[1] [] 1 [Generated on Tue Dec 14 09:10:53 2004 for DS80C400CLibraries by

Doxygen] []Generated on Tue Dec 14 09:10:53 2004 for DS80C400CLibraries by Doxy-
gen

[1] H 1 [Generated on Tue Dec 14 09:10:53 2004 for DS80C400CLibraries by Doxygen]
[]Generated on Tue Dec 14 09:10:53 2004 for DS80C400CLibraries by Doxygen

DS80C400CLibraries Reference Manual
1

Generated by Doxygen 1.3-rc3

Tue Dec 14 09:10:48 2004

Contents

1 DSB80C400CLibraries Data Structure Index

2 DS80C400CLibraries File Index

3 DS80C400CLibraries Data Structure Documentation

4 DSB80C400CLibraries File Documentation

1 DS80C400CLibraries Data Structure Index

1.1 DS80C400CLibraries Data Structures

Here are the data structures with brief descriptions:
_hostinfo
_http _request
_http _response
_http _session
_http _variable
_mailheader
_sbufhdr
_typelmsg
_typelmsghdr
_type2msg
_type2msghdr
_type3msg
_type3msghdr
_userheader

dirent

26

10

10

11

12

12

13

14

file_structure
hostent

in6_addr

in_addr
mailhostent
netstatarp_entry
netstat tcp_socket
netstat udp_entry
sockaddr
sockaddr.in

TCB

TIME

tm

14

15

16

16

17

17

18

21

22

22

23

24

25

2 DS80C400CLibraries File Index

2.1 DS80C400CLibraries File List

Here is a list of all documented files with brief descriptions:

dirent.h (Functions for directory listing)

rom400_dhcp.h (DHCP functions in the DS80C400 ROM)

rom400_err.h (Error codes used by functions in the DS80C400 ROM)

rom400_flash.h (Flash programming functions for the TINIm400 module)

rom400_http.h (Http Server functions in the DS80C400 ROM)

41

59

rom400.init.h (ROM Initialization functions in the DS80C400 ROM)

rom400.kmem.h (Kernel Memory initialization functions for the
DS80C400 ROM)

rom400_mem.h (Memory management functions in the DS80C400 ROM) 76

rom400_netif.h (Network interface library for the DS80C400) 80
rom400_netstat.h (Network statistics library for the DS80C400) 83
rom400_ow.h (Raw 1-Wire functions in the DS80C400 ROM) 88
rom400_rarp.h (RARP library for the DS80C400) 92
rom400_sock.h(Socket functions in the DS80C400 ROM) 93

rom400_task.h (Process scheduler functions in the DS80C400 ROM) 133

rom400._tftp.h (TFTP Client functions in the DS80C400 ROM) 150

rom400_useriopoll.h (User 10 Poll registration routines for the DS80C400
ROM) 154

rom400_util.h (Utility functions in the DS80C400 ROM) 158

rom400_xnetstack.h(Enhanced network stack for the DS80C400 ROM) 168

stdio.h (File and other 10 functions) 171
tini400_crypt.h (SHA-1 and MD4 functions for the DS80C400) 198
tini400_debugport.h (Functions supporting the debug port on the TINIs400
module) 200
tini400_dns.h(DNS Client functions for the DS80C400 ROM) 202
tini400_ftpclient.h (FTP Client functions for DS80C400) 208
tini400_isr.h (Interrupt Service Routine installation functions) 217
tini400_mime.h (MIME Library functions for DS80C400 processor) 223
tini400_ntim.h (NTLM Library functions for DS80C400 processor) 225
tini400_smtp.h (SMTP Library functions for DS80C400 processor) 229
tini400_spi.h (SPI library for the TINIm400 module) 236

tini400_time.h (Date/Time utilities, tailored for the DS80C400 C Libraries)241
tini400_xnetboot.h (External NetBoot library for the DS80C400) 244

tini _i2c.h (12C function library) 246

tini _rtc.h (RTC function library) 250

3 DS80C400CLibraries Data Structure Documenta-
tion
3.1 _hostinfo Struct Reference

#include <tini400 _smtp.h >

3.1.1 Detailed Description

Structure for host configuration information that has to be registered with smtp library

Data Fields

* longdns primary.address
primary dns server IP address

 longdnssecondaryaddress
secondary dns server IP address

long dnstimeout
dns server response timeout

* long mailqueuetimeinterval
interval time before resend queued mails

long smtphost

IP address of SMTP host,if IP address is zero, smtp library look for IP address through
DNS library calls.

charx localhostname

char pointer that holds local host name value

The documentation for this struct was generated from the following file:

e tini400_smtp.h

3.2 _http_request Struct Reference

#include <rom400 _http.h >

3.2.1 Detailed Description

Structure for http request

Data Fields

e charpath[HTTP_.MAX _URL]
URL path name.

 charrequesimethod
Request method flag.

e charx query.string
Query string value passed in http request.

¢ charx reqheaders
string holds http request headers

¢ charx messagéody
message body value passed in http request

« http_variablex varlist
Http variable list.

The documentation for this struct was generated from the following file:

« rom40Qhttp.h

3.3 _http_response Struct Reference

#include <rom400 _http.h >

3.3.1 Detailed Description

Structure for http response

Data Fields

¢ charx resheaders
string holds http response headers

e charrespons¢gHTTP_MAX BUFSIZE]
response code and string

¢ charcontenttype[HTTP_MAX _BUFSIZE]
content type of response message

int contentlength
length of response message body

The documentation for this struct was generated from the following file:

¢ rom40Qhttp.h

3.4 _http_session Struct Reference

#include <rom400 _http.h >

3.4.1 Detailed Description

Structure for http session

Data Fields

int sock handler
socket handler for client connection

sockaddmaddress

client socket address

http_requestequest
http request

http_responseesponse
http response

The documentation for this struct was generated from the following file:

e rom40Qhttp.h

3.5 _http_variable Struct Reference

#include <rom400 _http.h >

3.5.1 Detailed Description

Structure for http variable names and values

Data Fields

» charx var.name
http variable name

e charx value
http variable value

« http_variablex next
next http variable node address, NULL value to indicate end of the list

The documentation for this struct was generated from the following file:

¢ rom40Qhttp.h

3.6 _mailheader Struct Reference

#include <tini400 _smtp.h >

3.6.1 Detailed Description

Structure for standard mail header holds standard mail header values

Data Fields

» charx from.id

string contains from id mailheader value

* charx sendername

string contains sendername mailheader value

e charx to_id

string contains toid mailheader value

 charx recipienthname
string contains recipientname mailheader value

« charx* subject
string contains subject mailheader value

« charx reply_to_id
string contains replyto_id mailheader value

e charx cc.id
string contains cdd mailheader value

e charx bcc.id
string contains bcdd mailheader value

e charx errorsto_id

string contains errorgo_id mailheader value

* charx date

string contains date mailheader value

The documentation for this struct was generated from the following file:

« tini400_smtp.h

3.7 _sbufhdr Struct Reference

#include <tini400 _ntim.h >

3.7.1 Detailed Description

Structure for security buffer header

Data Fields

¢ unsigned inten
length of the data

 unsigned inbuflen
length of the security buffer

¢ unsigned longstartloc
starting address of the data

The documentation for this struct was generated from the following file:

* tini400_ntlm.h

3.8 _typelmsg Struct Reference

#include <tini400 _ntim.h >

3.8.1 Detailed Description

Structure for typel message

Data Fields

e typelmsghdtlhdr
type 1 message header

 unsigned chabuf[1024]
security buffer

« unsigned inbuf_index
security buffer length

The documentation for this struct was generated from the following file:

¢ tini400_ntlm.h

3.9 _typelmsghdr Struct Reference

#include <tini400 _ntim.h >

3.9.1 Detailed Description

Structure for typel message header

Data Fields

« charsignaturd8]
char array to store NTLM signature

* unsigned longnsgtype
NTLM Message Type.

unsigned londlags
The NTLM flags.

sbufhdrusr
user name security buffer header

L]

sbufhdrdomain

domain name security buffer header

The documentation for this struct was generated from the following file:

 tini400_ntlm.h

3.10 _type2msg Struct Reference

#include <tini400 _ntim.h >

3.10.1 Detailed Description

Structure for type2 message

10

Data Fields

e type2msghdt2hdr
char array to store NTLM signature

« unsigned chabuf [1024]
security buffer

¢ unsigned inbuf_index
security buffer length

The documentation for this struct was generated from the following file:

* tini400_ntlm.h

3.11 _type2msghdr Struct Reference

#include <tini400 _ntim.h >

3.11.1 Detailed Description

Structure for type2 message header

Data Fields

charsignaturd8]
char array to store NTLM signature

¢ unsigned longnsgtype
The NTLM message type.

sbufhdrdomain

domain name security buffer header

 unsigned londlags
The NTLM flags.

 unsigned chachallengd8]
the 8 byte server challenge

11

 unsigned chatontext[8]
reserved for future use

¢ shufhdrtargetinfo
target information.

The documentation for this struct was generated from the following file:

* tini400.ntlm.h

3.12 _type3msg Struct Reference

#include <tini400 _ntim.h >

3.12.1 Detailed Description

Structure for type3 message

Data Fields

¢ type3msghdt3hdr
char array to store NTLM signature

« unsigned chabuf [1024]
security buffer

« unsigned inbuf_index
security buffer length

The documentation for this struct was generated from the following file:

¢ tini400_ntlm.h

3.13 _type3msghdr Struct Reference

#include <tini400 _ntim.h >

3.13.1 Detailed Description

Structure for type3 message header

12

Data Fields

¢ charsignaturd8]
char array to store NTLM signature

* unsigned longnsgtype
The NTLM message type.

¢ sbufhdrimresponse
lan manager response

« sbufhdrntimresponse
network lan manager response

¢ sbufhdrdomain
domain name buffer header

« sbufhdrusr
user name buffer header

« sbufhdrworkstation
workstation name buffer header

¢ sbufhdrsession
session buffer header.

* unsigned londlags
The NTLM flags.

The documentation for this struct was generated from the following file:

* tini400_ntlm.h

3.14 _userheader Struct Reference

#include <tini400 _smtp.h >

3.14.1 Detailed Description

Structure for user defined mail header contains user header name list and user header
value list

13

Data Fields

¢ charx headernameligEMTP_.MAXUSERHEADERSIZE]
array of string contains user mail header name list

¢ charx headervalueliiSMTP_.MAXUSERHEADERSIZE]
array of string contains user mail header value list

The documentation for this struct was generated from the following file:

* tini400_smtp.h

3.15 dirent Struct Reference

#include <dirent.h >

3.15.1 Detailed Description

Structure used to return the name of a directory listing entry.

Data Fields

* unsigned longl_ino
File serial number.

¢ chard_name[256]
Name of the file.

The documentation for this struct was generated from the following file:

« dirent.h

3.16 filestructure Struct Reference

#include <stdio.h >

3.16.1 Detailed Description

Structure for FILE object. Includes file flags, last error code, file type, and a pointer to
the file descriptor.

14

Data Fields

« int flags
Flags for the file. Can denote the EOF is reached, or that file is temporary.

e int error
Last error code for the file.

* int type
File type. currently on th&ILE_TYPETINIFSis supported.

« void * fd
Pointer to the file descriptor, used internally by the TINI File System.

 unsigned chax fnamecopy
Copy of the name of the file used internally. Destroyefttrse.

The documentation for this struct was generated from the following file:

* stdio.h

3.17 hostent Struct Reference

#include <tini400 _dns.h >

3.17.1 Detailed Description

Structure for host information that will be returned by the DNS client functions.

Data Fields

e charx h_.name
String with the official name of the host.

¢ charxx h_aliases
String with alternative host names.

« int h_addrtype
Address typeAF_INET or AF_INET6).

15

« int h_length
Length of the address.

o charsx h_addrlist

List of network addresses, eachtofengthbytes. The list is null-terminated.

The documentation for this struct was generated from the following file:

 1ini400.dns.h

3.18 in6.addr Struct Reference

#include <rom400 _sock.h >

3.18.1 Detailed Description

Structure representing a 16 byte IPv6 address.

Data Fields

¢ unsigned chas6 addr[16]
IPv6 compatible address.

The documentation for this struct was generated from the following file:

* rom40Qsock.h

3.19 in.addr Struct Reference

#include <rom400 _sock.h >

3.19.1 Detailed Description

Structure representing a 4 byte IPv4 address, for use withdbtleaddrin structure.

16

Data Fields

« unsigned long_addr
Address as an unsigned long (32 bits).

The documentation for this struct was generated from the following file:

* rom40Qsock.h

3.20 mailhostent Struct Reference

#include <tini400 _dns.h >

3.20.1 Detailed Description

Structure for host information requested with an MX record type.

See also:
dnsgetmx

Data Fields

e charx h_.name
String with the name of a mail host.

« int preference
Preference value reported by the DNS query.

The documentation for this struct was generated from the following file:

* tini400.dns.h

3.21 netstatarp_entry Struct Reference

#include <rom400 _netstat.h >

3.21.1 Detailed Description
Structure for a single ARP entry. The netstyt arp.table function returns a pointer to

a table that contains NETSTARRP_ENTRIES of this structure. Each entry maps an
Ethernet MAC address to an IPv4 address.

17

Data Fields

¢ unsigned chaflags

Flags: NETSTAJARP.USED, NETSTARRP.REPLYPENDING or NETSTAT
ARP.STATIC.

¢ unsigned chattl
Time to live for this entry (in ticks).

¢ unsigned chamac[6]

MAC address associated with this entry.

unsigned chaip [4]
IPv4 address for the MAC address.

The documentation for this struct was generated from the following file:

* rom40Qnetstat.h

3.22 netstattcp_socket Struct Reference

#include <rom400 _netstat.h >

3.22.1 Detailed Description

Structure for a TCP socket. The netsggt tcp_socket function returns a pointer to this
structure for a given socket number (UpNETSTAT_TCP.MAXSOCKETYS).

Data Fields

¢ unsigned chaflags

Flags: NETSTATTCP.OUTPUT.NEEDED MASKto NETSTATTCP_-SENDFIN_-
MASK

* unsigned chastate

Socket state — see NETSTATP.STATExxx (e.g. NETSTAITCP.STATE-
CLOSED.

¢ unsigned chaserversock
Server socket number (only valid for server).

18

unsigned chaack timer
Timer for delayed ACKs.

unsigned shontemoteport

Remote port (if not a server socket).

unsigned charemoteaddr[16]
Remote IP address (if not a server socket).

unsigned shottocal port
Local port.

unsigned chalocal addr[16]
Local IP address (may be the wildcard address 0).

unsigned longequenceium
Current TCP sequence number.

unsigned long@ck num
Last ACK number.

unsigned shorinput.retrieve ptr
Tail pointer to input queue.

unsigned shorinput storeptr
Head pointer to input queue.

unsigned chainput buffer_hpp[5]
Input queue.

unsigned shormutputretrieve ptr
Tail pointer to output queue.

unsigned shomutputstoreptr
Head pointer to output queue.

unsigned chaoutputbuffer_hpp[5]
Output queue.

unsigned shonteceiverwin_size
Receiver's TCP windows size.

19

unsigned shorsenderwin_size
Sender’'s TCP window size.

unsigned shonteceivermss
Maximum segment size of receiver.

unsigned shorsock
Socket number.

unsigned londast ack received
Largest (usually last) ACK.

unsigned shomutputack ptr
Pointer to last acknowledged byte.

unsigned chareloadretry_min
Lower bound on the retry timer reload.

unsigned charetry_timer[2]
Retry timer (one byte counter with overflow bit).

unsigned charetry flags
(Reserved/unused)

unsigned charetry_count
Number of times the last segment has been retried.

unsigned charetry_timer_reload
Start value for the retry timer reload.

unsigned shorteathtimer
Time until a forced close of the connection.

unsigned chaoptions

TCP option flags — see NETSTATP_OPTIONXxxx (e.g NETSTATTCP.OPTION -
NAGLEENABLEDMASK).

unsigned chaunackedsegs
Number of unacknowledged segments.

unsigned chamax unackedsegs
Maximum number of unacknowledged segments.

20

 unsigned chapersisttimer
TCP persist timer.

* unsigned chapersisttimer_cap

Current cap for TCP persist timer.

 unsigned shortendmss
Maximum segment size for sending.

The documentation for this struct was generated from the following file:

* rom40Qnetstat.h

3.23 netstatudp_entry Struct Reference

#include <rom400 _netstat.h >

3.23.1 Detailed Description

Structure for a single UDP port table entry. The netgittudp_table function returns
a pointer to a table that contaihNETSTAT_UDP_ENTRIESof this structure.

Data Fields

¢ unsigned chaflags
Flags: NETSTATUDP_USED.

¢ unsigned shonport
Port number for this entry.

 unsigned chagueuehpp[5]
Incoming packet queue for this port.

* unsigned chareserved

(Reserved)

The documentation for this struct was generated from the following file:

* rom40Qnetstat.h

21

3.24 sockaddr Struct Reference

#include <rom400 _sock.h >

3.24.1 Detailed Description
Structure for an IP address. For a normal, IPv4 (4 byte) address, set the address in

sinaddr[12,13,14,15], with the most significant byte ataddr[12]. Notice the 3 byte
bogusptr to deal with the TNI native interface overhead.

Data Fields

¢ unsigned chabogusptr [3]
Overhead for TNI native interface.

¢ unsigned chasin.addr[16]
IP address. IPv4 address is in saddr[12-15] with MSB at siraddr[12].

¢ unsigned insin_port
16 bit port number for the socket.

* unsigned chasin_family
Ignored by DS80C400 implementation.

The documentation for this struct was generated from the following file:

* rom40Qsock.h

3.25 sockaddrin Struct Reference

#include <rom400 _sock.h >

3.25.1 Detailed Description
Alternate structure for an IP address. For a normal, IPv4 (4 byte) address, set the

address in siraddr.saddr, and set sizero to all 0's. Notice the 3 bytbogusptr to
deal with the TNI native interface overhead.

22

Data Fields

* unsigned chabogusptr [3]
Overhead for TNI native interface.

¢ unsigned chasin_zero[12]
Zeroes in IP address due to IPv6 support.

¢ in_addrsin.addr
IPv4 address structure.

¢ unsigned insin_port
16 bit port number for the socket.

* unsigned chasin_family
Ignored by DS80C400 implementation.

The documentation for this struct was generated from the following file:

* rom40Qsock.h

3.26 TCB Struct Reference

#include <rom400 _task.h >

3.26.1 Detailed Description

Task control buffer.

Data Fields

* unsigned chaPriority
Priority of the task.

¢ unsigned chalD
ID of the task.

¢ void * Next
Next task in the queue.

23

¢ unsigned chaFlags
Flags for the task.

TIME WakeupTime
Time that the task is scheduled to wake from a sleep.

¢ unsigned inStateSize
Size of the saved state for the task.

void x StatePtr

Pointer to the saved state for the task.

The documentation for this struct was generated from the following file:

¢ rom40Qtask.h

3.27 TIME Struct Reference

#include <rom400 _task.h >

3.27.1 Detailed Description

Structure to be used when handling the DS80C400’s 5 byte time values.

See also:
task gettimemillis

Data Fields

* unsigned chamsb

Most significatnt byte of the time stamp. The Keil compiler does not have data types
longer than 4 bytes.

* unsigned longnillis
The lower 4 bytes of a DS80C400 time stamp (in milliseconds). This will cover up to
49.7 days.

The documentation for this struct was generated from the following file:

« rom40Qtask.h

24

3.28 tm Struct Reference

#include <tini400 _time.h >

3.28.1 Detailed Description

Structure for calendar time. Note that the computation of these values depends on the
time base year set by thiene settimebaséunction.

Data Fields

e inttm_sec
Seconds after the minute (0..59).

e inttm_min
Minutes after the hour (0..59).

e inttm_hour
Hours since midnight (0..23).

¢ int tm_mday
Day of the month (1..31).

e inttm_mon
Months since January (0..11).

e inttm_year
Year.

¢ inttm_wday
Days since Sunday (0..6).

* inttm_yday
Days since January 1 (0..365).

e inttm_isdst
Daylight savings time flag, currently not supported.

The documentation for this struct was generated from the following file:

¢ tini400_time.h

25

4 DS80C400CLibraries File Documentation

4.1 dirent.h File Reference
4.1.1 Detailed Description

Functions for directory listing.

This library contains functions that allow applications to list the contents of a directory.
To use this library, the file system must also be installed and initialized.

Note that not all of the traditionalirent functions are implemented.

For detailed information on the DS80C400 please see Ithigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
Some functions in this library aldOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Data Structures

¢ structdirent

Defines

» #defineEROM40QDIRENT_VERSION2

Typedefs

« typedef unsigned charDIR

Functions

« int closedir(DIR xdir)
Close a directory stream.

¢ DIR % opendir(const chaxname)
Open a directory stream.

« direntx readdir(DIR *dir)
Read a directory entry from a directory stream.

26

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

void rewinddir (DIR xdir)
Resets the directory stream.

void seekdir(DIR x*dir, long int ptr)
Sets the directory stream location.

long inttelldir (DIR xdir)
Returns the current location in the directory stream.

« unsigned indirentversion(void)
Returns the version number of this DIRENT library.

4.1.2 Define Documentation

4.1.2.1 #define ROM40(MIRENT _-VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thdirent versionfunction.

See also:
direntversion

4.1.3 Typedef Documentation

4.1.3.1 typedef unsigned charDIR

Type definition for a directory structure. This object must not be altered by the appli-
cation during use. Make sure to call tblesedirfunction when finished with any DIR
object.

4.1.4 Function Documentation

4.1.4.1 intclosedir DIR x dir)
Close a directory stream.

Closes the directory streadir , and frees the resources allocated to it.

Parameters:
dir Directory resource to free.

Returns:
0 on success, non-zero if the directory could not be closed.

27

See also:
opendir

4.1.4.2 unsigned int direntversion (void)
Returns the version number of this DIRENT library.

Returns:
Version number of this DIRENT library.

4.1.4.3 DIR* opendir (const charx name
Open a directory stream.

Opens a directory stream for the directargme . The argumenhame should not
have leading or trailing slashes. To open the root directory, use the empty string
(opendir(™);).

Parameters:
name Name of the directory to open

Returns:
Pointer to a directory stream object, or NULL if the directory could not be found.

See also:
closedir

4.1.4.4 structdirent* readdir (DIR x dir)
Read a directory entry from a directory stream.

Reads the current directory entry from the directory strelm This function also
increments the internal stream counter, so the next cataddir will read the next
directory entry.

Before using the returned file name, dakiststo make sure the file still exists. It could
have been deleted between the time the directory stream was opened and now, which
would yield an invalid result.

Parameters:
dir Directory stream to read an entry from.

Returns:

Pointer to a directory entry, or NULL if the end of the directory stream has been
reached.

28

See also:
rewinddir
seekdir
telldir

4.1.4.5 void rewinddir (DIR * dir)
Resets the directory stream.
Resets the directory stream to the beginning, so the first directory entry is read again.

Parameters:
dir Directory stream to be reset.

See also:
seekdir
telldir

4.1.4.6 void seekdir DIR * dir, long int ptr)
Sets the directory stream location.

Sets the current 'pointer’ into the directory stream to the valtre Internally, the
directory stream is simply an array of file pointers. This function sets the current index
into that array. Ifptr is beyond the bounds of the array, the next calteaddir will

return NULL,;

Parameters:
dir Directory stream to set location

ptr Location to point to in stream

See also:
readdir
telldir

4.1.4.7 long int telldir (DIR x* dir)

Returns the current location in the directory stream.

Returns the current location in the directory stream. Internally, the directory stream is
simply an array of file pointers. This function returns the current index into that array.

Parameters:
dir Directory stream to get location

29

See also:
readdir
seekdir

4.2 rom400dhcp.h File Reference

4.2.1 Detailed Description

DHCP functions in the DS80C400 ROM.

This library contains functions that allow the DS80C400 to lease addresses from a
DHCP server. Only Ipv4 addresses can be leased using DHCP. Ipv6 addresses are
automatically configured. Once the DHCP client negotiates a lease on an address,
functions from the socket librariesom40Qsock.h) can be used to get the current IP
address and communicate with other devices.

For detailed information on the DS80C400 please see lIthgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
The functions in this library are multi-process safe—that is, if you call the same
method from two different processes at the same time, the parameters to the func-
tion will not be destroyed. However, it is recommended that only one process
manage the DHCP client as it is a system-wide resource.

Defines

* #defineROM400DHCP_.VERSION10
 #defineDHCP.STATUSIINIT O

* #defineDHCP.STATUS SELECTING1
* #defineDHCP.STATUS REQUESTING2
* #defineDHCP.STATUS.INITREBOOT 3
* #defineDHCP.STATUS REBOOTING4
* #defineDHCP.STATUS BOUND 5

* #defineDHCP.STATUS RENEWING6

* #defineDHCP.STATUS REBINDING 7
* #defineDHCP.MSG_DHCPDISCOVER1L
* #defineDHCP.MSG_.DHCPOFFER2

* #defineDHCP.MSG_.DHCPREQUEST3
* #defineDHCP.MSG_.DHCPDECLINE4
* #defineDHCP.MSG_DHCPACK5

* #defineDHCP.MSG_DHCPNAK 6

* #defineDHCP.MSG_.DHCPRELEASE/
* #defineDHCP_.MSG_DHCPINFORMS8

30

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Functions

« unsigned chadhcpinit (void)
Initializes the DHCP client.

« unsigned indhcp status(void)
Gets the status of the DHCP client.

« void dhcpstop(void)
Disabled the DHCP client.

« void dhcpregisternotify (void(xfunctionptr)(unsigned int newstate, unsigned
char farxpacket))

Register a function to be notified when DHCP acquires or loses an IP.

« void dhcpregisterparseoptiofvoid(xfunctionptr)(unsigned char faoption))

Register a function to be called when an unknown or unhandled DHCP option is
encountered.

« void dhcpregisterbuildpackefunsigned charfunctionptr)(unsigned char far
xoption, unsigned char msgtype))

Register a function to be called when a DHCP packet is about to be sent.

« unsigned indhcpversion(void)
Returns the version number of this DHCP library.

« void dhcpgetserverigstructsockaddraddress, int len)
Returns the IP address of the DHCP server.

« void dhcpgetprimarydngstructsockaddeaddress)
Returns the IP address of the primary DNS server.

« void dhcpgetsecondarydnstructsockaddeaddress)
Returns the IP address of the secondary DNS server.

 unsigned indhcpgettaskid()
Returns task ID of the DHCP process.

4.2.2 Define Documentation

4.2.2.1 #define DHCPMSG_DHCPACK 5
DHCP message type ACK

31

4.2.2.2 #define DHCEMSG_DHCPDECLINE 4
DHCP message type DECLINE

4.2.2.3 #define DHCPMSG_DHCPDISCOVER 1
DHCP message type DISCOVER

4.2.2.4 #define DHCPMSG_DHCPINFORM 8
DHCP message type INFORM

4.2.2.5 #define DHCPMSG_DHCPNAK 6
DHCP message type NAK

4.2.2.6 #define DHCPMSG_DHCPOFFER 2
DHCP message type OFFER

4.2.2.7 #define DHCPMSG_DHCPRELEASE 7
DHCP message type RELEASE

4.2.2.8 #define DHCPMSG_DHCPREQUEST 3
DHCP message type REQUEST

4.2.29 #define DHCPSTATUS_BOUND 5

DHCP status code returned biacpstatus. The DHCP client is in th®@ OUND state:
it has been configured with a valid address.

See also:
dhcpstatus

4.2.2.10 #define DHCESTATUSLINIT O

DHCP status code returned iacpstatus. The DHCP client is in théNIT state: it
has not yet sent a DHCBISCOVER message.

See also:
dhcpstatus

32

4.2.2.11 #define DHCESTATUS_INITREBOOT 3
DHCP status code returned tiicp status. The DHCP client is in thétNITREBOOT
state: it has rebooted, and is trying to acquire its old address.

See also:
dhcpstatus

4.2.2.12 #define DHCESTATUS_REBINDING 7
DHCP status code returned diacpstatus. The DHCP client is in th&@EBINDING
state: it is attempting to get a new lease after its current lease expired.

See also:
dhcpstatus

4.2.2.13 #define DHCESTATUS_REBOOTING 4
DHCP status code returned bificp status. The DHCP client is in th@REBOOTING
state: after a reboot, it is waiting for permission to use its old address.

See also:
dhcpstatus

4.2.2.14 #define DHCESTATUS_RENEWING 6
DHCP status code returned diacpstatus. The DHCP client is in th&ENEWING
state: it is attempting to extend the current, valid lease of its address.

See also:
dhcpstatus

4.2.2.15 #define DHCESTATUS_REQUESTING 2

DHCP status code returned biicp status. The DHCP client is in thREQUESTING
state: it has requested a DHCP address, and is awaiting a reply.

See also:
dhcpstatus

33

4.2.2.16 #define DHCESTATUS_SELECTING 1
DHCP status code returned bircp status. The DHCP client is in th&ELECTING
state: it is collecting DHCP offers.

See also:
dhcpstatus

4.2.2.17 #define ROM40@MHCP_VERSION 10
Version number associated with this header file. Should be the same as the version
number returned by theéhcpversionfunction.

See also:
dhcpversion

4.2.3 Function Documentation

4.2.3.1 void dhcpgetprimarydns (struct sockaddr « addres$
Returns the IP address of the primary DNS server.

Returns the IP address of the primary DNS server. The DNS server can be set by an
option received from a DHCP response, or by setting it manually from the DNS library
functiondnssetprimary. Note that this DNS server information entry is cleared out

on initialization.

Parameters:
addresswill fill in the primary DNS server IP address

See also:
dhcpgetsecondarydns
dnssetprimary
dnsgetprimary

4.2.3.2 void dhcpgetsecondarydns (strucsockaddr x addres$
Returns the IP address of the secondary DNS server.

Returns the IP address of the primary DNS server. The DNS server can be set by an
option received from a DHCP response, or by setting it manually from the DNS library
function dnssetprimary. Note that this DNS server information entry is cleared out

on initialization.

Parameters:
addresswill fill in the secondary DNS server IP address

34

See also:
dhcpgetprimarydns
dnssetsecondary
dnsgetsecondary

4.2.3.3 void dhcpgetserverip (structsockaddr x addressint len)
Returns the IP address of the DHCP server.

Parameters:
addresswill fill in the DHCP server IP address

len length of the address structure (ignored)

4.2.3.4 unsigned int dhcpgettaskid ()
Returns task ID of the DHCP process.

Returns the task ID of the DHCP process. If the DHCP process has not been initialized
(but theinit_romfunction has been called), this function returns 0.

The value returned by this function is suitable to use with the task library—for instance,
to alter the priority of the DHCP task.

Returns:
Task ID of the DHCP process.

See also:
#dhcpgetinit
#dhcpisinitialized

4.2.3.5 unsigned char dhcpnit (void)
Initializes the DHCP client.

Starts a DHCP Client task and returns to the caller. DHCP is implemented for IPv4
only. The IPv6 portion of the network stack uses neighbor discovery. To read the
address that the DHCP client has leased, use the socket library fugetioatwork-
params.

Returns:
0 for success, non-zero for failure.

See also:
dhcpstop
getnetworkparampn the socket library]

35

4.2.3.6 void dhcpregisterbuildpacket (unsigned char§ functionptr)(unsigned
char far xoption, unsigned char msgtype))

Register a function to be called when a DHCP packet is about to be sent.

The function passed danctionptrwill be called when the DHCP client is about to
send a DHCP packet. The function pointed tofbgictionptrshould take two argu-
mentis (a pointer and a byte) and return a byte. Whenever the function at functionptr is
called, the pointer will be pointing to the first byte after the default options. The user
can fill in additional DHCP options, e.g. 0x0c,0x04,T",I'’N’;'I' would be a DHCP
hostname option. The msgtype argument contains the current DHCP message type
(DHCP.MSG_DISCOVER or DHCPMSG_REQUEST). The return value is the num-

ber of bytes added to the DHCP options, 6 in the hosthame example above.

The function does not need to save/restore any registers.

Parameters:
functionptr Pointer to a function with the signature unsigned char fn(unsigned
char far option, unsigned char msgtype)

4.2.3.7 void dhcpregisternotify (void(x functionptr)(unsigned int newstate, un-
signed char far xpacket))

Register a function to be notified when DHCP acquires or loses an IP.

The function passed danctionptrwill be called when the DHCP client acquires or
loses an IP.

Parameters:
functionptr Pointer to a function with the signature void fn(unsigned int new-
state, unsigned char fapacket). The function will be provided with the
new DHCP state and a pointer to the last DHCP packet received (the packet
pointer points to the beginning of the BOOTP data structure).

See also:
dhcpstatus

4.2.3.8 void dhcpregisterparseoption (voidé functionptr)(unsigned char far
xoption))

Register a function to be called when an unknown or unhandled DHCP option is en-
countered.

The function passed dsanctionptrwill be called when the DHCP client is parsing
an unknown DHCP option. The function pointed to fayctionptr should take one
argument (a pointer) and return void. Whenever the function at functionptr is called,
the argument will be pointing to the current unhandled or vendor specific DHCP option.

36

The function does not need to save/restore any registers.

Parameters:
functionptr Pointer to a function with the signature void fn(unsigned chas far
option).

4.2.3.9 unsigned int dhcpstatus (void)
Gets the status of the DHCP client.

Returns the current state of the DHCP Client. DHCP Clients that have leased a valid
address should retuldHCP_STATUS_BOUND .

Returns:
Status of the DHCP client.

4.2.3.10 void dhcpstop (void)
Disabled the DHCP client.
Kills the DHCP client task. Usdhcpinit to restart the DHCP client.

See also:
dhcpinit

4.2.3.11 unsigned int dhcpversion (void)

Returns the version number of this DHCP library.

Returns:
Version number of this DHCP library.

4.3 rom40Qerr.h File Reference
4.3.1 Detailed Description

Error codes used by functions in the DS80C400 ROM.

This file contains error codes that might be returned by functions that call into the
ROM.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

37

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Defines

» #defineEROM400ERR VERSION1
 #defineROM400I0EXCEPTIONOXOB

» #defineEROM400INTERRUPTEDIOEXCEPTIONDx36

» #defineEROM400ARRAYINDEXOUTOFBOUNDSEXCEPTIONIXOD
 #defineEROM40QINTERNALERROROXx2C

» #defineEROM40QNULLPOINTEREXCEPTIONOX08

» #defineEROM40QOUTOFMEMORYERROROX30

» #defineEROM40QBINDEXCEPTION0x35

» #defineEROM40QCONNECTEXCEPTIONOXx46

* #defineROM400.SOCKETEXCEPTIONOX32

4.3.2 Define Documentation

4.3.2.1 #define ROM40ARRAYINDEXOUTOFBOUNDSEXCEPTION 0x0D

Indicates that the index or offset to an array access was out of bounds.

4.3.2.2 #define ROM40BINDEXCEPTION 0x35

Indicates that application cannot bind to address (interface unavailable, not a server
socket or socket not bound).

4.3.2.3 #define ROM400CONNECTEXCEPTION 0x46

Indicates that an error occurred trying to connect to a remote port. The connection was
probably refused remotely.

4.3.2.4 #define ROM40(ERR_VERSION 1

Version number associated with this header file.

4.3.2.5 #define ROM40ONTERNALERROR 0x2C

Indicates a problem with the network queue.

4.3.2.6 #define ROM40ONTERRUPTEDIOEXCEPTION 0x36

Indicates that a sleep or wait was interrupted.

38

4.3.2.7 #define ROM400OEXCEPTION 0x0B

General error that is returned when a resource (memory, port) is not available or an
internal data structure (table) cannot hold more elements or is corrupted.

4.3.2.8 #define ROM4A0INULLPOINTEREXCEPTION 0x08

Indicates that a pointer was not able to be dereferenced.

4.3.29 #define ROM400OUTOFMEMORYERROR 0x30

Indicates that the system has run out of kernel or regular memory to allocate.

4.3.2.10 #define ROM40BBOCKETEXCEPTION 0x32

Indicates that a socket is not available (port in use or socket closed).

4.4 rom40Qflash.h File Reference
4.4.1 Detailed Description

Flash programming functions for the TINIm400 module.

This library contains functions that allow applications to access the ROM's flash eras-
ing and programming algorithms. Any flash that is compatible with the DS80C400
boot loader’s functions will be compatible with this library.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

The functions in this library are multi-process safe—that is, if you call the same method
from two different processes at the same time, the parameters to the function will not
be destroyed. However, multiple processes should not be performing flash altering
operations without some kind of synchronization control.

Defines

* #defineROM400FLASH_VERSION2

Functions

« unsigned chaflasheraseblocKunsigned char blocknum)
Erase a flash block.

* unsigned chaflash programbytgvoid xlocation, unsigned char b)

39

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Program a byte of flash.

¢ unsigned inflash.version(void)
Returns the version number of this flash library.

4.4.2 Define Documentation

4421 #define ROM400FLASH VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thigash versionfunction.

See also:
flash.version

4.4.3 Function Documentation

4.4.3.1 unsigned char flaskeraseblock (unsigned chablocknum)
Erase a flash block.

Erases the block of flash that begins at addbéssknunt00:00. This operation checks
to see if the block is RAM or is the ROMbdlocknumequals FF), in which case the
operation fails.

Parameters:
blocknum bank/block number of flash to erase

Returns:
0 if the erase was successful, 1 if the erase could not be performed.

4.4.3.2 unsigned char flastprogrambyte (void * location, unsigned charb)
Program a byte of flash.

Programs the bytb to the addreskocation. If the location is unprogrammable (too
many zero bits have already been set) the operation fails.

Parameters:
location The address to write the valbgo

b The value to be programmed

Returns:
0 if the program is successful, 1 if the operation could not be performed.

40

4.4.3.3 unsigned int flashversion (void)

Returns the version number of this flash library.

Returns:
Version number of this flash library.

4.5 rom40Qhttp.h File Reference
4.5.1 Detailed Description

Http Server functions in the DS80C400 ROM.
This library contains functions for implementing http server in DS80C400 ROM

For detailed information on the DS80C400 please see lIthigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
Some functions in this library aldOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Data Structures

* struct_http_request
« struct_http_response
e struct_http_session
« struct_http_variable

Defines

* #defineHTTP_VERSION3

o #defineHTTP_INSUFFICIENT-MEMORY -1

* #defineHTTP_LOGFILE_.ERROR-2
 #defineHTTP_.SOCKET.ERROR-3

o #defineHTTP_REQUESTNOT_PROCESSED4
o #defineHTTP_.DENY_CONNECTION-5
 #defineHTTP_TASK_ERROR-6

o #defineHTTP_.SERVERALREADY _RUNNING -7
o #defineHTTP_.NOSERVERTASK-8

o #defineHTTP_.STATUS.SUCCESS)

o #defineHTTP_DISABLE_LOG 0

41

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

* #defineHTTP_.ENABLE_LOG 1

* #defineHTTP_.ENABLE_VARIABLE _PARSING1
* #defineHTTP_DISABLE_VARIABLE _PARSINGO
o #defineHTTP_.STORP.SERVERTASKO

o #defineHTTP_.RUN_SERVERTASK1
 #defineDEFAULT _BUF_SIZE 400

* #defineDEFAULT _MAX _PENDING.CONNECIONS5
 #defineHTTP_.DEFAULT_PORT80

o #defineHTTP_.MAX _URL 400
 #defineHTTP_.MAX _BUFSIZE400

o #defineHTTP_.GET_.METHOD 1

o #defineHTTP_.POSTMETHOD 2

o #defineHTTP_.HEAD_METHOD 3

Typedefs

typedef_http_variablehttp_variable
typedef_http_requeshttp_request
typedef_http_responséttp_response
typedef_http_sessiorhttp_session

Functions

* unsigned inhttp_version(void)
Returns the version number of http server library.

« int http_init (structsockaddiserveraddr)
Initializes http server library.

« int http_setrootdir(charx«rootdir)
Sets http root directory.

 charx http_getrootdir(void)
Returns http root directory.

« int http_setindexpagécharxindex)
Sets index page name.

¢ charx http_getindexpagévoid)
Returns current index page.

« void http_setportnumbe(int portnumber)

42

Sets HTTP Server Port number.

int http_getportnumbegvoid)
Returns current http server port number.

void http_setheaderbufsizgnt buffersize)
Sets header buffer size.

int http_getheaderbufsizg/oid)
Returns header buffer size.

void http_setreq.linesize(int buffersize)
Sets the maximum size value of each line of http request.

int http_getreqlinesize(void)
Returns the maximum size value of each line of http request.

void http_setreqg processoptions(char flag)
Sets Http request Variable parsing status flag value.

charhttp_getreq processoptions(void)
Returns Http request Variable parsing status flag value.

int http_getlogging(void)
Returns logging status.

int http_setlogging(char logstatus)
Sets logging status.

charsx http_getlogfilenamévoid)
Returns log file name.

int http_setlogfilenamécharxlogfilename)
Sets log file name.

void http_setmaxconnection@t max.connection)
Sets maximum number of pending connections value.

int http_getmaxconnection@oid)
Returns the current value for maximum number of pending connections.

void http_setclientsocktimeoutong milli_sec)

43

Sets http client socket timeout value.

« long http_getclientsocktimeouivoid)
Returns the current value for http client socket timeout.

« void http_reg req callback(int(xfunc)())
Registers callback function to process http request.

« void http_reg acl callback(int(xfunc)())
Registers access control callback function.

« void http_sendheaderghttp_sessionxhttps)
Sends http response headers to client.

« int http_startserver(void)
Starts http server.

« int http_kill _server(void)
Terminates http server.

« void http_decodeurlencodeddatécharxpathname)

Decodes the url path which was encoded in "application/x-www-form-urlencoded”
format.

« charhttp_hexfrom_ascii(char c)
Returns hexadecimal value for input ascii digit.

« int http_.changeserverstate(char serveistate)
Changes Http Server state.

4.5.2 Define Documentation

4521 #define DEFAULTBUF_SIZE 400

Define for default header buffer size

See also:
http_getheaderbufsize
http_setheaderbufsize

44

45.2.2 #define DEFAULTMAX -PENDING_CONNECIONS 5

Define for default maximum pending connections allowed

See also:
http_setmaxconnections
http_getmaxconnections

45.2.3 #define HTTRDEFAULT _PORT 80

Define for default http port number

See also:
http_getportnumber
http_setportnumber

45.2.4 #define HTTRDENY_CONNECTION -5

Error value to indicate that http client connection is denied by access control callback
function

See also:
http_reg acl.callback

4525 #define HTTPDISABLE _LOG 0
Define for disabling logging activity

See also:
http_setlogging
http_getlogging

4.5.2.6 #define HTTPDISABLE _VARIABLE _PARSING 0
Define for disabling variable parsing status flag
See also:

http_setreq processoptions
http_getreq processoptions

45

4527 #define HTTRENABLE LOG 1
Define for enabling logging activity
See also:

http_setlogging
http_getlogging

4528 #define HTTRENABLE _VARIABLE _PARSING 1
Define for enabling variable parsing status flag
See also:

http_setreq processoptions
http_getreq processoptions

4529 #define HTTRGET_-METHOD 1
Get request method type
See also:

http_request
http_session

45210 #define HTTRPHEAD _METHOD 3
Head request method type
See also:

http_request
http_session

45211 #define HTTRINSUFFICIENT _.MEMORY -1

Insufficient memory error value
See also:
http_setrootdir

http_setindexpage
http_setlogfilename

46

45212 #define HTTRPLOGFILE _ERROR -2
Error opening log file

See also:
http_setlogging

45.2.13 #define HTTPMAX _-BUFSIZE 400
Define for maximum buffer size

See also:
http_request
http_session

45.2.14 #define HTTPMAX _URL 400

Define for maximum url path name size

See also:
http_request
http_session

45.2.15 #define HTTPNOSERVERTASK -8

Error value to indicate that http server task is not running

See also:
http_startserver
http_kill _server
http_changeserverstate

45.2.16 #define HTTPPOST-METHOD 2

Post request method type

See also:
http_request
http_session

45.2.17 #define HTTPREQUEST_NOT_PROCESSED -4

Error value to indicate that http request was not processed by callback function

See also:
http_reg reg.callback

47

45.2.18 #define HTTPRUN_SERVERTASK 1

Define for running http server task

See also:
http_changeserverstate

4.5.2.19 #define HTTRSERVER_ALREADY _RUNNING -7

Error value to indicate that server is already running

See also:
http_startserver

45.2.20 #define HTTPSOCKET_ERROR -3
Socket error value

See also:
http_startserver

45.2.21 #define HTTRSTATUS_SUCCESS 0

Http Status Success value, this value is returned when operation is completed success-
fully

See also:
http_setrootdir
http_setindexpage
http_setlogfilename
http_startserver
#httpstopserver

4.5.2.22 #define HTTRSTOP_SERVERTASK 0

Define for stopping http server task

See also:
http_changeserverstate

4.5.2.23 #define HTTPTASK _ERROR -6
New task creation error

See also:
http_startserver

48

4.5.2.24 #define HTTPVERSION 3
Version number associated with this header file. Should be the same as the version
number returned by thettp_versionfunction.

See also:
http_version

4.5.3 Typedef Documentation

4.5.3.1 typedef structhttp requesthttp _request

Structure for http request

4.5.3.2 typedef struct http _responsehttp _response

Structure for http response

4.5.3.3 typedef struct http _sessiorhttp _session

Structure for http session

4.5.3.4 typedef struct http _variable http _variable

Structure for http variable names and values

4.5.4 Function Documentation

4.5.4.1 int http_.changeserver_state (charserverstatg
Changes Http Server state.
This function sets http server state
This function is safe to be called from multiple processes at the same time.
Parameters:
serverstate Server state. Should be eithéT TP.RUN.SERVERTASKr HTTP--
STORSERVERTASK

Returns:
HTTP.STATUSSUCCES®r HTTP.NOSERVERTASK

49

4.5.4.2 void httpdecodeurlencodeddata (charx pathname

Decodes the url path which was encoded in "application/x-www-form-urlencoded” for-
mat.

This function decodes the url path which was encoded in "application/x-www-form-
urlencoded” format.

This function is safe to be called from multiple processes at the same time.

Parameters:
pathname pointer to url path name

4.5.4.3 int http_getreq_linesize (void)
Returns the maximum size value of each line of http request.
This function returns the maximum size value of each line of http request

This function is safe to be called from multiple processes at the same time.

Returns:
the maximum size value of each http request line

4.5.4.4 char httpgetreq_processoptions (void)
Returns Http request Variable parsing status flag value.
This function is safe to be called from multiple processes at the same time.

Returns:
The variable parsing status flag value

4.5.4.5 long httpgetclientsocktimeout (void)

Returns the current value for http client socket timeout.

This function returns the current value for http client socket timeout

This function is safe to be called from multiple processes at the same time.

Returns:
The current value for http client socket timeout

50

4.5.4.6 int http_getheaderbufsize (void)
Returns header buffer size.
This function returns buffer size value for http request and response headers.

This function is safe to be called from multiple processes at the same time.

Returns:
header buffer size

4.5.4.7 chak http _getindexpage (void)
Returns current index page.
This function returns the current index page name.

This function is safe to be called from multiple processes at the same time.

Returns:
The starting address of index page name. NULL will be returned if there is no
index page set.

4.5.4.8 chax http _getlogfilename (void)
Returns log file name.
This function returns the log file name.

This function is safe to be called from multiple processes at the same time.

Returns:
The address of log file name. NULL will be returned if there is no log file set.

4.5.4.9 int http_getlogging (void)
Returns logging status.
This function returns the current logging status

This function is safe to be called from multiple processes at the same time.

Returns:
HTTP.DISABLELOGor HTTP.ENABLELOG

51

4.5.4.10 int http.getmaxconnections (void)

Returns the current value for maximum number of pending connections.

This function returns the current value for maximum number of pending connections
This function is safe to be called from multiple processes at the same time.

Returns:
The current value for maximum number of pending connections.

4.5.4.11 int http_getporthumber (void)

Returns current http server port number.

This function returns the current http server port number

This function is safe to be called from multiple processes at the same time.

Returns:
http server port number

4.5.4.12 chax http _getrootdir (void)

Returns http root directory.

This function returns the current root directory path name.

This function is safe to be called from multiple processes at the same time.
Returns:

The starting address of root directory path name. NULL will be returned if there
is no root directory set.

4.5.4.13 char httphex from _ascii (char)
Returns hexadecimal value for input ascii digit.
This function returns hexadecimal value for input ascii digit
This function is safe to be called from multiple processes at the same time.
Parameters:
¢ ascii digit

Returns:
hexadecimal value for input ascii digit

52

4.5.4.14 int http.init (struct sockaddrserveraddr)

Initializes http server library.

This function initializes the internal data structures of http server library
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
serveraddr Address of http server. Should be initialized with the IP address of
the TINI it is running on.

Returns:
Always returnsHTTP_.STATUSSUCCESS

4.5.4.15 int http.kill _server (void)

Terminates http server.

This function Terminates http server

This function is safe to be called from multiple processes at the same time.

Returns:
HTTP.STATUSSUCCESSHTTP.NOSERVERTASK

4.5.4.16 void httpreg_acl_callback (int(x func)())

Registers access control callback function.

This function registers callback function to process http request
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
func - the function pointer to call back function

NOTE:

Access control callback function should have the following function prototype to re-
ceive the sockaddr pointer

int << http access control call back function name (sockaddraddress)

53

NOTE: Access control callback routine should rettfRiTP.STATUSSUCCESSalue
to process the http requestT TP.DENY.CONNECTIONerror value to deny the client
connection

Warning:
this callback function should be multi-task safe.

4.5.4.17 void httpreg_req_callback (int(x func)())

Registers callback function to process http request.

This function registers callback function to process http request
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
func - the function pointer to call back function

NOTE: Http request process callback function should have the following function pro-
totype to receive http session structure pointer.

int << http request process call back function name (http_sessionkhttps)

NOTE: Http request process callback routine should reHifiTf P.STATUSSUCCESS
value, if the request was processéti TP.REQUESTNOT_PROCESSEI[@rror value
to let http library process the request.

Warning:
this callback function should be multi-task safe.

4.5.4.18 void httpsendheaderslittp _session« https)

Sends http response headers to client.

This function sends http response headers to client

This function is safe to be called from multiple processes at the same time.

NOTE: the response code, content type, content length, and response header values
can be modified from application before sending response headers

Parameters:
https the pointer to http session object that contains response header value

54

4.5.4.19 void httpsetreq_linesize (intbuffersizg
Sets the maximum size value of each line of http request.

This function sets the maximum size value of each line of http request

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
buffersize the maximum size value of each http request line

4.5.4.20 void httpsetreq_processoptions (char flag)
Sets Http request Variable parsing status flag value.

This function sets http request variable parsing status flag value. By default, the flag
containsHTTP_ENABLE _VARIABLE _PARSING value. When the flag is set with
HTTP_ENABLE_VARIABLE _PARSING The http server parses the variables from
"query string”, and "message body” and stores it in variable list. The variable needs
to be passed using standard convention(variablename=value) to make http server li-
brary to parse the variables successfully. The parsing process can be disabled by set-
ting HTTP_DISABLE_VARIABLE _PARSINGVvalue, and user can access both "query
string” and "messagebody” values from querystring,messagebody members of http ses-
sion object.

This function is safe to be called from multiple processes at the same time.
Parameters:
flag Http request Variable parsing status flag value. Should be one of

HTTP_.ENABLE_VARIABLE _PARSING HTTP_DISABLE_VARIABLE _-
PARSING

4.5.4.21 void httpsetclientsocktimeout (longmilli _seg
Sets http client socket timeout value.

This function sets http client socket timeout value
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
milli _sec timeout value in milliseconds

55

4.5.4.22 void httpsetheaderbufsize (intuffersize

Sets header buffer size.

This function sets both http request and http response header buffer size
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
buffersize the input buffer size value

4.5.4.23 int http_setindexpage (char index)
Sets index page name.

This function sets index page name in http library. Index page will be sent to http client
if url request path is /"

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
index Index page name

Returns:
e HTTP.STATUSSUCCESH the operation is completed successfully

* HTTPINSUFFICIENTMEMORYif memory can't be allocated for storing
new index page name

4.5.4.24 int http_setlogfilename (char« logfilenameg
Sets log file name.

This function sets log file name with http library.
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
logfilename - name of the log file

56

Returns:
e HTTP.STATUSSUCCESH the operation is completed successfully

e HTTP.INSUFFICIENTMEMORY>/i> if memory can’t be allocated for
storing new log file name

NOTE: Logging activity has to be disabled and re-enabled in order to use new log file
name for logging

4.5.4.25 int http_setlogging (charlogstatug

Sets logging status.

This function sets the logging status with http server library
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
logstatus Logging status value. EitheHTTP.DISABLELOG or HTTP.-
ENABLELOG

Returns:
HTTP.STATUSSUCCESS®r HTTP.LOGFILE_.ERROR

4.5.4.26 void httpsetmaxconnections (intmnax_.connectior)
Sets maximum number of pending connections value.

This function sets maximum number of pending connections allowed in the listen
queue

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
max_connection Value for maximum number of pending connections

4.5.4.27 void httpsetportnumber (int portnumbe)
Sets HTTP Server Port number.

This function sets http server port number

57

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
portnumber the input http server port number

NOTE: http server has to be stopped and re-started in order to use new http port number.

4.5.4.28 int http_setrootdir (char « rootdir)
Sets http root directory.

This function sets http root directory in http library. url pathname for particular re-
source is "relative path name” to root directory.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
rootdir root directory path

Returns:
e HTTP.STATUSSUCCESY the operation is completed successfully

* HTTPINSUFFICIENTMEMORYif memory can't be allocated for storing
new root directory name

4.5.4.29 int http_start_server (void)
Starts http server.
This function starts http server

This function is safe to be called from multiple processes at the same time.

Returns:
One of: HTTP.STATUSSUCCESS HTTP.TASKERROR, HTTP.SOCKET-
ERROR orHTTP.SERVERALREADYRUNNING

4.5.4.30 unsigned int httpversion (void)

Returns the version number of http server library.

Returns:
Version number of http server library.

58

4.6 rom40Qinit.h File Reference
4.6.1 Detailed Description

ROM Initialization functions in the DS80C400 ROM.

This library contains functions for initializing the functionality in the ROM. Note that
the preferred way of initializing the ROM is to simply call thet_romfunction. How-
ever, you can also initialize the various modules individually. To do this, call these
functions in this order:

. init_clearXSEG

. init_copyivt

. init_redirect

. init_clearSystemRAM
. init_-mm

init_km

. init_ow

. init_network

© © N o O O~ W N B

. init_eth

=
o

. init_sockets

=
=

. init_tick

[N
N

. task genesis[in the process scheduler library]

13. init_enableinterrupts

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Functions in this library should only be called once on startup. The safety of calling
these functions from multiple processes at the same time is irrelevant.

Defines

 #defineROM40QINIT VERSION17
#defineUSE KEIL_MONITOR

#defineINIT _DIVISOR_3MHZ 0x01
#definelNIT _DIVISOR_4MHZ 0x08
#definelNIT _DIVISOR_5MHZ 0x02

59

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

« #definelNIT _DIVISOR_6MHZ 0x05

« #definelNIT _DIVISOR_7MHZ 0x03

o #definelNIT _DIVISOR_8MHZ 0x0C

« #definelNIT _DIVISOR_10MHZ 0x06

« #definelNIT _DIVISOR_12MHZ 0x09

o #definelNIT _DIVISOR_14MHZ 0x07

« #definelNIT _DIVISOR_16MHZ 0x10

« #definelNIT _DIVISOR_20MHZ 0x0A

o #definelNIT _DIVISOR_24MHZ 0x0D

« #definelNIT _DIVISOR_28MHZ 0x0B

« #definelNIT _DIVISOR_32MHZ 0x14

e #definelNIT _DIVISOR_40MHZ Ox0E

 #definelNIT _DIVISOR_48MHZ 0x11

« #definelNIT _DIVISOR_56MHZ OxOF

o #definelNIT _DIVISOR_64MHZ 0x18

e #definelNIT _DIVISOR_80MHZ 0x12

« #definelNIT _DIVISOR_96MHZ 0x15

o #defineINIT _DIVISOR_112MHZ 0x13

e #definelNIT _DIVISOR_128MHZ 0x1C

« #definelNIT _POWERFAILRESETOx08

« #definelNIT WATCHDOG_RESETO0x10

o #definelNIT _CRYSTALFAIL_RESETO0x20

 #define DEFAULT HEAP_START ((((long)&HEAP_START)&OX7fffffL)-
0x10000L)

« #defineinit_setfrequendclock) init.setclock(((clock}5L)/6)

Sets the crystal frequency.

Functions

¢ void HEAP_START (void)
¢ void init_-rom (unsigned long menstartaddress, unsigned long meand-
address)

Initializes the modules in the ROM.

« void init_netboot(void)

Starts the netboot functionality. Note that this will negate any initialization that has
already been performed.

« void init_copyivt (void)
Copies the interrupt vector table into memory.

« void init_redirect(void)

60

Sets up the redirect table for ROM redirected calls.

void init_clearSystemRAMvoid)
Clears system variables in internal RAM.

void init_clearXSEG(void)
Clears system variables in external RAM.

void init_-mm (unsigned long menstartaddress, unsigned long mesnd-
address)

Initializes the heap.

void init_km (void)
Initializes fast kernel memory.

void init_ow (unsigned char DIVISOR)
Initializes the internal 1-Wire.

void init_network(void)
Initializes the network.

void init_eth (void)
Initializes the ethernet support.

void init_socketgvoid)
Initializest the socket layer.

void init_tick (void)
Initializes the system timer.

void init_enableinterruptévoid)
Enables system interrupts.

void init_usekeilmonitorvoid)
Performs initialization necessary for using the Keil Monitor.

unsigned ininit_version(void)
Returns the version number of this initialization library.

unsigned chainit_getbootstatévoid)
Returns the boot status flags.

void init_setclock(unsigned int value)

61

Sets the crystal frequency.

4.6.2 Define Documentation

4.6.2.1 #define INICTCRYSTALFAIL _RESET 0x20

Crystal failure reset status.

See also:
init_getbootstate

4.6.2.2 #define INITDIVISOR _'10MHZ 0x06

1-Wire divisor value for operating frequencies greater than 10 MHz but less than 12
MHz.

See also:
init_ow

4.6.2.3 #define INITDIVISOR _112MHZ 0x13

1-Wire divisor value for operating frequencies greater than 112 MHz but less than 128
MHz.

See also:
init_ow

4.6.2.4 #define INITDIVISOR _128MHZ 0x1C

1-Wire divisor value for operating frequencies greater than 128 MHz.

See also:
init_ow

4.6.2.5 #define INITDIVISOR _-12MHZ 0x09

1-Wire divisor value for operating frequencies greater than 12 MHz but less than 14
MHz.

See also:
init_ow

62

4.6.2.6 #define INITDIVISOR _-14MHZ 0x07

1-Wire divisor value for operating frequencies greater than 14 MHz but less than 16
MHz.

See also:
init_ow

4.6.2.7 #define INITDIVISOR _-16MHZ 0x10

1-Wire divisor value for operating frequencies greater than 16 MHz but less than 20
MHz.

See also:
init_ow

4.6.2.8 #define INITDIVISOR 20MHZ Ox0A

1-Wire divisor value for operating frequencies greater than 20 MHz but less than 24
MHz.

See also:
init_ow

4.6.2.9 #define INITDIVISOR _24MHZ 0x0D

1-Wire divisor value for operating frequencies greater than 24 MHz but less than 28
MHz.

See also:
init_ow

4.6.2.10 #define INITDIVISOR _28MHZ 0x0B

1-Wire divisor value for operating frequencies greater than 28 MHz but less than 32
MHz.

See also:
init_ow

4.6.2.11 #define INITDIVISOR _32MHZ 0x14

1-Wire divisor value for operating frequencies greater than 32 MHz but less than 40
MHz.

See also:
init_ow

63

4.6.2.12 #define INITDIVISOR _-3MHZ 0x01

1-Wire divisor value for operating frequencies greater than 3 MHz but less than 4
MHz.

See also:
init_ow

4.6.2.13 #define INITDIVISOR _-40MHZ Ox0E

1-Wire divisor value for operating frequencies greater than 40 MHz but less than 48
MHz.

See also:
init_ow

4.6.2.14 #define INITDIVISOR _48MHZ 0x11

1-Wire divisor value for operating frequencies greater than 48 MHz but less than 56
MHz.

See also:
init_ow

4.6.2.15 #define INITDIVISOR _-4MHZ 0x08

1-Wire divisor value for operating frequencies greater than 4 MHz but less than 5
MHz.

See also:
init_ow

4.6.2.16 #define INITDIVISOR _56MHZ OxOF

1-Wire divisor value for operating frequencies greater than 56 MHz but less than 64
MHz.

See also:
init_ow

4.6.2.17 #define INITDIVISOR _5MHZ 0x02

1-Wire divisor value for operating frequencies greater than 5 MHz but less than 6
MHz.

See also:
init_ow

64

4.6.2.18 #define INITDIVISOR _-64MHZ 0x18

1-Wire divisor value for operating frequencies greater than 64 MHz but less than 80
MHz.

See also:
init_ow

4.6.2.19 #define INITDIVISOR _6MHZ 0x05

1-Wire divisor value for operating frequencies greater than 6 MHz but less than 7
MHz.

See also:
init_ow

4.6.2.20 #define INITDIVISOR _-7MHZ 0x03

1-Wire divisor value for operating frequencies greater than 7 MHz but less than 8
MHz.

See also:
init_ow

4.6.2.21 #define INITDIVISOR _80MHZ 0x12

1-Wire divisor value for operating frequencies greater than 80 MHz but less than 96
MHz.

See also:
init_ow

4.6.2.22 #define INITDIVISOR _-8MHZ 0x0C

1-Wire divisor value for operating frequencies greater than 8 MHz but less than 10
MHz.

See also:
init_ow

4.6.2.23 #define INITDIVISOR _-96MHZ 0x15

1-Wire divisor value for operating frequencies greater than 96 MHz but less than 112
MHz.

See also:
init_ow

65

4.6.2.24 #define INITPOWERFAIL _RESET 0x08

Power fail reset status.

See also:
init_getbootstate

4.6.2.25 #define initsetfrequency(clock) initsetclock(((clockx5L)/6)
Sets the crystal frequency.
Parameters:
clock Clock frequency in kHz (e.g. 14746 for a 14.7456 MHz crystal). The op-
erating frequency is the oscillator adjusted by any setting of the frequency

multiplier (i.e. a 14 MHz oscillator with the clock doubler enabled should
set 28 MHz)

Note that this macro has to be called befmié.rom.

See also:
task settickreload
init_rom
init_setclock

4.6.2.26 #define INITWATCHDOG _RESET 0x10

Watchdog reset status.

See also:
init_getbootstate

4.6.2.27 #define ROM40ONIT _VERSION 17

Version number associated with this header file. Should be the same as the version
number returned by theit_versionfunction.

See also:
init_version

4.6.2.28 #define USKKEIL _MONITOR

Macro that allows the use of a define to determine whether or not to call the function
init_usekeilmonitor. This macro can be called after calliimgt_rom, and will correct
some monitor configuration details that are destroyed viliemom is called.

66

See also:
init_rom
init_usekeilmonitor

4.6.3 Function Documentation

4.6.3.1 void HEAPSTART (void)

Defines the default start address for the heap.

See also:
init_rom

4.6.3.2 void initclearSystemRAM (void)
Clears system variables in internal RAM.
Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_rom

4.6.3.3 void initclearXSEG (void)

Clears system variables in external RAM.

Note that callingnit_romis the preferred way of initializing the ROM.
This function also sets tHePFI bit.

See also:
init_rom

4.6.3.4 void init.copyivt (void)
Copies the interrupt vector table into memory.

Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_rom

67

4.6.3.5 void initenableinterrupts (void)
Enables system interrupts.

Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_rom

4.6.3.6 void initeth (void)
Initializes the ethernet support.

Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_rom

4.6.3.7 unsigned char initgetbootstate (void)
Returns the boot status flags.

The status flags are defined as follows: Status.3 (0x08) - Power Fail Reset INIT
POWERFAILRESET Status.4 (0x10) - Watchdog Reset INNRTCHDOG_RESET
Status.5 (0x20) - Crystal Oscillator Failure Reset INFRYSTALFAIL_RESET All
other bits are reserved, but not necessarily 0.

Returns:
Status flags

See also:
INIT _POWERFAILRESET
INIT _WATCHDOG_RESET
INIT _CRYSTALFAIL_RESET

4.6.3.8 void initkm (void)
Initializes fast kernel memory.

Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_-rom

68

4.6.3.9 void initmm (unsigned long memstart address unsigned long mem-
end.addres$

Initializes the heap.

Note that callingnit_romis the preferred way of initializing the ROM.

Parameters:
memstart address The absolute beginning address for the heap ifgeeom for
a detailed discussion of the input parameters). Unlikdriherom function,
this function cannot acceptfor default parameters. The start address must
be specified. UséDEFAULT.HEAP_STARTo specify the default start ad-
dress.

memend.addressThe absolute ending address for the heap {sigom for a
detailed discussion of the input parameters). Unlikeititerom function,
this function cannot acceftfor default parameters. The end address must
be specified.

See also:
init_rom
#DEFAULT_HEAP_START

4.6.3.10 void initnetboot (void)
Starts the netboot functionality. Note that this will negate any initialization that has
already been performed.

See also:
init_rom

4.6.3.11 void initnetwork (void)
Initializes the network.
Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_rom

4.6.3.12 void initow (unsigned charDIVISOR)
Initializes the internal 1-Wire.

Note that callingnit_romis the preferred way of initializing the ROM.

69

Parameters:

DIVISOR Divisor value for given the DS80C400’s operating frequency. The op-
erating frequency is the oscillator adjusted by any setting of the frequency
multiplier (i.e. a 14 MHz oscillator with the clock doubler enabled should
look for a divisor for 28 MHz)

See also:
init_rom
INIT _DIVISOR_3MHZ
INIT _DIVISOR_4MHZ
INIT _DIVISOR_5MHZ
INIT _DIVISOR_6MHZ
INIT _DIVISOR_7MHZ
INIT _DIVISOR_8MHZ
INIT _DIVISOR_10MHZ
INIT _DIVISOR_12MHZ
INIT _DIVISOR_14MHZ
INIT _DIVISOR_16MHZ
INIT _DIVISOR_20MHZ
INIT _DIVISOR_24MHZ
INIT _DIVISOR_28MHZ
INIT _DIVISOR_32MHZ
INIT _DIVISOR_40MHZ
INIT _DIVISOR_48MHZ
INIT _DIVISOR_56MHZ
INIT _DIVISOR_64MHZ
INIT _DIVISOR_80MHZ
INIT _DIVISOR_96MHZ
INIT _DIVISOR_112MHZ
INIT _DIVISOR_128MHZ

4.6.3.13 void initredirect (void)
Sets up the redirect table for ROM redirected calls.

Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_rom

4.6.3.14 void initrom (unsigned long memstart address unsigned longmem-
end.addres}

Initializes the modules in the ROM.

70

Initializes the network stack, memory manager, process scheduler, and other modules
in the DS80C400 Silicon Software. Calling this method is the preferred way of initial-
izing the ROM.

Note that calling this function will cause the ROM to copy its own interrupt table into
memory. If you have any interrupts installed before calling this function (for instance,
you use the Keil compilergterrupt keyword to declare your function an interrupt
handler), the entry in the interrupt table will be erased.

init_romprints status information to the serial port if serial O is set to use timer 2. If that
is not desired, cleatr2 . #include "reg400.h" ... TR2 = 0; init -
rom(...); TR2 = 1,

init_rom will probe all available 1-Wire devices for an approximate clock frequency
and it will try to find a DS2502-E48 for an Ethernet MAC address. If no DS2502-E48
is present, you must useit_setfrequencyo specify a clock frequency, and you must
modify startup.a51 to manually set a MAC address.

Parameters:
memstart address The absolute beginning address for the heap.

memend addressThe absolute ending address for the heap.

Use memstartaddress==0 to use the default settings for both start and end, or pass a
value to menstartaddress and use meemdaddress==0 to use the remaining mem-
ory in the same bank, or use valid values for both addresses. For example...

memstart- memend- actual start actual end size of heap
address address
0x000000 0x000000 0x002900 OXO00FFFF 55040
#DEFAULT.- | OXO7FFFF 0x002900 OX07FFFF 513792
HEAP--
START
0x010440 0x000000 0x010440 OXO1FFFF 64448
0x010440 Ox07FFFF 0x010440 OXO07FFFF 457663

See also:

#DEFAULT_HEAP_START

4.6.3.15 void initsetclock (unsigned intvalue)

Sets the crystal frequency.

Parameters:
value Clock frequency in kHz 5/6 (e.g. 12288 for a 14.7456 MHz crystal). The
operating frequency is the oscillator adjusted by any setting of the frequency
multiplier (i.e. a 14 MHz oscillator with the clock doubler enabled should
set 28 MHz)

71

Note that this function has to be called befan&_rom . Users should call the more
friendly macroinit_setfrequency

See also:
task settickreload
init_rom
init_setfrequency

4.6.3.16 void initsockets (void)
Initializest the socket layer.

Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_rom

4.6.3.17 void inittick (void)
Initializes the system timer.

Note that callingnit_romis the preferred way of initializing the ROM.

See also:
init_rom

4.6.3.18 void initusekeilmonitor (void)
Performs initialization necessary for using the Keil Monitor.

Performs initialization needed when using the Keil MON390 Monitor to debug pro-
grams that access the DS80C400’s ROM. This function should be called after calling
init_rom, and only if the monitor will be used.

This file includes a macrodSEKEIL_MONITORwhich is defined to call this function
if #MONITORIs defined. Use the following code to make use of this macro:

init_rom() ;
USE_KEIL_MONITOR

See also:
init_rom
USEKEIL_MONITOR

72

4.6.3.19 unsigned int initversion (void)

Returns the version number of this initialization library.

Returns:
Version number of this INIT library.

4.7 rom40Qkmem.h File Reference
4.7.1 Detailed Description

Kernel Memory initialization functions for the DS80C400 ROM.

This library allows users to allocate different amounts of memory as fast kernel buffers
for use as ethernet buffers and as task control structures. The default allocation by the
ROM may not be sufficient, and the use of multiple processes and multiple sockets
might combine to drain all kernel memory. This library allows you to increase that
amount for more complex applications.

There are two ways to use this library. 1) When usimg_rom : Call kmeminstall
before callingnit_rom.

2) When using the individual initialization functions: The functiomeminit is meant
to replace the functiomit_kmfrom the initialization library.

For detailed information on the DS80C400 please see Ihigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

The functions in this library are multi-process safe—that is, if you call the same method
from two different processes at the same time, the parameters to the function will not
be destroyed. However, the functigmeminit is a system initialization function and
should only be called once before the process scheduler is active.

Defines

o #defineROM400KMEM _VERSIONS5
 #defineROM400KMEM MODEL_SMALLEST 1
 #defineROM400KMEM MODEL_LARGEST11

Functions

¢ unsigned chakmem.init (unsigned char MODEL)
Initializes the kernel buffers.

 unsigned inkmemyversion(void)
Returns the version number of this KMEM library.

73

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

« void kmeminstall (unsigned char MODEL)
Installs the kmem library.

4.7.2 Define Documentation

4.7.2.1 #define ROM40KMEM MODEL _LARGEST 11
The largest value of the argument to be passddahteminit .
See also:

ROM40QKMEM _-MODEL_SMALLEST
kmemuinit

4.7.2.2 #define ROM40(KMEM _MODEL _SMALLEST 1
The smallest value of the argument to be passdarteminit .
See also:

ROM400KMEM _MODEL_LARGEST
kmemuinit

4.7.2.3 #define ROM40KMEM _VERSION 5
Version number associated with this header file. Should be the same as the version
number returned by thememversionfunction.

See also:
kmem.version

4.7.3 Function Documentation

4.7.3.1 unsigned char kmeninit (unsigned char MODEL)
Initializes the kernel buffers.

Allows user applications to specify the amount of kernel memory that will be available

to the system. Kernel memory is used internally for Ethernet buffers and task control
structures, and as such can limit the number of processes or sockets an application can
use concurrently if there is not enough kernel buffer space. The default kernel buffer
allocation given by the ROM is:

* 90 hyte buffers (20 count)

74

256 byte buffers (2 count)

L]

512 byte buffers (1 count)

768 byte buffers (1 count)

1024 byte buffers (1 count)

1280 byte buffers (1 count)

1600 byte buffers (2 count)

By calling this function, the count of kernel buffers is multiplied by the vall@DEL

. Note that whileROM400_.KMEM _MODEL _LARGEST is the largest amount of
kernel memory that the system can support, few applications will need to go beyond
ROM400_.KMEM _MODEL _SMALLEST + 2.

Parameters:
MODEL specifies how much kernel memory will be allocated for the system

Returns:
0 for success, non-zero for failure.

See also:
init_rom

4.7.3.2 void kmeminstall (unsigned charMODEL)
Installs the kmem library.
This function must be called befoneit_rom.

Allows user applications to specify the amount of kernel memory that will be available

to the system. Kernel memory is used internally for Ethernet buffers and task control
structures, and as such can limit the number of processes or sockets an application can
use concurrently if there is not enough kernel buffer space. The default kernel buffer
allocation given by the ROM is:

90 byte buffers (20 count)

256 byte buffers (2 count)

512 byte buffers (1 count)

768 byte buffers (1 count)

1024 byte buffers (1 count)

1280 byte buffers (1 count)

75

¢ 1600 byte buffers (2 count)

By calling this function, the count of kernel buffers is multiplied by the vall@DEL

. Note that whileROM400_.KMEM _MODEL _LARGEST is the largest amount of
kernel memory that the system can support, few applications will need to go beyond
ROM400_.KMEM _MODEL _SMALLEST + 2.

Parameters:
MODEL specifies how much kernel memory will be allocated for the system

See also:
init_rom

4.7.3.3 unsigned int kmemversion (void)

Returns the version number of this KMEM library.

Returns:
Version number of this KMEM library.

4.8 rom40Qmem.h File Reference
4.8.1 Detailed Description

Memory management functions in the DS80C400 ROM.

This library contains functions for allocating and de-allocating blocks of memory
through the ROM’s memory manager.

For detailed information on the DS80C400 please see Ihigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

The methods in this library are all multi-process safe. That is, a function can be called
by more than one process at the same time and its parameters won'’t be destroyed.

Defines

» #defineEROM40QMEM_VERSION 6

Functions

« void x memmalloc (unsigned int size)
Requests a block of memory to be allocated.

76

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

« void x memmallocdirty (unsigned int size)
Requests a block of memory to be allocated.

¢ unsigned chamemfree (void xptr)
De-allocates a block of memory.

 unsigned longnemgetfreeran(void)
Returns the amount of memory available for allocation.

* unsigned inmemsizeof(void xptr)
Gets the size of an allocated block of memory.

* unsigned intmem.version(void)

Returns the version number of this memory management library.

« void memcoalescedvoid)
Join adjacent chunks of freed memory.

4.8.2 Define Documentation

4.8.2.1 #define ROM40OMEM _VERSION 6
Version number associated with this header file. Should be the same as the version
number returned by th@memversionfunction.

See also:
mem.version

4.8.3 Function Documentation

4.8.3.1 void memcoalesce (void)
Join adjacent chunks of freed memory.

When the memory manager frees allocated memory, it makes no attempt to rejoin
adjacent pieces of memory, Therefore, the memory becomes fragmented over time
unless the allocation calls are very careful. This function will join adjacent pieces of
memory and make the larger piece available for allocation.

4.8.3.2 unsigned char menfree (void * ptr)

De-allocates a block of memory.

77

Deallocates a block of memory that was previously allocated by catiagmmalloc
or memmallocdirty, making this block available for re-allocation. Use the function
memgetfreeranto determine how much memory is available for allocation.

This is a redirected function. The ROM includes a default memory manager implemen-
tation. See th®S80C400 User's Guide forinformation on replacing the default
memory manager with your own memory manager.

Parameters:
ptr pointer to the beginning of the previously allocated memory

Returns:
0 for success, non-zero for failure

See also:
memmalloc
memmallocdirty
mem.getfreeram
memsizeof

4.8.3.3 unsigned long mengetfreeram (void)
Returns the amount of memory available for allocation.

Returns the total amount of memory available for allocation. Memory is allocated in
increments of 32 bytes. Due to fragmentation, large memory allocations may not be
possible.

Note that the size returned by this function includes the memory manager overhead for
this particular block. For example, if you request 512 bytes in a cathéonmalloc

, this function will report the amount 512 plus overhead size, rounded up to the next
32-byte block (thus returning 544).

This is a redirected function. The ROM includes a default memory manager implemen-
tation. See th®S80C400 User's Guide for information on replacing the default
memory manager with your own memory manager.

See also:
mem.sizeof

Returns:
The amount of memory available for allocation from the memory manager.

4.8.3.4 voidk mem_malloc (unsigned intsize

Requests a block of memory to be allocated.

78

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Tries to allocate a block of memory of the requested size. The data allocated is
filled with 0's. To request non-cleared memory (and save the extra timehasg
mallocdirty. To de-allocate the memory block, usemfree.

This is a redirected function. The ROM includes a default memory manager implemen-
tation. See th®S80C400 User's Guide forinformation on replacing the default
memory manager with your own memory manager.

Parameters:
size amount of data requested for allocation

Returns:
pointer to the newly allocated memory, or NULL (0) if the operation failed

See also:
memmallocdirty
memfree
memsizeof

4.8.3.5 void mem.mallocdirty (unsigned int siz
Requests a block of memory to be allocated.

Tries to allocate a block of memory of the requested size. The data allocated is NOT
filled with 0’s, and is likely to be filled with unpredictable values. To request cleared
memory, usenemmalloc. To de-allocate the memory block, usemfree.

This is a redirected function. The ROM includes a default memory manager implemen-
tation. See th®S80C400 User's Guide for information on replacing the default
memory manager with your own memory manager.

Parameters:
size amount of data requested for allocation

Returns:
pointer to the newly allocated memaory, or NULL (0) if the operation failed

See also:
memmalloc
memfree
memsizeof

4.8.3.6 unsigned int memnsizeof (voidx ptr)

Gets the size of an allocated block of memory.

79

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Returns the size of a block of memory that was allocated by the ROM’s default memory
manager. If the input pointer is not a valid pointer that was created by an earlier call to
memmallocor #memdirtymalloc, the value returned has no meaning.

This isNOT a redirected function, and only functions if the ROM’s default memory
manager is used.

Parameters:
ptr pointer to the beginning of the previously allocated memory

Returns:
size of the memory allocated for a valid input pointer

See also:
memmalloc
memmallocdirty
memgetfreeram

4.8.3.7 unsigned int memversion (void)

Returns the version number of this memory management library.

Returns:
Version number of this memory management library.

4.9 rom40Qnetif.h File Reference
4.9.1 Detailed Description

Network interface library for the DS80C400.
This library allows a user to add network interface drivers to the network stack.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Defines

» #defineEROM40QNETIF_-VERSION2

Functions

« unsigned innetif_version(void)
Returns the version number of this NETIF library.

80

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

« int netif_packetreceive@unsigned chazpacket, int len)
Submit an inbound packet to the network stack.

« int netif_ addinterface(char xname, unsigned long ip, unsigned long subnet,
unsigned long gateway, unsigned char flags,«traismitter)(unsigned char
xpacket, int len), int mtu, unsigned char timeout)

Add an interface to the network interface list.

« int netif_ removeinterfacéchar«name)
Remove specified interface from the network interface list.

« int netif_setdefaultinterfacécharxname)
Set the specified interface Ras default interface.

4.9.2 Define Documentation

49.2.1 #define ROM40INETIF VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by theetif versionfunction.

See also:
netif_version

4.9.3 Function Documentation

4.9.3.1 int netifaddinterface (charx name unsigned longip, unsigned longsub-
net, unsigned longgateway unsigned charflags, int(x transmitten(unsigned char
xpacket, int len), int mtu, unsigned chartimeou?)

Add an interface to the network interface list.

Parameters:
name name of network interface (e.g. "ppp0”)

ip IP address of the new interface (MSB first, e.g. 0x0a000002L for 10.0.0.2)
subnet subnet mask of the new interface (e.g. OxffO0O0000L for 255.0.0.0)
gateway gateway IP address of the new interface (e.g. 0x0a000001L for 10.0.0.1)
flags set to 1 if new interface should be the default interface (else 0)

transmitter address of the user supplied transmit function (see below)

mtu maximum transmission unit

81

timeout initial tcp timout period based on an 8Hz tick; must be 8, 16, 32,6 4 or
128 (default: 128)

Returns:
1 for success, 0 for failure

See also:
netif_removeinterface

The transmitter functiomt transmitter(unsigned chatpacket, int lenshould return

1 when the packet was successfully sent (or dropped) and the packet memory should
be freed. If the packet couldn’t be sent and the packet should be retried, the transmitter
should return 0. The argumepacketpoints to the IP packet data to be transmitted
andlengthis the length of the IP packet. Note that the transmit function runs under
interrupt. Registers are saved, but only thread-safe functions can be called.

4.9.3.2 int netif packetreceived (unsigned chak packet int len)

Submit an inbound packet to the network stack.

Parameters:
packet IP packet

len length of the packet

Returns:
1 for success, 0 for failure

4.9.3.3 int netif removeinterface (charx name

Remove specified interface from the network interface list.

Parameters:
name name of network interface to remove

Returns:
1 for success, 0 for failure

See also:
netif_addinterface

NOTE: The behavior of this function is not guaranteed if a network interface is re-
moved while output traffic for the interface is still pending. It is recommended to close
all sockets and delay for a few seconds before removing any network interface.

82

4.9.3.4 int netif setdefaultinterface (charx name
Set the specified interface Ras default interface.

Parameters:
name name of network interface

Returns:
1 for success, 0 for failure

4.9.3.5 unsigned int netifversion (void)
Returns the version number of this NETIF library.

Returns:
Version number of this NETIF library.

4.10 rom40Qnetstat.h File Reference
4.10.1 Detailed Description

Network statistics library for the DS80C400.

This library contains functions that return pointers to network information tables in the
socket library.

Note that the tables and structures returned by these functions are the actual, physical
tables used by the network stack and should not be modified by user applications.

Since these are the actual network structures, it is possible they might change while

an application is processing them. Any critical analysis of these structures should be

protected from interruption.

For detailed information on the DS80C400 please see Ihigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Data Structures

« structnetstatarp entry
« structnetstattcp_socket
« structnetstatudp entry

Defines

» #defineEROM400ONETSTAT_VERSION 1
o #defineNETSTAT_ ARP_ENTRIESS8

83

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Number of entries in the ARP table.

#defineNETSTAT_ARP_.USED 1
Value for#netstatarpentry.flags Table entry is used.

#defineNETSTAT_ARP_REPLYPENDING2

Value for#netstatarp_entry.flags. Table entry is not yet valid, request has been sent
out.

#defineNETSTAT_ARP_STATIC 4
Value for#netstatarp entry.flags Table entry does not expire.

#defineNETSTAT_.UDP_.ENTRIES 16
Number of entries in the UDP port table.

#defineNETSTAT_.UDP_.USED 1
Values for#netstatudp.entry.flags Table entry is used.

#defineNETSTAT_TCP.MAXSOCKETS 25

Maxmimum number of sockets supported.

#defineNETSTAT_TCP.OUTPUT.NEEDED.MASK 2
Value fornetstattcp_socket.flags Either ACK or data or both.

#defineNETSTAT_TCP.ACK_NEEDED.MASK 4
Value fornetstattcp_socket.flags Need an ACK.

#defineNETSTAT_.TCP.SERVERMASK 8

Value fornetstattcp_socket.flags This is a server connection.

#defineNETSTAT_TCP.RESERVEDMASK 16

Value fornetstattcp_socket.flags (Reserved).

#defineNETSTAT_TCP.HAVE _OUTPUT._DATA _MASK 32
Value fornetstattcp_socket.flags Have data in output buffer.

#defineNETSTAT_TCP.HAVE _FIN_.MASK 64
Value fornetstattcp_socket.flags Set when we receive a FIN.

#defineNETSTAT_TCP.SEND_FIN_MASK 128

Value fornetstattcp_socket.flags Send a FIN after all data sent.

#defineNETSTAT_.TCP.OPTION.NAGLE_ENABLED_MASK 1

84

Value fornetstattcp_socket.options Set when Nagle’s algorithm enabled.

#defineNETSTAT_TCP.OPTION.IPV6_MASK 2
Value fornetstattcp_socket.options Set when we should talk IPv6 on the socket.

#defineNETSTAT_TCP.OPTION.SOCKETASSIGNED4
Value fornetstattcp_socket.options Assigned an application socket for tAIEB.

#defineNETSTAT_TCP_.STATE_.CLOSEDO
Value fornetstattcp_socket.state The socket is closed.

#defineNETSTAT_TCP.STATE LISTEN 1
Value fornetstattcp_socket.state The socket is listening.

#defineNETSTAT_TCP_.STATE_.SYN_SENT?2
Value fornetstattcp_socket.state The socket has sent a SYN.

#defineNETSTAT_TCP_.STATE. SYN_RECEIVED3
Value fornetstattcp_socket.state The socket had received a SYN.

#defineNETSTAT_TCP_.STATE_ESTABLISHED4
Value fornetstattcp_socket.state The socket connection has been established.

#defineNETSTAT_.TCP.STATE_FIN_.WAIT .15

Value fornetstattcp_socket.state The socket has been closed, and is waiting for its
peer to close.

#defineNETSTAT_TCP_.STATE_LFIN.WAIT 26
Value fornetstattcp_socket.state The socket’s peer has ACKed a FIN.

#defineNETSTAT_.TCP.STATE_.CLOSEWAIT 7

Value fornetstattcp_socket.state The socket’s peer has sent a FIN, the application
should now close the socket.

#defineNETSTAT_.TCP.STATE_LAST_ACK 8

Value fornetstattcp_socket.state The socket has closed, and is waiting for it's peer
to ACK.

#defineNETSTAT_TCP.STATE_.CLOSING9
Value fornetstattcp_socket.state Both ends have closed the socket.

#defineNETSTAT_TCP_.STATE_TIME _WAIT 10
Value fornetstattcp_socket.state Timeout wait before returning to closed state.

85

Functions

* unsigned innhetstatversion(void)
Returns the version number of this NETSTAT library.

 netstatarp entryfar x netstatgetarp table(void)
Returns a pointer to the ARP cache table.

¢ unsigned inhetstathum.arp.entries(void)
Returns the number of entries in the ARP cache table.

 netstatudp.entryfar x netstatget udp.table(void)
Returns a pointer to the UDP port table.

« unsigned inhetstatnum.udp_entries(void)

Returns the number of entries in the UDP port table.

* netstattcp_socketfar « netstatgettcp_socket(unsigned int conn)
Returns a pointer to a TCP socket information block.

« unsigned inhetstatnum tcp_socketgvoid)
Returns the number of entries in the TCP socket table.

4.10.2 Define Documentation

4.10.2.1 #define ROM40INETSTAT _-VERSION 1
Version number associated with this header file. Should be the same as the version
number returned by theetstatversionfunction.

See also:
netstatversion

4.10.3 Function Documentation

4.10.3.1 netstatarp_entry farx netstat get arp_table (void)
Returns a pointer to the ARP cache table.

This function returns a pointer to the ARP cache table. Theré&N&ESTAT ARP_-
ENTRIESIn the ARP cache. Each entry iswatstatarp.entry. The entry is used when
its "flags” has theNETSTAT_ARP_USED bit set.

86

Returns:
Far pointer to the ARP cache table

4.10.3.2 netstat tcp_socketfar x netstat get tcp_socket (unsigned intconn)
Returns a pointer to a TCP socket information block.

This function returns a pointer to a specific TCP socket information block of type
netstattcp_socket There are at mMoSMETSTAT_TCP_.MAXSOCKETS, the function
returns NULL when a given socket number doesn'’t exist. Note that the actual number
of sockets in the socket table might change at any time. Table entries are not guaranteed
to be contiguous. A user applicatiershould therefore call this function for all values

from 0 toNETSTAT_TCP.MAXSOCKETS- 1 and discard non-existent entries.

Parameters:
conn Socket number

Returns:
Far pointer to the socket’s information block (or NULL if the socket doesn't exist).

4.10.3.3 netstatudp_entry farx netstat get udp_table (void)
Returns a pointer to the UDP port table.

This function returns a pointer to the UDP port table. ThereN#E8 STAT_UDP_-
ENTRIESin the UDP port table. Each entry isn@tstatudp entry. The entry is used
when its "flags” has th&lETSTAT_UDP_USED bit set.

Returns:
Far pointer to the UDP port table

4.10.3.4 unsigned int netstahum_arp _entries (void)
Returns the number of entries in the ARP cache table.

This function returns the number of used entries in the ARP cache table (entries with
the NETSTAT_ARP_USEDflag set).

Returns:
Number of entries in the ARP cache table

87

4.10.3.5 unsigned int netstahum_tcp_sockets (void)
Returns the number of entries in the TCP socket table.
This function returns the number of used entries in the TCP socket table.

Returns:
Number of entries in the TCP socket table

4.10.3.6 unsigned int netstanum_udp_entries (void)
Returns the number of entries in the UDP port table.

This function returns the number of used entries in the UDP port table (entries with the
NETSTAT_UDP_USEDflag set).

Returns:
Number of entries in the UDP port table

4.10.3.7 unsigned int netstaversion (void)

Returns the version number of this NETSTAT library.

Returns:
Version number of this NETSTAT library.

4.11 rom40Qow.h File Reference
4.11.1 Detailed Description

Raw 1-Wire functions in the DS80C400 ROM.

This library contains functions for finding and communicating with devices on the
internal 1-Wire. These functions use the DS80C400’s 1-Wire master, applications do
not need to worry about protecting the ROM 1-Wire routines from interruption.

For detailed information on the DS80C400 please see Ithigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

These functions are all safe to be called from multiple processes simultaneously. That
is, if two processes call one of these functions at the same time, the function parameters
will not be destroyed. However, two processes attempting 1-Wire communications at
the same time will surely cause communications problems. In addition, the memory
space that ROM ID’s are stored in is global for the system. Therefore, processes should
synchronize around all 1-Wire communication sessions.

88

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Defines

#defineEROM40QOW_VERSION4
#defineOW_RESET.SHORTO
#defineOW_RESETPRESENCEL
#defineOW_RESETALARM 2
#defineOW_RESETNO_PRESENCE3

Functions

 unsigned chaow.first (void)
Searches for the first device on the 1-Wire bus.

 unsigned chaow_next(void)
Searches the 1-Wire for subsequent devices.

 unsigned chaow_reset(void)
Sends a reset signal to the 1-Wire bus.

¢ unsigned chaow_byte (unsigned char x)
Sends/receives a byte to/from the 1-Wire bus.

« unsigned chax ow_getcurrentidvoid)
Returns a pointer to the address of the current device in a 1-Wire bus search.

¢ unsigned inbw_version(void)
Returns the version number of this 1-Wire library.

4.11.2 Define Documentation
4.11.2.1 #define OWRESET_ALARM 2
Result of aow_resetoperation. There is an alarming device on the 1-Wire bus.

See also:
ow._reset

4.11.2.2 #define OWRESET_NO_PRESENCE 3

Result of aow_resetoperation. There is no device on the 1-Wire bus.

See also:
ow_reset

89

4.11.2.3 #define OWMRESET_PRESENCE 1

Result of aow_resetoperation. There is a device on the 1-Wire bus.

See also:
ow._reset

4.11.2.4 #define OWRESET_SHORT 0

Result of aow_resetoperation. The 1-Wire bus is shorted.

See also:
ow_reset

4.11.2.5 #define ROM40MW VERSION 4

Version number associated with this header file. Should be the same as the version
number returned by thew_versionfunction.

See also:
ow_version

4.11.3 Function Documentation

4.11.3.1 unsigned char owbyte (unsigned charx)
Sends/receives a byte to/from the 1-Wire bus.

Sends the input byte to the 1-Wire bus, and returns any byte transmitted from the 1-
Wire bus. Send the byte OxFF to return the result of a transmission by the slave (the
device or iButton).

Parameters:
X byte to write to the 1-Wire bus

Returns:
Byte read from the 1-Wire bus

4.11.3.2 unsigned char owirst (void)
Searches for the first device on the 1-Wire bus.

Tries to access the first device on the 1-Wire bus. After a catividirst , use the
address returned lgw_getcurrentidto read the 8 byte Address of the device. To read
all the devices present, call this method only once, and theroeatiextto read all
subsequent devices.

90

Returns:
Non-zero if a device is found, O if no devices are found.

See also:
ow_next
ow_getcurrentid

4.11.3.3 unsigned char ow_getcurrentid (void)
Returns a pointer to the address of the current device in a 1-Wire bus search.

Use the pointer returned by this method after every cadvidfirst andow_next. Note

that calls to these functions destroy what was previously held at this address. Programs
that need to remember all the devices found should copy the addresses one at a time as
the 1-Wire bus is searched.

Returns:
Pointer to the 8-byte device address.

See also:
ow_first
ow_next

4.11.3.4 unsigned char ownext (void)
Searches the 1-Wire for subsequent devices.

Call ow_first once before making subsequent call®tanextto find the second, third,
and so on devices. After a successful calbbtonext, call the functiorow_getcurrentid
to get the unique 64-bit address of the device found.

Returns:
Non-zero if a device is found, O if no more devices are found.

See also:
ow._first
ow_getcurrentid

4.11.3.5 unsigned char oweset (void)
Sends a reset signal to the 1-Wire bus.

The result of a reset tells you if the bus is shorted, if a device is present, if an alarming
device is present, or if no device is present.

91

Returns:
Result of reset (i.eOW_RESET.SHORT)

See also:
OW_RESET.SHORT
OW_RESETPRESENCE
OW_RESETALARM
OW_RESETNO_PRESENCE

4.11.3.6 unsigned int owversion (void)

Returns the version number of this 1-Wire library.
Returns:

Version number of this 1-Wire library.
4.12 rom40Qrarp.h File Reference
4.12.1 Detailed Description

RARP library for the DS80C400.
This library allows a user to send a RARP request to the network.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Defines

» #defineEROM400RARP_.VERSION1

Functions

 unsigned intarp.version(void)
Returns the version number of this RARP library.

« void rarp.send(void(xcallback)(unsigned long))
Send a RARP request.

« void rarp.stop(void)
Disable reception of RARP packets (in the event of a timeout).

92

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

4.12.2 Define Documentation

4.12.2.1 #define ROM40RARP_VERSION 1
Version number associated with this header file. Should be the same as the version
number returned by th@arp_versionfunction.

See also:
rarpversion

4.12.3 Function Documentation

4.12.3.1 void rarpsend (void¢ callback(unsigned long))
Send a RARP request.

Parameters:
callback function that gets called when RARP receives an IP address (the IP ad-
dress will be supplied to callback MSB first)

4.12.3.2 void rarpstop (void)
Disable reception of RARP packets (in the event of a timeout).

If RARP receives an IP address, it is not necessary to call this funtion. This function is
only necessary if the callback frorarp_sendwas never called.

4.12.3.3 unsigned int rarpversion (void)
Returns the version number of this RARP library.

Returns:
Version number of this RARP library.

4.13 rom40Qsock.h File Reference
4.13.1 Detailed Description

Socket functions in the DS80C400 ROM.

This library contains functions for TCP, UDP and Multicast sockets, as well as net-
work configuration. The functions in this libragre safe to be called from multiple
processes at the same time, with the exception of the funpiian. Both the tradi-
tional Berkeley style socket API and tlsgnchronizedocket functions are supported

93

(the Berkeley style APl is supported through macros implemented by the synchronized
functions).

It is recommended that new applications use the Berkeley style API for portability.

Note that in order to run at 100 Mbs, the DS80C400 must be running at least 25MHz.
This can be accomplished on the TINIm400 module by enabling the clock doubler.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

#include <stdlib.h >

Data Structures

¢ structin6_addr
structin_addr
structpingdata
structsockaddr
structsockaddrin

Defines

» #defineEROM400SOCK SYNCH.VERSION 10
 #defineEROM400SOCK VERSION 10
» #defineSOCKET.TYPE.DATAGRAM 0
» #defineSOCKET.TYPE.STREAM 1
 #defineSOCK DGRAM 0

» #defineSOCK STREAM 1
 #definePEINET 4

o #defineAF_INET 4

* #defineAF_INET6 6

« #definelPPROTQUDP 0

* #defineTCP_.NODELAY 0

» #defineSOLINGER 1

» #defineSO.TIMEOUT 2

e #defineSO_BINDADDR 3

» #defineETH_.STATUSLINK 1
 #definehtongXx) (x)

Convert a number to network byte order.

¢ #definentohgx) (x)
Convert a number to host byte order.

« #definesockefdomain, type, protocol) syrocket((type))

94

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Create a network socket for TCP or UDP communication.

#defineclosesockgsocketnum) synclosesocket((socketum))
Closes a specific socket.

#definesendt@¢socketnum, buffer, length, flags, address, adddesgyth) syn-
sendto(syrsetDatagramAddress((sockatim),1,(address)),(length),(buffer))

Sends a UDP datagram to a specified address.

#define recvfrom(socketnum, buffer, length, flags, address, ad-
dresslength) synrecvfrom(synsetDatagramAddress((socket
num),0,(address)),(length),(buffer))

Receive a UDP datagram.

#define connecfsocketnum, address, addretength) synconnect((socket
num),(address))

Connects a TCP socket to a specified address.

#define bind(socketnum, address, addrefmgth) synbind((socket-
num),(address))

Binds a socket to a specified address.

#definelisten(socketnum, backlog) syrdisten((sockemnum),(backlog))
Tells a socket to listen for incoming connections.

#define accepfsocketnum, address, addrefength) synaccept((socket
num),(address))

Accepts TCP connections on the specified socket.

#define recsocketnum, buffer, length, flags) syrecv((socket
num),(length),(buffer))

Reads data from a TCP socket.

#define sendsocketnum, buffer, length, flags) sysend((socket
num),(length),(buffer))

Sends data to a TCP socket.

#define getsockopsocketnum, level, name, buffer, length) syn
getsockopt((socketum),(name),(buffer))

Get various socket options.

#define setsockogsocketnum, level, name, buffer, length) syn
setsockopt((socketum),(name),(buffer))

95

L]

Set various socket options.

#define getsocknam@ocketnum, address, addreksngth) syn-
getsockname((socketum),(address))

Gets the local IP and port of a socket.

#define getpeernam(@ocketnum, address, addrekmngth) syn-
getpeername((socketum),(address))

Gets the remote address of a connection-based (TCP socket).

#definecleanugprocessd) syn.cleanup((procesil))
Close all sockets associated with a task.

#defineavail(socketnum) synavail((socketnum))
Reports number of bytes available on a TCP socket.

#define join(socketnum, address, addrefength) synjoin((socket-
num),(address))

Adds a socket to a specified multicast group.

#define leavdsocketnum, address, addrefength) synleave((socket
num),(address))

Removes a socket from the specified multicast group.

#define getnetworkparanfparambuffer) syngetnetworkparams((param
buffer))

Get the IPv4 configuration parameters.

#define setnetworkparaniparambuffer) synsetnetworkparams((param
buffer))

Set the IPv4 configuration parameters.

#definegetipv6param@arambuffer) syngetipvéparams((paratuffer))
Get the IPv6 address.

#definegetethernetstat()ssyn getethernetstatus()
Get the ethernet status.

#definegettftpservefaddress, addredsngth) syngettftpserver((address))
Get the address of the TFTP server.

#definesettftpservegiaddress, addredangth) synsettftpserver((address))
Set the address of the TFTP server.

96

#definegetmaciq) syngetmacid()
Get the pointer to the MAC ID storage area.

#definesetmacid) syn.setmacid()
Stores the MAC ID into the MAC ID storage area.

#definesockversior() synversion()
Returns the version number of this socket library.

* #define arp.generaterequgstddress, addredsngth) synarp.-
generaterequest((address))

Unconditionally generate an ARP request for a given IPv4 address.

e #define arp.cacherequegddress, addredsngth) synarp.-
cacherequest((address))

Generate an ARP request for a given IPv4 address and add to the ARP cache.

Functions

¢ charx inet.ntop(int family, void xaddr, chakstrptr,sizet len)
Converts a numeric address to a string.

 unsigned ininet_pton (int family, charxstr, voidxaddr)
Converts a string to a numeric IP address.

 unsigned longnet addr(charxinet string)
Converts a string representing an IPv4 address to numeric form.

¢ int synsocket(unsigned int type)
Create a network socket for TCP or UDP communication.

« int syn closesocke(int socketnum)
Closes a specific socket.

 int synsetDatagramAddresgnt socketnum, unsigned char sending, struct
sockaddraddr)

Set the IP address parameter for future datagram calls.

« int synsendtq(int socketnum, unsigned int length, voicbuffer)

Sends a UDP datagram to an address earlier specified by a calftsetDatagram-
Address.

97

int synrecvfrom(int socketnum, unsigned int length, voiebuffer)
Receive a UDP datagram.

int syn.connecf(int sockethnum, structsockaddraddress)
Connects a TCP socket to a specified address.

int syn.bind (int socketnum, strucsockaddraddress)
Binds a socket to a specified address.

int syn listen (int socketnum, unsigned int backlog)
Tells a socket to listen for incoming connections.

int synaccepi(int socketnum, strucsockaddraddress)
Accepts TCP connections on the specified socket.

int syn_recv (int socketnum, unsigned int length, voicbuffer)
Reads data from a TCP socket.

int syn send(int socketnum, unsigned int length, voiebuffer)
Sends data to a TCP socket.

int syn getsockoptint sockethnum, unsigned int name, voiduffer)
Get various socket options.

int syn setsockop(int socketnum, unsigned int name, voiduffer)
Set various socket options.

int syn getsocknaméint socketnum, structsockaddraddress)

Gets the local IP and port of a socket.

int syngetpeernamént socketnum, structsockaddeaddress)

Gets the remote address of a connection-based (TCP socket).

int syn cleanup(unsigned int procesisl)
Close all sockets associated with a task.

int synavail (int socketnum)
Reports number of bytes available on a TCP socket.

int synjoin (int socketnum, structsockadde-address)
Adds a socket to a specified multicast group.

98

int synleave(int socketnum, strucsockaddraddress)
Removes a socket from the specified multicast group.

int syn getnetworkparam@oid xparambuffer)
Get the IPv4 configuration parameters.

int syn setnetworkparam@oid xparambuffer)
Set the IPv4 configuration parameters.

int syn.getipvéparamsgvoid «parambuffer)
Get the IPv6 address.

unsigned insyn getethernetstatysoid)
Get the ethernet status.

int syn gettftpservelstructsockaddraddress)
Get the address of the TFTP server.

int syn settftpserve(structsockaddeaddress)
Set the address of the TFTP server.

unsigned chax syn getmacid(void)
Get the pointer to the MAC ID storage area.

void syn setmacidvoid)
Stores the MAC ID into the MAC ID storage area.

void clear parambuffers(void)
Clears the parameter buffers used by the socket library.

unsigned insyn.version(void)

Returns the version number of this socket library.

int synarp.generaterequegstructsockaddraddress)
Generate an ARP request for a given IPv4 address.

int synarp.cacherequegstructsockaddeaddress)
Generate an ARP request for a given IPv4 address and add to the ARP cache.

int acceptqueuént sockethandle, strucsockaddraddress)
Returns the number of sockets in the wait queue for this listening socket.

99

int udpavailablgint sockethandle, strucsockaddraddress)
Returns whether or not data is available to be read on a datagram socket.

« long ping (structsockaddr+address, unsigned int addrdesgth, unsigned int
time_to_live, struct pingdataresponse)

Pings the specified address.

« unsigned ineth-readmii(unsigned int phy, unsigned int reg)
Read a PHY register via MlI.

« void eth.writemii (unsigned int phy, unsigned int reg, unsigned int val)
Write a PHY register via MIL.

void eth disablemulticastreceivgvoid)
Disable multicast hardware receiver.

4.13.2 Define Documentation

4.13.2.1 #define accept(socketum, address, addresdength) syn-
accept((sockemnum),(address))

Accepts TCP connections on the specified socket.

Accepts a TCP conection on the specified socket. This function moves the first pend-
ing connection request from the listen queue into the established state, assigning a
new local socket to the connection for communicatianceptblocks if there are no
pending incoming requests. The socketketnummust have been created with type
SOCKETTYPESTREAM, bound to an address usibgnd, and given a listen queue

by callinglisten.

Parameters:
socketnum the handle of the socket that will wait for connections

addresslocation to write remote address
addresslength the length of the address structure (ignored)

Returns:
New socket handle for communicating with remote socket, or OXOFFFF for failure

See also:
socket
bind
listen

100

4.13.2.2 #define AHBNET 4

IPv4 family define, ignored by DS80C400 Silicon Software, but included for compati-
bility

4.13.2.3 #define AHNETG6 6

IPv6 family define, ignored by DS80C400 Silicon Software, but included for compati-
bility

4.13.2.4 #define arpcacherequest(address, addredength) synarp_-
cacherequest((address))

Generate an ARP request for a given IPv4 address and add to the ARP cache.

If the given IP address is not in the ARP cache, generate an ARP request and add it to
the cache.

Parameters:
addressstructure to store the address

addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

4.13.2.5 #define arpgeneraterequest(address, addredength) synarp_-
generaterequest((address))

Unconditionally generate an ARP request for a given IPv4 address.
Unconditionally generate an ARP request for a given IPv4 address. This functionality
can be used to implement Zeroconf protocols.

Parameters:
addressstructure to store the address

addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

4.13.2.6 #define avail(socketum) syn avail((socketnum))
Reports number of bytes available on a TCP socket.

Reports the number of bytes available on a TCP socket. This is the number of bytes
that can currently be read using tleevfunction without blocking.

101

Parameters:
socketnum the handle of the socket to check for available data

Returns:
The number of bytes available forecvfunction call on this socket, or OXOFFFF
on failure.

See also:
recv

4.13.2.7 #define bind(sockehum, address, addresdength) synbind((socket-
num),(address))

Binds a socket to a specified address.

Assigns a local address and port (stored ingtidresgparameter) to a socket. Binding
a socket is necessary for server sockets. For client socketsingséa specific source
port is desirable.

Fill addresswith O’s (for sinaddr and sirport) to bind to any available local port. Use
getsocknamo discover which port the socket was bound to.

NOTE: When binding a UDP socket, matching inbound UDP packets will be queued
up for the socket. Caliecvfromperiodically to avoid the risk of running out of kernel
memory.

Parameters:
socketnum socket handle to bind to a local port number

addresscontains the local address (including port number)
addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
listen
getsockname
recvirom

4.13.2.8 #define cleanup(procesd) syn_cleanup((processid))
Close all sockets associated with a task.

Close all sockets associtaed with a process ID. User applications should call this func-
tion whenever a task dies or is killed to ensure all associated resources are freed by the
socket layer.

102

Warning:
The DS80C400 Silicon Software task scheduler dd@3 call this function. User
applications should catlleanupafter each call toeaskkill .

Parameters:
processid Task PID to clean up sockets associated with

Returns:
0 for success, non-zero for failure.

4.13.2.9 #define closesocket(socketim) syn_closesocket((sockehum))
Closes a specific socket.
Closes the specified socket that was created usingatkefunction.

Parameters:
socketnum the socket handle to close

Returns:
0 for success, non-zero for failure.

See also:
socket

4.13.2.10 #define connect(sockeum, address, addresdength) syn-
connect((sockemum),(address))

Connects a TCP socket to a specified address.

Connects to a specified address with a streaming socket. This function can only be
used once with each socket. The sodatketnummust have been created with type
SOCKETTYPESTREAM

Parameters:
socketnum the socket handle to use to wait for and read a UDP packet

addressIP address and port number to create a streaming connection to
addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
socket

103

4.13.2.11 #define ETHSTATUS_LINK 1

Flag for analyzing ethernet status.

See also:
getethernetstatus

4.13.2.12 #define getethernetstatus() sygetethernetstatus()
Get the ethernet status.

Returns the ethernet status byte. This is a bit-wise OR of the following flags:

Flag Value Description
ETH_STATUS.LINK 01h Ethernet link status

Currently, no other flags are defined.

Returns:
Bitmapped ethernet status byte.

4.13.2.13 #define getipv6params(pararbuffer) syn_getipv6params((param-
buffer))

Get the IPv6 address.

Gets the IPv6 address of the ethernet interface. The format for the buffer after this
function returns is:

Parameter Offset Length Description

IP6ADDR 0 16 IP address

IP6PREFIX 16 1 IP prefix length
Parameters:

param.buffer pointer to buffer to store IPv6 configuration data

Returns:
0 for success, non-zero for failure

See also:
getnetworkparams
setnetworkparams

4.13.2.14 #define getmacid() sygetmacid()
Get the pointer to the MAC ID storage area.

Returns the pointer to the MAC ID storage area. This area will store the MAC ID after
a successful call teetmacid

104

Returns:
Pointer to the 400’'s MAC ID (6 bytes stored at this location)

See also:
setmacid

4.13.2.15 #define getnetworkparams(pararbuffer) syn_-
getnetworkparams((param.buffer))

Get the IPv4 configuration parameters.

Get the IPv4 configuration parameters, including IP address, subnet mask, and gateway.
The parameters are returned in a buffer in the following form:

Parameter Offset Length Description
(zero) 0 12 Must be 0
IPAADDR 12 4 IP address
IPASUBNET 16 4 Subnet mask
IPAPREFIX 20 1 Number of 1 bits
in subnet mask
(zero) 21 12 Must be O
IPAGATEWAY 33 4 Gateway IP
address

IPv6 addresses are autoconfigured. To retrieve the IPv6 address, gephéparams
function.

Parameters:
param.buffer pointer to buffer to store IP configuration data

Returns:
0 for success, non-zero for failure

See also:
setnetworkparams
getipv6params

4.13.2.16 #define getpeername(socketm, address, addresdength) syn-
getpeername((sockethum),(address))

Gets the remote address of a connection-based (TCP socket).
Stores the IP address of the remote socket communicating with the socket specified by
socketnum. Usegetsocknamo get the local port’s information.

Parameters:
socketnum handle of the socket to get remote IP and port for

105

addressstructure where IP and port will be stored
addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

See also:
getsockname

4.13.2.17 #define getsockname(socketim, address, addresdength) syn-
getsockname((sockehum),(address))

Gets the local IP and port of a socket.

Stores the local IP and port number of the specified socket in theditiresparameter.
Usegetpeernaméo get the remote port’s information for a connection-based (TCP)
socket.

Parameters:
socketnum handle of the socket to get local IP and port for

addressstructure where IP and port will be stored
addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

See also:
getpeername

4.13.2.18 #define getsockopt(sockaum, level, name, buffer, length) syn-
getsockopt((sockeinum),(name),(buffer))

Get various socket options.

Reads a number of supported socket options. Data written into the buffer depends on
the requested socket option.

Name Description Data in buffer

TCP_NODELAY TCP Nagle Enable 1 byte

SO.LINGER Ignored N/A

SO.TIMEOUT Inactivity timeout 4 bytes (milliseconds,
MSB first)

SO.BINDADDR Local socket IP 16 bytes

106

Parameters:
socketnum socket to get option information for

level ignored

name option to get

buffer location where option data will be written
length length of the buffer

Returns:
0 for success, non-zero for failure

See also:
setsockopt

4.13.2.19 #define gettftpserver(address, addressngth) syn-
gettftpserver((address))

Get the address of the TFTP server.
Returns the address of the server accessed by the TFTP functions. To communicate
with a TFTP server, use the functions listed@am40Qtftp.h, the TFTP library.

Parameters:
addressstructure to store the address of the TFTP server

addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

See also:
settftpserver

4.13.2.20 #define htons(x) (x)
Convert a number to network byte order.

Converts a word from host byte order to network byte order. On the DS80C400, the
orders are the same, so this function does not alter the input data. This function is
included for compatibility.

Parameters:
X Input data to convert to network byte order

Returns:
Input data converted to network byte order

107

4.13.2.21 #define IPPROTQUDP 0

Protocol ID define, ignored by DS80C400 Silicon Software, but included for compati-
bility

4.13.2.22 #define join(sockehum, address, addresdength) synjoin((socket.-
num),(address))

Adds a socket to a specified multicast group.

Adds a UDP socket to a specified multicast group. In order to receive multicasts from
a group, firsbind the socket to the port number that the multicast group is using (it is
not sufficient to include it here in order to receive).

Use theleavefunction to leave a multicast group.

Warning:
IPv6 multicasting is not supported

Parameters:
socketnum handle for the datagram socket that will join a multicast group

addressIP address of the multicast group to join
addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
leave

4.13.2.23 #define leave(socketum, address, addresdength) syn leave((socket-
num),(address))

Removes a socket from the specified multicast group.
Removes a UDP socket from the specified multicast group.

Parameters:
socketnum handle for the datagram socket that will leave a multicast group

addressIP address of the multicast group to leave
addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
join

108

4.13.2.24 #define listen(socketum, backlog) synlisten((socket-
num),(backlog))

Tells a socket to listen for incoming connections.

Tells the socket to listen for connections. A queue of lertghklogis created for
pending (unaccepted connections). It is required to uband to assign a local port
before callinglisten. Useacceptto move an incoming request to an established state,
or wait for incoming connections.

Parameters:
socketnum socket handle that will listen for connections

backlog the maximum number of pending connections (max 16 for the
DS80C400)

Returns:
0 for success, non-zero for failure.

See also:
bind
accept

4.13.2.25 #define ntohs(x) (x)
Convert a number to host byte order.

Converts a word from network byte order to host byte order. On the DS80C400, the
orders are the same, so this function does not alter the input data. This function is
included for compatibility.

Parameters:
X Input data to convert to network byte order

Returns:
Input data converted to network byte order

4.13.2.26 #define PENET 4

IPv4 protocol family define

4.13.2.27 #define recv(sockatum, buffer, length, flags) synrecv((socket-
num),(length),(buffer))

Reads data from a TCP socket.

109

Reads data from a TCP socket. If there is no data availadde blocks until there is
data, subject to the value 8O.TIMEOUT. NOTE: This function readsip to length
bytes. Call this function repeatedly if you need to read a minimum number of bytes.

Parameters:
socketnum handle of the streaming socket that will read data

buffer location to write any data read
length maximum amount of data to read
flags ignored

Returns:
The number of bytes read. If the operation times out according tdSthe
TIMEOUT, a value of -2 is returned. If another error occurs, -1 is returned. If
the socket was closed by the other side, 0 is returned.

See also:
connect
send

4.13.2.28 #define recvfrom(socketum, buffer, length, flags, ad-
dress, addresdength) synrecvfrom(syn_setDatagramAddress((socket
num),0,(address)),(length),(buffer))

Receive a UDP datagram.

Receives a message on the specified socket, and stores the address that sentit. If no data
is available recvfromblocks subject to th&€ O TIMEOUT value. The socketocket-
nummust have been created with a typ@CKETTYPEDATAGRAM. It is required

to usebind to assign a local port to the socket, before receiving dAI@TE: This

function readsip to lengthbytes of a datagram. Any data not read in the datagram will

be discarded.

Parameters:
socketnum the socket handle to use to wait for and read a UDP packet

buffer the location to write any data read from the datagram socket
length the maximum number of bytes to read from a datagram socket
flags ignored

addresslocation to fill in the address and port of the sender
addresslength the length of the address structure (ignored)

Returns:

The number of bytes read. If the operation times out according tdSthe
TIMEOUT, a value of -2 is returned. If another error occurs, -1 is returned.

110

See also:
sendto
socket
bind

4.13.2.29 #define ROM40GBOCK_SYNCH_VERSION 10

Version number associated with this header file. Should be the same as the version
number returned by thgyn versionfunction.

See also:
syn.version

4.13.2.30 #define ROM40GBOCK_VERSION 10

Version number associated with this header file. Should be the same as the version
number returned by theckversionfunction.

See also:
sockversion

4.13.2.31 #define send(sockeum, buffer, length, flags) synsend((socket-
num),(length),(buffer))

Sends data to a TCP socket.

Writes data to a TCP socket. The return value of this function is only a local suc-
cess/failure code, and may not necessarily detect transmission errors.

Parameters:
socketnum handle of the streaming socket that will write data

buffer location of data to write
length number of bytes to write
flags ignored

Returns:
0 for success, non-zero for failure.

See also:
connect
recv

111

4.13.2.32 #define sendto(socketum, buffer, length, flags, ad-
dress, addresdength) synsendto(synsetDatagramAddress((socket
num),1,(address)),(length),(buffer))

Sends a UDP datagram to a specified address.

Sends a UDP datagram to a specified address. The success/failure code this function
returns says nothing of if the packet was recieved by the target, only that the socket
layer was able to push the data out. The soskeketnummust have been created

with a typeSOCKETTYPEDATAGRAM.

Parameters:
socketnum the socket handle to use to send a UDP packet

buffer the data to send in the datagram packet

length the number of bytes to send in the datagram packet
flags ignored

addressthe destination address and port

addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
recvfrom
socket

4,13.2.33 #define setmacid() sysetmacid()
Stores the MAC ID into the MAC ID storage area.

This is a redirected function. The DS80C400'’s default implementation of this function
searches the 1-Wire for a DS2502U-E48 1-Wire chip which contains a MAC ID. This
MAC ID is then stored into the MAC ID storage area, the location of which is stored in
a pointer in the export table. Use tgetmacidfunction to return a pointer to the MAC

ID storage area.

See also:
getmacid
4.13.2.34 #define setnetworkparams(pararbuffer) syn_-

setnetworkparams((parambuffer))

Set the IPv4 configuration parameters.

112

Set the IPv4 configuration parameters, including IP address, subnet mask, and gateway.
Input parameters should be formatted in the following form:

Parameter Offset Length Description
(zero) 0 12 Must be O
IPAADDR 12 4 IP address
IPASUBNET 16 4 Subnet mask
IPAPREFIX 20 1 Number of 1 bits
in subnet mask
(zero) 21 12 Must be 0
IPAGATEWAY 33 4 Gateway IP
address

Use this method to give the DS80C400 a static IP address. To dynamically configure
an IP address, use methods from the DHCP libraryoim40Qdhcp.h(IP addresses
leased by the DHCP client can still be retrieved by calljegnetworkparamy

IPv6 addresses are autoconfigured. To retrieve the IPv6 address, gsépkiéparams
function.

Parameters:
param.buffer pointer to buffer with IP configuration data

Returns:
0 for success, non-zero for failure

See also:
getnetworkparams
getipv6params

4.13.2.35 #define setsockopt(sockatim, level, name, buffer, length) syn-
setsockopt((sockenum),(name),(buffer))

Set various socket options.

Sets a number of supported socket options. Input data in the buffer depends on the
desired socket option.

Name Description Data in buffer
TCP.NODELAY TCP Nagle Enable 1 byte
SOLINGER Ignored N/A
SO.TIMEOUT Inactivity timeout 4 bytes (milliseconds,
MSB first)
SO.BINDADDR Read only N/A
Parameters:

socketnum socket to set option information for

113

level ignored

name option to set

buffer location of option data that will be written
length length of the buffer

Returns:
0 for success, non-zero for failure

See also:
getsockopt

4.13.2.36 #define settftpserver(address, addrelsngth) syn.-
settftpserver((address))

Set the address of the TFTP server.

Set the address of the server that the TFTP functions will uses@ttigpservefunction

must be used if the address of the TFTP server is not acquired by DHCP or 1-Wire.
Once the TFTP server's address is set, use the functions listech#DQtftp.hto begin
receiving files.

Parameters:
addressstructure to store the address of the TFTP server

addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

See also:
gettftpserver

4.13.2.37 #define SBINDADDR 3

Argument for socket option. Local binding address.

See also:
getsockopt
setsockopt

4.13.2.38 #define SQINGER 1
Argument for socket option. Ignored by DS80C400 ROM.

See also:
getsockopt
setsockopt

114

4.13.2.39 #define SOIMEOUT 2
Argument for socket option. Socket inactivity timeout.
See also:

getsockopt
setsockopt

4.13.2.40 #define SOCKDGRAM 0
Argument to functionsocketto create a UDP socket (same S89CKETTYPE-
DATAGRAM)

See also:
socket

4.13.2.41 #define SOCKSTREAM 1
Argument to functiorsocketo create a TCP socket (sameS3CKETTYPESTREAM
)

See also:
socket

4.13.2.42 #define sockersion() synversion()

Returns the version number of this socket library.

Returns:
Version number of this SOCK library.

4.13.2.43 #define socket(domain, type, protocol) sygsocket((type))
Create a network socket for TCP or UDP communication.

Creates a socket for network communication. This function returns a socket handle, but
has not specific local address assigned to it. Note that this functiortasitigettaskid
through the function redirect table.

Parameters:
domain ignored

type SOCKET.TYPE.DATAGRAM or SOCKDGRAM for UDP, SOCKET.-
TYPE_.STREAM or SOCK. STREAM for TCP

115

protocol ignored

Returns:
OxOFFFF for failure, or the socket handle (socket number)

See also:
bind
connect
closesocket

4.13.2.44 #define SOCKEITYPE_DATAGRAM 0
Argument to functiorsocketo create a UDP socket (sameZ9CKDGRAM)

See also:
socket

4.13.2.45 #define SOCKETTYPE_STREAM 1
Argument to functiorsocketo create a TCP socket (sameSBCKSTREAM

See also:
socket

4.13.2.46 #define TCENODELAY 0

Argument for socket option. Enables/disables Nagle algorithm.

See also:
getsockopt
setsockopt

4.13.3 Function Documentation

4.13.3.1 intacceptqueue (insockethandle, struct sockaddr « addres$
Returns the number of sockets in the wait queue for this listening socket.

Returns the number of sockets in the queue attempting to connect to this server socket.

Parameters:
sockethandle handle to socket to check for waiting connections

addresslocation where the IP and port number will be written

116

Returns:
-1 if the socket is not a streaming socket set up to listen O or greater for the number
of sockets waiting

The IP and port of the socket are returne@ddress

4.13.3.2 void clearparam_buffers (void)
Clears the parameter buffers used by the socket library.

Clears buffers used to store parameters for the socket library. This function should be
called immediately after calling thiait_rom function, and before any socket library
functions are called.

See also:
init_rom

4.13.3.3 void ethdisablemulticastreceiver (void)
Disable multicast hardware receiver.

This function disables the "pass multicast” (PM) bit in the DS80C400 MAC control
register. This improves performance if the application doesn’t use multicast. This
function must be called after initialization of the Ethernet. WARNING: IPv6 requires
multicast. Disabling the receiver disables IPv6 address resolution.

4.13.3.4 unsigned int ettreadmii (unsigned int phy, unsigned intreg)
Read a PHY register via MII.

This function reads a PHY register via the Mll interface. See the IEEE 802.3 specifi-
cation (22.2.4) for a description of the MIl management register set.

Parameters:
phy PHY address (0 to 31)

reg register address (0 to 31, 16 through 31 are vendor specific)

Returns:
value read from the register specified

4.13.3.5 void ethwritemii (unsigned int phy, unsigned intreg, unsigned intval)
Write a PHY register via Mil.
This function writes a PHY register via the Mll interface. See the IEEE 802.3 specifi-

cation (22.2.4) for a description of the MIl management register set.

117

Parameters:
phy PHY address (0 to 31)

reg register address (0 to 31, 16 through 31 are vendor specific)
val value to write to the specified register

4.13.3.6 unsigned long ineaddr (char x inet.string)
Converts a string representing an IPv4 address to numeric form.

Converts the input string into an IPv4 address suitable for settingsockaddrin
structure.

Parameters:
inet_string IPv4 address in string form

Returns:
Numberic IPv4 address

See also:
sockaddrin

4.13.3.7 chax inet_ntop (int family, void x addr, char « strptr, sizet len)
Converts a numeric address to a string.

Converts a numeric IP address to a presentable format as a null terminated string. IPv4
addresses are formatted such as in "192.0.1.1". IPv6 addresses are formatted such
as in "b803:8a11:0000:2121:fec5:0601:aa01:0102". Note that the "::’ shortoat is
supported—a ‘0000’ must be fully specified.

Parameters:
family AF_INET or AF_INET6

addr pointer to numeric representation of IP address
strptr storage location for presentation string
len size of storage area for strptr
Returns:
Reference to strptr, or NULL if thEamilyis not recognized or if there is not enough
space as declared tsn

See also:
inet pton

118

4.13.3.8 unsigned int inetpton (int family, char * str, void * addr)
Converts a string to a numeric IP address.

Converts a string represenation of an IP address into numeric format. 1Pv4 addresses
are expected to be input in a format such as in "192.0.1.1". IPv6 addresses are expected
to be formatted such as in "b8:03:8a:11:00:00:21:21:fe:c5:06:01:aa:01:01:02".

Parameters:
family AF_INET or AF_INET6

str address string to translate
addr pointer to storage for numeric representation of IP address

Returns:
1 for successful translation. 0 if the format was invalid, or thmily was not
recognized.

See also:
inet.ntop

4.13.3.9 long ping (structsockaddr * address unsigned int addresslength, un-
signed inttime_to_live, struct pingdata x responsg

Pings the specified address.

Sends an ICMP echo request (ping) to a specified address. Note that this function is
NOT safe to be called from multiple processes at the same time.

Parameters:
addressIP address to send an ICMP echo request to

addresslength the length of the address structure (ignored)
time_to_live packets send by ping have this "time to live” setting
responsedata structure to fill in returned data (this argument must not be NULL)

Returns:
response time in milliseconds (0 means less than 1ms), or -1L for failure

The ping return data structure is defined as follows: reserved - Reserved field ip
header - The IP header of the return packet idmpder - The ICMP header of the
return packet icmmglata - The ICMP data portion of the return packet (should be
0x20,0x21,0x22,...,0x3f)

119

4.13.3.10 int synaccept (intsocketnum, struct sockaddr « addres$
Accepts TCP connections on the specified socket.

Accepts a TCP conection on the specified socket. This function moves the first pend-
ing connection request from the listen queue into the established state, assigning a
new local socket to the connection for communicatieaceptblocks if there are no
pending incoming requests. The socketketnummust have been created with type
SOCKETTYPESTREAM, bound to an address usibgnd, and given a listen queue

by callinglisten.

Parameters:
socketnum the handle of the socket that will wait for connections

addresslocation to write remote address

Returns:
New socket handle for communicating with remote socket, or -1 for failure

See also:
socket
bind
listen

4.13.3.11 int synarp_cacherequest (structsockaddr x addres$
Generate an ARP request for a given IPv4 address and add to the ARP cache.

If the given IP address is not in the ARP cache, generate an ARP request and add it to
the cache.

Parameters:
addressstructure to store the address

Returns:
0 for success, non-zero for failure

4.13.3.12 int synarp_generaterequest (structsockaddr x addres}
Generate an ARP request for a given IPv4 address.

Unconditionally generate an ARP request for a given IPv4 address. This functionality
can be used to implement Zeroconf protocols.

Parameters:
addressstructure to store the address

Returns:
0 for success, non-zero for failure

120

4.13.3.13 int synavail (int socketnum)
Reports number of bytes available on a TCP socket.

Reports the number of bytes available on a TCP socket. This is the number of bytes
that can currently be read using tieevfunction without blocking.

Parameters:
socketnum the handle of the socket to check for available data

Returns:
The number of bytes available forracv function call on this socket, or -1 on
failure.

See also:
recv

4.13.3.14 int synbind (int socketnum, struct sockaddr x addres}
Binds a socket to a specified address.

Assigns a local address and port (stored ingtidresgparameter) to a socket. Binding
a socket is necessary for server sockets. For client socketsingséa specific source
port is desirable.

Fill addresswith O’s (for sinaddr and sirport) to bind to any available local port. Use
getsocknam# discover which port the socket was bound to.

NOTE: When binding a UDP socket, matching inbound UDP packets will be queued
up for the socket. Caliecvfromperiodically to avoid the risk of running out of kernel
memory.

Parameters:
socketnum socket handle to bind to a local port number

addresscontains the local address (including port number)

Returns:
0 for success, non-zero for failure.

See also:
listen
getsockname
recvfrom

121

4.13.3.15 int syncleanup (unsigned intprocessid)
Close all sockets associated with a task.

Close all sockets associtaed with a process ID. User applications should call this func-
tion whenever a task dies or is killed to ensure all associated resources are freed by the
socket layer.

Warning:
The DS80C400 Silicon Software task scheduler dd@3 call this function. User
applications should catlleanupafter each call toéaskkill .

Parameters:
processid Task PID to clean up sockets associated with

Returns:
0 for success, non-zero for failure.

4.13.3.16 int synclosesocket (intsocketnum)
Closes a specific socket.

Closes the specified socket that was created usingatiefunction.

Parameters:
socketnum the socket handle to close

Returns:
0 for success, non-zero for failure.

See also:
socket

4.13.3.17 int synconnect (intsocketnum, struct sockaddr « addres$
Connects a TCP socket to a specified address.

Connects to a specified address with a streaming socket. This function can only be
used once with each socket. The sodatketnummust have been created with type
SOCKETTYPESTREAM

Parameters:
socketnum the socket handle to use to wait for and read a UDP packet

addressIP address and port number to create a streaming connection to

122

Returns:
0 for success, non-zero for failure.

See also:
socket

4.13.3.18 unsigned int syrgetethernetstatus (void)
Get the ethernet status.

Returns the ethernet status byte. This is a bit-wise OR of the following flags:

Flag Value Description
ETH_STATUS.LINK 01lh Ethernet link status

Currently, no other flags are defined.

Returns:
Bitmapped ethernet status byte.

4.13.3.19 int syngetipv6params (voidx param.buffer)
Get the IPv6 address.

Gets the IPv6 address of the ethernet interface. The format for the buffer after this
function returns is:

Parameter Offset Length Description

IP6ADDR 0 16 IP address

IP6PREFIX 16 1 IP prefix length
Parameters:

param_buffer pointer to buffer to store IPv6 configuration data

Returns:
0 for success, non-zero for failure

See also:
getnetworkparams
setnetworkparams

4.13.3.20 unsigned charsyn.getmacid (void)
Get the pointer to the MAC ID storage area.

Returns the pointer to the MAC ID storage area. This area will store the MAC ID after
a successful call teetmacid

123

Returns:
Pointer to the 400’'s MAC ID (6 bytes stored at this location)

See also:
setmacid

4.13.3.21 int syngetnetworkparams (voidx param.buffer)
Get the IPv4 configuration parameters.

Get the IPv4 configuration parameters, including IP address, subnet mask, and gateway.
The parameters are returned in a buffer in the following form:

Parameter Offset Length Description
(zero) 0 12 Must be 0
IPAADDR 12 4 IP address
IPASUBNET 16 4 Subnet mask
IPAPREFIX 20 1 Number of 1 bits
in subnet mask
(zero) 21 12 Must be O
IPAGATEWAY 33 4 Gateway IP
address

IPv6 addresses are autoconfigured. To retrieve the IPv6 address, getphéparams
function.

Parameters:
param.buffer pointer to buffer to store IP configuration data

Returns:
0 for success, non-zero for failure

See also:
setnetworkparams
getipv6params

4.13.3.22 int syngetpeername (intsocketnum, struct sockaddr « addres}

Gets the remote address of a connection-based (TCP socket).

Stores the IP address of the remote socket communicating with the socket specified by
socketnum. Usegetsocknamo get the local port’s information.

Parameters:
socketnum handle of the socket to get remote IP and port for

addressstructure where IP and port will be stored

124

Returns:
0 for success, non-zero for failure

See also:
getsockname

4.13.3.23 int syngetsockname (intsocketnum, struct sockaddr x addres$
Gets the local IP and port of a socket.

Stores the local IP and port number of the specified socket in theditiresparameter.
Usegetpeernaméo get the remote port’s information for a connection-based (TCP)
socket.

Parameters:
socketnum handle of the socket to get local IP and port for

addressstructure where IP and port will be stored

Returns:
0 for success, non-zero for failure

See also:
getpeername

4.13.3.24 int syngetsockopt (intsocketnum, unsigned int name void * buffer)

Get various socket options.

Reads a number of supported socket options. Data written into the buffer depends on
the requested socket option.

Name Description Data in buffer

TCP.NODELAY TCP Nagle Enable 1 byte

SOLINGER Ignored N/A

SO.TIMEOUT Inactivity timeout 4 bytes (milliseconds,
MSB first)

SO.BINDADDR Local socket IP 16 bytes

This function assumes there is enough roorhufferto store the requested data.

Parameters:
socketnum socket to get option information for

name option to get
buffer location where option data will be written

125

Returns:
0 for success, non-zero for failure

See also:
setsockopt

4.13.3.25 int syngettftpserver (struct sockaddr x addres$
Get the address of the TFTP server.

Returns the address of the server accessed by the TFTP functions. To communicate
with a TFTP server, use the functions listed@m40Qtftp.h, the TFTP library.

Parameters:
addressstructure to store the address of the TFTP server

Returns:
0 for success, non-zero for failure

See also:
settftpserver

4.13.3.26 int synjoin (int socketnum, struct sockaddr x addres$
Adds a socket to a specified multicast group.

Adds a UDP socket to a specified multicast group. In order to receive multicasts from
a group, firsbind the socket to the port number that the multicast group is using (it is
not sufficient to include it here in order to receive).

Use theleavefunction to leave a multicast group.

Warning:
IPv6 multicasting is not supported

Parameters:
socketnum handle for the datagram socket that will join a multicast group

addressIP address of the multicast group to join

Returns:
0 for success, non-zero for failure.

See also:
leave

126

4.13.3.27 int synleave (intsocketnum, struct sockaddr « addres$
Removes a socket from the specified multicast group.

Removes a UDP socket from the specified multicast group.

Parameters:
socketnum handle for the datagram socket that will leave a multicast group

addressIP address of the multicast group to leave

Returns:
0 for success, non-zero for failure.

See also:
join

4.13.3.28 int synlisten (int socketnum, unsigned intbacklog
Tells a socket to listen for incoming connections.

Tells the socket to listen for connections. A queue of lertzghklogis created for
pending (unaccepted connections). It is required to ubend to assign a local port
before callinglisten. Useacceptto move an incoming request to an established state,
or wait for incoming connections.

Parameters:
socketnum socket handle that will listen for connections

backlog the maximum number of pending connections (max 16 for the
DS80C400)

Returns:
0 for success, non-zero for failure.

See also:
bind
accept

4.13.3.29 int synrecv (int socketnum, unsigned intlength, void * buffer)
Reads data from a TCP socket.

Reads data from a TCP socket. If there is no data availade blocks until there is
data, subject to the value 8O.TIMEOUT. NOTE: This function readsip to length
bytes. Call this function repeatedly if you need to read a minimum number of bytes.

127

Parameters:
socketnum handle of the streaming socket that will read data

length maximum amount of data to read
buffer location to write any data read

Returns:
The number of bytes read. If the operation times out according tdSthe
TIMEOUT, a value of -2 is returned. If another error occurs, -1 is returned. If
the socket was closed by the other side, 0 is returned.

See also:
connect
send

4.13.3.30 int synrecvfrom (int socketnum, unsigned intlength, void « buffer)
Receive a UDP datagram.

Receives a message on the specified socket, and stores the address that sent it in the
address structure set by an earlier cabyo setDatagramAddresslf no data is avail-
able,synrecvfromblocks subject to th6O.TIMEOUT value. The socketockethum

must have been created with a typ@CKETTYPEDATAGRAM It is required to use
synbindto assign a local port to the socket, before receiving dd@TE: This func-

tion readsup to lengthbytes of a datagram. Any data not read in the datagram will be
discarded.

Parameters:
socketnum the socket handle to use to wait for and read a UDP packet

length the maximum number of bytes to read from a datagram socket
buffer the location to write any data read from the datagram socket

Returns:
The number of bytes read. If the operation times out according tdSthe
TIMEOUT, a value of -2 is returned. If another error occurs, -1 is returned.

See also:
synsendto
synsocket
syn.bind

4.13.3.31 int synsend (intsocketnum, unsigned intlength, void * buffer)
Sends data to a TCP socket.

Writes data to a TCP socket. The return value of this function is only a local suc-
cess/failure code, and may not necessarily detect transmission errors.

128

Parameters:
socketnum handle of the streaming socket that will write data

length number of bytes to write
buffer location of data to write

Returns:
0 for success, non-zero for failure.

See also:
connect
recv

4.13.3.32 int synsendto (intsocketnum, unsigned intlength, void * buffer)

Sends a UDP datagram to an address earlier specified by a cgthsetDatagram-
Address

Sends a UDP datagram to an address earlier specified by a cgthsmtDatagram-
Address. The success/failure code this function returns says nothing of if the packet
was recieved by the target, only that the socket layer was able to push the data out. The
socketsocketnummust have been created with a typ@CKETTYPEDATAGRAM

Parameters:
socketnum the socket handle to use to send a UDP packet

length the number of bytes to send in the datagram packet
buffer the data to send in the datagram packet

Returns:
0 for success, non-zero for failure.

See also:
syn.recvfrom
synsocket
syn setDatagramAddress

4.13.3.33 int synsetDatagramAddress (intsocketnum, unsigned charsending
struct sockaddr x addr)

Set the IP address parameter for future datagram calls.

In order to keep the functions in this library multi-process-safe, datagram functions
synsendtaandsynrecvfromcannot have as many parameters as their traditional coun-
terparts. This function sets the pointer to the address structure that will be used as the
address parameter for functiosygnsendtoandsynrecvfrom.

Note that the Berkeley style API is now supported and is multi-process safe.

129

Parameters:
socketnum Socket number to set address for

sending Set to 0 if this is an address for receiving, Set to 1 if this is an address for
sending

addr Address structure that will be used in future callsstmsendtoor syn-
recvfrom.

Returns:
sockethum (for Macro purposes)

See also:
synsendto
synrecvfrom

4.13.3.34 void symsetmacid (void)
Stores the MAC ID into the MAC ID storage area.

This is a redirected function. The DS80C400’s default implementation of this function
searches the 1-Wire for a DS2502U-E48 1-Wire chip which contains a MAC ID. This
MAC ID is then stored into the MAC ID storage area, the location of which is stored in
a pointer in the export table. Use thetmacidfunction to return a pointer to the MAC

ID storage area.

See also:
getmacid

4.13.3.35 int synsetnetworkparams (voidx param.buffer)
Set the IPv4 configuration parameters.

Set the IPv4 configuration parameters, including IP address, subnet mask, and gateway.
Input parameters should be formatted in the following form:

Parameter Offset Length Description
(zero) 0 12 Must be 0
IPAADDR 12 4 IP address
IPASUBNET 16 4 Subnet mask
IPAPREFIX 20 1 Number of 1 bits
in subnet mask
(zero) 21 12 Must be 0
IPAGATEWAY 33 4 Gateway IP
address

130

Use this method to give the DS80C400 a static IP address. To dynamically configure
an IP address, use methods from the DHCP libraryoim40Qdhcp.h(IP addresses
leased by the DHCP client can still be retrieved by calljetnetworkparamy

IPv6 addresses are autoconfigured. To retrieve the IPv6 address, gephéparams
function.

Parameters:
param buffer pointer to buffer with IP configuration data

Returns:
0 for success, non-zero for failure

See also:
getnetworkparams
getipvbparams

4.13.3.36 int synsetsockopt (intsocketnum, unsigned intname void * buffer)
Set various socket options.

Sets a number of supported socket options. Input data in the buffer depends on the
desired socket option.

Name Description Data in buffer
TCP_.NODELAY TCP Nagle Enable 1 byte
SO.LINGER Ignored N/A
SO.TIMEOUT Inactivity timeout 4 bytes (milliseconds,
MSB first)
SO.BINDADDR Read only N/A
Parameters:

socketnum socket to set option information for
name option to set
buffer location of option data that will be written

Returns:
0 for success, non-zero for failure

See also:
getsockopt

131

4.13.3.37 int synsettftpserver (struct sockaddr x addres$
Set the address of the TFTP server.

Set the address of the server that the TFTP functions will uses@ttigpservefunction

must be used if the address of the TFTP server is not acquired by DHCP or 1-Wire.
Once the TFTP server’s address is set, use the functions listech#tDQtftp.h to begin
receiving files.

Parameters:
addressstructure to store the address of the TFTP server

Returns:
0 for success, non-zero for failure

See also:
gettftpserver

4.13.3.38 int synsocket (unsigned inttype
Create a network socket for TCP or UDP communication.

Creates a socket for network communication. This function returns a socket handle, but
has not specific local address assigned to it. Note that this functiortasitigettaskid
through the function redirect table.

Parameters:
type SOCKET.TYPE.DATAGRAM or SOCKDGRAM for UDP, SOCKET.-
TYPE_.STREAM or SOCK STREAM for TCP

Returns:
-1 for failure, or the socket handle (socket number)

See also:
bind
connect
closesocket

4.13.3.39 unsigned int syrversion (void)

Returns the version number of this socket library.

Returns:
Version number of this SOCK library.

132

4.13.3.40 int udpavailable (intsockethandle struct sockaddr « addres$
Returns whether or not data is available to be read on a datagram socket.
Returnsl if there is data available to be read on a UDP socket.

Parameters:
sockethandle handle to socket to check for available datagrams

addresslocation where the IP and port number will be written

Returns:
-1 if the socket is not a datagram socket O if no datagram packets are available 1 if
a datagram is available

The IP and port of the socket are returne@dfdress

4.14 rom40Qtask.h File Reference
4.14.1 Detailed Description

Process scheduler functions in the DS80C400 ROM.

This library contains functions for starting, suspending, killing, and managing tasks
using the ROM’s process scheduler.

For detailed information on the DS80C400 please see Ithigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
Some functions in this library aldOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Data Structures
e structTCB
e structTIME
Defines

» #defineEROM40QTASK_VERSIONS8
* #defineROM400.SCHED VERSIONROM40QTASK_VERSION

Included for legacy reasons. Please B&@M40Q0TASKVERSIONnNstead.

133

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

« #defineRELOAD_14 746 0xfb33

* #defineRELOAD_18 4320xfa00

* #defineRELOAD_29.4910xfd99

« #defineRELOAD_36.8640xfd00

« #defineRELOAD_58 982 0xfecc

« #defineRELOAD_73.7280xfe80

e #defineMIN _PRIORITY 1

e #defineNORM_PRIORITY 128

o #defineMAX _PRIORITY 255

o #defineFLAG_SLEEPINGL1

o #defineFLAG_IO_WAIT 2

e #defineFLAG_DHCP.WAIT 4

 #defineEROM_SAVESIZE 384

» #define taskwait(taskid, eventmask, millis) tasksynch-
wait(((long)(millis))>>16,(millis), (taskid) | ((eventmask)<< 8))

Puts the specified task to sleep.

e #define tasksleeftask, timeout) taslsynch-
sleep(((long)(timeout)} >16,(timeout),(task));

Redirected function to put a specified task to sleep for a number of milliseconds.

Functions

« void task genesigunsigned int savesize)
Initializes the process scheduler.

 unsigned chatask getcurren{void)
Gets the process ID for the current task.

* unsigned chatask getpriority (unsigned char tasid)
Gets the priority level for the given task.

 unsigned charask setpriority(unsigned char taskl, unsigned char priority)
Sets the priority level for a given task.

¢ unsigned intaskfork (unsigned char priority, unsigned int savesize)
Attempts to create a new task.

 unsigned charaskkill (unsigned char taskl)
Kills the specified task.

134

L]

unsigned chatask suspendunsigned char taskl, unsigned char evemhask)
Suspends the specified task.

unsigned chatask synchwait (unsigned int millish, unsigned int millisl, un-
signed int taskevent)

Puts the specified task to sleep.

unsigned chatask signal(unsigned char taskd, unsigned char evemhask)
Posts events to the specified task.

void task gettimemillis(struct TIME xt)
Returns the system tick count.

unsigned chatask getthreadid)
Redirected function to return the current thread’s ID number.

unsigned charask threadresuméunsigned char thread, unsigned char task)
Redirected function to resume the specified thread.

unsigned chataskthreadiosleegunsigned char infinite, unsigned long time-
out)

Redirected function to put the current thread to sleep.

unsigned chatask threadiosleepnfunsigned char infinite, unsigned long time-
out)

Redirected function to put the current thread (which is already in a critical section)
to sleep.

void task threadsavévoid)

Redirected function to save the state of the current thread in anticipation of a
task/thread swap.

void task threadrestorévoid)
Redirected function to restore the state of a thread.

unsigned charask synchsleep(unsigned int timeouh, unsigned int timeou,
unsigned char task)

Redirected function to put a specified task to sleep for a number of milliseconds.

unsigned chatask gettaskid()
Redirected function to get the ID of the current task.

void task entercritsectiorfvoid)

135

Enters a critical section.

void taskleavecritsectiorfvoid)
Leaves a critical section.

« unsigned intask gettickreloadvoid)
Gets the current reload value for the system’s millisecond ticker.

« void task settickreloadunsigned int reload)
Sets the current reload value for the system’s millisecond ticker.

¢ unsigned intaskversion(void)
Returns the version number of this process scheduling library.

4.14.2 Define Documentation

4.14.2.1 #define FLAGDHCP_WAIT 4

Flag for putting a task to sleep.

See also:
task wait

4.14.2.2 #define FLAGIO "WAIT 2

Flag for putting a task to sleep.

See also:
task wait

4.14.2.3 #define FLAGSLEEPING 1
Flag for putting a task to sleep.

See also:
task wait

4.14.2.4 #define MAXPRIORITY 255

Maximum priority level assignable to a task.

See also:
task setpriority
task getpriority

136

4.14.2.5 #define MINPRIORITY 1

Minimum priority level assignable to a task.

See also:
task setpriority
task getpriority

4.14.2.6 #define NORMPRIORITY 128

Normal priority for a task. This is the default priority for the default task.

See also:
task setpriority
task getpriority

4.14.2.7 #define RELOAD14.746 0xfb33

Timer reload value for 14.746 MHz crystal.

See also:
task settickreload
task gettickreload

4.14.2.8 #define RELOAD18.432 0xfa00

Timer reload value for 18.432 MHz crystal.

See also:
task settickreload
task gettickreload

4.14.2.9 #define RELOAD29.491 0xfd99
Timer reload value for 29.491 MHz crystal.
See also:

task settickreload
task gettickreload

137

4.14.2.10 #define RELOAD36.864 0xfd0O

Timer reload value for 36.864 MHz crystal.

See also:
task settickreload
task gettickreload

4.14.2.11 +#define RELOAD58.982 Oxfecc

Timer reload value for 58.982 MHz crystal.

See also:
task settickreload
task gettickreload

4.14.2.12 #define RELOAD73.728 0xfe80

Timer reload value for 73.728 MHz crystal.

See also:
task settickreload
task gettickreload

4.14.2.13 #define ROM40OASK _VERSION 8

Version number associated with this header file. Should be the same as the version
number returned by thsk versionfunction.

See also:
taskversion

4.14.2.14 #define ROMSAVESIZE 384

Default size for task switching buffer.

See also:
task genesis

138

4.14.2.15 #define taslsleep(task, timeout) tasksynch -
sleep(((long)(timeout)}>>16,(timeout),(task));

Redirected function to put a specified task to sleep for a number of milliseconds.

This is a redirected function that should be used to put a task to sleep for some known
period of time. The default implementation of this function calls the fundtisik wait

For more information on redirected functions, see the section
ROM Redirect Function Tablein the DS80C400 Users Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This "function” is now multi-process safe. If two processes try to call this function at
the same time, its parameters will not be destroyed. This "function” is now a macro
that actually callsask synchsleep.

Parameters:
task task ID to put to sleep. A value of zero means put the current task to sleep.

timeout amount of time to put 'task’ to sleep for

See also:
task wait
task synchwait
tasksynchsleep

4.14.2.16 #define taskvait(task.id, eventmask, millis) tasksynch-
wait(((long)(millis)) >>16,(millis), (task.id) | ((eventmask) << 8))

Puts the specified task to sleep.

Suspends the execution of the specified task until a set of events have occurred, or until
a set amount of time has elapsed. Use the funttisksignalto wake the task up.

This "function” is now multi-process safe. If two processes try to call this function at
the same time, its parameters will not be destroyed. This "function” is now a macro
that actually callsask synchwait .

Parameters:
taskid Task PID to put to sleep. A task PID of zero means put the current task to
sleep.

eventmask Bitmap of events to wait for before wakeup
millis Maximum number of milliseconds to sleep for

Returns:
0 for Success, non-zero for failure

139

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

See also:
tasksignal
task synchwait
task sleep
tasksynchsleep
task suspend

4.14.3 Function Documentation

4.14.3.1 void taskentercritsection (void)
Enters a critical section.

Enters a critical section, which disallows process swapping until the critical section is
left. Calls totask entercritsectiorshould be balanced with callstiask leavecritsection
(or taskthreadiosleepng.

This function is safe to be called from multiple processes at the same time.

See also:
task leavecritsection
taskthreadiosleepnc

4.14.3.2 unsigned int taskfork (unsigned char priority, unsigned intsavesizg
Attempts to create a new task.

Spawns a new task, returning the process ID of the new task to the parent task. Note
that because of the way the Keil compiler assigns variables, calls tdddskhould

be wrapped inside a critical section. Make sure the child’s process ID is stored in a

secure location before exiting the critical section. Note that only the parent need leave
the critical section, the child will not run until the parent has left it.

This function is safe to be called from multiple processes at the same time.

Parameters:
priority priority level for the new task.

savesizesize of the task state buffer for the new task

Returns:
OXOFFFF for failure, else 0 if this is the child task, or the child’s PID if this is the
parent.

See also:
MIN _PRIORITY
NORM_PRIORITY

140

MAX _PRIORITY
ROM_SAVESIZE
taskkill

4.14.3.3 void taskgenesis (unsigned insavesizg
Initializes the process scheduler.

Note that calling the functioimit_rom from the initialization library is the preferred
way of initializing the ROM.

This function is safe to be called from multiple processes at the same time.

Parameters:
savesizeSize of the task buffer for saving information on task switches.

4.14.3.4 unsigned char taslgetcurrent (void)

Gets the process ID for the current task.

Returns the process ID for the current task, which can be used to manage that task.
This function is safe to be called from multiple processes at the same time.

Returns:
PID for the current task.

See also:
taskkill
task setpriority
task getpriority

4.14.3.5 unsigned char taslgetpriority (unsigned char task.id)
Gets the priority level for the given task.

Given the process ID of a task, return the priority level for that task. Uaskad of O
for the current task.

This function is safe to be called from multiple processes at the same time.

Parameters:
taskid Task PID to get the priority for. A task PID of zero means the current task.

Returns:
Priority level of the task.

141

See also:
MIN _PRIORITY
NORM_PRIORITY
MAX _PRIORITY

4.14.3.6 unsigned char taslgettaskid ()
Redirected function to get the ID of the current task.

This is a redirected function that should be used to get the process ID of the current
task. The default implementation of this function calls the functamk getcurrent.

For more information on redirected functions, see the section
ROM Redirect Function Tablein the DS80C400 User's Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

Returns:
Task Id of the current task.

See also:
taskgetcurrent

4.14.3.7 unsigned char taslgetthreadid ()
Redirected function to return the current thread'’s ID number.

This is a redirected function that should be used to retrieve the current thread’s ID
number. However, the DS80C400 ROM does not support threads, so the default imple-
mentation of this function always returns 0x01.

For more information on redirected functions, see the section
ROM Redirect Function Tablein the DS80C400 Users Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf.

This function is safe to be called from multiple processes at the same time.

Returns:
default implementation returns 0x01

4.14.3.8 unsigned int taskgettickreload (void)
Gets the current reload value for the system’s millisecond ticker.

Gets the current reload value for the system’s millisecond ticker. When initialized, this
reload value may not be correct for the system, and caltagkgettimemillismay

142

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf.

show the resulting inaccuracy (for example, wall time may record 10 seconds while
the DS80C400 thinks 12 seconds have passes). Use this function to verify the system’s
current system millisecond ticker reload value.

This function is safe to be called from multiple processes at the same time.

See also:
task settickreload
task gettimemillis

4.14.3.9 void taskgettimemillis (struct TIME x t)
Returns the system tick count.

The default implementation of this function returns the approximate number of mil-
liseconds since the system started. Note that the largest raw data structure supported
by Keil is 4 bytes, yet the DS80C400'’s tick counter is 5 bytes, therefore the special
TIME structure is used.

This is a redirected function. The ROM includes a default process scheduler imple-
mentation. See thBS80C400 User's Guide for information on replacing the
default process scheduler with your own.

This function is safe to be called from multiple processes at the same time.
Parameters:

t pointer to a structure of typ€IME (a 5-byte structure). The result is written to
this pointer, MSB first.

See also:
TIME

4.14.3.10 unsigned char taskill (unsigned char task.id)
Kills the specified task.

Kill the specified task. Use taskid of O to indicate the current task. This function
does not close or clean up any sockets. Use the socket library fuctg@mmupto clean
any sockets owned by the task before any more processes are created.

This function is safe to be called from multiple processes at the same time.

Parameters:
taskid Task PID to kill.

Returns:
0 for Success, non-zero for failure

143

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

See also:
taskfork

4.14.3.11 void taskeavecritsection (void)
Leaves a critical section.

Leaves a critical section, which allows process swapping to continue. Caliske
leavecritsectiorshould have a matching call task entercritsection

This function is safe to be called from multiple processes at the same time.

See also:
task entercritsection
taskthreadiosleepnc

4.14.3.12 unsigned char taslsetpriority (unsigned char task.id, unsigned char
priority)
Sets the priority level for a given task.

Given the process ID of a task, set the priority level for that task. Uaskad of O for
the current task.

This function is safe to be called from multiple processes at the same time.

Parameters:
taskid Task PID to set the priority for. A task PID of zero means the current task.

priority Priority setting for PIDtaskid . Can be any value betweéviIN _-
PRIORITY andMAX _PRIORITY

Returns:
0 for Success, non-zero for failure

See also:
MIN _PRIORITY
NORM_PRIORITY
MAX _PRIORITY

4.14.3.13 void tasksettickreload (unsigned intreload)
Sets the current reload value for the system’s millisecond ticker.

Sets the current reload value for the system'’s millisecond ticker. When initialized, this
reload value may not be correct for the system, and caltagkgettimemillismay

144

show the resulting inaccuracy (for example, wall time may record 10 seconds while
the DS80C400 thinks 12 seconds have passes). Use this function to set the system’s
current system millisecond ticker reload value.

This function is safe to be called from multiple processes at the same time. This
function should only be called afténit_rom has been called. If you do not have a
1-Wire device attached for MAC address storage, you shouldniaBetclockor init _-
setfrequencyefore callinginit_rom to initialize the system with a good clock reload
value.

Parameters:
reload New value for the system’s millisecond reload timer. Some reloads for
common crystal frequencies incluRELOAD_14 746, RELOAD_18 432,
RELOAD_29.491, RELOAD_36.864, RELOAD_58.982 and RELOAD -
73.728 Values for other crystals (and crystal settings) can also be used.
See theHigh Speed Microcontroller's User Guide for more
information on timers and timer settings.

See also:
init_setclock
init_setfrequency
task gettickreload
task gettimemillis

4.14.3.14 unsigned char taslsignal (unsigned chartask.id, unsigned charevent-
mask

Posts events to the specified task.

Sends the event(s) eventmaskto procesdaskid . If the task is waiting for no other
events, it will wake up and be electable to run by the task scheduler.

This function is safe to be called from multiple processes at the same time.

Parameters:
taskid Task PID to signal.

eventmask Bitmap of events to signal

Returns:
0 for Success, non-zero for failure

See also:

task sleep
task suspend

145

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

4.14.3.15 unsigned char taslsuspend (unsigned chartaskid, unsigned char
eventmask

Suspends the specified task.

Suspends the execution of the specified task until a set of events have occurred. Use
the functiontask signalto wake the task up.

This function is safe to be called from multiple processes at the same time.

Parameters:
taskid Task PID to suspend. A task PID of zero means suspend the current task.

eventmask Bitmap of events to wait for before wakeup

Returns:
0 for Success, non-zero for failure

See also:
task signal
tasksleep

4.14.3.16 unsigned char taslsynchsleep (unsigned inttimeouth, unsigned int
timeoutl, unsigned chartask)

Redirected function to put a specified task to sleep for a number of milliseconds.

This is a redirected function that should be used to put a task to sleep for some known
period of time. The default implementation of this function calls the fundtisk wait

For more information on redirected functions, see the section
ROM Redirect Function Tablein the DS80C400 User's Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This functionlS multi-process safe. Two processes may safely call this function at the
same time.

Parameters:
timeouth high 16 bits of amount of time to put 'task’ to sleep for

timeout! low 16 bits of amount of time to put 'task’ to sleep for
task task ID to put to sleep. A value of zero means put the current task to sleep.

See also:
task wait
task synchwait
tasksleep

146

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

4.14.3.17 unsigned char taslsynch wait (unsigned int millis _h, unsigned intmil-
lis_l, unsigned inttask even)

Puts the specified task to sleep.

Suspends the execution of the specified task until a set of events have occurred, or until
a set amount of time has elapsed. Use the fundtishsignalto wake the task up.

This functionlS multi-process safe. Two processes may safely call this function at the
same time.

Parameters:
millis_h high 16 bits of amount of time to put 'task’ to sleep for

millis_l low 16 bits of amount of time to put 'task’ to sleep for

task event Most significant byte contains bitmap of events to wait for before
wakeup. Least significant byte contains task PID to put to sleep. A task
PID of zero means put the current task to sleep.

Returns:
0 for Success, non-zero for failure

See also:
tasksignal
task wait
tasksleep
task synchsleep
task suspend

4.14.3.18 unsigned char taskhreadiosleep (unsigned charinfinite, unsigned
long timeouy)

Redirected function to put the current thread to sleep.

This is a redirected function that should be used to put a thread to sleep. However,
the DS80C400 does not support threads, so the default implementation of this function
puts the current task to sleep.

For more information on redirected functions, see the section
ROM Redirect Function Tablein the DS80C400 User's Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
infinite O for non-infinite timeout, non-zero for infinite timeout (until woken)

147

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

timeout amount of time to sleep (if infinite==0)

Returns:
0 for Success, non-zero for failure

See also:
task threadiosleepnc
task threadresume

4.14.3.19 unsigned char taskhreadiosleepnc (unsigned chainfinite, unsigned
long timeoud

Redirected function to put the current thread (which is already in a critical section) to
sleep.

This is a redirected function that should be used to put a thread to sleep, when the

thread has already entered a critical section. However, the DS80C400 does not support
threads, so the default implementation of this function puts the current task to sleep

(which is assumed to be operating within a critical section).

For more information on redirected functions, see the section
ROM Redirect Function Tablein the DS80C400 User's Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
infinite O for non-infinite timeout, non-zero for infinite timeout (until woken)

timeout amount of tuime to sleep (if infinite==0)

Returns:
0 for Success, non-zero for failure

See also:
task threadiosleep
taskthreadresume
task entercritsection

4.14.3.20 void taskthreadrestore (void)

Redirected function to restore the state of a thread.

148

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This is a redirected function that should be used to restore the state of a thread that was
earlier saved with a call task threadsave However, the DS80C400 does not support
threads, so the default implementation of this function does nothing.

For more information on redirected functions, see the section
ROM Redirect Function Tablein the DS80C400 Users Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

See also:
taskthreadsave

4.14.3.21 unsigned char taskhreadresume (unsigned charthread unsigned
char task)

Redirected function to resume the specified thread.

This is a redirected function that should be used to resume a suspended or sleeping
thread. However, the DS80C400 ROM does not support threads, so the default imple-
mentation of this function resumes the task with a process ID matthakg

For more information on redirected functions, see the section
ROM Redirect Function Tablein the DS80C400 Users Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

Parameters:
thread thread ID to resume

task ID of the process thahreadbelongs to

Returns:
0 for Success, non-zero for failure

See also:
taskthreadiosleep
task threadiosleepnc

4.14.3.22 void taskthreadsave (void)

Redirected function to save the state of the current thread in anticipation of a task/thread
swap.

This is a redirected function that should be used to save the state of the current thread
SO it may be executed again later, after a caltask threadrestore. However, the

149

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

DS80C400 does not support threads, so the default implementation of this function
does nothing.

For more information on redirected functions, see the section
ROM Redirect Function Tablein the DS80C400 Users Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

See also:
taskthreadrestore

4.14.3.23 unsigned int taskversion (void)
Returns the version number of this process scheduling library.

This function is safe to be called from multiple processes at the same time.

Returns:
Version number of this TASK library.

4.15 rom40Qtftp.h File Reference
4.15.1 Detailed Description

TFTP Client functions in the DS80C400 ROM.

This library contains functions for downloading files from a TFTP server. Note that the
function settftpservefrom the socket library must be used to initialize the IP address
of the TFTP server before communication can begin.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
The functions in this library are multi-process safe—that is, if you call the same
method from two different processes at the same time, the parameters to the func-
tion will not be destroyed. However, only one TFTP client is a available, and it
uses system-wide resources. Therefore, it is recommended that one process man-
age the TFTP client.

Defines

o #defineROM40QTFTP.VERSIONS
o #defineTFTP.MORE_DATA 0
o #defineTFTP_LAST_SEGMENT1

150

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Functions

* unsigned intftp_init (void)
Initialize the TFTP client.

* unsigned intftp_first (unsigned chakfilename)
Requests a file from the TFTP server.

« unsigned intftp_next(unsigned int aclonly)
Read subsequent blocks of a file from a TFTP server.

« void * tftp_getdatavoid)
Get the pointer to the TFTP client’s read buffer.

L]

void tftp_close(void)
Closes the socket used by the TFTP library.

 unsigned intftp_version(void)
Returns the version number of this TFTP library.

4.15.2 Define Documentation

4.15.2.1 #define ROM40OTFTP_VERSION 5

Version number associated with this header file. Should be the same as the version
number returned by thi#tp_versionfunction.

See also:
tftp_version

4.15.2.2 #define TFTRLAST _SEGMENT 1

Agrument to functioriftp_nextrequesting the connection be closed.

See also:
tftp_next

4.15.2.3 #define TFTEMORE _DATA O

Agrument to functioriftp_nextrequesting more data.

See also:
tftp_next

151

4.15.3 Function Documentation

4.15.3.1 void tftpclose (void)
Closes the socket used by the TFTP library.

Closes the socket used by the TFTP library. Every caftpofirst creates a new socket,
and must be balanced by a calltttp_closeor the system will have lingering, inacces-
sible sockets.

See also:
tftp_first
tftp_next

4.15.3.2 unsigned int tftpfirst (unsigned char * filename
Requests a file from the TFTP server.

Requests the specified file from the TFTP server. As long as the file exists and this
function returns successfully, use the buffer pointer returned ffgngetdatato read

the first block of the requested file. Uggp_nextto read subsequent blocks of data. Af-

ter the TFTP transaction is complete (or an error has occurred and the TFTP transaction
will be abandoned), usftp_closeto clean up the transmission socket.

Parameters:
filename pointer to a null-terminated string that is the file to be requested from
the TFTP server

Returns:
OXOFFFF on failure, else the number of bytes read this time

See also:
tftp_next
tftp_close
tftp_getdata

4.15.3.3 void tftp _getdata (void)
Get the pointer to the TFTP client’s read buffer.

Applications should read the TFTP data after every calftfofirst or tftp_next. This
function only needs to be called once afti@jp_init has been called (the buffer pointer
does not change).

Returns:
Pointer to the area that the TFTP client is writing to

152

See also:
tftp_first
tftp_next

4.15.3.4 unsigned int tftpinit (void)
Initialize the TFTP client.

Initializes the TFTP client. Note that the IP address of the TFTP server must be set
using thesettftpservefunction from the socket library. After the TFTP Client is ini-
tialized, call thetftp_getdatafunction to request a pointer to the TFTP client’s buffer.

Returns:
0 for success, non-zero for failure

See also:
tftp_getdata

4.15.3.5 unsigned int titpnext (unsigned intack only)
Read subsequent blocks of a file from a TFTP server.

Requests the next block of a file be read from the TFTP server. Use the buffer pointer
returned frontftp_getdatato read the block read from the TFTP server. If this function
returns less than 512 bytes read, it means this is the last block of datetftiCakxt

one more time with the argumenFTP_LASTSEGMENTo clean up. After the TFTP
transaction is complete (or an error has occurred and the TFTP transaction will be
abandoned), usitp_closeto clean up the transmission socket.

Parameters:
ackoonly UseTFTP.MORE.DATAto request more data until the amount returned
is less than 512 bytes. U3¢ TP.LASTSEGMENTo acknowledge the last
segment was recieved.

Returns:
OXOFFFF on failure, or the number of bytes read.

See also:
tftp_first
tftp_close
tftp_getdata
TFTP.MORE_DATA
TFTP.LAST_SEGMENT

153

4.15.3.6 unsigned int tftpversion (void)

Returns the version number of this TFTP library.

Returns:
Version number of this TFTP library.

4.16 rom40Quseriopoll.h File Reference
4.16.1 Detailed Description

User 10 Poll registration routines for the DS80C400 ROM.

This library contains functions to register User IO Poll routines. User IO Poll routines
are called at least every 4 milliseconds by the system task scheduler. These allow
programs to put their applications to sleep while waiting for input, and register a polling
routine that will be called to check for that input. The sleeping process can then be
signalled to wake up from the polling routine.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

The functions in this library are multi-process safe—that is, if you call the same method
from two different processes at the same time, the parameters to the function are pre-
served, and the function should execute correctly.

Defines

* #defineROM400USERIOPOLLVERSION1

Functions

 unsigned chauseriopollisinstalled(void)
Checks to see if the User IO Poll library has already been initialized.

« void useriopollinit (unsigned char numoutines)
Initializes the User 10 Poll library.

« unsigned chauseriopollregisterpollroutinglvoid «funct, unsigned char num-
ber)

Registers an 10 Poll routine.

« unsigned chauaseriopollremovepollroutindunsigned char number)
Removes a registered 10 Poll routine.

154

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

« void * useriopollgetpollroutingunsigned char number)
Gets the address of a registered 10 Poll routine.

¢ unsigned chanseriopollgetlistsize(void)
Returns the number of polling routines allowed.

¢ unsigned inuseriopollversion(void)
Returns the version number of this User 10 Poll library.

4.16.2 Define Documentation

4.16.2.1 #define ROM40QJSERIOPOLL VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by theseriopollversionfunction.

See also:
useriopollversion

4.16.3 Function Documentation

4.16.3.1 unsigned char useriopalyetlistsize (void)
Returns the number of polling routines allowed.

Returns the size of the internal array that holds the registered polling routines. This
is the same as the number of entries that this library was initialized for. This num-
ber can be considered the bounds of valid indexes fousegiopollgetpollroutine,
useriopollLremovepollrouting anduseriopollregisterpollroutinefunctions.

Returns:
Size of the list of polling routines.

See also:
useriopollinit
useriopollregisterpollroutine
useriopollgetpollroutine
useriopollremovepollroutine

4.16.3.2 voic useriopoll_getpollroutine (unsigned charnumber)
Gets the address of a registered 10 Poll routine.

Gets the address of an entry in the list of registered IO Poll routines. If no entry exists
in the list at this location, this function returns NULL.

155

Parameters:
number location in the list of polling routines to clear

Returns:
address of the registered 10 Poll routine, or NULL if no routine exists at that
position in the list

See also:
useriopollinit
useriopollregisterpollroutine
useriopollremovepollroutine

4.16.3.3 void useriopollinit (unsigned char num_routines)
Initializes the User IO Poll library.

Initializes memory space required by the User 10 Poll library. The argument should
be the maximum number of IO Poll routines that will be needed by the library. In-
ternally, this is represented by an array of function pointers. Every 4 milliseconds (or
more often), all the function pointers in the array are invoked (if they have been set).
Therefore, itis in an application’s best interest to make this number the lowest possible
to reduce overhead.

The functions registered as 10 Poll routines should not destroy any registers aside from
the following: psw, acc, dptrO. All other registers should be preserved.

Parameters:
num_routines number of 10 Poll routines that can be registered

See also:
useriopollisinstalled
useriopollregisterpollroutine

4.16.3.4 unsigned char useriopalisinstalled (void)

Checks to see if the User 10 Poll library has already been initialized.

Checks to see if theseriopollinit function has already been called. This function
allows libraries to determine if they need to initialize this library or not.

Returns:
0 if the library has not been initialized, 1 if it has

See also:
useriopollinit

156

4.16.3.5 unsigned char useriopaltegisterpollroutine (void = funct, unsigned
char number)

Registers an 10 Poll routine.

Registers the given 10 Poll routine to be called by the task scheduler. The function will
be installed in the list of functions at the position definedbynber, even if a function
already exists at that location.

Parameters:
funct function pointer of the 10 Poll routine

number location in the list of polling routines to place this function

Returns:
0 if the operation was successful, nifimberwas out of bounds

See also:
useriopollinit
useriopollremovepollroutine
useriopollgetpollroutine

4.16.3.6 unsigned char useriopalfemovepollroutine (unsigned charnumber)
Removes a registered 10 Poll routine.

Removes an entry in the list of registered IO Poll routines. If no entry exists in the list
at this location, this function has no effect.

Parameters:
number location in the list of polling routines to clear

Returns:
0 if the operation was successful, Inifimberwas out of bounds

See also:
useriopollinit
useriopollregisterpollroutine
useriopollgetpollroutine

4.16.3.7 unsigned int useriopollersion (void)

Returns the version number of this User 10 Poll library.

Returns:
Version number of this User 10 Poll library.

157

4.17 rom40Qutil.h File Reference
4.17.1 Detailed Description

Utility functions in the DS80C400 ROM.
This library contains CRC, pseudo-RNG and utility memory functions.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
Some functions in this library aldOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Defines

 #defineROM40QUTIL VERSION5
 #defineREDIRECT.KERNELMALLOC 1

* #defineREDIRECTKERNELFREE2

* #defineREDIRECTMALLOC 3

« #defineREDIRECT FREE4
 #defineREDIRECT.MALLOCDIRTY 5
 #defineREDIRECT.TINIEXPORT_-MM _DEREF6
 #defineREDIRECT.GETFREERAM7

» #defineREDIRECT.GETTIMEMILLIS 8
 #defineREDIRECT.GETTHREADID 9

* #defineREDIRECT.THREADRESUME10
 #defineREDIRECT.THREADIOSLEEP11

» #defineREDIRECT.THREADIOSLEEPNC12

» #defineREDIRECT.THREADSAVE 13

» #defineREDIRECT.THREADRESTOREL4

» #defineREDIRECT.SLEEP15

» #defineREDIRECT.GETTASKID 16

* #defineREDIRECT.INFOSENDCHAR17

* #defineREDIRECT.IP.COMPUTECHECKSUMSOFTWARE18
* #defineREDIRECT.0 19

* #defineREDIRECT.DHCPNOTIFY 20

* #defineREDIRECT.ROM_TASK_CREATE21

* #defineREDIRECT.ROM_TASK_DUPLICATE 22
* #defineREDIRECT.ROM_TASK_DESTROY23
 #defineREDIRECT.ROM_TASK_SWITCH.IN 24

158

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

#defineREDIRECT.ROM_TASK_SWITCH.OUT 25
#defineREDIRECT.OWIP_.READCONFIG26
#defineREDIRECT.SETMACID 27
#defineREDIRECT.MM _UNDEREF28
#defineREDIRECT.USERIOPOLL 29
#defineREDIRECT.ERRORNOTIFICATION 30

Functions

¢ unsigned inutil_crc16(unsigned char value, unsigned int seed)
Generates a 16-bit CRC given a seed.

 unsigned chautil_getpseudorandotfvoid)
Gets a pseudo-random byte.

« void util_setrandomsee@insigned int seed)
Sets the seed of the random number generator.

« void util_memclear(void «target, unsigned int length)
Clears a block of memory.

« void util_memcopy(void xsource, voiddest, unsigned int length)
Copies a block of memory.

e unsigned chawutil_memcompareg(void *blockO, void xblockl, unsigned int
length)

Compares the values in 2 blocks of memory.

« void util_infosendchafunsigned char ch)
Sends a character to serial port O.

« void util Linstallhook(void «fncptr, unsigned int fncindex)
Installs a new function pointer into the ROM redirect table.

 unsigned inutil _version(void)
Returns the version number of this utility library.

4.17.2 Define Documentation

4.17.2.1 #define REDIRECTO 19

Reserved for future use with thail _installhookmethod.

159

See also:
util _installhook

4.17.2.2 #define REDIRECTDHCPNOTIFY 20

Value to be used in conjunction with tiél _installhookmethod to override thBHCP-
Notify method.

See also:
util _installhook

4.17.2.3 #define REDIRECTERROR_NOTIFICATION 30

Value to be used in conjunction with thiil _installhookmethod to override thError-
Notificationmethod.

See also:
util_installhook

4.17.2.4 #define REDIRECTFREE 4

Value to be used in conjunction with thil _installhookmethod to override theem-
freemethod.

See also:
util _installhook

4.17.2.5 #define REDIRECTGETFREERAM 7

Value to be used in conjunction with thiil _installhookmethod to override thenem-
getfreerammethod.

See also:
util _installhook

4.17.2.6 #define REDIRECTGETTASKID 16

Value to be used in conjunction with thil _installhookmethod to override theask -
gettaskidmethod.

See also:
util _installhook

160

4.17.2.7 #define REDIRECTGETTHREADID 9

Value to be used in conjunction with thil _installhookmethod to override th&ask -
getthreadidmethod.

See also:
util _installhook

4.17.2.8 #define REDIRECTGETTIMEMILLIS 8

Value to be used in conjunction with thiil__installhookmethod to override thtask -
gettimemillismethod.

See also:
util _installhook

4.17.2.9 #define REDIRECTINFOSENDCHAR 17

Value to be used in conjunction with theil _installhookmethod to override thatil -
infosendchamethod.

See also:
util _installhook

4.17.2.10 #define REDIRECTIP_COMPUTECHECKSUM _SOFTWARE 18

Value to be used in conjunction with thail_installhookmethod to override th&P_-
ComputeChecksumethod.

See also:
util _installhook

4.17.2.11 #define REDIRECTKERNELFREE 2

Value to be used in conjunction with thél _installhookmethod to override thkernel-
Freemethod.

See also:
util _installhook

161

4.17.2.12 #define REDIRECTKERNELMALLOC 1

Value to be used in conjunction with tiuél _installhookmethod to override thKernel-
Malloc method.

See also:
util _installhook

4.17.2.13 #define REDIRECTMALLOC 3

Value to be used in conjunction with tlil _installhookmethod to override thenem-
mallocmethod.

See also:
util _installhook

4.17.2.14 #define REDIRECTMALLOCDIRTY 5

Value to be used in conjunction with tlil _installhookmethod to override themmem-
mallocdirtymethod.

See also:
util _installhook

4.17.2.15 #define REDIRECTMM _UNDEREF 28

Value to be used in conjunction with thiél _installhookmethod to override thil_Un-
Derefmethod.

See also:
util _installhook

4.17.2.16 #define REDIRECTOWIP _READCONFIG 26

Value to be used in conjunction with tiiél __installhookmethod to override th@WIP--
ReadConfignethod.

See also:
util _installhook

162

4.17.2.17 #define REDIRECTROM _-TASK_CREATE 21

Value to be used in conjunction with thiil _installhookmethod to override th&ask-
Createmethod.

See also:
util _installhook

4.17.2.18 #define REDIRECTROM _TASK _DESTROY 23

Value to be used in conjunction with thwil _installhookmethod to override th&ask -
kill method.

See also:
util _installhook

4.17.2.19 #define REDIRECTROM _TASK _DUPLICATE 22

Value to be used in conjunction with theil _installhookmethod to override théask-
Duplicatemethod.

See also:
util _installhook

4.17.2.20 #define REDIRECTROM _-TASK_SWITCH _IN 24

Value to be used in conjunction with thiil _installhookmethod to override th&ask-
Switchlnmethod.

See also:
util _installhook

4.17.2.21 #define REDIRECTROM _TASK_SWITCH _OUT 25

Value to be used in conjunction with thil _installhookmethod to override th&ask-
SwitchOutmethod.

See also:
util _installhook

4.17.2.22 #define REDIRECTSETMACID 27

Value to be used in conjunction with theil _installhookmethod to override th&et-
MACID method.

See also:
util _installhook

163

4.17.2.23 #define REDIRECTSLEEP 15

Value to be used in conjunction with thil _installhookmethod to override th&ask -
sleepmethod.

See also:
util _installhook

4.17.2.24 #define REDIRECTTHREADIOSLEEP 11

Value to be used in conjunction with thiil__installhookmethod to override thtask -
threadiosleepnethod.

See also:
util _installhook

4.17.2.25 #define REDIRECTTHREADIOSLEEPNC 12

Value to be used in conjunction with thiil _installhookmethod to override theask -
threadiosleepneethod.

See also:
util _installhook

4.17.2.26 #define REDIRECTTHREADRESTORE 14

Value to be used in conjunction with thil _installhookmethod to override thtask -
threadrestorenethod.

See also:
util _installhook

4.17.2.27 #define REDIRECTTHREADRESUME 10

Value to be used in conjunction with thil _installhookmethod to override theask -
threadresumenethod.

See also:
util _installhook

164

4.17.2.28 #define REDIRECTTHREADSAVE 13

Value to be used in conjunction with thil _installhookmethod to override th&ask -
threadsavenethod.

See also:
util _installhook

4.17.2.29 #define REDIRECTTINIEXPORT MM _DEREF 6

Value to be used in conjunction with thil _installhookmethod to override thM_-
Derefmethod.

See also:
util _installhook

4.17.2.30 #define REDIRECTUSER_IOPOLL 29

Value to be used in conjunction with thil _installhookmethod to override theser -
IOPoll method.

See also:
util _installhook

4.17.2.31 #define ROM40QTIL -VERSION 5
Version number associated with this header file. Should be the same as the version
number returned by thatil versionfunction.

See also:
util _version

4.17.3 Function Documentation

4.17.3.1 unsigned int utilcrc16 (unsigned charvalue unsigned intseed
Generates a 16-bit CRC given a seed.

Implements the Cyclic-Redundancy Check CRC16. This CRC is based on the poly-
nomial X*16 + X"15 + X*2 + 1. It is used extensively in operations with Dallas
Semiconductor 1-Wire devices.

This function is safe to be called from multiple processes at the same time.

Parameters:
value single byte input value to the crc function

165

seed 16 bit 'previous result’ seed

Returns:
16 bit CRC result

4.17.3.2 unsigned char utilgetpseudorandom (void)
Gets a pseudo-random byte.

Returns a pseudo-random byte generated with the help of the CRC function. This is
not a true random byte, as there is no real source of entropy.

This function is safe to be called from multiple processes at the same time.

Returns:
One pseudorandom byte.

4.17.3.3 void utilinfosendchar (unsigned charch)
Sends a character to serial port 0.

This is a redirected function. The DS80C400 silicon software version of this function
accesses the serial loader pin (P1.7) and does nothing if this pin is in the logic low state.
The DS80C400 silicon software does not use interrupt driver I/O to the serial port.

This function is safe to be called from multiple processes at the same time.

Parameters:
ch character to send to the debug port

4.17.3.4 void utilinstallhook (void fncptr, unsigned intfncindex)
Installs a new function pointer into the ROM redirect table.

This function alters the redirect table, which allows functions in the ROM to be overrid-
den by intredpid users. The function that is redirected will now call the code at address
fncptr. It is not advised thafncptr point to a C function unless no arguments are ex-
pected (there is no way without writing an assembler wrapper to get the arguments to
the C function in the Keil compiler).

See the DS80C400 User’'s Guide Supplement for more on the meaniadiagdcted
functions.

This function is safe to be called from multiple processes at the same time.

Parameters:
fncptr address of the function that will be inserted into the redirect table

166

fncindex number of the redirected function that will be altered (REDIRECT.-
KERNELMALLOC)

4.17.3.5 void utiimemclear (void* target, unsigned intlength)
Clears a block of memory.
Setslengthbytes to zero starting at addrdasget.

This function is safe to be called from multiple processes at the same time.

Parameters:
target beginning address of memory to clear

length number of bytes to clear

4.17.3.6 unsigned char utimemcompare (void« blockQ void * blockl, unsigned
int length)

Compares the values in 2 blocks of memory.

Comparedengthbytes fromblockOto lengthbytes fromblock1for equality. If the two
memory blocks are identical, the function returns 0.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
blockO first input block to compare

blockl second input block to compare
length maximum number of bytes to compare

Returns:
0 if the blocks are identical, non-zero otherwise

4.17.3.7 void utiimemcopy (void* source void * dest unsigned intlength)
Copies a block of memory.

Copieslengthbytes of data from theourcepointer to thedestpointer. The copy oper-
ation starts from the beginning of tlseurcepointer, placing bytes from the beginning
of thedestbuffer. Therefore, f the buffers referenceddnurceanddestoverlap, some
bytes fromsourcebytes will be overwritten prior to being copied to the target.

167

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
source pointer to bytes that will be the source of the copy

dest pointer to the bytes that will to copied to
length number of bytes to copy fromourceto dest

4.17.3.8 void utilsetrandomseed (unsigned inseed
Sets the seed of the random number generator.

Changes the current value of the random seed to the random number generator, allow-
ing for additional randomness to be inserted into the generation. Note that additional
randomness is also generated by the timer bytes and the millisecond counter, so this
seed is not the only source.

This function is safe to be called from multiple processes at the same time.

Parameters:
seednew random seed

4.17.3.9 unsigned int utilversion (void)
Returns the version number of this utility library.

This function is safe to be called from multiple processes at the same time.

Returns:
Version number of this UTIL library.

4.18 rom40Qxnetstack.h File Reference
4.18.1 Detailed Description

Enhanced network stack for the DS80C400 ROM.

This library contains a replacement network stack with better performance and more
standards compliant functionality. Since this library will replace the default ROM net-
work stack, be careful of the physical location this library. If this library is targeted to
reside in flash memory, your system will be limited by the speed of your flash.

To use this functionality, addhetstackinstall() to your program before calling rominit
and add the library to your build process.

For detailed information on the DS80C400 please see Ithigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

168

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Defines

» #defineEROM400XNETSTACK_VERSION11

Functions

« void xnetstackinstall (void)
Installs the enhanced network stack.

¢ unsigned inknetstackversion(void)
Returns the version number of this library.

« void xnetstackset tcptimeoutfacto(int factor)
Sets a factor to scale all TCP timeouts.

« int xnetstackget tcptimeoutfactofvoid)
Gets the factor to scale all TCP timeouts.

 void xnetstacksetipv6 (int enable)
Enables/disables IPv6.

« void xnetstackseticmpechorepliegint enable)
Enables/disables ICMP echo replies.

« void xnetstackseticmpdestinationunreachat{iat enable)
Enables/disables ICMP destination unreachable messages.

 void xnetstacksetigmpreporttypgint type)
Sets the IGMP membership report type.

4.18.2 Define Documentation

4.18.2.1 #define ROM40OXNETSTACK _VERSION 11

Version number associated with this header file. Should be the same as the version
number returned by thenetstackversionfunction.

See also:
xnetstackversion

169

4.18.3 Function Documentation

4.18.3.1 int xnetstackget tcptimeoutfactor (void)

Gets the factor to scale all TCP timeouts.

Returns:
TCP scale factor

See also:
xnetstacksettcptimeoutfactor

4.18.3.2 void xnetstackinstall (void)
Installs the enhanced network stack.

This function installs the enhanced network stack functionality. The function has to be
called before romnit().

4.18.3.3 void xnetstackseticmpdestinationunreachable (intenable
Enables/disables ICMP destination unreachable messages.

Parameters:
enable 1 to enable, 0 to disable

Setting this to 0 prevents the network stack from generating ICMP destination unreach-
ables (i.e. the device will not respond when an unused port is accessed).

4.18.3.4 void xnetstackseticmpechoreplies (intenablg
Enables/disables ICMP echo replies.

Parameters:
enable 1 to enable, 0 to disable

Setting this to 0 prevents the network stack from generating ICMP echo replies (i.e. the
device will no longer respond to "ping”).

4.18.3.5 void xnetstacksetigmpreporttype (int type
Sets the IGMP membership report type.

Parameters:
type (0x12 for version 1, 0x16 for version 2)

170

NOTE: This does not enable IGMPv2 compatibility, it merely changes the type of
membership reports to work around a problem with certain switches. The default is
IGMPVL1.

4.18.3.6 void xnetstacksetipv6 (int enablg
Enables/disables IPv6.

Parameters:
enable 1 to enable, 0 to disable

NOTE: This function disables the IPv6 receiver and transmitter. An application can
still send packet to IPv6 addresses without receiving an error message; these packets
will be discarded at the driver level.

4.18.3.7 void xnetstackset tcptimeoutfactor (int factor)

Sets a factor to scale all TCP timeouts.

Parameters:
factor TCP scale factor (1 to 255, default: 32)

See also:
xnetstackget tcptimeoutfactor

4.18.3.8 unsigned int xnetstack/ersion (void)
Returns the version number of this library.

Returns:
Version number of this library.

4.19 stdio.h File Reference
4.19.1 Detailed Description

File and other 10 functions.

This library contains functions for file system operations and formatting input and out-
put data. The file system has been adapted from TINI's Java Runtime Environment to
be able to be called from a C program.

The file system must reside in contiguous memory. The maximum size of the file
system is likely to be far beyond the needs of most/any applications. Following is a
more rigorous definition of the maximum file system size for those interested:

171

Pages in the file system are 256-byte blocks (on 256-byte boundaries). The file system’s
memory manager has several overhead blocks to maintain some information on block
allocation. The number of overhead blocks cannot exceed 255 blocks (65280 bytes).
11 pages of overhead are consumed by file system specific overhead. The remaining
possible overhead blocks are consumed by:

« 5 bytes magic signature
* 'num_blocks’ bytes for the free list

* 'maxfd’ x 26 bytes for open file descriptors

This data must therefore fit into 244 pages (62464 bytes). Assuming we use the usual
'maxfd’ value of 8, this leaves space for a free list covering 62251 blocks, which yields
a little over 15 MB of file system. Note that the file system overhead eats into the total
file system space.

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
Some functions in this library aldOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

#include <stddef.h >

Data Structures

 structfile_structure

Defines

 #defineFSVERSIONS

e #defineNULL ((void *) 0)

« #defineFILE_FLAGS_EOF1
o #defineFILE_.FLAGS.TEMP 2
e #defineFILE_TYPETINIFS 1
« #defineFILENAME _MAX 255
¢ #defineFOPENMAX 8

« #defineL_tmpnam?20

« #defineSEEK CUR 0x5555

« #defineSEEK END 0x5556

o #defineSEEK SET0x5557

172

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

#defineTMP_MAX 10
#defineEOF-1
#defineP_tmpdir "temp”

Typedefs

L]

typedef unsigned ingizet
typedef unsigned indff _t
typedef longfpos.t
typedeffile_structureFILE

Functions

void clearerr(FILE «f_handle)
Clear the error indicators for a file stream.

int fclose(FILE «f_handle)
Closes the file stream.

int feof (FILE *f_handle)
Checks to see if this stream has reached the end of the file.

int ferror (FILE f_handle)
Gets the error indicator for the file stream.

int fgetc (FILE *f_handle)
Gets the next unsigned character from the file stream.

int fgetpos(FILE «f_handle fpos.t «position)
Gets the current value of the file position indicator.

charsx fgets(charxstring, int numFILE «f_handle)
Reads a string from the file stream.

FILE * fopen(const chaxfilename, const chamrmode)
Opens the specified file.

int fputc (int ch, FILE «f_handle)
Writes a character to a file stream.

int fputs (const chakstr, FILE «f_handle)
Writes a string to a file stream.

173

sizet fread(void xptr, sizet size,sizet num,FILE «f_handle)
Read a number of bytes from a file stream.

FILE * freopen (const charxnewfilename, const charmode, FILE xold.-
handle)

Associates an open stream with a different file.

int fseek(FILE «f_handle, long int offset, int tag)
Sets the file position indicator.

int fseeko(FILE *f_handle off t offset, int tag)
Sets the file position indicator.

int fsetpoS(FILE «f_handle, constpos t «xposition)
Sets the file position indicator.

long ftell (FILE «f_handle)
Gets the file position indicator.

off_t ftello (FILE «f_handle)
Gets the file position indicator.

void flockfile (FILE «f_handle)
Gets exclusive access to a file.

int ftrylockfile (FILE «f_handle)
Tries to get exclusive accress to a file.

void funlockfile (FILE «f_handle)
Release exclusive access on a file.

sizet fwrite (const void«ptr, sizet size,sizet num,FILE xf_handle)
Write a number of bytes to a file stream.

int getc(FILE «f_handle)
Gets the next unsigned character from the file stream.

int putc(int value,FILE «f_handle)
Writes a character to a file stream.

int remove(const chakfilename)

174

Removes a file from the file system.

int renamgconst charoldname, const chanewname)
Renames a file.

void rewind (FILE «f_handle)
Resets the file position indicator for a stream.

charx tempnam(const chakdirname, const chapfx)
Generates a path/filename that can be used for a temporary file.

FILE = tmpfile (void)
Generates a stream to a temporary file.

charx tmpnam(charxnametarget)
Generates a uniqe temporary filename.

int fflush (FILE «f_handle)
Flushes the buffers for a file stream.

int fcleaninit(char numfd, int numblocks, voiestartaddress)

Initializes the file system to a blank state.

int finit (char numfd, int numblocks, voigstartaddress)

Initializes the file system.

int fexists(charxfilename)
Tests for the existence of a file.

void x fopenfd (const chakfilename, const charmode)
Helper function that opens a file descriptor.

unsigned infreadbytegvoid «buffer, int length FILE xstream)
Reads bytes into a buffer from a file stream.

unsigned infwritebytes(void «buffer, int length FILE «stream)
Writes bytes to a file stream.

unsigned longyetfreefsrang)
Gets the amount of free space in the file system.

int mkdir (charxdirname)

175

Creates a directory.

char_getkey(void)
Keil-provided function.

chargetchar(void)
Keil-provided function.

charungetchagchar)
Keil-provided function.

charputchar(char)
Keil-provided function.

int printf (const chak,...)
Keil-provided function.

int sprintf (charx*, const chak,...)
Keil-provided function.

int vprintf (const chak, charx)

Keil-provided function.

int vsprintf (charx, const chax, charx)

Keil-provided function.

charx gets(charsx, int n)
Keil-provided function.

int scanf(const chak,...)
Keil-provided function.

int sscanf(charx, const chak,...)
Keil-provided function.

int puts(const chak)
Keil-provided function.

unsigned infilesystemversion(void)
Returns the version number of this file system library.

176

4.19.2 Define Documentation

4.19.2.1 #define EOF -1

Define for end-of-file.

4.19.2.2 #define FILEFLAGS_EOF 1

Definition for file flag. Denotes that the end of the file has been reached for this file.

See also:
FILE

4.19.2.3 #define FILEFLAGS_TEMP 2

Definition for file flag. Denotes that this is a temporary file.

See also:
FILE

4.19.2.4 #define FILETYPE_TINIFS 1
Type for the file. Currently, this file system only supports the TINI File System type.

See also:
FILE

4.19.2.5 #define FILENAMEMAX 255

Maximum size in bytes of the longest filename string that the implementation guaran-
tees can be opened.

See also:
fopen

4.19.2.6 #define FOPENVAX 8

Number of streams which the implementation guarantees can be open simultane-
ously.

See also:
fopen

177

4.19.2.7 #define FS/ERSION 8

Version number associated with this header file. Should be the same as the version
number returned by thidesystemversionfunction.

See also:
filesystemversion

4.19.2.8 #define Ltmpnam 20

Maximum size of character array to hdldpnamoutput.

See also:
tmpnam

4.19.2.9 #define NULL ((voidx) 0)

Definition for a null pointer.

4.19.2.10 #define Rmpdir "temp”

Default directory that temporary file names will be built into.

See also:
tmpnam

4.19.2.11 #define SEEKCUR 0x5555

Seek offset is from the current location in the file.

Warning:
Option currently not supported.

See also:
fseek
fseeko

4.19.2.12 #define SEEKEND 0x5556

Seek offset is from the end of the file.

Warning:
Option currently not supported.

178

See also:
fseek
fseeko

4.19.2.13 #define SEEKSET 0x5557

Seek offset is from the beginning of the file.

See also:
fseek
fseeko

4.19.2.14 #define TMEMAX 10

Maximum number of guaranteed unique file names that can be created toyhem
function.

See also:
tmpnam

4.19.3 Typedef Documentation

4.19.3.1 typedef strucfile_structure FILE
Type definition for a C file object.

4.19.3.2 typedeflong fpos

Type definition for the position in a file.

4.19.3.3 typedef unsigned int oft

Type definition for the offset in a file.

4.19.3.4 typedef unsigned int siz¢

Type definition for the amount of data to be written or read.

4.19.4 Function Documentation

4.19.4.1 char_getkey (void)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h.

179

4.19.4.2 void clearerr FILE x f_handle)
Clear the error indicators for a file stream.
Clears the error and end-of-file indicators for a file stream.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle file handle to file to clear error flag for

4.19.4.3 int fcleaninit (charnumfd, int numblocks void * start addres$
Initializes the file system to a blank state.

Initializes the file system. This method (finit) must be called every time the
DS80C400 boots up and wants to use the file system. Starts with a blank file system
automatically.

Note that thenit_rom function must be called before the file system is initialized.

This function is safe to be called from multiple processes at the same time.

Parameters:
numfd Maximum number of file descriptors that can be open at one time in the
system.

numblocks Number of 256-byte blocks available to the file system.

start addressStarting address of the memory allocated for the file system. The
bounds of the memory allocated for the file system are then ftart -
addresdo (start addresst 256« numblocks.

Returns:
Non-zero, since the file system memory had to be erased.

See also:
init_rom [in the initialization library]
finit

4.19.4.4 intfcloseEILE = f_handle)
Closes the file stream.

Closes the stream associated withandle. In the TINI File System, there are no
buffers, so this function has nothing to flush before closing.

This function is safe to be called from multiple processes at the same time.

180

Parameters:
f_handle handle of file to close

Returns:
Always 0

See also:
fopen

4.19.4.5 intfeof EILE * f_handle)

Checks to see if this stream has reached the end of the file.

Tests the end-of-stream indicator for this file stream.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle to file to check end-of-file condition for

Returns:
Non-zero if the end of the file has been reached, otherwise 0

4.19.4.6 intferror (FILE x f_handle)

Gets the error indicator for the file stream.

Gets the current error indicator for the file stream.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle to file to get current error code for

Returns:
Current error code for file denoted byrandle. 0 means no error.

4.19.4.7 int fexists (char filename

Tests for the existence of afile.

Checks to see if the filelenameexists in this file system.

This function is safe to be called from multiple processes at the same time.

Parameters:
filename File to check for the existence of.

181

Returns:
0 if the file exists, non-zero if it does not exist.

4.19.4.8 intfflush FILE « f_handle)
Flushes the buffers for a file stream.

The TINI File System has no buffers (data is read and written directly on the file system,
since it resides in XDATA). Therefore, this function only clears the error flag.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle File handle to flush output buffers for

Returns:
0 on success.

4.19.4.9 intfgetc FILE *f_handle)
Gets the next unsigned character from the file stream.

Returns the next unsigned character (if available) from the file stream (converted to an
int), advancing the file position pointer.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle of the file we will read from

Returns:
The next character from the file, BIOFif the end of file has been reached

See also:
getc
feof
fputc

4.19.4.10 intfgetposKILE * f_handle fpos_t x position)
Gets the current value of the file position indicator.

Puts the current value of the file position indicator into the locgbiosition. The value
in positionafter the function call is to be used for resetting the stream to this position
using a later call tdsetpos

182

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
f_handle handle to file to get current position for

position pointer to location for position information

Returns:
Always 0

See also:
fsetpos
ftell

4.19.4.11 chax fgets (charx string, int num, FILE * f_handle)
Reads a string from the file stream.

Reads at mostum-1 characters from the file stream. Will not return any data read
after a newline character (which is included) or the end of the file. A null character is
appended to the data read.

Note that the implementation of this method is not efficient. For more efficient reading
of data, use th&eadfunction.

This function is safe to be called from multiple processes at the same time.

Parameters:
string buffer to write string data to

num read a maximum ofrum-1) bytes, leaving 1 for a terminating 0
f_handle handle to file to read from

Returns:
Input pointerstring , or NULL if EOF or errors were encountered. Data will be
written as O-terminated string &iring

See also:
fread
fputs
feof

183

4.19.4.12 unsigned int filesystemersion (void)

Returns the version number of this file system library.

Returns:
Version number of this FILESYSTEM library.

4.19.4.13 intfinit (charnumfd, int numblocks void * start addres}
Initializes the file system.

Initializes the file system. This method (fmleaninit) must be called every time the
DS80C400 boots up and wants to use the file system. If the file system does not exist
or is corrupted, it will erase and start with a blank file system. Also, if any of the
parameters given tbnit do not match how the file system was previously initialized,
the file system will erase and start blank.

Note that thenit_rom function must be called before the file system is initialized.

This function is safe to be called from multiple processes at the same time.

Parameters:
numfd Maximum number of file descriptors that can be open at one time in the
system.

numblocks Number of 256-byte blocks available to the file system.

start address Starting address of the memory allocated for the file system. The
bounds of the memory allocated for the file system are then ftart -
addresdo (start addresst 256« numblocks.

Returns:
0 if the file system previously existed and was restored. Non-zero if the file system
memory had to be erased.

See also:
init_rom[in the initialization library]
fcleaninit

4.19.4.14 void flockfile FILE * f_handle)
Gets exclusive access to a file.

Sleeps until exclusive access to a file is available. Note that locks cannot be nested. A
nested lock will be released on the very first calfualockfile, andnot the matching
call.

This function is safe to be called from multiple processes at the same time.

184

Parameters:
f_handle handle of file to acquire exclusive access for

See also:
ftrylockfile
funlockfile

4.19.4.15 FILE * fopen (const charx filename const charx mode
Opens the specified file.

Opens the file specified and associates a stream with it. Files can be opened in read,
write, or append mode.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
filename name of the file to get a handle for

mode - If mode[0] == 'r’, open a reading file stream. If mode[0] =='a’, open a
writing stream for appending. If mode[0] =="w’, open a writing stream for
a blank file.

Returns:
handle to the file, oNULL on failure

See also:
freopen
fclose

4.19.4.16 void fopen_fd (const char x filename const charx mode
Helper function that opens a file descriptor.

Helper function that opens a file descriptor. File descriptors are not immediately useful
to any C library function. Applications should use flopenfunction to open a file.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
filename Name of the file to get a descriptor for. The data pointed tfilbpame
must stay consistent for the duration of the use of the file descriptor. The
fopenmethod avoids this limitation by creating a copy of the name data.

185

mode Read/Write/Append mode string

Returns:
pointer to a file descriptor

See also:
fopen

4.19.4.17 intfputc (intch, FILE * f_handle)
Writes a character to a file stream.

Writes the specified character (converted from an int) to a file stream, advancing the
file position indicator.

This function is safe to be called from multiple processes at the same time.

Parameters:
ch character that will be written to the fifehandle

f_handle handle of the file we will write character to

Returns:
Character written if successful, elE®©F

See also:
fgetc
putc

4.19.4.18 int fputs (const chak str, FILE « f_handle)

Writes a string to a file stream.

Writes a null-terminated string to a file stream. The terminating character is not written.
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
str null-terminated string to write to a file

f_handle handle to file to write string to

Returns:
number of bytes written, dEOF on failure

See also:
fgets
fwrite

186

4.19.4.19 sizet fread (void x ptr, sizet size sizet num, FILE * f_handle)
Read a number of bytes from a file stream.

Reads a block of data from a file stream. This function allows you tomeaglements
of sizesize. However, note that this function always behaves as if it had been called
by:

fread(ptr, 1, size*num, f_handle);

This function is safe to be called from multiple processes at the same time.

Parameters:
ptr pointer to buffer to read data into

size size of each element to be read
num number of elements to read
f_handle handle to file to read from

Returns:
number of elements read

See also:
fgetc
fwrite

4.19.4.20 unsigned int freadbytes (void buffer, int length, FILE « stream)
Reads bytes into a buffer from a file stream.

Reads a specified number of bytes into a buffer from a file stream. This function is used
by freadas a helper function. It may safely be used from user applications, although it
is not a standard file reading function (is not part of an ANSI-C standard library).

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
buffer Location to read data into

length Number of bytes to read
stream File to read data from

Returns:
Number of bytes read, &OFif the end of file is reached.

187

See also:
fread
fwritebytes

4.19.4.21 FILE x freopen (const charx newfilename const char+ mode FILE x
old_handle)

Associates an open stream with a different file.
Closes the file associated wittd_handleand opens a stream to the filewfilename

This function is safe to be called from multiple processes at the same time.

Parameters:
newfilename name of file to open

mode mode to opemewfilenamén (seefopenfor details)
old_handle file handle to flush and close

Returns:
Handle to filenewfilename or NULL if the file could not be opened.

See also:
fopen
fclose

4.19.4.22 int fseekEILE =« f_handle long int offset int tag)
Sets the file position indicator.

Sets the file position indicator for a file stream. Note that the only currently supported
value fortagis SEEK SET, meaning that the valuaffsetwil always be interpreted as
the offset from the beginning of the file.

After a call tofseek, the end-of-file indicator for the file stream is reset.

This function behaves the samefaseko. The only difference is thdseekoaccepts
anoffsetparameter of typeff_t.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
f_handle handle of file to set posision for

offset offset to set for file position

188

tag only SEEK SETis supported

Returns:
Always 0.

See also:
ftell
fseeko
fsetpos

4.19.4.23 int fseekoKILE = f_handle off_t offset int tag)
Sets the file position indicator.

Sets the file position indicator for a file stream. Note that the only currently supported
value fortag is SEEK SET, meaning that the valueffsetwil always be interpreted as
the offset from the beginning of the file.

After a call tofseekq the end-of-file indicator for the file stream is reset.

This function behaves the samefagek. The only difference is theéseekaccepts an
offsetparameter of typéong int .

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle of file to set posision for

offset offset to set for file position
tag only SEEK SETis supported

Returns:
Always 0.

See also:
ftello
fseek
fsetpos

4.19.4.24 intfsetposKILE x f_handle constfpos.t x position)
Sets the file position indicator.

Sets a stream’s file position indicator from the position information pointed tmoby
sition . The value inposition should have been obtained by a callftetpos. If
successful, this function will also clear the end-of-file indicator for the stream.

189

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
f_handle handle of file we will set the position for

position position in the file to set

Returns:
Always 0

See also:
fgetpos
fseek

4.19.4.25 long ftell FILE = f_handle)
Gets the file position indicator.

Gets the file position indicator for the specified file. This is the number of characters
from the beginning of the file.

This function behaves the sameftdlo . The only difference is thdtello returns a
value of typeoff t.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle of file to get current position of

Returns:
Current position in file, or -1L on failure.

See also:
fseek
ftello
fgetpos

4.19.4.26 off_t ftello (FILE * f_handle)
Gets the file position indicator.

Gets the file position indicator for the specified file. This is the number of characters
from the beginning of the file.

This function behaves the sameftedl . The only difference is thdtell returns a value
of typelong .

This function is safe to be called from multiple processes at the same time.

190

Parameters:
f_handle handle of file to get current position of

Returns:
Current position in file, or -1L on failure.

See also:
fseek
ftello
fgetpos

4.19.4.27 int ftrylockfile (FILE * f_handle)
Tries to get exclusive accress to a file.

Obtains exclusive access to a file if it is available. Otherwise, returns without waiting
for exclusive access. Note that locks cannot be nested. A nested lock will be released
on the very first call tdunlockfile, andnot the matching call.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle to file we will try to get exclusive access to

Returns:
0 if the file was locked, non-zero if someone else has the lock

See also:
flockfile
funlockfile

4.19.4.28 void funlockfile FILE * f_handle)
Release exclusive access on a file.

Releases exclusive access that was earlier acquired on this fileflasikiie or ftry-
lockfile. Note that locks cannot be nested. This function will release all locks that the
current thread/process have on the file.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle to file to release exclusive access for

See also:

flockfile
ftrylockfile

191

4.19.4.29 sizet fwrite (const void * ptr, sizet size sizet num, FILE * f_handle)

Write a number of bytes to a file stream.

Writes a block of data to a file stream. This function allows you to writmelements
of sizesize. However, note that this function always behaves as if it had been called
by:

fwrite(ptr, 1, size*num, f_handle);

This function is safe to be called from multiple processes at the same time.

Parameters:
ptr pointer to buffer of data to be written

size size of each element to be written
num number of elements to write
f_handle handle to file to write to

Returns:
number of elements written

See also:
fputc
fread

4.19.4.30 unsigned int fwritebytes (void buffer, int length, FILE x stream)
Writes bytes to a file stream.

Writes the specified number of bytes to a file stream. This function is uséarhig
as a helper function. It may safely be used from user applications, although it is not a
standard file writing function (is not part of an ANSI-C standard library).

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
buffer Location to write data from

length Number of bytes to write
stream File to write data to

Returns:
Number of bytes written, dEOFif an error occurred

192

See also:
fwrite
freadbytes

4.19.4.31 intgetcFILE *f_handle)
Gets the next unsigned character from the file stream.

Returns the next unsigned character (if available) from the file stream (converted to an
int), advancing the file position pointer. Note: This function is equivalefgdcc.

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle of the file we will read from

Returns:
The next character from the file, BIOFif the end of file has been reached

See also:
fgetc
feof
putc

4.19.4.32 char getchar (void)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h.

4.19.4.33 unsigned long getfreefsram ()
Gets the amount of free space in the file system.

Returns the number of bytes available to the file system. Note that this number is
completely independent of the amount of free RAM available from the ROM’s memory
manager. The TINI File System uses its own independent memory manager.

This function is safe to be called from multiple processes at the same time.

Returns:
Amount of free RAM available to the file system.

193

4.19.4.34 chax gets (charx, int n)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h.

4.19.4.35 int mkdir (char x dirname)
Creates a directory.
Creates a directory with the specified directory name.

This function is safe to be called from multiple processes at the same time.

Returns:
non-zero on success, 0 on failure

4.19.4.36 int printf (const charx, ...)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h.

4.19.4.37 int putc (intvalug FILE * f_handle)
Writes a character to a file stream.

Writes the specified character (converted from an int) to a file stream, advancing the
file position indicator. Note: This function is equivalentfputc.

This function is safe to be called from multiple processes at the same time.

Parameters:
value character that will be written to the fifehandle

f_handle handle of the file we will write character to

Returns:
Character written if successful, elE®©F

See also:

getc
fputc

194

4.19.4.38 char putchar (char)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h.

4.19.4.39 int puts (const chak)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h.

4.19.4.40 int remove (const cha¥ filename
Removes a file from the file system.
Deletes the file specified Hitename.

This function is safe to be called from multiple processes at the same time.

Parameters:
filename file name that will be deleted

Returns:
0 on success, non-zero on failure

See also:
rename

4.19.4.41 intrename (const chax oldname const charx newname
Renames a file.

Renames the file identified fdnameto now be identified bypewname
Warning:

This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
oldname filename of the file that will change names

newname new name for the file calledldname

Returns:
0 on success, non-zero on failure

See also:
remove

195

4.19.4.42 void rewind FILE « f_handle
Resets the file position indicator for a stream.

Sets the file position indicator for the stream to the beginning of the file. It also resets
the end of file condition. This is functionally equivalent to:

fseek(f_handle, 0, SEEK_SET);
clearerr(f_handle);

This function is safe to be called from multiple processes at the same time.

Parameters:
f_handle handle to file that the streams will be reset to the beginning for

See also:
fseek
fsetpos

4.19.4.43 int scanf (const chak, ...)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h.

4.19.4.44 int sprintf (charx, const charx, ...)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h.

4.19.4.45 int sscanf (chak, const charx, ...)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h.

4.19.4.46 chax tempnam (const charx dirname, const charx pfx)
Generates a path/filename that can be used for a temporary file.

Generates a path/filename that can be used to create a temporary file with. The pointer
that is returned is suitable to be freed usimgmfree Make sure to use the Dal-

las Semiconductor memory management libraoyn40Q0mem.H rather than the Keil
memory manager to free the memory.

196

This function is safe to be called from multiple processes at the same time.

Parameters:
dirname Directory for temporary file name to be created for. A default directory
will be used ifdirnameis null.

pfx Prefix to prepend to temporary file name

Returns:
Pointer to temporary file name. Use #Free to delete the memory.

See also:
tmpnam
tmpfile
#Free [in the memory manager library]

4.19.4.47 FILE x tmpfile (void)

Generates a stream to a temporary file.

Generates a stream to a temporary file, opened for writing/update.

This function is safe to be called from multiple processes at the same time.

Returns:
File handle to a temporary file, &¥ULL on failure.

See also:
tempnam
tmpnam

4.19.4.48 chax tmpnam (char * nametarge}
Generates a unige temporary filename.

Capable of generatingMP_MAX unigue temporary filenames. This filename is suit-
able for using in a call téopen. If the name is written to a static location, then this call
destroys the previous filename stored in that location.

This function is safe to be called from multiple processes at the same time.
Parameters:
nametarget Storage location for new temporary name. If NULL, the temporary
name will be copied to a static location.

Returns:
Location where temporary name is stored. This may be the samenastarget

197

See also:
tempnam
tmpfile

4.19.4.49 char ungetchar (char)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h.

4.19.4.50 int vprintf (const charx, char x)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h.

4.19.4.51 int vsprintf (charx, const charx, char %)
Keil-provided function.

This is a Keil-provided function. Please see Keil's documentation for information on
this function. It is exported by this header file so that we can ovestidie.h.

4.20 tini400crypt.h File Reference
4.20.1 Detailed Description

SHA-1 and MD4 functions for the DS80C400.

This library contains functions that compute the SHA-1 hash and MD4 hash of a byte
array.

For detailed information on the DS80C400 please see lIthigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Defines

* #defineTINI400_.CRYPT_VERSION3

198

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Functions

¢ unsigned intrypt.version(void)
Returns the version number of this CRYPT library.

« void crypt shal(short inLength, voidinBuff, void xoutBuff)
Computes a SHA-1 hash on the given message.

« void crypt md4 (unsigned chaxout, unsigned chatin, int n)
Computes a MD4 hash on the given message.

4.20.2 Define Documentation

4.20.2.1 #define TINI4OOCRYPT_VERSION 3

Version number associated with this header file. Should be the same as the version
number returned by therypt versionfunction.

See also:
crypt.version

4.20.3 Function Documentation

4.20.3.1 void cryptmd4 (unsigned charx out, unsigned charsx in, int n)
Computes a MD4 hash on the given message.

See RFC 1320 for more information. WARNING! MD4 has known cryptographic
weaknesses. Where possible, SHA-1 should be used instead.

Parameters:
out holds the hash value on return (16 bytes)

in the message to hash
n length of the message to hash

4.20.3.2 void cryptshal (shortinLength, void * inBuff, void x outBuff)
Computes a SHA-1 hash on the given message.
See FIPS 180-1 for more information on SHA-1.

Parameters:
inLength length of the message to hash

inBuff the message to hash
outBuff holds the hash value on return (20 bytes minimum)

199

4.20.3.3 unsigned int cryptversion (void)

Returns the version number of this CRYPT library.

Returns:
Version number of this CRYPT library.

4.21 tini400debugport.h File Reference
4.21.1 Detailed Description

Functions supporting the debug port on the TINIs400 module.

This library contains functions that write to the debug port on the TI-
NIs400. More information on the debug port can be found in the
application note 614, Diagnostic Port for the TINIs400, found at
http://pdfserv.maxim-ic.com/en/an/app614.pdf

For detailed information on the TINIs400 debug port please Agelication
Note 614: Diagnostic Port for the TINIs400

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the

function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Defines

* #defineTINI400.DEBUGPORTVERSION1

Functions

« unsigned indebugportversion(void)
Returns the version number of this DEBUGPORT library.

« void debugportinit (void)
Initializes the timing for the debug port.

« void debugportsendbytgunsigned char ch)
Sends a character to the debug port.

« void debugportsendheXunsigned char b)
Prints a hexadecimal value to the debug port.

200

http://pdfserv.maxim-ic.com/en/an/app614.pdf
http://pdfserv.maxim-ic.com/en/an/app614.pdf
http://pdfserv.maxim-ic.com/en/an/app614.pdf
http://pdfserv.maxim-ic.com/en/an/app614.pdf
http://pdfserv.maxim-ic.com/en/an/app614.pdf

« void debugportsendstrinqunsigned chaxs)
Sends a string to the debug port.

4.21.2 Define Documentation

4.21.2.1 #define TINIAOODEBUGPORT_VERSION 1
Version number associated with this header file. Should be the same as the version
number returned by th@ebugportversionfunction.

See also:
debugporiversion

4.21.3 Function Documentation

4.21.3.1 void debugportinit (void)
Initializes the timing for the debug port.

This function must be called after inibm before the debug port can be used. For
correct serial port timing, set the clock frequency using setfrequency()

4.21.3.2 void debugportsendbyte (unsigned chach)
Sends a character to the debug port.

This function sends a character to the debug port at 115200 bps. Note: This function
disables interrupts while sending the character.

4.21.3.3 void debugportsendhex (unsigned chab)
Prints a hexadecimal value to the debug port.

This function converts a byte into hexadecimal and sends the result to the debug port
at 115200 bps. Note: This function disables interrupts while sending each character.

4.21.3.4 void debugportsendstring (unsigned charx s)
Sends a string to the debug port.

This function sends a zero-terminated string to the debug port at 115200 bps. Note:
This function disables interrupts while sending each character.

201

4.21.3.5 unsigned int debugportversion (void)
Returns the version number of this DEBUGPORT library.

Returns:
Version number of this DEBUGPORT library.

4.22 tini400dns.h File Reference
4.22.1 Detailed Description

DNS Client functions for the DS80C400 ROM.

This libarary contains functions for resolving a host name to an IP address that is usable
by the silicon software for making socket function calls. Note that the functions in this
library are not safe to be called from multiple processes at the same time. The functions
in this library store their results in static memory locations, and must be retrieved and
stored in alternate locations before further DNS operations are performed.

Note that as of version 3, this library has been changed to use the system-wide DNS
server entries, which might be set by the DHCP client (from data recieved in a DHCP

response). Applications can make sure they have a valid server entry by making sure
the DNS server IP addresses are not all 0’s, since the ROM initialization functions clear
the DNS server entries.

For detailed information on the DS80C400 please see lIthigh-Speed
Microcontroller User's Guide: DS80C400 Supplement .

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.
The functions in this library use String functions suctspantf for data format-
ting, which are not multiprocess safe. Care must be taken that DNS functions do
not operate at the same time as other string formatting operations.

#include <stdlib.h >

Data Structures

¢ structhostent
 structmailhostent

Defines

* #defineTINI400_.DNS_.VERSIONS5

202

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Functions

« hostent gethostbyaddfvoid xaddr,sizet len, int type)
Looks up information on a host given an IP address.

* hostentx gethostbynamécharxname)
Looks up information on a host given a host name.

¢ void dnsinit (void)
Initializes the DNS client code.

« void dnssettimeou{unsigned long t)
Sets the socket timeout value used for DNS server communications.

« unsigned longins gettimeout(void)
Gets the socket timeout value used for DNS server communications.

« void dns getprimary(structsockaddrsa)
Gets the address of the primary DNS server.

« void dns setprimary(structsockaddesa)
Sets the address of the primary DNS server.

« void dns getsecondarystructsockaddrsa)
Gets the address of the secondary DNS server.

« void dns setsecondarfstructsockadde:sa)
Sets the address of the secondary DNS server.

« mailhostent dns getmx(charxname)
Performs a DNS MX record lookup.

« void dnsenableipv6querie@insigned char enable)
Enables/disables attempts to make IPv6 DNS queries.

¢ unsigned indnsversion()
Returns the version number of this DNS client library.

203

4.22.2 Define Documentation

4.22.2.1 #define TINIAOODNS_VERSION 5
Version number associated with this header file. Should be the same as the version
number returned by théns versionfunction.

See also:
dnsversion

4.22.3 Function Documentation

4.22.3.1 void dnsenableipv6queries (unsigned chaenable
Enables/disables attempts to make IPv6 DNS queries.

Use anenablevalue of 0 to disable attempts to perform IPv6 queries. Diabling IPv6
gueries can dramatically increase the speed of the library routines. ésahblevalue
of non-zero to enable IPv6 DNS queries.

Parameters:
enable 0 to disable IPv6 DNS queries, non-zero to enable

4.22.3.2 structmailhostentx dns_getmx (char « name
Performs a DNS MX record lookup.

MX records are mail exchanger records. In order to send an email without using a malil
relay (mail host), you need to look up the MX record of the remote domain and then
open the SMTP connection to the address returneghisygetmx()

Parameters:
name domain to look up.

Returns:
DNS response(s) or NULL for failed lookup. If any valid data is returned, the first
invalid mailhostenentry will haveNULL for a host name.

See also:
mailhostent

4.22.3.3 void dnsgetprimary (struct sockaddr x sa)

Gets the address of the primary DNS server.

204

Fills in an address structure with the IP of the secondary DNS server used by this DNS
client code. DNS operations first try to use a server designated as primary, and the use
a server designated as secondary if the primary fails to return results.

Note that this gets the system'’s primary DNS server setting. This may have been set by
the DHCP client or by previous calls tins setprimary. This function is equivalent to
dhcpgetprimarydns

Parameters:
sa will be filled in with the address of the primary DNS server

See also:
dnssetprimary
dnssetsecondary
dnsgetsecondary
dhcpgetprimarydns

4.22.3.4 void dnsgetsecondary (structsockaddr * sa)
Gets the address of the secondary DNS server.

Fills in an address structure with the IP of the secondary DNS server used by this DNS
client code. DNS operations first try to use a server designated as primary, and the use
a server designated as secondary if the primary fails to return results.

Note that this gets the system’s secondary DNS server setting. This may have been
set by the DHCP client or by previous calls dos setsecondary This function is
equivalent tadhcpgetsecondarydns

Parameters:
sa will be filled in with the address of the secondary DNS server

See also:
dnssetprimary
dnsgetprimary
dnssetsecondary
dhcpgetsecondarydns

4.22.3.5 unsigned long dngettimeout (void)

Gets the socket timeout value used for DNS server communications.

Gets the timeout value applied to all sockets that communicate with the DNS server.
Call this function to verify the timeout used by DNS socket operations.

Returns:
Global timeout value for sockets use in DNS server communications

205

See also:
dnssettimeout

4.22.3.6 void dnsinit (void)
Initializes the DNS client code.

Performs initialization for the DNS client. This function need only be called once at
the start of the application.

4.22.3.7 void dnssetprimary (struct sockaddr x sa)
Sets the address of the primary DNS server.

Sets the address of the primary DNS server used by this DNS client code. DNS oper-
ations first try to use a server designated as primary, and the use a server designated as
secondary if the primary fails to return results.

Note that this sets the system’s primary DNS server setting. If the system’s primary
DNS server entry had been previously set by the DHCP client, that information will be
destroyed by this function.

Parameters:
sa address of primary DNS server

See also:
dnsgetprimary
dnssetsecondary
dnsgetsecondary

4.22.3.8 void dnssetsecondary (structsockaddr * sa)
Sets the address of the secondary DNS server.

Sets the address of the secondary DNS server used by this DNS client code. DNS
operations first try to use a server designated as primary, and the use a server designated
as secondary if the primary fails to return results.

Note that this sets the system’s secondary DNS server setting. If the system’s secondary
DNS server entry had been previously set by the DHCP client, that information will be
destroyed by this function.

Parameters:
sa address of secondary DNS server

See also:
dnsgetprimary

206

dnssetprimary
dnsgetsecondary

4.22.3.9 void dnssettimeout (unsigned long)
Sets the socket timeout value used for DNS server communications.

Sets the timeout value applied to all sockets that communicate with the DNS server.
Call this function to make sure DNS operations fail after a reasonable waiting time.
All DNS operations are retried up to 4 times.

Parameters:
t Global timeout value for sockets use in DNS server communications

See also:
dnsgettimeout

4.22.3.10 unsigned int dnsrersion ()

Returns the version number of this DNS client library.

Returns:
Version number of this DNS client library.

4.22.3.11 structhostent« gethostbyaddr (void« addr, sizet len, int type
Looks up information on a host given an IP address.

Contacts a DNS server and attempts to find known host names for the given IP address.

Parameters:
addr IP address structure, eithieraddror in6_addr

len The length of the input structure passedtidr (4 or 16)
type AF_INET or AF_INET6

Returns:
Host structure with any names found,MULL if the operation failed.

See also:
AF_INET
AF_INET6
in_addr
in6_addr
gethostbyname
inet.addr
hostent

207

4.22.3.12 structhostent« gethostbyname (char name
Looks up information on a host given a host name.
Contacts a DNS server and attempts to find known IP addresses given a host name.

Parameters:
name String representing the host name

Returns:
Host structure with any names found,MULL if the operation failed.

See also:
gethostbyaddr
hostent

4.23 tini400ftpclient.h File Reference
4.23.1 Detailed Description

FTP Client functions for DS80C400.
This library contains functions for FTP Client.
Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the

same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

For detailed information on the DS80C400 please see Ihigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

#include "rom400 _sock.h"
#include "stdio.h"

#include “ftpcodes.h"
#include <string.h >
#include <ctype.h >

Defines

o #defineFTPCLIENT.VERSION.NUMBER 1
* #defineFTPCLIENT_ASCII O

» #defineFTPCLIENT_BINARY 1
 #defineFTPCLIENT.PORTNUMBER21

208

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

* #defineFTPCLIENT_ACTIVE_MODE 1

* #defineFTPCLIENT_.PASSIVEMODE 0

* #defineFTPCLIENT_DETAILED _DIRLISTING 1
o #defineFTPCLIENT_.SHORTDIRLISTING O

* #defineFTPCLIENT_.STATUS SUCCESS)

o #defineFTPCLIENT.SOCKET ERROR-1

o #defineFTPCLIENT_FILE_ZNOT_FOUND -2

o #defineFTPCLIENT_FILE_IO_ERROR-3
 #defineFTPCLIENT_.ALREADY _LOGGEDIN-4
o #defineFTPCLIENT.NOT_CONNECTED-5

Functions

¢ unsigned inftpclient.version(void)
Returns version number of ftpclient library.

« void ftpclientinit (long milli_seconds)
Initializes the ftpclient library.

« int ftpclient. connect(structsockaddrin xsa, charuser, chaxpasswd)
Connects with FTP server.

« int ftpclient settransmissionmodehar flag)
Sets data transfer mode in FTP server.

« void ftpclient setdataconnectionmodehar flag)
Set data connection mode in ftpclient library.

« int ftpclient getfile (charxfilename, chakstoreadfilename)
Downloads file from FTP server.

« int ftpclient putfile (char«filename, chakstoreasfilename)
Uploads tini file to FTP server.

« int ftpclientdir (charxname, chakdir_str, int dir_str_len, char format)
Returns FTP server directory list.

« int ftpclient pwd (charxpathstr, int pathstr_len)
Returns current FTP server directory path.

« int ftpclient.cd (charxpath.str)
Changes server working directory.

209

« int ftpclient rawcmd(charxinput.cmd)
Sends command to FTP server.

« int ftpclient. dataconnectiok)

Configures for new data connection. exchange port number and ip address informa-
tion with FTP server for data connection.

« int ftpclient get dataconnectiomandler()
Establishes new data connection and returns socket handler.

« int ftpclientdisconnecfvoid)
Terminates connection with FTP server.

« charx ftpclient getlaststatugvoid)
Returns last FTP server response string.

4.23.2 Define Documentation

4.23.2.1 #define FTPCLIENTACTIVE -MODE 1

Definition for active data connection mode

See also:
ftpclient setdataconnectionmode

4.23.2.2 #define FTPCLIENTALREADY _LOGGEDIN -4

Error value indicates that client application is already logged-in

4.23.2.3 #define FTPCLIENTASCII O

Definition for ASCII data transfer mode

See also:
ftpclient.settransmissionmode

4.23.2.4 #define FTPCLIENTBINARY 1

Definition for BINARY data transfer mode

See also:
ftpclient settransmissionmode

210

4.23.2.5 #define FTPCLIENTDETAILED _DIRLISTING 1

Definition for detailed directory listing

See also:
ftpclient.dir

4.23.2.6 #define FTPCLIENTFILE _IO _ERROR -3

File operation error value

4.23.2.7 #define FTPCLIENTFILE NOT_FOUND -2

File not found error value

4.23.2.8 #define FTPCLIENTNOT_CONNECTED -5

Error value indicates that server is not connected

4.23.2.9 #define FTPCLIENTPASSIVE_MODE 0

Definition for passive data connection mode

See also:
ftpclient setdataconnectionmode

4.23.2.10 #define FTPCLIENTPORTNUMBER 21

Definition for default FTP server port number

See also:
ftpclient.connect

4.23.2.11 #define FTPCLIENTSHORT_DIRLISTING O

Definition for short directory listing

See also:
ftpclient.dir

4.23.2.12 #define FTPCLIENTSOCKET_ERROR -1

Socket error value

211

4.23.2.13 #define FTPCLIENTSTATUS_SUCCESS 0

FTP Client Status Success value, this value is returned when operation is completed
successfully.

4.23.2.14 #define FTPCLIENTVERSION_NUMBER 1

Version number associated with this header file. Should be the same as the version
number returned by thigpclientversionfunction.

See also:
ftpclient.version

4.23.3 Function Documentation

4.23.3.1 intftpclientcd (char x path_str)
Changes server working directory.

This function changes server working directory

Parameters:
path_str Address of memory buffer that contains new working directory path
name

Returns:
« FTPCLIENTNOT.CONNECTED if connection is not established

* FTPCLIENTSOCKETERROR:- if socket communication error happens
Otherwise, returns FTP server status code

4.23.3.2 int ftpclientconnect (struct sockaddrin x sa char = user, char =
passwil

Connects with FTP server.

This function establishes connection with FTP server. Connection with FTP server
must be established before calling any other functions that interact with FTP server.

Parameters:
sa socket address contains server ip address and FTP server portriu@bEr
Passing zero value for portnumber enables ftpclient library to use default ftp
port number

user User name
passwdPassword

212

Returns:
One of the following values:

e FTPCLIENTALREADYLOGGEDIN- if ftpclient is already connected with
server

* FTPCLIENT.SOCKETERROR:- if there is any error in socket communica-
tion
Otherwise, FTP server status code will be returned for successful or failed authen-
tication

NOTE: In case of error, the server socket will be closed before returning from function

4.23.3.3 int ftpclientdataconnection ()

Configures for new data connection. exchange port number and ip address information
with FTP server for data connection.

This function configures for new data connection. For Active mode connection, sends
IP address and port number of ftp client to which the data connection have to be estab-
lished. For passive mode connection, it gets server IP address and port number for data
connection

Returns:
FTPCLIENTSOCKETERRORIf socket communication error happens. Other-
wise, returns FTP server status code

4.23.3.4 intftpclientdir (char x name char * dir_str, int dir_str_len, char format)

Returns FTP server directory list.

This function returns FTP server directory list in short format or detailed format. This
function can also be used to retrieve information about specific file.

Parameters:
name Name of the file to get file attributes information. If NULL, then informa-
tion about all entries of current directory will be returned.

dir_str Address of memory buffer where directory information will be stored
dir_str_len Maximum amount of data to be storeddir_str memory buffer

format Specifies the format of directory listing. The value for this parameter
should be eitheFTPCLIENT.DETAILED.DIRLISTING or FTPCLIENT-
SHORTDIRLISTING

Returns:
» FTPCLIENTNOT.CONNECTED if connection is not established

213

e FTPCLIENT.SOCKETERROR if socket communication error happens
Otherwise, returns FTP server status code

4.23.3.5 int ftpclientdisconnect (void)
Terminates connection with FTP server.

This function terminates connection with FTP server. the server socket will be closed
even if there is any socket error

Returns:
* FTPCLIENTSOCKETERROR: if socket communication error happens

« FTPCLIENTNOT.CONNECTED if connection is not established
Otherwise, returns FTP server status code

4.23.3.6 int ftpclientget dataconnectionhandler ()
Establishes new data connection and returns socket handler.
This function establishes new data connection and returns socket handler.

IMPORTANT NOTE: For Active mode connection, This function has to be called
after sending control command to server to initiate the data transfer as server will es-
tablish data connection after receiving control command. For passive mode connection,
this function has to be called before sending control command to server to initiate the
data transfer as server expects data connection to be made before responding for control
connection.

Returns:
FTPCLIENTSOCKETERRORIf socket communication error happens. Other-
wise, returns FTP server status code

4.23.3.7 int ftpclientgetfile (char * filename char * storeasfilename
Downloads file from FTP server.

This function downloads file from FTP server and store it in tini file system.

Parameters:
filename Name of file to get from the FTP server

storeasfilename Name of file to store on TINI. If value for this parameter is
NULL, then the file will be stored under same name as it is on the FTP
server.

214

Returns:
« FTPCLIENTNOT.CONNECTED if connection is not established

* FTPCLIENTFILE_IO_ERROR if error happens while storing file

* FTPCLIENT.SOCKETERROR: if socket communication error happens
Otherwise, returns FTP server status code

4.23.3.8 chakx ftpclient_getlaststatus (void)
Returns last FTP server response string.

This function returns the FTP server’s response status string for the last control com-
mand sent to the server.

Returns:
Pointer to response status string

4.23.3.9 void ftpclientinit (long milli _second}
Initializes the ftpclient library.

This function initializes ftpclient library internal datastructure and configures the Ii-
brary with following default configuration

* ASCII file transfer mode
« Active data connection mode

Parameters:
milli _secondssocket timeout value

4.23.3.10 int ftpclientputfile (char * filename char x storeasfilenameé
Uploads tini file to FTP server.

This function uploads tini file to FTP server.

Parameters:
filename Name of file on the TINI to send to the server

storeasfilename Name to give the file put on the FTP server. If NULL, then the
name for the file on TINI will be used.

Returns:
» FTPCLIENTNOT.CONNECTED if connection is not established

e FTPCLIENTFILE_.NOT_FOUND - if the input tini file name is not there in
tini file system
* FTPCLIENT.SOCKETERROR if socket communication error happens
Otherwise, returns FTP server status code

215

4.23.3.11 intftpclientpwd (char x path_str, int path_str_len)
Returns current FTP server directory path.

This function returns the current FTP server directory path name
Parameters:

path_str Address of memory buffer where the current FTP server path name will
be stored

path_str_len Maximum amount of data can be stored in pathmemory buffer

Returns:
« FTPCLIENTNOT.CONNECTED if connection is not established

e FTPCLIENTSOCKETERROR: if socket communication error happens
Otherwise, returns FTP server status code

4.23.3.12 int ftpclientrawcmd (char * input_cmd)
Sends command to FTP server.

This function sends command to FTP server through control connection and returns
FTP server status code. This function ddE3T check whether server is connected.

NOTE: To retrieve the response string of server for control command, calitphe
client getlaststatugunction

Parameters:
input_.cmd command to send to the FTP server

Returns:
FTPCLIENTSOCKETERRORIf socket communication error happens. Other-
wise, returns FTP server status code

4.23.3.13 void ftpclientsetdataconnectionmode (chaflag)
Set data connection mode in ftpclient library.

This function sets data connection mode in ftpclient library. All future data connections
will be made in the mode set by this function

Parameters:
flag should be eitheFTPCLIENTACTIVEMODE or FTPCLIENTPASSIVE
MODE
Warning:
Invalid value for "flag” yields unexpected behavior of ftpclient data transfer func-
tions

216

4.23.3.14 int ftpclientsettransmissionmode (chaflag)
Sets data transfer mode in FTP server.

This function sets data transfer mode in FTP server and ftpclient library

Parameters:
flag should be eitheFTPCLIENTASCIlor FTPCLIENTBINARY

NOTE: Invalid input forflag will be interpreted a&TPCLIENT.BINARY.

Returns:
returns FTP server status code

4.23.3.15 unsigned int ftpclientversion (void)

Returns version number of ftpclient library.

Returns:
Version number of ftpclient library

4.24 tini400.sr.h File Reference
4.24.1 Detailed Description

Interrupt Service Routine installation functions.

This library contains functions that allow processes to install their own ISR’s from C
programs. Normally, the Keil compiler would automatically install interrupts in their
proper locations. However, the act of initializing the ROM sets the entire interrupt
vector table, so any interrupt vector that the Keil compiler generates are destroyed.
These functions allow programs to restore or update their interrupt vector tables.

To use interrupts written in C with the Keil compiler, functions should be defined with
theinterrupt keyword. Also, under the Project Target options dialog, under the C51
panel, uncheck the box labeléaterrupt Vectors at Address: Then make sure to call
isr_setinterruptvectosometime afteinit_rom has been called.

For detailed information on the DS80C400 please see lIthgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

The functions in this library are multi-process safe—that is, if you call the same method
from two different processes at the same time, the parameters to the function will not
be destroyed.

217

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Defines

o #defineTINI400_ISR.VERSION2
o #definelSR.EEXTERNALINTO O

» #definelSR.TIMERO 1

o #definelSR.EEXTERNALINT1 2

» #definelSR.TIMER1 3

» #definelSR.SERIALO 4

» #definelSR.TIMER25

» #definell SR.POWERFAIL6

» #definelSR.SERIAL17

» #definelSR.EEXTERNALINT23458
» #definelSR.TIMER3 9

» #definelSR_.SERIAL210

» #definellSR WRITEPROTECT11

» #definel SR WATCHDOG 12

* #definelSR_.CANO 13

* #definelSR ETHERNET14

* #definel SR ETHERNETPOWERL5

Functions

« void isr_setinterruptvectofint vector number, voidsfunction ptr)
Installs an interrupt vector.

« void x isr_getinterruptvecto(int vector number)
Gets the current value of an interrupt vector.

¢ unsigned inisr_version(void)
Returns the version number of this ISR library.

4.24.2 Define Documentation

4.24.2.1 #define ISRCANO 13
Interrupt vector number for theéAN 0 interrupt.
See also:

isr_setinterruptvector
isr_getinterruptvector

218

4.24.2.2 #define ISREETHERNET 14

Interrupt vector number for thEthernet Activity interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

4.24.2.3 #define ISEETHERNETPOWER 15

Interrupt vector number for thExternal Power Mode interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

4.24.2.4 #define ISEEXTERNALINTO O

Interrupt vector number for thExternal Interrupt O interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

4.24.25 #define ISEEXTERNALINT1 2

Interrupt vector number for thExternal Interrupt 1 interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

4.24.2.6 #define ISREEXTERNALINT2345 8
Interrupt vector number for thExternal Interrupt 2/3/4/5 interrupt.
See also:

isr_setinterruptvector
isr_getinterruptvector

219

4.24.2.7 #define ISRPOWERFAIL 6

Interrupt vector number for thRower Fail interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

4.24.2.8 #define ISRSERIALO 4

Interrupt vector number for th&erial Port O interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

4.24.2.9 #define ISRSERIALL 7

Interrupt vector number for th&erial Port 1 interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

4.24.2.10 #define ISRSERIAL2 10

Interrupt vector number for th&erial Port 2 interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

4.24.2.11 #define ISRTIMERO 1
Interrupt vector number for thEimer O interrupt.
See also:

isr_setinterruptvector
isr_getinterruptvector

220

4.24.2.12 #define ISRTIMER1 3

Interrupt vector number for thEimer 1 interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

4.24.2.13 #define ISRTIMER2 5

Interrupt vector number for thEimer 2 interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

4.24.2.14 #define ISRTIMER3 9

Interrupt vector number for thEimer 3 interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

4.24.2.15 #define ISRNATCHDOG 12

Interrupt vector number for thé/atchdog Timer interrupt.

See also:
isr_setinterruptvector
isr_getinterruptvector

4.24.2.16 #define ISRVRITEPROTECT 11
Interrupt vector number for thé/rite Protect interrupt.
See also:

isr_setinterruptvector
isr_getinterruptvector

221

4.24.2.17 #define TINI4AOOSR_VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thisr_versionfunction.

See also:
isr_version

4.24.3 Function Documentation

4.24.3.1 void isr_getinterruptvector (int vectornumben
Gets the current value of an interrupt vector.

Returns a function pointer to the interrupt service routine for the interrupt defined by
vectornumber. Note thatvectornumberis NOT the address of the interrupt, but the
number corresponding to that interrupt as described in the Keil documentation. For
example, avzectornumberof 1 corresponds to the interrupt at addré&h , which is

the timer O overflow interrupt. Arectornumberof 4 corresponds to the interrupt at
addresf3h , which is the serial port 0 interrupt.

This file contains several defines for common interrupts that can be used fectioe-
numberparameter.

Parameters:
vectornumber 1D of the interrupt to be installed. Itis up to the user to make sure
this parameter is in range

Returns:
function pointer for the interrupt service routine. RetuNidLL if the instruction
at the interrupt’s address is not BAMP .

See also:
isr_setinterruptvector

4.24.3.2 void istsetinterruptvector (int vectornumber, void x function_ptr)
Installs an interrupt vector.

Installs the functiofiunctionptr as the interrupt service routine for the interrupt defined

by vectornumber. Note thatvectornumberis NOT the address of the interrupt, but

the number corresponding to that interrupt as described in the Keil documentation. For
example, avectornumberof 1 corresponds to the interrupt at addré8&h , which is

the timer O overflow interrupt. Arectornumberof 4 corresponds to the interrupt at
addres23h , which is the serial port 0 interrupt.

This file contains several defines for common interrupts that can be used fectioe-
numberparameter.

222

The functionfunctionptr should terminate with aeti statement (functions declared
with theinterrupt keyword in Keil automatically have this).

Parameters:
vectornumber ID of the interrupt to be installed. It is up to the user to make sure
this parameter is in range

function_ptr function that will be the interrupt service routine

See also:
isr_getinterruptvector

4.24.3.3 unsigned int isrversion (void)

Returns the version number of this ISR library.

Returns:
Version number of this ISR library.

4.25 tini400.mime.h File Reference
4.25.1 Detailed Description

MIME Library functions for DS80C400 processor.

This library contains functions for encoding and decoding mime messages
For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

Defines

 #defineBASE641
 #definefQUOTED.PRINTABLE 2
 #defineMIME "VERSION 1

Functions

* unsigned inmime.version(void)

223

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Returns the version number of mime library.

 void mime.init (void)
Initializes mime library.

¢ charx mime.encodgunsigned chaxinbuf, int size, char encoditag)
Encodes the given message to mime format.

¢ charx mime.decodgcharxinbuf, char decoddlag)
Decodes the given mime message.

4.25.2 Define Documentation

4.25.2.1 #define BASE64 1

Definition for mime base64 encoding and decoding method

See also:
mime.encodemime.decode

4.25.2.2 #define MIMEVERSION 1

Version number associated with this header file. Should be the same as the version
number returned by th@imeversionfunction.

See also:
mime.version

4.25.2.3 #define QUOTEDPRINTABLE 2

Definition for mime quoted printable encoding and decoding method

See also:
mime.encodemime.decode

4.25.3 Function Documentation

4.25.3.1 chax mime_decode (charx inbuf, char decodeflag)
Decodes the given mime message.
See RFC1521 for more information on MIME

224

Parameters:
inbuf - mime message to decode

decodeflag - decoding flag indicates what decoding method to be used, should
be eitheBASE640r QUOTED.PRINTABLE

Returns:
address of decoded message buffer or NULL if function failed

4.25.3.2 chax mime_encode (unsigned chak inbuf, int size char encodeflag)

Encodes the given message to mime format.
See RFC1521 for more information on MIME

Parameters:
inbuf input buffer to encode

size length of the input buffer
encodeflag not used, reserved for future use

Returns:
address of encoded mime message buffer or NULL if function failed

4.25.3.3 void mimeinit (void)

Initializes mime library.

4.25.3.4 unsigned int mimeversion (void)

Returns the version number of mime library.
Returns:

Version number of mime library.
4.26 tini400ntim.h File Reference
4.26.1 Detailed Description

NTLM Library functions for DS80C400 processor.

This library contains functions for managing NeTwork Lan Manager(NTLM) authen-
tication protocol

For detailed information on the DS80C400 please see Ihgh-Speed
Microcontroller User's Guide: DS80C400 Supplement

225

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

Data Structures

« struct_sbufhdr

e struct_typelmsg

e struct_typelmsghdr
e struct_type2msg

e struct_type2msghdr
e struct_type3msg

e struct_type3msghdr

Defines

o #defineMAX _NTLM _BUF 1024
#defineNTLM _SIGN"NTLMSSP\0"
#defineNTLM _TYPELMSG 1
#defineNTLM _TYPE3MSG 3
#defineNTLM _FLAGS 0x0000b207L

Typedefs

« typedef_sbufhdrsbufhdr

« typedef_typelmsghdtypelmsghdr
* typedef_typelmsgypelmsg

« typedef_type2msghdtype2msghdr
* typedef_type2msgype2msg

« typedef_type3msghdtype3msghdr
« typedef_type3msgype3msg

Functions

¢ void generatgypel msg(typelmsg«tl msg, chakuser)
Generates typel NTLM message.

« void generateype3msg (type2msg«t2_msg, type3msg«t3_msg, charxuser,
charxpass)

Generates type3 NTLM message.

226

4.26.2 Define Documentation

4.26.2.1 #define MAXNTLM _BUF 1024

definition for maximum ntim security buffer length.

See also:
generateypel msg generateype3msg

4.26.2.2 #define NTLMFLAGS 0x0000b207L
definition for NTLM flags

See also:
generatgypelmsg generateype3 msg

4.26.2.3 #define NTLMSIGN "NTLMSSP \0”

definition for NTLM signature

See also:
generataypel msg generateype3msg

4.26.2.4 #define NTLMTYPE1_MSG 1
definition for type 1 NTLM Message

See also:
generatelypel msg

4.26.2.5 #define NTLMTYPE3_MSG 3
definition for type 3 NTLM Message

See also:
generatelype3msg

4.26.3 Typedef Documentation

4.26.3.1 typedef structsbufhdr sbufhdr

Structure for security buffer header

227

4.26.3.2 typedef structtypelmsgtypelmsg

Structure for typel message

4.26.3.3 typedef structtypelmsghdrtypelmsghdr

Structure for typel message header

4.26.3.4 typedef structtype2msgtype2msg

Structure for type2 message

4.26.3.5 typedef structtype2msghdrtype2msghdr

Structure for type2 message header

4.26.3.6 typedef structtype3msgtype3msg

Structure for type3 message

4.26.3.7 typedef structtype3msghdrtype3msghdr

Structure for type3 message header

4.26.4 Function Documentation

4.26.4.1 void generatgypel msg typelmsgs t1_msg char x usen
Generates typel NTLM message.

This function generates Typel NTLM message that is sent to server to get type2 mes-
sage. For more information, See NTLM authentication protocol specification.

Parameters:
t1_msg the NTLM type 1 message

user the user name

See also:
generateype3msg

4.26.4.2 void generatdype3. msg fype2msgx t2.msg type3msgx t3_-msg char
x user, char * pas9

Generates type3 NTLM message.

228

This function generates Type3 NTLM message that contains both LAN Manager and
NT LAN manager responses for server challenge.For more information, See NTLM
authentication protocol specification.

Parameters:
t2_msg the type 2 NTLM message

t3_msg the type 3 NTLM message
user user name
pass password

See also:
generateypelmsg

4.27 tini400.smtp.h File Reference
4.27.1 Detailed Description

SMTP Library functions for DS80C400 processor.
This library contains functions for sending mails to smtp mailhost server

For detailed information on the DS80C400 please see Ihigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

Data Structures

¢ struct_hostinfo
¢ struct_mailheader
¢ struct_userheader

Defines

 #defineMAX _LINE _SIZE 1024
#defineSMTP.VERSION 1
#defineSMTP_.MAXATTACHMENTSIZE 5
#defineSMTP_-MAXUSERHEADERSIZE20
#defineSMTP_INSUFFICIENT.MEMORY -1
#defineSMTP_.SENDMAIL_ERROR-2

229

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

#defineSMTP.MAILHOST _NOT_FOUND -3
#defineSMTP.FILE_.NOT_FOUND -4
#defineSMTP.SOCKET.ERROR-7
#defineSMTP_.MAIL _QUEUED-8
#defineSMTP_INVALID _"MAILNODE _ADDRESS-9
#defineSMTP_LIBRARY _IS.NOT_CONFIGURED-11
#defineSMTP.STATUS SUCCESS)

Typedefs

« typedef_hostinfohostinfo
* typedef_mailheademailheader
 typedef_userheadeuserheader

Functions

 unsigned insmtpversion(void)

Returns the version number of smtp library.

¢ void smtpinit (void)
Initializes smtp library.

« void smtp sethostinfdstruct_hostinfoxphostinfo)
Sets the host information object with smtp library.

« void smtp setdefaultheadervalystruct_mailheadesxpmhdr)
Sets the default value for standard mail headers.

« void smtp setuserheaderligstruct_userheadetpusrhdr)
Sets user defined mail header list.

e int smtpsendmail (struct _mailheader mail_header, char«msg, char
sattachmentlisf SMTEMAXATTACHMENTSIZE], char queuemaiflag,
unsigned longimailnodeaddress)

Sends mail to mail host.

« int smtpremovemailfromqueugunsigned long pmailnodaddress)
Removes queued mail from mail queue list.

« int smtpgetqueuedmailstatsnsigned long pmailnodaddress)
Returns the status of queued mail.

230

4.27.2 Define Documentation

4.27.2.1 #define MAXLINE _SIZE 1024

Definition for maximum size of mail header

4.27.2.2 #define SMTEFILE _NOT_FOUND -4

File not found error value

See also:
smtp.sendmail
smtpgetqueuedmailstatus

4.27.2.3 #define SMTENSUFFICIENT -MEMORY -1

Insufficient memory error value

See also:
smtpsendmail

4.27.2.4 #define SMTENVALID MAILNODE _ADDRESS -9

Invalid mailnode address error value.

See also:
smtpgetqueuedmailstatus
smtpremovemailfromqueue

4.27.2.5 #define SMTELIBRARY _IS_.NOT_CONFIGURED -11

smtp library is not configured error value, this value will be returned if smtp host infor-
mation is not configured.

See also:
smtpsendmail

4.27.2.6 #define SMTEMAIL _QUEUED -8

Mail is queued error value

See also:
smtpsendmail
smtpgetqueuedmailstatus

231

4.27.2.7 #define SMTEMAILHOST _NOT_FOUND -3

Mail host is not found error value

See also:
smtpsendmail
smtpgetqueuedmailstatus

4.27.2.8 #define SMTEMAXATTACHMENTSIZE 5

Definition for maximum number of attachments

See also:
smtpsendmail

4.27.2.9 #define SMTEMAXUSERHEADERSIZE 20

Definition for maximum number of user headers

See also:
smtpsendmail

4.27.2.10 #define SMTESENDMAIL _ERROR -2

Send mail error value

See also:
smtp.sendmail

4.27.2.11 #define SMTESOCKET_ERROR -7

Socket error value

See also:
smtp.sendmail

4.27.2.12 #define SMTESTATUS_SUCCESS 0

smtp Status success value, this value is returned when operation is completed success-
fully.

See also:
smtp.sendmail

232

4.27.2.13 #define SMTEVERSION 1
Version number associated with this header file. Should be the same as the version
number returned by themtpversionfunction.

See also:
smtpversion

4.27.3 Typedef Documentation

4.27.3.1 typedef structhostinfo hostinfo

Structure for host configuration information that has to be registered with smtp library

4.27.3.2 typedef structmailheader mailheader

Structure for standard mail header holds standard mail header values

4.27.3.3 typedef structuserheaderuserheader

Structure for user defined mail header contains user header name list and user header
value list

4.27.4 Function Documentation

4.27.4.1 int smtpgetqueuedmailstatus (unsigned longmailnodeaddres$
Returns the status of queued mail.

This function returns the status of mail which was queuedrbtp.sendmail

Parameters:
pmailnodeaddress- address of mailnode. this value should be same value re-
turned by smtpsendmail function when queueing mail.

Returns:
if mail is still in queue, returns the status of m&MTP_INVALID MAILNODE _-
ADDRESSIf invalid mail node address is passed or mail has been already sent to
mailhost

See also:

smtpremovemailfromqueue
smtp.sendmail

233

4.27.4.2 void smtpinit (void)
Initializes smtp library.

This function initializes the internal data structures of smtp library. This function
should be called first before calling any other functions of smtp library.

NOTE: Other libraries don’t need to be initialized before smtp library initialization.

4.27.4.3 int smtpremovemailfromqueue (unsigned longomailnodeaddres}
Removes queued mail from mail queue list.

This function removes the mail which was queuedshypsendmail

Parameters:
pmailnodeaddress- address of mailnode to delete. this value should be same
value returned by smtpendmail function when queueing mail.

Returns:
SMTP_STATUS . SUCCESSIf mailnode was deleted successfully.SMTP.-
INVALID _MAILNODE _ADDRESSIf invalid mail node address is passed or malil
has been already sent to mailhost

See also:
smtp.getqueuedmailstatus
smtp.sendmail

4.27.4.4 int smtpsendmail (struct _mailheader mail_header char x« msg char *
attachmentlisfSMTP _MAXATTACHMENTSIZE], char queuemailflag, unsigned
long * mailnodeaddress

Sends mail to mail host.

This function sends mail to mailhost. if smtp host IP address is zero, this function uses
dns library to get IP address of target mailhost. if mail host is down and application
sets queuemailag=1, Mail will be queued to resend later. this function uses base64
MIME encryption for sending attachments. it does not use any encryption for message

Parameters:
mail_header standard mail header object. any uninitialized field name in this
structure should be set with NULL value. if default mail header value was
initialized and mailheader field value is NULL, the default mail header value
will be used.

msg pointer to mail message.

attachmentlist array of string holds attachment filelist. if attachment list is less
than SMTRPMAXATTACHMENTSIZE, last element of list should be NULL
to indicate end of the list.

234

gueuemailflag flag to indicate whether mail to be queued or not. if mail host is
down and application sets queuemitdlig=1, mail will be queued.

mailnodeaddressaddress of mail which was queued to resend. this reference
value has to be passed to get status of queued mail or to delete it from queue.

Returns:
SMTP_STATUS SUCCESS(the operation is completed successfully Otherwise,
one of the following error values

* SMTP_LIBRARY _IS.NOT_CONFIGURED
SMTP.INSUFFICIENT-MEMORY
SMTP.MAILHOST _NOT_FOUND
SMTP.MAIL _QUEUED
SMTP_.SENDMAIL_ERROR

See also:
smtpremovemailfromqueue
smtpgetqueuedmailstatus

4.27.4.5 void smtpsetdefaultheadervalue (struct mailheader x pmhdr)
Sets the default value for standard mail headers.

This function stores address of mail header structure in smtp library global variable.
smtpsendmail function uses pmhdr value by default, user can override these values by
passing valid standard mail header value while calling ssetpdmail function.

NOTE: default mail header value isot mandatory for sending mail. It is optional
feature.

Parameters:
pmhdr pointer to the mail header structure

See also:
smtpsendmail

4.27.4.6 void smtpsethostinfo (struct_hostinfo * phostinfg)
Sets the host information object with smtp library.

This function stores address of host configuration information structure in smtp library
global variable. Then, configures dns library by setting primary and secondary dns
server ip addresses. host configuration information is used to connect with SMTP
servers.

235

Parameters:
phostinfo - pointer to the host information structure

See also:
smtpsendmail

4.27.4.7 void smtpsetuserheaderlist (struct userheadersx pusrhdr)
Sets user defined mail header list.

This function stores address of user mail header list structure in smtp library global
variable. user defined mail headers will be added while sending mail messages.

NOTE: user mail header list isot mandatory for sending mail. It is optional feature.
Parameters:
pusrhdr pointer to the user mail header list. if user mail header name list is

lessthan SMTEMAXUSERHEADERSIZE ,the last item of user mail header
namelist should be NULL.

See also:
smtpsendmail

4.27.4.8 unsigned int smtpversion (void)
Returns the version number of smtp library.

Returns:
Version number of smtp library.

4.28 tini400spi.h File Reference
4.28.1 Detailed Description

SPI library for the TINIm400 module.

"Bit Bang” software SPI library for use with the TINIm400. This is a full featured
SPI library for sending and receiving data. It supports 4 SEK polarity and phase
modes, slave select with optional inversion and optional synching, 8 and 16 bit transfer
modes, bit reordering and SPILK delays.

Port pins used by this SPI library can be specified in spimacros.inc.

For detailed information on the DS80C400 please see Ithigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

236

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. However, SPI pins are
a system resource and should not be shared among different processes.

Defines

#defineTINI400_SPLVERSION 1
#defineSSPLCKPOL_.MASK 0x01

CKPOL MASK.

#defineSSPLCKPHA_MASK 0x02
CKPHA MASK.

#defineSSPLWORD_MASK 0x04
Word mode MASK.

#defineSPLSKEW_MASK 0x08
No Skew MASK.

#defineSSPLUSESSMASK 0x10
Use SS MASK.

#defineSPLSYNCHSSMASK 0x20
Synch SS MASK.

L]

#defineSPLINVERTSS MASK 0x40
Invert SS MASK.

Functions

« void spiinit (void)
Initalize the SPI library.

« int spi.reverseBitgint length, int wordSize, unsigned chedataptr)
Reverse bits in buffer.

« void spi.xmit (unsigned chaxdataptr, int length, unsigned char delay, unsigned
char options)

Transmit SPI data.

237

 unsigned inspiversion(void)
Returns the version number of this SPI library.

4.28.2 Define Documentation

4.28.2.1 #define SRCKPHA _MASK 0x02
CKPHA MASK.

See also:
SPLCKPOL.MASK
spixmit

4.28.2.2 #define SPCKPOL -MASK 0x01
CKPOL MASK.

The four SPI clock (SPCLK) modes supported by this library are defined by CKPHA
and CKPOL. The CKPOL bit defines the idle state of the SPI clock, CKPOL = 0 forces
SPLCLK to idle low while CKPOL = 1 forces SPCLK to idle high. CKPHA changes

the edge used to signal transfer of data. When CKPHA = 0 the first edge @Z13PI
specifies when the slave and master should sample their input. With CKPHA =1 the
second edge of SRILK specifies when to sample. When CKPHA = 1, the master
and slave should present their data on their output during the firsC8Rledge, this
allows the data sufficent hold time. When CKPHA = 0, data should become valid when
the Slave Select (SS) line goes active. Note that most devices require the SS line to be
used when CKPHA =0 to allow proper timing while SS may be optional when CKPHA
=1

See also:
SPLCKPHA_MASK
spixmit

4.28.2.3 #define SPINVERTSS_MASK 0x40
Invert SS MASK.

Most SPI devices expect the active state for SS to be low, but others require high as the
active state.

See also:
spixmit

238

4.28.2.4 #define SPEKEW_MASK 0x08
No Skew MASK.

To facilitate atomic transfers, interrupts may be disabled while transmiting.

See also:
spixmit

4.28.2.5 #define SPBYNCHSSMASK 0x20
Synch SS MASK.

Some SPI devices expect the SS signal to go inactive after each word transfer in order
to synchronize.

See also:
spixmit

4.28.2.6 #define SPUSESSMASK 0x10
Use SS MASK.

The SS signal is optional as it may not be required for all SPI setups.

See also:
spixmit

4.28.2.7 #define SPWORD_MASK 0x04
Word mode MASK.

Data is sent to the SPI library as a character array in data memory. When in 8 bit word
mode these bytes will be transferred one at a time. In 16 bit word mode 2 bytes will
be transferred but this operation will only consume 1 transfer of the number requested.
Note that in this library, "word” may be 8 or 16 bits in length depending on the selected
mode. Using this mask activates 16 bit word mode

See also:
spixmit

239

4.28.2.8 #define TINI40O0SPI_VERSION 1
Version number associated with this header file. Should be the same as the version
number returned by the&pi_versionfunction.

See also:
spi.version

4.28.3 Function Documentation

4.28.3.1 void spiinit (void)
Initalize the SPI library.

4.28.3.2 int spireverseBits (intlength, int wordSize unsigned charx dataptr)
Reverse bits in buffer.

This function can be called to reverse the bits in the passed buffer. It reorders the based
on the word mode 8 bit words or 16 bit words. This can be used to convert data for
Least Significant Bit (LSB) transfers.

Parameters:
length Number of words to bit reverse. Note that for 16 bit words this must be a
even value, SPI library does not check this.

wordSize Size of the word to reverse. Only 8 and 16 are valid.

dataptr Pointer to the data to be reversed, after calling this function the data in
this buffers will be bit reversed.

Returns:
int 1 for success, -1 if error occured

4.28.3.3 unsigned int spiversion (void)
Returns the version number of this SPI library.

Returns:
int Version number of this SPI library.

4.28.3.4 void spixmit (unsigned char x dataptr, int length, unsigned chardelay,
unsigned charoptiong

Transmit SPI data.

Transmits the data passed in over the SPI port, reads and returns any data read back.

240

Parameters:
dataptr Pointer to the data to be transmited, received data is written over transmit
data during transfer,

length Amount of data to transfer

delay Amount of time to delay clock edges, in usec. In order to interface to slower
SPI slaves a SBCLK stretch can be used to increases the_ SEK period
by 1 usec per stretch.

options SPI configuration options defined as:
* bit0- CPOL - Setto 1 - SPICLK idles high
e bit1- CPHA - Setto 1 - Transfers on second edge
* bit 2 - wordMode - Set to 1 - 16 bit transfers
* bit 3 - noskew - Set to 1 - turn off interrupts during transfer
* bit 4 - useSS - Setto 1 - Use the SS line during transfers
e bit5- synchSS - Setto 1 - Takes SS to inactive after every word
¢ bit 6 - invertSS - Setto 1 - SS line is active high

4.29 tini400time.h File Reference
4.29.1 Detailed Description

Date/Time utilities, tailored for the DS80C400 C Libraries.

This library contains functions that provide simple time utilities in conjunction with
the RTC C Library. The time base is variable for this library, meaning that the value
'0 seconds’ can be assigned to 12:00:00am of January 1st for a specific year. Note
that this library does not currently support daylight savings time computations or the
concept of time zones.

Note that this library will not return correct values for dates before the year 1901 or
after the year 2099.

For detailed information on the DS80C400 please see Ithigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Data Structures

e structtm

241

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Defines

» #defineTINI400_-TIME_VERSION 2

Typedefs

« typedef unsigned longime_t

Functions

¢ unsigned intime_version(void)
Returns the version number of tAIBVE library.

« void time_settimebaséunsigned int year)
Sets the time base year for the RTC.

time_t mktime (structtm xtimeptr)
mktime

« time_t time (time_t xtimer)
time

e tm x gmtime(time_t «xtimer)
gmtime

4.29.2 Define Documentation

4.29.2.1 #define TINIA0QTIME _-VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thi@me versionfunction.

See also:

time_version

4.29.3 Typedef Documentation

4.29.3.1 typedef unsigned long tim¢

Type used for representing time. Our RTC is assumed to be 4 bytes of seconds.

See also:
time

242

4.29.4 Function Documentation

4.29.4.1 structtmx gmtime (time_t x timer)
gmtime

Converts the native time formatted input into a calendar representation.

Parameters:
timer Native represenation of the time to be converted to calendar format.

Returns:
Calendar format of the input time.

4.29.4.2 time_t mktime (struct tm * timeptr)
mktime

Converts am structure (calendar time) into the native time representatidimuft .

The tiem is computed using the hour, minute, second, day of month, month, and year
fields of the input structure. The day of year, day of week, and daylight savings time
flag are ignored. No bounds checking is performed on the input data.

Parameters:
timeptr Calendar time to be converted to native time representation

Returns:
Native time representation of the calendar.

4.29.4.3 time_t time (time_t * timer)

time

Gets the current time in its native representation format. Use the furgtidimeto
get a calendar representation of this time.

Parameters:
timer If non-null, this is also filled in with the return value

Returns:
Native time representation of the current time.

243

4.29.4.4 void timesettimebase (unsigned inyear)
Sets the time base year for the RTC.

Sets the time base year for the real time clock. The recommended time base is the year
2000. The time base must be set before meaningful calculations can occur.

Parameters:
year base year which will be used for time computations

4.29.4.5 unsigned int timeversion (void)

Returns the version number of tHRISME library.

Returns:
Version number of thiFIME library.

4.30 tini400xnetboot.h File Reference
4.30.1 Detailed Description

External NetBoot library for the DS80C400.

The External Netboot library contains netboot code that can be invoked independently
from the ROM. This library provides the latest NetBoot code that adds the following
features: Improves TBIN2 loading to work with files larger than 64KB, disables all
multicast traffic reception to improve reliability, supports the DS2502 and the DS1982
to hold a MAC ID (in addition to the DS2502-E48), supports setting the clock mul-
tiplier for improved performance, supports acquiring a DHCP IP from the Netgear
WGT624 router.

This library works with IPv4 only.

The External Netboot library cannot reprogram the same flash chip it is running from,
i.e. you need two separate flash memories.

You can use the library from assembly language - set r7 to the desired clock multiplier
and jump to th&XNETBOOTsymbol.

EXTERN ECODE(XNETBOOQOT) mov r7, #2 limp XNETBOOT
Warning:
Note that debug symbols have to be turned off in order to avoid a linker error (the

linker cannot handle line numbers greater than 65534 and will return an "L220"
error when debug symbols are enabled).

244

Defines

» #defineTINI400_XNETBOOT_VERSION1

Functions

 unsigned inknetbootversion(void)
Returns the version number of this XNETBOOT library.

« void xnetbootboot(unsigned char multiplier)
Starts NetBoot.

4.30.2 Define Documentation

4.30.2.1 #define TINIAOOXNETBOOT _VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by thenetbootversionfunction.

See also:
xnetbootversion

4.30.3 Function Documentation

4.30.3.1 void xnetboatboot (unsigned charmultiplier)
Starts NetBoot.

This function starts NetBoot and does not return to the caller.

Parameters:
multiplier The argumenmultiplier sets the clock multiplier (1, 2, or 4).

4.30.3.2 unsigned int xnetboawversion (void)
Returns the version number of this XNETBOOT library.

Returns:
Version number of this XNETBOOT library.

245

4.31 tini_i2c.h File Reference
4.31.1 Detailed Description

I2C function library.

This library contains functions for communicating to 12C devices via user specified
port pins.

For detailed information on the DS80C400 please see Ithigh-Speed
Microcontroller User's Guide: DS80C400 Supplement

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. However, 12C pins are
a system resource and should not be shared among different processes.

Defines

 #defineTINI _I2C_VERSION1

#definel2C_SDA P34

#definel2C_SCL P35

#definel2C_ENABLE_SCL WAIT _FOR.SLOW_SLAVESO
#definel2C_.MAXIMUM _SCL.WAITCOUNT 10000
#definel2C_DELAY _LOOP.COUNTO

Functions

« inti2c_version()
Return the library version.

void i2c_delay(void)
Delay function.

void i2c_start(void)
Performs an 12C start condition.

void i2c_bit (unsigned char singlebit)
Performs an 12C bit write.

 unsigned chai2c_readbit(void)
Performs an 12C bit read.

246

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

void i2c_stop(void)
Performs an 12C stop condition.

unsigned chai2c_readbytgunsigned char doACK)
Performs an 12C byte read.

unsigned chai2c_writebyte(unsigned char singlebyte)
Performs an 12C byte write.

unsigned chai2c_select(unsigned char address)
Perform 12C start, address selection.

unsigned chai2c_writeblock (unsigned char address, unsigned chaarr, int
length)

Perform 12C start, address selection, write specified bytes and 12C stop.

unsigned chai2c_readblock(unsigned char address, unsigned chiaarr, int
length)

Perform 12C start, address selection, read specified number of bytes and 12C stop.

unsigned chai2c_writereadblock(unsigned char address, unsigned ciarrl,
int lengthl, unsigned chabarr2, int length2)

Perform I12C start, address selection, write specified bytes, 12C start, address slection,
read bytes and 12C stop.

4.31.2 Define Documentation

4.31.2.1 #define I2CDELAY _LOOP_COUNT 0

Number of loops to wait between any host SCL and SDA transitions

4.31.2.2 #define I2CENABLE _SCL_WAIT FOR_SLOW _SLAVES 0

Enable communication with slow slave devices. Value of 1 enables SCL waiting/flow
control.

4.31.2.3 #define 2QMAXIMUM _SCL_WAITCOUNT 10000

Number of loops to wait for SCL to return high if SCL flow control is used.

4.31.2.4 #define 12CSCL P3.5
Define SCL (clock) line to talk to the DS1672 on the TINIm400

247

4.31.2.5 #define I2CSDA P34
Define SDA (data) line to talk to the DS1672 on the TINIm400

4.31.2.6 #define TINLI2C_VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by th@c_versionfunction.

See also:
i2c_version

4.31.3 Function Documentation

4.31.3.1 void i2cbit (unsigned char singlebif

Performs an 12C bit write.

Parameters:
singlebit Bit to write on 12C bus

4.31.3.2 void i2cdelay (void)

Delay function.

4.31.3.3 unsigned char i2eeadbit (void)

Performs an 12C bit read.

Returns:
Value of SDA line during read timeslot

4.31.3.4 unsigned char i2geadblock (unsigned charaddress unsigned char
barr, int length)

Perform 12C start, address selection, read specified number of bytes and 12C stop.

Parameters:
addressAddress of device to select. Upper 7 bits are address, LSbit automatically
set to 1 by function.

barr Array destination for read bytes
length Number of bytes to read

Returns:
0 if device acknowledged address selection and data transfer

248

4.31.3.5 unsigned char i2geadbyte (unsigned chardoACK)

Performs an 12C byte read.

Parameters:
doACK Set to 1 to assert acknowledge after reading 8 bits, or 0 to not assert ACK.

Returns:
Value of SDA line during read timeslot

4.31.3.6 unsigned char i2select (unsigned chaaddres$

Perform 12C start, address selection.

Parameters:
addressAddress of device to select. Upper 7 bits are address, LSbit denotes read
if 1 and write if O.

Returns:
0 if device acknowledged address selection

4.31.3.7 void i2cstart (void)

Performs an 12C start condition.

4.31.3.8 void i2cstop (void)

Performs an 12C stop condition.

4.31.3.9 inti2cversion ()

Return the library version.

4.31.3.10 unsigned char i2evriteblock (unsigned charaddressunsigned charx
barr, int length)

Perform 12C start, address selection, write specified bytes and 12C stop.

Parameters:
addressAddress of device to select. Upper 7 bits are address, LSbit automatically
set to 0 by function.

barr Array of bytes to write
length Number of bytes to write

Returns:
0 if device acknowledged address selection and data transfer

249

4.31.3.11 unsigned char i2evritebyte (unsigned charsinglebyt¢

Performs an 12C byte write.

Parameters:
singlebyte Value to write to bus.

Returns:
0 if byte was acknowledged

4.31.3.12 unsigned char i2avritereadblock (unsigned char address unsigned
char * barrl, int lengthl, unsigned charx barr2, int length2)

Perform I12C start, address selection, write specified bytes, 12C start, address slection,
read bytes and 12C stop.

Parameters:

addressAddress of device to select. Upper 7 bits are address, LSbit automatically
set to O by function.

barrl Array of bytes to write

lengthl Number of bytes to write
barr2 Array destination for read bytes
length2 Number of bytes to read

Returns:
0 if device acknowledged address selection and data transfer

4.32 tini_rtc.h File Reference
4.32.1 Detailed Description

RTC function library.

This library contains RTC functions for the DS1672U, the real time clock included in
the TINIm400 reference module.

For detailed information on the DS1672U, please sed_the-Voltage Serial
Timekeeping Chip

Warning:
The functions in this library ar®lOT multi-process safe—that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

250

http://pdfserv.maxim-ic.com/en/ds/DS1672.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1672.pdf

Defines

* #defineDEVICE_ADDRESS0xDO

» #defineCOUNTERADDRESS0x00

» #defineCONTROL ADDRESSO0x04

» #defineTRICKLECHARGER ADDRESS0x05
 #defineTRICKLECHARGERDISABLE 0xFO
» #defineSTART_.CLOCK 0x7F

» #defineSTORCLOCK 0x80

» #defineNODIODE_2500HMO0xA5

» #defineONEDIODE 2500HMO0xA9

* #defineNODIODE_2KOHM 0xA6

* #defineONEDIODE 2KOHM OxAA

* #defineNODIODE_4KOHM 0xA7

* #defineONEDIODE 4KOHM OxAB

« #defineTINI _RTC_VERSION 1

Functions

* int rtc_version()
Return the library version.

« int rtc_startclock()
Start oscillator to count clock by setting MSB of control register to 0.

« int rtc_stopclock()
Stop oscillator to pause clock by setting MSB of control register to 1.

« int rtc_setcontrolregistefunsigned char newvalue)
Write value to 8 bit control register.

« int rtc_getcontrolregistefunsigned chax)
Fetch value of 8 bit control register.

« int rtc_disabletricklecharge()
Disable trickle charger register by setting 4 LSB’s to 0.

« int rtc_enabletricklechargerOdiode2500i{m

Set trickle charger register to work no diode and with 250o0hm.

« int rtc_enabletricklechargerldiode250oi{m
Set trickle charger register to work 1 diode and with 2500hm.

251

int rtc_enabletricklechargerOdiode2kohin
Set trickle charger register to work no diode and with 2Kohm.

int rtc_enabletricklechargerldiode2kohin
Set trickle charger register to work 1 diode and with 2Kohm.

int rtc_enabletricklechargerOdiode4kohin
Set trickle charger register to work no diode and with 4Kohm.

int rtc_enabletricklechargerldiode4koh{in
Set trickle charger register to work 1 diode and with 4Kohm.

int rtc_settricklechargerregistéunsigned char newvalue)
Set trickle charger register new value.

int rtc_gettricklechargerregist¢unsigned cha)
Fetch 8 bit trickle charger register content.

int rtc_getclock(long)
Convert char array to long integer after fetch from 32 bit counter of RTC.

int rtc_setclock(long newvalue)
Convert long integer to char array and write to 32 bit counter of RTC.

4.32.2 Define Documentation

4.32.2.1 #define CONTROLADDRESS 0x04

Address of Control register.

See also:

rtc_setcontrolregister
rtc_getcontrolregister

4.32.2.2 #define COUNTERADDRESS 0x00
Starting address of 32 bits RTC counter.

See also:

rtc_getclock
rtc_setclock

252

4.32.2.3 #define DEVICEADDRESS 0xD0O

Device address.

4.32.2.4 #define NODIODE2500OHM 0OxA5

Value of Trickle Charger register that connects Vcc & Vbackup via no diode and 250
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklechargerOdiode2500hm

4.32.2.5 #define NODIODE2KOHM 0xA6

Value of Trickle Charger register that connects Vcc & Vbackup via no diode and 2K
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklechargerOdiode2kohm

4.32.2.6 #define NODIODE4AKOHM 0xA7

Value of Trickle Charger register that connects Vcc & Vbackup via no diode and 4K
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklechargerOdiode4kohm

4.32.2.7 #define ONEDIODE2500OHM 0xA9

Value of Trickle Charger register that connects Vcc & Vbackup via one diode and 250
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklechargerldiode2500hm

4.32.2.8 #define ONEDIODE2KOHM OxAA

Value of Trickle Charger register that connects Vcc & Vbackup via one diode and 2K
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklechargerldiode2kohm

253

4.32.2.9 #define ONEDIODE4KOHM OxAB

Value of Trickle Charger register that connects Vcc & Vbackup via one diode and 4K
ohm resistor when Trickle Charger is enabled .

See also:
rtc_enabletricklechargerldiode4kohm

4.32.2.10 #define STARTCLOCK Ox7F

Value of Control register that will start oscillator.

See also:
rtc_startclock

4.32.2.11 #define STOEELOCK 0x80

Value of Control register that will stop oscillator.

See also:
rtc_startclock

4.32.2.12 #define TINIRTC_VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by thec_versionfunction.

See also:
rtc_version

4.32.2.13 #define TRICKLECHARGER ADDRESS 0x05

Address of Trickle Charger register.

See also:
rtc_gettricklechargerregister
rtc_settricklechargerregister

4.32.2.14 #define TRICKLECHARGER DISABLE 0xFO

Value of Trickle Charger register that will disable it.

See also:
rtc_disabletricklecharger

254

4.32.3 Function Documentation

4.32.3.1 intrtcdisabletricklecharger ()
Disable trickle charger register by setting 4 LSB'’s to 0.

Returns:
0 if pass, -1 if fail

See also:
rtc_enabletricklechargerOdiode2500hm

4.32.3.2 int rtc.enabletricklechargerOdiode2500hm ()

Set trickle charger register to work no diode and with 250o0hm.

Returns:
0 if pass, -1 if fail

See also:
rtc_disabletricklecharger
rtc_enabletricklechargerldiode250o0hm

4.32.3.3 int rtcenabletricklechargerOdiode2kohm ()

Set trickle charger register to work no diode and with 2Kohm.

Returns:
0 if pass, -1 if fail

See also:
rtc_disabletricklecharger
rtc_enabletricklechargerldiode2kohm

4.32.3.4 int rtc.enabletricklechargerOdiode4kohm ()

Set trickle charger register to work no diode and with 4Kohm.

Returns:
0 if pass, -1 if fail

See also:

rtc_disabletricklecharger
rtc_enabletricklechargerldiode4kohm

255

4.32.3.5 int rtc.enabletricklechargerldiode2500hm ()
Set trickle charger register to work 1 diode and with 250o0hm.

Returns:
0 if pass, -1 if fail

See also:
rtc_disabletricklecharger
rtc_enabletricklechargerOdiode2kohm

4.32.3.6 int rtcenabletricklechargerldiode2kohm ()
Set trickle charger register to work 1 diode and with 2Kohm.

Returns:
0 if pass, -1 if fail

See also:
rtc_disabletricklecharger
rtc_enabletricklechargerOdiode4kohm

4.32.3.7 intrtcenabletricklechargerldiode4kohm ()

Set trickle charger register to work 1 diode and with 4Kohm.

Returns:
0 if pass, -1 if fail

See also:
rtc_disabletricklecharger
rtc_enabletricklechargerOdiode250o0hm

4.32.3.8 intrtcgetclock (longx)

Convert char array to long integer after fetch from 32 bit counter of RTC.

Returns:
0 if pass, -1 if fail

See also:
rtc_setclock

256

4.32.3.9 int rtcgetcontrolregister (unsigned charx)

Fetch value of 8 bit control register.

Returns:
0 if pass, -1 if fail

See also:
rtc_setcontrolregister

4.32.3.10 int rtcgettricklechargerregister (unsigned charsx)

Fetch 8 bit trickle charger register content.

Returns:
0 if pass, -1 if fail

See also:
rtc_settricklechargerregister

4.32.3.11 int rtcsetclock (longnewvalug

Convert long integer to char array and write to 32 bit counter of RTC.

Parameters:
newvalue Value in long integer.

Returns:
0 if pass, -1 if fail

See also:
rtc_getclock

4.32.3.12 int rtcsetcontrolregister (unsigned chamewvalug

Write value to 8 bit control register.

Parameters:
newvalue Value to set.

Returns:
0 if pass, -1 if fail

See also:
rtc_getcontrolregister

257

4.32.3.13 int rtcsettricklechargerregister (unsigned chamewvalug

Set trickle charger register new value.

Parameters:
newvalue Value to set

Returns:
0 if pass, -1 if fail

See also:
rtc_gettricklechargerregister

4.32.3.14 int rtcstartclock ()

Start oscillator to count clock by setting MSB of control register to 0.

Returns:
RTC version.

See also:
rtc_stopclock

4.32.3.15 int rtcstopclock ()

Stop oscillator to pause clock by setting MSB of control register to 1.

Returns:
0 if pass, -1 if fail

See also:
rtc_startclock

4.32.3.16 intrtcversion ()

Return the library version.

See also:
rtc_startclock

258

Index

_getkey
stdio.h,120

accept
rom40Qsock.h,46
acceptqueue
rom40Qsock.h,62
AF_INET
rom40Qsock.h,46
AF_INET6
rom40Qsock.h,46
arp.cacherequest
rom40Qsock.h46
arp.generaterequest
rom40Qsock.h47
avail
rom40Qsock.h 47

bind
rom40Qsock.h47
bogusptr
sockaddr6
sockaddrin, 6

cleanup
rom400sock.h,48
clearparambuffers
rom40Qsock.h,62
clearerr
stdio.h,120
closesocket
rom40Qsock.h,48
connect
rom40Qsock.h,49
cryptshal
tini400_crypt.h,140
cryptversion
tini400_crypt.h,140

dhcpinit
rom40Qdhcp.h,11

dhcpregisternotify
rom40Qdhcp.h,11

259

dhcpstatus
rom40Qdhcp.h,12
DHCP_.STATUS BOUND
rom40Qdhcp.h,9
DHCP_STATUSINIT
rom40Qdhcp.h,10
DHCP_STATUS.INITREBOOT
rom40Qdhcp.h,10
DHCP_STATUS.REBINDING
rom40Qdhcp.h,10
DHCP_STATUS REBOOTING
rom40Qdhcp.h,10
DHCP_STATUS RENEWING
rom40Qdhcp.h,10
DHCP_STATUS REQUESTING
rom40Qdhcp.h,10
DHCP_STATUS SELECTING
rom40Qdhcp.h,11
dhcpstop
rom40Qdhcp.h,12
dhcpversion
rom40Qdhcp.h,12
dnsenableipvbqueries
tini400.dns.h,142
dnsgetmx
tini400.dns.h,142
dnsgetprimary
tini400.dns.h,143
dnsgetsecondary
tini400.dns.h,143
dnsgettimeout
tini400_.dns.h,144
dnsinit
tini400_.dns.h,144
dnssetprimary
tini400.dns.h,144
dnssetsecondary
tini400_dns.h,144
dnssettimeout
tini400.dns.h,145
dnsversion
tini400_dns.h,145

EOF
stdio.h,117
error
file_structure 3
ETH_STATUS.LINK
rom40Qsock.h,49

fclose

stdio.h,121
fd

file_structure 3
feof

stdio.h,121
ferror

stdio.h,121
fexists

stdio.h,122
fflush

stdio.h,122
fgetc

stdio.h,122
fgetpos

stdio.h,123
fgets

stdio.h,123
FILE

stdio.h,120
FILE_FLAGS_EOF

stdio.h,117
FILE_FLAGS.TEMP

stdio.h,118
file_structure2

error,3

fd, 3

flags,3

type,3
FILE_.TYPETINIFS

stdio.h,118
FILENAME _MAX

stdio.h,118
filesystemversion

stdio.h,124
finit

stdio.h,124
FLAG_DHCP.WAIT

rom40Qtask.h,80

260

FLAG_IO_WAIT

rom40Qtask.h,80
FLAG_SLEEPING

rom40Qtask.h,81
Flags

TCB, 7
flags

file_structure 3
flash.eraseblock

rom40Qflash.h,15
flash.programbyte

rom40Qflash.h,15
flash.version

rom40Qflash.h,16
flockfile

stdio.h,125
fopen

stdio.h,125
fopenfd

stdio.h,126
FOPENMAX

stdio.h,118
fpost

stdio.h,120
fputc

stdio.h,126
fputs

stdio.h,127
fread

stdio.h,127
freadbytes

stdio.h,128
freopen

stdio.h,128
FSVERSION

stdio.h,118
fseek

stdio.h,129
fseeko

stdio.h,129
fsetpos

stdio.h,130
ftell

stdio.h,130
ftello

stdio.h,131

ftrylockfile
stdio.h,131
funlockfile
stdio.h,132
fwrite
stdio.h,132
fwritebytes
stdio.h,133

getc
stdio.h,133
getchar
stdio.h,134
getethernetstatus
rom40Qsock.h,49
getfreefsram
stdio.h,134
gethostbyaddr
tini400.dns.h,145
gethostbyname
tini400_dns.h,146
getipvbparams
rom40Qsock.h,50
getmacid
rom40Qsock.h,50
getnetworkparams
rom400sock.h,50
getpeername
rom40Qsock.h,51
gets
stdio.h,134
getsockname
rom40Qsock.h,51
getsockopt
rom40Qsock.h,52
gettftpserver
rom40Qsock.h,52

h_addrlist
hostent4
h_addrtype
hostent3
h_aliases
hostent3
h_length
hostent4

261

h_name
hostent3
mailhostentb

hostent3
h_addrlist, 4
h_addrtype3
h_aliases3
h_length,4
h_name,3

htons
rom40Qsock.h,53

i2¢_bit

tini_i2c.h, 155
i2c_delay

tini_i2c.h, 155
[I2C_DELAY _.LOOP.COUNT

tini_i2c.h,154
I2C_ENABLE_SCL WAIT _FOR -

SLOW_SLAVES

tini_i2c.h,154

I2C_.MAXIMUM _SCL -
WAITCOUNT

tini_i2c.h,154
i2c_readbit

tini_i2c.h, 155
i2c_readblock

tini_i2c.h, 155
i2c_readbyte

tini_i2c.h, 155
12C_SCL

tini_i2c.h, 154
I2C_SDA

tini_i2c.h,154
i2c_select

tini_i2c.h, 155
i2c_start

tini_i2c.h,156
i2c_stop

tini_i2c.h,156
i2c_version

tini_i2c.h, 156
i2c_writeblock

tini_i2c.h,156
i2c_writebyte

tini_i2c.h,156

i2c_writereadblock
tini_i2c.h, 156
1D
TCB, 7
in6_addr,4
s6.addr,4
in_addr,4
s.addr,5
inet.addr
rom40Qsock.h,63
inet.ntop
rom40Qsock.h,63
inet pton
rom40Qsock.h,63
init_clearSystemRAM
rom40Qinit.h, 23
init_clearXSEG
rom40Qinit.h, 24
init_copyivt
rom40Qinit.h, 24
INIT _CRYSTALFAIL_RESET
rom400Qinit.h, 19
INIT _DIVISOR_10MHZ
rom40Qinit.h, 19
INIT _DIVISOR_112MHZ
rom40Qinit.h, 19
INIT _DIVISOR_128MHZ
rom400Qinit.h, 19
INIT _DIVISOR_12MHZ
rom40Qinit.h, 19
INIT _DIVISOR_14MHZ
rom40Qinit.h, 20
INIT _DIVISOR_16MHZ
rom40Qinit.h, 20
INIT _DIVISOR_20MHZ
rom40Qinit.h, 20
INIT _DIVISOR_24MHZ
rom40Qinit.h, 20
INIT _DIVISOR_28MHZ
rom40Qinit.h, 20
INIT _DIVISOR_32MHZ
rom40Qinit.h, 20
INIT _DIVISOR_3MHZ
rom40Qinit.h, 21
INIT _DIVISOR_40MHZ
rom40Qinit.h, 21

262

INIT _DIVISOR_48MHZ
rom40Qinit.h, 21
INIT _DIVISOR_4MHZ
rom40Qinit.h, 21
INIT _DIVISOR_56MHZ
rom40Qinit.h, 21
INIT _DIVISOR.5MHZ
rom40Qinit.h, 21
INIT _DIVISOR_64MHZ
rom40Qinit.h, 22
INIT _DIVISOR_6MHZ
rom400Qinit.h, 22
INIT _DIVISOR_7TMHZ
rom40Qinit.h, 22
INIT _DIVISOR_80MHZ
rom40Qinit.h, 22
INIT _DIVISOR_8MHZ
rom40Qinit.h, 22
INIT _DIVISOR_96MHZ
rom40Qinit.h, 22
init_enableinterrupts
rom400Qinit.h, 24
init_eth
rom40Qinit.h, 24
init_getbootstate
rom40Qinit.h, 24
init_km
rom40Qinit.h, 25
init_mm
rom40Qinit.h, 25
init_netboot
rom40Qinit.h, 25
init_network
rom40Qinit.h, 26
init_ow
rom40Qinit.h, 26
INIT _POWERFAILRESET
rom40Qinit.h, 23
init_redirect
rom40Qinit.h, 27
init_rom
rom40Qinit.h, 27
init_sockets
rom400Qinit.h, 27
init_tick
rom40Qinit.h, 28

init_usekeilmonitor
rom40Qinit.h, 28
init_version
rom40Qinit.h, 28
INIT _ WATCHDOG_.RESET
rom400Qinit.h, 23
IPPROTQUDP
rom40Qsock.h,53
ISR.CANO
tini400_isr.h, 148
ISR ETHERNET
tini400_isr.h, 148
ISR ETHERNETPOWER
tini400.isr.h, 148
ISR EXTERNALINTO
tini400.isr.h, 148
ISR EXTERNALINT1
tini400.isr.h, 148
ISR.EEXTERNALINT2345
tini400.isr.h, 148
isr_getinterruptvector
tini400.isr.h, 151
ISR POWERFAIL
tini400.isr.h, 149
ISR.SERIALO
tini400.isr.h, 149
ISR SERIAL1
tini400.isr.h, 149
ISR.SERIAL2
tini400.isr.h, 149
isr_setinterruptvector
tini400.isr.h,151
ISR.TIMERO
tini400.isr.h, 149
ISR.TIMER1
tini400.isr.h, 150
ISR TIMER2
tini400_isr.h, 150
ISR.TIMER3
tini400.isr.h, 150
isr_version
tini400.isr.h, 152
ISR WATCHDOG
tini400_isr.h, 150
ISRWRITEPROTECT
tini400.isr.h, 150

263

join
rom40Q0sock.h,53

kmem.init
rom40Qkmem.h,30

kmem.install
rom400kmem.h,31

kmem.version
rom400kmem.h,32

L_tmpnam
stdio.h,118

leave
rom40Qsock.h,54

listen
rom40Qsock.h,54

mailhostents
h_name5
preferenceb
MAX _PRIORITY
rom40Qtask.h,81
memfree
rom400mem.h,33
mem.getfreeram
rom40Qmem.h,33
memmalloc
rom40Qmem.h,34
memmallocdirty
rom400mem.h,34
memsizeof
rom40Qmem.h,35
mem.version
rom40Qmem.h,35
millis
TIME, 8
MIN _PRIORITY
rom40Qtask.h,81
mkdir
stdio.h,134
msb
TIME, 8

Next
TCB,7
NORM_PRIORITY

rom40Qtask.h,81
nstoh

rom40Qsock.h,55
NULL

stdio.h,119

off t
stdio.h,120
ow_byte
rom40Qow.h, 38
ow._first
rom40Qow.h, 38
ow_getcurrentid
rom40Qow.h, 38
ow_next
rom40Qow.h,38
ow_reset
rom40Qow.h, 39
OW_RESETALARM
rom40Qow.h,37

OW_RESETNO_PRESENCE

rom40Qow.h, 37

OW_RESETPRESENCE

rom40Qow.h, 37
OW_RESET.SHORT

rom40Qow.h,37
ow_version

rom40Qow.h,39

P_tmpdir
stdio.h,119
PEINET
rom400sock.h,55
preference
mailhostents
printf
stdio.h,135
Priority
TCB,7
putc
stdio.h,135
putchar
stdio.h,135
puts
stdio.h,135

recv

264

rom40Qsock.h,55
recvfrom
rom40Qsock.h,56
REDIRECT.0
rom400Qutil.h, 103
REDIRECT.DHCPNOTIFY
rom400Qutil.h, 103
REDIRECT.FREE
rom400Qutil.h, 103
REDIRECT.GETFREERAM
rom400Qutil.h, 103
REDIRECT.GETTASKID
rom400Qutil.h, 104
REDIRECT.GETTHREADID
rom400Qutil.h, 104
REDIRECT.GETTIMEMILLIS
rom40Qutil.h, 104
REDIRECT.INFOSENDCHAR
rom400Qutil.h, 104
REDIRECT.IP_-
COMPUTECHECKSUM-
SOFTWARE
rom400Qutil.h, 104
REDIRECT.KERNELFREE
rom400Qutil.h, 105
REDIRECT.KERNELMALLOC
rom400Qutil.h, 105
REDIRECT.MALLOC
rom400Qutil.h, 105
REDIRECT.MALLOCDIRTY
rom400Qutil.h, 105
REDIRECT.MM _.UNDEREF
rom40Qutil.h, 105
REDIRECT.OWIP_.READCONFIG
rom400Qutil.h, 106
REDIRECT.ROM_TASK_CREATE
rom400Qutil.h, 106
REDIRECT.ROM_TASK_DESTROY
rom400Qutil.h, 106
REDIRECT.ROM_TASK _-
DUPLICATE
rom400Qutil.h, 106
REDIRECT.ROM_TASK_SWITCH.-
IN
rom400Qutil.h, 106

REDIRECT.ROM_TASK_SWITCH.-
ouT
rom400Qutil.h, 107
REDIRECT.SETMACID
rom400Qutil.h, 107
REDIRECT.SLEEP
rom400Qutil.h, 107
REDIRECT.THREADIOSLEEP
rom400Qutil.h, 107
REDIRECT.THREADIOSLEEPNC
rom400Qutil.h, 107
REDIRECT.THREADRESTORE
rom400Qutil.h, 108
REDIRECT.THREADRESUME
rom400Qutil.h, 108
REDIRECT.THREADSAVE
rom40Qutil.h, 108
REDIRECT.TINIEXPORT_-MM _-
DEREF
rom400Qutil.h, 108
RELOAD_14.746
rom40Qtask.h,81
RELOAD_18.432
rom40Qtask.h,81
RELOAD_29.491
rom40Qtask.h,82
RELOAD_36.864
rom40Qtask.h,82
RELOAD_58.982
rom40Qtask.h,82
RELOAD_73.728
rom40Qtask.h,82
remove
stdio.h,136
rename
stdio.h,136
rewind
stdio.h,136
ROM400-

dhcpinit, 11

dhcpregisternotify,11

dhcpstatus,12

DHCP.STATUS BOUND, 9

DHCP.STATUSIINIT, 10

DHCP_.STATUSINITREBOOQT,
10

DHCP_STATUS REBINDING,
10

DHCP_.STATUS.REBOOTING,
10

DHCP_STATUS RENEWING,
10

DHCP_STATUS REQUESTING,
10

DHCP_STATUS SELECTING,
11

dhcpstop,12

dhcpversion,12

ROM400DHCP.VERSION, 11

ROM400DHCP.VERSION

rom40Qdhcp.h,11

rom40Qerr.h,13

ROM40Q-
ARRAYINDEXOUTOFBOUNDSEXCEPTION,
13
ROM400BINDEXCEPTION,
13
ROM40Q-
CONNECTEXCEPTION,
13
ROM400QERR.VERSION, 13
ROM40QINTERNALERROR,
13
ROM40Q-
INTERRUPTEDIOEXCEPTION,
14
ROM40QIOEXCEPTION, 14
ROM40Q-

ARRAYINDEXOUTOFBOUNDSEXCEPTIONULLPOINTEREXCEPTION,

rom40Qerr.h,13
ROM400BINDEXCEPTION

rom40Qerr.h,13
ROM400.CONNECTEXCEPTION

rom40Qerr.h,13
rom40Qdhcp.h,8

14

ROM40Q-
OUTOFMEMORYERROR,
14

ROM40Q-
SOCKETEXCEPTION,

14
ROM400ERR.VERSION
rom40Qerr.h,13
rom40Qflash.h,14
flash.eraseblockl5
flash programbyte15
flash.version,16
ROMA400QFLASH_VERSION, 15
ROM400FLASH_VERSION
rom40Qflash.h,15
rom40Qinit.h, 16
init_clearSystemRAM23
init_clearXSEG 24
init_copyivt, 24
INIT _CRYSTALFAIL_RESET,
19
INIT _DIVISOR_10MHZ, 19
INIT _DIVISOR_112MHZ, 19
INIT _DIVISOR_128MHZ, 19
INIT _DIVISOR_12MHZ, 19
INIT _DIVISOR_14MHZ, 20
INIT _DIVISOR_16MHZ, 20
INIT _DIVISOR_20MHZ, 20
INIT _DIVISOR_24MHZ, 20
INIT _DIVISOR_28MHZ, 20
INIT _DIVISOR_32MHZ, 20
INIT _DIVISOR_3MHZ, 21
INIT _DIVISOR_40MHZ, 21
INIT _DIVISOR_48MHZ, 21
INIT _DIVISOR_4MHZ, 21
INIT _DIVISOR_56MHZ, 21
INIT _DIVISOR.5MHZ, 21
INIT _DIVISOR_64MHZ, 22
INIT _DIVISOR_6MHZ, 22
INIT _DIVISOR_7MHZ, 22
INIT _DIVISOR_80MHZ, 22
INIT _DIVISOR_8MHZ, 22
INIT _DIVISOR_96MHZ, 22
init_enableinterrupt4
init_eth,24
init_getbootstate24
init_km, 25
init_mm, 25
init_netboot,25
init_network,26
init_ow, 26

INIT _POWERFAILRESET,23
init_redirect,27
init_rom, 27
init_sockets27
init_tick, 28
init_usekeilmonitor28
init_version,28
INIT _ WATCHDOG_RESET,23
ROMA400QINIT _VERSION, 23
USEKEIL _MONITOR, 23
ROM40QINIT _-VERSION
rom40Qinit.h, 23
ROM40QINTERNALERROR
rom40Qerr.h,13
ROMA400Q-

INTERRUPTEDIOEXCEPTION

rom40Qerr.h,14
ROM40QI0OEXCEPTION
rom40Qerr.h,14
rom400kmem.h,29
kmem.nit, 30
kmeminstall, 31
kmem.version,32
ROM400KMEM _MODEL -
LARGEST,30
ROM400KMEM _MODEL _-
SMALLEST, 30
ROM400KMEM _VERSION, 30
ROM400KMEM _MODEL -
LARGEST
rom400kmem.h,30
ROM400KMEM _-MODEL _-
SMALLEST
rom400kmem.h,30
ROM40QKMEM _VERSION
rom400kmem.h,30
rom40Qmem.h,32
memfree, 33
memgetfreeram33
memmalloc,34
memmallocdirty, 34
memsizeof,35
memwversion,35
ROM400MEM_VERSION,33
ROM40Q0MEM_VERSION
rom40Q0mem.h,33

ROM40Q-

NULLPOINTEREXCEPTION
rom40Qerr.h,14

ROM400OUTOFMEMORYERROR

rom400Qerr.h,14

rom40Qow.h, 36

ow_byte,38
ow_first, 38
ow_getcurrentid 38
ow_next,38
ow_reset,39
OW_RESETALARM, 37
OW_RESETNO_PRESENCE,
37
OW_RESETPRESENCE37
OW_RESET.SHORT,37
ow_version,39
ROM4000OW_VERSION, 37

ROM400OW_VERSION

rom40Qow.h, 37

ROM400SCHED.VERSION

rom40Qtask.h,78

rom40Qsock.h,39

accept46
acceptqueueg2
AF_INET, 46
AF_INET6, 46
arp.cacherequestié
arp.generaterequest/
avail, 47

bind, 47

cleanup48

clear parambuffers,62
closesocket48
connect49
ETH_STATUSLINK, 49
getethernetstatug9
getipvbparams;0
getmacid50
getnetworkparam$0
getpeernameql
getsocknames1
getsockopt52
gettftpserver52
htons,53

inetaddr,63

267

inet.ntop,63

inet pton,63

IPPROTQUDP, 53

join, 53

leave,54

listen,54

nstoh,55

PEINET, 55

recv,55

recvfrom,56

ROM400SOCK SYNCH.-
VERSION, 56

ROM400SOCK VERSION, 56

send57

sendto57

setmacid58

setnetworkparam$38

setsockopt59

settftpservers9

SO.BINDADDR, 60

SO.LINGER, 60

SO.TIMEOUT, 60

SOCKDGRAM, 60

SOCK STREAM, 61

sockversion,61

socket61

SOCKET.TYPE.DATAGRAM,
61

SOCKET.TYPE.STREAM, 62

synacceptb4

synarp.cacherequesg4

synarp.generaterequesip

synavail, 65

synbind, 65

syncleanup 66

syn.closesockett6

syn.connectg7

syn getethernetstatusy

syn getipvéparams;7

syngetmacid 68

syngetnetworkparam$38

syngetpeernameg9

syngetsocknameg9

syn.getsockoptf9

syn gettftpservery0

synjoin, 70

synleave,71

synlisten,71

synrecv,72

synrecvfrom,72

synsend,73

synsendto,/3

synsetDatagramAddress4

synsetmacidy/4

syn setnetworkparamg5

synsetsockopty5

synsettftpserver76

synsocket,76

syn.version,77

TCP.NODELAY, 62

udpavailabley7
ROM40QSOCK SYNCH_.VERSION

rom40Qsock.h,56
ROM400SOCKVERSION

rom40Qsock.h,56
ROM40Q SOCKETEXCEPTION

rom40Qerr.h,14
rom40Qtask.h,77

FLAG_DHCP.WAIT, 80

FLAG_IO_WAIT, 80

FLAG_SLEEPING,81

MAX _PRIORITY, 81

MIN _PRIORITY, 81

NORM_PRIORITY, 81

RELOAD_14.746,81

RELOAD_18.432,81

RELOAD_29.491,82

RELOAD_36.864,82

RELOAD_58982,82

RELOAD_73.728,82

ROM40QSCHEDVERSION,

78

ROM40Q TASK_VERSION, 82

ROM_SAVESIZE,83

task entercritsection34

taskfork, 84

task genesis85

task getcurrent85

task getpriority,85

task gettaskid 86

task getthreadid86

task gettickreload37

task gettimemillis,87
taskkill, 87
task leavecritsection38
task setpriority,88
task settickreload89
task signal,89
task sleep,83
task suspend90
task synchsleep,90
task synchwait, 91
taskthreadiosleep@1
task threadiosleepn®2
task threadrestore2
task threadresume93
taskthreadsave93
taskversion,94
task wait, 83
ROM40QTASK_VERSION
rom40Qtask.h,82
rom40Qtftp.h, 94
ROM40QTFTP.VERSION,95
tftp_first, 96
tftp_getdata96
tftp_init, 96
TFTP.LAST_SEGMENT,95
TFTP.MORE_DATA, 95
tftp_next,97
tftp_version,97
ROM40QTFTP.VERSION
rom40Qtftp.h, 95
rom40Quseriopoll.h 97
ROM40QUSERIOPOLL-
VERSION, 98
useriopollgetlistsize 99
useriopollgetpollroutine 99
useriopollinit, 99
useriopollisinstalled, 100
useriopollregisterpollroutine,
100
useriopollremovepollroutine,
100
useriopollversion,101
ROM40QUSERIOPOLLVERSION
rom40Quseriopoll.h 98
rom40Qutil.h, 101
REDIRECT.0, 103

REDIRECT.DHCPNOTIFY,103
REDIRECTFREE,103
REDIRECT.GETFREERAM,
103
REDIRECT.GETTASKID, 104
REDIRECT.GETTHREADID,
104
REDIRECT.GETTIMEMILLIS,
104
REDIRECTINFOSENDCHAR,
104
REDIRECT.IP--
COMPUTECHECKSUM-
SOFTWARE,104
REDIRECT.KERNELFREE,
105
REDIRECT.-
KERNELMALLOC, 105
REDIRECT-MALLOC, 105
REDIRECT-MALLOCDIRTY,
105
REDIRECT-MM _.UNDEREF,
105
REDIRECT.-OWIP--
READCONFIG,106
REDIRECT.ROM_TASK _-
CREATE, 106
REDIRECT.ROM_TASK -
DESTROY,106
REDIRECT.-ROM_TASK _-
DUPLICATE, 106
REDIRECT-ROM_TASK_-
SWITCH.IN, 106
REDIRECT.ROM_TASK _-
SWITCH.OUT, 107
REDIRECT.SETMACID, 107
REDIRECTSLEEP,107
REDIRECT.-
THREADIOSLEEP,107
REDIRECT.-
THREADIOSLEEPNC,
107
REDIRECT.-
THREADRESTORE,
108
REDIRECT-

269

THREADRESUME,108
REDIRECT.THREADSAVE,
108
REDIRECT.TINIEXPORT.-
MM _DEREF,108
ROM40QUTIL _VERSION, 108
util_crc16,109
util_getpseudorandom09
util_infosendchar109
util_installhook,109
util_memclear110
util_memcomparel 10
util_memcopy111
util_setrandomseed11
util_version,111
ROM40QUTIL VERSION
rom40Qutil.h, 108
rom40Qxnetstack.h112
ROM40QXNETSTACK _-
VERSION, 112
xnetstackinstall, 112
xnetstackversion,112
ROM40Q0XNETSTACK_VERSION
rom40Qxnetstack.h112
ROM_SAVESIZE
rom40Qtask.h,83

s6.addr
in6_addr,4
s.addr
in_addr,5
scanf
stdio.h,137
SEEK CUR
stdio.h,119
SEEK END
stdio.h,119
SEEKSET
stdio.h,119
send
rom40Qsock.h,57
sendto
rom40Qsock.h,57
setmacid
rom40Qsock.h,58
setnetworkparams

rom40Qsock.h,58
setsockopt
rom40Qsock.h,59
settftpserver
rom40Qsock.h,59
sin.addr
sockaddr6
sockaddrin, 6
sin_family
sockaddrp
sockaddrin, 7
sin_port
sockaddrb
sockaddrin, 6
sin_zero
sockaddrin, 6
sizet
stdio.h,120
SO.BINDADDR
rom40Qsock.h,60
SO_LINGER
rom40Qsock.h,60
SO_.TIMEOUT
rom40Qsock.h,60
SOCKDGRAM
rom40Qsock.h,60
SOCKSTREAM
rom40Qsock.h,61
sockversion
rom40Qsock.h,61
sockaddrb
bogusptr, 6
sin.addr,6
sin_family, 6
sin_port, 6
sockaddrin, 6
bogusptr, 6
sin.addr,6
sin_family, 7
sin_port, 6
sin_zero,6
socket
rom40Qsock.h,61
SOCKET.TYPE.DATAGRAM
rom40Qsock.h,61
SOCKET.TYPE.STREAM

270

rom40Qsock.h,62
sprintf
stdio.h,137
sscanf
stdio.h,137
StatePtr
TCB,7
StateSize
TCB, 7
stdio.h,113
_getkey,120
clearerr,120
EOF,117
fclose,121
feof, 121
ferror,121
fexists,122
fflush, 122
fgetc,122
fgetpos,123
fgets,123
FILE, 120
FILE_.FLAGS_EOF,117
FILE_.FLAGS.TEMP,118
FILE_-TYPE.TINIFS, 118
FILENAME_MAX, 118
filesystemversion,124
finit, 124
flockfile, 125
fopen,125
fopenfd, 126
FOPENMAX, 118
fpost, 120
fputc, 126
fputs, 127
fread,127
freadbytes128
freopen,128
FSVERSION,118
fseek,129
fseeko,129
fsetpos,130
ftell, 130
ftello, 131
ftrylockfile, 131
funlockfile, 132

fwrite, 132
fwritebytes,133
getc,133
getchar134
getfreefsram]134
gets,134
L_tmpnam,118
mkdir, 134
NULL, 119
off_t, 120
P_tmpdir, 119
printf, 135
putc,135
putchar,135
puts,135
remove,136
rename 136
rewind, 136
scanf,137
SEEKCUR, 119
SEEKEND, 119
SEEKSET,119
sizet, 120
sprintf, 137
sscanf137
tempnam137
TMP_MAX, 120
tmpfile, 138
tmpnam,138
ungetchar139
vprintf, 139
vsprintf, 139
syn.accept
rom400sock.h,64
synarp.cacherequest
rom40Qsock.h,64

synarp.generaterequest

rom400sock.h,65
synavail
rom40Qsock.h,65
syn.bind
rom40Qsock.h,65
syncleanup
rom400sock.h,66
syn.closesocket
rom40Qsock.h,66

271

syn.connect
rom40Qsock.h,67
syn getethernetstatus
rom40Qsock.h,67
syngetipv6params
rom40Qsock.h,67
syngetmacid
rom40Qsock.h,68
syn.getnetworkparams
rom40Qsock.h,68
syngetpeername
rom40Qsock.h,69
syngetsockname
rom40Qsock.h,69
syn getsockopt
rom40Qsock.h,69
syn gettftpserver
rom40Qsock.h,70
synjoin
rom40Qsock.h,70
synleave
rom40Qsock.h,71
synlisten
rom40Qsock.h,71
synrecv
rom40Qsock.h,72
syn.recvfrom
rom40Qsock.h,72
synsend
rom40Qsock.h,73
syn.sendto
rom40Qsock.h,73

synsetDatagramAddress

rom40Qsock.h,74
synsetmacid
rom40Qsock.h,74
synsetnetworkparams
rom40Qsock.h,75
syn.setsockopt
rom40Qsock.h,75
syn settftpserver
rom40Qsock.h,76
synsocket
rom40Qsock.h,76
syn.version
rom40Qsock.h,77

taskentercritsection
rom40Qtask.h,84
taskfork
rom40Qtask.h,84
taskgenesis
rom40Qtask.h,85
task getcurrent
rom40Qtask.h,85
task getpriority
rom40Qtask.h,85
task gettaskid
rom40Qtask.h,86
task getthreadid
rom40Qtask.h,86
task gettickreload
rom40Qtask.h,87
task gettimemillis
rom40Qtask.h,87
taskKkill
rom40Qtask.h,87
taskleavecritsection
rom40Qtask.h,88
task setpriority
rom40Qtask.h,88
task settickreload
rom40Qtask.h,89
tasksignal
rom40Qtask.h,89
tasksleep
rom40Qtask.h,83
task suspend
rom40Qtask.h,90
task synchsleep
rom40Qtask.h,90
task synchwait
rom40Qtask.h,91
taskthreadiosleep
rom40Qtask.h,91
taskthreadiosleepnc
rom40Qtask.h,92
taskthreadrestore
rom40Qtask.h,92
taskthreadresume
rom40Qtask.h,93
taskthreadsave
rom40Qtask.h,93

272

task version

rom40Qtask.h,94
task wait

rom40Qtask.h,83
TCB, 7

Flags,7

ID, 7

Next, 7

Priority, 7

StatePtry

StateSizey

WakeupTimey/
TCP_NODELAY

rom40Qsock.h,62
tempnam

stdio.h,137
tftp_first

rom40Qtftp.h, 96
tftp_getdata

rom40Qtftp.h, 96
tftp_init

rom40Qtftp.h, 96
TFTP.LAST_SEGMENT

rom40Qtftp.h, 95
TFTP.MORE_DATA

rom40Qtftp.h, 95
tftp_next

rom40Qtftp.h, 97
tftp_version

rom40Qtftp.h, 97
TIME, 8

millis, 8

msb,8
tini400_crypt.h,139

cryptshal,140

crypt.version,140

TINI400_CRYPT_VERSION,

140

TINI400_CRYPT_.VERSION

tini400_crypt.h,140
tini400_dns.h,140

dnsenableipvbéqueried42

dnsgetmx,142

dnsgetprimary, 143

dnsgetsecondaryl43

dnsgettimeout144

dnsinit, 144
dnssetprimary 144
dnssetsecondaryi,44
dnssettimeout,145
dnsversion,145
gethostbyaddr] 45
gethostbynamel,46
TINI4A00_.DNS_VERSION, 142

TINI400_.DNS_VERSION

tini400.dns.h,142

tini400.isr.h, 146

ISR.CANO, 148

ISR ETHERNET,148

ISR ETHERNETPOWER 148
ISR EXTERNALINTO, 148
ISR EXTERNALINT1, 148
ISR EXTERNALINT2345,148
isr_getinterruptvector151

ISR POWERFAIL,149
ISR.SERIALO, 149
ISR.SERIAL1,149
ISR.SERIAL2,149
isr_setinterruptvector] 51
ISR.TIMERO, 149
ISR.TIMER1, 150
ISR.TIMER2, 150
ISR.TIMERS3, 150
isr_version,152

ISR WATCHDOG, 150

ISR WRITEPROTECT 150
TINI400_ISR.VERSION, 151

TINI400_ISR.VERSION

tini400.isr.h, 151

tini_i2c.h,152

i2c_bit, 155

i2c_delay,155

I2C_DELAY _LOOP.COUNT,
154

I2C_ENABLE_SCL WAIT _-
FORSLOW_SLAVES,
154

I2C_MAXIMUM _SCL_-
WAITCOUNT, 154

i2c_readbit,155

i2c_readblock 155

i2c_readbyte 155

273

12C_SCL,154
I2C_SDA, 154
i2c_select, 155
i2c_start,156
i2c_stop,156
i2c_version,156
i2c_writeblock, 156
i2c_writebyte, 156
i2c_writereadblock 156
TINI_I2C_VERSION, 154
TINI_I2C_VERSION
tini_i2c.h,154
TMP_MAX
stdio.h,120
tmpfile
stdio.h,138
tmpnam
stdio.h,138
type
file_structure 3

udpavailable
rom40Qsock.h,77
ungetchar
stdio.h,139
USEKEIL _MONITOR
rom40Qinit.h, 23
useriopollgetlistsize
rom40Quseriopoll.h99
useriopollgetpollroutine
rom40Quseriopoll.h 99
useriopollinit
rom40Quseriopoll.h99
useriopollisinstalled
rom40Quseriopoll.h,100
useriopollregisterpollroutine
rom40Quseriopoll.h,100
useriopollremovepollroutine
rom40Quseriopoll.h,100
useriopollversion
rom40Quseriopoll.h,101
util_crc16
rom40Qutil.h, 109
util_getpseudorandom
rom40Qutil.h, 109
util_infosendchar

rom40Qutil.h, 109
util _installhook
rom400Qutil.h, 109
util_memclear
rom400Qutil.h, 110
util_memcompare
rom400Qutil.h, 110
util_memcopy
rom400Qutil.h, 111
util_setrandomseed
rom400Qutil.h, 111
util_version
rom400Qutil.h, 111

vprintf
stdio.h,139

vsprintf
stdio.h,139

WakeupTime
TCB,7

xnetstackinstall

rom40Qxnetstack.h112

xnetstackversion

rom40Qxnetstack.h112

274

	DS80C400CLibraries Data Structure Index
	DS80C400CLibraries File Index
	DS80C400CLibraries Data Structure Documentation
	DS80C400CLibraries File Documentation

