineHTTP_SOCKET_ERROR-3
• #defineHTTP_REQUEST_NOT_PROCESSED-4
• #defineHTTP_DENY_CONNECTION-5
• #defineHTTP_TASK_ERROR-6
• #defineHTTP_SERVER_ALREADY_RUNNING-7
• #defineHTTP_NOSERVERTASK-8
• #defineHTTP_STATUS_SUCCESS0
• #defineHTTP_DISABLE_LOG0
• #defineHTTP_ENABLE_LOG1
• #defineHTTP_ENABLE_VARIABLE_PARSING1
• #defineHTTP_DISABLE_VARIABLE_PARSING0
• #defineHTTP_ENABLE_MESSAGEBODY_READING2
• #defineHTTP_DISABLE_MESSAGEBODY_READING0
• #defineHTTP_STOP_SERVERTASK0
• #defineHTTP_RUN_SERVERTASK1
• #defineDEFAULT_BUF_SIZE400
• #defineDEFAULT_MAX_PENDING_CONNECIONS5
• #defineHTTP_DEFAULT_PORT80
• #defineHTTP_MAX_URL 400
• #defineHTTP_MAX_BUFSIZE400
• #defineHTTP_GET_METHOD1
• #defineHTTP_POST_METHOD2
• #defineHTTP_HEAD_METHOD3

Typedefs

• typedef_http_variablehttp_variable
• typedef_http_requesthttp_request
• typedef_http_responsehttp_response
• typedef_http_sessionhttp_session

Functions

• int http_init (structsockaddrserver_addr)

Initializes http server library.

• int http_setrootdir(char∗rootdir)

Sets http root directory.

• char∗ http_getrootdir(void)

Returns http root directory.

78



• int http_setindexpage(char∗index)

Sets index page name.

• char∗ http_getindexpage(void)

Returns current index page.

• void http_setportnumber(int portnumber)

Sets HTTP Server Port number.

• int http_getportnumber(void)

Returns current http server port number.

• void http_setheaderbufsize(int buffersize)

Sets header buffer size.

• int http_getheaderbufsize(void)

Returns header buffer size.

• void http_set_req_linesize(int buffersize)

Sets the maximum size value of each line of http request.

• int http_get_req_linesize(void)

Returns the maximum size value of each line of http request.

• void http_set_req_process_options(char flag)

Sets Http request Processing options configuration flag value.

• charhttp_get_req_process_options(void)

Returns Http request Processing options configuration flag value.

• int http_getlogging(void)

Returns logging status.

• int http_setlogging(char logstatus)

Sets logging status.

• char∗ http_getlogfilename(void)

Returns log file name.

• int http_setlogfilename(char∗logfilename)

Sets log file name.

79



• void http_setmaxconnections(int max_connection)

Sets maximum number of pending connections value.

• int http_getmaxconnections(void)

Returns the current value for maximum number of pending connections.

• void http_setclientsocktimeout(long milli_sec)

Sets http client socket timeout value.

• longhttp_getclientsocktimeout(void)

Returns the current value for http client socket timeout.

• void http_reg_req_callback(int(∗func)())

Registers callback function to process http request.

• void http_reg_acl_callback(int(∗func)())

Registers access control callback function.

• void http_sendheaders(http_session∗https)

Sends http response headers to client.

• int http_start_server(void)

Starts http server.

• int http_kill_server(void)

Terminates http server.

• void http_decode_urlencodeddata(char∗pathname)

Decodes the url path which was encoded in "application/x-www-form-urlencoded"
format.

• charhttp_hex_from_ascii(char c)

Returns hexadecimal value for input ascii digit.

• int http_change_server_state(char server_state)

Changes Http Server state.

8.5.2 Define Documentation

8.5.2.1 #define DEFAULT_BUF_SIZE 400

Define for default header buffer size

80



See also:
http_getheaderbufsize
http_setheaderbufsize

8.5.2.2 #define DEFAULT_MAX_PENDING_CONNECIONS 5

Define for default maximum pending connections allowed

See also:
http_setmaxconnections
http_getmaxconnections

8.5.2.3 #define HTTP_DEFAULT_PORT 80

Define for default http port number

See also:
http_getportnumber
http_setportnumber

8.5.2.4 #define HTTP_DENY_CONNECTION -5

Error value to indicate that http client connection is denied by access control callback
function

See also:
http_reg_acl_callback

8.5.2.5 #define HTTP_DISABLE_LOG 0

Define for disabling logging activity

See also:
http_setlogging
http_getlogging

8.5.2.6 #define HTTP_DISABLE_MESSAGEBODY_READING 0

Define for disabling message body reading status flag

See also:
http_set_req_process_options
http_get_req_process_options

81



8.5.2.7 #define HTTP_DISABLE_VARIABLE_PARSING 0

Define for disabling variable parsing status flag

See also:
http_set_req_process_options
http_get_req_process_options

8.5.2.8 #define HTTP_ENABLE_LOG 1

Define for enabling logging activity

See also:
http_setlogging
http_getlogging

8.5.2.9 #define HTTP_ENABLE_MESSAGEBODY_READING 2

Define for enabling message body reading status flag

See also:
http_set_req_process_options
http_get_req_process_options

8.5.2.10 #define HTTP_ENABLE_VARIABLE_PARSING 1

Define for enabling variable parsing status flag

See also:
http_set_req_process_options
http_get_req_process_options

8.5.2.11 #define HTTP_GET_METHOD 1

Get request method type

See also:
http_request
http_session

82



8.5.2.12 #define HTTP_HEAD_METHOD 3

Head request method type

See also:
http_request
http_session

8.5.2.13 #define HTTP_INSUFFICIENT_MEMORY -1

Insufficient memory error value

See also:
http_setrootdir
http_setindexpage
http_setlogfilename

8.5.2.14 #define HTTP_LOGFILE_ERROR -2

Error opening log file

See also:
http_setlogging

8.5.2.15 #define HTTP_MAX_BUFSIZE 400

Define for maximum buffer size

See also:
http_request
http_session

8.5.2.16 #define HTTP_MAX_URL 400

Define for maximum url path name size

See also:
http_request
http_session

83



8.5.2.17 #define HTTP_NOSERVERTASK -8

Error value to indicate that http server task is not running

See also:
http_start_server
http_kill_server
http_change_server_state

8.5.2.18 #define HTTP_POST_METHOD 2

Post request method type

See also:
http_request
http_session

8.5.2.19 #define HTTP_REQUEST_NOT_PROCESSED -4

Error value to indicate that http request was not processed by callback function

See also:
http_reg_req_callback

8.5.2.20 #define HTTP_RUN_SERVERTASK 1

Define for running http server task

See also:
http_change_server_state

8.5.2.21 #define HTTP_SERVER_ALREADY_RUNNING -7

Error value to indicate that server is already running

See also:
http_start_server

8.5.2.22 #define HTTP_SOCKET_ERROR -3

Socket error value

See also:
http_start_server

84



8.5.2.23 #define HTTP_STATUS_SUCCESS 0

Http Status Success value, this value is returned when operation is completed success-
fully

See also:
http_setrootdir
http_setindexpage
http_setlogfilename
http_start_server
http_kill_server

8.5.2.24 #define HTTP_STOP_SERVERTASK 0

Define for stopping http server task

See also:
http_change_server_state

8.5.2.25 #define HTTP_TASK_ERROR -6

New task creation error

See also:
http_start_server

8.5.2.26 #define HTTP_VERSION 8

Version number associated with this header file. Should be the same as the version
number returned by thehttp_versionfunction.

See also:
http_version

8.5.3 Typedef Documentation

8.5.3.1 typedef struct_http_requesthttp_request

Structure for http request

8.5.3.2 typedef struct_http_responsehttp_response

Structure for http response

85



8.5.3.3 typedef struct_http_sessionhttp_session

Structure for http session

8.5.3.4 typedef struct_http_variable http_variable

Structure for http variable names and values

8.5.4 Function Documentation

8.5.4.1 int http_change_server_state (charserver_state)

Changes Http Server state.

This function sets http server state

This function is safe to be called from multiple processes at the same time.

Parameters:
server_stateServer state. Should be eitherHTTP_RUN_SERVERTASKor

HTTP_STOP_SERVERTASK

Returns:
HTTP_STATUS_SUCCESSor HTTP_NOSERVERTASK

8.5.4.2 void http_decode_urlencodeddata (char∗ pathname)

Decodes the url path which was encoded in "application/x-www-form-urlencoded" for-
mat.

This function decodes the url path which was encoded in "application/x-www-form-
urlencoded" format.

This function is safe to be called from multiple processes at the same time.

Parameters:
pathname pointer to url path name

8.5.4.3 int http_get_req_linesize (void)

Returns the maximum size value of each line of http request.

This function returns the maximum size value of each line of http request

This function is safe to be called from multiple processes at the same time.

Returns:
buffersize the maximum size value of each http request line

86



8.5.4.4 char http_get_req_process_options (void)

Returns Http request Processing options configuration flag value.

This function is safe to be called from multiple processes at the same time.

Returns:
The variable parsing status flag value

8.5.4.5 long http_getclientsocktimeout (void)

Returns the current value for http client socket timeout.

This function returns the current value for http client socket timeout

This function is safe to be called from multiple processes at the same time.

Returns:
The current value for http client socket timeout

8.5.4.6 int http_getheaderbufsize (void)

Returns header buffer size.

This function returns buffer size value for http request and response headers.

This function is safe to be called from multiple processes at the same time.

Returns:
header buffer size

8.5.4.7 char∗ http_getindexpage (void)

Returns current index page.

This function returns the current index page name.

This function is safe to be called from multiple processes at the same time.

Returns:
The starting address of index page name. NULL will be returned if there is no
index page set.

87



8.5.4.8 char∗ http_getlogfilename (void)

Returns log file name.

This function returns the log file name.

This function is safe to be called from multiple processes at the same time.

Returns:
The address of log file name. NULL will be returned if there is no log file set.

8.5.4.9 int http_getlogging (void)

Returns logging status.

This function returns the current logging status

This function is safe to be called from multiple processes at the same time.

Returns:
HTTP_DISABLE_LOGor HTTP_ENABLE_LOG

8.5.4.10 int http_getmaxconnections (void)

Returns the current value for maximum number of pending connections.

This function returns the current value for maximum number of pending connections

This function is safe to be called from multiple processes at the same time.

Returns:
The current value for maximum number of pending connections.

8.5.4.11 int http_getportnumber (void)

Returns current http server port number.

This function returns the current http server port number

This function is safe to be called from multiple processes at the same time.

Returns:
http server port number

88



8.5.4.12 char∗ http_getrootdir (void)

Returns http root directory.

This function returns the current root directory path name.

This function is safe to be called from multiple processes at the same time.

Returns:
The starting address of root directory path name. NULL will be returned if there
is no root directory set.

8.5.4.13 char http_hex_from_ascii (charc)

Returns hexadecimal value for input ascii digit.

This function returns hexadecimal value for input ascii digit

This function is safe to be called from multiple processes at the same time.

Parameters:
c ascii digit

Returns:
hexadecimal value for input ascii digit

8.5.4.14 int http_init (struct sockaddrserver_addr)

Initializes http server library.

This function initializes the internal data structures of http server library

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
server_addrAddress of http server. Should be initialized with the IP address of

the TINI it is running on.

Returns:
Always returnsHTTP_STATUS_SUCCESS

89



8.5.4.15 int http_kill_server (void)

Terminates http server.

This function Terminates http server

This function is safe to be called from multiple processes at the same time.

Returns:
HTTP_STATUS_SUCCESS, HTTP_NOSERVERTASK

8.5.4.16 void http_reg_acl_callback (int(∗)() func)

Registers access control callback function.

This function registers callback function to process http request

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
func - the function pointer to call back function

NOTE:

Access control callback function should have the following function prototype to re-
ceive the sockaddr pointer

int << http access control call back function name>> (sockaddr∗address)

NOTE: Access control callback routine should returnHTTP_STATUS_SUCCESS
value to process the http request,HTTP_DENY_CONNECTIONerror value to deny
the client connection

Warning:
this callback function should be multi-task safe.

8.5.4.17 void http_reg_req_callback (int(∗)() func)

Registers callback function to process http request.

This function registers callback function to process http request

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

90



Parameters:
func - the function pointer to call back function

NOTE: Http request process callback function should have the following function pro-
totype to receive http session structure pointer.

int << http request process call back function name>> (http_session∗https)

NOTE: Http request process callback routine should returnHTTP_STATUS_-
SUCCESSvalue, if the request was processed.HTTP_REQUEST_NOT_PROCESSED
error value to let http library process the request.

Warning:
this callback function should be multi-task safe.

8.5.4.18 void http_sendheaders (http_session∗ https)

Sends http response headers to client.

This function sends http response headers to client

This function is safe to be called from multiple processes at the same time.

NOTE: the response code, content type, content length, and response header values
can be modified from application before sending response headers

Parameters:
https the pointer to http session object that contains response header value

8.5.4.19 void http_set_req_linesize (intbuffersize)

Sets the maximum size value of each line of http request.

This function sets the maximum size value of each line of http request

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
buffersize the maximum size value of each http request line

8.5.4.20 void http_set_req_process_options (charflag)

Sets Http request Processing options configuration flag value.

91



This function sets http request processing options configuration flag value. By default,
The Http request Processing options flag contains (HTTP_ENABLE_VARIABLE_-
PARSING|HTTP_ENABLE_MESSAGEBODY_READING) value.

This function is safe to be called from multiple processes at the same time.

Parameters:
flag Http request Variable parsing status flag value. The following table shows the

possible values for flag.

flag value Description
HTTP_ENABLE_VARIABLE_-
PARSING|HTTP_ENABLE_-
MESSAGEBODY_READING

When the flag is set with this value, The
http server parses the variables from
"query string", and "message body" and
stores it in variable list. The variable
needs to be passed using standard
convention(variablename=value) to
make http server library to parse the
variables successfully.

HTTP_DISABLE_VARIABLE_-
PARSING|HTTP_ENABLE_-
MESSAGEBODY_READING

This value makes http server library to
disable variable parsing. But, library
reads both "querystring" and
"messagebody" part of http request, and
user can access both "query string" and
"messagebody" values from
querystring,messagebody members of
http session object.

HTTP_ENABLE_VARIABLE_-
PARSING|HTTP_DISABLE_-
MESSAGEBODY_READING

This value enables http server library to
read "querystring" and parse
querystring to extract http variables.
But, http server does not read
"messagebody" part of httprequest. It is
user’s responsibility to read and process
messagebody.

HTTP_DISABLE_VARIABLE_-
PARSING|HTTP_DISABLE_-
MESSAGEBODY_READING

When the flag is set with this value, http
server library reads "query string" value
and keeps it in querystring member of
http session object. Http server library
neither parses "querystring" nor reads
messagebody part of http request.

8.5.4.21 void http_setclientsocktimeout (longmilli_sec)

Sets http client socket timeout value.

This function sets http client socket timeout value

92



Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
milli_sec timeout value in milliseconds

8.5.4.22 void http_setheaderbufsize (intbuffersize)

Sets header buffer size.

This function sets both http request and http response header buffer size

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
buffersize the input buffer size value

8.5.4.23 int http_setindexpage (char∗ index)

Sets index page name.

This function sets index page name in http library. Index page will be sent to http client
if url request path is "/"

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
index Index page name

Returns:
• HTTP_STATUS_SUCCESSif the operation is completed successfully

• HTTP_INSUFFICIENT_MEMORYif memory can’t be allocated for storing
new index page name

8.5.4.24 int http_setlogfilename (char∗ logfilename)

Sets log file name.

This function sets log file name with http library.

93



Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
logfilename - name of the log file

Returns:
• HTTP_STATUS_SUCCESSif the operation is completed successfully

• HTTP_INSUFFICIENT_MEMORYif memory can’t be allocated for storing
new log file name

NOTE: Logging activity has to be disabled and re-enabled in order to use new log file
name for logging

8.5.4.25 int http_setlogging (charlogstatus)

Sets logging status.

This function sets the logging status with http server library

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
logstatus Logging status value. EitherHTTP_DISABLE_LOGor HTTP_-

ENABLE_LOG

Returns:
HTTP_STATUS_SUCCESSor HTTP_LOGFILE_ERROR

8.5.4.26 void http_setmaxconnections (intmax_connection)

Sets maximum number of pending connections value.

This function sets maximum number of pending connections allowed in the listen
queue

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
max_connectionValue for maximum number of pending connections

94



8.5.4.27 void http_setportnumber (intportnumber)

Sets HTTP Server Port number.

This function sets http server port number

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
portnumber the input http server port number

NOTE: http server has to be stopped and re-started in order to use new http port num-
ber.

8.5.4.28 int http_setrootdir (char∗ rootdir)

Sets http root directory.

This function sets http root directory in http library. url pathname for particular re-
source is "relative path name" to root directory.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
rootdir root directory path

Returns:
• HTTP_STATUS_SUCCESSif the operation is completed successfully

• HTTP_INSUFFICIENT_MEMORYif memory can’t be allocated for storing
new root directory name

8.5.4.29 int http_start_server (void)

Starts http server.

This function starts http server

This function is safe to be called from multiple processes at the same time.

Returns:
One of: HTTP_STATUS_SUCCESS, HTTP_TASK_ERROR, HTTP_SOCKET_-
ERROR, or HTTP_SERVER_ALREADY_RUNNING

95



8.6 rom400_init.h File Reference

8.6.1 Detailed Description

ROM Initialization functions in the DS80C400 ROM.

This library contains functions for initializing the functionality in the ROM. Note that
the preferred way of initializing the ROM is to simply call theinit_rom function. How-
ever, you can also initialize the various modules individually. To do this, call these
functions in this order:

1. init_clearXSEG

2. init_copyivt

3. init_redirect

4. init_sched

5. init_mm

6. init_km

7. init_ow

8. init_network

9. init_eth

10. init_sockets

11. init_tick

12. task_genesis[in the process scheduler library]

13. init_enableinterrupts

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Functions in this library should only be called once on startup. The safety of calling
these functions from multiple processes at the same time is irrelevant.

Defines

• #defineROM400_INIT_VERSION19
• #defineUSE_KEIL_MONITOR
• #defineINIT_DIVISOR_3MHZ 0x01
• #defineINIT_DIVISOR_4MHZ 0x08
• #defineINIT_DIVISOR_5MHZ 0x02

96

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• #defineINIT_DIVISOR_6MHZ 0x05
• #defineINIT_DIVISOR_7MHZ 0x03
• #defineINIT_DIVISOR_8MHZ 0x0C
• #defineINIT_DIVISOR_10MHZ0x06
• #defineINIT_DIVISOR_12MHZ0x09
• #defineINIT_DIVISOR_14MHZ0x07
• #defineINIT_DIVISOR_16MHZ0x10
• #defineINIT_DIVISOR_20MHZ0x0A
• #defineINIT_DIVISOR_24MHZ0x0D
• #defineINIT_DIVISOR_28MHZ0x0B
• #defineINIT_DIVISOR_32MHZ0x14
• #defineINIT_DIVISOR_40MHZ0x0E
• #defineINIT_DIVISOR_48MHZ0x11
• #defineINIT_DIVISOR_56MHZ0x0F
• #defineINIT_DIVISOR_64MHZ0x18
• #defineINIT_DIVISOR_80MHZ0x12
• #defineINIT_DIVISOR_96MHZ0x15
• #defineINIT_DIVISOR_112MHZ0x13
• #defineINIT_DIVISOR_128MHZ0x1C
• #defineINIT_POWERFAIL_RESET0x08
• #defineINIT_WATCHDOG_RESET0x10
• #defineINIT_CRYSTALFAIL_RESET0x20
• #define DEFAULT_HEAP_START ((((long)&HEAP_START)&0x7fffffL)-

0x10000L)
• #defineinit_setfrequency(clock) init_setclock(((clock)∗5L)/60)

Sets the crystal frequency.

Functions

• void HEAP_START(void)
• void init_rom (unsigned long mem_start_address, unsigned long mem_end_-

address)

Initializes the modules in the ROM.

• void init_netboot(void)

Starts the netboot functionality. Note that this will negate any initialization that has
already been performed.

• void init_copyivt (void)

Copies the interrupt vector table into memory.

• void init_redirect(void)

97



Sets up the redirect table for ROM redirected calls.

• void init_sched(void)

Sets up the default task scheduler.

• void init_clearXSEG(void)

Clears system variables in external RAM.

• void init_mm (unsigned long mem_start_address, unsigned long mem_end_-
address)

Initializes the heap.

• void init_km (void)

Initializes fast kernel memory.

• void init_ow (unsigned char DIVISOR)

Initializes the internal 1-Wire.

• void init_network(void)

Initializes the network.

• void init_eth(void)

Initializes the ethernet support.

• void init_sockets(void)

Initializest the socket layer.

• void init_tick (void)

Initializes the system timer.

• void init_enableinterrupts(void)

Enables system interrupts.

• void init_usekeilmonitor(void)

Performs initialization necessary for using the Keil Monitor.

• unsigned intinit_version(void)

Returns the version number of this initialization library.

• unsigned charinit_getbootstate(void)

Returns the boot status flags.

• void init_setclock(unsigned int value)

98



Sets the crystal frequency.

8.6.2 Define Documentation

8.6.2.1 #define DEFAULT_HEAP_START ((((long)&HEAP_START)&0x7fffff-
L)-0x10000L)

Defines the default start address for the heap.

See also:
init_rom

8.6.2.2 #define INIT_CRYSTALFAIL_RESET 0x20

Crystal failure reset status.

See also:
init_getbootstate

8.6.2.3 #define INIT_DIVISOR_10MHZ 0x06

1-Wire divisor value for operating frequencies greater than 10 MHz but less than 12
MHz.

See also:
init_ow

8.6.2.4 #define INIT_DIVISOR_112MHZ 0x13

1-Wire divisor value for operating frequencies greater than 112 MHz but less than 128
MHz.

See also:
init_ow

8.6.2.5 #define INIT_DIVISOR_128MHZ 0x1C

1-Wire divisor value for operating frequencies greater than 128 MHz.

See also:
init_ow

99



8.6.2.6 #define INIT_DIVISOR_12MHZ 0x09

1-Wire divisor value for operating frequencies greater than 12 MHz but less than 14
MHz.

See also:
init_ow

8.6.2.7 #define INIT_DIVISOR_14MHZ 0x07

1-Wire divisor value for operating frequencies greater than 14 MHz but less than 16
MHz.

See also:
init_ow

8.6.2.8 #define INIT_DIVISOR_16MHZ 0x10

1-Wire divisor value for operating frequencies greater than 16 MHz but less than 20
MHz.

See also:
init_ow

8.6.2.9 #define INIT_DIVISOR_20MHZ 0x0A

1-Wire divisor value for operating frequencies greater than 20 MHz but less than 24
MHz.

See also:
init_ow

8.6.2.10 #define INIT_DIVISOR_24MHZ 0x0D

1-Wire divisor value for operating frequencies greater than 24 MHz but less than 28
MHz.

See also:
init_ow

8.6.2.11 #define INIT_DIVISOR_28MHZ 0x0B

1-Wire divisor value for operating frequencies greater than 28 MHz but less than 32
MHz.

See also:
init_ow

100



8.6.2.12 #define INIT_DIVISOR_32MHZ 0x14

1-Wire divisor value for operating frequencies greater than 32 MHz but less than 40
MHz.

See also:
init_ow

8.6.2.13 #define INIT_DIVISOR_3MHZ 0x01

1-Wire divisor value for operating frequencies greater than 3 MHz but less than 4
MHz.

See also:
init_ow

8.6.2.14 #define INIT_DIVISOR_40MHZ 0x0E

1-Wire divisor value for operating frequencies greater than 40 MHz but less than 48
MHz.

See also:
init_ow

8.6.2.15 #define INIT_DIVISOR_48MHZ 0x11

1-Wire divisor value for operating frequencies greater than 48 MHz but less than 56
MHz.

See also:
init_ow

8.6.2.16 #define INIT_DIVISOR_4MHZ 0x08

1-Wire divisor value for operating frequencies greater than 4 MHz but less than 5
MHz.

See also:
init_ow

8.6.2.17 #define INIT_DIVISOR_56MHZ 0x0F

1-Wire divisor value for operating frequencies greater than 56 MHz but less than 64
MHz.

See also:
init_ow

101



8.6.2.18 #define INIT_DIVISOR_5MHZ 0x02

1-Wire divisor value for operating frequencies greater than 5 MHz but less than 6
MHz.

See also:
init_ow

8.6.2.19 #define INIT_DIVISOR_64MHZ 0x18

1-Wire divisor value for operating frequencies greater than 64 MHz but less than 80
MHz.

See also:
init_ow

8.6.2.20 #define INIT_DIVISOR_6MHZ 0x05

1-Wire divisor value for operating frequencies greater than 6 MHz but less than 7
MHz.

See also:
init_ow

8.6.2.21 #define INIT_DIVISOR_7MHZ 0x03

1-Wire divisor value for operating frequencies greater than 7 MHz but less than 8
MHz.

See also:
init_ow

8.6.2.22 #define INIT_DIVISOR_80MHZ 0x12

1-Wire divisor value for operating frequencies greater than 80 MHz but less than 96
MHz.

See also:
init_ow

8.6.2.23 #define INIT_DIVISOR_8MHZ 0x0C

1-Wire divisor value for operating frequencies greater than 8 MHz but less than 10
MHz.

See also:
init_ow

102



8.6.2.24 #define INIT_DIVISOR_96MHZ 0x15

1-Wire divisor value for operating frequencies greater than 96 MHz but less than 112
MHz.

See also:
init_ow

8.6.2.25 #define INIT_POWERFAIL_RESET 0x08

Power fail reset status.

See also:
init_getbootstate

8.6.2.26 #define init_setfrequency(clock) init_setclock(((clock)∗5L)/60)

Sets the crystal frequency.

Parameters:
clock Clock frequency in kHz (e.g. 14746 for a 14.7456 MHz crystal). The op-

erating frequency is the oscillator adjusted by any setting of the frequency
multiplier (i.e. a 14 MHz oscillator with the clock doubler enabled should
set 28 MHz)

Note that this macro has to be called beforeinit_rom.

See also:
task_settickreload
init_rom
init_setclock

8.6.2.27 #define INIT_WATCHDOG_RESET 0x10

Watchdog reset status.

See also:
init_getbootstate

8.6.2.28 #define ROM400_INIT_VERSION 19

Version number associated with this header file. Should be the same as the version
number returned by theinit_versionfunction.

See also:
init_version

103



8.6.2.29 #define USE_KEIL_MONITOR

Macro that allows the use of a define to determine whether or not to call the function
init_usekeilmonitor. This macro can be called after callinginit_rom, and will correct
some monitor configuration details that are destroyed wheninit_rom is called.

See also:
init_rom
init_usekeilmonitor

8.6.3 Function Documentation

8.6.3.1 void HEAP_START (void)

Used to calculate the default start address for the heap.

See also:
init_rom

8.6.3.2 void init_clearXSEG (void)

Clears system variables in external RAM.

Note that callinginit_rom is the preferred way of initializing the ROM.

This function also sets theEPFI bit.

See also:
init_rom

8.6.3.3 void init_copyivt (void)

Copies the interrupt vector table into memory.

Note that callinginit_rom is the preferred way of initializing the ROM.

See also:
init_rom

8.6.3.4 void init_enableinterrupts (void)

Enables system interrupts.

Note that callinginit_rom is the preferred way of initializing the ROM.

See also:
init_rom

104



8.6.3.5 void init_eth (void)

Initializes the ethernet support.

Note that callinginit_rom is the preferred way of initializing the ROM.

See also:
init_rom

8.6.3.6 unsigned char init_getbootstate (void)

Returns the boot status flags.

The status flags are defined as follows: Status.3 (0x08) - Power Fail Reset INIT_-
POWERFAIL_RESET Status.4 (0x10) - Watchdog Reset INIT_WATCHDOG_RESET
Status.5 (0x20) - Crystal Oscillator Failure Reset INIT_CRYSTALFAIL_RESET All
other bits are reserved, but not necessarily 0.

Returns:
Status flags

See also:
INIT_POWERFAIL_RESET
INIT_WATCHDOG_RESET
INIT_CRYSTALFAIL_RESET

8.6.3.7 void init_km (void)

Initializes fast kernel memory.

Note that callinginit_rom is the preferred way of initializing the ROM.

See also:
init_rom

8.6.3.8 void init_mm (unsigned longmem_start_address, unsigned longmem_-
end_address)

Initializes the heap.

Note that callinginit_rom is the preferred way of initializing the ROM.

Parameters:
mem_start_addressThe absolute beginning address for the heap (seeinit_rom for

a detailed discussion of the input parameters). Unlike theinit_rom function,

105



this function cannot accept0 for default parameters. The start address must
be specified. UseDEFAULT_HEAP_STARTto specify the default start ad-
dress.

mem_end_addressThe absolute ending address for the heap (seeinit_rom for a
detailed discussion of the input parameters). Unlike theinit_rom function,
this function cannot accept0 for default parameters. The end address must
be specified.

See also:
init_rom
DEFAULT_HEAP_START

8.6.3.9 void init_netboot (void)

Starts the netboot functionality. Note that this will negate any initialization that has
already been performed.

See also:
init_rom

8.6.3.10 void init_network (void)

Initializes the network.

Note that callinginit_rom is the preferred way of initializing the ROM.

See also:
init_rom

8.6.3.11 void init_ow (unsigned charDIVISOR)

Initializes the internal 1-Wire.

Note that callinginit_rom is the preferred way of initializing the ROM.

Parameters:
DIVISOR Divisor value for given the DS80C400’s operating frequency. The op-

erating frequency is the oscillator adjusted by any setting of the frequency
multiplier (i.e. a 14 MHz oscillator with the clock doubler enabled should
look for a divisor for 28 MHz)

See also:
init_rom

106



INIT_DIVISOR_3MHZ
INIT_DIVISOR_4MHZ
INIT_DIVISOR_5MHZ
INIT_DIVISOR_6MHZ
INIT_DIVISOR_7MHZ
INIT_DIVISOR_8MHZ
INIT_DIVISOR_10MHZ
INIT_DIVISOR_12MHZ
INIT_DIVISOR_14MHZ
INIT_DIVISOR_16MHZ
INIT_DIVISOR_20MHZ
INIT_DIVISOR_24MHZ
INIT_DIVISOR_28MHZ
INIT_DIVISOR_32MHZ
INIT_DIVISOR_40MHZ
INIT_DIVISOR_48MHZ
INIT_DIVISOR_56MHZ
INIT_DIVISOR_64MHZ
INIT_DIVISOR_80MHZ
INIT_DIVISOR_96MHZ
INIT_DIVISOR_112MHZ
INIT_DIVISOR_128MHZ

8.6.3.12 void init_redirect (void)

Sets up the redirect table for ROM redirected calls.

Note that callinginit_rom is the preferred way of initializing the ROM.

See also:
init_rom

8.6.3.13 void init_rom (unsigned longmem_start_address, unsigned longmem_-
end_address)

Initializes the modules in the ROM.

Initializes the network stack, memory manager, process scheduler, and other modules
in the DS80C400 Silicon Software. Calling this method is the preferred way of initial-
izing the ROM.

Note that calling this function will cause the ROM to copy its own interrupt table into
memory. If you have any interrupts installed before calling this function (for instance,
you use the Keil compilersinterrupt keyword to declare your function an interrupt
handler), the entry in the interrupt table will be erased.

107



init_rom prints status information to the serial port if serial 0 is set to use timer 2. If
that is not desired, cleartr2. ... TR2 = 0; init_rom(...); TR2 = 1;
...

init_rom will probe all available 1-Wire devices for an approximate clock frequency
and it will try to find a DS2502-E48 for an Ethernet MAC address. If no DS2502-E48
is present, you must useinit_setfrequencyto specify a clock frequency, and you must
modify startup.a51 to manually set a MAC address.

Parameters:
mem_start_addressThe absolute beginning address for the heap.

mem_end_addressThe absolute ending address for the heap.

Use mem_start_address==0 to use the default settings for both start and end, or pass a
value to mem_start_address and use mem_end_address==0 to use the remaining mem-
ory in the same bank, or use valid values for both addresses. Make sure the heap does
not conflict with the XDATA segment (adjustable in project settings); you can examine
the MAP file to determine the size of XDATA. Also note that the reentrant stack starts
at the top of the XDATA segment (start address adjustable in startup400.a51).

Start address examples...

mem_start_-
address

mem_end_-
address

actual start actual end size of heap

0x000000 0x000000 0x002900 0x00FFFF 55040
DEFAULT_-
HEAP_-
START

0x07FFFF 0x002900 0x07FFFF 513792

0x010440 0x000000 0x010440 0x01FFFF 64448
0x010440 0x07FFFF 0x010440 0x07FFFF 457663

See also:
DEFAULT_HEAP_START

8.6.3.14 void init_sched (void)

Sets up the default task scheduler.

Note that callinginit_rom is the preferred way of initializing the ROM.

See also:
init_rom

108



8.6.3.15 void init_setclock (unsigned intvalue)

Sets the crystal frequency.

Parameters:
value Clock frequency in kHz∗ 5/60 (e.g. 1229 for a 14.7456 MHz crystal). The

operating frequency is the oscillator adjusted by any setting of the frequency
multiplier (i.e. a 14 MHz oscillator with the clock doubler enabled should
set 28 MHz)

Note that this function has to be called beforeinit_rom. Users should call the more
friendly macroinit_setfrequency.

See also:
task_settickreload
init_rom
init_setfrequency

8.6.3.16 void init_sockets (void)

Initializest the socket layer.

Note that callinginit_rom is the preferred way of initializing the ROM.

See also:
init_rom

8.6.3.17 void init_tick (void)

Initializes the system timer.

Note that callinginit_rom is the preferred way of initializing the ROM.

See also:
init_rom

8.6.3.18 void init_usekeilmonitor (void)

Performs initialization necessary for using the Keil Monitor.

Performs initialization needed when using the Keil MON390 Monitor to debug pro-
grams that access the DS80C400’s ROM. This function should be called after calling
init_rom, and only if the monitor will be used.

This file includes a macroUSE_KEIL_MONITORwhich is defined to call this function
if MONITORis defined. Use the following code to make use of this macro:

109



init_rom() ;
USE_KEIL_MONITOR

See also:
init_rom
USE_KEIL_MONITOR

8.6.3.19 unsigned int init_version (void)

Returns the version number of this initialization library.

Returns:
Version number of this INIT library.

8.7 rom400_kmem.h File Reference

8.7.1 Detailed Description

Kernel Memory initialization functions for the DS80C400 ROM.

This library allows users to allocate different amounts of memory as fast kernel buffers
for use as ethernet buffers and as task control structures. The default allocation by the
ROM may not be sufficient, and the use of multiple processes and multiple sockets
might combine to drain all kernel memory. This library allows you to increase that
amount for more complex applications.

There are two ways to use this library. 1) When usinginit_rom: Call kmem_install
before callinginit_rom.

2) When using the individual initialization functions: The functionkmem_initis meant
to replace the functioninit_kmfrom the initialization library.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

The functions in this library are multi-process safe–that is, if you call the same method
from two different processes at the same time, the parameters to the function will not
be destroyed. However, the functionkmem_initis a system initialization function and
should only be called once before the process scheduler is active.

Data Structures

• structkmem_memory

110

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Defines

• #defineROM400_KMEM_VERSION7
• #defineROM400_KMEM_MODEL_SMALLEST1
• #defineROM400_KMEM_MODEL_LARGEST11

Functions

• unsigned charkmem_init(unsigned char MODEL)

Initializes the kernel buffers.

• unsigned intkmem_version(void)

Returns the version number of this KMEM library.

• void kmem_install(unsigned char MODEL)

Installs the kmem library.

• void kmem_getfree(structkmem_memory∗freeblocks)

Returns a count of free kmem blocks.

• unsigned charkmem_getblockcount(unsigned char offset)

Returns a count of free kmem blocks at specified offset.

8.7.2 Define Documentation

8.7.2.1 #define ROM400_KMEM_MODEL_LARGEST 11

The largest value of the argument to be passed tokmem_init.

See also:
ROM400_KMEM_MODEL_SMALLEST
kmem_init

8.7.2.2 #define ROM400_KMEM_MODEL_SMALLEST 1

The smallest value of the argument to be passed tokmem_init.

See also:
ROM400_KMEM_MODEL_LARGEST
kmem_init

111



8.7.2.3 #define ROM400_KMEM_VERSION 7

Version number associated with this header file. Should be the same as the version
number returned by thekmem_versionfunction.

See also:
kmem_version

8.7.3 Function Documentation

8.7.3.1 unsigned char kmem_getblockcount (unsigned charoffset)

Returns a count of free kmem blocks at specified offset.

Allows user applications to query the kernel memory allocator for detailed free block
information.

Parameters:
offset offset of requested block count (range of 0 to 6)

8.7.3.2 void kmem_getfree (structkmem_memory∗ freeblocks)

Returns a count of free kmem blocks.

Allows user applications to query the kernel memory allocator for detailed free block
information.

Parameters:
freeblocks pointer to structure to hold the current free block counts

8.7.3.3 unsigned char kmem_init (unsigned charMODEL)

Initializes the kernel buffers.

Allows user applications to specify the amount of kernel memory that will be available
to the system. Kernel memory is used internally for Ethernet buffers and task control
structures, and as such can limit the number of processes or sockets an application can
use concurrently if there is not enough kernel buffer space. The default kernel buffer
allocation given by the ROM is:

• 90 byte buffers (20 count)

• 256 byte buffers (2 count)

• 512 byte buffers (1 count)

• 768 byte buffers (1 count)

112



• 1024 byte buffers (1 count)

• 1280 byte buffers (1 count)

• 1600 byte buffers (2 count)

By calling this function, the count of kernel buffers is multiplied by the valueMODEL.
Note that whileROM400_KMEM_MODEL_LARGEST is the largest amount of
kernel memory that the system can support, few applications will need to go beyond
ROM400_KMEM_MODEL_SMALLEST + 2.

Parameters:
MODEL specifies how much kernel memory will be allocated for the system

Returns:
0 for success, non-zero for failure.

See also:
init_rom

8.7.3.4 void kmem_install (unsigned charMODEL)

Installs the kmem library.

This function must be called beforeinit_rom.

Allows user applications to specify the amount of kernel memory that will be available
to the system. Kernel memory is used internally for Ethernet buffers and task control
structures, and as such can limit the number of processes or sockets an application can
use concurrently if there is not enough kernel buffer space. The default kernel buffer
allocation given by the ROM is:

• 90 byte buffers (20 count)

• 256 byte buffers (2 count)

• 512 byte buffers (1 count)

• 768 byte buffers (1 count)

• 1024 byte buffers (1 count)

• 1280 byte buffers (1 count)

• 1600 byte buffers (2 count)

By calling this function, the count of kernel buffers is multiplied by the valueMODEL.
Note that whileROM400_KMEM_MODEL_LARGEST is the largest amount of
kernel memory that the system can support, few applications will need to go beyond
ROM400_KMEM_MODEL_SMALLEST + 2.

113



Parameters:
MODEL specifies how much kernel memory will be allocated for the system

See also:
init_rom

8.7.3.5 unsigned int kmem_version (void)

Returns the version number of this KMEM library.

Returns:
Version number of this KMEM library.

8.8 rom400_mem.h File Reference

8.8.1 Detailed Description

Memory management functions in the DS80C400 ROM.

This library contains functions for allocating and de-allocating blocks of memory
through the ROM’s memory manager.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

The methods in this library are all multi-process safe. That is, a function can be called
by more than one process at the same time and its parameters won’t be destroyed.

Defines

• #defineROM400_MEM_VERSION6

Functions

• void ∗ mem_malloc(unsigned int size)

Requests a block of memory to be allocated.

• void ∗ mem_mallocdirty(unsigned int size)

Requests a block of memory to be allocated.

• unsigned charmem_free(void ∗ptr)

De-allocates a block of memory.

• unsigned longmem_getfreeram(void)

114

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Returns the amount of memory available for allocation.

• unsigned intmem_sizeof(void ∗ptr)

Gets the size of an allocated block of memory.

• unsigned intmem_version(void)

Returns the version number of this memory management library.

• void mem_coalesce(void)

Join adjacent chunks of freed memory.

8.8.2 Define Documentation

8.8.2.1 #define ROM400_MEM_VERSION 6

Version number associated with this header file. Should be the same as the version
number returned by themem_versionfunction.

See also:
mem_version

8.8.3 Function Documentation

8.8.3.1 void mem_coalesce (void)

Join adjacent chunks of freed memory.

When the memory manager frees allocated memory, it makes no attempt to rejoin
adjacent pieces of memory, Therefore, the memory becomes fragmented over time
unless the allocation calls are very careful. This function will join adjacent pieces of
memory and make the larger piece available for allocation.

8.8.3.2 unsigned char mem_free (void∗ ptr)

De-allocates a block of memory.

Deallocates a block of memory that was previously allocated by callingmem_malloc
or mem_mallocdirty, making this block available for re-allocation. Use the function
mem_getfreeramto determine how much memory is available for allocation.

This is a redirected function. The ROM includes a default memory manager implemen-
tation. See theDS80C400 User’s Guide for information on replacing the default
memory manager with your own memory manager.

Parameters:
ptr pointer to the beginning of the previously allocated memory

115

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Returns:
0 for success, non-zero for failure

See also:
mem_malloc
mem_mallocdirty
mem_getfreeram
mem_sizeof

8.8.3.3 unsigned long mem_getfreeram (void)

Returns the amount of memory available for allocation.

Returns the total amount of memory available for allocation. Memory is allocated in
increments of 32 bytes. Due to fragmentation, large memory allocations may not be
possible.

Note that the size returned by this function includes the memory manager overhead for
this particular block. For example, if you request 512 bytes in a call tomem_malloc,
this function will report the amount 512 plus overhead size, rounded up to the next
32-byte block (thus returning 544).

This is a redirected function. The ROM includes a default memory manager implemen-
tation. See theDS80C400 User’s Guide for information on replacing the default
memory manager with your own memory manager.

See also:
mem_sizeof

Returns:
The amount of memory available for allocation from the memory manager.

8.8.3.4 void∗ mem_malloc (unsigned intsize)

Requests a block of memory to be allocated.

Tries to allocate a block of memory of the requested size (maximum size of 64K).
The data allocated is filled with 0’s (similar to the traditional "calloc" library function).
To request non-cleared memory (and save the extra time) usemem_mallocdirty. To
de-allocate the memory block, usemem_free.

This is a redirected function. The ROM includes a default memory manager implemen-
tation. See theDS80C400 User’s Guide for information on replacing the default
memory manager with your own memory manager.

Parameters:
size amount of data requested for allocation

116

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Returns:
pointer to the newly allocated memory, or NULL (0) if the operation failed

See also:
mem_mallocdirty
mem_free
mem_sizeof

8.8.3.5 void∗ mem_mallocdirty (unsigned intsize)

Requests a block of memory to be allocated.

Tries to allocate a block of memory of the requested size (maximum size of 64K). The
data allocated is NOT filled with 0’s, and is likely to be filled with unpredictable values.
To request cleared memory, usemem_malloc. To de-allocate the memory block, use
mem_free.

This is a redirected function. The ROM includes a default memory manager implemen-
tation. See theDS80C400 User’s Guide for information on replacing the default
memory manager with your own memory manager.

Parameters:
size amount of data requested for allocation

Returns:
pointer to the newly allocated memory, or NULL (0) if the operation failed

See also:
mem_malloc
mem_free
mem_sizeof

8.8.3.6 unsigned int mem_sizeof (void∗ ptr)

Gets the size of an allocated block of memory.

Returns the size of a block of memory that was allocated by the ROM’s default memory
manager. If the input pointer is not a valid pointer that was created by an earlier call to
mem_mallocor mem_mallocdirty, the value returned has no meaning.

This is NOT a redirected function, and only functions if the ROM’s default memory
manager is used.

Parameters:
ptr pointer to the beginning of the previously allocated memory

117

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Returns:
size of the memory allocated for a valid input pointer

See also:
mem_malloc
mem_mallocdirty
mem_getfreeram

8.8.3.7 unsigned int mem_version (void)

Returns the version number of this memory management library.

Returns:
Version number of this memory management library.

8.9 rom400_netif.h File Reference

8.9.1 Detailed Description

Network interface library for the DS80C400.

This library allows a user to add network interface drivers to the network stack.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Defines

• #defineROM400_NETIF_VERSION2

Functions

• unsigned intnetif_version(void)

Returns the version number of this NETIF library.

• int netif_packetreceived(unsigned char∗packet, int len)

Submit an inbound packet to the network stack.

• int netif_addinterface(char ∗name, unsigned long ip, unsigned long subnet,
unsigned long gateway, unsigned char flags, int(∗transmitter)(unsigned char
∗packet, int len), int mtu, unsigned char timeout)

Add an interface to the network interface list.

118

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• int netif_removeinterface(char∗name)

Remove specified interface from the network interface list.

• int netif_setdefaultinterface(char∗name)

Set the specified interface Ras default interface.

8.9.2 Define Documentation

8.9.2.1 #define ROM400_NETIF_VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thenetif_versionfunction.

See also:
netif_version

8.9.3 Function Documentation

8.9.3.1 int netif_addinterface (char∗ name, unsigned longip, unsigned longsub-
net, unsigned longgateway, unsigned charflags, int(∗)(unsigned char∗packet, int
len) transmitter, int mtu, unsigned chartimeout)

Add an interface to the network interface list.

Parameters:
name name of network interface (e.g. "ppp0")

ip IP address of the new interface (MSB first, e.g. 0x0a000002L for 10.0.0.2)

subnet subnet mask of the new interface (e.g. 0xff000000L for 255.0.0.0)

gatewaygateway IP address of the new interface (e.g. 0x0a000001L for 10.0.0.1)

flags set to 1 if new interface should be the default interface (else 0)

transmitter address of the user supplied transmit function (see below)

mtu maximum transmission unit

timeout initial tcp timout period based on an 8Hz tick; must be 8, 16, 32,6 4 or
128 (default: 128)

Returns:
1 for success, 0 for failure

See also:
netif_removeinterface

119



The transmitter functionint transmitter(unsigned char∗packet, int len)should return
1 when the packet was successfully sent (or dropped) and the packet memory should
be freed. If the packet couldn’t be sent and the packet should be retried, the transmitter
should return 0. The argumentpacketpoints to the IP packet data to be transmitted
and length is the length of the IP packet. Note that the transmit function runs under
interrupt. Registers are saved, but only thread-safe functions can be called.

8.9.3.2 int netif_packetreceived (unsigned char∗ packet, int len)

Submit an inbound packet to the network stack.

Parameters:
packet IP packet

len length of the packet

Returns:
1 for success, 0 for failure

Causes for failure are:

• The ROM IP_CHECKHEADER routine doesn’t like the packet.

• KMalloc can’t allocate the memory required for the packet.

IP_CHECKHEADER would decline a packet if any of the following were true:

• not an IPv4 packet

• fragment offset not 0

• smaller than 28 bytes

• source IP is 0.x.x.x, or 127.x.x.x, or 255.x.x.x

• destination IP is 0.x.x.x, or 127.x.x.x

• destination IP is not ours

• packet not IGMP, ICMP, UDP, or TCP

• multicast packet we’re not interested in (not joined to this group)

120



8.9.3.3 int netif_removeinterface (char∗ name)

Remove specified interface from the network interface list.

Parameters:
name name of network interface to remove

Returns:
1 for success, 0 for failure

See also:
netif_addinterface

NOTE: The behavior of this function is not guaranteed if a network interface is re-
moved while output traffic for the interface is still pending. It is recommended to close
all sockets and delay for a few seconds before removing any network interface.

8.9.3.4 int netif_setdefaultinterface (char∗ name)

Set the specified interface Ras default interface.

Parameters:
name name of network interface

Returns:
1 for success, 0 for failure

8.9.3.5 unsigned int netif_version (void)

Returns the version number of this NETIF library.

Returns:
Version number of this NETIF library.

8.10 rom400_netstat.h File Reference

8.10.1 Detailed Description

Network statistics library for the DS80C400.

This library contains functions that return pointers to network information tables in the
socket library.

Note that the tables and structures returned by these functions are the actual, physical
tables used by the network stack and should not be modified by user applications.

121



Since these are the actual network structures, it is possible they might change while
an application is processing them. Any critical analysis of these structures should be
protected from interruption.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Data Structures

• structnetstat_arp_entry
• structnetstat_udp_entry
• structnetstat_tcp_socket

Defines

• #defineROM400_NETSTAT_VERSION2
• #defineNETSTAT_ROM_ARP_ENTRIES8
• #defineNETSTAT_ARP_USED1
• #defineNETSTAT_ARP_REPLYPENDING2
• #defineNETSTAT_ARP_STATIC4
• #defineNETSTAT_UDP_ENTRIES16

Number of entries in the UDP port table.

• #defineNETSTAT_UDP_USED1

Values fornetstat_udp_entry.flags. Table entry is used.

• #defineNETSTAT_TCP_MAXSOCKETS25

Maxmimum number of sockets supported.

• #defineNETSTAT_TCP_OUTPUT_NEEDED_MASK2

Value fornetstat_tcp_socket.flags. Either ACK or data or both.

• #defineNETSTAT_TCP_ACK_NEEDED_MASK4

Value fornetstat_tcp_socket.flags. Need an ACK.

• #defineNETSTAT_TCP_SERVER_MASK8

Value fornetstat_tcp_socket.flags. This is a server connection.

• #defineNETSTAT_TCP_RESERVED_MASK16

Value fornetstat_tcp_socket.flags. (Reserved).

• #defineNETSTAT_TCP_HAVE_OUTPUT_DATA_MASK32

Value fornetstat_tcp_socket.flags. Have data in output buffer.

122

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• #defineNETSTAT_TCP_HAVE_FIN_MASK64

Value fornetstat_tcp_socket.flags. Set when we receive a FIN.

• #defineNETSTAT_TCP_SEND_FIN_MASK128

Value fornetstat_tcp_socket.flags. Send a FIN after all data sent.

• #defineNETSTAT_TCP_OPTION_NAGLE_ENABLED_MASK1

Value fornetstat_tcp_socket.options. Set when Nagle’s algorithm enabled.

• #defineNETSTAT_TCP_OPTION_IPV6_MASK2

Value fornetstat_tcp_socket.options. Set when we should talk IPv6 on the socket.

• #defineNETSTAT_TCP_OPTION_SOCKET_ASSIGNED4

Value fornetstat_tcp_socket.options. Assigned an application socket for thisTCB.

• #defineNETSTAT_TCP_STATE_CLOSED0

Value fornetstat_tcp_socket.state. The socket is closed.

• #defineNETSTAT_TCP_STATE_LISTEN1

Value fornetstat_tcp_socket.state. The socket is listening.

• #defineNETSTAT_TCP_STATE_SYN_SENT2

Value fornetstat_tcp_socket.state. The socket has sent a SYN.

• #defineNETSTAT_TCP_STATE_SYN_RECEIVED3

Value fornetstat_tcp_socket.state. The socket had received a SYN.

• #defineNETSTAT_TCP_STATE_ESTABLISHED4

Value fornetstat_tcp_socket.state. The socket connection has been established.

• #defineNETSTAT_TCP_STATE_FIN_WAIT_15

Value fornetstat_tcp_socket.state. The socket has been closed, and is waiting for its
peer to close.

• #defineNETSTAT_TCP_STATE_FIN_WAIT_26

Value fornetstat_tcp_socket.state. The socket’s peer has ACKed a FIN.

• #defineNETSTAT_TCP_STATE_CLOSE_WAIT7

Value fornetstat_tcp_socket.state. The socket’s peer has sent a FIN, the application
should now close the socket.

• #defineNETSTAT_TCP_STATE_LAST_ACK8

123



Value fornetstat_tcp_socket.state. The socket has closed, and is waiting for it’s peer
to ACK.

• #defineNETSTAT_TCP_STATE_CLOSING9

Value fornetstat_tcp_socket.state. Both ends have closed the socket.

• #defineNETSTAT_TCP_STATE_TIME_WAIT10

Value fornetstat_tcp_socket.state. Timeout wait before returning to closed state.

Functions

• unsigned intnetstat_version(void)

Returns the version number of this NETSTAT library.

• netstat_arp_entryfar ∗ netstat_get_arp_table(void)

Returns a pointer to the ARP cache table.

• unsigned intnetstat_num_arp_entries(void)

Returns the number of entries in the ARP cache table.

• netstat_udp_entryfar ∗ netstat_get_udp_table(void)

Returns a pointer to the UDP port table.

• unsigned intnetstat_num_udp_entries(void)

Returns the number of entries in the UDP port table.

• netstat_tcp_socketfar ∗ netstat_get_tcp_socket(unsigned int conn)

Returns a pointer to a TCP socket information block.

• unsigned intnetstat_num_tcp_sockets(void)

Returns the number of entries in the TCP socket table.

8.10.2 Define Documentation

8.10.2.1 #define NETSTAT_ARP_REPLYPENDING 2

Value for netstat_arp_entry.flags. Table entry is not yet valid, request has been sent
out

8.10.2.2 #define NETSTAT_ARP_STATIC 4

Value fornetstat_arp_entry.flags. Table entry does not expire

124



8.10.2.3 #define NETSTAT_ARP_USED 1

Value fornetstat_arp_entry.flags. Table entry is used

8.10.2.4 #define NETSTAT_ROM_ARP_ENTRIES 8

Maximum number of ARP table entries. Only valid when not using Enhanced Network
Stack. Usexnetstack_get_arptablesizeif using Enhanced Network Stack

8.10.2.5 #define ROM400_NETSTAT_VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thenetstat_versionfunction.

See also:
netstat_version

8.10.3 Function Documentation

8.10.3.1 netstat_arp_entry far∗ netstat_get_arp_table (void)

Returns a pointer to the ARP cache table.

This function returns a pointer to the ARP cache table. Each entry is anetstat_arp_-
entry. The entry is used when its "flags" has theNETSTAT_ARP_USEDbit set.

Returns:
Far pointer to the ARP cache table

8.10.3.2 netstat_tcp_socketfar∗ netstat_get_tcp_socket (unsigned intconn)

Returns a pointer to a TCP socket information block.

This function returns a pointer to a specific TCP socket information block of type
netstat_tcp_socket. There are at mostNETSTAT_TCP_MAXSOCKETS, the function
returns NULL when a given socket number doesn’t exist. Note that the actual number
of sockets in the socket table might change at any time. Table entries are not guaranteed
to be contiguous. A user application∗ should therefore call this function for all values
from 0 toNETSTAT_TCP_MAXSOCKETS- 1 and discard non-existent entries.

Parameters:
conn Socket number

Returns:
Far pointer to the socket’s information block (or NULL if the socket doesn’t exist).

125



8.10.3.3 netstat_udp_entryfar∗ netstat_get_udp_table (void)

Returns a pointer to the UDP port table.

This function returns a pointer to the UDP port table. There areNETSTAT_UDP_-
ENTRIESin the UDP port table. Each entry is anetstat_udp_entry. The entry is used
when its "flags" has theNETSTAT_UDP_USEDbit set.

Returns:
Far pointer to the UDP port table

8.10.3.4 unsigned int netstat_num_arp_entries (void)

Returns the number of entries in the ARP cache table.

This function returns the number of used entries in the ARP cache table (entries with
theNETSTAT_ARP_USEDflag set).

Returns:
Number of entries in the ARP cache table

8.10.3.5 unsigned int netstat_num_tcp_sockets (void)

Returns the number of entries in the TCP socket table.

This function returns the number of used entries in the TCP socket table.

Returns:
Number of entries in the TCP socket table

8.10.3.6 unsigned int netstat_num_udp_entries (void)

Returns the number of entries in the UDP port table.

This function returns the number of used entries in the UDP port table (entries with the
NETSTAT_UDP_USEDflag set).

Returns:
Number of entries in the UDP port table

8.10.3.7 unsigned int netstat_version (void)

Returns the version number of this NETSTAT library.

Returns:
Version number of this NETSTAT library.

126



8.11 rom400_ow.h File Reference

8.11.1 Detailed Description

Raw 1-Wire functions in the DS80C400 ROM.

This library contains functions for finding and communicating with devices on the
internal 1-Wire. These functions use the DS80C400’s 1-Wire master, applications do
not need to worry about protecting the ROM 1-Wire routines from interruption.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

These functions are all safe to be called from multiple processes simultaneously. That
is, if two processes call one of these functions at the same time, the function parameters
will not be destroyed. However, two processes attempting 1-Wire communications at
the same time will surely cause communications problems. In addition, the memory
space that ROM ID’s are stored in is global for the system. Therefore, processes should
synchronize around all 1-Wire communication sessions.

Defines

• #defineROM400_OW_VERSION4
• #defineOW_RESET_SHORT0
• #defineOW_RESET_PRESENCE1
• #defineOW_RESET_ALARM2
• #defineOW_RESET_NO_PRESENCE3

Functions

• unsigned charow_first(void)

Searches for the first device on the 1-Wire bus.

• unsigned charow_next(void)

Searches the 1-Wire for subsequent devices.

• unsigned charow_reset(void)

Sends a reset signal to the 1-Wire bus.

• unsigned charow_byte(unsigned char x)

Sends/receives a byte to/from the 1-Wire bus.

• unsigned char∗ ow_getcurrentid(void)

Returns a pointer to the address of the current device in a 1-Wire bus search.

127

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• unsigned intow_version(void)

Returns the version number of this 1-Wire library.

8.11.2 Define Documentation

8.11.2.1 #define OW_RESET_ALARM 2

Result of aow_resetoperation. There is an alarming device on the 1-Wire bus.

See also:
ow_reset

8.11.2.2 #define OW_RESET_NO_PRESENCE 3

Result of aow_resetoperation. There is no device on the 1-Wire bus.

See also:
ow_reset

8.11.2.3 #define OW_RESET_PRESENCE 1

Result of aow_resetoperation. There is a device on the 1-Wire bus.

See also:
ow_reset

8.11.2.4 #define OW_RESET_SHORT 0

Result of aow_resetoperation. The 1-Wire bus is shorted.

See also:
ow_reset

8.11.2.5 #define ROM400_OW_VERSION 4

Version number associated with this header file. Should be the same as the version
number returned by theow_versionfunction.

See also:
ow_version

128



8.11.3 Function Documentation

8.11.3.1 unsigned char ow_byte (unsigned charx)

Sends/receives a byte to/from the 1-Wire bus.

Sends the input byte to the 1-Wire bus, and returns any byte transmitted from the 1-
Wire bus. Send the byte 0xFF to return the result of a transmission by the slave (the
device or iButton).

Parameters:
x byte to write to the 1-Wire bus

Returns:
Byte read from the 1-Wire bus

8.11.3.2 unsigned char ow_first (void)

Searches for the first device on the 1-Wire bus.

Tries to access the first device on the 1-Wire bus. After a call toow_first, use the
address returned byow_getcurrentidto read the 8 byte Address of the device. To read
all the devices present, call this method only once, and then callow_nextto read all
subsequent devices.

Returns:
Non-zero if a device is found, 0 if no devices are found.

See also:
ow_next
ow_getcurrentid

8.11.3.3 unsigned char∗ ow_getcurrentid (void)

Returns a pointer to the address of the current device in a 1-Wire bus search.

Use the pointer returned by this method after every call toow_firstandow_next. Note
that calls to these functions destroy what was previously held at this address. Programs
that need to remember all the devices found should copy the addresses one at a time as
the 1-Wire bus is searched.

Returns:
Pointer to the 8-byte device address.

See also:
ow_first
ow_next

129



8.11.3.4 unsigned char ow_next (void)

Searches the 1-Wire for subsequent devices.

Call ow_firstonce before making subsequent calls toow_nextto find the second, third,
and so on devices. After a successful call toow_next, call the functionow_getcurrentid
to get the unique 64-bit address of the device found.

Returns:
Non-zero if a device is found, 0 if no more devices are found.

See also:
ow_first
ow_getcurrentid

8.11.3.5 unsigned char ow_reset (void)

Sends a reset signal to the 1-Wire bus.

The result of a reset tells you if the bus is shorted, if a device is present, if an alarming
device is present, or if no device is present.

Returns:
Result of reset (i.e.OW_RESET_SHORT)

See also:
OW_RESET_SHORT
OW_RESET_PRESENCE
OW_RESET_ALARM
OW_RESET_NO_PRESENCE

8.11.3.6 unsigned int ow_version (void)

Returns the version number of this 1-Wire library.

Returns:
Version number of this 1-Wire library.

8.12 rom400_rarp.h File Reference

8.12.1 Detailed Description

RARP library for the DS80C400.

This library allows a user to send a RARP request to the network.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

130

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Defines

• #defineROM400_RARP_VERSION1

Functions

• unsigned intrarp_version(void)

Returns the version number of this RARP library.

• void rarp_send(void(∗callback)(unsigned long))

Send a RARP request.

• void rarp_stop(void)

Disable reception of RARP packets (in the event of a timeout).

8.12.2 Define Documentation

8.12.2.1 #define ROM400_RARP_VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by therarp_versionfunction.

See also:
rarp_version

8.12.3 Function Documentation

8.12.3.1 void rarp_send (void(∗)(unsigned long)callback)

Send a RARP request.

Parameters:
callback function that gets called when RARP receives an IP address (the IP ad-

dress will be supplied to callback MSB first)

8.12.3.2 void rarp_stop (void)

Disable reception of RARP packets (in the event of a timeout).

If RARP receives an IP address, it is not necessary to call this funtion. This function is
only necessary if the callback fromrarp_sendwas never called.

131



8.12.3.3 unsigned int rarp_version (void)

Returns the version number of this RARP library.

Returns:
Version number of this RARP library.

8.13 rom400_sock.h File Reference

8.13.1 Detailed Description

Socket functions in the DS80C400 ROM.

This library contains functions for TCP, UDP and Multicast sockets, as well as net-
work configuration. The functions in this libraryare safe to be called from multiple
processes at the same time, with the exception of the functionping. Both the tradi-
tional Berkeley style socket API and thesynchronizedsocket functions are supported
(the Berkeley style API is supported through macros implemented by the synchronized
functions).

It is recommended that new applications use the Berkeley style API for portability.

Note that in order to run at 100 Mbs, the DS80C400 must be running at least 25MHz.
This can be accomplished on the TINIm400 module by enabling the clock doubler.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

#include <stdlib.h >

Data Structures

• structsockaddr
• structin_addr
• structin6_addr
• structsockaddr_in
• structpingdata

Defines

• #defineROM400_SOCK_VERSION12
• #defineROM400_SOCK_SYNCH_VERSIONROM400_SOCK_VERSION
• #defineSOCKET_TYPE_DATAGRAM0
• #defineSOCKET_TYPE_STREAM1
• #defineSOCK_DGRAMSOCKET_TYPE_DATAGRAM
• #defineSOCK_STREAMSOCKET_TYPE_STREAM

132

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• #definePF_INET4
• #defineAF_INET 4
• #defineAF_INET66
• #defineIPPROTO_UDP0
• #defineTCP_NODELAY0
• #defineSO_LINGER1
• #defineSO_TIMEOUT2
• #defineSO_BINDADDR3
• #defineETH_STATUS_LINK1
• #definehtons(x) (x)

Convert a number to network byte order.

• #definentohs(x) (x)

Convert a number to host byte order.

• #definesocket(domain, type, protocol) syn_socket((type))

Create a network socket for TCP or UDP communication.

• #definesendto(socket_num, buffer, length, flags, address, address_length) syn_-
sendto(syn_setDatagramAddress((socket_num),1,(address)),(length),(buffer))

Sends a UDP datagram to a specified address.

• #define recvfrom(socket_num, buffer, length, flags, address,
address_length) syn_recvfrom(syn_setDatagramAddress((socket_-
num),0,(address)),(length),(buffer))

Receive a UDP datagram.

• #defineconnect(socket_num, address, address_length) syn_connect((socket_-
num),(address))

Connects a TCP socket to a specified address.

• #define bind(socket_num, address, address_length) syn_bind((socket_-
num),(address))

Binds a socket to a specified address.

• #definesyn_listen(socket_num, backlog) listen((socket_num),(backlog))

Tells a socket to listen for incoming connections.

• #define accept(socket_num, address, address_length) syn_accept((socket_-
num),(address))

Accepts TCP connections on the specified socket.

133



• #define recv(socket_num, buffer, length, flags) syn_recv((socket_-
num),(length),(buffer))

Reads data from a TCP socket.

• #define send(socket_num, buffer, length, flags) syn_send((socket_-
num),(length),(buffer))

Sends data to a TCP socket.

• #define getsockopt(socket_num, level, name, buffer, length) syn_-
getsockopt((socket_num),(name),(buffer))

Get various socket options.

• #define setsockopt(socket_num, level, name, buffer, length) syn_-
setsockopt((socket_num),(name),(buffer))

Set various socket options.

• #define getsockname(socket_num, address, address_length) syn_-
getsockname((socket_num),(address))

Gets the local IP and port of a socket.

• #define getpeername(socket_num, address, address_length) syn_-
getpeername((socket_num),(address))

Gets the remote address of a connection-based (TCP socket).

• #definesyn_cleanup(process_id) cleanup((process_id))

Close all sockets and free the parameter buffer associated with a task.

• #definesyn_avail(socket_num) avail((socket_num))

Reports number of bytes available on a TCP socket.

• #define join(socket_num, address, address_length) syn_join((socket_-
num),(address))

Adds a socket to a specified multicast group.

• #define leave(socket_num, address, address_length) syn_leave((socket_-
num),(address))

Removes a socket from the specified multicast group.

• #define syn_getnetworkparams(param_buffer) getnetworkparams((param_-
buffer))

Get the IPv4 configuration parameters.

134



• #define syn_setnetworkparams(param_buffer) setnetworkparams((param_-
buffer))

Set the IPv4 configuration parameters.

• #definesyn_getipv6params(param_buffer) getipv6params((param_buffer))

Get the IPv6 address.

• #definesyn_getethernetstatus() getethernetstatus()

Get the ethernet status.

• #definegettftpserver(address, address_length) syn_gettftpserver((address))

Get the address of the TFTP server.

• #definesettftpserver(address, address_length) syn_settftpserver((address))

Set the address of the TFTP server.

• #definesyn_version() sock_version()

Returns the version number of this socket library.

• #define arp_generaterequest(address, address_length) syn_arp_-
generaterequest((address))

Unconditionally generate an ARP request for a given IPv4 address.

• #define arp_cacherequest(address, address_length) syn_arp_-
cacherequest((address))

Generate an ARP request for a given IPv4 address and add to the ARP cache.

• #definesyn_closesocket(socket_num) closesocket((socket_num))

Closes a specific socket.

• #definesyn_getmacid() getmacid()

Get the pointer to the MAC ID storage area.

• #definesyn_setmacid() setmacid()

Stores the MAC ID into the MAC ID storage area.

Functions

• char∗ inet_ntop(int family, void ∗addr, char∗strptr,size_tlen)

Converts a numeric address to a string.

135



• unsigned intinet_pton(int family, char∗str, void∗addr)

Converts a string to a numeric IP address.

• unsigned longinet_addr(char∗inet_string)

Converts a string representing an IPv4 address to numeric form.

• int syn_socket(unsigned int type)

Create a network socket for TCP or UDP communication.

• int syn_setDatagramAddress(int socket_num, unsigned char sending, struct
sockaddr∗addr)

Set the IP address parameter for future datagram calls.

• int syn_sendto(int socket_num, unsigned int length, void∗buffer)

Sends a UDP datagram to an address earlier specified by a call tosyn_setDatagram-
Address.

• int syn_recvfrom(int socket_num, unsigned int length, void∗buffer)

Receive a UDP datagram.

• int syn_connect(int socket_num, structsockaddr∗address)

Connects a TCP socket to a specified address.

• int syn_bind(int socket_num, structsockaddr∗address)

Binds a socket to a specified address.

• int listen(int socket_num, unsigned int backlog)

Tells a socket to listen for incoming connections.

• int syn_accept(int socket_num, structsockaddr∗address)

Accepts TCP connections on the specified socket.

• int syn_recv(int socket_num, unsigned int length, void∗buffer)

Reads data from a TCP socket.

• int syn_send(int socket_num, unsigned int length, void∗buffer)

Sends data to a TCP socket.

• int syn_getsockopt(int socket_num, unsigned int name, void∗buffer)

Get various socket options.

• int syn_setsockopt(int socket_num, unsigned int name, void∗buffer)

Set various socket options.

136



• int syn_getsockname(int socket_num, structsockaddr∗address)

Gets the local IP and port of a socket.

• int syn_getpeername(int socket_num, structsockaddr∗address)

Gets the remote address of a connection-based (TCP socket).

• int cleanup(unsigned int process_id)

Close all sockets and free the parameter buffer associated with a task.

• int avail (int socket_num)

Reports number of bytes available on a TCP socket.

• int syn_join(int socket_num, structsockaddr∗address)

Adds a socket to a specified multicast group.

• int syn_leave(int socket_num, structsockaddr∗address)

Removes a socket from the specified multicast group.

• int getnetworkparams(void ∗param_buffer)

Get the IPv4 configuration parameters.

• int setnetworkparams(void ∗param_buffer)

Set the IPv4 configuration parameters.

• int getipv6params(void ∗param_buffer)

Get the IPv6 address.

• unsigned intgetethernetstatus(void)

Get the ethernet status.

• int syn_gettftpserver(structsockaddr∗address)

Get the address of the TFTP server.

• int syn_settftpserver(structsockaddr∗address)

Set the address of the TFTP server.

• void clear_param_buffers(void)

Clears the parameter buffers used by the socket library.

• unsigned intsock_version(void)

Returns the version number of this socket library.

137



• int syn_arp_generaterequest(structsockaddr∗address)

Generate an ARP request for a given IPv4 address.

• int syn_arp_cacherequest(structsockaddr∗address)

Generate an ARP request for a given IPv4 address and add to the ARP cache.

• int acceptqueue(int socket_handle, structsockaddr∗address)

Returns the number of sockets in the wait queue for this listening socket.

• int udpavailable(int socket_handle, structsockaddr∗address)

Returns whether or not data is available to be read on a datagram socket.

• int closesocket(int socket_num)

Closes a specific socket.

• unsigned char∗ getmacid(void)

Get the pointer to the MAC ID storage area.

• void setmacid(void)

Stores the MAC ID into the MAC ID storage area.

• long ping (structsockaddr∗address, unsigned int address_length, unsigned int
time_to_live, structpingdata∗response)

Pings the specified address.

• unsigned inteth_readmii(unsigned int phy, unsigned int reg)

Read a PHY register via MII.

• void eth_writemii(unsigned int phy, unsigned int reg, unsigned int val)

Write a PHY register via MII.

• void eth_disablemulticastreceiver(void)

Disable multicast hardware receiver.

• int unbind(int socket_num)

Unbind a bound socket.

• int setsockowner(int socket_num, unsigned int process_id)

Sets the socket’s owner to a different task ID.

• unsigned longeth_readcsr(unsigned int reg)

138



Read a MAC CSR register.

• void eth_writecsr(unsigned int reg, unsigned long val)

Write a MAC CSR register.

8.13.2 Define Documentation

8.13.2.1 #define accept(socket_num, address, address_length) syn_-
accept((socket_num),(address))

Accepts TCP connections on the specified socket.

Accepts a TCP conection on the specified socket. This function moves the first pend-
ing connection request from the listen queue into the established state, assigning a
new local socket to the connection for communication.acceptblocks if there are no
pending incoming requests. The socketsocket_nummust have been created with type
SOCKET_TYPE_STREAM, bound to an address usingbind, and given a listen queue
by calling listen.

Parameters:
socket_numthe handle of the socket that will wait for connections

addresslocation to write remote address

address_lengththe length of the address structure (ignored)

Returns:
New socket handle for communicating with remote socket, or 0x0FFFF for failure

See also:
socket
bind
listen

8.13.2.2 #define AF_INET 4

IPv4 family define, ignored by DS80C400 Silicon Software, but included for compati-
bility

8.13.2.3 #define AF_INET6 6

IPv6 family define, ignored by DS80C400 Silicon Software, but included for compati-
bility

139



8.13.2.4 #define arp_cacherequest(address, address_length) syn_arp_-
cacherequest((address))

Generate an ARP request for a given IPv4 address and add to the ARP cache.

If the given IP address is not in the ARP cache, generate an ARP request and add it to
the cache.

Parameters:
addressstructure to store the address

address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

8.13.2.5 #define arp_generaterequest(address, address_length) syn_arp_-
generaterequest((address))

Unconditionally generate an ARP request for a given IPv4 address.

Unconditionally generate an ARP request for a given IPv4 address. This functionality
can be used to implement Zeroconf protocols.

Parameters:
addressstructure to store the address

address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

8.13.2.6 #define bind(socket_num, address, address_length) syn_bind((socket_-
num),(address))

Binds a socket to a specified address.

Assigns a local address and port (stored in theaddressparameter) to a socket. Binding
a socket is necessary for server sockets. For client sockets, usebind if a specific source
port is desirable.

Fill addresswith 0’s (for sin_addr and sin_port) to bind to any available local port. Use
getsocknameto discover which port the socket was bound to.

NOTE: When binding a UDP socket, matching inbound UDP packets will be queued
up for the socket. Callrecvfromperiodically to avoid the risk of running out of kernel
memory.

140



Parameters:
socket_numsocket handle to bind to a local port number

addresscontains the local address (including port number)

address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
listen
getsockname
recvfrom

8.13.2.7 #define connect(socket_num, address, address_length) syn_-
connect((socket_num),(address))

Connects a TCP socket to a specified address.

Connects to a specified address with a streaming socket. This function can only be
used once with each socket. The socketsocket_nummust have been created with type
SOCKET_TYPE_STREAM.

Parameters:
socket_numthe socket handle to use to wait for and read a UDP packet

addressIP address and port number to create a streaming connection to

address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
socket

8.13.2.8 #define ETH_STATUS_LINK 1

Flag for analyzing ethernet status.

See also:
getethernetstatus

141



8.13.2.9 #define getpeername(socket_num, address, address_length) syn_-
getpeername((socket_num),(address))

Gets the remote address of a connection-based (TCP socket).

Stores the IP address of the remote socket communicating with the socket specified by
socket_num. Usegetsocknameto get the local port’s information.

Parameters:
socket_numhandle of the socket to get remote IP and port for

addressstructure where IP and port will be stored

address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

See also:
getsockname

8.13.2.10 #define getsockname(socket_num, address, address_length) syn_-
getsockname((socket_num),(address))

Gets the local IP and port of a socket.

Stores the local IP and port number of the specified socket in the theaddressparameter.
Usegetpeernameto get the remote port’s information for a connection-based (TCP)
socket.

Parameters:
socket_numhandle of the socket to get local IP and port for

addressstructure where IP and port will be stored

address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

See also:
getpeername

8.13.2.11 #define getsockopt(socket_num, level, name, buffer, length) syn_-
getsockopt((socket_num),(name),(buffer))

Get various socket options.

142



Reads a number of supported socket options. Data written into the buffer depends on
the requested socket option.

Name Description Data in buffer
TCP_NODELAY TCP Nagle Enable 1 byte
SO_LINGER Ignored N/A
SO_TIMEOUT Inactivity timeout 4 bytes (milliseconds,

MSB first)
SO_BINDADDR Local socket IP 16 bytes

Parameters:
socket_numsocket to get option information for

level ignored

name option to get

buffer location where option data will be written

length length of the buffer

Returns:
0 for success, non-zero for failure

See also:
setsockopt

8.13.2.12 #define gettftpserver(address, address_length) syn_-
gettftpserver((address))

Get the address of the TFTP server.

Returns the address of the server accessed by the TFTP functions. To communicate
with a TFTP server, use the functions listed inrom400_tftp.h, the TFTP library.

Parameters:
addressstructure to store the address of the TFTP server

address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

See also:
settftpserver

143



8.13.2.13 #define htons(x) (x)

Convert a number to network byte order.

Converts a word from host byte order to network byte order. On the DS80C400, the
orders are the same, so this function does not alter the input data. This function is
included for compatibility.

Parameters:
x Input data to convert to network byte order

Returns:
Input data converted to network byte order

8.13.2.14 #define IPPROTO_UDP 0

Protocol ID define, ignored by DS80C400 Silicon Software, but included for compati-
bility

8.13.2.15 #define join(socket_num, address, address_length) syn_join((socket_-
num),(address))

Adds a socket to a specified multicast group.

Adds a UDP socket to a specified multicast group. In order to receive multicasts from
a group, firstbind the socket to the port number that the multicast group is using (it is
not sufficient to include it here in order to receive).

Use theleavefunction to leave a multicast group.

Warning:
IPv6 multicasting is not supported

Parameters:
socket_numhandle for the datagram socket that will join a multicast group

addressIP address of the multicast group to join

address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
leave

144



8.13.2.16 #define leave(socket_num, address, address_length) syn_-
leave((socket_num),(address))

Removes a socket from the specified multicast group.

Removes a UDP socket from the specified multicast group.

Parameters:
socket_numhandle for the datagram socket that will leave a multicast group

addressIP address of the multicast group to leave

address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
join

8.13.2.17 #define ntohs(x) (x)

Convert a number to host byte order.

Converts a word from network byte order to host byte order. On the DS80C400, the
orders are the same, so this function does not alter the input data. This function is
included for compatibility.

Parameters:
x Input data to convert to network byte order

Returns:
Input data converted to network byte order

8.13.2.18 #define PF_INET 4

IPv4 protocol family define

8.13.2.19 #define recv(socket_num, buffer, length, flags) syn_recv((socket_-
num),(length),(buffer))

Reads data from a TCP socket.

Reads data from a TCP socket. If there is no data available,recvblocks until there is
data, subject to the value ofSO_TIMEOUT. NOTE: This function readsup to length
bytes. Call this function repeatedly if you need to read a minimum number of bytes.

145



Parameters:
socket_numhandle of the streaming socket that will read data

buffer location to write any data read

length maximum amount of data to read

flags ignored

Returns:
The number of bytes read. If the operation times out according to theSO_-
TIMEOUT, a value of -2 is returned. If another error occurs, -1 is returned. If
the socket was closed by the other side, 0 is returned.

See also:
connect
send

8.13.2.20 #define recvfrom(socket_num, buffer, length, flags, ad-
dress, address_length) syn_recvfrom(syn_setDatagramAddress((socket_-
num),0,(address)),(length),(buffer))

Receive a UDP datagram.

Receives a message on the specified socket, and stores the address that sent it. If no data
is available,recvfromblocks subject to theSO_TIMEOUTvalue. The socketsocket_-
nummust have been created with a typeSOCKET_TYPE_DATAGRAM. It is required
to usebind to assign a local port to the socket, before receiving data.NOTE: This
function readsup to lengthbytes of a datagram. Any data not read in the datagram will
be discarded.

Parameters:
socket_numthe socket handle to use to wait for and read a UDP packet

buffer the location to write any data read from the datagram socket

length the maximum number of bytes to read from a datagram socket

flags ignored

addresslocation to fill in the address and port of the sender

address_lengththe length of the address structure (ignored)

Returns:
The number of bytes read. If the operation times out according to theSO_-
TIMEOUT, a value of -2 is returned. If another error occurs, -1 is returned.

See also:
sendto
socket
bind

146



8.13.2.21 #define ROM400_SOCK_SYNCH_VERSION ROM400_SOCK_-
VERSION

Version number associated with this header file. Should be the same as the version
number returned by thesock_versionfunction.

See also:
syn_version

8.13.2.22 #define ROM400_SOCK_VERSION 12

Version number associated with this header file. Should be the same as the version
number returned by thesock_versionfunction.

See also:
sock_version

8.13.2.23 #define send(socket_num, buffer, length, flags) syn_send((socket_-
num),(length),(buffer))

Sends data to a TCP socket.

Writes data to a TCP socket. The return value of this function is only a local suc-
cess/failure code, and may not necessarily detect transmission errors.

Parameters:
socket_numhandle of the streaming socket that will write data

buffer location of data to write

length number of bytes to write

flags ignored

Returns:
0 for success, non-zero for failure.

See also:
connect
recv

8.13.2.24 #define sendto(socket_num, buffer, length, flags, ad-
dress, address_length) syn_sendto(syn_setDatagramAddress((socket_-
num),1,(address)),(length),(buffer))

Sends a UDP datagram to a specified address.

147



Sends a UDP datagram to a specified address. The success/failure code this function
returns says nothing of if the packet was recieved by the target, only that the socket
layer was able to push the data out. The socketsocket_nummust have been created
with a typeSOCKET_TYPE_DATAGRAM.

Parameters:
socket_numthe socket handle to use to send a UDP packet

buffer the data to send in the datagram packet

length the number of bytes to send in the datagram packet

flags ignored

addressthe destination address and port

address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
recvfrom
socket

8.13.2.25 #define setsockopt(socket_num, level, name, buffer, length) syn_-
setsockopt((socket_num),(name),(buffer))

Set various socket options.

Sets a number of supported socket options. Input data in the buffer depends on the
desired socket option.

Name Description Data in buffer
TCP_NODELAY TCP Nagle Enable 1 byte
SO_LINGER Ignored N/A
SO_TIMEOUT Inactivity timeout 4 bytes (milliseconds,

MSB first)
SO_BINDADDR Read only N/A

Parameters:
socket_numsocket to set option information for

level ignored

name option to set

buffer location of option data that will be written

length length of the buffer

148



Returns:
0 for success, non-zero for failure

See also:
getsockopt

8.13.2.26 #define settftpserver(address, address_length) syn_-
settftpserver((address))

Set the address of the TFTP server.

Set the address of the server that the TFTP functions will use. Thesettftpserverfunction
must be used if the address of the TFTP server is not acquired by DHCP or 1-Wire.
Once the TFTP server’s address is set, use the functions listed inrom400_tftp.hto
begin receiving files.

Parameters:
addressstructure to store the address of the TFTP server

address_lengththe length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

See also:
gettftpserver

8.13.2.27 #define SO_BINDADDR 3

Argument for socket option. Local binding address.

See also:
getsockopt
setsockopt

8.13.2.28 #define SO_LINGER 1

Argument for socket option. Ignored by DS80C400 ROM.

See also:
getsockopt
setsockopt

149



8.13.2.29 #define SO_TIMEOUT 2

Argument for socket option. Socket inactivity timeout.

See also:
getsockopt
setsockopt

8.13.2.30 #define SOCK_DGRAM SOCKET_TYPE_DATAGRAM

Argument to functionsocketto create a UDP socket (same asSOCKET_TYPE_-
DATAGRAM)

See also:
socket

8.13.2.31 #define SOCK_STREAM SOCKET_TYPE_STREAM

Argument to functionsocket to create a TCP socket (same asSOCKET_TYPE_-
STREAM)

See also:
socket

8.13.2.32 #define socket(domain, type, protocol) syn_socket((type))

Create a network socket for TCP or UDP communication.

Creates a socket for network communication. This function returns a socket handle, but
has not specific local address assigned to it. Note that this function callstask_gettaskid
through the function redirect table.

Parameters:
domain ignored

type SOCKET_TYPE_DATAGRAMor SOCK_DGRAM for UDP, SOCKET_-
TYPE_STREAMor SOCK_STREAMfor TCP

protocol ignored

Returns:
0x0FFFF for failure, or the socket handle (socket number)

See also:
bind
connect
closesocket

150



8.13.2.33 #define SOCKET_TYPE_DATAGRAM 0

Argument to functionsocketto create a UDP socket (same asSOCK_DGRAM)

See also:
socket

8.13.2.34 #define SOCKET_TYPE_STREAM 1

Argument to functionsocketto create a TCP socket (same asSOCK_STREAM)

See also:
socket

8.13.2.35 #define syn_avail(socket_num) avail((socket_num))

Reports number of bytes available on a TCP socket.

Reports the number of bytes available on a TCP socket. This is the number of bytes
that can currently be read using therecvfunction without blocking.

Parameters:
socket_numthe handle of the socket to check for available data

Returns:
The number of bytes available for arecv function call on this socket, or 0x0FFFF
on failure.

See also:
recv

8.13.2.36 #define syn_cleanup(process_id) cleanup((process_id))

Close all sockets and free the parameter buffer associated with a task.

Close all sockets associated with a process ID and free the parameter buffer.

User applications should call this function whenever a task dies or is killed to ensure
all associated resources are freed by the socket layer.

Warning:
The DS80C400 Silicon Software task scheduler doesNOT call this function. User
applications should callcleanupafter each call totask_kill.

Parameters:
process_idTask PID to clean up sockets associated with, 0 for current process.

151



Returns:
0 for success, non-zero for failure.

8.13.2.37 #define syn_closesocket(socket_num) closesocket((socket_num))

Closes a specific socket.

Closes the specified socket that was created using thesocketfunction.

Parameters:
socket_numthe socket handle to close

Returns:
0 for success, non-zero for failure.

See also:
socket

8.13.2.38 #define syn_getethernetstatus() getethernetstatus()

Get the ethernet status.

Returns the ethernet status byte. This is a bit-wise OR of the following flags:

Flag Value Description
ETH_STATUS_LINK 01h Ethernet link status

Currently, no other flags are defined.

Returns:
Bitmapped ethernet status byte.

8.13.2.39 #define syn_getipv6params(param_buffer) getipv6params((param_-
buffer))

Get the IPv6 address.

Gets the IPv6 address of the ethernet interface. The format for the buffer after this
function returns is:

Parameter Offset Length Description
IP6ADDR 0 16 IP address
IP6PREFIX 16 1 IP prefix length

Parameters:
param_buffer pointer to buffer to store IPv6 configuration data

152



Returns:
0 for success, non-zero for failure

See also:
getnetworkparams
setnetworkparams

8.13.2.40 #define syn_getmacid() getmacid()

Get the pointer to the MAC ID storage area.

Returns the pointer to the MAC ID storage area. This area will store the MAC ID after
a successful call tosetmacid.

Returns:
Pointer to the 400’s MAC ID (6 bytes stored at this location)

See also:
setmacid

8.13.2.41 #define syn_getnetworkparams(param_-
buffer) getnetworkparams((param_buffer))

Get the IPv4 configuration parameters.

Get the IPv4 configuration parameters, including IP address, subnet mask, and gateway.
The parameters are returned in a buffer in the following form:

Parameter Offset Length Description
(zero) 0 12 Must be 0
IP4ADDR 12 4 IP address
IP4SUBNET 16 4 Subnet mask
IP4PREFIX 20 1 Number of 1 bits

in subnet mask
(zero) 21 12 Must be 0
IP4GATEWAY 33 4 Gateway IP

address

IPv6 addresses are autoconfigured. To retrieve the IPv6 address, use thegetipv6params
function.

Parameters:
param_buffer pointer to buffer to store IP configuration data

Returns:
0 for success, non-zero for failure

153



See also:
setnetworkparams
getipv6params

8.13.2.42 #define syn_listen(socket_num, backlog) listen((socket_-
num),(backlog))

Tells a socket to listen for incoming connections.

Tells the socket to listen for connections. A queue of lengthbacklog is created for
pending (un-accepted connections). It is required to usebind to assign a local port
before callinglisten. Useacceptto move an incoming request to an established state,
or wait for incoming connections.

Parameters:
socket_numsocket handle that will listen for connections

backlog the maximum number of pending connections (max 16 for the
DS80C400)

Returns:
0 for success, non-zero for failure.

See also:
bind
accept

8.13.2.43 #define syn_setmacid() setmacid()

Stores the MAC ID into the MAC ID storage area.

This is a redirected function. The DS80C400’s default implementation of this function
searches the 1-Wire for a DS2502U-E48 1-Wire chip which contains a MAC ID. This
MAC ID is then stored into the MAC ID storage area, the location of which is stored in
a pointer in the export table. Use thegetmacidfunction to return a pointer to the MAC
ID storage area.

See also:
getmacid

8.13.2.44 #define syn_setnetworkparams(param_-
buffer) setnetworkparams((param_buffer))

Set the IPv4 configuration parameters.

154



Set the IPv4 configuration parameters, including IP address, subnet mask, and gateway.
Input parameters should be formatted in the following form:

Parameter Offset Length Description
(zero) 0 12 Must be 0
IP4ADDR 12 4 IP address
IP4SUBNET 16 4 Subnet mask
IP4PREFIX 20 1 Number of 1 bits

in subnet mask
(zero) 21 12 Must be 0
IP4GATEWAY 33 4 Gateway IP

address

Use this method to give the DS80C400 a static IP address. To dynamically configure
an IP address, use methods from the DHCP library inrom400_dhcp.h(IP addresses
leased by the DHCP client can still be retrieved by callinggetnetworkparams).

IPv6 addresses are autoconfigured. To retrieve the IPv6 address, use thegetipv6params
function.

Parameters:
param_buffer pointer to buffer with IP configuration data

Returns:
0 for success, non-zero for failure

See also:
getnetworkparams
getipv6params

8.13.2.45 #define syn_version() sock_version()

Returns the version number of this socket library.

Returns:
Version number of this SOCK library.

8.13.2.46 #define TCP_NODELAY 0

Argument for socket option. Enables/disables Nagle algorithm.

See also:
getsockopt
setsockopt

155



8.13.3 Function Documentation

8.13.3.1 int acceptqueue (intsocket_handle, struct sockaddr∗ address)

Returns the number of sockets in the wait queue for this listening socket.

Returns the number of sockets in the queue attempting to connect to this server socket.

Parameters:
socket_handlehandle to socket to check for waiting connections

addresslocation where the IP and port number will be written

Returns:
-1 if the socket is not a streaming socket set up to listen 0 or greater for the number
of sockets waiting

The IP and port of the socket are returned inaddress.

8.13.3.2 int avail (intsocket_num)

Reports number of bytes available on a TCP socket.

Reports the number of bytes available on a TCP socket. This is the number of bytes
that can currently be read using therecvfunction without blocking.

Parameters:
socket_numthe handle of the socket to check for available data

Returns:
The number of bytes available for arecv function call on this socket, or -1 on
failure.

See also:
recv

8.13.3.3 int cleanup (unsigned intprocess_id)

Close all sockets and free the parameter buffer associated with a task.

Close all sockets associated with a process ID and free the parameter buffer.

User applications should call this function whenever a task dies or is killed to ensure
all associated resources are freed by the socket layer.

Warning:
The DS80C400 Silicon Software task scheduler doesNOT call this function. User
applications should callcleanupafter each call totask_kill.

156



Parameters:
process_idTask PID to clean up sockets associated with, 0 for current process.

Returns:
0 for success, non-zero for failure.

See also:
setsockowner

8.13.3.4 void clear_param_buffers (void)

Clears the parameter buffers used by the socket library.

Clears buffers used to store parameters for the socket library. This function should be
called immediately after calling theinit_rom function, and before any socket library
functions are called.

See also:
init_rom

8.13.3.5 int closesocket (intsocket_num)

Closes a specific socket.

Closes the specified socket that was created using thesocketfunction.

Parameters:
socket_numthe socket handle to close

Returns:
0 for success, non-zero for failure.

See also:
socket

8.13.3.6 void eth_disablemulticastreceiver (void)

Disable multicast hardware receiver.

This function disables the "pass multicast" (PM) bit in the DS80C400 MAC control
register. This improves performance if the application doesn’t use multicast. This
function must be called after initialization of the Ethernet. WARNING: IPv6 requires
multicast. Disabling the receiver disables IPv6 address resolution.

157



8.13.3.7 unsigned long eth_readcsr (unsigned intreg)

Read a MAC CSR register.

This function reads a MAC CSR register from the DS80C400. See the data sheet and
user’s guide for more information about the CSR registers.

Parameters:
reg register address (0 to 0x2c in steaps of 4)

Returns:
value read from the register specified

See also:
eth_writecsr

8.13.3.8 unsigned int eth_readmii (unsigned intphy, unsigned int reg)

Read a PHY register via MII.

This function reads a PHY register via the MII interface. See the IEEE 802.3 specifi-
cation (22.2.4) for a description of the MII management register set.

Parameters:
phy PHY address (0 to 31)

reg register address (0 to 31, 16 through 31 are vendor specific)

Returns:
value read from the register specified

8.13.3.9 void eth_writecsr (unsigned intreg, unsigned longval)

Write a MAC CSR register.

This function writes a MAC CSR register. See the DS80C400 data sheet and user’s
guide for more information about the CSR registers.

Parameters:
reg register address (0 to 0x2c in steaps of 4)

val value to write to the specified register

See also:
eth_readcsr

158



8.13.3.10 void eth_writemii (unsigned intphy, unsigned intreg, unsigned intval)

Write a PHY register via MII.

This function writes a PHY register via the MII interface. See the IEEE 802.3 specifi-
cation (22.2.4) for a description of the MII management register set.

Parameters:
phy PHY address (0 to 31)

reg register address (0 to 31, 16 through 31 are vendor specific)

val value to write to the specified register

8.13.3.11 unsigned int getethernetstatus (void)

Get the ethernet status.

Returns the ethernet status byte. This is a bit-wise OR of the following flags:

Flag Value Description
ETH_STATUS_LINK 01h Ethernet link status

Currently, no other flags are defined.

Returns:
Bitmapped ethernet status byte.

8.13.3.12 int getipv6params (void∗ param_buffer)

Get the IPv6 address.

Gets the IPv6 address of the ethernet interface. The format for the buffer after this
function returns is:

Parameter Offset Length Description
IP6ADDR 0 16 IP address
IP6PREFIX 16 1 IP prefix length

Parameters:
param_buffer pointer to buffer to store IPv6 configuration data

Returns:
0 for success, non-zero for failure

See also:
getnetworkparams
setnetworkparams

159



8.13.3.13 unsigned char∗ getmacid (void)

Get the pointer to the MAC ID storage area.

Returns the pointer to the MAC ID storage area. This area will store the MAC ID after
a successful call tosetmacid.

Returns:
Pointer to the 400’s MAC ID (6 bytes stored at this location)

See also:
setmacid

8.13.3.14 int getnetworkparams (void∗ param_buffer)

Get the IPv4 configuration parameters.

Get the IPv4 configuration parameters, including IP address, subnet mask, and gateway.
The parameters are returned in a buffer in the following form:

Parameter Offset Length Description
(zero) 0 12 Must be 0
IP4ADDR 12 4 IP address
IP4SUBNET 16 4 Subnet mask
IP4PREFIX 20 1 Number of 1 bits

in subnet mask
(zero) 21 12 Must be 0
IP4GATEWAY 33 4 Gateway IP

address

IPv6 addresses are autoconfigured. To retrieve the IPv6 address, use thegetipv6params
function.

Parameters:
param_buffer pointer to buffer to store IP configuration data

Returns:
0 for success, non-zero for failure

See also:
setnetworkparams
getipv6params

8.13.3.15 unsigned long inet_addr (char∗ inet_string)

Converts a string representing an IPv4 address to numeric form.

Converts the input string into an IPv4 address suitable for setting in asockaddr_in
structure.

160



Parameters:
inet_string IPv4 address in string form

Returns:
Numberic IPv4 address

See also:
sockaddr_in

8.13.3.16 char∗ inet_ntop (int family, void ∗ addr, char ∗ strptr, size_tlen)

Converts a numeric address to a string.

Converts a numeric IP address to a presentable format as a null terminated string. IPv4
addresses are formatted such as in "192.0.1.1". IPv6 addresses are formatted such
as in "b803:8a11:0000:2121:fec5:0601:aa01:0102". Note that the ’::’ shortcut isnot
supported–a ’0000’ must be fully specified.

Parameters:
family AF_INET or AF_INET6

addr pointer to numeric representation of IP address

strptr storage location for presentation string

len size of storage area for strptr

Returns:
Reference to strptr, or NULL if thefamily is not recognized or if there is not enough
space as declared bylen

See also:
inet_pton

8.13.3.17 unsigned int inet_pton (intfamily, char ∗ str, void ∗ addr)

Converts a string to a numeric IP address.

Converts a string represenation of an IP address into numeric format. IPv4 addresses
are expected to be input in a format such as in "192.0.1.1". IPv6 addresses are expected
to be formatted such as in "b8:03:8a:11:00:00:21:21:fe:c5:06:01:aa:01:01:02".

Parameters:
family AF_INET or AF_INET6

str address string to translate

addr pointer to storage for numeric representation of IP address

161



Returns:
1 for successful translation. 0 if the format was invalid, or thefamily was not
recognized.

See also:
inet_ntop

8.13.3.18 int listen (intsocket_num, unsigned intbacklog)

Tells a socket to listen for incoming connections.

Tells the socket to listen for connections. A queue of lengthbacklog is created for
pending (un-accepted connections). It is required to usebind to assign a local port
before callinglisten. Useacceptto move an incoming request to an established state,
or wait for incoming connections.

Parameters:
socket_numsocket handle that will listen for connections

backlog the maximum number of pending connections (max 16 for the
DS80C400)

Returns:
0 for success, non-zero for failure.

See also:
bind
accept

8.13.3.19 long ping (structsockaddr ∗ address, unsigned intaddress_length, un-
signed int time_to_live, struct pingdata ∗ response)

Pings the specified address.

Sends an ICMP echo request (ping) to a specified address. Note that this function is
NOT safe to be called from multiple processes at the same time.

Parameters:
addressIP address to send an ICMP echo request to

address_lengththe length of the address structure (ignored)

time_to_live packets send by ping have this "time to live" setting

responsedata structure to fill in returned data (this argument must not be NULL)

Returns:
response time in milliseconds (0 means less than 1ms), or -1L for failure

162



The ping return data structure is defined as follows: reserved - Reserved field ip_-
header - The IP header of the return packet icmp_header - The ICMP header of the
return packet icmp_data - The ICMP data portion of the return packet (should be
0x20,0x21,0x22,...,0x3f)

8.13.3.20 void setmacid (void)

Stores the MAC ID into the MAC ID storage area.

This is a redirected function. The DS80C400’s default implementation of this function
searches the 1-Wire for a DS2502U-E48 1-Wire chip which contains a MAC ID. This
MAC ID is then stored into the MAC ID storage area, the location of which is stored in
a pointer in the export table. Use thegetmacidfunction to return a pointer to the MAC
ID storage area.

See also:
getmacid

8.13.3.21 int setnetworkparams (void∗ param_buffer)

Set the IPv4 configuration parameters.

Set the IPv4 configuration parameters, including IP address, subnet mask, and gateway.
Input parameters should be formatted in the following form:

Parameter Offset Length Description
(zero) 0 12 Must be 0
IP4ADDR 12 4 IP address
IP4SUBNET 16 4 Subnet mask
IP4PREFIX 20 1 Number of 1 bits

in subnet mask
(zero) 21 12 Must be 0
IP4GATEWAY 33 4 Gateway IP

address

Use this method to give the DS80C400 a static IP address. To dynamically configure
an IP address, use methods from the DHCP library inrom400_dhcp.h(IP addresses
leased by the DHCP client can still be retrieved by callinggetnetworkparams).

IPv6 addresses are autoconfigured. To retrieve the IPv6 address, use thegetipv6params
function.

Parameters:
param_buffer pointer to buffer with IP configuration data

Returns:
0 for success, non-zero for failure

163



See also:
getnetworkparams
getipv6params

8.13.3.22 int setsockowner (intsocket_num, unsigned intprocess_id)

Sets the socket’s owner to a different task ID.

Sets the socket owner to a different task ID. This is useful where program code relies
on cleanupto deallocate a process’ resources, or in cases where ownership of a socket
needs to be moved to a child process. Note that the new process ID is not checked for
validity and it is possible to assign a socket to a non-existent task.

Parameters:
socket_numsocket handle

process_idthe task PID of the new socket owner

Returns:
0 for success, non-zero for failure.

See also:
cleanup

8.13.3.23 unsigned int sock_version (void)

Returns the version number of this socket library.

Returns:
Version number of this SOCK library.

8.13.3.24 int syn_accept (intsocket_num, struct sockaddr∗ address)

Accepts TCP connections on the specified socket.

Accepts a TCP conection on the specified socket. This function moves the first pend-
ing connection request from the listen queue into the established state, assigning a
new local socket to the connection for communication.acceptblocks if there are no
pending incoming requests. The socketsocket_nummust have been created with type
SOCKET_TYPE_STREAM, bound to an address usingbind, and given a listen queue
by calling listen.

Parameters:
socket_numthe handle of the socket that will wait for connections

164



addresslocation to write remote address

Returns:
New socket handle for communicating with remote socket, or -1 for failure

See also:
socket
bind
listen

8.13.3.25 int syn_arp_cacherequest (structsockaddr∗ address)

Generate an ARP request for a given IPv4 address and add to the ARP cache.

If the given IP address is not in the ARP cache, generate an ARP request and add it to
the cache.

Parameters:
addressstructure to store the address

Returns:
0 for success, non-zero for failure

8.13.3.26 int syn_arp_generaterequest (structsockaddr∗ address)

Generate an ARP request for a given IPv4 address.

Unconditionally generate an ARP request for a given IPv4 address. This functionality
can be used to implement Zeroconf protocols.

Parameters:
addressstructure to store the address

Returns:
0 for success, non-zero for failure

8.13.3.27 int syn_bind (intsocket_num, struct sockaddr∗ address)

Binds a socket to a specified address.

Assigns a local address and port (stored in theaddressparameter) to a socket. Binding
a socket is necessary for server sockets. For client sockets, usebind if a specific source
port is desirable.

Fill addresswith 0’s (for sin_addr and sin_port) to bind to any available local port. Use
getsocknameto discover which port the socket was bound to.

165



NOTE: When binding a UDP socket, matching inbound UDP packets will be queued
up for the socket. Callrecvfromperiodically to avoid the risk of running out of kernel
memory.

Parameters:
socket_numsocket handle to bind to a local port number

addresscontains the local address (including port number)

Returns:
0 for success, non-zero for failure.

See also:
listen
getsockname
recvfrom
unbind

8.13.3.28 int syn_connect (intsocket_num, struct sockaddr∗ address)

Connects a TCP socket to a specified address.

Connects to a specified address with a streaming socket. This function can only be
used once with each socket. The socketsocket_nummust have been created with type
SOCKET_TYPE_STREAM.

Parameters:
socket_numthe socket handle to use to wait for and read a UDP packet

addressIP address and port number to create a streaming connection to

Returns:
0 for success, non-zero for failure.

See also:
socket

8.13.3.29 int syn_getpeername (intsocket_num, struct sockaddr∗ address)

Gets the remote address of a connection-based (TCP socket).

Stores the IP address of the remote socket communicating with the socket specified by
socket_num. Usegetsocknameto get the local port’s information.

Parameters:
socket_numhandle of the socket to get remote IP and port for

166



addressstructure where IP and port will be stored

Returns:
0 for success, non-zero for failure

See also:
getsockname

8.13.3.30 int syn_getsockname (intsocket_num, struct sockaddr∗ address)

Gets the local IP and port of a socket.

Stores the local IP and port number of the specified socket in the theaddressparameter.
Usegetpeernameto get the remote port’s information for a connection-based (TCP)
socket.

Parameters:
socket_numhandle of the socket to get local IP and port for

addressstructure where IP and port will be stored

Returns:
0 for success, non-zero for failure

See also:
getpeername

8.13.3.31 int syn_getsockopt (intsocket_num, unsigned int name, void ∗ buffer)

Get various socket options.

Reads a number of supported socket options. Data written into the buffer depends on
the requested socket option.

Name Description Data in buffer
TCP_NODELAY TCP Nagle Enable 1 byte
SO_LINGER Ignored N/A
SO_TIMEOUT Inactivity timeout 4 bytes (milliseconds,

MSB first)
SO_BINDADDR Local socket IP 16 bytes

This function assumes there is enough room inbuffer to store the requested data.

Parameters:
socket_numsocket to get option information for

167



name option to get

buffer location where option data will be written

Returns:
0 for success, non-zero for failure

See also:
setsockopt

8.13.3.32 int syn_gettftpserver (structsockaddr∗ address)

Get the address of the TFTP server.

Returns the address of the server accessed by the TFTP functions. To communicate
with a TFTP server, use the functions listed inrom400_tftp.h, the TFTP library.

Parameters:
addressstructure to store the address of the TFTP server

Returns:
0 for success, non-zero for failure

See also:
settftpserver

8.13.3.33 int syn_join (intsocket_num, struct sockaddr∗ address)

Adds a socket to a specified multicast group.

Adds a UDP socket to a specified multicast group. In order to receive multicasts from
a group, firstbind the socket to the port number that the multicast group is using (it is
not sufficient to include it here in order to receive).

Use theleavefunction to leave a multicast group.

Warning:
IPv6 multicasting is not supported

Parameters:
socket_numhandle for the datagram socket that will join a multicast group

addressIP address of the multicast group to join

Returns:
0 for success, non-zero for failure.

See also:
leave

168



8.13.3.34 int syn_leave (intsocket_num, struct sockaddr∗ address)

Removes a socket from the specified multicast group.

Removes a UDP socket from the specified multicast group.

Parameters:
socket_numhandle for the datagram socket that will leave a multicast group

addressIP address of the multicast group to leave

Returns:
0 for success, non-zero for failure.

See also:
join

8.13.3.35 int syn_recv (intsocket_num, unsigned int length, void ∗ buffer)

Reads data from a TCP socket.

Reads data from a TCP socket. If there is no data available,recvblocks until there is
data, subject to the value ofSO_TIMEOUT. NOTE: This function readsup to length
bytes. Call this function repeatedly if you need to read a minimum number of bytes.

Parameters:
socket_numhandle of the streaming socket that will read data

length maximum amount of data to read

buffer location to write any data read

Returns:
The number of bytes read. If the operation times out according to theSO_-
TIMEOUT, a value of -2 is returned. If another error occurs, -1 is returned. If
the socket was closed by the other side, 0 is returned.

See also:
connect
send

8.13.3.36 int syn_recvfrom (intsocket_num, unsigned int length, void ∗ buffer)

Receive a UDP datagram.

Receives a message on the specified socket, and stores the address that sent it in the
address structure set by an earlier call tosyn_setDatagramAddress. If no data is avail-
able,syn_recvfromblocks subject to theSO_TIMEOUTvalue. The socketsocket_num

169



must have been created with a typeSOCKET_TYPE_DATAGRAM. It is required to use
syn_bindto assign a local port to the socket, before receiving data.NOTE: This func-
tion readsup to lengthbytes of a datagram. Any data not read in the datagram will be
discarded.

Parameters:
socket_numthe socket handle to use to wait for and read a UDP packet

length the maximum number of bytes to read from a datagram socket

buffer the location to write any data read from the datagram socket

Returns:
The number of bytes read. If the operation times out according to theSO_-
TIMEOUT, a value of -2 is returned. If another error occurs, -1 is returned.

See also:
sendto
socket
bind

8.13.3.37 int syn_send (intsocket_num, unsigned int length, void ∗ buffer)

Sends data to a TCP socket.

Writes data to a TCP socket. The return value of this function is only a local suc-
cess/failure code, and may not necessarily detect transmission errors.

Parameters:
socket_numhandle of the streaming socket that will write data

length number of bytes to write

buffer location of data to write

Returns:
0 for success, non-zero for failure.

See also:
connect
recv

8.13.3.38 int syn_sendto (intsocket_num, unsigned int length, void ∗ buffer)

Sends a UDP datagram to an address earlier specified by a call tosyn_setDatagram-
Address.

170



Sends a UDP datagram to an address earlier specified by a call tosyn_setDatagram-
Address. The success/failure code this function returns says nothing of if the packet
was recieved by the target, only that the socket layer was able to push the data out. The
socketsocket_nummust have been created with a typeSOCKET_TYPE_DATAGRAM.

Parameters:
socket_numthe socket handle to use to send a UDP packet

length the number of bytes to send in the datagram packet

buffer the data to send in the datagram packet

Returns:
0 for success, non-zero for failure.

See also:
recvfrom
socket
syn_setDatagramAddress

8.13.3.39 int syn_setDatagramAddress (intsocket_num, unsigned charsending,
struct sockaddr∗ addr)

Set the IP address parameter for future datagram calls.

In order to keep the functions in this library multi-process-safe, datagram functions
syn_sendtoandsyn_recvfromcannot have as many parameters as their traditional coun-
terparts. This function sets the pointer to the address structure that will be used as the
address parameter for functionssyn_sendtoandsyn_recvfrom.

Note that the Berkeley style API is now supported and is multi-process safe, so user
software should never have to call this function.

Parameters:
socket_numSocket number to set address for

sending Set to 0 if this is an address for receiving, Set to 1 if this is an address for
sending

addr Address structure that will be used in future calls tosyn_sendtoor syn_-
recvfrom.

Returns:
socket_num (for Macro purposes)

See also:
syn_sendto
syn_recvfrom

171



8.13.3.40 int syn_setsockopt (intsocket_num, unsigned int name, void ∗ buffer)

Set various socket options.

Sets a number of supported socket options. Input data in the buffer depends on the
desired socket option.

Name Description Data in buffer
TCP_NODELAY TCP Nagle Enable 1 byte
SO_LINGER Ignored N/A
SO_TIMEOUT Inactivity timeout 4 bytes (milliseconds,

MSB first)
SO_BINDADDR Read only N/A

Parameters:
socket_numsocket to set option information for

name option to set

buffer location of option data that will be written

Returns:
0 for success, non-zero for failure

See also:
getsockopt

8.13.3.41 int syn_settftpserver (structsockaddr∗ address)

Set the address of the TFTP server.

Set the address of the server that the TFTP functions will use. Thesettftpserverfunction
must be used if the address of the TFTP server is not acquired by DHCP or 1-Wire.
Once the TFTP server’s address is set, use the functions listed inrom400_tftp.hto
begin receiving files.

Parameters:
addressstructure to store the address of the TFTP server

Returns:
0 for success, non-zero for failure

See also:
gettftpserver

172



8.13.3.42 int syn_socket (unsigned inttype)

Create a network socket for TCP or UDP communication.

Creates a socket for network communication. This function returns a socket handle, but
has not specific local address assigned to it. Note that this function callstask_gettaskid
through the function redirect table.

Parameters:
type SOCKET_TYPE_DATAGRAMor SOCK_DGRAM for UDP, SOCKET_-

TYPE_STREAMor SOCK_STREAMfor TCP

Returns:
-1 for failure, or the socket handle (socket number)

See also:
bind
connect
closesocket

8.13.3.43 int udpavailable (intsocket_handle, struct sockaddr∗ address)

Returns whether or not data is available to be read on a datagram socket.

Returns1 if there is data available to be read on a UDP socket.

Parameters:
socket_handlehandle to socket to check for available datagrams

addresslocation where the IP and port number will be written

Returns:
-1 if the socket is not a datagram socket 0 if no datagram packets are available 1 if
a datagram is available

The IP and port of the socket are returned inaddress.

8.13.3.44 int unbind (intsocket_num)

Unbind a bound socket.

Removes a local address and port from a socket that was assigned to it usingbind.

Parameters:
socket_numsocket handle

Returns:
0 for success, non-zero for failure.

See also:
bind

173



8.14 rom400_task.h File Reference

8.14.1 Detailed Description

Process scheduler functions in the DS80C400 ROM.

This library contains functions for starting, suspending, killing, and managing tasks
using the ROM’s process scheduler.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
Some functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Data Structures

• structTIME
• structFARPTR
• structTCB

Defines

• #defineROM400_TASK_VERSION9
• #defineROM400_SCHED_VERSIONROM400_TASK_VERSION

Included for legacy reasons. Please useROM400_TASK_VERSIONinstead.

• #defineRELOAD_14_7460xfb33
• #defineRELOAD_18_4320xfa00
• #defineRELOAD_29_4910xfd99
• #defineRELOAD_36_8640xfd00
• #defineRELOAD_58_9820xfecc
• #defineRELOAD_73_7280xfe80
• #defineMIN_PRIORITY 1
• #defineNORM_PRIORITY128
• #defineMAX_PRIORITY 255
• #defineFLAG_SLEEPING1
• #defineFLAG_IO_WAIT 2
• #defineFLAG_DHCP_WAIT4
• #defineFLAG_USER08
• #defineFLAG_USER10x10

174

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• #defineFLAG_USER20x20
• #defineFLAG_USER30x40
• #defineFLAG_USER40x80
• #defineROM_SAVESIZE384

Functions

• void task_genesis(unsigned int savesize)

Initializes the process scheduler.

• unsigned chartask_getcurrent(void)

Gets the process ID for the current task.

• unsigned chartask_getpriority(unsigned char task_id)

Gets the priority level for the given task.

• unsigned chartask_setpriority(unsigned char task_id, unsigned char priority)

Sets the priority level for a given task.

• unsigned inttask_fork(unsigned char priority, unsigned int savesize)

Creates a new task.

• unsigned chartask_kill (unsigned char task_id)

Kills the specified task.

• unsigned chartask_suspend(unsigned char task_id, unsigned char event_-
mask)

Suspends the specified task.

• unsigned chartask_wait(unsigned char task_id, unsigned char event_mask, long
millis)

Puts the specified task to sleep.

• unsigned chartask_signal(unsigned char task_id, unsigned char event_mask)

Posts events to the specified task.

• void task_gettimemillis(structTIME ∗t)

Returns the system tick count.

• unsigned chartask_getthreadid()

Redirected function to return the current thread’s ID number.

175



• unsigned chartask_threadresume(unsigned char thread, unsigned char task)

Redirected function to resume the specified thread.

• unsigned chartask_threadiosleep(unsigned char infinite, unsigned long time-
out)

Redirected function to put the current thread to sleep.

• unsigned chartask_threadiosleepnc(unsigned char infinite, unsigned long time-
out)

Redirected function to put the current thread (which is already in a critical section)
to sleep.

• void task_threadsave(void)

Redirected function to save the state of the current thread in anticipation of a
task/thread swap.

• void task_threadrestore(void)

Redirected function to restore the state of a thread.

• unsigned chartask_sleep(unsigned char task, long timeout)

Redirected function to put a specified task to sleep for a number of milliseconds.

• unsigned chartask_gettaskid()

Redirected function to get the ID of the current task.

• void task_entercritsection(void)

Enters a critical section.

• void task_leavecritsection(void)

Leaves a critical section.

• unsigned inttask_gettickreload(void)

Gets the current reload value for the system’s millisecond ticker.

• void task_settickreload(unsigned int reload)

Sets the current reload value for the system’s millisecond ticker.

• unsigned inttask_version(void)

Returns the version number of this process scheduling library.

• void xdata∗ task_reentrant_stack(unsigned int size)

Rerserves space on the reentrant stack.

176



8.14.2 Define Documentation

8.14.2.1 #define FLAG_DHCP_WAIT 4

Event flag for putting a task to sleep. Reserved by the system.

See also:
task_wait

8.14.2.2 #define FLAG_IO_WAIT 2

Event flag for putting a task to sleep. Reserved by the system.

See also:
task_wait

8.14.2.3 #define FLAG_SLEEPING 1

Event flag for putting a task to sleep.

See also:
task_wait

8.14.2.4 #define FLAG_USER0 8

Event flag for putting a task to sleep.

See also:
task_wait

8.14.2.5 #define FLAG_USER1 0x10

Event flag for putting a task to sleep.

See also:
task_wait

8.14.2.6 #define FLAG_USER2 0x20

Event flag for putting a task to sleep.

See also:
task_wait

177



8.14.2.7 #define FLAG_USER3 0x40

Event flag for putting a task to sleep.

See also:
task_wait

8.14.2.8 #define FLAG_USER4 0x80

Event flag for putting a task to sleep.

See also:
task_wait

8.14.2.9 #define MAX_PRIORITY 255

Maximum priority level assignable to a task.

See also:
task_setpriority
task_getpriority

8.14.2.10 #define MIN_PRIORITY 1

Minimum priority level assignable to a task.

See also:
task_setpriority
task_getpriority

8.14.2.11 #define NORM_PRIORITY 128

Normal priority for a task. This is the default priority for the default task.

See also:
task_setpriority
task_getpriority

8.14.2.12 #define RELOAD_14_746 0xfb33

Timer reload value for 14.746 MHz crystal.

See also:
task_settickreload
task_gettickreload

178



8.14.2.13 #define RELOAD_18_432 0xfa00

Timer reload value for 18.432 MHz crystal.

See also:
task_settickreload
task_gettickreload

8.14.2.14 #define RELOAD_29_491 0xfd99

Timer reload value for 29.491 MHz crystal.

See also:
task_settickreload
task_gettickreload

8.14.2.15 #define RELOAD_36_864 0xfd00

Timer reload value for 36.864 MHz crystal.

See also:
task_settickreload
task_gettickreload

8.14.2.16 #define RELOAD_58_982 0xfecc

Timer reload value for 58.982 MHz crystal.

See also:
task_settickreload
task_gettickreload

8.14.2.17 #define RELOAD_73_728 0xfe80

Timer reload value for 73.728 MHz crystal.

See also:
task_settickreload
task_gettickreload

179



8.14.2.18 #define ROM400_TASK_VERSION 9

Version number associated with this header file. Should be the same as the version
number returned by thetask_versionfunction.

See also:
task_version

8.14.2.19 #define ROM_SAVESIZE 384

Default size for task switching buffer.

See also:
task_genesis

8.14.3 Function Documentation

8.14.3.1 void task_entercritsection (void)

Enters a critical section.

Enters a critical section, which disallows process swapping until the critical sec-
tion is left. Calls totask_entercritsectionshould be balanced with calls totask_-
leavecritsection(or task_threadiosleepnc).

This function is safe to be called from multiple processes at the same time.

NOTE: An application should not stay in a critical section for extended periods of
time. 100-200us should be considered the maximum time.

See also:
task_leavecritsection
task_threadiosleepnc

8.14.3.2 unsigned int task_fork (unsigned charpriority, unsigned intsavesize)

Creates a new task.

Spawns a new task, returning the process ID of the new task to the parent task. Note
that because of the way the Keil compiler assigns variables, calls to task_fork should
be wrapped inside a critical section. Make sure the child’s process ID is stored in a
secure location before exiting the critical section. Note that only the parent need leave
the critical section, the child will not run until the parent has left it.

This function is safe to be called from multiple processes at the same time.

Parameters:
priority priority level for the new task.

180



savesizesize of the task state buffer for the new task

Returns:
0x0FFFF for failure, else 0 if this is the child task, or the child’s PID if this is the
parent.

See also:
MIN_PRIORITY
NORM_PRIORITY
MAX_PRIORITY
ROM_SAVESIZE
task_kill
task_reentrant_stack

8.14.3.3 void task_genesis (unsigned intsavesize)

Initializes the process scheduler.

Note that calling the functioninit_rom from the initialization library is the preferred
way of initializing the ROM.

This function is safe to be called from multiple processes at the same time.

Parameters:
savesizeSize of the task buffer for saving information on task switches.

8.14.3.4 unsigned char task_getcurrent (void)

Gets the process ID for the current task.

Returns the process ID for the current task, which can be used to manage that task.

This function is safe to be called from multiple processes at the same time.

Returns:
PID for the current task.

See also:
task_kill
task_setpriority
task_getpriority

181



8.14.3.5 unsigned char task_getpriority (unsigned chartask_id)

Gets the priority level for the given task.

Given the process ID of a task, return the priority level for that task. Use atask_idof 0
for the current task.

This function is safe to be called from multiple processes at the same time.

Parameters:
task_id Task PID to get the priority for. A task PID of zero means the current task.

Returns:
Priority level of the task.

See also:
MIN_PRIORITY
NORM_PRIORITY
MAX_PRIORITY

8.14.3.6 unsigned char task_gettaskid ()

Redirected function to get the ID of the current task.

This is a redirected function that should be used to get the process ID of the current
task. The default implementation of this function calls the functiontask_getcurrent.

For more information on redirected functions, see the section
ROM Redirect Function Table in the DS80C400 User’s Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

Returns:
Task Id of the current task.

See also:
task_getcurrent

8.14.3.7 unsigned char task_getthreadid ()

Redirected function to return the current thread’s ID number.

This is a redirected function that should be used to retrieve the current thread’s ID
number. However, the DS80C400 ROM does not support threads, so the default imple-
mentation of this function always returns 0x01.

182

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


For more information on redirected functions, see the section
ROM Redirect Function Table in the DS80C400 User’s Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf.

This function is safe to be called from multiple processes at the same time.

Returns:
default implementation returns 0x01

8.14.3.8 unsigned int task_gettickreload (void)

Gets the current reload value for the system’s millisecond ticker.

Gets the current reload value for the system’s millisecond ticker. When initialized, this
reload value may not be correct for the system, and calls totask_gettimemillismay
show the resulting inaccuracy (for example, wall time may record 10 seconds while
the DS80C400 thinks 12 seconds have passes). Use this function to verify the system’s
current system millisecond ticker reload value.

This function is safe to be called from multiple processes at the same time.

See also:
task_settickreload
task_gettimemillis

8.14.3.9 void task_gettimemillis (structTIME ∗ t)

Returns the system tick count.

The default implementation of this function returns the approximate number of mil-
liseconds since the system started. Note that the largest raw data structure supported
by Keil is 4 bytes, yet the DS80C400’s tick counter is 5 bytes, therefore the special
TIME structure is used.

This is a redirected function. The ROM includes a default process scheduler imple-
mentation. See theDS80C400 User’s Guide for information on replacing the
default process scheduler with your own.

This function is safe to be called from multiple processes at the same time.

Parameters:
t pointer to a structure of typeTIME (a 5-byte structure). The result is written to

this pointer, MSB first.

See also:
TIME

183

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf.
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


8.14.3.10 unsigned char task_kill (unsigned chartask_id)

Kills the specified task.

Kill the specified task. Use atask_idof 0 to indicate the current task. This function
does not close or clean up any sockets. Use the socket library functioncleanupto clean
any sockets owned by the task before any more processes are created.

This function is safe to be called from multiple processes at the same time.

Parameters:
task_id Task PID to kill.

Returns:
0 for Success, non-zero for failure

See also:
task_fork

8.14.3.11 void task_leavecritsection (void)

Leaves a critical section.

Leaves a critical section, which allows process swapping to continue. Calls totask_-
leavecritsectionshould have a matching call totask_entercritsection.

This function is safe to be called from multiple processes at the same time.

NOTE: An application should not stay in a critical section for extended periods of
time. 100-200us should be considered the maximum time.

See also:
task_entercritsection
task_threadiosleepnc

8.14.3.12 void xdata∗ task_reentrant_stack (unsigned intsize)

Rerserves space on the reentrant stack.

This function reserves the specified amount of space on the reentrant stack. Any task
that uses functions declared "reentrant" MUST call task_reentrant_stack.Note that
space on the reentrant stack is NOT freed when a task is killed.An function called
from an interrupt uses the reentrant stack of the foreground process. Note that the
reentrant stack is part of XDATA. You can adjust the top of the reentrant stack in
startup400.a51.

Parameters:
size Amount (in bytes) to reserve on the reentrant stack.

184



Returns:
-1 for failure (reentrant stack disabled in startup.a51), else the new lower bounds
of the reentrant stack.

See also:
task_fork

8.14.3.13 unsigned char task_setpriority (unsigned chartask_id, unsigned char
priority)

Sets the priority level for a given task.

Given the process ID of a task, set the priority level for that task. Use atask_idof 0 for
the current task.

This function is safe to be called from multiple processes at the same time.

Parameters:
task_id Task PID to set the priority for. A task PID of zero means the current task.

priority Priority setting for PID task_id. Can be any value betweenMIN_-
PRIORITYandMAX_PRIORITY

Returns:
0 for Success, non-zero for failure

See also:
MIN_PRIORITY
NORM_PRIORITY
MAX_PRIORITY

8.14.3.14 void task_settickreload (unsigned intreload)

Sets the current reload value for the system’s millisecond ticker.

Sets the current reload value for the system’s millisecond ticker. When initialized, this
reload value may not be correct for the system, and calls totask_gettimemillismay
show the resulting inaccuracy (for example, wall time may record 10 seconds while
the DS80C400 thinks 12 seconds have passes). Use this function to set the system’s
current system millisecond ticker reload value.

This function is safe to be called from multiple processes at the same time. This func-
tion should only be called afterinit_rom has been called. If you do not have a 1-
Wire device attached for MAC address storage, you should callinit_setclockor init_-
setfrequencybefore callinginit_rom to initialize the system with a good clock reload
value.

185



Parameters:
reload New value for the system’s millisecond reload timer. Some reloads for

common crystal frequencies includeRELOAD_14_746, RELOAD_18_432,
RELOAD_29_491, RELOAD_36_864, RELOAD_58_982, andRELOAD_-
73_728. Values for other crystals (and crystal settings) can also be used.
See theHigh Speed Microcontroller’s User Guide for more
information on timers and timer settings.

See also:
init_setclock
init_setfrequency
task_gettickreload
task_gettimemillis

8.14.3.15 unsigned char task_signal (unsigned chartask_id, unsigned char
event_mask)

Posts events to the specified task.

Sends the event(s) inevent_maskto processtask_id. If the task is waiting for no other
events, it will wake up and be electable to run by the task scheduler.

Use the event flagsFLAG_USER0throughFLAG_USER4or a bitwise OR of these
flags. For tasks suspended intask_wait, FLAG_SLEEPINGshould also be specified,
otherwise the task will sleep until the sleep time has elapsed.FLAG_SLEEPINGcan
also be posted to prematurely wake a task suspended intask_sleep.

This function is safe to be called from multiple processes at the same time.

Parameters:
task_id Task PID to signal.

event_maskBitmap of events to signal.

Returns:
0 for Success, non-zero for failure

See also:
task_sleep
task_suspend
task_wait

8.14.3.16 unsigned char task_sleep (unsigned chartask, long timeout)

Redirected function to put a specified task to sleep for a number of milliseconds.

186

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


This is a redirected function that should be used to put a task to sleep for some known
period of time. The default implementation of this function calls the functiontask_-
wait. The task can be woken up prematurely usingtask_signal.

For more information on redirected functions, see the section
ROM Redirect Function Table in the DS80C400 User’s Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

Parameters:
task task ID to put to sleep. A value of zero means put the current task to sleep.

timeout amount of time to put ’task’ to sleep for

See also:
task_wait
task_signal

8.14.3.17 unsigned char task_suspend (unsigned chartask_id, unsigned char
event_mask)

Suspends the specified task.

Suspends the execution of the specified task until all specified events have occurred.
Use the functiontask_signalto wake the task up. Use the event flagsFLAG_USER0
throughFLAG_USER4or a bitwise OR of these flags only, all other bits are system
reserved.

This function is safe to be called from multiple processes at the same time.

Parameters:
task_id Task PID to suspend. A task PID of zero means suspend the current task.

event_maskBitmap of events to wait for before wakeup.

Returns:
0 for Success, non-zero for failure

See also:
task_signal
task_sleep

8.14.3.18 unsigned char task_threadiosleep (unsigned charinfinite, unsigned
long timeout)

Redirected function to put the current thread to sleep.

187

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


This is a redirected function that should be used to put a thread to sleep. However,
the DS80C400 does not support threads, so the default implementation of this function
puts the current task to sleep.

For more information on redirected functions, see the section
ROM Redirect Function Table in the DS80C400 User’s Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
infinite 0 for non-infinite timeout, non-zero for infinite timeout (until woken)

timeout amount of time to sleep (if infinite==0)

Returns:
0 for Success, non-zero for failure

See also:
task_threadiosleepnc
task_threadresume

8.14.3.19 unsigned char task_threadiosleepnc (unsigned charinfinite, unsigned
long timeout)

Redirected function to put the current thread (which is already in a critical section) to
sleep.

This is a redirected function that should be used to put a thread to sleep, when the
thread has already entered a critical section. However, the DS80C400 does not support
threads, so the default implementation of this function puts the current task to sleep
(which is assumed to be operating within a critical section).

For more information on redirected functions, see the section
ROM Redirect Function Table in the DS80C400 User’s Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
infinite 0 for non-infinite timeout, non-zero for infinite timeout (until woken)

timeout amount of tuime to sleep (if infinite==0)

188

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Returns:
0 for Success, non-zero for failure

See also:
task_threadiosleep
task_threadresume
task_entercritsection

8.14.3.20 void task_threadrestore (void)

Redirected function to restore the state of a thread.

This is a redirected function that should be used to restore the state of a thread that was
earlier saved with a call totask_threadsave. However, the DS80C400 does not support
threads, so the default implementation of this function does nothing.

For more information on redirected functions, see the section
ROM Redirect Function Table in the DS80C400 User’s Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

See also:
task_threadsave

8.14.3.21 unsigned char task_threadresume (unsigned charthread, unsigned
char task)

Redirected function to resume the specified thread.

This is a redirected function that should be used to resume a suspended or sleeping
thread. However, the DS80C400 ROM does not support threads, so the default imple-
mentation of this function resumes the task with a process ID matchingtask.

For more information on redirected functions, see the section
ROM Redirect Function Table in the DS80C400 User’s Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

Parameters:
thread thread ID to resume

task ID of the process thatthreadbelongs to

Returns:
0 for Success, non-zero for failure

189

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


See also:
task_threadiosleep
task_threadiosleepnc

8.14.3.22 void task_threadsave (void)

Redirected function to save the state of the current thread in anticipation of a task/thread
swap.

This is a redirected function that should be used to save the state of the current thread
so it may be executed again later, after a call totask_threadrestore. However, the
DS80C400 does not support threads, so the default implementation of this function
does nothing.

For more information on redirected functions, see the section
ROM Redirect Function Table in the DS80C400 User’s Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

See also:
task_threadrestore

8.14.3.23 unsigned int task_version (void)

Returns the version number of this process scheduling library.

This function is safe to be called from multiple processes at the same time.

Returns:
Version number of this TASK library.

8.14.3.24 unsigned char task_wait (unsigned chartask_id, unsigned charevent_-
mask, long millis)

Puts the specified task to sleep.

Suspends the execution of the specified task until all specified events have occurred,
and/or until a set amount of time has elapsed.

When callingtask_wait, use the event flagsFLAG_USER0throughFLAG_USER4or
a bitwise OR of these flags only, all other bits are system reserved.

Use the functiontask_signalto wake the task up. To properly wake a task, specify
FLAG_SLEEPINGin the call totask_signalas well as the user event flag(s).

This function is safe to be called from multiple processes at the same time.

190

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Parameters:
task_id Task PID to put to sleep. A task PID of zero means put the current task to

sleep.

event_maskBitmap of events to wait for before wakeup.

millis Maximum number of milliseconds to sleep for.

Returns:
0 for Success, non-zero for failure

See also:
task_signal
task_sleep
task_suspend

8.15 rom400_tftp.h File Reference

8.15.1 Detailed Description

TFTP Client functions in the DS80C400 ROM.

This library contains functions for downloading files from a TFTP server. Note that the
functionsettftpserverfrom the socket library must be used to initialize the IP address
of the TFTP server before communication can begin.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library are multi-process safe–that is, if you call the same
method from two different processes at the same time, the parameters to the func-
tion will not be destroyed. However, only one TFTP client is a available, and it
uses system-wide resources. Therefore, it is recommended that one process man-
age the TFTP client.

Defines

• #defineROM400_TFTP_VERSION5
• #defineTFTP_MORE_DATA0
• #defineTFTP_LAST_SEGMENT1

Functions

• unsigned inttftp_init (void)

Initialize the TFTP client.

191

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• unsigned inttftp_first (unsigned char∗filename)

Requests a file from the TFTP server.

• unsigned inttftp_next(unsigned int ack_only)

Read subsequent blocks of a file from a TFTP server.

• void ∗ tftp_getdata(void)

Get the pointer to the TFTP client’s read buffer.

• void tftp_close(void)

Closes the socket used by the TFTP library.

• unsigned inttftp_version(void)

Returns the version number of this TFTP library.

8.15.2 Define Documentation

8.15.2.1 #define ROM400_TFTP_VERSION 5

Version number associated with this header file. Should be the same as the version
number returned by thetftp_versionfunction.

See also:
tftp_version

8.15.2.2 #define TFTP_LAST_SEGMENT 1

Agrument to functiontftp_nextrequesting the connection be closed.

See also:
tftp_next

8.15.2.3 #define TFTP_MORE_DATA 0

Agrument to functiontftp_nextrequesting more data.

See also:
tftp_next

192



8.15.3 Function Documentation

8.15.3.1 void tftp_close (void)

Closes the socket used by the TFTP library.

Closes the socket used by the TFTP library. Every call totftp_firstcreates a new socket,
and must be balanced by a call totftp_closeor the system will have lingering, inacces-
sible sockets.

See also:
tftp_first
tftp_next

8.15.3.2 unsigned int tftp_first (unsigned char∗ filename)

Requests a file from the TFTP server.

Requests the specified file from the TFTP server. As long as the file exists and this
function returns successfully, use the buffer pointer returned fromtftp_getdatato read
the first block of the requested file. Usetftp_nextto read subsequent blocks of data. Af-
ter the TFTP transaction is complete (or an error has occurred and the TFTP transaction
will be abandoned), usetftp_closeto clean up the transmission socket.

Parameters:
filename pointer to a null-terminated string that is the file to be requested from

the TFTP server

Returns:
0x0FFFF on failure, else the number of bytes read this time

See also:
tftp_next
tftp_close
tftp_getdata

8.15.3.3 void∗ tftp_getdata (void)

Get the pointer to the TFTP client’s read buffer.

Applications should read the TFTP data after every call totftp_firstor tftp_next. This
function only needs to be called once aftertftp_init has been called (the buffer pointer
does not change).

Returns:
Pointer to the area that the TFTP client is writing to

193



See also:
tftp_first
tftp_next

8.15.3.4 unsigned int tftp_init (void)

Initialize the TFTP client.

Initializes the TFTP client. Note that the IP address of the TFTP server must be set
using thesettftpserverfunction from the socket library. After the TFTP Client is ini-
tialized, call thetftp_getdatafunction to request a pointer to the TFTP client’s buffer.

Returns:
0 for success, non-zero for failure

See also:
tftp_getdata

8.15.3.5 unsigned int tftp_next (unsigned intack_only)

Read subsequent blocks of a file from a TFTP server.

Requests the next block of a file be read from the TFTP server. Use the buffer pointer
returned fromtftp_getdatato read the block read from the TFTP server. If this function
returns less than 512 bytes read, it means this is the last block of data. Calltftp_-
nextone more time with the argumentTFTP_LAST_SEGMENTto clean up. After the
TFTP transaction is complete (or an error has occurred and the TFTP transaction will
be abandoned), usetftp_closeto clean up the transmission socket.

Parameters:
ack_only Use TFTP_MORE_DATAto request more data until the amount re-

turned is less than 512 bytes. UseTFTP_LAST_SEGMENTto acknowledge
the last segment was recieved.

Returns:
0x0FFFF on failure, or the number of bytes read.

See also:
tftp_first
tftp_close
tftp_getdata
TFTP_MORE_DATA
TFTP_LAST_SEGMENT

194



8.15.3.6 unsigned int tftp_version (void)

Returns the version number of this TFTP library.

Returns:
Version number of this TFTP library.

8.16 rom400_useriopoll.h File Reference

8.16.1 Detailed Description

User IO Poll registration routines for the DS80C400 ROM.

This library contains functions to register User IO Poll routines. User IO Poll routines
are called at least every 4 milliseconds by the system task scheduler. These allow
programs to put their applications to sleep while waiting for input, and register a polling
routine that will be called to check for that input. The sleeping process can then be
signalled to wake up from the polling routine.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

The functions in this library are multi-process safe–that is, if you call the same method
from two different processes at the same time, the parameters to the function are pre-
served, and the function should execute correctly.

Defines

• #defineROM400_USERIOPOLL_VERSION1

Functions

• unsigned charuseriopoll_isinstalled(void)

Checks to see if the User IO Poll library has already been initialized.

• void useriopoll_init(unsigned char num_routines)

Initializes the User IO Poll library.

• unsigned charuseriopoll_registerpollroutine(void ∗funct, unsigned char num-
ber)

Registers an IO Poll routine.

• unsigned charuseriopoll_removepollroutine(unsigned char number)

Removes a registered IO Poll routine.

195

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• void ∗ useriopoll_getpollroutine(unsigned char number)

Gets the address of a registered IO Poll routine.

• unsigned charuseriopoll_getlistsize(void)

Returns the number of polling routines allowed.

• unsigned intuseriopoll_version(void)

Returns the version number of this User IO Poll library.

8.16.2 Define Documentation

8.16.2.1 #define ROM400_USERIOPOLL_VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by theuseriopoll_versionfunction.

See also:
useriopoll_version

8.16.3 Function Documentation

8.16.3.1 unsigned char useriopoll_getlistsize (void)

Returns the number of polling routines allowed.

Returns the size of the internal array that holds the registered polling routines. This
is the same as the number of entries that this library was initialized for. This num-
ber can be considered the bounds of valid indexes for theuseriopoll_getpollroutine,
useriopoll_removepollroutine, anduseriopoll_registerpollroutinefunctions.

Returns:
Size of the list of polling routines.

See also:
useriopoll_init
useriopoll_registerpollroutine
useriopoll_getpollroutine
useriopoll_removepollroutine

8.16.3.2 void∗ useriopoll_getpollroutine (unsigned charnumber)

Gets the address of a registered IO Poll routine.

Gets the address of an entry in the list of registered IO Poll routines. If no entry exists
in the list at this location, this function returns NULL.

196



Parameters:
number location in the list of polling routines to clear

Returns:
address of the registered IO Poll routine, or NULL if no routine exists at that
position in the list

See also:
useriopoll_init
useriopoll_registerpollroutine
useriopoll_removepollroutine

8.16.3.3 void useriopoll_init (unsigned charnum_routines)

Initializes the User IO Poll library.

Initializes memory space required by the User IO Poll library. The argument should
be the maximum number of IO Poll routines that will be needed by the library. In-
ternally, this is represented by an array of function pointers. Every 4 milliseconds (or
more often), all the function pointers in the array are invoked (if they have been set).
Therefore, it is in an application’s best interest to make this number the lowest possible
to reduce overhead.

The functions registered as IO Poll routines should not destroy any registers aside from
the following: psw, acc, dptr0. All other registers should be preserved.

Parameters:
num_routines number of IO Poll routines that can be registered

See also:
useriopoll_isinstalled
useriopoll_registerpollroutine

8.16.3.4 unsigned char useriopoll_isinstalled (void)

Checks to see if the User IO Poll library has already been initialized.

Checks to see if theuseriopoll_init function has already been called. This function
allows libraries to determine if they need to initialize this library or not.

Returns:
0 if the library has not been initialized, 1 if it has

See also:
useriopoll_init

197



8.16.3.5 unsigned char useriopoll_registerpollroutine (void∗ funct, unsigned
char number)

Registers an IO Poll routine.

Registers the given IO Poll routine to be called by the task scheduler. The function will
be installed in the list of functions at the position defined bynumber, even if a function
already exists at that location.

Parameters:
funct function pointer of the IO Poll routine

number location in the list of polling routines to place this function

Returns:
0 if the operation was successful, 1 ifnumberwas out of bounds

See also:
useriopoll_init
useriopoll_removepollroutine
useriopoll_getpollroutine

8.16.3.6 unsigned char useriopoll_removepollroutine (unsigned charnumber)

Removes a registered IO Poll routine.

Removes an entry in the list of registered IO Poll routines. If no entry exists in the list
at this location, this function has no effect.

Parameters:
number location in the list of polling routines to clear

Returns:
0 if the operation was successful, 1 ifnumberwas out of bounds

See also:
useriopoll_init
useriopoll_registerpollroutine
useriopoll_getpollroutine

8.16.3.7 unsigned int useriopoll_version (void)

Returns the version number of this User IO Poll library.

Returns:
Version number of this User IO Poll library.

198



8.17 rom400_util.h File Reference

8.17.1 Detailed Description

Utility functions in the DS80C400 ROM.

This library contains CRC, pseudo-RNG and utility memory functions.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
Some functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Defines

• #defineROM400_UTIL_VERSION5
• #defineREDIRECT_KERNELMALLOC1
• #defineREDIRECT_KERNELFREE2
• #defineREDIRECT_MALLOC3
• #defineREDIRECT_FREE4
• #defineREDIRECT_MALLOCDIRTY5
• #defineREDIRECT_TINIEXPORT_MM_DEREF6
• #defineREDIRECT_GETFREERAM7
• #defineREDIRECT_GETTIMEMILLIS8
• #defineREDIRECT_GETTHREADID9
• #defineREDIRECT_THREADRESUME10
• #defineREDIRECT_THREADIOSLEEP11
• #defineREDIRECT_THREADIOSLEEPNC12
• #defineREDIRECT_THREADSAVE13
• #defineREDIRECT_THREADRESTORE14
• #defineREDIRECT_SLEEP15
• #defineREDIRECT_GETTASKID16
• #defineREDIRECT_INFOSENDCHAR17
• #defineREDIRECT_IP_COMPUTECHECKSUM_SOFTWARE18
• #defineREDIRECT_019
• #defineREDIRECT_DHCPNOTIFY20
• #defineREDIRECT_ROM_TASK_CREATE21
• #defineREDIRECT_ROM_TASK_DUPLICATE22
• #defineREDIRECT_ROM_TASK_DESTROY23
• #defineREDIRECT_ROM_TASK_SWITCH_IN24

199

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• #defineREDIRECT_ROM_TASK_SWITCH_OUT25
• #defineREDIRECT_OWIP_READCONFIG26
• #defineREDIRECT_SETMACID27
• #defineREDIRECT_MM_UNDEREF28
• #defineREDIRECT_USER_IOPOLL29
• #defineREDIRECT_ERROR_NOTIFICATION30

Functions

• unsigned intutil_crc16(unsigned char value, unsigned int seed)

Generates a 16-bit CRC given a seed.

• unsigned charutil_getpseudorandom(void)

Gets a pseudo-random byte.

• void util_setrandomseed(unsigned int seed)

Sets the seed of the random number generator.

• void util_memclear(void ∗target, unsigned int length)

Clears a block of memory.

• void util_memcopy(void ∗source, void∗dest, unsigned int length)

Copies a block of memory.

• unsigned charutil_memcompare(void ∗block0, void ∗block1, unsigned int
length)

Compares the values in 2 blocks of memory.

• void util_infosendchar(unsigned char ch)

Sends a character to serial port 0.

• void util_installhook(void ∗fncptr, unsigned int fncindex)

Installs a new function pointer into the ROM redirect table.

• unsigned intutil_version(void)

Returns the version number of this utility library.

8.17.2 Define Documentation

8.17.2.1 #define REDIRECT_0 19

Reserved for future use with theutil_installhookmethod.

200



See also:
util_installhook

8.17.2.2 #define REDIRECT_DHCPNOTIFY 20

Value to be used in conjunction with theutil_installhookmethod to override theDHCP-
Notifymethod.

See also:
util_installhook

8.17.2.3 #define REDIRECT_ERROR_NOTIFICATION 30

Value to be used in conjunction with theutil_installhookmethod to override theError-
Notificationmethod.

See also:
util_installhook

8.17.2.4 #define REDIRECT_FREE 4

Value to be used in conjunction with theutil_installhookmethod to override themem_-
freemethod.

See also:
util_installhook

8.17.2.5 #define REDIRECT_GETFREERAM 7

Value to be used in conjunction with theutil_installhookmethod to override themem_-
getfreerammethod.

See also:
util_installhook

8.17.2.6 #define REDIRECT_GETTASKID 16

Value to be used in conjunction with theutil_installhookmethod to override thetask_-
gettaskidmethod.

See also:
util_installhook

201



8.17.2.7 #define REDIRECT_GETTHREADID 9

Value to be used in conjunction with theutil_installhookmethod to override thetask_-
getthreadidmethod.

See also:
util_installhook

8.17.2.8 #define REDIRECT_GETTIMEMILLIS 8

Value to be used in conjunction with theutil_installhookmethod to override thetask_-
gettimemillismethod.

See also:
util_installhook

8.17.2.9 #define REDIRECT_INFOSENDCHAR 17

Value to be used in conjunction with theutil_installhookmethod to override theutil_-
infosendcharmethod.

See also:
util_installhook

8.17.2.10 #define REDIRECT_IP_COMPUTECHECKSUM_SOFTWARE 18

Value to be used in conjunction with theutil_installhookmethod to override theIP_-
ComputeChecksummethod.

See also:
util_installhook

8.17.2.11 #define REDIRECT_KERNELFREE 2

Value to be used in conjunction with theutil_installhookmethod to override theKernel-
Freemethod.

See also:
util_installhook

202



8.17.2.12 #define REDIRECT_KERNELMALLOC 1

Value to be used in conjunction with theutil_installhookmethod to override theKernel-
Malloc method.

See also:
util_installhook

8.17.2.13 #define REDIRECT_MALLOC 3

Value to be used in conjunction with theutil_installhookmethod to override themem_-
mallocmethod.

See also:
util_installhook

8.17.2.14 #define REDIRECT_MALLOCDIRTY 5

Value to be used in conjunction with theutil_installhookmethod to override themem_-
mallocdirtymethod.

See also:
util_installhook

8.17.2.15 #define REDIRECT_MM_UNDEREF 28

Value to be used in conjunction with theutil_installhookmethod to override theM_-
UnDeref method.

See also:
util_installhook

8.17.2.16 #define REDIRECT_OWIP_READCONFIG 26

Value to be used in conjunction with theutil_installhook method to override the
OWIP_ReadConfigmethod.

See also:
util_installhook

203



8.17.2.17 #define REDIRECT_ROM_TASK_CREATE 21

Value to be used in conjunction with theutil_installhookmethod to override theTask-
Createmethod.

See also:
util_installhook

8.17.2.18 #define REDIRECT_ROM_TASK_DESTROY 23

Value to be used in conjunction with theutil_installhookmethod to override thetask_-
kill method.

See also:
util_installhook

8.17.2.19 #define REDIRECT_ROM_TASK_DUPLICATE 22

Value to be used in conjunction with theutil_installhookmethod to override theTask-
Duplicatemethod.

See also:
util_installhook

8.17.2.20 #define REDIRECT_ROM_TASK_SWITCH_IN 24

Value to be used in conjunction with theutil_installhookmethod to override theTask-
SwitchInmethod.

See also:
util_installhook

8.17.2.21 #define REDIRECT_ROM_TASK_SWITCH_OUT 25

Value to be used in conjunction with theutil_installhookmethod to override theTask-
SwitchOutmethod.

See also:
util_installhook

204



8.17.2.22 #define REDIRECT_SETMACID 27

Value to be used in conjunction with theutil_installhookmethod to override theSet-
MACID method.

See also:
util_installhook

8.17.2.23 #define REDIRECT_SLEEP 15

Value to be used in conjunction with theutil_installhookmethod to override thetask_-
sleepmethod.

See also:
util_installhook

8.17.2.24 #define REDIRECT_THREADIOSLEEP 11

Value to be used in conjunction with theutil_installhookmethod to override thetask_-
threadiosleepmethod.

See also:
util_installhook

8.17.2.25 #define REDIRECT_THREADIOSLEEPNC 12

Value to be used in conjunction with theutil_installhookmethod to override thetask_-
threadiosleepncmethod.

See also:
util_installhook

8.17.2.26 #define REDIRECT_THREADRESTORE 14

Value to be used in conjunction with theutil_installhookmethod to override thetask_-
threadrestoremethod.

See also:
util_installhook

205



8.17.2.27 #define REDIRECT_THREADRESUME 10

Value to be used in conjunction with theutil_installhookmethod to override thetask_-
threadresumemethod.

See also:
util_installhook

8.17.2.28 #define REDIRECT_THREADSAVE 13

Value to be used in conjunction with theutil_installhookmethod to override thetask_-
threadsavemethod.

See also:
util_installhook

8.17.2.29 #define REDIRECT_TINIEXPORT_MM_DEREF 6

Value to be used in conjunction with theutil_installhookmethod to override theMM_-
Deref method.

See also:
util_installhook

8.17.2.30 #define REDIRECT_USER_IOPOLL 29

Value to be used in conjunction with theutil_installhookmethod to override theUser_-
IOPoll method.

See also:
util_installhook

8.17.2.31 #define ROM400_UTIL_VERSION 5

Version number associated with this header file. Should be the same as the version
number returned by theutil_versionfunction.

See also:
util_version

8.17.3 Function Documentation

8.17.3.1 unsigned int util_crc16 (unsigned charvalue, unsigned intseed)

206



Generates a 16-bit CRC given a seed.

Implements the Cyclic-Redundancy Check CRC16. This CRC is based on the poly-
nomial X∧16 + X∧15 + X∧2 + 1. It is used extensively in operations with Dallas
Semiconductor 1-Wire devices.

This function is safe to be called from multiple processes at the same time.

Parameters:
value single byte input value to the crc function

seed16 bit ’previous result’ seed

Returns:
16 bit CRC result

8.17.3.2 unsigned char util_getpseudorandom (void)

Gets a pseudo-random byte.

Returns a pseudo-random byte generated with the help of the CRC function. This is
not a true random byte, as there is no real source of entropy.

This function is safe to be called from multiple processes at the same time.

Returns:
One pseudorandom byte.

8.17.3.3 void util_infosendchar (unsigned charch)

Sends a character to serial port 0.

This is a redirected function. The DS80C400 silicon software version of this function
accesses the serial loader pin (P1.7) and does nothing if this pin is in the logic low state.
The DS80C400 silicon software does not use interrupt driver I/O to the serial port.

This function is safe to be called from multiple processes at the same time.

Parameters:
ch character to send to the debug port

8.17.3.4 void util_installhook (void∗ fncptr, unsigned int fncindex)

Installs a new function pointer into the ROM redirect table.

This function alters the redirect table, which allows functions in the ROM to be overrid-
den by intredpid users. The function that is redirected will now call the code at address

207



fncptr. It is not advised thatfncptr point to a C function unless no arguments are ex-
pected (there is no way without writing an assembler wrapper to get the arguments to
the C function in the Keil compiler).

See the DS80C400 User’s Guide Supplement for more on the meaning ofredirected
functions.

This function is safe to be called from multiple processes at the same time.

Parameters:
fncptr address of the function that will be inserted into the redirect table

fncindex number of the redirected function that will be altered (i.e.REDIRECT_-
KERNELMALLOC)

8.17.3.5 void util_memclear (void∗ target, unsigned int length)

Clears a block of memory.

Setslengthbytes to zero starting at addresstarget.

This function is safe to be called from multiple processes at the same time.

Parameters:
target beginning address of memory to clear

length number of bytes to clear

8.17.3.6 unsigned char util_memcompare (void∗ block0, void ∗ block1, unsigned
int length)

Compares the values in 2 blocks of memory.

Compareslengthbytes fromblock0to lengthbytes fromblock1for equality. If the two
memory blocks are identical, the function returns 0.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
block0 first input block to compare

block1 second input block to compare

length maximum number of bytes to compare

Returns:
0 if the blocks are identical, non-zero otherwise

208



8.17.3.7 void util_memcopy (void∗ source, void ∗ dest, unsigned int length)

Copies a block of memory.

Copieslengthbytes of data from thesourcepointer to thedestpointer. The copy oper-
ation starts from the beginning of thesourcepointer, placing bytes from the beginning
of thedestbuffer. Therefore, f the buffers referenced bysourceanddestoverlap, some
bytes fromsourcebytes will be overwritten prior to being copied to the target.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
source pointer to bytes that will be the source of the copy

dest pointer to the bytes that will to copied to

length number of bytes to copy fromsourceto dest

8.17.3.8 void util_setrandomseed (unsigned intseed)

Sets the seed of the random number generator.

Changes the current value of the random seed to the random number generator, allow-
ing for additional randomness to be inserted into the generation. Note that additional
randomness is also generated by the timer bytes and the millisecond counter, so this
seed is not the only source.

This function is safe to be called from multiple processes at the same time.

Parameters:
seednew random seed

8.17.3.9 unsigned int util_version (void)

Returns the version number of this utility library.

This function is safe to be called from multiple processes at the same time.

Returns:
Version number of this UTIL library.

8.18 rom400_xnetstack.h File Reference

8.18.1 Detailed Description

Enhanced network stack for the DS80C400 ROM.

209



This library contains a replacement network stack with better performance and more
standards compliant functionality. Since this library will replace the default ROM net-
work stack, be careful of the physical location this library. If this library is targeted to
reside in flash memory, your system will be limited by the speed of your flash.

To use this functionality, addxnetstack_install()to your program before calling init_-
rom and add the library to your build process.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Defines

• #defineROM400_XNETSTACK_VERSION16
• #defineSOCKET_TYPE_RAW2
• #defineSOCK_RAW2
• #defineMDIO_ENABLE 0
• #defineMDIO_DISABLE_HDX 1
• #defineMDIO_DISABLE_FDX 2

Functions

• void xnetstack_install(void)

Installs the enhanced network stack.

• unsigned intxnetstack_version(void)

Returns the version number of this library.

• void xnetstack_set_tcptimeoutfactor(int factor)

Sets a factor to scale all TCP timeouts.

• int xnetstack_get_tcptimeoutfactor(void)

Gets the factor to scale all TCP timeouts.

• void xnetstack_set_ipv6(int enable)

Enables/disables IPv6.

• void xnetstack_set_icmpechoreplies(int enable)

Enables/disables ICMP echo replies.

• void xnetstack_set_icmpdestinationunreachable(int enable)

Enables/disables ICMP destination unreachable messages.

• void xnetstack_set_igmpreporttype(int type)

210

http://www.maxim-ic.com/products/microcontrollers/pdfs/network_microcontroller_supplement.pdf
http://www.maxim-ic.com/products/microcontrollers/pdfs/network_microcontroller_supplement.pdf


Sets the IGMP membership report type.

• void xnetstack_set_arptimeout(int timeout)

Sets the ARP timeout.

• int xnetstack_get_arptimeout(void)

Gets the ARP timeout value.

• int xnetstack_set_arptablesize(int entries)

Sets the number of ARP table entries.

• int xnetstack_get_arptablesize(void)

Gets the maximum number of ARP table entries.

• void xnetstack_set_rawfilter(unsigned int proto)

Sets a protocol filter for the RAW socket.

• void xnetstack_disable_rawfilter(void)

Disables the protocol filter for the RAW socket.

• void xnetstack_set_mdio(int value)

Sets whether the MII interface should be used to talk to the physical network interface
chip (PHY).

• void xnetstack_set_igmp(int enable)

Enables/disables inbound IGMP processing.

8.18.2 Define Documentation

8.18.2.1 #define MDIO_DISABLE_FDX 2

Argument to functionxnetstack_set_mdioto disable MDIO link detection and to force
the link to full duplex.

See also:
xnetstack_set_mdio

8.18.2.2 #define MDIO_DISABLE_HDX 1

Argument to functionxnetstack_set_mdioto disable MDIO link detection and to force
the link to half duplex.

See also:
xnetstack_set_mdio

211



8.18.2.3 #define MDIO_ENABLE 0

Argument to functionxnetstack_set_mdioto enable MDIO link detection.

See also:
xnetstack_set_mdio

8.18.2.4 #define ROM400_XNETSTACK_VERSION 16

Version number associated with this header file. Should be the same as the version
number returned by thexnetstack_versionfunction.

See also:
xnetstack_version

8.18.2.5 #define SOCK_RAW 2

Argument to functionsocketto create a RAW socket (same asSOCKET_TYPE_-
RAW)

See also:
socket

8.18.2.6 #define SOCKET_TYPE_RAW 2

Argument to functionsocketto create a RAW socket (same asSOCK_RAW)

See also:
socket

8.18.3 Function Documentation

8.18.3.1 void xnetstack_disable_rawfilter (void)

Disables the protocol filter for the RAW socket.

This function disables the filter set by xnetstack_set_rawfilter.

See also:
xnetstack_set_rawfilter

212



8.18.3.2 int xnetstack_get_arptablesize (void)

Gets the maximum number of ARP table entries.

Returns:
ARP table size

See also:
xnetstack_set_arptimeout

8.18.3.3 int xnetstack_get_arptimeout (void)

Gets the ARP timeout value.

Returns:
ARP timeout

See also:
xnetstack_set_arptimeout

8.18.3.4 int xnetstack_get_tcptimeoutfactor (void)

Gets the factor to scale all TCP timeouts.

Returns:
TCP scale factor

See also:
xnetstack_set_tcptimeoutfactor

8.18.3.5 void xnetstack_install (void)

Installs the enhanced network stack.

This function installs the enhanced network stack functionality. The function has to be
called beforeinit_rom().

8.18.3.6 int xnetstack_set_arptablesize (intentries)

Sets the number of ARP table entries.

Parameters:
entries ARP table entries (16 to 127)

213



Returns:
0 on success

This function allocates the new ARP table from the kernel memory subsystem. The
memory allocated will be the table entry count∗ 12. NOTE: Resizing the ARP table
will destroy all entries, including manually set static entries.

See also:
xnetstack_set_arptablesize

8.18.3.7 void xnetstack_set_arptimeout (inttimeout)

Sets the ARP timeout.

Parameters:
timeout ARP timeout (1 to 255, default: 16)

This function manipulates the amount of timer ticks an ARP entry can be pending (be
unresolved) before the network stack considers a host to be unreachable.

Note thatinit_rom() resets the ARP timeout value.

See also:
xnetstack_get_arptimeout

8.18.3.8 void xnetstack_set_icmpdestinationunreachable (intenable)

Enables/disables ICMP destination unreachable messages.

Parameters:
enable 1 to enable, 0 to disable

Setting this to 0 prevents the network stack from generating ICMP destination unreach-
ables (i.e. the device will not respond when an unused port is accessed).

8.18.3.9 void xnetstack_set_icmpechoreplies (intenable)

Enables/disables ICMP echo replies.

Parameters:
enable 1 to enable, 0 to disable

Setting this to 0 prevents the network stack from generating ICMP echo replies (i.e. the
device will no longer respond to "ping").

214



8.18.3.10 void xnetstack_set_igmp (intenable)

Enables/disables inbound IGMP processing.

Parameters:
enable 1 to enable, 0 to disable

NOTE: This function disables the IGMP receiver and feeds all inbound packets to the
raw packet queue. If there is no raw socket, or if the raw filter doesn’t match, the
packets will be discarded.

8.18.3.11 void xnetstack_set_igmpreporttype (inttype)

Sets the IGMP membership report type.

Parameters:
type (0x12 for version 1, 0x16 for version 2)

NOTE: This does not enable IGMPv2 compatibility, it merely changes the type of
membership reports to work around a problem with certain switches. The default is
IGMPv1.

8.18.3.12 void xnetstack_set_ipv6 (intenable)

Enables/disables IPv6.

Parameters:
enable 1 to enable, 0 to disable

NOTE: This function disables the IPv6 receiver and transmitter. An application can
still send packet to IPv6 addresses without receiving an error message; these packets
will be discarded at the driver level.

8.18.3.13 void xnetstack_set_mdio (intvalue)

Sets whether the MII interface should be used to talk to the physical network interface
chip (PHY).

Parameters:
value MDIO_ENABLE, MDIO_DISABLE_HDX, MDIO_DISABLE_FDX

This function enables / disables MII communication over the MII interface. MII com-
munication with the physical interface is used to determine link availability and status.
When disabling MDIO, you must specify whether the link is half duplex or full duplex.
This function should be called afterxnetstack_install, but beforeinit_rom.

215



8.18.3.14 void xnetstack_set_rawfilter (unsigned intproto)

Sets a protocol filter for the RAW socket.

Parameters:
proto Ethernet protocol (e.g. 0x0800 for IPv4)

This function reduces the system load when a raw socket is used by filtering for a
given Ethernet protocol type at the Ethernet driver layer. Note: The network stack only
supports Ethernet II frames.

See also:
xnetstack_disable_rawfilter

8.18.3.15 void xnetstack_set_tcptimeoutfactor (intfactor)

Sets a factor to scale all TCP timeouts.

Parameters:
factor TCP scale factor (1 to 255, default: 32)

See also:
xnetstack_get_tcptimeoutfactor

8.18.3.16 unsigned int xnetstack_version (void)

Returns the version number of this library.

Returns:
Version number of this library.

8.19 stdio.h File Reference

8.19.1 Detailed Description

File and other IO functions.

This library contains functions for file system operations and formatting input and out-
put data. The file system has been adapted from TINI’s Java Runtime Environment to
be able to be called from a C program.

The file system must reside in contiguous memory. Pages in the file system are 256-
byte blocks (on 256-byte boundaries).

216



Maximum File System Size The maximum size(15MB), of the file system is likely
to be far beyond the needs of most/any applications. The file system’s memory manager
has several overhead blocks used to maintain information on block allocation. The
number of overhead blocks cannot exceed 255 blocks (65280 bytes).

Overhead Bytes

• 11 blocks for filesystem overhead

• 5 bytes magic signature

• ’num_blocks’ bytes for the free list

• ’numfd’ ∗ 26 bytes for open file descriptors

Assuming we use the usual ’numfd’ vlaue of 8 open file descriptors,
65280-(11 ∗256)-5-(8 ∗26) = 62251 max bytes are available for a free
list. This yields a maximimum file system size of just over 15MB, although not all the
space can be utilized by file data due to file system overhead.

Example of File System Memory Usage: 64KB Available We have 64KB of mem-
ory available for file system space and we use ’numfd’ of 8 open file descriptors, that is
256 blocks of size 256 bytes. Initalized viafinit(8, 256, start_address) .
To determine the amount of data space this allows we subtract the overhead blocks
from 64KB65536-(11 ∗256)-5-(8 ∗26) leaving 62507 bytes for the free list and
the file data. We need 1 byte per free page, so62507/256 = 244.16 means one
page/block is needed to hold the free list, leaving us with 243 blocks for file system
data. 243 blocks is 62208 bytes of available file space, but not all can be used due to
internal fragmentation of the file system. File system sectors are allocated in 768 bytes
chunks with 512 bytes of data and 256 bytes of filesystem overhead. So the maximum
useable file space is(62208/768) ∗512 = 41472 bytes.

Example of File System Memory Usage: 128KB of Storage RequiredOur appli-
cation requires that we have 128KB of file system space. Again we will use 8 open file
descriptors. 128KB normaly means 131072 bytes. Due to internal fragmentation we
require(131072/512) ∗768 = 196608 bytes. This means we require 768 free
blocks of file space. 768 blocks require 3 blocks for the free list. As previously the
5 magic bytes and the open file descriptor space come to 213 bytes, this equates to
1 block. 768+11+3+1 = 783 . To initalize the file system for our requirements:
finit(8, 783, start_address) .

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

217

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Warning:
Some functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

#include <stddef.h >

Data Structures

• structfile_structure

Defines

• #defineFS_VERSION10
• #defineNULL ((void ∗) 0)
• #defineFILE_FLAGS_EOF1
• #defineFILE_FLAGS_TEMP2
• #defineFILE_TYPE_TINIFS1
• #defineFILENAME_MAX 255
• #defineFOPEN_MAX8
• #defineL_tmpnam20
• #defineSEEK_CUR0x5555
• #defineSEEK_END0x5556
• #defineSEEK_SET0x5557
• #defineTMP_MAX 10
• #defineEOF-1
• #defineP_tmpdir"temp"

Typedefs

• typedef unsigned intsize_t
• typedef unsigned intoff_t
• typedef longfpos_t
• typedeffile_structureFILE

Functions

• void clearerr(FILE ∗f_handle)

Clear the error indicators for a file stream.

• int fclose(FILE ∗f_handle)

218



Closes the file stream.

• int feof (FILE ∗f_handle)

Checks to see if this stream has reached the end of the file.

• int ferror (FILE ∗f_handle)

Gets the error indicator for the file stream.

• int fgetc(FILE ∗f_handle)

Gets the next unsigned character from the file stream.

• int fgetpos(FILE ∗f_handle,fpos_t∗position)

Gets the current value of the file position indicator.

• char∗ fgets(char∗string, int num,FILE ∗f_handle)

Reads a string from the file stream.

• FILE ∗ fopen(const char∗filename, const char∗mode)

Opens the specified file.

• int fputc (int ch,FILE ∗f_handle)

Writes a character to a file stream.

• int fputs(const char∗str,FILE ∗f_handle)

Writes a string to a file stream.

• size_tfread(void ∗ptr, size_tsize,size_tnum,FILE ∗f_handle)

Read a number of bytes from a file stream.

• FILE ∗ freopen (const char∗newfilename, const char∗mode, FILE ∗old_-
handle)

Associates an open stream with a different file.

• int fseek(FILE ∗f_handle, long int offset, int tag)

Sets the file position indicator.

• int fseeko(FILE ∗f_handle,off_t offset, int tag)

Sets the file position indicator.

• int fsetpos(FILE ∗f_handle, constfpos_t∗position)

Sets the file position indicator.

• long ftell (FILE ∗f_handle)

219



Gets the file position indicator.

• off_t ftello (FILE ∗f_handle)

Gets the file position indicator.

• void flockfile (FILE ∗f_handle)

Gets exclusive access to a file.

• int ftrylockfile (FILE ∗f_handle)

Tries to get exclusive accress to a file.

• void funlockfile (FILE ∗f_handle)

Release exclusive access on a file.

• size_tfwrite (const void∗ptr, size_tsize,size_tnum,FILE ∗f_handle)

Write a number of bytes to a file stream.

• int getc(FILE ∗f_handle)

Gets the next unsigned character from the file stream.

• int putc(int value,FILE ∗f_handle)

Writes a character to a file stream.

• int remove(const char∗filename)

Removes a file from the file system.

• int rename(const char∗oldname, const char∗newname)

Renames a file.

• void rewind(FILE ∗f_handle)

Resets the file position indicator for a stream.

• char∗ tempnam(const char∗dirname, const char∗pfx)

Generates a path/filename that can be used for a temporary file.

• FILE ∗ tmpfile (void)

Generates a stream to a temporary file.

• char∗ tmpnam(char∗nametarget)

Generates a uniqe temporary filename.

• int fflush (FILE ∗f_handle)

220



Flushes the buffers for a file stream.

• int fcleaninit(char numfd, int numblocks, void∗start_address)

Initializes the file system to a blank state.

• int finit (char numfd, int numblocks, void∗start_address)

Initializes the file system.

• int fexists(char∗filename)

Tests for the existence of a file.

• void ∗ fopen_fd(const char∗filename, const char∗mode)

Helper function that opens a file descriptor.

• unsigned intfreadbytes(void ∗buffer, int length,FILE ∗stream)

Reads bytes into a buffer from a file stream.

• unsigned intfwritebytes(void ∗buffer, int length,FILE ∗stream)

Writes bytes to a file stream.

• unsigned longgetfreefsram()

Gets the amount of free space in the file system.

• int mkdir (char∗dirname)

Creates a directory.

• char_getkey(void)

Keil-provided function.

• chargetchar(void)

Keil-provided function.

• charungetchar(char)

Keil-provided function.

• charputchar(char)

Keil-provided function.

• int printf (const char∗,...)

Keil-provided function.

• int sprintf (char∗, const char∗,...)

221



Keil-provided function.

• int vprintf (const char∗, char∗)

Keil-provided function.

• int vsprintf (char∗, const char∗, char∗)

Keil-provided function.

• char∗ gets(char∗, int n)

Keil-provided function.

• int scanf(const char∗,...)

Keil-provided function.

• int sscanf(char∗, const char∗,...)

Keil-provided function.

• int puts(const char∗)

Keil-provided function.

• unsigned intfilesystem_version(void)

Returns the version number of this file system library.

8.19.2 Define Documentation

8.19.2.1 #define EOF -1

Define for end-of-file.

8.19.2.2 #define FILE_FLAGS_EOF 1

Definition for file flag. Denotes that the end of the file has been reached for this file.

See also:
FILE

8.19.2.3 #define FILE_FLAGS_TEMP 2

Definition for file flag. Denotes that this is a temporary file.

See also:
FILE

222



8.19.2.4 #define FILE_TYPE_TINIFS 1

Type for the file. Currently, this file system only supports the TINI File System type.

See also:
FILE

8.19.2.5 #define FILENAME_MAX 255

Maximum size in bytes of the longest filename string that the implementation guaran-
tees can be opened.

See also:
fopen

8.19.2.6 #define FOPEN_MAX 8

Number of streams which the implementation guarantees can be open simultane-
ously.

See also:
fopen

8.19.2.7 #define FS_VERSION 10

Version number associated with this header file. Should be the same as the version
number returned by thefilesystem_versionfunction.

See also:
filesystem_version

8.19.2.8 #define L_tmpnam 20

Maximum size of character array to holdtmpnamoutput.

See also:
tmpnam

8.19.2.9 #define NULL ((void∗) 0)

Definition for a null pointer.

223



8.19.2.10 #define P_tmpdir "temp"

Default directory that temporary file names will be built into.

See also:
tmpnam

8.19.2.11 #define SEEK_CUR 0x5555

Seek offset is from the current location in the file.

Warning:
Option currently not supported.

See also:
fseek
fseeko

8.19.2.12 #define SEEK_END 0x5556

Seek offset is from the end of the file.

Warning:
Option currently not supported.

See also:
fseek
fseeko

8.19.2.13 #define SEEK_SET 0x5557

Seek offset is from the beginning of the file.

See also:
fseek
fseeko

8.19.2.14 #define TMP_MAX 10

Maximum number of guaranteed unique file names that can be created by thetmpnam
function.

See also:
tmpnam

224



8.19.3 Typedef Documentation

8.19.3.1 typedef structfile_structure FILE

Type definition for a C file object.

8.19.3.2 typedef longfpos_t

Type definition for the position in a file.

8.19.3.3 typedef unsigned intoff_t

Type definition for the offset in a file.

8.19.3.4 typedef unsigned intsize_t

Type definition for the amount of data to be written or read.

8.19.4 Function Documentation

8.19.4.1 char _getkey (void)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

8.19.4.2 void clearerr (FILE ∗ f_handle)

Clear the error indicators for a file stream.

Clears the error and end-of-file indicators for a file stream.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle file handle to file to clear error flag for

8.19.4.3 int fcleaninit (charnumfd, int numblocks, void ∗ start_address)

Initializes the file system to a blank state.

Initializes the file system. This method (orfinit) must be called every time the
DS80C400 boots up and wants to use the file system. Starts with a blank file system
automatically.

Note that theinit_rom function must be called before the file system is initialized.

225



This function is safe to be called from multiple processes at the same time.

Parameters:
numfd Maximum number of file descriptors that can be open at one time in the

system.

numblocks Number of 256-byte blocks available to the file system.

start_addressStarting address of the memory allocated for the file system. The
bounds of the memory allocated for the file system are then fromstart_-
addressto (start_address+ 256 ∗ numblocks+ File System and Memory
Manager overhead). Refer to top of this file for examples of file system
memory usage.

Returns:
Non-zero, since the file system memory had to be erased.

See also:
init_rom[in the initialization library]
finit

8.19.4.4 int fclose (FILE ∗ f_handle)

Closes the file stream.

Closes the stream associated withf_handle. In the TINI File System, there are no
buffers, so this function has nothing to flush before closing.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle of file to close

Returns:
Always 0

See also:
fopen

8.19.4.5 int feof (FILE ∗ f_handle)

Checks to see if this stream has reached the end of the file.

Tests the end-of-stream indicator for this file stream.

This function is safe to be called from multiple processes at the same time.

226



Parameters:
f_handle handle to file to check end-of-file condition for

Returns:
Non-zero if the end of the file has been reached, otherwise 0

8.19.4.6 int ferror (FILE ∗ f_handle)

Gets the error indicator for the file stream.

Gets the current error indicator for the file stream.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle to file to get current error code for

Returns:
Current error code for file denoted byf_handle. 0 means no error.

8.19.4.7 int fexists (char∗ filename)

Tests for the existence of a file.

Checks to see if the filefilenameexists in this file system.

This function is safe to be called from multiple processes at the same time.

Parameters:
filename File to check for the existence of.

Returns:
0 if the file exists, non-zero if it does not exist.

8.19.4.8 int fflush (FILE ∗ f_handle)

Flushes the buffers for a file stream.

The TINI File System has no buffers (data is read and written directly on the file system,
since it resides in XDATA). Therefore, this function only clears the error flag.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle File handle to flush output buffers for

Returns:
0 on success.

227



8.19.4.9 int fgetc (FILE ∗ f_handle)

Gets the next unsigned character from the file stream.

Returns the next unsigned character (if available) from the file stream (converted to an
int), advancing the file position pointer.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle of the file we will read from

Returns:
The next character from the file, orEOFif the end of file has been reached

See also:
getc
feof
fputc

8.19.4.10 int fgetpos (FILE ∗ f_handle, fpos_t∗ position)

Gets the current value of the file position indicator.

Puts the current value of the file position indicator into the locationposition. The value
in positionafter the function call is to be used for resetting the stream to this position
using a later call tofsetpos.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
f_handle handle to file to get current position for

position pointer to location for position information

Returns:
Always 0

See also:
fsetpos
ftell

228



8.19.4.11 char∗ fgets (char∗ string, int num, FILE ∗ f_handle)

Reads a string from the file stream.

Reads at mostnum-1 characters from the file stream. Will not return any data read
after a newline character (which is included) or the end of the file. A null character is
appended to the data read.

Note that the implementation of this method is not efficient. For more efficient reading
of data, use thefreadfunction.

This function is safe to be called from multiple processes at the same time.

Parameters:
string buffer to write string data to

num read a maximum of (num-1) bytes, leaving 1 for a terminating 0

f_handle handle to file to read from

Returns:
Input pointerstring, or NULL if EOF or errors were encountered. Data will be
written as 0-terminated string tostring

See also:
fread
fputs
feof

8.19.4.12 unsigned int filesystem_version (void)

Returns the version number of this file system library.

Returns:
Version number of this FILESYSTEM library.

8.19.4.13 int finit (charnumfd, int numblocks, void ∗ start_address)

Initializes the file system.

Initializes the file system. This method (orfcleaninit) must be called every time the
DS80C400 boots up and wants to use the file system. If the file system does not exist
or is corrupted, it will erase and start with a blank file system. Also, if any of the
parameters given tofinit do not match how the file system was previously initialized,
the file system will erase and start blank.

Note that theinit_rom function must be called before the file system is initialized.

This function is safe to be called from multiple processes at the same time.

229



Parameters:
numfd Maximum number of file descriptors that can be open at one time in the

system.

numblocks Number of 256-byte blocks available to the file system.

start_addressStarting address of the memory allocated for the file system. The
bounds of the memory allocated for the file system are then fromstart_-
addressto (start_address+ 256 ∗ numblocks+ File System and Memory
Manager overhead). Refer to top of this file for examples of file system
memory usage.

Returns:
0 if the file system previously existed and was restored. Non-zero if the file system
memory had to be erased.

See also:
init_rom[in the initialization library]
fcleaninit

8.19.4.14 void flockfile (FILE ∗ f_handle)

Gets exclusive access to a file.

Sleeps until exclusive access to a file is available. Note that locks cannot be nested. A
nested lock will be released on the very first call tofunlockfile, andnot the matching
call.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle of file to acquire exclusive access for

See also:
ftrylockfile
funlockfile

8.19.4.15 FILE ∗ fopen (const char∗ filename, const char∗ mode)

Opens the specified file.

Opens the file specified and associates a stream with it. Files can be opened in read,
write, or append mode.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

230



Parameters:
filename name of the file to get a handle for

mode - If mode[0] == ’r’, open a reading file stream. If mode[0] == ’a’, open a
writing stream for appending. If mode[0] == ’w’, open a writing stream for
a blank file.

Returns:
handle to the file, orNULL on failure

See also:
freopen
fclose

8.19.4.16 void∗ fopen_fd (const char∗ filename, const char∗ mode)

Helper function that opens a file descriptor.

Helper function that opens a file descriptor. File descriptors are not immediately useful
to any C library function. Applications should use thefopenfunction to open a file.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
filename Name of the file to get a descriptor for. The data pointed to byfilename

must stay consistent for the duration of the use of the file descriptor. The
fopenmethod avoids this limitation by creating a copy of the name data.

mode Read/Write/Append mode string

Returns:
pointer to a file descriptor

See also:
fopen

8.19.4.17 int fputc (intch, FILE ∗ f_handle)

Writes a character to a file stream.

Writes the specified character (converted from an int) to a file stream, advancing the
file position indicator.

This function is safe to be called from multiple processes at the same time.

231



Parameters:
ch character that will be written to the filef_handle

f_handle handle of the file we will write character to

Returns:
Character written if successful, elseEOF

See also:
fgetc
putc

8.19.4.18 int fputs (const char∗ str, FILE ∗ f_handle)

Writes a string to a file stream.

Writes a null-terminated string to a file stream. The terminating character is not written.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
str null-terminated string to write to a file

f_handle handle to file to write string to

Returns:
number of bytes written, orEOFon failure

See also:
fgets
fwrite

8.19.4.19 size_tfread (void ∗ ptr, size_tsize, size_tnum, FILE ∗ f_handle)

Read a number of bytes from a file stream.

Reads a block of data from a file stream. This function allows you to readnumelements
of sizesize. However, note that this function always behaves as if it had been called
by:

fread(ptr, 1, size * num, f_handle);

This function is safe to be called from multiple processes at the same time.

232



Parameters:
ptr pointer to buffer to read data into

size size of each element to be read

num number of elements to read

f_handle handle to file to read from

Returns:
number of elements read

See also:
fgetc
fwrite

8.19.4.20 unsigned int freadbytes (void∗ buffer, int length, FILE ∗ stream)

Reads bytes into a buffer from a file stream.

Reads a specified number of bytes into a buffer from a file stream. This function is used
by freadas a helper function. It may safely be used from user applications, although it
is not a standard file reading function (is not part of an ANSI-C standard library).

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
buffer Location to read data into

length Number of bytes to read

stream File to read data from

Returns:
Number of bytes read, orEOFif the end of file is reached.

See also:
fread
fwritebytes

8.19.4.21 FILE ∗ freopen (const char∗ newfilename, const char∗ mode, FILE ∗
old_handle)

Associates an open stream with a different file.

Closes the file associated withold_handleand opens a stream to the filenewfilename.

This function is safe to be called from multiple processes at the same time.

233



Parameters:
newfilenamename of file to open

mode mode to opennewfilenamein (seefopenfor details)

old_handle file handle to flush and close

Returns:
Handle to filenewfilename, or NULL if the file could not be opened.

See also:
fopen
fclose

8.19.4.22 int fseek (FILE ∗ f_handle, long int offset, int tag)

Sets the file position indicator.

Sets the file position indicator for a file stream. Note that the only currently supported
value fortag is SEEK_SET, meaning that the valueoffsetwil always be interpreted as
the offset from the beginning of the file.

After a call tofseek, the end-of-file indicator for the file stream is reset.

This function behaves the same asfseeko. The only difference is thatfseekoaccepts an
offsetparameter of typeoff_t.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
f_handle handle of file to set posision for

offset offset to set for file position

tag only SEEK_SETis supported

Returns:
Always 0.

See also:
ftell
fseeko
fsetpos

234



8.19.4.23 int fseeko (FILE ∗ f_handle, off_t offset, int tag)

Sets the file position indicator.

Sets the file position indicator for a file stream. Note that the only currently supported
value fortag is SEEK_SET, meaning that the valueoffsetwil always be interpreted as
the offset from the beginning of the file.

After a call tofseeko, the end-of-file indicator for the file stream is reset.

This function behaves the same asfseek. The only difference is thatfseekaccepts an
offsetparameter of typelong int.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle of file to set posision for

offset offset to set for file position

tag only SEEK_SETis supported

Returns:
Always 0.

See also:
ftello
fseek
fsetpos

8.19.4.24 int fsetpos (FILE ∗ f_handle, constfpos_t∗ position)

Sets the file position indicator.

Sets a stream’s file position indicator from the position information pointed to byposi-
tion. The value inpositionshould have been obtained by a call tofgetpos. If successful,
this function will also clear the end-of-file indicator for the stream.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
f_handle handle of file we will set the position for

position position in the file to set

Returns:
Always 0

235



See also:
fgetpos
fseek

8.19.4.25 long ftell (FILE ∗ f_handle)

Gets the file position indicator.

Gets the file position indicator for the specified file. This is the number of characters
from the beginning of the file.

This function behaves the same asftello. The only difference is thatftello returns a
value of typeoff_t.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle of file to get current position of

Returns:
Current position in file, or -1L on failure.

See also:
fseek
ftello
fgetpos

8.19.4.26 off_t ftello (FILE ∗ f_handle)

Gets the file position indicator.

Gets the file position indicator for the specified file. This is the number of characters
from the beginning of the file.

This function behaves the same asftell. The only difference is thatftell returns a value
of type long.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle of file to get current position of

Returns:
Current position in file, or -1L on failure.

See also:
fseek
ftello
fgetpos

236



8.19.4.27 int ftrylockfile (FILE ∗ f_handle)

Tries to get exclusive accress to a file.

Obtains exclusive access to a file if it is available. Otherwise, returns without waiting
for exclusive access. Note that locks cannot be nested. A nested lock will be released
on the very first call tofunlockfile, andnot the matching call.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle to file we will try to get exclusive access to

Returns:
0 if the file was locked, non-zero if someone else has the lock

See also:
flockfile
funlockfile

8.19.4.28 void funlockfile (FILE ∗ f_handle)

Release exclusive access on a file.

Releases exclusive access that was earlier acquired on this file usingflockfileor ftry-
lockfile. Note that locks cannot be nested. This function will release all locks that the
current thread/process have on the file.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle to file to release exclusive access for

See also:
flockfile
ftrylockfile

8.19.4.29 size_tfwrite (const void ∗ ptr, size_tsize, size_tnum, FILE ∗ f_handle)

Write a number of bytes to a file stream.

Writes a block of data to a file stream. This function allows you to writenumelements
of sizesize. However, note that this function always behaves as if it had been called
by:

fwrite(ptr, 1, size * num, f_handle);

237



This function is safe to be called from multiple processes at the same time.

Parameters:
ptr pointer to buffer of data to be written

size size of each element to be written

num number of elements to write

f_handle handle to file to write to

Returns:
number of elements written

See also:
fputc
fread

8.19.4.30 unsigned int fwritebytes (void∗ buffer, int length, FILE ∗ stream)

Writes bytes to a file stream.

Writes the specified number of bytes to a file stream. This function is used byfwrite
as a helper function. It may safely be used from user applications, although it is not a
standard file writing function (is not part of an ANSI-C standard library).

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
buffer Location to write data from

length Number of bytes to write

stream File to write data to

Returns:
Number of bytes written, orEOFif an error occurred

See also:
fwrite
freadbytes

238



8.19.4.31 int getc (FILE ∗ f_handle)

Gets the next unsigned character from the file stream.

Returns the next unsigned character (if available) from the file stream (converted to an
int), advancing the file position pointer. Note: This function is equivalent tofgetc.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle of the file we will read from

Returns:
The next character from the file, orEOFif the end of file has been reached

See also:
fgetc
feof
putc

8.19.4.32 char getchar (void)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

8.19.4.33 unsigned long getfreefsram ()

Gets the amount of free space in the file system.

Returns the number of bytes available to the file system. Note that this number is
completely independent of the amount of free RAM available from the ROM’s memory
manager. The TINI File System uses its own independent memory manager.

This function is safe to be called from multiple processes at the same time.

Returns:
Amount of free RAM available to the file system.

8.19.4.34 char∗ gets (char∗, int n)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

239



8.19.4.35 int mkdir (char ∗ dirname)

Creates a directory.

Creates a directory with the specified directory name.

This function is safe to be called from multiple processes at the same time.

Returns:
non-zero on success, 0 on failure

8.19.4.36 int printf (const char∗, ...)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

8.19.4.37 int putc (intvalue, FILE ∗ f_handle)

Writes a character to a file stream.

Writes the specified character (converted from an int) to a file stream, advancing the
file position indicator. Note: This function is equivalent tofputc.

This function is safe to be called from multiple processes at the same time.

Parameters:
value character that will be written to the filef_handle

f_handle handle of the file we will write character to

Returns:
Character written if successful, elseEOF

See also:
getc
fputc

8.19.4.38 char putchar (char)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

240



8.19.4.39 int puts (const char∗)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

8.19.4.40 int remove (const char∗ filename)

Removes a file from the file system.

Deletes the file specified byfilename.

This function is safe to be called from multiple processes at the same time.

Parameters:
filename file name that will be deleted

Returns:
0 on success, non-zero on failure

See also:
rename

8.19.4.41 int rename (const char∗ oldname, const char∗ newname)

Renames a file.

Renames the file identified byoldnameto now be identified bynewname.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
oldname filename of the file that will change names

newnamenew name for the file calledoldname

Returns:
0 on success, non-zero on failure

See also:
remove

241



8.19.4.42 void rewind (FILE ∗ f_handle)

Resets the file position indicator for a stream.

Sets the file position indicator for the stream to the beginning of the file. It also resets
the end of file condition. This is functionally equivalent to:

fseek(f_handle, 0, SEEK_SET);
clearerr(f_handle);

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle to file that the streams will be reset to the beginning for

See also:
fseek
fsetpos

8.19.4.43 int scanf (const char∗, ...)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

8.19.4.44 int sprintf (char∗, const char∗, ...)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

8.19.4.45 int sscanf (char∗, const char∗, ...)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

8.19.4.46 char∗ tempnam (const char∗ dirname, const char∗ pfx)

Generates a path/filename that can be used for a temporary file.

Generates a path/filename that can be used to create a temporary file with. The pointer
that is returned is suitable to be freed usingmem_free. Make sure to use the Dal-
las Semiconductor memory management library (rom400_mem.h) rather than the Keil
memory manager to free the memory.

242



This function is safe to be called from multiple processes at the same time.

Parameters:
dirname Directory for temporary file name to be created for. A default directory

will be used ifdirnameis null.

pfx Prefix to prepend to temporary file name

Returns:
Pointer to temporary file name. Usemem_freeto delete the memory.

See also:
tmpnam
tmpfile
mem_free[in the memory manager library]

8.19.4.47 FILE ∗ tmpfile (void)

Generates a stream to a temporary file.

Generates a stream to a temporary file, opened for writing/update.

This function is safe to be called from multiple processes at the same time.

Returns:
File handle to a temporary file, orNULL on failure.

See also:
tempnam
tmpnam

8.19.4.48 char∗ tmpnam (char ∗ nametarget)

Generates a uniqe temporary filename.

Capable of generatingTMP_MAX unique temporary filenames. This filename is suit-
able for using in a call tofopen. If the name is written to a static location, then this call
destroys the previous filename stored in that location.

This function is safe to be called from multiple processes at the same time.

Parameters:
nametargetStorage location for new temporary name. If NULL, the temporary

name will be copied to a static location.

Returns:
Location where temporary name is stored. This may be the same asnametarget.

243



See also:
tempnam
tmpfile

8.19.4.49 char ungetchar (char)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

8.19.4.50 int vprintf (const char∗, char ∗)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

8.19.4.51 int vsprintf (char∗, const char∗, char ∗)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

8.20 tini400_canbus.h File Reference

8.20.1 Detailed Description

CAN Bus Interrupt Driver for DS80C390 / 400.

This library provides an interrupt driven interface for the CAN peripherals on the
DS80C390 / 400 Microcontorller. This driver allows applications to asynchronously
transmit & receive CAN data while the applications perform other processing.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

The CAN library consists of four sub modules:

Initialization module initializes the global data structures, message centers, transmit
& receive buffers and interrupt handlers.

Configuration Module enables the application to configure the CAN peripheral and
the individual message centers.

Data Access Moduleprovides interface to application to transmit & receive data.

Interrupt handlers contains interrupt handlers for all CAN interrupts.

244

http://www.maxim-ic.com/products/microcontrollers/pdfs/DS80C400_user_guide.pdf
http://www.maxim-ic.com/products/microcontrollers/pdfs/DS80C400_user_guide.pdf


Data Structures

• structCanFrame

CAN Frame structure. Denotes the structure of a Transmitted or received CAN frame.

• structMCConfig

CAN Message center configuration structure. Used for configuration of receive para-
meters of Message Centers.

Defines

• #defineTRUE1

TRUE.

• #defineFALSE0

FALSE.

• #defineTINI400_CANBUS_VERSION3
• #defineCAN_ERROR_NOERROR0
• #defineCAN_ERROR_GENERIC-1
• #defineCAN_ERROR_BUSOFF-2
• #defineCAN_ERROR_TIMEOUT-3
• #defineCAN_ERROR_NOT_INITIALIZED-4
• #defineCAN_ERROR_ARGUMENT-5
• #defineCAN_ERROR_PORT_ENABLED-6
• #defineCAN_ERROR_PORT_DISABLED-7
• #defineCAN_ERROR_MC_ACTIVE-8
• #defineCAN_ERROR_BIT_STUFF-9
• #defineCAN_ERROR_FORMAT-10
• #defineCAN_ERROR_TRANSMIT_NO_ACK-11
• #defineCAN_ERROR_BIT_ONE-12
• #defineCAN_ERROR_BIT_ZERO-13
• #defineCAN_ERROR_CRC-14
• #defineCAN_ERROR_COUNT_EXCEEDED-15
• #defineCAN_ERROR_NOFREEMC-16
• #defineCAN_ERROR_BUFFULL-17
• #defineCAN_ERROR_BUFEMPTY-18
• #defineCAN_ERROR_INVALID_TSEG-19
• #defineCAN_ERROR_FRAMESDROPPED-20

245



Typedefs

• typedef signed charint8_t

8 bit signed integer

• typedef unsigned charuint8_t

8 bit unsigned integer

• typedef signed intint16_t

16 bit signed integer

• typedef unsigned intuint16_t

16 bit unsigned integer

• typedef signed longint32_t

32 bit signed integer

• typedef unsigned longuint32_t

32 bit unsigned integer

• typedef unsigned charboolean

boolean

Functions

• uint16_tcan_version(void)

Returns the version number of this CAN library. this function is safe to be called from
multiple processes at the same time.

• void can_init(void)

Initializes CAN library.

• int8_t can_resetcontroller(uint8_tCAN_No)

Resets CAN controller.

• int8_t can_setsiestamode(uint8_tCAN_No)

Puts the CAN Controller in SIESTA (low power) mode.

• int8_t can_disablecontroller(uint8_tCAN_No)

Disables the CAN controller.

• int8_t can_enablecontroller(uint8_tCAN_No)

246



Enables the CAN controller.

• int8_t can_enablecontrollerpassive(uint8_tCAN_No)

Enables the CAN controller, but doesn’t connect CAN transmit to the bus.

• int8_t can_setrxwriteoverenable(uint8_tCAN_No,booleanwriteover)

Sets the state of write over in the receiver buffer.

• int8_t can_set11bitglobalidmask(uint8_tCAN_No,uint32_t∗mask)

Sets the 11 bit Standard Global Id Mask.

• int8_t can_set29bitglobalidmask(uint8_tCAN_No,uint32_t∗mask)

Sets the 29 bit Standard Global Id Mask.

• int8_t can_set11bitmessagecenter15idmask(uint8_t CAN_No, uint32_t
∗mask)

Sets the global 11 Bit Message Center 15 ID Mask.

• int8_t can_set29bitmessagecenter15idmask(uint8_t CAN_No, uint32_t
∗mask)

Sets the global 29 Bit Message Center 15 ID Mask.

• int8_t can_setmediaidmask(uint8_tCAN_No,uint16_tmask)

Sets the global media ID mask.

• int8_t can_setmediaidarbitration(uint8_tCAN_No,uint16_tvalue)

Sets the global media ID arbitration.

• int8_t can_setbaudrateprescaler(uint8_tCAN_No,uint16_tprescaler)

Sets the basic time quantum (tqu) necessary for CAN communication.

• int8_t can_setsynchronizationjumpwidth(uint8_t CAN_No, uint8_t jump-
Width)

Sets the Synchronization Jump Width necessary for adjusting TSEG1 and TSEG2.

• int8_t can_setsamplerate(uint8_tCAN_No,uint8_tsampleRate)

Sets the sample rate which is whether to use one or three samples per bit time during
CAN communication.

• int8_t can_settseg1(uint8_tCAN_No,uint8_ttseg1)

Sets Timing Segment 1 to a specified number of time quanta.

• int8_t can_settseg2(uint8_tCAN_No,uint8_ttseg2)

247



Sets Timing Segment 1 to a specified number of time quanta.

• int8_t can_enablemessagecenter(uint8_tCAN_No,uint8_tmessageCenter)

Puts the message center into Active mode if disabled.

• int8_t can_disablemessagecenter(uint8_tCAN_No,uint8_tmessageCenter)

Puts the message center into Disabled mode if active.

• int8_t can_freemessagecenter(uint8_tCAN_No,uint8_tmessageCenter)

Returns the message center to the free pool.

• int8_t can_setmessagecentertx(uint8_tCAN_No,uint8_tmessageCenter)

Sets Tx/Rx bit of a specific message center to 1 (transmit).

• int8_t can_setmessagecenterrx(uint8_tCAN_No,uint8_tmessageCenter)

Sets Tx/Rx bit of a specific message center to 1 (receive).

• int8_t can_set11bitmessagecenterarbitrationid(uint8_t CAN_No, uint8_-
t messageCenter,uint32_t∗ID)

Sets the 11 bit Arbitration ID.

• int8_t can_set29bitmessagecenterarbitrationid(uint8_t CAN_No, uint8_-
t messageCenter,uint32_t∗ID)

Sets the 29 bit Arbitration ID.

• int8_t can_setmessagecentermessageidmaskenable(uint8_t CAN_No, uint8_-
t messageCenter,booleanmaskEnable)

Enables or disables Message ID Masking for a specific message center.

• int8_t can_setmessagecentermediaidmaskenable(uint8_t CAN_No, uint8_-
t messageCenter,booleanmaskEnable)

Enables or disables Media ID Masking for a specific message center.

• int8_t can_sendframe(uint8_tCAN_No,CanFrame∗frame)

Transmits a data or RFR frame.

• int8_t can_getrxmessagecenter(uint8_tCAN_No,MCConfig∗config)

Gets the first available message centre and configure it for reception.

• int8_t can_receiveframesavailable(uint8_tCAN_No)

Gets the number of frames rending in the receive buffer.

• int8_t can_receiveframe(uint8_tCAN_No,CanFrame∗frame)

248



Gets a frame from the receive buffer.

• int8_t can_getautoanswerrfrmessagecenter(uint8_t CAN_No, CanFrame
∗frame)

Gets the first available message centre and configure it for Auto-answering Remote
RFRs.

• int16_tcan_gettxerrorcount(uint8_tCAN_No)

Gets the transmitter error count.

• int16_tcan_getrxerrorcount(uint8_tCAN_No)

Gets the receiver error count.

8.20.2 Define Documentation

8.20.2.1 #define CAN_ERROR_ARGUMENT -5

Improper argument.

8.20.2.2 #define CAN_ERROR_BIT_ONE -12

Bit 1 error.

8.20.2.3 #define CAN_ERROR_BIT_STUFF -9

Bit stuff error. CAN controller detected more than five consecutive bits of an identical
state in an incoming message.

8.20.2.4 #define CAN_ERROR_BIT_ZERO -13

Bit 0 error.

8.20.2.5 #define CAN_ERROR_BUFEMPTY -18

Receiver buffer is empty.

8.20.2.6 #define CAN_ERROR_BUFFULL -17

Transmitter buffer is full.

8.20.2.7 #define CAN_ERROR_BUSOFF -2

CAN Bus off error. Transmit error count has reached or exceeded 256.

249



8.20.2.8 #define CAN_ERROR_COUNT_EXCEEDED -15

Transmit or Receiver Error counter has exceeded the error count of 96 (in case of ERCS
bit of C0C register is 0) or reached 128 (in case of ERCS bit of C0C register is 1).

8.20.2.9 #define CAN_ERROR_CRC -14

CRC error. The calculated CRC of the received message message does not match the
CRC embedded in the message.

8.20.2.10 #define CAN_ERROR_FORMAT -10

Format error. Received message has the wrong format.

8.20.2.11 #define CAN_ERROR_FRAMESDROPPED -20

One or more frames have been dropped. In this case also, valid frames are are returned
from the receiver buffer. User can chose to ignore this error and treat it as CAN_-
ERROR_NOERROR.

8.20.2.12 #define CAN_ERROR_GENERIC -1

Message Center is not in disabled mode.

8.20.2.13 #define CAN_ERROR_INVALID_TSEG -19

Time Segment value not set.

8.20.2.14 #define CAN_ERROR_MC_ACTIVE -8

Message Center Active.

8.20.2.15 #define CAN_ERROR_NOERROR 0

No Error

8.20.2.16 #define CAN_ERROR_NOFREEMC -16

No Free Message Center available.

8.20.2.17 #define CAN_ERROR_NOT_INITIALIZED -4

Can controller not initialized.

250



8.20.2.18 #define CAN_ERROR_PORT_DISABLED -7

CAN Port disabled.

8.20.2.19 #define CAN_ERROR_PORT_ENABLED -6

CAN Port enabled.

8.20.2.20 #define CAN_ERROR_TIMEOUT -3

Time out error.

8.20.2.21 #define CAN_ERROR_TRANSMIT_NO_ACK -11

Transmit not acknowledged error. Requested node did not acknowledge the sent mes-
sage.

8.20.2.22 #define TINI400_CANBUS_VERSION 3

Version number associated with this header file. Should be the same as the version
number returned by thecan_versionfunction.

See also:
can_version

8.21 tini400_crypt.h File Reference

8.21.1 Detailed Description

SHA-1 and MD4 functions for the DS80C400.

This library contains functions that compute the SHA-1 hash and MD4 hash of a byte
array.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Defines

• #defineTINI400_CRYPT_VERSION3

251

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Functions

• unsigned intcrypt_version(void)

Returns the version number of this CRYPT library.

• void crypt_sha1(short inLength, void∗inBuff, void ∗outBuff)

Computes a SHA-1 hash on the given message.

• void crypt_md4(unsigned char∗out, unsigned char∗in, int n)

Computes a MD4 hash on the given message.

8.21.2 Define Documentation

8.21.2.1 #define TINI400_CRYPT_VERSION 3

Version number associated with this header file. Should be the same as the version
number returned by thecrypt_versionfunction.

See also:
crypt_version

8.21.3 Function Documentation

8.21.3.1 void crypt_md4 (unsigned char∗ out, unsigned char∗ in, int n)

Computes a MD4 hash on the given message.

See RFC 1320 for more information. WARNING! MD4 has known cryptographic
weaknesses. Where possible, SHA-1 should be used instead.

Parameters:
out holds the hash value on return (16 bytes)

in the message to hash

n length of the message to hash

8.21.3.2 void crypt_sha1 (shortinLength, void ∗ inBuff , void ∗ outBuff)

Computes a SHA-1 hash on the given message.

See FIPS 180-1 for more information on SHA-1.

Parameters:
inLength length of the message to hash

inBuff the message to hash

outBuff holds the hash value on return (20 bytes minimum)

252



8.21.3.3 unsigned int crypt_version (void)

Returns the version number of this CRYPT library.

Returns:
Version number of this CRYPT library.

8.22 tini400_debugport.h File Reference

8.22.1 Detailed Description

Functions supporting the debug port on the TINIs400 module.

This library contains functions that write to the debug port on the TI-
NIs400. More information on the debug port can be found in the
application note 614, Diagnostic Port for the TINIs400, found at
http://pdfserv.maxim-ic.com/en/an/app614.pdf .

For detailed information on the TINIs400 debug port please seeApplication
Note 614: Diagnostic Port for the TINIs400 .

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Defines

• #defineTINI400_DEBUGPORT_VERSION2

Functions

• unsigned intdebugport_version(void)

Returns the version number of this DEBUGPORT library.

• void debugport_init(void)

Initializes the timing for the debug port.

• void debugport_sendbyte(unsigned char ch)

Sends a character to the debug port.

• void debugport_sendhex(unsigned char b)

Prints a hexadecimal value to the debug port.

253

http://pdfserv.maxim-ic.com/en/an/app614.pdf
http://pdfserv.maxim-ic.com/en/an/app614.pdf
http://pdfserv.maxim-ic.com/en/an/app614.pdf


• void debugport_sendstring(unsigned char∗s)

Sends a string to the debug port.

8.22.2 Define Documentation

8.22.2.1 #define TINI400_DEBUGPORT_VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thedebugport_versionfunction.

See also:
debugport_version

8.22.3 Function Documentation

8.22.3.1 void debugport_init (void)

Initializes the timing for the debug port.

This function must be called after init_rom before the debug port can be used. For
correct serial port timing, set the clock frequency usinginit_setfrequency().

8.22.3.2 void debugport_sendbyte (unsigned charch)

Sends a character to the debug port.

This function sends a character to the debug port at 115200 bps. Note: This function
disables interrupts while sending the character.

8.22.3.3 void debugport_sendhex (unsigned charb)

Prints a hexadecimal value to the debug port.

This function converts a byte into hexadecimal and sends the result to the debug port
at 115200 bps. Note: This function disables interrupts while sending each character.

8.22.3.4 void debugport_sendstring (unsigned char∗ s)

Sends a string to the debug port.

This function sends a zero-terminated string to the debug port at 115200 bps. Note:
This function disables interrupts while sending each character.

254



8.22.3.5 unsigned int debugport_version (void)

Returns the version number of this DEBUGPORT library.

Returns:
Version number of this DEBUGPORT library.

8.23 tini400_dns.h File Reference

8.23.1 Detailed Description

DNS Client functions for the DS80C400 ROM.

This libarary contains functions for resolving a host name to an IP address that is usable
by the silicon software for making socket function calls. Note that the functions in this
library are not safe to be called from multiple processes at the same time. The functions
in this library store their results in static memory locations, and must be retrieved and
stored in alternate locations before further DNS operations are performed.

Note that as of version 3, this library has been changed to use the system-wide DNS
server entries, which might be set by the DHCP client (from data recieved in a DHCP
response). Applications can make sure they have a valid server entry by making sure
the DNS server IP addresses are not all 0’s, since the ROM initialization functions clear
the DNS server entries.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.
The functions in this library use String functions such assprintf for data format-
ting, which are not multiprocess safe. Care must be taken that DNS functions do
not operate at the same time as other string formatting operations.

#include <stdlib.h >

Data Structures

• structhostent
• structmailhostent

Defines

• #defineTINI400_DNS_VERSION7

255

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Functions

• hostent∗ gethostbyaddr(void ∗addr,size_tlen, int type)

Looks up information on a host given an IP address.

• hostent∗ gethostbyname(char∗name)

Looks up information on a host given a host name.

• void dns_init(void)

Initializes the DNS client code.

• void dns_settimeout(unsigned long t)

Sets the socket timeout value used for DNS server communications.

• void dns_setmaxtimeout(unsigned long t)

Sets the maximum socket timeout value used for DNS server communications.

• unsigned longdns_gettimeout(void)

Gets the socket timeout value used for DNS server communications.

• void dns_getprimary(structsockaddr∗sa)

Gets the address of the primary DNS server.

• void dns_setprimary(structsockaddr∗sa)

Sets the address of the primary DNS server.

• void dns_getsecondary(structsockaddr∗sa)

Gets the address of the secondary DNS server.

• void dns_setsecondary(structsockaddr∗sa)

Sets the address of the secondary DNS server.

• mailhostent∗ dns_getmx(char∗name)

Performs a DNS MX record lookup.

• void dns_enableipv6queries(unsigned char enable)

Enables/disables attempts to make IPv6 DNS queries.

• unsigned intdns_version()

Returns the version number of this DNS client library.

256



8.23.2 Define Documentation

8.23.2.1 #define TINI400_DNS_VERSION 7

Version number associated with this header file. Should be the same as the version
number returned by thedns_versionfunction.

See also:
dns_version

8.23.3 Function Documentation

8.23.3.1 void dns_enableipv6queries (unsigned charenable)

Enables/disables attempts to make IPv6 DNS queries.

Use anenablevalue of 0 to disable attempts to perform IPv6 queries. Diabling IPv6
queries can dramatically increase the speed of the library routines. Use anenablevalue
of non-zero to enable IPv6 DNS queries.

Parameters:
enable 0 to disable IPv6 DNS queries, non-zero to enable

8.23.3.2 structmailhostent∗ dns_getmx (char∗ name)

Performs a DNS MX record lookup.

MX records are mail exchanger records. In order to send an email without using a mail
relay (mail host), you need to look up the MX record of the remote domain and then
open the SMTP connection to the address returned bydns_getmx().

Parameters:
name domain to look up.

Returns:
DNS response(s) or NULL for failed lookup. If any valid data is returned, the first
invalid mailhostententry will haveNULL for a host name.

See also:
mailhostent

8.23.3.3 void dns_getprimary (structsockaddr∗ sa)

Gets the address of the primary DNS server.

257



Fills in an address structure with the IP of the secondary DNS server used by this DNS
client code. DNS operations first try to use a server designated as primary, and the use
a server designated as secondary if the primary fails to return results.

Note that this gets the system’s primary DNS server setting. This may have been set
by the DHCP client or by previous calls todns_setprimary. This function is equivalent
to dhcp_getprimarydns.

Parameters:
sa will be filled in with the address of the primary DNS server

See also:
dns_setprimary
dns_setsecondary
dns_getsecondary
dhcp_getprimarydns

8.23.3.4 void dns_getsecondary (structsockaddr∗ sa)

Gets the address of the secondary DNS server.

Fills in an address structure with the IP of the secondary DNS server used by this DNS
client code. DNS operations first try to use a server designated as primary, and the use
a server designated as secondary if the primary fails to return results.

Note that this gets the system’s secondary DNS server setting. This may have been
set by the DHCP client or by previous calls todns_setsecondary. This function is
equivalent todhcp_getsecondarydns.

Parameters:
sa will be filled in with the address of the secondary DNS server

See also:
dns_setprimary
dns_getprimary
dns_setsecondary
dhcp_getsecondarydns

8.23.3.5 unsigned long dns_gettimeout (void)

Gets the socket timeout value used for DNS server communications.

Gets the timeout value applied to all sockets that communicate with the DNS server.
Call this function to verify the timeout used by DNS socket operations.

Returns:
Global timeout value for sockets use in DNS server communications

258



See also:
dns_settimeout

8.23.3.6 void dns_init (void)

Initializes the DNS client code.

Performs initialization for the DNS client. This function need only be called once at
the start of the application.

8.23.3.7 void dns_setmaxtimeout (unsigned longt)

Sets the maximum socket timeout value used for DNS server communications.

Sets the maximum timeout value that can be applied sockets that communicate with
the DNS server. DNS operations are retried up to 4 times, and each time the timeout is
doubled. This function sets the maximum timeout allowed for a single operation.

Parameters:
t Global maximum timeout value for sockets use in DNS server communications

See also:
dns_gettimeout
dns_settimeout

8.23.3.8 void dns_setprimary (structsockaddr∗ sa)

Sets the address of the primary DNS server.

Sets the address of the primary DNS server used by this DNS client code. DNS oper-
ations first try to use a server designated as primary, and the use a server designated as
secondary if the primary fails to return results.

Note that this sets the system’s primary DNS server setting. If the system’s primary
DNS server entry had been previously set by the DHCP client, that information will be
destroyed by this function.

Parameters:
sa address of primary DNS server

See also:
dns_getprimary
dns_setsecondary
dns_getsecondary

259



8.23.3.9 void dns_setsecondary (structsockaddr∗ sa)

Sets the address of the secondary DNS server.

Sets the address of the secondary DNS server used by this DNS client code. DNS
operations first try to use a server designated as primary, and the use a server designated
as secondary if the primary fails to return results.

Note that this sets the system’s secondary DNS server setting. If the system’s secondary
DNS server entry had been previously set by the DHCP client, that information will be
destroyed by this function.

Parameters:
sa address of secondary DNS server

See also:
dns_getprimary
dns_setprimary
dns_getsecondary

8.23.3.10 void dns_settimeout (unsigned longt)

Sets the socket timeout value used for DNS server communications.

Sets the timeout value applied to all sockets that communicate with the DNS server.
Call this function to make sure DNS operations fail after a reasonable waiting time.
All DNS operations are retried up to 4 times. In each retry, the local timeout will be
doubled, up to the maximum timeout allowed.

Parameters:
t Global timeout value for sockets use in DNS server communications

See also:
dns_gettimeout
dns_setmaxtimeout

8.23.3.11 unsigned int dns_version ()

Returns the version number of this DNS client library.

Returns:
Version number of this DNS client library.

260



8.23.3.12 structhostent∗ gethostbyaddr (void∗ addr, size_tlen, int type)

Looks up information on a host given an IP address.

Contacts a DNS server and attempts to find known host names for the given IP address.

Parameters:
addr IP address structure, eitherin_addror in6_addr

len The length of the input structure passed toaddr (4 or 16)

type AF_INETor AF_INET6

Returns:
Host structure with any names found, orNULL if the operation failed.

See also:
AF_INET
AF_INET6
in_addr
in6_addr
gethostbyname
inet_addr
hostent

8.23.3.13 structhostent∗ gethostbyname (char∗ name)

Looks up information on a host given a host name.

Contacts a DNS server and attempts to find known IP addresses given a host name.

Parameters:
name String representing the host name

Returns:
Host structure with any names found, orNULL if the operation failed.

See also:
gethostbyaddr
hostent

8.24 tini400_ftpclient.h File Reference

8.24.1 Detailed Description

FTP Client functions for DS80C400.

This library contains functions for FTP Client.

261



Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

#include "rom400_sock.h"

#include "stdio.h"

#include "ftpcodes.h"

#include <string.h >

#include <ctype.h >

Defines

• #defineFTPCLIENT_VERSION_NUMBER1
• #defineFTPCLIENT_ASCII0
• #defineFTPCLIENT_BINARY1
• #defineFTPCLIENT_PORTNUMBER21
• #defineFTPCLIENT_ACTIVE_MODE1
• #defineFTPCLIENT_PASSIVE_MODE0
• #defineFTPCLIENT_DETAILED_DIRLISTING1
• #defineFTPCLIENT_SHORT_DIRLISTING0
• #defineFTPCLIENT_STATUS_SUCCESS0
• #defineFTPCLIENT_SOCKET_ERROR-1
• #defineFTPCLIENT_FILE_NOT_FOUND-2
• #defineFTPCLIENT_FILE_IO_ERROR-3
• #defineFTPCLIENT_ALREADY_LOGGEDIN-4
• #defineFTPCLIENT_NOT_CONNECTED-5

Functions

• unsigned intftpclient_version(void)

Returns version number of ftpclient library.

• void ftpclient_init (long milli_seconds)

Initializes the ftpclient library.

• int ftpclient_connect(structsockaddr_in∗sa, char∗user, char∗passwd)

Connects with FTP server.

262

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• int ftpclient_settransmissionmode(char flag)

Sets data transfer mode in FTP server.

• void ftpclient_setdataconnectionmode(char flag)

Set data connection mode in ftpclient library.

• int ftpclient_getfile(char∗filename, char∗storeas_filename)

Downloads file from FTP server.

• int ftpclient_putfile(char∗filename, char∗storeas_filename)

Uploads tini file to FTP server.

• int ftpclient_dir(char∗name, char∗dir_str, int dir_str_len, char format)

Returns FTP server directory list.

• int ftpclient_pwd(char∗path_str, int path_str_len)

Returns current FTP server directory path.

• int ftpclient_cd(char∗path_str)

Changes server working directory.

• int ftpclient_rawcmd(char∗input_cmd)

Sends command to FTP server.

• int ftpclient_dataconnection()

Configures for new data connection. exchange port number and ip address informa-
tion with FTP server for data connection.

• int ftpclient_get_dataconnection_handler()

Establishes new data connection and returns socket handler.

• int ftpclient_disconnect(void)

Terminates connection with FTP server.

• char∗ ftpclient_getlaststatus(void)

Returns last FTP server response string.

8.24.2 Define Documentation

8.24.2.1 #define FTPCLIENT_ACTIVE_MODE 1

Definition for active data connection mode

263



See also:
ftpclient_setdataconnectionmode

8.24.2.2 #define FTPCLIENT_ALREADY_LOGGEDIN -4

Error value indicates that client application is already logged-in

8.24.2.3 #define FTPCLIENT_ASCII 0

Definition for ASCII data transfer mode

See also:
ftpclient_settransmissionmode

8.24.2.4 #define FTPCLIENT_BINARY 1

Definition for BINARY data transfer mode

See also:
ftpclient_settransmissionmode

8.24.2.5 #define FTPCLIENT_DETAILED_DIRLISTING 1

Definition for detailed directory listing

See also:
ftpclient_dir

8.24.2.6 #define FTPCLIENT_FILE_IO_ERROR -3

File operation error value

8.24.2.7 #define FTPCLIENT_FILE_NOT_FOUND -2

File not found error value

8.24.2.8 #define FTPCLIENT_NOT_CONNECTED -5

Error value indicates that server is not connected

264



8.24.2.9 #define FTPCLIENT_PASSIVE_MODE 0

Definition for passive data connection mode

See also:
ftpclient_setdataconnectionmode

8.24.2.10 #define FTPCLIENT_PORTNUMBER 21

Definition for default FTP server port number

See also:
ftpclient_connect

8.24.2.11 #define FTPCLIENT_SHORT_DIRLISTING 0

Definition for short directory listing

See also:
ftpclient_dir

8.24.2.12 #define FTPCLIENT_SOCKET_ERROR -1

Socket error value

8.24.2.13 #define FTPCLIENT_STATUS_SUCCESS 0

FTP Client Status Success value, this value is returned when operation is completed
successfully.

8.24.2.14 #define FTPCLIENT_VERSION_NUMBER 1

Version number associated with this header file. Should be the same as the version
number returned by theftpclient_versionfunction.

See also:
ftpclient_version

8.24.3 Function Documentation

8.24.3.1 int ftpclient_cd (char∗ path_str)

Changes server working directory.

This function changes server working directory

265



Parameters:
path_str Address of memory buffer that contains new working directory path

name

Returns:
• FTPCLIENT_NOT_CONNECTED- if connection is not established

• FTPCLIENT_SOCKET_ERROR- if socket communication error happens
Otherwise, returns FTP server status code

8.24.3.2 int ftpclient_connect (structsockaddr_in ∗ sa, char ∗ user, char ∗
passwd)

Connects with FTP server.

This function establishes connection with FTP server. Connection with FTP server
must be established before calling any other functions that interact with FTP server.

Parameters:
sa socket address contains server ip address and FTP server portnumberNOTE:

Passing zero value for portnumber enables ftpclient library to use default ftp
port number

user User name

passwdPassword

Returns:
One of the following values:

• FTPCLIENT_ALREADY_LOGGEDIN- if ftpclient is already connected with
server

• FTPCLIENT_SOCKET_ERROR- if there is any error in socket communica-
tion

Otherwise, FTP server status code will be returned for successful or failed authen-
tication

NOTE: In case of error, the server socket will be closed before returning from function

8.24.3.3 int ftpclient_dataconnection ()

Configures for new data connection. exchange port number and ip address information
with FTP server for data connection.

This function configures for new data connection. For Active mode connection, sends
IP address and port number of ftp client to which the data connection have to be estab-
lished. For passive mode connection, it gets server IP address and port number for data
connection

266



Returns:
FTPCLIENT_SOCKET_ERRORif socket communication error happens. Other-
wise, returns FTP server status code

8.24.3.4 int ftpclient_dir (char ∗ name, char ∗ dir_str, int dir_str_len, char for-
mat)

Returns FTP server directory list.

This function returns FTP server directory list in short format or detailed format. This
function can also be used to retrieve information about specific file.

Parameters:
name Name of the file to get file attributes information. If NULL, then informa-

tion about all entries of current directory will be returned.

dir_str Address of memory buffer where directory information will be stored

dir_str_len Maximum amount of data to be stored indir_str memory buffer

format Specifies the format of directory listing. The value for this parameter
should be eitherFTPCLIENT_DETAILED_DIRLISTINGor FTPCLIENT_-
SHORT_DIRLISTING

Returns:
• FTPCLIENT_NOT_CONNECTED- if connection is not established

• FTPCLIENT_SOCKET_ERROR- if socket communication error happens
Otherwise, returns FTP server status code

8.24.3.5 int ftpclient_disconnect (void)

Terminates connection with FTP server.

This function terminates connection with FTP server. the server socket will be closed
even if there is any socket error

Returns:
• FTPCLIENT_SOCKET_ERROR- if socket communication error happens

• FTPCLIENT_NOT_CONNECTED- if connection is not established
Otherwise, returns FTP server status code

8.24.3.6 int ftpclient_get_dataconnection_handler ()

Establishes new data connection and returns socket handler.

This function establishes new data connection and returns socket handler.

267



IMPORTANT NOTE: For Active mode connection, This function has to be called
after sending control command to server to initiate the data transfer as server will es-
tablish data connection after receiving control command. For passive mode connection,
this function has to be called before sending control command to server to initiate the
data transfer as server expects data connection to be made before responding for control
connection.

Returns:
FTPCLIENT_SOCKET_ERRORif socket communication error happens. Other-
wise, returns FTP server status code

8.24.3.7 int ftpclient_getfile (char∗ filename, char ∗ storeas_filename)

Downloads file from FTP server.

This function downloads file from FTP server and store it in tini file system.

Parameters:
filename Name of file to get from the FTP server

storeas_filenameName of file to store on TINI. If value for this parameter is
NULL, then the file will be stored under same name as it is on the FTP
server.

Returns:
• FTPCLIENT_NOT_CONNECTED- if connection is not established

• FTPCLIENT_FILE_IO_ERROR- if error happens while storing file

• FTPCLIENT_SOCKET_ERROR- if socket communication error happens
Otherwise, returns FTP server status code

8.24.3.8 char∗ ftpclient_getlaststatus (void)

Returns last FTP server response string.

This function returns the FTP server’s response status string for the last control com-
mand sent to the server.

Returns:
Pointer to response status string

8.24.3.9 void ftpclient_init (longmilli_seconds)

Initializes the ftpclient library.

This function initializes ftpclient library internal datastructure and configures the li-
brary with following default configuration

268



• ASCII file transfer mode

• Active data connection mode

Parameters:
milli_secondssocket timeout value

8.24.3.10 int ftpclient_putfile (char∗ filename, char ∗ storeas_filename)

Uploads tini file to FTP server.

This function uploads tini file to FTP server.

Parameters:
filename Name of file on the TINI to send to the server

storeas_filenameName to give the file put on the FTP server. If NULL, then the
name for the file on TINI will be used.

Returns:
• FTPCLIENT_NOT_CONNECTED- if connection is not established

• FTPCLIENT_FILE_NOT_FOUND- if the input tini file name is not there in
tini file system

• FTPCLIENT_SOCKET_ERROR- if socket communication error happens
Otherwise, returns FTP server status code

8.24.3.11 int ftpclient_pwd (char∗ path_str, int path_str_len)

Returns current FTP server directory path.

This function returns the current FTP server directory path name

Parameters:
path_str Address of memory buffer where the current FTP server path name will

be stored

path_str_len Maximum amount of data can be stored in path_str memory buffer

Returns:
• FTPCLIENT_NOT_CONNECTED- if connection is not established

• FTPCLIENT_SOCKET_ERROR- if socket communication error happens
Otherwise, returns FTP server status code

269



8.24.3.12 int ftpclient_rawcmd (char∗ input_cmd)

Sends command to FTP server.

This function sends command to FTP server through control connection and returns
FTP server status code. This function doesNOT check whether server is connected.

NOTE: To retrieve the response string of server for control command, call the
ftpclient_getlaststatusfunction

Parameters:
input_cmd command to send to the FTP server

Returns:
FTPCLIENT_SOCKET_ERRORif socket communication error happens. Other-
wise, returns FTP server status code

8.24.3.13 void ftpclient_setdataconnectionmode (charflag)

Set data connection mode in ftpclient library.

This function sets data connection mode in ftpclient library. All future data connections
will be made in the mode set by this function

Parameters:
flag should be eitherFTPCLIENT_ACTIVE_MODEor FTPCLIENT_PASSIVE_-

MODE

Warning:
Invalid value for "flag" yields unexpected behavior of ftpclient data transfer func-
tions

8.24.3.14 int ftpclient_settransmissionmode (charflag)

Sets data transfer mode in FTP server.

This function sets data transfer mode in FTP server and ftpclient library

Parameters:
flag should be eitherFTPCLIENT_ASCIIor FTPCLIENT_BINARY

NOTE: Invalid input forflagwill be interpreted asFTPCLIENT_BINARY.

Returns:
returns FTP server status code

270



8.24.3.15 unsigned int ftpclient_version (void)

Returns version number of ftpclient library.

Returns:
Version number of ftpclient library

8.25 tini400_isr.h File Reference

8.25.1 Detailed Description

Interrupt Service Routine installation functions.

This library contains functions that allow processes to install their own ISR’s from C
programs. Normally, the Keil compiler would automatically install interrupts in their
proper locations. However, the act of initializing the ROM sets the entire interrupt
vector table, so any interrupt vector that the Keil compiler generates are destroyed.
These functions allow programs to restore or update their interrupt vector tables.

To use interrupts written in C with the Keil compiler, functions should be defined with
the interrupt keyword. Also, under the Project Target options dialog, under the C51
panel, uncheck the box labeledInterrupt Vectors at Address:. Then make sure to call
isr_setinterruptvectorsometime afterinit_romhas been called.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

The functions in this library are multi-process safe–that is, if you call the same method
from two different processes at the same time, the parameters to the function will not
be destroyed.

Defines

• #defineTINI400_ISR_VERSION4
• #defineISR_EXTERNALINT00
• #defineISR_TIMER01
• #defineISR_EXTERNALINT12
• #defineISR_TIMER13
• #defineISR_SERIAL04
• #defineISR_TIMER25
• #defineISR_POWERFAIL6
• #defineISR_SERIAL17
• #defineISR_EXTERNALINT23458
• #defineISR_EXTERNALINT28
• #defineISR_TIMER39
• #defineISR_EXTERNALINT39

271

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• #defineISR_SERIAL210
• #defineISR_EXTERNALINT410
• #defineISR_WRITEPROTECT11
• #defineISR_EXTERNALINT511
• #defineISR_WATCHDOG12
• #defineISR_CAN013
• #defineISR_ETHERNET14
• #defineISR_CAN114
• #defineISR_ETHERNETPOWER15
• #defineISR_CANBUSACTIVITY 15

Functions

• void isr_setinterruptvector(int vector_number, void∗function_ptr)

Installs an interrupt vector.

• void ∗ isr_getinterruptvector(int vector_number)

Gets the current value of an interrupt vector.

• unsigned intisr_version(void)

Returns the version number of this ISR library.

8.25.2 Define Documentation

8.25.2.1 #define ISR_CAN0 13

Interrupt vector number for theCAN 0 interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.2 #define ISR_CAN1 14

Interrupt vector number for theCAN 1 interrupt.Applicable to DS80C390 only.

See also:
isr_setinterruptvector
isr_getinterruptvector

272



8.25.2.3 #define ISR_CANBUSACTIVITY 15

Interrupt vector number for theCAN 0 & 1 bus activity interrupt. Applicable to
DS80C390 only.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.4 #define ISR_ETHERNET 14

Interrupt vector number for theEthernet Activity interrupt.Applicable to DS80C400
only.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.5 #define ISR_ETHERNETPOWER 15

Interrupt vector number for theExternal Power Mode interrupt. Applicable to
DS80C400 only.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.6 #define ISR_EXTERNALINT0 0

Interrupt vector number for theExternal Interrupt 0 interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.7 #define ISR_EXTERNALINT1 2

Interrupt vector number for theExternal Interrupt 1 interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

273



8.25.2.8 #define ISR_EXTERNALINT2 8

Interrupt vector number for theExternal Interrupt 2 interrupt. Applicable to
DS80C390 only.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.9 #define ISR_EXTERNALINT2345 8

Interrupt vector number for theExternal Interrupt 2/3/4/5 interrupt. Applicable to
DS80C400 only.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.10 #define ISR_EXTERNALINT3 9

Interrupt vector number for theExternal Interrupt 3 interrupt. Applicable to
DS80C390 only.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.11 #define ISR_EXTERNALINT4 10

Interrupt vector number for theExternal Interrupt 4 interrupt. Applicable to
DS80C390 only.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.12 #define ISR_EXTERNALINT5 11

Interrupt vector number for theExternal Interrupt 5 interrupt. Applicable to
DS80C390 only.

See also:
isr_setinterruptvector
isr_getinterruptvector

274



8.25.2.13 #define ISR_POWERFAIL 6

Interrupt vector number for thePower Fail interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.14 #define ISR_SERIAL0 4

Interrupt vector number for theSerial Port 0 interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.15 #define ISR_SERIAL1 7

Interrupt vector number for theSerial Port 1 interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.16 #define ISR_SERIAL2 10

Interrupt vector number for theSerial Port 2 interrupt. Applicable to DS80C400
only.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.17 #define ISR_TIMER0 1

Interrupt vector number for theTimer 0 interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

275



8.25.2.18 #define ISR_TIMER1 3

Interrupt vector number for theTimer 1 interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.19 #define ISR_TIMER2 5

Interrupt vector number for theTimer 2 interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.20 #define ISR_TIMER3 9

Interrupt vector number for theTimer 3 interrupt.Applicable to DS80C400 only.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.21 #define ISR_WATCHDOG 12

Interrupt vector number for theWatchdog Timer interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

8.25.2.22 #define ISR_WRITEPROTECT 11

Interrupt vector number for theWrite Protect interrupt. Applicable to DS80C400
only.

See also:
isr_setinterruptvector
isr_getinterruptvector

276



8.25.2.23 #define TINI400_ISR_VERSION 4

Version number associated with this header file. Should be the same as the version
number returned by theisr_versionfunction.

See also:
isr_version

8.25.3 Function Documentation

8.25.3.1 void∗ isr_getinterruptvector (int vector_number)

Gets the current value of an interrupt vector.

Returns a function pointer to the interrupt service routine for the interrupt defined by
vector_number. Note thatvector_numberis NOT the address of the interrupt, but the
number corresponding to that interrupt as described in the Keil documentation. For
example, avector_numberof 1 corresponds to the interrupt at address0Bh, which is
the timer 0 overflow interrupt. Avector_numberof 4 corresponds to the interrupt at
address23h , which is the serial port 0 interrupt.

This file contains several defines for common interrupts that can be used for the
vector_numberparameter.

Parameters:
vector_numberID of the interrupt to be installed. It is up to the user to make sure

this parameter is in range

Returns:
function pointer for the interrupt service routine. ReturnsNULL if the instruction
at the interrupt’s address is not anLJMP.

See also:
isr_setinterruptvector

8.25.3.2 void isr_setinterruptvector (intvector_number, void ∗ function_ptr)

Installs an interrupt vector.

Installs the functionfunction_ptras the interrupt service routine for the interrupt de-
fined byvector_number. Note thatvector_numberis NOT the address of the interrupt,
but the number corresponding to that interrupt as described in the Keil documentation.
For example, avector_numberof 1 corresponds to the interrupt at address0Bh, which
is the timer 0 overflow interrupt. Avector_numberof 4 corresponds to the interrupt at
address23h , which is the serial port 0 interrupt.

This file contains several defines for common interrupts that can be used for the
vector_numberparameter.

277



The functionfunction_ptrshould terminate with areti statement (functions declared
with the interrupt keyword in Keil automatically have this).

Parameters:
vector_numberID of the interrupt to be installed. It is up to the user to make sure

this parameter is in range

function_ptr function that will be the interrupt service routine

See also:
isr_getinterruptvector

8.25.3.3 unsigned int isr_version (void)

Returns the version number of this ISR library.

Returns:
Version number of this ISR library.

8.26 tini400_mime.h File Reference

8.26.1 Detailed Description

MIME Library functions for DS80C400 processor.

This library contains functions for encoding and decoding mime messages

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

Defines

• #defineBASE641
• #defineQUOTED_PRINTABLE2
• #defineMIME_VERSION1

278

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Functions

• void mime_init(void)

Initializes mime library.

• char∗ mime_encode(unsigned char far∗inbuf, unsigned int size, char encode_-
flag)

Encodes the given message to mime format.

• char∗ mime_decode(char far∗inbuf, char decode_flag)

Decodes the given mime message.

8.26.2 Define Documentation

8.26.2.1 #define BASE64 1

Definition for mime base64 encoding and decoding method

See also:
mime_encode, mime_decode

8.26.2.2 #define MIME_VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by themime_versionfunction.

See also:
mime_version

8.26.2.3 #define QUOTED_PRINTABLE 2

Definition for mime quoted printable encoding and decoding method

See also:
mime_encode, mime_decode

8.26.3 Function Documentation

8.26.3.1 char∗ mime_decode (char far∗ inbuf, char decode_flag)

Decodes the given mime message.

See RFC1521 for more information on MIME

279



Parameters:
inbuf - mime message to decode

decode_flag- decoding flag indicates what decoding method to be used, should
be eitherBASE64or QUOTED_PRINTABLE

Returns:
address of decoded message buffer or NULL if function failed

8.26.3.2 char∗ mime_encode (unsigned char far∗ inbuf, unsigned int size, char
encode_flag)

Encodes the given message to mime format.

See RFC1521 for more information on MIME

Parameters:
inbuf input buffer to encode

size length of the input buffer

encode_flagnot used, reserved for future use

Returns:
address of encoded mime message buffer or NULL if function failed

8.27 tini400_ntlm.h File Reference

8.27.1 Detailed Description

NTLM Library functions for DS80C400 processor.

This library contains functions for managing NeTwork Lan Manager(NTLM) authen-
tication protocol

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

Data Structures

• struct_sbufhdr
• struct_type1msghdr

280

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• struct_type1msg
• struct_type2msghdr
• struct_type2msg
• struct_type3msghdr
• struct_type3msg

Defines

• #defineMAX_NTLM_BUF 1024
• #defineNTLM_SIGN "NTLMSSP\0"
• #defineNTLM_TYPE1_MSG1
• #defineNTLM_TYPE3_MSG3
• #defineNTLM_FLAGS 0x0000b207L

Typedefs

• typedef_sbufhdrsbufhdr
• typedef_type1msghdrtype1msghdr
• typedef_type1msgtype1msg
• typedef_type2msghdrtype2msghdr
• typedef_type2msgtype2msg
• typedef_type3msghdrtype3msghdr
• typedef_type3msgtype3msg

Functions

• void generate_type1_msg(type1msg∗t1_msg, char∗user)

Generates type1 NTLM message.

• void generate_type3_msg(type2msg∗t2_msg,type3msg∗t3_msg, char∗user,
char∗pass)

Generates type3 NTLM message.

8.27.2 Define Documentation

8.27.2.1 #define MAX_NTLM_BUF 1024

definition for maximum ntlm security buffer length.

See also:
generate_type1_msg, generate_type3_msg

281



8.27.2.2 #define NTLM_FLAGS 0x0000b207L

definition for NTLM flags

See also:
generate_type1_msg, generate_type3_msg

8.27.2.3 #define NTLM_SIGN "NTLMSSP\0"

definition for NTLM signature

See also:
generate_type1_msg, generate_type3_msg

8.27.2.4 #define NTLM_TYPE1_MSG 1

definition for type 1 NTLM Message

See also:
generate_type1_msg

8.27.2.5 #define NTLM_TYPE3_MSG 3

definition for type 3 NTLM Message

See also:
generate_type3_msg

8.27.3 Typedef Documentation

8.27.3.1 typedef struct_sbufhdr sbufhdr

Structure for security buffer header

8.27.3.2 typedef struct_type1msgtype1msg

Structure for type1 message

8.27.3.3 typedef struct_type1msghdrtype1msghdr

Structure for type1 message header

8.27.3.4 typedef struct_type2msgtype2msg

Structure for type2 message

282



8.27.3.5 typedef struct_type2msghdrtype2msghdr

Structure for type2 message header

8.27.3.6 typedef struct_type3msgtype3msg

Structure for type3 message

8.27.3.7 typedef struct_type3msghdrtype3msghdr

Structure for type3 message header

8.27.4 Function Documentation

8.27.4.1 void generate_type1_msg (type1msg∗ t1_msg, char ∗ user)

Generates type1 NTLM message.

This function generates Type1 NTLM message that is sent to server to get type2 mes-
sage. For more information, See NTLM authentication protocol specification.

Parameters:
t1_msg the NTLM type 1 message

user the user name

See also:
generate_type3_msg

8.27.4.2 void generate_type3_msg (type2msg∗ t2_msg, type3msg∗ t3_msg, char
∗ user, char ∗ pass)

Generates type3 NTLM message.

This function generates Type3 NTLM message that contains both LAN Manager and
NT LAN manager responses for server challenge.For more information, See NTLM
authentication protocol specification.

Parameters:
t2_msg the type 2 NTLM message

t3_msg the type 3 NTLM message

user user name

pass password

See also:
generate_type1_msg

283



8.28 tini400_pop3.h File Reference

8.28.1 Detailed Description

Pop3 Library functions for DS80C400 processor.

This library contains functions for receiving mails from pop3 mail server

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

Data Structures

• struct_mailheader
• struct_userheader
• struct_mail
• struct_maillist
• struct_pop3_session

Defines

• #defineMAX_LINE_SIZE 1024
• #definePOP3_VERSION2
• #definePOP3_MAXATTACHMENTSIZE5
• #definePOP3_MAXUSERHEADERSIZE20
• #definePOP3_INSUFFICIENT_MEMORY-1
• #definePOP3_RECEIVEMAIL_ERROR-5
• #definePOP3_INVALID_MAILNUMBER -6
• #definePOP3_SOCKET_ERROR-7
• #definePOP3_INVALID_USER_PASSWORD-10
• #definePOP3_LIBRARY_IS_NOT_CONFIGURED-11
• #definePOP3_NOT_CONNECTED-12
• #definePOP3_FILE_ERROR-13
• #definePOP3_STATUS_SUCCESS0

284

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Typedefs

• typedef_mailheadermailheader
• typedef_userheaderuserheader
• typedef_mailmail
• typedef_maillist maillist
• typedef_pop3_sessionpop3_session

Functions

• void pop3_init(void)

Initializes pop3 library.

• void pop3_setuserheaderlist(struct_userheader∗pusrhdr)

Sets user defined mail header list.

• int pop3_login(long pop3_host, char∗username, char∗pwd)

Login to pop3 server.

• int pop3_deletemail(int mailnumber)

Deletes mail from pop3 mailbox.

• int pop3_getmailboxstate(int ∗numberofmails, long∗total_size)

Gets number of mails and mailbox size value from pop3 server.

• _mail∗ pop3_receivemail(int mailnumber, int∗status)

Receives mail from pop3 mail server.

• _maillist∗ pop3_getmaillist(int ∗status)

Reads mail list from pop3 server.

• int pop3_logout(void)

Terminates connection from pop3 server.

• void pop3_registerauthcallback(int(∗funpt)())

Registers pop3 authentication callback routine.

8.28.2 Define Documentation

8.28.2.1 #define MAX_LINE_SIZE 1024

Definition for maximum size of mail header

285



8.28.2.2 #define POP3_FILE_ERROR -13

File creation error value, This value is returned if there is any error in opening file

See also:
pop3_receivemail

8.28.2.3 #define POP3_INSUFFICIENT_MEMORY -1

Insufficient memory error value

See also:
pop3_receivemail
pop3_login
pop3_getmaillist

8.28.2.4 #define POP3_INVALID_MAILNUMBER -6

Invalid mail number error value

See also:
pop3_receivemail

8.28.2.5 #define POP3_INVALID_USER_PASSWORD -10

Invalid User or Password error value

See also:
pop3_login

8.28.2.6 #define POP3_LIBRARY_IS_NOT_CONFIGURED -11

pop3 library is not configured error value, this value will be returned if pop3 host
information is not configured

See also:
pop3_login

8.28.2.7 #define POP3_MAXATTACHMENTSIZE 5

Definition for maximum number of attachments

See also:
pop3_receivemail

286



8.28.2.8 #define POP3_MAXUSERHEADERSIZE 20

Definition for maximum number of user headers

See also:
pop3_receivemail

8.28.2.9 #define POP3_NOT_CONNECTED -12

This error value is returned if connection was not established with pop3 server.

See also:
pop3_deletemail
pop3_getmailboxstate
pop3_getmaillist
pop3_receivemail
pop3_logout

8.28.2.10 #define POP3_RECEIVEMAIL_ERROR -5

Receive mail error value

See also:
pop3_receivemail

8.28.2.11 #define POP3_SOCKET_ERROR -7

Socket error value

See also:
pop3_receivemail
pop3_login
pop3_logout
pop3_getmailboxstate
pop3_getmaillist

8.28.2.12 #define POP3_STATUS_SUCCESS 0

pop3 Status success value, this value is returned when operation is completed success-
fully.

See also:
pop3_receivemail

287



8.28.2.13 #define POP3_VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thepop3_versionfunction.

See also:
pop3_version

8.28.3 Typedef Documentation

8.28.3.1 typedef struct_mail mail

Structure for mail that contains standard mail header, user mail header, message and
attachment filename list

8.28.3.2 typedef struct_mailheadermailheader

Structure for standard mail header holds standard mail header values

8.28.3.3 typedef struct_maillist maillist

Structure for maillist

8.28.3.4 typedef struct_pop3_sessionpop3_session

Structure for pop3_session

8.28.3.5 typedef struct_userheaderuserheader

Structure for user defined mail header contains user header name list and user header
value list

8.28.4 Function Documentation

8.28.4.1 int pop3_deletemail (intmailnumber)

Deletes mail from pop3 mailbox.

This function sets delete mark against the input message number. The server will delete
all the messages marked with delete mark after disconnecting from client. pop3 login
operation must be performed before calling this function.

Parameters:
mailnumber Message number to set delete mark

288



Returns:
POP3_STATUS_SUCCESS, if everything is successful. Otherwise, one of the
following error values:

• POP3_NOT_CONNECTED

• POP3_RECEIVEMAIL_ERROR

• POP3_INVALID_MAILNUMBER

See also:
pop3_getmaillist
pop3_receivemail

8.28.4.2 int pop3_getmailboxstate (int∗ numberofmails, long ∗ total_size)

Gets number of mails and mailbox size value from pop3 server.

This function returns number of messages in mailbox and returns total size of the mes-
sage. pop3 login operation must be performed before calling this function.

Parameters:
numberofmails points to address location where number of mails value will be

stored

total_sizepoints to address location where total mailsize value will be stored

Returns:
POP3_STATUS_SUCCESS, if everything is successful. Otherwise, one of the
following error values:

• POP3_NOT_CONNECTED

• POP3_RECEIVEMAIL_ERROR

See also:
pop3_getmaillist
pop3_receivemail

8.28.4.3 struct_maillist∗ pop3_getmaillist (int ∗ status)

Reads mail list from pop3 server.

This function returns list of mail numbers and size of each mail. pop3 login operation
must be performed before calling this function.

Parameters:
status points to address location where status of pop3 function will be stored

289



Returns:
NULL if pop3_getmaillist failed. Otherwise, returns pointer to maillist object

See also:
pop3_login
pop3_logout
pop3_getmailboxstate
pop3_deletemail

8.28.4.4 void pop3_init (void)

Initializes pop3 library.

This function initializes the internal data structures of pop3 library. This function
should be called first before calling any other functions of pop3 library

8.28.4.5 int pop3_login (longpop3_host, char ∗ username, char ∗ pwd)

Login to pop3 server.

This function performs authentication with pop3 server and enters into transac-
tion state. It does plain text authentication by default. user can override au-
thentication method by registering their own authentication callback through pop3_-
registerauthcallback function.

Parameters:
pop3_hostIP4 address structure, return value ofin_addr

usernameuser name value

pwd password value

Returns:
POP3_STATUS_SUCCESSif the operation is completed successfully. Otherwise,
one of the following error values:

• POP3_LIBRARY_IS_NOT_CONFIGURED

• POP3_INSUFFICIENT_MEMORY

• POP3_SOCKET_ERROR

• POP3_RECEIVEMAIL_ERROR

• POP3_INVALID_USER_PASSWORD

See also:
pop3_logout

290



8.28.4.6 int pop3_logout (void)

Terminates connection from pop3 server.

This function terminates connection with pop3 server. If pop3 login operation was not
performed, it returns error.

Returns:
POP3_STATUS_SUCCESS, if everything is successful. Otherwise, one of the
following error values:

• POP3_NOT_CONNECTED

• POP3_RECEIVEMAIL_ERROR

See also:
pop3_login

8.28.4.7 struct_mail∗ pop3_receivemail (intmailnumber, int ∗ status)

Receives mail from pop3 mail server.

This function receives mail from POP3 server and returns pointer to mail object that
contains standard mailheader value, user mail header value, message and attachment
file list for received mail. this function supports both base64 and quoted-printable
encryption/decryption types for both attachments and message. all the attachments
will be directly stored in filesystem and mail object retains filenames of attachments.

NOTE: Memory for returned mailobject is allocated by this function. If user will not
free the memory, then, the memory for mailobject will be re-allocated when pop3_-
receivemail function is called next time

NOTE: User mail header name list should be set to retrieve user mail header values.
Otherwise, this function will ignore user mail header values.

Parameters:
mailnumber Message number of mail to retrieve

status points to address location where status of pop3 function will be stored

Returns:
NULL if pop3_receivemail function failed. Otherwise, returns pointer to mail
object

See also:
pop3_login
pop3_logout
pop3_getmaillist
pop3_deletemail

291



8.28.4.8 void pop3_registerauthcallback (int(∗)() funpt)

Registers pop3 authentication callback routine.

This function registers user defined authentication callback function with pop3 library.
when pop3_login function is called from application, user authentication routine will
be called with pop3_session object parameter that contains username,password and
socket handler.

NOTE: User authentication callback function has to have the following function pro-
totype to receive pop3_session structure pointer.

int [authentication call back function name] (pop3_session∗pop3_handle)

NOTE: User authentication callback routine should returnPOP3_STATUS_SUCCESS
value for successful authentication. for invalid user or password,POP3_INVALID_-
USER_PASSWORDerror value should be returned.

See also:
pop3_login
pop3_session

8.28.4.9 void pop3_setuserheaderlist (struct_userheader∗ pusrhdr)

Sets user defined mail header list.

This function stores address of user mail header list structure in pop3 library global
variable. the user mail header value will be retrieved for all user defined mail header
names.

Parameters:
pusrhdr pointer to the user mail header list. if user mail header name list is less

than POP3_MAXUSERHEADERSIZE, the last item of user mail header
namelist should be NULL.

See also:
pop3_receivemail

8.29 tini400_smtp.h File Reference

8.29.1 Detailed Description

SMTP Library functions for DS80C400 processor.

This library contains functions for sending mails to smtp mailhost server

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

292

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

Data Structures

• struct_hostinfo
• struct_mailheader
• struct_userheader

Defines

• #defineMAX_LINE_SIZE 1024
• #defineSMTP_VERSION3
• #defineSMTP_MAXATTACHMENTSIZE5
• #defineSMTP_MAXUSERHEADERSIZE20
• #defineSMTP_INSUFFICIENT_MEMORY-1
• #defineSMTP_MAILHOST_NOT_FOUND-3
• #defineSMTP_FILE_NOT_FOUND-4
• #defineSMTP_SOCKET_ERROR-7
• #defineSMTP_MAIL_QUEUED-8
• #defineSMTP_INVALID_MAILNODE_ADDRESS-9
• #defineSMTP_LIBRARY_IS_NOT_CONFIGURED-11
• #defineSMTP_STATUS_SUCCESS0

Typedefs

• typedef_hostinfohostinfo
• typedef_mailheadermailheader

Structure for standard mail header holds standard mail header values.

• typedef_userheaderuserheader

Structure for user defined mail header contains user header name list and user header
value list.

Functions

• void smtp_init(void)

Initializes smtp library.

293



• void smtp_sethostinfo(struct_hostinfo∗phostinfo)

Sets the host information object with smtp library.

• void smtp_setclientsocktimeout(long milli_sec)

Sets SMTP client socket timeout value.

• longsmtp_getclientsocktimeout(void)

Returns the current value for SMTP client socket timeout.

• void smtp_setdefaultheadervalue(struct_mailheader∗pmhdr)

Sets the default value for standard mail headers.

• void smtp_setuserheaderlist(struct_userheader∗pusrhdr)

Sets user defined mail header list.

• int smtp_sendmail (struct _mailheader mail_header, char∗msg, char
∗attachmentlist[SMTP_MAXATTACHMENTSIZE], char queuemail_flag, un-
signed long∗mailnodeaddress)

Sends mail to mail host.

• int smtp_removemailfromqueue(unsigned long pmailnode_address)

Removes queued mail from mail queue list.

• int smtp_getqueuedmailstatus(unsigned long pmailnode_address)

Returns the status of queued mail.

8.29.2 Define Documentation

8.29.2.1 #define MAX_LINE_SIZE 1024

Definition for maximum size of mail header

8.29.2.2 #define SMTP_FILE_NOT_FOUND -4

File not found error value

See also:
smtp_sendmail
smtp_getqueuedmailstatus

294



8.29.2.3 #define SMTP_INSUFFICIENT_MEMORY -1

Insufficient memory error value

See also:
smtp_sendmail

8.29.2.4 #define SMTP_INVALID_MAILNODE_ADDRESS -9

Invalid mailnode address error value.

See also:
smtp_getqueuedmailstatus
smtp_removemailfromqueue

8.29.2.5 #define SMTP_LIBRARY_IS_NOT_CONFIGURED -11

smtp library is not configured error value, this value will be returned if smtp host infor-
mation is not configured.

See also:
smtp_sendmail

8.29.2.6 #define SMTP_MAIL_QUEUED -8

Mail is queued error value

See also:
smtp_sendmail
smtp_getqueuedmailstatus

8.29.2.7 #define SMTP_MAILHOST_NOT_FOUND -3

Mail host is not found error value

See also:
smtp_sendmail
smtp_getqueuedmailstatus

8.29.2.8 #define SMTP_MAXATTACHMENTSIZE 5

Definition for maximum number of attachments

See also:
smtp_sendmail

295



8.29.2.9 #define SMTP_MAXUSERHEADERSIZE 20

Definition for maximum number of user headers

See also:
smtp_sendmail

8.29.2.10 #define SMTP_SOCKET_ERROR -7

Socket error value

See also:
smtp_sendmail

8.29.2.11 #define SMTP_STATUS_SUCCESS 0

smtp Status success value, this value is returned when operation is completed success-
fully.

See also:
smtp_sendmail

8.29.2.12 #define SMTP_VERSION 3

Version number associated with this header file. Should be the same as the version
number returned by thesmtp_versionfunction.

See also:
smtp_version

8.29.3 Typedef Documentation

8.29.3.1 typedef struct_hostinfohostinfo

Structure for host configuration information that has to be registered with smtp library

8.29.4 Function Documentation

8.29.4.1 long smtp_getclientsocktimeout (void)

Returns the current value for SMTP client socket timeout.

This function returns the current value for SMTP client socket timeout

This function is safe to be called from multiple processes at the same time.

296



Returns:
The current value for http client socket timeout

8.29.4.2 int smtp_getqueuedmailstatus (unsigned longpmailnode_address)

Returns the status of queued mail.

This function returns the status of mail which was queued bysmtp_sendmail.

Parameters:
pmailnode_address- address of mailnode. this value should be same value re-

turned by smtp_sendmail function when queueing mail.

Returns:
if mail is still in queue, returns the status of mail.SMTP_INVALID_-
MAILNODE_ADDRESSif invalid mail node address is passed or mail has been
already sent to mailhost

See also:
smtp_removemailfromqueue
smtp_sendmail

8.29.4.3 void smtp_init (void)

Initializes smtp library.

This function initializes the internal data structures of smtp library. This function
should be called first before calling any other functions of smtp library.

NOTE: Other libraries don’t need to be initialized before smtp library initialization.

8.29.4.4 int smtp_removemailfromqueue (unsigned longpmailnode_address)

Removes queued mail from mail queue list.

This function removes the mail which was queued bysmtp_sendmail.

Parameters:
pmailnode_address- address of mailnode to delete. this value should be same

value returned by smtp_sendmail function when queueing mail.

Returns:
SMTP_STATUS_SUCCESSif mailnode was deleted successfully.SMTP_-
INVALID_MAILNODE_ADDRESS if invalid mail node address is passed or mail
has been already sent to mailhost

297



See also:
smtp_getqueuedmailstatus
smtp_sendmail

8.29.4.5 int smtp_sendmail (struct_mailheader mail_header, char ∗ msg, char
∗ attachmentlist[SMTP_MAXATTACHMENTSIZE], char queuemail_flag, un-
signed long∗ mailnodeaddress)

Sends mail to mail host.

This function sends mail to mailhost. if smtp host IP address is zero, this function uses
dns library to get IP address of target mailhost. if mail host is down and application
sets queuemail_flag=1, Mail will be queued to resend later. this function uses base64
MIME encryption for sending attachments. it does not use any encryption for message

Parameters:
mail_header standard mail header object. any uninitialized field name in this

structure should be set with NULL value. if default mail header value was ini-
tialized and mail_header field value is NULL, the default mail header value
will be used.

msg pointer to mail message.

attachmentlist array of string holds attachment filelist. if attachment list is
less than SMTP_MAXATTACHMENTSIZE, last element of list should be
NULL to indicate end of the list. if there is no attachment to send, then, this
argument can be NULL.

queuemail_flagflag to indicate whether mail to be queued or not. if mail host is
down and application sets queuemail_flag=1, mail will be queued.

mailnodeaddressaddress of mail which was queued to resend. this reference
value has to be passed to get status of queued mail or to delete it from queue.

Returns:
SMTP_STATUS_SUCCESSif the operation is completed successfully Otherwise,
one of the following error values

• SMTP_LIBRARY_IS_NOT_CONFIGURED

• SMTP_INSUFFICIENT_MEMORY

• SMTP_MAILHOST_NOT_FOUND

• SMTP_MAIL_QUEUED

• SMTP_SOCKET_ERRORif there is any socket error, or one of smtp server
negative response error code which is listed out in rfc821

See also:
smtp_removemailfromqueue
smtp_getqueuedmailstatus

298



8.29.4.6 void smtp_setclientsocktimeout (longmilli_sec)

Sets SMTP client socket timeout value.

This function sets SMTP client socket timeout value. The default SMTP client Time
out value after initializing smtp library is 30 seconds.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
milli_sec timeout value in milliseconds

8.29.4.7 void smtp_setdefaultheadervalue (struct_mailheader∗ pmhdr)

Sets the default value for standard mail headers.

This function stores address of mail header structure in smtp library global variable.
smtp_sendmail function uses pmhdr value by default, user can override these values by
passing valid standard mail header value while calling smtp_sendmail function.

NOTE: default mail header value isnot mandatory for sending mail. It is optional
feature.

Parameters:
pmhdr pointer to the mail header structure

See also:
smtp_sendmail

8.29.4.8 void smtp_sethostinfo (struct_hostinfo∗ phostinfo)

Sets the host information object with smtp library.

This function stores address of host configuration information structure in smtp library
global variable. Then, configures dns library by setting primary and secondary dns
server ip addresses. host configuration information is used to connect with SMTP
servers.

Parameters:
phostinfo - pointer to the host information structure

See also:
smtp_sendmail

299



8.29.4.9 void smtp_setuserheaderlist (struct_userheader∗ pusrhdr)

Sets user defined mail header list.

This function stores address of user mail header list structure in smtp library global
variable. user defined mail headers will be added while sending mail messages.

NOTE: user mail header list isnot mandatory for sending mail. It is optional feature.

Parameters:
pusrhdr pointer to the user mail header list. if user mail header name list is

lessthan SMTP_MAXUSERHEADERSIZE,the last item of user mail header
namelist should be NULL.

See also:
smtp_sendmail

8.30 tini400_spi.h File Reference

8.30.1 Detailed Description

SPI library for the TINIm400 module.

"Bit Bang" software SPI library for use with the TINIm400. This is a full featured
SPI library for sending and receiving data. It supports 4 SPI_CLK polarity and phase
modes, slave select with optional inversion and optional synching, 8 and 16 bit transfer
modes, bit reordering and SPI_CLK delays.

Port pins used by this SPI library can be specified in spimacros.inc.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. However, SPI pins are
a system resource and should not be shared among different processes.

Defines

• #defineTINI400_SPI_VERSION2
• #defineSPI_CKPOL_MASK0x01

CKPOL MASK.

• #defineSPI_CKPHA_MASK0x02

CKPHA MASK.

300

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• #defineSPI_WORD_MASK0x04

Word mode MASK.

• #defineSPI_SKEW_MASK0x08

No Skew MASK.

• #defineSPI_USESS_MASK0x10

Use SS MASK.

• #defineSPI_SYNCHSS_MASK0x20

Synch SS MASK.

• #defineSPI_INVERTSS_MASK0x40

Invert SS MASK.

Functions

• void spi_init (void)

Initalize the SPI library.

• int spi_reverseBits(int length, int wordSize, unsigned char∗dataptr)

Reverse bits in buffer.

• void spi_xmit(unsigned char∗dataptr, int length, unsigned char delay, unsigned
char options)

Transmit SPI data.

• unsigned intspi_version(void)

Returns the version number of this SPI library.

8.30.2 Define Documentation

8.30.2.1 #define SPI_CKPHA_MASK 0x02

CKPHA MASK.

See also:
SPI_CKPOL_MASK
spi_xmit

301



8.30.2.2 #define SPI_CKPOL_MASK 0x01

CKPOL MASK.

The four SPI clock (SPI_CLK) modes supported by this library are defined by CKPHA
and CKPOL. The CKPOL bit defines the idle state of the SPI clock, CKPOL = 0 forces
SPI_CLK to idle low while CKPOL = 1 forces SPI_CLK to idle high. CKPHA changes
the edge used to signal transfer of data. When CKPHA = 0 the first edge of SPI_CLK
specifies when the slave and master should sample their input. With CKPHA = 1 the
second edge of SPI_CLK specifies when to sample. When CKPHA = 1, the master
and slave should present their data on their output during the first SPI_CLK edge, this
allows the data sufficent hold time. When CKPHA = 0, data should become valid when
the Slave Select (SS) line goes active. Note that most devices require the SS line to be
used when CKPHA = 0 to allow proper timing while SS may be optional when CKPHA
= 1.

See also:
SPI_CKPHA_MASK
spi_xmit

8.30.2.3 #define SPI_INVERTSS_MASK 0x40

Invert SS MASK.

Most SPI devices expect the active state for SS to be low, but others require high as the
active state.

See also:
spi_xmit

8.30.2.4 #define SPI_SKEW_MASK 0x08

No Skew MASK.

To facilitate atomic transfers, interrupts may be disabled while transmiting.

See also:
spi_xmit

8.30.2.5 #define SPI_SYNCHSS_MASK 0x20

Synch SS MASK.

Some SPI devices expect the SS signal to go inactive after each word transfer in order
to synchronize.

302



See also:
spi_xmit

8.30.2.6 #define SPI_USESS_MASK 0x10

Use SS MASK.

The SS signal is optional as it may not be required for all SPI setups.

See also:
spi_xmit

8.30.2.7 #define SPI_WORD_MASK 0x04

Word mode MASK.

Data is sent to the SPI library as a character array in data memory. When in 8 bit word
mode these bytes will be transferred one at a time. In 16 bit word mode 2 bytes will
be transferred but this operation will only consume 1 transfer of the number requested.
Note that in this library, "word" may be 8 or 16 bits in length depending on the selected
mode. Using this mask activates 16 bit word mode

See also:
spi_xmit

8.30.2.8 #define TINI400_SPI_VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thespi_versionfunction.

See also:
spi_version

8.30.3 Function Documentation

8.30.3.1 int spi_reverseBits (intlength, int wordSize, unsigned char∗ dataptr)

Reverse bits in buffer.

This function can be called to reverse the bits in the passed buffer. It reorders the based
on the word mode 8 bit words or 16 bit words. This can be used to convert data for
Least Significant Bit (LSB) transfers.

Parameters:
length Number of words to bit reverse. Note that for 16 bit words this must be a

even value, SPI library does not check this.

303



wordSizeSize of the word to reverse. Only 8 and 16 are valid.

dataptr Pointer to the data to be reversed, after calling this function the data in
this buffers will be bit reversed.

Returns:
int 1 for success, -1 if error occured

8.30.3.2 unsigned int spi_version (void)

Returns the version number of this SPI library.

Returns:
int Version number of this SPI library.

8.30.3.3 void spi_xmit (unsigned char∗ dataptr, int length, unsigned chardelay,
unsigned charoptions)

Transmit SPI data.

Transmits the data passed in over the SPI port, reads and returns any data read back.

Parameters:
dataptr Pointer to the data to be transmited, received data is written over transmit

data during transfer,

length Amount of data to transfer

delay Amount of time to delay clock edges, in usec. In order to interface to slower
SPI slaves a SPI_CLK stretch can be used to increases the SPI_CLK period
by 1µsec per stretch.

options SPI configuration options defined as:

• bit 0 - CPOL - Set to 1 - SPICLK idles high
• bit 1 - CPHA - Set to 1 - Transfers on second edge
• bit 2 - wordMode - Set to 1 - 16 bit transfers
• bit 3 - noskew - Set to 1 - turn off interrupts during transfer
• bit 4 - useSS - Set to 1 - Use the SS line during transfers
• bit 5 - synchSS - Set to 1 - Takes SS to inactive after every word
• bit 6 - invertSS - Set to 1 - SS line is active high

8.31 tini400_time.h File Reference

8.31.1 Detailed Description

Date/Time utilities, tailored for the DS80C400 C Libraries.

304



This library contains functions that provide simple time utilities in conjunction with
the RTC C Library. The time base is variable for this library, meaning that the value
’0 seconds’ can be assigned to 12:00:00am of January 1st for a specific year. Note
that this library does not currently support daylight savings time computations or the
concept of time zones.

Note that this library will not return correct values for dates before the year 1901 or
after the year 2099.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Data Structures

• structtm

Defines

• #defineTINI400_TIME_VERSION2

Typedefs

• typedef unsigned longtime_t

Functions

• unsigned inttime_version(void)

Returns the version number of thisTIME library.

• void time_settimebase(unsigned int year)

Sets the time base year for the RTC.

• time_tmktime(structtm ∗timeptr)

mktime

• time_ttime (time_t∗timer)

time

305

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• tm ∗ gmtime(time_t∗timer)

gmtime

8.31.2 Define Documentation

8.31.2.1 #define TINI400_TIME_VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thetime_versionfunction.

See also:
time_version

8.31.3 Typedef Documentation

8.31.3.1 typedef unsigned longtime_t

Type used for representing time. Our RTC is assumed to be 4 bytes of seconds.

See also:
time

8.31.4 Function Documentation

8.31.4.1 structtm∗ gmtime (time_t ∗ timer)

gmtime

Converts the native time formatted input into a calendar representation.

Parameters:
timer Native represenation of the time to be converted to calendar format.

Returns:
Calendar format of the input time.

8.31.4.2 time_t mktime (struct tm ∗ timeptr)

mktime

Converts atm structure (calendar time) into the native time representation oftime_t.
The time is computed using the hour, minute, second, day of month, month, and year
fields of the input structure. The day of year, day of week, and daylight savings time
flag are ignored. No bounds checking is performed on the input data.

306



Parameters:
timeptr Calendar time to be converted to native time representation

Returns:
Native time representation of the calendar.

8.31.4.3 time_t time (time_t ∗ timer)

time

Gets the current time in its native representation format. Use the functiongmtimeto
get a calendar representation of this time.

Parameters:
timer If non-null, this is also filled in with the return value

Returns:
Native time representation of the current time.

8.31.4.4 void time_settimebase (unsigned intyear)

Sets the time base year for the RTC.

Sets the time base year for the real time clock. The recommended time base is the year
2000. The time base must be set before meaningful calculations can occur.

Parameters:
year base year which will be used for time computations

8.31.4.5 unsigned int time_version (void)

Returns the version number of thisTIME library.

Returns:
Version number of thisTIME library.

8.32 tini400_xnetboot.h File Reference

8.32.1 Detailed Description

External NetBoot library for the DS80C400.

The External Netboot library contains netboot code that can be invoked independently
from the ROM. This library provides the latest NetBoot code that adds the following

307



features: Improves TBIN2 loading to work with files larger than 64KB, disables all
multicast traffic reception to improve reliability, supports the DS2502 and the DS1982
to hold a MAC ID (in addition to the DS2502-E48), supports setting the clock mul-
tiplier for improved performance, supports acquiring a DHCP IP from the Netgear
WGT624 router.

This library works with IPv4 only.

The External Netboot library cannot reprogram the same flash chip it is running from,
i.e. you need two separate flash memories.

You can use the library from assembly language - set r7 to the desired clock multiplier
and jump to theXNETBOOTsymbol.

EXTERN ECODE(XNETBOOT) mov r7, #2 ljmp XNETBOOT

Warning:
Note that debug symbols have to be turned off in order to avoid a linker error (the
linker cannot handle line numbers greater than 65534 and will return an "L220"
error when debug symbols are enabled).

Defines

• #defineTINI400_XNETBOOT_VERSION2

Functions

• unsigned intxnetboot_version(void)

Returns the version number of this XNETBOOT library.

• void xnetboot_boot(unsigned char multiplier)

Starts NetBoot.

8.32.2 Define Documentation

8.32.2.1 #define TINI400_XNETBOOT_VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thexnetboot_versionfunction.

See also:
xnetboot_version

308



8.32.3 Function Documentation

8.32.3.1 void xnetboot_boot (unsigned charmultiplier)

Starts NetBoot.

This function starts NetBoot and does not return to the caller.

Parameters:
multiplier The argumentmultiplier sets the clock multiplier (1, 2, or 4).

8.32.3.2 unsigned int xnetboot_version (void)

Returns the version number of this XNETBOOT library.

Returns:
Version number of this XNETBOOT library.

8.33 tini_i2c.h File Reference

8.33.1 Detailed Description

I2C function library.

This library contains functions for communicating to I2C devices via user specified
port pins.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. However, I2C pins are
a system resource and should not be shared among different processes.

Defines

• #defineTINI_I2C_VERSION1
• #defineI2C_SDAP3_4
• #defineI2C_SCLP3_5
• #defineI2C_ENABLE_SCL_WAIT_FOR_SLOW_SLAVES0
• #defineI2C_MAXIMUM_SCL_WAITCOUNT 10000
• #defineI2C_DELAY_LOOP_COUNT0

309

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Functions

• int i2c_version()

Return the library version.

• void i2c_delay(void)

Delay function.

• void i2c_start(void)

Performs an I2C start condition.

• void i2c_bit (unsigned char singlebit)

Performs an I2C bit write.

• unsigned chari2c_readbit(void)

Performs an I2C bit read.

• void i2c_stop(void)

Performs an I2C stop condition.

• unsigned chari2c_readbyte(unsigned char doACK)

Performs an I2C byte read.

• unsigned chari2c_writebyte(unsigned char singlebyte)

Performs an I2C byte write.

• unsigned chari2c_select(unsigned char address)

Perform I2C start, address selection.

• unsigned chari2c_writeblock(unsigned char address, unsigned char∗barr, int
length)

Perform I2C start, address selection, write specified bytes and I2C stop.

• unsigned chari2c_readblock(unsigned char address, unsigned char∗barr, int
length)

Perform I2C start, address selection, read specified number of bytes and I2C stop.

• unsigned chari2c_writereadblock(unsigned char address, unsigned char∗barr1,
int length1, unsigned char∗barr2, int length2)

Perform I2C start, address selection, write specified bytes, I2C start, address slection,
read bytes and I2C stop.

310



8.33.2 Define Documentation

8.33.2.1 #define I2C_DELAY_LOOP_COUNT 0

Number of loops to wait between any host SCL and SDA transitions

8.33.2.2 #define I2C_ENABLE_SCL_WAIT_FOR_SLOW_SLAVES 0

Enable communication with slow slave devices. Value of 1 enables SCL waiting/flow
control.

8.33.2.3 #define I2C_MAXIMUM_SCL_WAITCOUNT 10000

Number of loops to wait for SCL to return high if SCL flow control is used.

8.33.2.4 #define I2C_SCL P3_5

Define SCL (clock) line to talk to the DS1672 on the TINIm400

8.33.2.5 #define I2C_SDA P3_4

Define SDA (data) line to talk to the DS1672 on the TINIm400

8.33.2.6 #define TINI_I2C_VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by thei2c_versionfunction.

See also:
i2c_version

8.33.3 Function Documentation

8.33.3.1 void i2c_bit (unsigned charsinglebit)

Performs an I2C bit write.

Parameters:
singlebit Bit to write on I2C bus

8.33.3.2 unsigned char i2c_readbit (void)

Performs an I2C bit read.

Returns:
Value of SDA line during read timeslot

311



8.33.3.3 unsigned char i2c_readblock (unsigned charaddress, unsigned char∗
barr, int length)

Perform I2C start, address selection, read specified number of bytes and I2C stop.

Parameters:
addressAddress of device to select. Upper 7 bits are address, LSbit automatically

set to 1 by function.

barr Array destination for read bytes

length Number of bytes to read

Returns:
0 if device acknowledged address selection and data transfer

8.33.3.4 unsigned char i2c_readbyte (unsigned chardoACK)

Performs an I2C byte read.

Parameters:
doACK Set to 1 to assert acknowledge after reading 8 bits, or 0 to not assert ACK.

Returns:
Value of SDA line during read timeslot

8.33.3.5 unsigned char i2c_select (unsigned charaddress)

Perform I2C start, address selection.

Parameters:
addressAddress of device to select. Upper 7 bits are address, LSbit denotes read

if 1 and write if 0.

Returns:
0 if device acknowledged address selection

8.33.3.6 unsigned char i2c_writeblock (unsigned charaddress, unsigned char∗
barr, int length)

Perform I2C start, address selection, write specified bytes and I2C stop.

Parameters:
addressAddress of device to select. Upper 7 bits are address, LSbit automatically

set to 0 by function.

312



barr Array of bytes to write

length Number of bytes to write

Returns:
0 if device acknowledged address selection and data transfer

8.33.3.7 unsigned char i2c_writebyte (unsigned charsinglebyte)

Performs an I2C byte write.

Parameters:
singlebyteValue to write to bus.

Returns:
0 if byte was acknowledged

8.33.3.8 unsigned char i2c_writereadblock (unsigned charaddress, unsigned
char ∗ barr1, int length1, unsigned char∗ barr2, int length2)

Perform I2C start, address selection, write specified bytes, I2C start, address slection,
read bytes and I2C stop.

Parameters:
addressAddress of device to select. Upper 7 bits are address, LSbit automatically

set to 0 by function.

barr1 Array of bytes to write

length1 Number of bytes to write

barr2 Array destination for read bytes

length2 Number of bytes to read

Returns:
0 if device acknowledged address selection and data transfer

8.34 tini_rtc.h File Reference

8.34.1 Detailed Description

RTC function library.

This library contains RTC functions for the DS1672U, the real time clock included in
the TINIm400 reference module.

For detailed information on the DS1672U, please see theLow-Voltage Serial
Timekeeping Chip .

313

http://pdfserv.maxim-ic.com/en/ds/DS1672.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1672.pdf


Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

Defines

• #defineDEVICE_ADDRESS0xD0
• #defineCOUNTER_ADDRESS0x00
• #defineCONTROL_ADDRESS0x04
• #defineTRICKLECHARGER_ADDRESS0x05
• #defineTRICKLECHARGER_DISABLE0xF0
• #defineSTART_CLOCK0x7F
• #defineSTOP_CLOCK0x80
• #defineNODIODE_250OHM0xA5
• #defineONEDIODE_250OHM0xA9
• #defineNODIODE_2KOHM0xA6
• #defineONEDIODE_2KOHM0xAA
• #defineNODIODE_4KOHM0xA7
• #defineONEDIODE_4KOHM0xAB
• #defineTINI_RTC_VERSION1

Functions

• int rtc_version()

Return the library version.

• int rtc_startclock()

Start oscillator to count clock by setting MSB of control register to 0.

• int rtc_stopclock()

Stop oscillator to pause clock by setting MSB of control register to 1.

• int rtc_setcontrolregister(unsigned char newvalue)

Write value to 8 bit control register.

• int rtc_getcontrolregister(unsigned char∗)

Fetch value of 8 bit control register.

• int rtc_disabletricklecharger()

Disable trickle charger register by setting 4 LSB’s to 0.

314



• int rtc_enabletricklecharger0diode250ohm()

Set trickle charger register to work no diode and with 250ohm.

• int rtc_enabletricklecharger1diode250ohm()

Set trickle charger register to work 1 diode and with 250ohm.

• int rtc_enabletricklecharger0diode2kohm()

Set trickle charger register to work no diode and with 2Kohm.

• int rtc_enabletricklecharger1diode2kohm()

Set trickle charger register to work 1 diode and with 2Kohm.

• int rtc_enabletricklecharger0diode4kohm()

Set trickle charger register to work no diode and with 4Kohm.

• int rtc_enabletricklecharger1diode4kohm()

Set trickle charger register to work 1 diode and with 4Kohm.

• int rtc_settricklechargerregister(unsigned char newvalue)

Set trickle charger register new value.

• int rtc_gettricklechargerregister(unsigned char∗)

Fetch 8 bit trickle charger register content.

• int rtc_getclock(long∗)

Convert char array to long integer after fetch from 32 bit counter of RTC.

• int rtc_setclock(long newvalue)

Convert long integer to char array and write to 32 bit counter of RTC.

8.34.2 Define Documentation

8.34.2.1 #define CONTROL_ADDRESS 0x04

Address of Control register.

See also:
rtc_setcontrolregister
rtc_getcontrolregister

315



8.34.2.2 #define COUNTER_ADDRESS 0x00

Starting address of 32 bits RTC counter.

See also:
rtc_getclock
rtc_setclock

8.34.2.3 #define DEVICE_ADDRESS 0xD0

Device address.

8.34.2.4 #define NODIODE_250OHM 0xA5

Value of Trickle Charger register that connects Vcc & Vbackup via no diode and 250
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklecharger0diode250ohm

8.34.2.5 #define NODIODE_2KOHM 0xA6

Value of Trickle Charger register that connects Vcc & Vbackup via no diode and 2K
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklecharger0diode2kohm

8.34.2.6 #define NODIODE_4KOHM 0xA7

Value of Trickle Charger register that connects Vcc & Vbackup via no diode and 4K
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklecharger0diode4kohm

8.34.2.7 #define ONEDIODE_250OHM 0xA9

Value of Trickle Charger register that connects Vcc & Vbackup via one diode and 250
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklecharger1diode250ohm

316



8.34.2.8 #define ONEDIODE_2KOHM 0xAA

Value of Trickle Charger register that connects Vcc & Vbackup via one diode and 2K
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklecharger1diode2kohm

8.34.2.9 #define ONEDIODE_4KOHM 0xAB

Value of Trickle Charger register that connects Vcc & Vbackup via one diode and 4K
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklecharger1diode4kohm

8.34.2.10 #define START_CLOCK 0x7F

Value of Control register that will start oscillator.

See also:
rtc_startclock

8.34.2.11 #define STOP_CLOCK 0x80

Value of Control register that will stop oscillator.

See also:
rtc_startclock

8.34.2.12 #define TINI_RTC_VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by thertc_versionfunction.

See also:
rtc_version

8.34.2.13 #define TRICKLECHARGER_ADDRESS 0x05

Address of Trickle Charger register.

See also:
rtc_gettricklechargerregister
rtc_settricklechargerregister

317



8.34.2.14 #define TRICKLECHARGER_DISABLE 0xF0

Value of Trickle Charger register that will disable it.

See also:
rtc_disabletricklecharger

8.34.3 Function Documentation

8.34.3.1 int rtc_disabletricklecharger ()

Disable trickle charger register by setting 4 LSB’s to 0.

Returns:
0 if pass, -1 if fail

See also:
rtc_enabletricklecharger0diode250ohm

8.34.3.2 int rtc_enabletricklecharger0diode250ohm ()

Set trickle charger register to work no diode and with 250ohm.

Returns:
0 if pass, -1 if fail

See also:
rtc_disabletricklecharger
rtc_enabletricklecharger1diode250ohm

8.34.3.3 int rtc_enabletricklecharger0diode2kohm ()

Set trickle charger register to work no diode and with 2Kohm.

Returns:
0 if pass, -1 if fail

See also:
rtc_disabletricklecharger
rtc_enabletricklecharger1diode2kohm

318



8.34.3.4 int rtc_enabletricklecharger0diode4kohm ()

Set trickle charger register to work no diode and with 4Kohm.

Returns:
0 if pass, -1 if fail

See also:
rtc_disabletricklecharger
rtc_enabletricklecharger1diode4kohm

8.34.3.5 int rtc_enabletricklecharger1diode250ohm ()

Set trickle charger register to work 1 diode and with 250ohm.

Returns:
0 if pass, -1 if fail

See also:
rtc_disabletricklecharger
rtc_enabletricklecharger0diode2kohm

8.34.3.6 int rtc_enabletricklecharger1diode2kohm ()

Set trickle charger register to work 1 diode and with 2Kohm.

Returns:
0 if pass, -1 if fail

See also:
rtc_disabletricklecharger
rtc_enabletricklecharger0diode4kohm

8.34.3.7 int rtc_enabletricklecharger1diode4kohm ()

Set trickle charger register to work 1 diode and with 4Kohm.

Returns:
0 if pass, -1 if fail

See also:
rtc_disabletricklecharger
rtc_enabletricklecharger0diode250ohm

319



8.34.3.8 int rtc_getclock (long∗)

Convert char array to long integer after fetch from 32 bit counter of RTC.

Returns:
0 if pass, -1 if fail

See also:
rtc_setclock

8.34.3.9 int rtc_getcontrolregister (unsigned char∗)

Fetch value of 8 bit control register.

Returns:
0 if pass, -1 if fail

See also:
rtc_setcontrolregister

8.34.3.10 int rtc_gettricklechargerregister (unsigned char∗)

Fetch 8 bit trickle charger register content.

Returns:
0 if pass, -1 if fail

See also:
rtc_settricklechargerregister

8.34.3.11 int rtc_setclock (longnewvalue)

Convert long integer to char array and write to 32 bit counter of RTC.

Parameters:
newvalue Value in long integer.

Returns:
0 if pass, -1 if fail

See also:
rtc_getclock

320



8.34.3.12 int rtc_setcontrolregister (unsigned charnewvalue)

Write value to 8 bit control register.

Parameters:
newvalue Value to set.

Returns:
0 if pass, -1 if fail

See also:
rtc_getcontrolregister

8.34.3.13 int rtc_settricklechargerregister (unsigned charnewvalue)

Set trickle charger register new value.

Parameters:
newvalue Value to set

Returns:
0 if pass, -1 if fail

See also:
rtc_gettricklechargerregister

8.34.3.14 int rtc_startclock ()

Start oscillator to count clock by setting MSB of control register to 0.

Returns:
RTC version.

See also:
rtc_stopclock

8.34.3.15 int rtc_stopclock ()

Stop oscillator to pause clock by setting MSB of control register to 1.

Returns:
0 if pass, -1 if fail

See also:
rtc_startclock

321



8.34.3.16 int rtc_version ()

Return the library version.

See also:
rtc_startclock

322



Index
_getkey

stdio.h,120

accept
rom400_sock.h,46

acceptqueue
rom400_sock.h,62

AF_INET
rom400_sock.h,46

AF_INET6
rom400_sock.h,46

arp_cacherequest
rom400_sock.h,46

arp_generaterequest
rom400_sock.h,47

avail
rom400_sock.h,47

bind
rom400_sock.h,47

bogus_ptr
sockaddr,6
sockaddr_in,6

cleanup
rom400_sock.h,48

clear_param_buffers
rom400_sock.h,62

clearerr
stdio.h,120

closesocket
rom400_sock.h,48

connect
rom400_sock.h,49

crypt_sha1
tini400_crypt.h,140

crypt_version
tini400_crypt.h,140

dhcp_init
rom400_dhcp.h,11

dhcp_registernotify
rom400_dhcp.h,11

dhcp_status
rom400_dhcp.h,12

DHCP_STATUS_BOUND
rom400_dhcp.h,9

DHCP_STATUS_INIT
rom400_dhcp.h,10

DHCP_STATUS_INITREBOOT
rom400_dhcp.h,10

DHCP_STATUS_REBINDING
rom400_dhcp.h,10

DHCP_STATUS_REBOOTING
rom400_dhcp.h,10

DHCP_STATUS_RENEWING
rom400_dhcp.h,10

DHCP_STATUS_REQUESTING
rom400_dhcp.h,10

DHCP_STATUS_SELECTING
rom400_dhcp.h,11

dhcp_stop
rom400_dhcp.h,12

dhcp_version
rom400_dhcp.h,12

dns_enableipv6queries
tini400_dns.h,142

dns_getmx
tini400_dns.h,142

dns_getprimary
tini400_dns.h,143

dns_getsecondary
tini400_dns.h,143

dns_gettimeout
tini400_dns.h,144

dns_init
tini400_dns.h,144

dns_setprimary
tini400_dns.h,144

dns_setsecondary
tini400_dns.h,144

dns_settimeout
tini400_dns.h,145

dns_version
tini400_dns.h,145

323



EOF
stdio.h,117

error
file_structure,3

ETH_STATUS_LINK
rom400_sock.h,49

fclose
stdio.h,121

fd
file_structure,3

feof
stdio.h,121

ferror
stdio.h,121

fexists
stdio.h,122

fflush
stdio.h,122

fgetc
stdio.h,122

fgetpos
stdio.h,123

fgets
stdio.h,123

FILE
stdio.h,120

FILE_FLAGS_EOF
stdio.h,117

FILE_FLAGS_TEMP
stdio.h,118

file_structure,2
error,3
fd, 3
flags,3
type,3

FILE_TYPE_TINIFS
stdio.h,118

FILENAME_MAX
stdio.h,118

filesystem_version
stdio.h,124

finit
stdio.h,124

FLAG_DHCP_WAIT
rom400_task.h,80

FLAG_IO_WAIT
rom400_task.h,80

FLAG_SLEEPING
rom400_task.h,81

Flags
TCB, 7

flags
file_structure,3

flash_eraseblock
rom400_flash.h,15

flash_programbyte
rom400_flash.h,15

flash_version
rom400_flash.h,16

flockfile
stdio.h,125

fopen
stdio.h,125

fopen_fd
stdio.h,126

FOPEN_MAX
stdio.h,118

fpos_t
stdio.h,120

fputc
stdio.h,126

fputs
stdio.h,127

fread
stdio.h,127

freadbytes
stdio.h,128

freopen
stdio.h,128

FS_VERSION
stdio.h,118

fseek
stdio.h,129

fseeko
stdio.h,129

fsetpos
stdio.h,130

ftell
stdio.h,130

ftello
stdio.h,131

324



ftrylockfile
stdio.h,131

funlockfile
stdio.h,132

fwrite
stdio.h,132

fwritebytes
stdio.h,133

getc
stdio.h,133

getchar
stdio.h,134

getethernetstatus
rom400_sock.h,49

getfreefsram
stdio.h,134

gethostbyaddr
tini400_dns.h,145

gethostbyname
tini400_dns.h,146

getipv6params
rom400_sock.h,50

getmacid
rom400_sock.h,50

getnetworkparams
rom400_sock.h,50

getpeername
rom400_sock.h,51

gets
stdio.h,134

getsockname
rom400_sock.h,51

getsockopt
rom400_sock.h,52

gettftpserver
rom400_sock.h,52

h_addr_list
hostent,4

h_addrtype
hostent,3

h_aliases
hostent,3

h_length
hostent,4

h_name
hostent,3
mailhostent,5

hostent,3
h_addr_list,4
h_addrtype,3
h_aliases,3
h_length,4
h_name,3

htons
rom400_sock.h,53

i2c_bit
tini_i2c.h,155

i2c_delay
tini_i2c.h,155

I2C_DELAY_LOOP_COUNT
tini_i2c.h,154

I2C_ENABLE_SCL_WAIT_FOR_-
SLOW_SLAVES

tini_i2c.h,154
I2C_MAXIMUM_SCL_WAITCOUNT

tini_i2c.h,154
i2c_readbit

tini_i2c.h,155
i2c_readblock

tini_i2c.h,155
i2c_readbyte

tini_i2c.h,155
I2C_SCL

tini_i2c.h,154
I2C_SDA

tini_i2c.h,154
i2c_select

tini_i2c.h,155
i2c_start

tini_i2c.h,156
i2c_stop

tini_i2c.h,156
i2c_version

tini_i2c.h,156
i2c_writeblock

tini_i2c.h,156
i2c_writebyte

tini_i2c.h,156
i2c_writereadblock

325



tini_i2c.h,156
ID

TCB, 7
in6_addr,4

s6_addr,4
in_addr,4

s_addr,5
inet_addr

rom400_sock.h,63
inet_ntop

rom400_sock.h,63
inet_pton

rom400_sock.h,63
init_clearSystemRAM

rom400_init.h,23
init_clearXSEG

rom400_init.h,24
init_copyivt

rom400_init.h,24
INIT_CRYSTALFAIL_RESET

rom400_init.h,19
INIT_DIVISOR_10MHZ

rom400_init.h,19
INIT_DIVISOR_112MHZ

rom400_init.h,19
INIT_DIVISOR_128MHZ

rom400_init.h,19
INIT_DIVISOR_12MHZ

rom400_init.h,19
INIT_DIVISOR_14MHZ

rom400_init.h,20
INIT_DIVISOR_16MHZ

rom400_init.h,20
INIT_DIVISOR_20MHZ

rom400_init.h,20
INIT_DIVISOR_24MHZ

rom400_init.h,20
INIT_DIVISOR_28MHZ

rom400_init.h,20
INIT_DIVISOR_32MHZ

rom400_init.h,20
INIT_DIVISOR_3MHZ

rom400_init.h,21
INIT_DIVISOR_40MHZ

rom400_init.h,21
INIT_DIVISOR_48MHZ

rom400_init.h,21
INIT_DIVISOR_4MHZ

rom400_init.h,21
INIT_DIVISOR_56MHZ

rom400_init.h,21
INIT_DIVISOR_5MHZ

rom400_init.h,21
INIT_DIVISOR_64MHZ

rom400_init.h,22
INIT_DIVISOR_6MHZ

rom400_init.h,22
INIT_DIVISOR_7MHZ

rom400_init.h,22
INIT_DIVISOR_80MHZ

rom400_init.h,22
INIT_DIVISOR_8MHZ

rom400_init.h,22
INIT_DIVISOR_96MHZ

rom400_init.h,22
init_enableinterrupts

rom400_init.h,24
init_eth

rom400_init.h,24
init_getbootstate

rom400_init.h,24
init_km

rom400_init.h,25
init_mm

rom400_init.h,25
init_netboot

rom400_init.h,25
init_network

rom400_init.h,26
init_ow

rom400_init.h,26
INIT_POWERFAIL_RESET

rom400_init.h,23
init_redirect

rom400_init.h,27
init_rom

rom400_init.h,27
init_sockets

rom400_init.h,27
init_tick

rom400_init.h,28
init_usekeilmonitor

326



rom400_init.h,28
init_version

rom400_init.h,28
INIT_WATCHDOG_RESET

rom400_init.h,23
IPPROTO_UDP

rom400_sock.h,53
ISR_CAN0

tini400_isr.h,148
ISR_ETHERNET

tini400_isr.h,148
ISR_ETHERNETPOWER

tini400_isr.h,148
ISR_EXTERNALINT0

tini400_isr.h,148
ISR_EXTERNALINT1

tini400_isr.h,148
ISR_EXTERNALINT2345

tini400_isr.h,148
isr_getinterruptvector

tini400_isr.h,151
ISR_POWERFAIL

tini400_isr.h,149
ISR_SERIAL0

tini400_isr.h,149
ISR_SERIAL1

tini400_isr.h,149
ISR_SERIAL2

tini400_isr.h,149
isr_setinterruptvector

tini400_isr.h,151
ISR_TIMER0

tini400_isr.h,149
ISR_TIMER1

tini400_isr.h,150
ISR_TIMER2

tini400_isr.h,150
ISR_TIMER3

tini400_isr.h,150
isr_version

tini400_isr.h,152
ISR_WATCHDOG

tini400_isr.h,150
ISR_WRITEPROTECT

tini400_isr.h,150

join
rom400_sock.h,53

kmem_init
rom400_kmem.h,30

kmem_install
rom400_kmem.h,31

kmem_version
rom400_kmem.h,32

L_tmpnam
stdio.h,118

leave
rom400_sock.h,54

listen
rom400_sock.h,54

mailhostent,5
h_name,5
preference,5

MAX_PRIORITY
rom400_task.h,81

mem_free
rom400_mem.h,33

mem_getfreeram
rom400_mem.h,33

mem_malloc
rom400_mem.h,34

mem_mallocdirty
rom400_mem.h,34

mem_sizeof
rom400_mem.h,35

mem_version
rom400_mem.h,35

millis
TIME, 8

MIN_PRIORITY
rom400_task.h,81

mkdir
stdio.h,134

msb
TIME, 8

Next
TCB, 7

NORM_PRIORITY

327



rom400_task.h,81
nstoh

rom400_sock.h,55
NULL

stdio.h,119

off_t
stdio.h,120

ow_byte
rom400_ow.h,38

ow_first
rom400_ow.h,38

ow_getcurrentid
rom400_ow.h,38

ow_next
rom400_ow.h,38

ow_reset
rom400_ow.h,39

OW_RESET_ALARM
rom400_ow.h,37

OW_RESET_NO_PRESENCE
rom400_ow.h,37

OW_RESET_PRESENCE
rom400_ow.h,37

OW_RESET_SHORT
rom400_ow.h,37

ow_version
rom400_ow.h,39

P_tmpdir
stdio.h,119

PF_INET
rom400_sock.h,55

preference
mailhostent,5

printf
stdio.h,135

Priority
TCB, 7

putc
stdio.h,135

putchar
stdio.h,135

puts
stdio.h,135

recv

rom400_sock.h,55
recvfrom

rom400_sock.h,56
REDIRECT_0

rom400_util.h,103
REDIRECT_DHCPNOTIFY

rom400_util.h,103
REDIRECT_FREE

rom400_util.h,103
REDIRECT_GETFREERAM

rom400_util.h,103
REDIRECT_GETTASKID

rom400_util.h,104
REDIRECT_GETTHREADID

rom400_util.h,104
REDIRECT_GETTIMEMILLIS

rom400_util.h,104
REDIRECT_INFOSENDCHAR

rom400_util.h,104
REDIRECT_IP_-

COMPUTECHECKSUM_-
SOFTWARE

rom400_util.h,104
REDIRECT_KERNELFREE

rom400_util.h,105
REDIRECT_KERNELMALLOC

rom400_util.h,105
REDIRECT_MALLOC

rom400_util.h,105
REDIRECT_MALLOCDIRTY

rom400_util.h,105
REDIRECT_MM_UNDEREF

rom400_util.h,105
REDIRECT_OWIP_READCONFIG

rom400_util.h,106
REDIRECT_ROM_TASK_CREATE

rom400_util.h,106
REDIRECT_ROM_TASK_DESTROY

rom400_util.h,106
REDIRECT_ROM_TASK_DUPLICATE

rom400_util.h,106
REDIRECT_ROM_TASK_SWITCH_IN

rom400_util.h,106
REDIRECT_ROM_TASK_SWITCH_-

OUT
rom400_util.h,107

328



REDIRECT_SETMACID
rom400_util.h,107

REDIRECT_SLEEP
rom400_util.h,107

REDIRECT_THREADIOSLEEP
rom400_util.h,107

REDIRECT_THREADIOSLEEPNC
rom400_util.h,107

REDIRECT_THREADRESTORE
rom400_util.h,108

REDIRECT_THREADRESUME
rom400_util.h,108

REDIRECT_THREADSAVE
rom400_util.h,108

REDIRECT_TINIEXPORT_MM_-
DEREF

rom400_util.h,108
RELOAD_14_746

rom400_task.h,81
RELOAD_18_432

rom400_task.h,81
RELOAD_29_491

rom400_task.h,82
RELOAD_36_864

rom400_task.h,82
RELOAD_58_982

rom400_task.h,82
RELOAD_73_728

rom400_task.h,82
remove

stdio.h,136
rename

stdio.h,136
rewind

stdio.h,136
ROM400_-

ARRAYINDEXOUTOFBOUNDSEXCEPTION
rom400_err.h,13

ROM400_BINDEXCEPTION
rom400_err.h,13

ROM400_CONNECTEXCEPTION
rom400_err.h,13

rom400_dhcp.h,8
dhcp_init,11
dhcp_registernotify,11
dhcp_status,12

DHCP_STATUS_BOUND,9
DHCP_STATUS_INIT,10
DHCP_STATUS_INITREBOOT,10
DHCP_STATUS_REBINDING,10
DHCP_STATUS_REBOOTING,10
DHCP_STATUS_RENEWING,10
DHCP_STATUS_REQUESTING,

10
DHCP_STATUS_SELECTING,11
dhcp_stop,12
dhcp_version,12
ROM400_DHCP_VERSION,11

ROM400_DHCP_VERSION
rom400_dhcp.h,11

rom400_err.h,13
ROM400_-

ARRAYINDEXOUTOFBOUNDSEXCEPTION,
13

ROM400_BINDEXCEPTION,13
ROM400_-

CONNECTEXCEPTION,
13

ROM400_ERR_VERSION,13
ROM400_INTERNALERROR,13
ROM400_-

INTERRUPTEDIOEXCEPTION,
14

ROM400_IOEXCEPTION,14
ROM400_-

NULLPOINTEREXCEPTION,
14

ROM400_-
OUTOFMEMORYERROR,
14

ROM400_SOCKETEXCEPTION,
14

ROM400_ERR_VERSION
rom400_err.h,13

rom400_flash.h,14
flash_eraseblock,15
flash_programbyte,15
flash_version,16
ROM400_FLASH_VERSION,15

ROM400_FLASH_VERSION
rom400_flash.h,15

rom400_init.h,16

329



init_clearSystemRAM,23
init_clearXSEG,24
init_copyivt,24
INIT_CRYSTALFAIL_RESET,19
INIT_DIVISOR_10MHZ,19
INIT_DIVISOR_112MHZ,19
INIT_DIVISOR_128MHZ,19
INIT_DIVISOR_12MHZ,19
INIT_DIVISOR_14MHZ,20
INIT_DIVISOR_16MHZ,20
INIT_DIVISOR_20MHZ,20
INIT_DIVISOR_24MHZ,20
INIT_DIVISOR_28MHZ,20
INIT_DIVISOR_32MHZ,20
INIT_DIVISOR_3MHZ, 21
INIT_DIVISOR_40MHZ,21
INIT_DIVISOR_48MHZ,21
INIT_DIVISOR_4MHZ, 21
INIT_DIVISOR_56MHZ,21
INIT_DIVISOR_5MHZ, 21
INIT_DIVISOR_64MHZ,22
INIT_DIVISOR_6MHZ, 22
INIT_DIVISOR_7MHZ, 22
INIT_DIVISOR_80MHZ,22
INIT_DIVISOR_8MHZ, 22
INIT_DIVISOR_96MHZ,22
init_enableinterrupts,24
init_eth,24
init_getbootstate,24
init_km, 25
init_mm,25
init_netboot,25
init_network,26
init_ow, 26
INIT_POWERFAIL_RESET,23
init_redirect,27
init_rom,27
init_sockets,27
init_tick, 28
init_usekeilmonitor,28
init_version,28
INIT_WATCHDOG_RESET,23
ROM400_INIT_VERSION,23
USE_KEIL_MONITOR,23

ROM400_INIT_VERSION
rom400_init.h,23

ROM400_INTERNALERROR
rom400_err.h,13

ROM400_-
INTERRUPTEDIOEXCEPTION

rom400_err.h,14
ROM400_IOEXCEPTION

rom400_err.h,14
rom400_kmem.h,29

kmem_init,30
kmem_install,31
kmem_version,32
ROM400_KMEM_MODEL_-

LARGEST,30
ROM400_KMEM_MODEL_-

SMALLEST, 30
ROM400_KMEM_VERSION,30

ROM400_KMEM_MODEL_LARGEST
rom400_kmem.h,30

ROM400_KMEM_MODEL_-
SMALLEST

rom400_kmem.h,30
ROM400_KMEM_VERSION

rom400_kmem.h,30
rom400_mem.h,32

mem_free,33
mem_getfreeram,33
mem_malloc,34
mem_mallocdirty,34
mem_sizeof,35
mem_version,35
ROM400_MEM_VERSION,33

ROM400_MEM_VERSION
rom400_mem.h,33

ROM400_NULLPOINTEREXCEPTION
rom400_err.h,14

ROM400_OUTOFMEMORYERROR
rom400_err.h,14

rom400_ow.h,36
ow_byte,38
ow_first,38
ow_getcurrentid,38
ow_next,38
ow_reset,39
OW_RESET_ALARM,37
OW_RESET_NO_PRESENCE,37
OW_RESET_PRESENCE,37

330



OW_RESET_SHORT,37
ow_version,39
ROM400_OW_VERSION,37

ROM400_OW_VERSION
rom400_ow.h,37

ROM400_SCHED_VERSION
rom400_task.h,78

rom400_sock.h,39
accept,46
acceptqueue,62
AF_INET, 46
AF_INET6,46
arp_cacherequest,46
arp_generaterequest,47
avail,47
bind,47
cleanup,48
clear_param_buffers,62
closesocket,48
connect,49
ETH_STATUS_LINK,49
getethernetstatus,49
getipv6params,50
getmacid,50
getnetworkparams,50
getpeername,51
getsockname,51
getsockopt,52
gettftpserver,52
htons,53
inet_addr,63
inet_ntop,63
inet_pton,63
IPPROTO_UDP,53
join, 53
leave,54
listen,54
nstoh,55
PF_INET,55
recv,55
recvfrom,56
ROM400_SOCK_SYNCH_-

VERSION,56
ROM400_SOCK_VERSION,56
send,57
sendto,57

setmacid,58
setnetworkparams,58
setsockopt,59
settftpserver,59
SO_BINDADDR,60
SO_LINGER,60
SO_TIMEOUT,60
SOCK_DGRAM,60
SOCK_STREAM,61
sock_version,61
socket,61
SOCKET_TYPE_DATAGRAM,61
SOCKET_TYPE_STREAM,62
syn_accept,64
syn_arp_cacherequest,64
syn_arp_generaterequest,65
syn_avail,65
syn_bind,65
syn_cleanup,66
syn_closesocket,66
syn_connect,67
syn_getethernetstatus,67
syn_getipv6params,67
syn_getmacid,68
syn_getnetworkparams,68
syn_getpeername,69
syn_getsockname,69
syn_getsockopt,69
syn_gettftpserver,70
syn_join,70
syn_leave,71
syn_listen,71
syn_recv,72
syn_recvfrom,72
syn_send,73
syn_sendto,73
syn_setDatagramAddress,74
syn_setmacid,74
syn_setnetworkparams,75
syn_setsockopt,75
syn_settftpserver,76
syn_socket,76
syn_version,77
TCP_NODELAY,62
udpavailable,77

ROM400_SOCK_SYNCH_VERSION

331



rom400_sock.h,56
ROM400_SOCK_VERSION

rom400_sock.h,56
ROM400_SOCKETEXCEPTION

rom400_err.h,14
rom400_task.h,77

FLAG_DHCP_WAIT,80
FLAG_IO_WAIT, 80
FLAG_SLEEPING,81
MAX_PRIORITY, 81
MIN_PRIORITY, 81
NORM_PRIORITY,81
RELOAD_14_746,81
RELOAD_18_432,81
RELOAD_29_491,82
RELOAD_36_864,82
RELOAD_58_982,82
RELOAD_73_728,82
ROM400_SCHED_VERSION,78
ROM400_TASK_VERSION,82
ROM_SAVESIZE,83
task_entercritsection,84
task_fork,84
task_genesis,85
task_getcurrent,85
task_getpriority,85
task_gettaskid,86
task_getthreadid,86
task_gettickreload,87
task_gettimemillis,87
task_kill,87
task_leavecritsection,88
task_setpriority,88
task_settickreload,89
task_signal,89
task_sleep,83
task_suspend,90
task_synch_sleep,90
task_synch_wait,91
task_threadiosleep,91
task_threadiosleepnc,92
task_threadrestore,92
task_threadresume,93
task_threadsave,93
task_version,94
task_wait,83

ROM400_TASK_VERSION
rom400_task.h,82

rom400_tftp.h,94
ROM400_TFTP_VERSION,95
tftp_first,96
tftp_getdata,96
tftp_init, 96
TFTP_LAST_SEGMENT,95
TFTP_MORE_DATA,95
tftp_next,97
tftp_version,97

ROM400_TFTP_VERSION
rom400_tftp.h,95

rom400_useriopoll.h,97
ROM400_USERIOPOLL_-

VERSION,98
useriopoll_getlistsize,99
useriopoll_getpollroutine,99
useriopoll_init,99
useriopoll_isinstalled,100
useriopoll_registerpollroutine,100
useriopoll_removepollroutine,100
useriopoll_version,101

ROM400_USERIOPOLL_VERSION
rom400_useriopoll.h,98

rom400_util.h,101
REDIRECT_0,103
REDIRECT_DHCPNOTIFY,103
REDIRECT_FREE,103
REDIRECT_GETFREERAM,103
REDIRECT_GETTASKID,104
REDIRECT_GETTHREADID,104
REDIRECT_GETTIMEMILLIS,

104
REDIRECT_INFOSENDCHAR,

104
REDIRECT_IP_-

COMPUTECHECKSUM_-
SOFTWARE,104

REDIRECT_KERNELFREE,105
REDIRECT_KERNELMALLOC,

105
REDIRECT_MALLOC,105
REDIRECT_MALLOCDIRTY,105
REDIRECT_MM_UNDEREF,105

332



REDIRECT_OWIP_-
READCONFIG,106

REDIRECT_ROM_TASK_-
CREATE,106

REDIRECT_ROM_TASK_-
DESTROY,106

REDIRECT_ROM_TASK_-
DUPLICATE, 106

REDIRECT_ROM_TASK_-
SWITCH_IN,106

REDIRECT_ROM_TASK_-
SWITCH_OUT,107

REDIRECT_SETMACID,107
REDIRECT_SLEEP,107
REDIRECT_THREADIOSLEEP,

107
REDIRECT_-

THREADIOSLEEPNC,107
REDIRECT_THREADRESTORE,

108
REDIRECT_THREADRESUME,

108
REDIRECT_THREADSAVE,108
REDIRECT_TINIEXPORT_MM_-

DEREF,108
ROM400_UTIL_VERSION,108
util_crc16,109
util_getpseudorandom,109
util_infosendchar,109
util_installhook,109
util_memclear,110
util_memcompare,110
util_memcopy,111
util_setrandomseed,111
util_version,111

ROM400_UTIL_VERSION
rom400_util.h,108

rom400_xnetstack.h,112
ROM400_XNETSTACK_-

VERSION,112
xnetstack_install,112
xnetstack_version,112

ROM400_XNETSTACK_VERSION
rom400_xnetstack.h,112

ROM_SAVESIZE
rom400_task.h,83

s6_addr
in6_addr,4

s_addr
in_addr,5

scanf
stdio.h,137

SEEK_CUR
stdio.h,119

SEEK_END
stdio.h,119

SEEK_SET
stdio.h,119

send
rom400_sock.h,57

sendto
rom400_sock.h,57

setmacid
rom400_sock.h,58

setnetworkparams
rom400_sock.h,58

setsockopt
rom400_sock.h,59

settftpserver
rom400_sock.h,59

sin_addr
sockaddr,6
sockaddr_in,6

sin_family
sockaddr,6
sockaddr_in,7

sin_port
sockaddr,6
sockaddr_in,6

sin_zero
sockaddr_in,6

size_t
stdio.h,120

SO_BINDADDR
rom400_sock.h,60

SO_LINGER
rom400_sock.h,60

SO_TIMEOUT
rom400_sock.h,60

SOCK_DGRAM
rom400_sock.h,60

SOCK_STREAM

333



rom400_sock.h,61
sock_version

rom400_sock.h,61
sockaddr,5

bogus_ptr,6
sin_addr,6
sin_family,6
sin_port,6

sockaddr_in,6
bogus_ptr,6
sin_addr,6
sin_family,7
sin_port,6
sin_zero,6

socket
rom400_sock.h,61

SOCKET_TYPE_DATAGRAM
rom400_sock.h,61

SOCKET_TYPE_STREAM
rom400_sock.h,62

sprintf
stdio.h,137

sscanf
stdio.h,137

StatePtr
TCB, 7

StateSize
TCB, 7

stdio.h,113
_getkey,120
clearerr,120
EOF,117
fclose,121
feof, 121
ferror,121
fexists,122
fflush,122
fgetc,122
fgetpos,123
fgets,123
FILE, 120
FILE_FLAGS_EOF,117
FILE_FLAGS_TEMP,118
FILE_TYPE_TINIFS,118
FILENAME_MAX, 118
filesystem_version,124

finit, 124
flockfile, 125
fopen,125
fopen_fd,126
FOPEN_MAX,118
fpos_t,120
fputc,126
fputs,127
fread,127
freadbytes,128
freopen,128
FS_VERSION,118
fseek,129
fseeko,129
fsetpos,130
ftell, 130
ftello, 131
ftrylockfile, 131
funlockfile,132
fwrite, 132
fwritebytes,133
getc,133
getchar,134
getfreefsram,134
gets,134
L_tmpnam,118
mkdir, 134
NULL, 119
off_t, 120
P_tmpdir,119
printf, 135
putc,135
putchar,135
puts,135
remove,136
rename,136
rewind,136
scanf,137
SEEK_CUR,119
SEEK_END,119
SEEK_SET,119
size_t,120
sprintf,137
sscanf,137
tempnam,137
TMP_MAX, 120

334



tmpfile,138
tmpnam,138
ungetchar,139
vprintf, 139
vsprintf,139

syn_accept
rom400_sock.h,64

syn_arp_cacherequest
rom400_sock.h,64

syn_arp_generaterequest
rom400_sock.h,65

syn_avail
rom400_sock.h,65

syn_bind
rom400_sock.h,65

syn_cleanup
rom400_sock.h,66

syn_closesocket
rom400_sock.h,66

syn_connect
rom400_sock.h,67

syn_getethernetstatus
rom400_sock.h,67

syn_getipv6params
rom400_sock.h,67

syn_getmacid
rom400_sock.h,68

syn_getnetworkparams
rom400_sock.h,68

syn_getpeername
rom400_sock.h,69

syn_getsockname
rom400_sock.h,69

syn_getsockopt
rom400_sock.h,69

syn_gettftpserver
rom400_sock.h,70

syn_join
rom400_sock.h,70

syn_leave
rom400_sock.h,71

syn_listen
rom400_sock.h,71

syn_recv
rom400_sock.h,72

syn_recvfrom

rom400_sock.h,72
syn_send

rom400_sock.h,73
syn_sendto

rom400_sock.h,73
syn_setDatagramAddress

rom400_sock.h,74
syn_setmacid

rom400_sock.h,74
syn_setnetworkparams

rom400_sock.h,75
syn_setsockopt

rom400_sock.h,75
syn_settftpserver

rom400_sock.h,76
syn_socket

rom400_sock.h,76
syn_version

rom400_sock.h,77

task_entercritsection
rom400_task.h,84

task_fork
rom400_task.h,84

task_genesis
rom400_task.h,85

task_getcurrent
rom400_task.h,85

task_getpriority
rom400_task.h,85

task_gettaskid
rom400_task.h,86

task_getthreadid
rom400_task.h,86

task_gettickreload
rom400_task.h,87

task_gettimemillis
rom400_task.h,87

task_kill
rom400_task.h,87

task_leavecritsection
rom400_task.h,88

task_setpriority
rom400_task.h,88

task_settickreload
rom400_task.h,89

335



task_signal
rom400_task.h,89

task_sleep
rom400_task.h,83

task_suspend
rom400_task.h,90

task_synch_sleep
rom400_task.h,90

task_synch_wait
rom400_task.h,91

task_threadiosleep
rom400_task.h,91

task_threadiosleepnc
rom400_task.h,92

task_threadrestore
rom400_task.h,92

task_threadresume
rom400_task.h,93

task_threadsave
rom400_task.h,93

task_version
rom400_task.h,94

task_wait
rom400_task.h,83

TCB, 7
Flags,7
ID, 7
Next,7
Priority, 7
StatePtr,7
StateSize,7
WakeupTime,7

TCP_NODELAY
rom400_sock.h,62

tempnam
stdio.h,137

tftp_first
rom400_tftp.h,96

tftp_getdata
rom400_tftp.h,96

tftp_init
rom400_tftp.h,96

TFTP_LAST_SEGMENT
rom400_tftp.h,95

TFTP_MORE_DATA
rom400_tftp.h,95

tftp_next
rom400_tftp.h,97

tftp_version
rom400_tftp.h,97

TIME, 8
millis, 8
msb,8

tini400_crypt.h,139
crypt_sha1,140
crypt_version,140
TINI400_CRYPT_VERSION,140

TINI400_CRYPT_VERSION
tini400_crypt.h,140

tini400_dns.h,140
dns_enableipv6queries,142
dns_getmx,142
dns_getprimary,143
dns_getsecondary,143
dns_gettimeout,144
dns_init,144
dns_setprimary,144
dns_setsecondary,144
dns_settimeout,145
dns_version,145
gethostbyaddr,145
gethostbyname,146
TINI400_DNS_VERSION,142

TINI400_DNS_VERSION
tini400_dns.h,142

tini400_isr.h,146
ISR_CAN0,148
ISR_ETHERNET,148
ISR_ETHERNETPOWER,148
ISR_EXTERNALINT0,148
ISR_EXTERNALINT1,148
ISR_EXTERNALINT2345,148
isr_getinterruptvector,151
ISR_POWERFAIL,149
ISR_SERIAL0,149
ISR_SERIAL1,149
ISR_SERIAL2,149
isr_setinterruptvector,151
ISR_TIMER0,149
ISR_TIMER1,150
ISR_TIMER2,150
ISR_TIMER3,150

336



isr_version,152
ISR_WATCHDOG,150
ISR_WRITEPROTECT,150
TINI400_ISR_VERSION,151

TINI400_ISR_VERSION
tini400_isr.h,151

tini_i2c.h,152
i2c_bit,155
i2c_delay,155
I2C_DELAY_LOOP_COUNT,154
I2C_ENABLE_SCL_WAIT_FOR_-

SLOW_SLAVES,154
I2C_MAXIMUM_SCL_-

WAITCOUNT, 154
i2c_readbit,155
i2c_readblock,155
i2c_readbyte,155
I2C_SCL,154
I2C_SDA,154
i2c_select,155
i2c_start,156
i2c_stop,156
i2c_version,156
i2c_writeblock,156
i2c_writebyte,156
i2c_writereadblock,156
TINI_I2C_VERSION,154

TINI_I2C_VERSION
tini_i2c.h,154

TMP_MAX
stdio.h,120

tmpfile
stdio.h,138

tmpnam
stdio.h,138

type
file_structure,3

udpavailable
rom400_sock.h,77

ungetchar
stdio.h,139

USE_KEIL_MONITOR
rom400_init.h,23

useriopoll_getlistsize
rom400_useriopoll.h,99

useriopoll_getpollroutine
rom400_useriopoll.h,99

useriopoll_init
rom400_useriopoll.h,99

useriopoll_isinstalled
rom400_useriopoll.h,100

useriopoll_registerpollroutine
rom400_useriopoll.h,100

useriopoll_removepollroutine
rom400_useriopoll.h,100

useriopoll_version
rom400_useriopoll.h,101

util_crc16
rom400_util.h,109

util_getpseudorandom
rom400_util.h,109

util_infosendchar
rom400_util.h,109

util_installhook
rom400_util.h,109

util_memclear
rom400_util.h,110

util_memcompare
rom400_util.h,110

util_memcopy
rom400_util.h,111

util_setrandomseed
rom400_util.h,111

util_version
rom400_util.h,111

vprintf
stdio.h,139

vsprintf
stdio.h,139

WakeupTime
TCB, 7

xnetstack_install
rom400_xnetstack.h,112

xnetstack_version
rom400_xnetstack.h,112

337


	DS80C400CLibraries Module Index
	DS80C400CLibraries Directory Hierarchy
	DS80C400CLibraries Data Structure Index
	DS80C400CLibraries File Index
	DS80C400CLibraries Module Documentation
	DS80C400CLibraries Directory Documentation
	DS80C400CLibraries Data Structure Documentation
	DS80C400CLibraries File Documentation

