
The TINI™
Specification
and Developer’s
Guide

Don Loomis

ADDISON-WESLEY
Boston • San Francisco • New York • Toronto • Montreal

London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Copyright © 2001 by Dallas Semiconductor Corporation

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book and
Addison-Wesley was aware of a trademark claim, the designations have been printed
in initial caps or all caps.

The author and publisher have taken care in the preparation of this document, but
make no expressed or implied warranty of any kind and assume no responsibility for
errors or omissions. No liability is assumed for incidental or consequential damages
in connection with or arising out of the use of the information or programs contained
herein.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher. Printed in
the United States of America. Published simultaneously in Canada.

The publisher offers discounts on this book when ordered in quantity for special sales.
For more information, please contact:

Pearson Education Corporate Sales Division
One Lake Street
Upper Saddle River, NJ 07458
(800) 382-3419
corpsales@pearsontechgroup.com

Visit us on the Web at www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data
Loomis, Don.

The TINI™ specification and developer’s guide / Don Loomis.
p. cm.

Includes index.
ISBN 0-201-72218-6
1. Telecommunication systems--Design and construction--Data

processing. 2. TINI. I. Title

TK5101 .L66 2001
621.382--dc.21

2001022528

ISBN 0-201-72218-6

Text printed on recycled paper
123456789—CRS—05 04 03 02 01
First printing, June 2001

To my family:
Judy, Jamie, and Nathan

v

Contents

Foreword xi

Preface xiii

CHAPTER 1 The TINI Platform . 1

1.1 Description . 1
1.2 Applications. 2
1.3 TINI Hardware. 3

1.3.1 The Memory Map . 6
1.3.2 Integrated I/O. 7
1.3.3 A Hardware Reference Design . 8

1.4 TINI Runtime Environment . 10
1.4.1 API Overview. 10
1.4.2 The Java Virtual Machine . 13
1.4.3 Native Methods . 14
1.4.4 TINI OS. 15
1.4.5 Bootstrapping the System . 18
1.4.6 Step 1: Execute the Bootstrap Loader . 19
1.4.7 Step 2: Initialize the Runtime Environment. 20
1.4.8 Step 3: Start the Primary Java Application 21

1.5 The Future. 22

vi Contents

CHAPTER 2 Getting Started . 23

2.1 Hardware Requirements . 23
2.1.1 The TINI Board Model 390. 24
2.1.2 The E10 Socket . 25

2.2 Development Platform Requirements. 26
2.2.1 A Java Development Environment. 27
2.2.2 The Java Communications API . 27
2.2.3 The TINI SDK. 27

2.3 Loading the TINI Runtime Environment . 29
2.4 Slush: A Quick Primer. 31

2.4.1 Slush Defined. 31
2.4.2 Starting a New Session . 32
2.4.3 Exploring the File System . 33
2.4.4 Getting Help. 35

2.5 Configuring the Network. 36
2.6 Some Simple Examples. 39

2.6.1 HelloWorld. 39
2.6.2 Blinky, Your First TINI I/O . 42
2.6.3 HelloWeb, a Trivial Web Server . 45

2.7 Debugging Tips. 48

CHAPTER 3 Serial Communication . 51

3.1 Introduction and Terminology. 51
3.2 The Java Communications API. 56

3.2.1 Acquiring and Configuring Serial Ports. 56
3.2.2 Flow Control . 59
3.2.3 Sending and Receiving Serial Data . 61
3.2.4 Serial Port Events. 63

3.3 TINI’s Serial Ports. 67
3.4 A Small Terminal Example. 69
3.5 A Serial ⇔ Ethernet Converter. 74

CHAPTER 4 The 1-Wire Net . 81

4.1 1-Wire Networking Fundamentals. 82
4.1.1 1-Wire Signalling. 82
4.1.2 1-Wire Transactions. 84
4.1.3 Addressing 1-Wire Chips. 86
4.1.4 1-Wire Chips and iButtons. 88

Contents vii

4.2 Adapters. 88
4.2.1 Finding and Creating Adapters . 89
4.2.2 The Internal Adapter . 90
4.2.3 The External Adapter. 91
4.2.4 Determining an Adapter’s Capabilities . 91
4.2.5 Searching for 1-Wire Devices . 92
4.2.6 Adapter Ownership . 95

4.3 Direct 1-Wire Communication . 96
4.4 Containers . 102

4.4.1 The Class OneWireContainer . 102
4.4.2 Creating Container Instances. 102
4.4.3 Example: 1-Wire Humidity Sensor. 104

4.5 Ensuring Data Integrity Using CRCs . 108

CHAPTER 5 TCP/IP Networking. 111

5.1 TINI Networking Environment and API Overview. 112
5.1.1 The Network Interfaces . 113
5.1.2 Ethernet . 114
5.1.3 PPP. 115
5.1.4 Loopback. 116

5.2 Setting Network Parameters . 117
5.2.1 Committing Static Network Parameters 119
5.2.2 Dynamic IP Configuration Using DHCP. 121

5.3 DNS. 124
5.4 HTTP. 127
5.5 ICMP. 130

CHAPTER 6 Dial-Up Networking Using PPP . 139

6.1 The PPP API Classes. 139
6.2 PPP Events. 142

6.2.1 STARTING Event . 143
6.2.2 AUTHENTICATION_REQUESTED Event. 143
6.2.3 UP Event . 144
6.2.4 STOPPED Event . 144
6.2.5 CLOSED Event . 145

viii Contents

CHAPTER 7 Building a Remote Data Logger . 147

7.1 Description . 147
7.2 The DataLogger Class. 149
7.3 Collecting the Data . 152
7.4 A Sample Client . 158
7.5 Implementing the PPP Daemon . 160
7.6 Managing the PPP Data Link . 166

7.6.1 The Serial Link . 167
7.6.2 Controlling the Modem . 169

7.7 Adding the PPP Daemon to DataLogger. 175
7.8 Testing the Entire Application. 176

CHAPTER 8 Parallel I/O . 181

8.1 TINI’s Parallel Bus . 182
8.2 The DataPort Class . 185

8.2.1 Data Transfer . 186
8.2.2 Memory Access Modes . 187
8.2.3 Controlling Bus Timing. 188

8.3 Parallel I/O Examples . 189
8.3.1 Additional TTL I/O . 189
8.3.2 Reading and Writing External Memory. 196

CHAPTER 9 Just the Bits. 199

9.1 TINI’s Ports and Port Pins. 199
9.2 The BitPort Class. 201
9.3 Synthetic Port Pins . 202

9.3.1 Example: Creating Additional Outputs . 204
9.4 The BytePort Class. 206
9.5 Performance of BitPort and BytePort . 207

CHAPTER 10 Accessing System Resources . 209

10.1 The Real-Time Clock . 209
10.1.1 Setting the Current Date and Time . 212
10.1.2 Using a Network Time Server. 212

Contents ix

10.2 The Watchdog . 215
10.2.1 Motivation for Using the Watchdog. 215
10.2.2 A Tail of Two Dogs . 216
10.2.3 Using the Watchdog Timer . 216
10.2.4 Example Use of the Watchdog Timer . 217
10.2.5 Beware of Dog! . 219

10.3 The External Interrupt. 219
10.3.1 Polling versus Interrupts . 219
10.3.2 Properties of the External Interrupt. 220
10.3.3 Triggering the External Interrupt. 220
10.3.4 Receiving Notification of Interrupts . 221
10.3.5 Sharing a Common Interrupt Source. 224

CHAPTER 11 Application Programming Tips . 225

11.1 Performance Profiling. 225
11.2 Efficient I/O. 227

11.2.1 Block Data Transfer versus Byte-Banging 227
11.2.2 Buffered Streams. 232

11.3 Memory Usage . 233
11.3.1 Object Creation . 233
11.3.2 Strings . 233
11.3.3 Profiling Memory Usage . 234
11.3.4 Garbage Collection . 237

11.4 Other Optimization Tips . 237
11.4.1 Relative Cost of Common Operations. 238
11.4.2 Loop Optimizations. 239
11.4.3 Arithmetic Operations . 244
11.4.4 The ArrayUtils Class . 246

11.5 An Optimization Strategy . 248
11.6 Application Hardening . 248

11.6.1 TINI’s Memory Technology and Data Persistence 249
11.6.2 Application Startup . 251
11.6.3 Hardening Summary . 253

APPENDIX Almanac . 255

Index. 341

xi

Foreword

“Prediction is very difficult, especially about the future.”
 —Niels Bohr

Despite this authoritative caveat, here is a threefold prediction for this decade:

1. Demand for embedded software will grow significantly.
2. Java will be the language of choice for writing much of this new software.
3. Engines like TINI will host much of this Java code.

The ever-broadening reach of the Internet will motivate much of the increas-
ing demand for embedded systems. Existing devices that have hitherto been
driven by isolated controllers will become part of the network. New devices and
new applications will exploit the opportunities of ubiquitous communications.
These new (or newly connected) systems will appear in factories, offices, and
homes. Some may radically affect the way we live; many will squeeze higher pro-
ductivity from existing activities; some will be short-lived novelties. The obvious
industrial applications include networked process control, networked power man-
agement, networked security, and so on. But the full extent of the network’s reach
isn’t clear. Will networked process control allow a consumer to interact with a
manufacturing system that’s assembling a custom product? Will network power
management enable your dishwasher to negotiate with a power utility to decide

xii Foreword

when to wash the dishes? Will networked security include regulated webcams in
day-care facilities?

Can we afford to write the software for these new systems without Java? Tra-
ditionally, embedded software has been written in assembler, C, and some C++.
Although these languages were undoubtedly the right choice to date, Moore’s
Law compels us to reevaluate that decision. As the relative cost of the program-
ming rises against that of the hardware being programmed, we must move to lan-
guages that make better use of programmers, at the expense of cycles executed by
our microprocessors. Java is the single best candidate to meet this need today.

Java is a higher-level language than C and C++. For example, Java’s model of
memory provides garbage-collected objects, whereas C’s has little more than raw
bytes. Java’s higher-level abstractions, combined with its libraries, offer the pro-
grammer a tool that’s portable, robust and network-ready. Although some hard
real-time requirements may exceed Java’s current reach, the language amply
meets the needs of a wide range of embedded systems.

Java’s suitability for embedded programming is no surprise. Java’s roots are
in embedded systems. James Gosling and his team at Sun created OAK—Java’s
precursor—almost a decade ago to meet their needs for coding a variety of net-
worked consumer devices. Java blossomed on the desktop and in servers, but it
still meets its original design constraints for portable, network-enabled, embedded
software.

The TINI’s microcontroller realizes the software benefits of Java in a cheap-
hardware package that can be easily interfaced into a wide variety of systems. Its
designers have selected and constructed an impressive balance of base compo-
nents: hardware, firmware, and application libraries. The resulting platform is
remarkable for its ease of use and flexibility. It is well positioned to play a signifi-
cant role in the wave of network embedded systems that I anticipate.

Although I believe this formal rationale, it’s only half the story. Just as impor-
tant, the TINI is fun. The technology surprises and delights; it challenges our tra-
ditional thinking about how and where to apply computers. You’ll be amazed
when you first see a Web server running on a computer that’s little bigger than a
stick of chewing gum. Join the fun, and discover what you can build!

Tom Cargill
Boulder, Colorado

http://www.profcon.com/cargill

xiii

Preface

The earliest implementation of TINI actually dates back to late 1998 when a hand-
ful of engineers at Dallas Semiconductor, working with engineers at Sun Labs,
demonstrated a very small, Java programmable device that was capable of con-
trolling household electrical appliances. The prototype modules were crammed
into light switch housings, coffee pots, HVAC systems, and fans. The appliances
communicated with one another and with a central server, using a crude form of
power line networking. The main idea was to provide not only local control of the
appliance but also network connectivity to allow for remote control and monitor-
ing. This increased the flexibility as well as the ease of use of the appliance. While
none of the engineering work of this ancient version of the technology remains,
the concept of a Java programmable runtime environment used to create embed-
ded network applications is still the cornerstone of the TINI platform.

Over the past two years, the power line has given way to Ethernet, and the net-
work programming interface has transitioned from an application specific inter-
face to a standards-based TCP/IP protocol stack. The device I/O capabilities have
also been greatly extended. Today, TINI is a broad platform that includes both
hardware and software used to create intelligent network devices. These are often
devices that require a small footprint, have low power consumption, and are cost
sensitive. A few examples include industrial automation equipment, access con-
trol, vending machines, remote meters, and environmental sensors.

The TINI development project is a first for Dallas Semiconductor in that its
design has been open to public scrutiny. The networking portion of the runtime

xiv Preface

environment along with the core Java APIs are of course well defined and well
understood by a large development community. However, several new APIs have
been created to expose the rich I/O capabilities of the technology. Major contribu-
tions to the definition of these new APIs have been made by the TINI SIG (special
interest group). The result of this cooperative effort is a feature-rich platform. This
work is an attempt at presenting a reasonably complete specification of the plat-
form with plenty of examples to help clarify important topics. The book focuses
on the following three areas.

• Platform definition
• Local device I/O APIs
• TCP/IP networking capabilities

Several of the chapters describe the APIs that expose the various forms of
device I/O. Some of these may not be required by developers with specific appli-
cations in mind. However, the reader is encouraged to read at least the first and
last chapters in addition to the chapters that expose capabilities relevant to his or
her particular application. The first chapter provides a thorough definition of the
platform, while the final chapter focuses on performance improvements and appli-
cation hardening—two important topics for anyone writing serious applications
targeted for the TINI runtime environment. Chapter 7, Building a Remote Data
Logger, is also quite useful as it details a large example that brings together sev-
eral of the concepts presented to that point in the book, including serial communi-
cation, 1-Wire networking, and TCP/IP networking over both Ethernet and serial
interfaces.

The best way to become familiar with this technology is, of course, to use it.
For this reason, every attempt has been made to create examples that are easily
run on the most commonly available hardware. Some of the larger examples
require additional hardware, but any additional hardware should be relatively
inexpensive and easy to attain.

A strong familiarity with the Java programming language and some experi-
ence with network programming concepts is assumed. While a comfort level
with hardware-related topics is helpful, it is not a requirement for understanding
the bulk of the contents of this book. It is my hope that “pure programmers” can
start with the code examples and gradually become more comfortable with the
hardware-oriented concepts presented here.

Preface xv

ACKNOWLEDGMENTS

I would like to thank the many people who have contributed to the TINI project
and this book. First and foremost I would like to thank the talented engineers who
contributed so much to this long and intense development effort for their hard
work and dedication: Kris Ardis, Bryan Armstrong, Tom Chenot, Chris Fox,
Stephen Hess, Nicolas Kral, Yolanda Lei, Jesse Marroquin, Caroline McLean, Jeff
Owens, David Smiczek, Lorne Smith, Stephen Umfleet, and Clayton Ware. I
would also like to thank my management, Steve Curry and Michael Bolan, for
their support and encouragement while I was writing this book. I am grateful for
the volunteer efforts of many on the TINI SIG, who not only provide fantastic
support to new developers but also contribute to the quality and definition of the
platform.

Thorough and insightful technical reviews of early drafts were provided by
Tom Cargill, Steve Curry, Peter Haggar, Judy Loomis, Robert Muchsel, and John
Wilson. I appreciate all of the excellent feedback.

I am also grateful to Mike Hendrickson and Heather Olszyk at Addison-
Wesley, who patiently guided me through the writing process. I would also like
to thank the copy editor, Debbie Prato, who did a terrific job.

Finally, many thanks to the folks at Sun Microsystems who allowed me to use
their excellent MIF Doclet tool to create the Almanac. The legend page of the Alma-
nac is also the result of blatant thievery from the Java Real-Time specification.

1

CHAPTER 1 The TINI Platform

1.1 DESCRIPTION

Tiny InterNet Interface (TINI) is a platform developed by Dallas Semiconductor
to provide system designers and software developers with a simple, flexible, and
cost-effective means to design a wide variety of hardware devices that can connect
directly to corporate and home networks. The platform is a combination of a small
but powerful chip-set and a Java programmable runtime environment. The chip-
set provides processing, control, device-level communication and networking
capabilities. The features of the underlying hardware are exposed to the software
developer through a set of Java application programming interfaces.

The primary goal of the platform is to provide a voice on the network to
everything from small sensors and actuators to factory automation equipment and
legacy hardware. The combination of broad-based I/O capability, a TCP/IP net-
work protocol stack, and a Java programming environment empowers program-
mers to quickly create applications that provide not only local control of but also
global access to TINI-based devices. TINI’s networking capability extends the
connectivity of any attached device by allowing interaction with remote systems
and users through standard network applications such as Web browsers.

This chapter examines a few applications of the technology, followed by a
high-level description of both the hardware and software components of the

2 Chapter 1 The TINI Platform

platform. The chapters that follow will focus on TINI’s capabilities and features
in much more detail.

1.2 APPLICATIONS

TINI is designed to meet the functional requirements for commercial and indus-
trial embedded network applications. However, because of its low-cost hardware
and the availability of free software development tools, it is beginning to find a
home in the educational and hobbyist arenas as well.

TINI can be used for traditional stand-alone embedded tasks such as monitor-
ing and controlling a local device or system, but the majority of applications uti-
lize TINI’s networking capabilities. A few applications of the technology include
the following.

• Industrial controls. TINI’s integrated Controller Area Network (CAN)
support is instrumental in implementing factory automation equipment,
networked switches, and actuators.

• Web-based equipment monitoring and control. It can be used for commu-
nication with equipment to provide remote diagnostics and data collection
for purposes such as monitoring device utilization.

• Protocol Conversion. TINI-based systems can be used to connect legacy
devices to Ethernet networks. Depending on the I/O capabilities of the leg-
acy system, this may be a job that can be done with a PC or workstation as
well. However, TINI can do the job at a fraction of the cost and size.

• Environmental monitors.1 Using TINI’s built-in support for 1-Wire net-
working, an application can query sensors and report the results to remote
hosts.

Figure 1.1 shows a use model in which TINI is employed as a protocol con-
verter (or link) between a legacy embedded device and an Ethernet network. The
legacy device may communicate with the outside world using an RS232 serial
port, Controller Area Network (CAN), or perhaps some type of parallel interface.
The Java application running on TINI performs the task of communicating with
the attached device in its native language (using a device-specific communication
protocol) and presents the results to remote systems reachable via a TCP/IP net-
work. The link provided by TINI is bidirectional, allowing a remote system to
control as well as monitor the device.

Figure 1.1 focuses on an embedded system that controls and provides network
connectivity to a single device. However, TINI can also serve to interconnect var-

1. Chapter 7 presents a remote climate monitor application using TINI and a 1-Wire
humidity sensor.

TINI Hardware 3

ious types of networks by bridging the gap between smaller, localized networks of
inexpensive and lightweight devices and a “big world” TCP/IP network such as
the Internet.

In general, TINI applications interface to other equipment and networks as
opposed to humans. Due to the embedded control and I/O-centric nature of most
embedded network applications, there is no built-in hardware or API support for a
human interface. TINI-based systems often provide a remote display by imple-
menting a network server, such as an HTTP server, allowing the user to interact
with the system using a network client such as a Web browser. Local display and
data entry can be obtained by interfacing to a PDA over a wireless link such as
infrared (IR) or a hard-wired serial link. TINI systems requiring dedicated human
interfacing capability can be implemented using liquid crystal displays (LCDs)
and keypads.

1.3 TINI HARDWARE

This section presents a broad overview of TINI hardware and examines the major
components as a chip-set. This includes primarily the large-scale integration (LSI)
chips. Other small chips and miscellaneous discreet components, such as resis-
tors, capacitors, and crystals, are of course required by any design. While every
attempt has been made to keep the hardware description at a high level, parts of
this section assume a comfort level with hardware-oriented concepts. However,
complete comprehension of this section is not required for programmers wanting
only to create Java applications for “off the shelf” TINI hardware. We will return
to our regularly scheduled programming topics in the next section.

Embedded
Device TINI TCP/IP

Network

Serial, 1-Wire, CAN, . . .

Ethernet

Figure 1.1 Protocol conversion

4 Chapter 1 The TINI Platform

At the very minimum the TINI hardware consists of the following LSI chips.

• Microcontroller
• Flash ROM
• Static RAM

A block diagram of a minimal TINI hardware implementation is shown in
Figure 1.2. The microcontroller is the heart of any TINI hardware design and
directly executes the native code portion of the runtime environment. The micro-
controller used in current TINI hardware implementations is the DS80C390. It is
a small microcontroller with built-in support for several distinct forms of I/O,
including serial and CAN. It also provides several general purpose port pins that
can be used to perform simple control tasks such as driving relays and status
LEDs.

The flash memory stores TINI’s runtime environment and satisfies the follow-
ing two important requirements.

1. The memory contents are maintained even in the absence of system
power.

2. The memory is reprogrammable.

EEPROM2 also meets both of the preceding criteria, but rapidly growing
demand for flash memory has driven equally rapid advancement of flash technol-
ogy, yielding faster and higher density memories.

The static RAM contains the system data area as well as the garbage collected
heap from which all Java objects are allocated. It also stores all file system data.
Whether the file system data persists in the absence of power depends on whether
the static RAM is battery-backed (nonvolatized). This is discussed in more detail
later in this section.

Peripheral devices, other than memory, can also be interfaced directly to the
microcontroller’s address and data buses (labeled “Parallel I/O expansion” in
Figure 1.2). Two such peripherals that are commonly used in TINI-based
systems are an Ethernet controller and a real-time clock. This configuration,
shown in Figure 1.3, extends the reach of embedded devices to Ethernet
networks. It also provides an accurate time reference for time-stamping
purposes. Without the clock, commonly used Java methods such as
java.lang.System.currentTimeMillis and java.util.Date methods that use
currentTimeMillis return constant, and therefore useless, values. Section 1.3.1
discusses where peripheral devices such as the Ethernet controller and clock are
included into the system’s memory map.

2. EEPROM stands for electrically erasable programmable read-only memory.

TINI Hardware 5

Another addition that is shown in Figure 1.3 is the battery-back circuity. The
battery is a very small, single-cell lithium battery. Both the SRAM and clock used
in TINI designs have very low stand-by power requirements, which means that an
appropriately chosen lithium cell will keep the clock running and the SRAM data
persistent for over 10 years.

Microcontroller
Integrated I/O

Flash
ROM

SRAM

Address/Data

Serial, CAN, 1-Wire, . . .

Parallel I/O Expansion Bus

Figure 1.2 Minimal TINI Block Diagram

Microcontroller
Integrated I/O

Flash
ROM

Ethernet
Controller

Clock

Address/Data

Serial, CAN, 1-Wire, . . .

Parallel I/O Expansion Bus

NV*
+

Battery-Back
Circuitry

SRAM

*Nonvolatizer

Figure 1.3 A more full-featured TINI hardware implementation

6 Chapter 1 The TINI Platform

This circuitry performs two functions. First, it keeps the clock running in the
absence of main power (Vcc), ensuring that an accurate time can always be read
from the clock. The lithium cell alone performs this task. Also, the lithium cell, in
conjunction with a small chip known as an SRAM nonvolatizer, maintains the
contents of the static RAM in the absence of main power. The primary reason to
nonvolatize the SRAM is to allow file system data to persist even when power is
removed from the system.

1.3.1 The Memory Map

A memory map specifies where memory and other peripheral devices are decoded
in the microcontroller’s address space. The memory map used by TINI, shown in
Figure 1.4, consists of the following three distinct segments.

• Code
• Data
• Peripheral

The segment sizes shown in the figure are maximums and are all multiples of
1 megabyte. If, for example, only 512 kilobytes of flash ROM exists in the code
segment, the starting address of the data segment remains 0×100000. In other
words, the starting addresses of the different segments are always as shown in Fig-
ure 1.4. But the ending address may be less than those indicated, depending on
how much of the space is actually occupied by the memory chips. The minimum
memory requirement for the code and data segments is 512 kilobytes each.

The code and data segments are occupied by memory chips, and the periph-
eral segment is occupied by other types of hardware components such as the
Ethernet controller and real-time clock shown in Figure 1.3. Other peripheral
devices that support a parallel bus interface compatible with the microcontroller’s
bus can also be mapped into the peripheral segment. A word of caution: Adding
hardware in this fashion also adds capacitive loading to either or both the data and
address busses (depending on the device). The system designer must be aware of
this loading to ensure reliable system operation.

The Ethernet controller and real-time clock occupy these address ranges:

• Ethernet controller - [0x300000 - 0x0x307FFF]
• Real-Time clock - 0x310000

System designers must avoid these ranges for interfacing any device other
than an Ethernet controller or real-time clock. The rest of this address range is
available for adding other peripheral devices.

TINI Hardware 7

There is also a separate 4-megabyte peripheral area, known as peripheral chip
enable (PCE) space, that can be used to interface large (up to four 1-megabyte)
external memory chips or other hardware devices directly to the microcontroller’s
address and data busses. However most hardware is mapped in the peripheral seg-
ment, shown in Figure 1.4, because it can be accessed more efficiently by the con-
troller. The microcontroller uses four pins to control the PCE space. If no devices
are mapped into this space, the microcontroller pins can be dedicated for use as
general purpose port pins. The system designer is free to use the peripheral area
either for interfacing hardware directly to the controller’s address and data busses
or general purpose TTL I/O, but not both. The topics of interfacing devices to the
parallel expansion bus are discussed in Chapter 8, and accessing microcontroller
port pins is covered in Chapter 9.

1.3.2 Integrated I/O

The peripheral devices described in the previous section are all interfaced to the
microcontroller’s address and data busses. However, a broad range of devices that
are interesting to network-enable with TINI don’t have support to interface to a
full parallel bus. Often these devices have some form of serial interface. This usu-
ally results in a lower communication bandwidth. But a serial interface also
reduces the required pin count, simplifies communication, and often lowers cost
when compared with devices that have parallel bus-type interfaces. Serial inter-
rupts also have the advantage of adding no load to either of the microcontroller’s

Runtime environment
(TINI OS + Java API)

Garbage collected heap
+

File system

(Ethernet, Clock, . . .)

System memory

0x000000

0x3FFFFF

0x0FFFFF
0x100000

0x2FFFFF
0x300000

Code segment — 1 Megabyte

Data segment — 2 Megabytes

Peripheral segment — 1 Megabyte

Figure 1.4 Memory map

8 Chapter 1 The TINI Platform

busses. Support for the following low-level serial communication protocols has
been integrated onto the microcontroller.

• Serial communication. Synchronous serial protocols, using a 2-wire inter-
face, and asynchronous serial communication, based on the RS232-C stan-
dard, are supported. TINI’s controller provides two integrated UART
(Universal Asynchronous Receiver Transmitter) circuits to facilitate serial
communication. Asynchronous serial ports are extremely common in legacy
devices. Asynchronous serial communication is the subject of Chapter 3.

• Controller Area Network (CAN). Originally developed at Bosch-Siemens,
CAN is now described in two ISO standards.3 It provides a reliable serial
communications bus that is commonly used in automotive and industrial
control applications. TINI’s microcontroller provides two integrated CAN
controllers. The application programming interface for communicating
with CAN devices is shown in the appendix.

• 1-Wire net. Developed by Dallas Semiconductor, the 1-Wire net is a net-
work of small sensors, actuators, and memory elements that all share the
same conductor for both communication and power. Programming for the
1-Wire net is the subject of Chapter 4.

• TTL I/O. These general purpose, bidirectional microcontroller port pins
may be used for various control tasks and are not necessarily tied to any
type of serial communication device. Both bit and byte-wide TTL I/O are
covered in Chapter 9.

Utilizing the microcontroller’s integrated I/O capabilities instead of the memory-
mapped I/O, reduces both total device count and the cost of communicating with an
external device because it burdens the CPU less than communicating with devices
interfaced to the microcontroller’s busses. For example, the microcontroller’s CPU
core runs at full speed, executing the runtime environment, while the UART is simul-
taneously sending and receiving serial characters. Communicating with bus inter-
faced peripherals, on the other hand, requires the CPU to stop what it’s doing and
execute instructions to read data from or write data to the device.

1.3.3 A Hardware Reference Design

Not requiring a single hardware design or form-factor provides system designers
with the flexibility needed to design the TINI chip-set into custom products. But
without a concrete and commercially available reference implementation of TINI
hardware, each new design would have to begin with the rather painful process of

3. ISO 11898 is for high-speed applications, and ISO 11519-2 is for low-speed applica-
tions.

TINI Hardware 9

designing and debugging new hardware. The TINI Board Model 390 (TBM390)
has been developed to solve this problem. It allows both hardware and software
designers to begin prototyping and development work without a large up-front
investment of either money or time.

The TBM390 serves the following purposes.

• Reference implementation. All of the details of its design are public. Hard-
ware developers are free to use information gleaned from the TBM390
when designing the chip-set into their own TINI-based systems.

• Development tool. It provides easy access to much of the platform’s I/O
capability, allowing designers to quickly interface custom external hard-
ware and develop their applications. It has also been used internally by the
TINI engineering team to develop and test the runtime environment.

• System component. The TBM390 is a fully specified4 design. It has been
heavily tested and functionally characterized over voltage and temperature
and is therefore well suited for use as a core component for deployment in
commercial and industrial embedded network applications.

The TBM390 is a compact (31.8 mm × 102.9 mm) 72-pin SIMM board. It is
an Ethernet-ready hardware implementation and supports all of the functionality
shown in Figure 1.3. It includes these important features.

• 512 kilobytes of flash memory for critical system code
• 512 kilobytes nonvolatile (that is, persistent) SRAM, expandable to 1

megabyte
• 10Base-T Ethernet controller
• Real-time clock
• Dual 1-Wire net interface
• Dual CAN controllers
• Dual serial port (one RS-232 level and one +5V level)
• 2-wire synchronous serial port
• Exposes the microcontroller’s address and data busses for parallel I/O

expansion
• Requires only a single +5V power supply

We’ll meet the TBM390 again in the next chapter when we begin to work in a
more hands-on fashion with TINI technology. A complete schematic and pin
description is included in the CD provided with this book.

4. The specification for the TINI board model 390 can be found online at http://
www.ibutton.com/TINI/dstini1.pdf and is also included in the accompanying CD.

10 Chapter 1 The TINI Platform

1.4 TINI RUNTIME ENVIRONMENT

Providing hardware essential for developing embedded network devices is only
half of the job. A large amount of software is also required to free application
developers from having to worry about the details of creating layers of infrastruc-
ture to provide support for executing multiple tasks, network protocol stacks, and
an application programming interface. A well-defined runtime environment that
provides all of these features allows the developer to focus primarily on the details
of the application. For this reason a runtime environment was developed from the
beginning as an integral part of the overall platform.

The software that comprises TINI’s runtime environment can be divided into
two categories: native code executed directly by the microcontroller and an API
interpreted as bytecodes by the Java Virtual Machine. Application code is written
in Java and utilizes the API to exploit the capabilities of the native runtime and the
underlying hardware resources. It is also possible to write native libraries that can
be loaded from within an application to meet strict real-time requirements. A
graphical representation of the runtime environment is shown in Figure 1.5.

Java programs running on TINI are most definitely applications and not
applets. They are stand-alone programs that begin execution from a “main”
method with the following signature.

public static void main(String[] args)

Also, unlike applets, they have no “sandbox” restrictions. On TINI, Java
applications have full privileges and access to all system resources, even more so
than on other platforms that support a Java runtime environment. This is particu-
larly important for embedded applications because they are closely coupled with
physical devices. Also, unlike other Java platforms, on TINI there is usually no
system administrator to perform configuration and maintenance. This means that
the application is responsible for configuring as well as controlling the entire sys-
tem. For these reasons an application that controls an embedded system must have
complete access to even low-level functionality provided by the OS.

1.4.1 API Overview

The API portion of the runtime environment combines classes from several pack-
ages defined in Sun’s Java Developer’s Kit (JDK) version 1.1.8 with TINI specific
classes that expose system capabilities that have no analog on other larger Java
platforms. The TINI-specific classes are all defined as subpackages underneath
the root package com.dalsemi. The classes that are included in the runtime envi-
ronment are known as the built-in portion of the API. There are also other classes
defined in TINI’s API that can be included in an application during the build pro-
cess. The application build process is described in detail in the next chapter.

TINI Runtime Environment 11

The Core Java Packages. The API includes implementations for most of the
classes in the following core Java packages.

• java.lang

• java.io

• java.net

• java.util

The differences between the JDK1.1.8 API specification and TINI implemen-
tation of the classes in these packages is described in a text file named “API
Diffs.txt.” This file is included in TINI’s SDK documentation. As the platform
evolves, it is our hope that this file will approach zero length. However, it is
unlikely that functionality that is seldom useful in small embedded applications,
such as the methods defined in java.lang.Math that perform trigonometric calcu-
lations, will be supported on TINI in the foreseeable future. Currently, the most

Java
Application

API

JVM

Java
Application

API

JVM

Native Interface Layer

Native Methods

TCP/IP
Stack

Network
Drivers

I/O
Manager

Device
Drivers

I/O Subsystem

Heap
Manager

Memory Subsystem

Garbage
Collector

File System Manager

External Hardware

Process & Thread
Schedulers

TINI OS

Figure 1.5 The TINI runtime environment

12 Chapter 1 The TINI Platform

notable omissions from the packages in the preceding list are the classes that sup-
port reflection and object serialization. Both reflection and object serialization
will be supported in a future version of the runtime environment.

The com.dalsemi Packages

• com.dalsemi.system. Classes in this package provide access to several
forms of integrated I/O including the 2-wire synchronous serial port, the
microcontroller’s data bus, and individual port pins. It also contains
classes for configuring system resources such as the clock, watchdog
timer, and external interrupt (see Chapter 10).

• com.dalsemi.tininet. This package contains a class named TININet that
provides static methods for querying and setting several system-wide net-
work parameters, such as the IP address and subnet mask. Subpackages of
com.dalsemi.tininet provide support for networking protocols such as
DHCP (Dynamic Host Configuration Protocol), ICMP (Internet Control
Message Protocol), and DNS (Domain Name System). The
com.dalsemi.tininet package and its subpackages are described in Chap-
ter 5 and Chapter 6.

• com.dalsemi.shell. Classes in this package and its subpackages imple-
ment infrastructure for command shell applications. Classes in the sub-
packages of com.dalsemi.shell implement Telnet and FTP (File Transport
Protocol) servers. These servers can also be used by applications other than
command shells to provide access to Telnet and FTP client applications.

• com.dalsemi.comm. This package contains fairly low-level classes for
accessing the CAN controllers. It also contains several classes for config-
uring and communicating with the system’s serial ports. However, these
classes are seldom used by applications. Serial port access is provided by
an implementation of Sun’s Java Communications API, which is defined
in the javax.comm package. Serial communication using the Java Commu-
nications API is presented in Chapter 3.

• com.dalsemi.onewire. This is the root of the package hierarchy for the 1-
Wire API. Unlike the packages listed above, the 1-Wire API is also
supported on Java platforms other than TINI. The package
com.dalsemi.onewire.container provides classes, known as containers,
that comprehend the behavior of specific 1-Wire chips. To avoid
consuming precious space in the flash memory, device specific container
classes are not included in the built-in API. Container classes must
therefore be included as a part of the application. The 1-Wire API is
discussed in Chapter 4.

All of the public classes, built-in or otherwise, in the com.dalsemi package
hierarchy are listed in almanac form in the appendix.

TINI Runtime Environment 13

1.4.2 The Java Virtual Machine

The memory footprint of TINI’s Java Virtual Machine (JVM) is less than 40 kilo-
bytes. Despite its small size, it supports much of the functionality provided by full
JVM implementations, including the following.

• Full support for threads
• Support for all primitive types
• Strings

However, there are also important omissions such as these.

• Dynamic class loading
• Object finalization5

Stating that the JVM doesn’t support the dynamic loading of class files may
leave the impression the methods Class.forName and Class.newInstance are not
supported. In fact, both are implemented along with several other methods defined
in class Class. Many of the classes in the API rely on this capability for several
tasks, including creating character-to-byte converters and loading 1-Wire chip
containers. However, if a thread of execution invokes forName and passes it a
String specifying a class that does not exist in either the built-in API or the cur-
rently executing application, forName will throw a ClassNotFoundException
rather than loading the specified class into the current application’s binary image.

Class loading is effectively split into two phases. The first is performed by a
convertor utility (TINIConvertor which is described in the next chapter) on a host
development machine. The convertor performs complete constant pool6 resolution
of all of the classes used by an application. Application classes may reference
methods and fields in other classes in the application or in the built-in API. The
output of this conversion process is a binary image that can be directly executed by
TINI’s JVM. Any unresolvable constant pool entry results in the convertor aborting
before generating an executable image. The second phase of the class loading pro-
cess, running the class initializer methods, takes place on TINI. When a new Java
application is launched, all of the class initializer methods are run for the classes in
the API, followed by all of the application’s class initializer methods. The net effect
of this split class loading model is that an application, by default, has loaded all of
the classes defined in the built-in API as well as application specific classes. This

5. An object’s finalize method can be explicitly invoked by a Java thread of execution
but is not automatically run before it is reclaimed by the garbage collector.

6. Every class file contains an area known as the constant pool that contains symbolic
information required by the class during runtime execution, such as references to
fields, methods, and classes.

14 Chapter 1 The TINI Platform

doesn’t increase the footprint of the application’s binary image because converted
images of the built-in API classes are stored separately in the flash memory as part
of the runtime environment.

Besides the preceding functional omissions, there are also hard limits on cer-
tain resources, such as a maximum of 16 actively executing threads. These limits
are documented in a file named “Limitations.txt” distributed with TINI’s SDK doc-
umentation. As the platform evolves, the majority of these limits will disappear.

1.4.3 Native Methods

The native layer, shown in Figure 1.5, represents the collection of native meth-
ods that support the API by exposing the infrastructure provided by TINI OS.
This includes access to the network protocol stack’s socket layer as well as non-
networking device drivers. It also includes methods for configuring and access-
ing system resources such as the watchdog timer and real-time clock.

Between the actual native method implementations and interpreted Java code
is a very thin layer known as the native method interface. The native method inter-
face is a boundary that must be crossed to switch execution contexts between code
being executed by the JVM and a native method. TINI’s native method interface
(TNI) provides a very lightweight mechanism to cross this boundary. Its analog on
most other Java platforms is the Java Native Interface (JNI). TNI is much lighter
weight, and therefore less flexible, than JNI. Because the majority of TINI appli-
cations can be written entirely in Java, the details of TINI’s native interface are
unimportant to most developers. The only thing that matters is that the context
switching overhead incurred when invoking the runtime environment’s native
methods is as low as possible.

Applications that require custom native methods can provide a native library
that can be loaded into the system at runtime using the loadLibrary7 method
defined in the class java.lang.Runtime

public static void loadLibrary(String libname)

where the libname parameter specifies the file name of the native library. The
details of writing native libraries are beyond the scope of this text. A pair of doc-
uments named “Native_Methods.txt” and “Native_API.txt” are included in the
TINI SDK distribution, and they describe the process of writing and building
native libraries.

7. The class java.lang.System also defines a method named loadLibrary that per-
forms the identical task.

TINI Runtime Environment 15

1.4.4 TINI OS

TINI’s operating system is the lowest layer of the runtime environment. It is
responsible for managing all system resources including access to the memory,
scheduling multiple processes and threads of execution, and interacting with both
internal and external hardware components. Though the operating system is a
complex body of code that performs many independent tasks, it is reasonably well
represented as being the sum of the following three major components.

• Process and thread schedulers
• Memory management subsystem
• I/O management subsystem

The following sections describe each of these components in some detail.

The Schedulers. The operating system contains both process and thread sched-
uler modules that drive application-level (as opposed to operating system) code
execution. The schedulers are launched by one of the microcontroller’s timers that
generates a high-priority interrupt every millisecond. The timer’s interrupt service
routine (ISR) either performs or initiates the following tasks.

• Update a millisecond system uptime count8

• Launch the thread schedulers every 2 milliseconds
• Run device driver modules every 4 milliseconds
• Launch the process scheduler every 8 milliseconds

Processes are scheduled in a simple round-robin fashion. Each process is
given an 8-millisecond time slice. After the time slice expires, the process is sent
to the end of an active process queue to wait its turn for another time slice. Even if
multiple processes exist in the system, a single process can utilize nearly all of the
CPU if it is the only process actively competing for execution time. Each process
has its own independently operating thread scheduler. At the native level threads
are cooperative, each thread voluntarily relinquishes control of the CPU. From a
Java application’s perspective, however, threads appear to be preemptive because
the JVM ensures that each thread relinquishes the CPU after its 2-millisecond
time slice has expired. Threads are also scheduled in a round-robin fashion.

Scheduling multiple threads is a lighter-weight operation than scheduling
multiple processes. Because process scheduling is expensive compared to thread
scheduling, most applications perform multiple independent execution tasks by

8. This count is accessible to applications using the uptimeMillis method defined in
class com.dalsemi.system.TINIOS.

16 Chapter 1 The TINI Platform

creating multiple threads to perform each task rather than spawning additional
heavyweight processes. Synchronization is also easier to implement and more
efficient with multiple threads than with multiple processes because there are no
formal interprocess communication (IPC) mechanisms such as semaphores,
shared memory or named pipes. Multiple processes can use sockets bound to the
network stack’s loopback interface or the file system using a crude mechanism
such as a lock file. The network interfaces, including the loopback interface, are
covered in Chapter 5. Both of these methods are slow compared to the built-in
Java synchronization primitives for threads provided by the JVM.

However, it is useful to be able to have multiple Java processes during the
application development phase. In this case, a command shell application runs as
a separate Java process, allowing the developer to easily load and execute an
application. Also, on TINI, the garbage collector runs as a separate process.

The Memory Management Subsystem. The memory management system per-
forms the following three tasks.

1. Allocates memory from the heap for both Java and system processes
2. Automatically collects garbage generated by Java processes
3. Manages the file system

As shown in Figure 1.4, the data segment contains all fast read/write memory
used by the runtime environment. The portion of memory from the system area to
the end of the data segment is called the heap. The heap represents the bulk of data
memory available to the system. Access to the heap is controlled by a central set
of memory allocation routines. The basic operation these routines perform is very
similar to a C malloc operation. One exception is that most allocation operations
clear all of the bytes of an allocated memory block to 0 before returning the block
to the caller. Most blocks of memory are allocated from the heap on behalf of a
new operation executed by the JVM or by file system operations.

Memory blocks are seldom freed explicitly. This is true of most of the mem-
ory consumed by system tasks and of all of the memory consumed by the JVM on
behalf of a Java application. Memory is freed by a garbage collector that is run as
a separate system process. The garbage collector (gc) process is created when the
system boots. It is the only non-Java process that is ever created. Under normal
memory use conditions, the gc process spends the majority of time in an inactive
state. When the gc—or any other process for that matter—is inactive, it consumes
no processing time. It is launched (that is, transitioned to an active state) in one of
these three ways.

• An application explicitly invokes the gc method defined in the class
java.lang.System.

TINI Runtime Environment 17

• A new operation reduces the amount of available memory below a low-
memory threshold of 64 kilobytes.

• A Java process terminates.

When the garbage collector runs, it does not clean up all of the garbage in the
entire heap. It cleans up only the garbage created by the process that launched it.
When a process terminates, all memory consumed by the process, including that
held by objects and internal JVM structures, is freed.

All files are created, deleted, read, and written by Java applications, using
classes in the java.io package such as File and FileOutputStream. All memory
occupied by the file system, including file data and directories, is allocated from
the same heap used for the storage of Java objects. When the file system manager
allocates memory, it “tags” the memory to indicate that it is a part of the file sys-
tem. This prevents memory held by file system structures from being reclaimed by
the garbage collector. Memory used by the file system manager is explicitly freed
during file deletion operations.

The fact that file system data structures are allocated from the same heap as Java
objects may seem odd at first, but there is no local hard disk associated with TINI.
Using the heap, which is contained within fast static RAM, has the advantage that
file write operations are as fast as file read operations. With most other rewritable
memory technologies, writes would be much slower than reads. The downside to
this approach is that TINI hardware implementations that do not provide the static
RAM nonvolatizing circuitry, shown in Figure 1.3, lose file system data when power
is removed from the system. File system data will remain intact even in the absence
of main system power in systems that nonvolatize the static RAM. The other obvi-
ous disadvantage is that as the file system grows, it consumes more memory from
the heap, leaving less memory available for Java object creation.

The file system can contain arbitrary data files as well as executable binary
images. All executable files are assumed to be binary images of Java applications
that can be executed directly by the JVM. Large files are fragmented into smaller
512-byte blocks and therefore occupy a noncontiguous range of memory. Before
an executable file can be interpreted by the JVM, it must be contiguous. There-
fore, the first time an executable file is run, the file system manager defragments
the file in order to generate a contiguous binary image. The memory consumed by
the original file fragments is freed. From this point forward the file can be exe-
cuted without the overhead of defragmentation. In the next chapter we’ll take a
much higher-level look at the file system.

The I/O Subsystem. The I/O subsystem is divided into two major compo-
nents: network and non-network I/O. Referring to CAN and 1-Wire as non-
networking I/O can be somewhat confusing because both are in fact networking
technologies. However for the sake of this discussion, network I/O refers

18 Chapter 1 The TINI Platform

strictly to “big world” TCP/IP (Transmission Control Protocol/Internet Protocol)
networking.

Both the TCP/IP stack and the I/O manager are implemented as independent
lightweight kernel processes.9 These processes are driven by a 4-millisecond sys-
tem timer tick. The I/O manager controls all non-networking device drivers. I/O
requests generated from application code all pass through the I/O manager to the
appropriate driver and back. Certain I/O requests go directly to attached hardware
devices. For example, there are no built-in drivers to communicate with arbitrary
devices attached to the parallel expansion bus. In this case, the Java application is
responsible for managing all of the low-level details of communicating with the
device.

The TCP/IP network protocol stack is one of the largest blocks of native code
in the runtime environment. It provides much of the same networking capability
found on larger platforms and is sufficiently rich in functionality to support a full
implementation of the java.net package. The protocol stack supports multiple
network interfaces, including Ethernet, for high-speed local area networking and
PPP (PPP—Point-to-Point Protocol) over a serial link for remote dial-up network-
ing using an analog modem. The Ethernet interface is managed by a separate
device driver that performs all communication with the Ethernet controller. PPP is
a little different in that it actually relies on a lower-level serial port driver to
deliver network messages to the physical communications port.

1.4.5 Bootstrapping the System

To understand the sequence of events that occurs when the system boots, we’ll
first need to take an expanded look at the “code area” section of the entire memory
map shown in Figure 1.4. The code area is broken into these three distinct pieces,
shown in Figure 1.6.

• Bootstrap loader
• Runtime environment
• Primary Java application

The combination of the bootstrap loader and runtime environment consumes
the first 468 kilobytes in the code area. The primary application always begins at
the fixed address of 0x70000. Because the minimum amount of flash memory
required by TINI is 512 kilobytes, a minimum of 64 kilobytes10 is reserved for
storage of the primary application. Hardware implementations that provide the

9. Kernel processes should not be confused with application-level processes.
10. The exact minimum is a little smaller (65280 bytes) because 256 bytes are reserved for

persistent storage of static network parameters. (See Section 5.2.1 for details.)

TINI Runtime Environment 19

full 1024 kilobytes of flash memory can have a primary application up to 576
kilobytes in length.

At a high level, the boot sequence can be described in very simple terms. The
bootstrap loader is the first code executed by the microcontroller. Under normal
startup conditions, the boot loader quickly transfers control to the runtime envi-
ronment. After some system initialization routines have been executed, the run-
time environment launches the primary Java application. Next we’ll take a more
detailed look into the boot sequence to better understand this important phase of
system operation.

1.4.6 Step 1: Execute the Bootstrap Loader

The bootstrap loader is a very small autonomous program (consuming about 4
kilobytes of code space) that controls the loading of the runtime environment and
primary Java application into the flash ROM. The behavior of the bootstrap loader
depends on the source of the reset that preceded the microcontroller’s execution of
the first machine instruction. There are two classes of reset with which the boot-
strap loader is concerned: a power-on reset and an external reset. As the name sug-
gests, a power-on reset (POR) occurs as soon as power is applied to the system
and reaches an acceptable minimum level. An external reset is generated by an

Bootstrap Loader

Runtime Environment

Primary Java Application

0x00000

0xFFFFF

0x6FFFF
0x70000

0x7FFFF
0x80000

448 kilobytes

576 kilobytes

Figure 1.6 Code area—expanded

20 Chapter 1 The TINI Platform

external source by driving the microcontroller’s reset pin to its active state. This
provides an out-of-band reset that can be generated without cycling power.

After a POR, the boot loader immediately transfers control to the runtime
environment’s initialization code, and the “normal” boot process continues. In the
event of an external reset, the bootstrap loader waits to receive a specific data pat-
tern11 on the microcontroller’s default serial port (also known as “serial0”). It uses
the first character of the pattern to determine the serial data rate. If the correct
sequence is received, the loader enters a small command shell and awaits further
instructions over the serial port. Once in the loader shell, the attached serial
device, typically a PC or workstation, can reload any or all of the contents of the
flash memory. The bootstrap loader will only wait for the data sequence for three
seconds before continuing normal system startup. The next chapter will discuss
the specifics of interacting with the bootstrap loader for the purposes of loading
the runtime environment.

1.4.7 Step 2: Initialize the Runtime Environment

After the bootstrap loader transfers control to the runtime environment, a set of
initialization routines is executed. The following tasks are performed during the
initialization phase.

• Heap integrity check
• File system integrity check
• Device driver initialization
• Create initial processes

Both the heap and file system managers maintain static system buffers that are
used to back out of any incomplete operations. This is intended to prevent either
the loss or corruption of data due to an unexpected power interruption. During the
initialization phase both the heap and file system are checked for any inconsisten-
cies. Any incomplete transactions are “rolled back.” If for any reason the heap is
structurally damaged, it is reset to allow the system to boot in a consistent state.
The integrity checks are skipped for systems that do not battery back the memory
(SRAM) that contains the heap. In this case the heap is unconditionally reset
when the system boots.

If the heap check passes, the sweeper (the second phase of the mark-and-sweep
garbage collector) is executed to look for any garbage left by applications that were
terminated abruptly. Abrupt termination usually occurs due to loss of power. When
an application terminates normally, all memory it was using is immediately
reclaimed. Any memory that is not part of the file system or otherwise marked as

11. The current version of the bootstrap loader waits for a carriage return (0x0d) character.

TINI Runtime Environment 21

persistent is returned to the free memory portion of the heap. Determining what
actions were taken by the heap or file system manager during the boot process is
covered further in Section 11.6, which presents “application hardening” tips.

After the integrity checks, the I/O manager runs the initialization routines for
the serial port and Ethernet drivers as well as other operating system modules.
Drivers for other I/O resources such as CAN and 1-Wire are initialized as needed
by the system.

In the last phase of initialization these two processes are created.

• The garbage collector (gc)
• The primary Java application

The gc process is created first and is alive as long as the system is running.
However, it spends most of its time in a suspended state, consuming virtually
none of the CPU’s resources. When it is first created, it has no work to do and
therefore immediately suspends itself. It remains in a suspended state until the
memory manager wakes it up because of either a low memory condition or a gar-
bage collection that has been requested by a Java application. Finally, a process is
created to execute the primary Java application. After both processes have been
created, the runtime environment’s initialization phase is complete and the task
scheduler begins executing the primary application.

1.4.8 Step 3: Start the Primary Java Application

The primary Java application is in a sense analogous to the primordial thread of
any Java application. The primordial thread is automatically created by the sys-
tem, and all other threads are created as a direct result of actions taken by the
application. The primary application is always the first Java process launched by
the runtime environment and is, in fact, the only application launched automati-
cally by the runtime environment. Without further direction from the primary
application no other system processes, Java or native, are created by the system.

As with all Java processes, TINI’s JVM first executes the class initializer
methods in the API classes, followed by the applications class initializer methods.
After all class initialization is complete, the primordial thread is launched and
execution continues from the application’s main method. The amount of time from
the moment that power is applied to execution of the main method is around three
seconds. This can of course vary depending on the amount of code that must be
executed in the application’s class initializer methods. The bulk of the startup time
is spent executing the API class initializer methods. The exact behavior of the pri-
mary application, from this point forward, is determined by the developer based
on the requirements of the overall embedded system. Typically the primary appli-
cation assumes control of the entire system and is responsible for any configura-
tion and hardware device initialization that may be required.

22 Chapter 1 The TINI Platform

The primary application can launch other Java processes, but most applica-
tions accomplish multiple execution tasks simply by creating additional threads
rather than spawning new processes. Thread swapping is much lighter weight than
process swapping, leading to smaller system delays due to context-switching
overhead. One class of application in which it makes sense to launch independent
processes is a command shell. For development purposes a command shell pro-
gram can be very useful as the primary application. The shell provides a conve-
nient way to configure the system parameters such as network settings and run
and test applications. After the application has been debugged and hardened for
production deployment, it can replace the shell as the primary Java application
and assume control of the entire embedded system. A small command shell,
known as “slush,” is provided in the TINI software developer’s kit and is
described further in the following chapter.

1.5 THE FUTURE

This chapter described the TINI platform as it exists today. Both the hardware
(chip-set) and software (runtime environment) components of the platform will
continue to evolve over time. On the software front the main focus will be the
addition of more support for the Java runtime environment with the addition of
features such as object serialization and reflection. At the operating system level,
strict priority-based schedulers will be added for both process and thread schedul-
ing to offer better support for real-time applications. The migration path for the
chip-set is very clear: faster microcontroller cores for enhanced system perfor-
mance and higher levels of integration to reduce the number of chips in the chip-
set. The next generation controller, already in development, will widen TINI’s
address space and integrate the Ethernet controller onto the same core as the
microcontroller. Other microcontroller enhancements will also provide chip level
support aimed at enhancing the performance of the JVM and the runtime environ-
ment as a whole. Regardless of how the platform evolves, care will be taken to
ensure that TINI’s minimum resource requirements remain low even as its capa-
bilities continue to grow.

23

CHAPTER 2 Getting Started

The chapters that follow contain many examples that run directly on TINI and
illustrate the use of the various application programming interfaces. These exam-
ples also demonstrate programming practices and concepts used in developing
Java code targeted for small footprint, embedded-network computing applica-
tions. This chapter provides a description of both the hardware and software envi-
ronment needed to develop and execute TINI applications written in Java,
including the examples presented in this text. Readers already familiar with TINI
technology can skip this chapter.

2.1 HARDWARE REQUIREMENTS

This section describes the core hardware configuration1 used to develop and test
the example programs listed in this book. Other configurations are certainly possi-
ble and can be assembled in piecemeal fashion by readers already in possession
of, or familiar with, TINI.

1. The hardware configuration used to develop and test the examples in this book is
available from Dallas Semiconductor (see http://www.ibutton.com/TINI/
getting_started.html for details).

24 Chapter 2 Getting Started

2.1.1 The TINI Board Model 390

The TINI board model 390 (TBM390), which was described in Section 1.3.3, is a
complete TINI hardware reference design that is embodied in a full commercial
product. The TBM390 is currently available with either 512 kilobytes or 1 mega-
byte of nonvolatile, static RAM. It is available as a 72-pin SIMM module and is
shown in Figure 2.1. All examples in this book are executed and tested using a
TBM390 with 512 kilobytes of SRAM. Unless it’s important, we’ll just say TINI,
avoiding further qualifiers, when referring to TINI hardware.

Figure 2.1 TBM390 (top and bottom views)

Hardware Requirements 25

2.1.2 The E10 Socket

For application development and prototyping, a TINI board, as shown in Figure
2.1, isn’t terribly useful without the ability to connect necessities such as serial,
Ethernet, and power. A socket board’s main function is to provide the physical
connectors to interface the TBM390 with other equipment such as an Ethernet
network, a serial device, or a 1-Wire network.

The E10 socket board is aimed at aiding the application development process.
It provides the following physical connectors.

• 72-pin SIMM connector. The SIMM connector accepts the TINI board
shown in Figure 2.1.

• 9-pin female DB9 connector. This connector provides a limited DCE (Data
Communications Equipment) type serial port that provides connection to a
standard PC DTE (Data Terminal Equipment) serial port using a straight-
through serial cable. This port is typically only used for loading the run-
time environment and bootstrap application (Section 2.3). Hardware hand-
shake lines, such as RTS (Request To Send) and CTS (Clear To Send), are
not supported by the DCE port.

• 9-pin male DB9 connector. This connector provides a DTE serial port for
straight-through connection to DCE devices such as analog modems. Most
TINI applications that control serial devices use the DTE port. In this case
TINI is the DTE device, replacing the PC or workstation. The DTE serial
port supports all hardware handshake lines except DSR (Data Set Ready)
and RI (Ring Indicate).

• RJ45. The RJ45 connector accepts a standard 10Base-T Ethernet cable
providing connectivity to an Ethernet network. Use a straight-through
cable for connecting TINI to the network, using a hub or a crossover cable
for connecting TINI directly to a PC or workstation.

• RJ11. The RJ11 connector provides access to the 1-Wire network using
standard telephone cable. 1-Wire networking is discussed in Chapter 4.

• Power jack. The E10 accepts a regulated +5V DC power supply.

The E10 also provides IC (Integrated Circuit) and discreet component footprints
to support additional I/O options such as parallel, CAN and additional serial
ports.

The “E” in E10 stands for Eurocard and suggests that the size of the socket
board itself is identical to one of the standard Eurocard sizes, allowing it to be
placed inside a Eurocard enclosure. The E10 socket board is 160mm × 120mm.
Figure 2.2 shows the E10 socket with a TINI board inserted and labels the connec-
tors just described.

26 Chapter 2 Getting Started

2.2 DEVELOPMENT PLATFORM
REQUIREMENTS

We use the term “development platform” to refer to the computer used for creat-
ing, building, and loading TINI applications. This is the machine that runs the
JDK or equivalent Java development and runtime environment and is connected to
TINI using Ethernet and/or a serial cable. Typically we’ll just refer to the host
development machine as “the host.”

Since all of the required tools have been written in Java, TINI applications can
be developed on any of the following operating systems.

• Any Win32 OS (Windows 95, 98, NT, 2000)
• Linux
• Solaris

To load TINI’s runtime environment (see Section 2.3) the host must also have
an RS232 serial port. This requirement is met by nearly every PC and workstation.

Figure 2.2 The E10 socket with TINI board

Development Platform Requirements 27

Besides one of the operating systems mentioned above and a serial port, the host
machine must also have the following software correctly installed.

• Java Development Environment
• Java Communications API
• TINI Software Development Kit

These software components are described briefly in the following sections.

2.2.1 A Java Development Environment

All examples in this text were compiled using javac from Sun’s JDK, standard
edition 1.2.2.2 Sun’s JDK is free and available for most platforms that support
Java development of any sort. However, you can certainly use your favorite Java
IDE such as JBuilder or Visual Cafe to edit and compile your TINI applications.
In fact there are OpenSource extensions to JBuilder that allow for a purely graph-
ical development environment for TINI.

2.2.2 The Java Communications API

The Java Communications API (comm API) is also available from Sun Microsys-
tems and provides the infrastructure required to communicate with RS232 serial
ports in a platform-independent fashion. This API is used by the serial communi-
cations utility, provided in the TINI SDK, that manages the process of loading the
TINI runtime environment. At the time of this writing, comm API drivers supplied
by Sun supported only the Win32 and Solaris platforms. However, the Open-
Source project RXTX provides driver support for Linux. The installation process
for the comm API for Win32 and Solaris is described in the comm API’s distribu-
tion Readme.html and is straightforward. There is extra work, such as compiling
the driver source, involved for those installing the comm API on Linux. Detailed
instructions are provided at the RXTX Web site.3

2.2.3 The TINI SDK

The latest release of the TINI software distribution can be freely downloaded from
Dallas Semiconductor’s Web site.4 At the time of this writing, the current release
of the software is 1.02. The SDK is distributed as a single compressed tar file

2. Any version of the JDK starting from 1.1.8 will suffice.
3. More information on RXTX including all source is available from http://

www.rxtx.org/.
4. The latest version of the TINI SDK can be downloaded from http://www.ibutton.com/

TINI/software/index.html.

28 Chapter 2 Getting Started

(.tgz).5 After downloading the distribution and extracting its contents, the SDK is
installed. There is no setup.exe to run that installs DLLs or modifies the registry,
and there is no need to reboot your system. These are some of the important files
included in the SDK. It is important to understand the contents of these files
because we will use them to build the examples later in this chapter.

• README.txt . The README.txt file is located in the root of the SDK hier-
archy. Start by completely reading this document. It contains detailed
instructions on how to install the TINI runtime environment, boot the TINI
system, and initialize its network settings. It also contains references to
other documents in the SDK that further describe the process of creating a
full development environment.

• tini.jar . This jar file is located in the bin directory and includes two impor-
tant utility programs: JavaKit and TINIConvertor. The JavaKit utility
manages the firmware-loading process and performs other system mainte-
nance tasks. It can also be used to run slush (see Section 2.4) user sessions
over a serial connection. The TINIConvertor utility takes the class files in
your application as input and generates a binary image suitable for execu-
tion on TINI.

• tiniclasses.jar. The tiniclasses.jar file is located in the bin directory
and contains all of the class files in TINI’s API. In this sense it is similar to
the rt.jar file distributed with Sun’s JRE and JDK 1.2 and higher. This
file must always be included as the first file in the classpath when compil-
ing applications for TINI.

• tini.db . The tini.db file is an ASCII file that contains information about
the API class files. This file is used by TINIConvertor along with the class
files in your application to produce a binary image suitable for interpreta-
tion by TINI’s JVM.

• tini.tbin . The .tbin extension is short for “TINI binary” and is the default
extension used for binary images that are targeted for execution from the
flash ROM. The tini.tbin file is located in the bin directory and contains
the binary image of TINI’s runtime environment. It is a combination of the
native operating system and the API. This file must be loaded before any
Java applications can be executed.

• slush.tbin. The slush.tbin file is located in the bin directory and contains
the binary image of the user shell known as slush. Section 2.4 provides a
description and a quick tour of slush.

5. The commonly used Win32-based winzip utility will handle gzipped tar files correctly.

Loading the TINI Runtime Environment 29

2.3 LOADING THE TINI RUNTIME
ENVIRONMENT

At this point, it is assumed that you have successfully installed your favorite Java
development environment, the Java Communications API, and the TINI SDK on
the host machine. Installing the runtime environment on your TINI board consists
of these two steps.

1. Loading tini.tbin and slush.tbin
2. Initializing the heap

Both steps require the use of the JavaKit utility. JavaKit runs on the host and
communicates with TINI’s bootstrap loader (Section 1.4.5) over an RS232 serial
port using the comm API. JavaKit is a Swing-based GUI utility, so if you’re using
a version of the JDK released prior to 1.2, make sure that you have the swing.jar

file somewhere in your classpath. Before starting JavaKit, make sure that you’ve
connected TINI and the host machine using a straight-through (not a null-modem)
serial cable. Start JavaKit with a command similar to this one.

c:\jdk1.2.2\bin\javaw -classpath c:\tini1.02\bin\tini.jar JavaKit

Once you’ve successfully launched JavaKit, you should see a window similar
to the one shown in Figure 2.3.

Using the “Port Name” drop down selection box, choose the serial port to
which TINI is attached and click the “Open Port” button. If JavaKit is able to
open the selected serial port, the name of “Open Port” button will change to
“Close Port.” If the open operation fails, JavaKit will display an error message
indicating the failure. If an attempt to open a serial port fails, it is usually
because another application currently owns the port. In this case, close the
application that owns the serial port and try the “Open Port” button again. Next,
click the “Reset” button. This should result in TINI’s loader generating a prompt
similar to this.

TINI loader 05-15-00 17:45
Copyright (C) 2000 Dallas Semiconductor. All rights reserved.
>

Now that we have the loader’s attention, we can load the runtime binaries.
Select “Load File” from the File menu. Use the directory drop down box to select
the bin directory in the SDK hierarchy. Select the files named tini.tbin and
slush.tbin and click the “Open” button. You should see the following text dis-
played in the JavaKit window.

30 Chapter 2 Getting Started

Loading file: C:\tini1.02\bin\slush.tbin.
Please wait... (ESC to abort.)
Load complete.

Loading file: C:\tini1.02\bin\tini.tbin.
Please wait... (ESC to abort.)
Load complete.

These files are rather large and at JavaKit’s default serial data rate of 115,200 bps,
loading tini.tbin and slush.tbin takes a couple of minutes.

Now we’ve loaded the binary images that comprise TINI’s runtime. But
before the system is booted for the first time, the heap must be initialized. At the
boot loader prompt, type “BANK 18” and hit Enter. This selects the lowest 64K

Figure 2.3 JavaKit (Loader utility)

Slush: A Quick Primer 31

portion of TINI’s heap. See Section 1.3.1 for details of the memory map. Next
type “FILL 0” and hit Enter.

>BANK 18
>FILL 0

This rather cryptic two-step sequence fills the low 64K of heap with 0s, forcing
the OS to initialize the heap, file system, and all other persistent settings.

Now we’re ready to boot the system for the first time. To exit the serial loader
and boot the TINI runtime, type “EXIT” at the prompt. These are the first few
lines of text generated by the OS early in the boot process.

----> TINI Boot <----
TINI OS 1.02
API Version 8009
Copyright (C) 1999 - 2001 Dallas Semiconductor Corporation

The system boot flow is described in detail in Section 1.4.5. After a couple of
seconds the system will have completely booted, and the following prompt is dis-
played by slush.

Hit any key to login.

After pressing a key, slush prompts the user for a login name.

Welcome to slush. (Version 1.02)
TINI login:

The next section provides a brief introduction to slush that will cover, among
other things, the login process.

2.4 SLUSH: A QUICK PRIMER

This section provides a brief overview of slush and a look at just enough of the
commands and features we need to load and run the example applications at the
end of this chapter and later chapters. A more complete description of slush is pro-
vided in the Slush.txt file included in the SDK.

2.4.1 Slush Defined

Slush is a small command shell intended to provide a UNIX-like interface to
TINI’s runtime environment by providing Serial (TTY), Telnet, and FTP servers.
Slush is itself a Java application that is interpreted by TINI’s JVM. Slush is less
than a full operating system but more than a simple shell. It provides a way to

32 Chapter 2 Getting Started

view and manipulate the file system, run other Java applications, and control sys-
tem functions such as the watchdog timer and network configuration.

Slush is designed to be a multi-threaded, multi-user system allowing simulta-
neous user sessions. It is typically used in the development phase. It provides con-
veniences such as network accessibility using the ubiquitous networking client
application Telnet for user interaction and FTP for transferring applications and
data files to and from the file system. After an application has been developed and
debugged, it is typically built and targeted for installation in the flash ROM,
replacing slush. Transitioning an application from the development phase to pro-
duction deployment is discussed in Chapter 11.

2.4.2 Starting a New Session

Slush uses a user name and password to authenticate a login request and start a
new user session. When slush is booted for the first time (as in the previous sec-
tion), it creates two new default accounts: a root account with “super user” or
administration privileges and a guest account with more limited access to system
resources. Additional users can be added or removed by a user with administrative
privileges. The user names and password for the default accounts are shown in
Table 2.1.

When we left the previous section we had booted slush for the first time and
left it at the login prompt. It is important to note that both slush and TINI’s file
system are case sensitive. All characters in the user name and password for both
default accounts are lower case. Log on to the system to establish a user session
with slush. Use the root account by typing “root<CR>” at the login prompt and
“tini<CR>” at the password prompt.

TINI login: root
TINI password:

The password characters typed at the password prompt are not echoed by the
system. After successfully logging on to the system, slush returns a prompt com-
prised of the host name, TINI in this case, and the login session’s current working

Table 2.1 Default user accounts

Account Name User Name Initial Password

root root tini

guest guest guest

Slush: A Quick Primer 33

directory in the file system. Immediately after logging on to the system, the cur-
rent working directory is the root directory of the file system.

TINI />

2.4.3 Exploring the File System

Using slush, we can explore the file system in its initial state, just after the first
slush boot. A detailed listing of the files in a directory can be displayed using the
ls command with the “-l” option.

TINI /> ls -l
total 2
drwxr-x 1 root admin 1 Jan 27 15:13 .
drwxr-x 1 root admin 3 Jan 27 15:14 etc

TINI>

The first line after the prompt displays the total number of files and directo-
ries contained within the current directory. In the preceding sample listing, the
second file is a directory named “etc.” This directory is created automatically by
slush the first time it boots and contains several system files. Changing to the
“etc” directory using the cd (change directory) command and displaying its con-
tents using “ls -l” produces the following listing.

TINI /> cd etc

TINI /etc> ls -l
total 5
drwxr-x 1 root admin 3 Jan 27 15:14 .
drwxr-x 1 root admin 1 Jan 27 15:13 ..
-rwxr-- 1 root admin 28 Jan 27 15:14 .tininet
-rwx--- 1 root admin 225 Jan 27 15:14 .startup
-rwxr-- 1 root admin 101 Jan 27 15:14 passwd

TINI /etc>

This detailed listing displays, from left to right, the following information
about each file or directory contained within the current working directory.

• Permissions
• Number of links
• Owner
• Group
• File count/size
• Last modification date
• Name

34 Chapter 2 Getting Started

Let’s look at the listing for the .startup file in detail. The permissions for the
.startup file, from left to right, indicate that it is not a directory(-). The owner
(root in this case) has read (r), write (w), and execute (x) privileges, while others
have no read, write, or execute privileges. The file system does not support differ-
ent groups, but this entry is present for UNIX-listing compatibility when using the
FTP server. The link count is also purely for compatibility, since the file system
doesn’t support links.

All three of the files in the “etc” directory are created by slush during the ini-
tial boot sequence. The .tininet file stores the host and domain names. By
default the host name is “TINI.” The passwd file stores the user name along with
the SHA1 (Secure Hash Algorithm) hash of the password for every account on the
system. The most interesting of the autogenerated files is .startup. This file is
parsed and interpreted by slush on every reboot. It allows a user with administra-
tive privilege to set environment variables and automatically launch applications
on system boot. We can view the contents of .startup, or any other ASCII text
file, using the cat command.

TINI /etc> cat .startup
########
#Autogen’d slush startup file
setenv FTPServer enable
setenv TelnetServer enable
setenv SerialServer enable
##
#Add user calls to setenv here:
##
initializeNetwork
########
#Add other user additions here:

Each line of the file is either a command to be interpreted by slush or a com-
ment that begins with the “#” character. The three lines that begin with “setenv”
enable the FTP, Telnet, and serial servers, respectively. So, for example, if an
application needed to use the same serial port that slush uses for the serial server,
a user with administrative privilege could comment out the “setenv” line that
enabled the serial server. The next time the system is booted, slush will only start
the FTP and Telnet servers. This allows another application to claim exclusive
ownership of the serial port.

Applications can be launched on system boot by adding the appropriate com-
mands to the .startup. For example, adding this command

java /bin/MyApp.tini > /log/debug.out

causes slush to run MyApp.tini from the bin directory and redirect all output from
java.lang.System.out and java.lang.System.err to a log file named

Slush: A Quick Primer 35

debug.out. All applications launched from the .startup file are forced to run in
the background.

This concludes our mini-tour of our new file system. Type “cd /” at the com-
mand prompt to return to the root directory.

TINI /etc> cd /
TINI />

2.4.4 Getting Help

The help command provides a hands-on approach to exploring slush as well as
some insight into the capabilities of TINI’s runtime environment. Type help at the
prompt at any time to obtain a complete list of all commands supported by slush.

TINI /> help
Available Commands:

 append arp cat cd
 chmod chown clear copy
 cp date del df
 dir downserver echo ftp
 gc genlog help history
 hostname ipconfig java kill
 ls md mkdir move
 mv netstat nslookup passwd
 ping ps pwd rd
 reboot rm rmdir sendmail
 setenv source startserver stats
 stopserver su touch useradd
 userdel wall wd who
 whoami

A command’s description and usage is obtained by typing help followed by
the name of the command at the prompt. Typing “help java” at the prompt dis-
plays the usage message for the java command.

TINI /> help java
java FILE [&]

Executes the given Java application.
’&’ indicates a background process.

The java command is used to launch new Java processes. The usage mes-
sage specifies the required and optional parameters. In this case, the java com-
mand requires the name of the application binary file to be executed and
optionally allows the user to launch the application as a background process
using the & parameter. We’ll use the java command in Section 2.6 to run the
example programs.

36 Chapter 2 Getting Started

At this point we can start a user session, navigate the file system, and get help
with unfamiliar commands. We will continue interacting with our “slush user ses-
sion” in the next couple of sections to configure the network as well as load and
run some small example applications. The sections that follow describe new slush
commands and functionality as they are encountered.

2.5 CONFIGURING THE NETWORK

Network configuration information can be set by using the slush command ipcon-

fig. The ipconfig command provides several options that allow for complete
control of all important network parameters. Executing ipconfig with no parame-
ters displays the current network settings.

TINI /> ipconfig
Hostname : TINI.
Current IP :
Default Gateway :
Subnet Mask :
Ethernet Address : 00:60:35:00:10:bb
Primary DNS :
Secondary DNS :
DNS Timeout : 0 (ms)
DHCP Server :
DHCP Enabled : false
Mailhost :
Restore From Flash: Not Committed

Since we have just installed the runtime and cleared the heap, nothing but the
Ethernet address and default host name, TINI, have been configured. The Ethernet
address is an IEEE registered MAC id to avoid any possible collision on an Ether-
net network. It is read from the read-only memory of a 1-Wire chip on the TINI
board and is not user configurable. This implies that it is always available and
always the same, allowing it to serve as a general purpose unique identification for
the TINI board as well as the Ethernet address.

Use the help command to obtain the list of options supported by ipconfig.

TINI /> help ipconfig
ipconfig [options]

Configure or display the network settings.
 [-a xx.xx.xx.xx] Set IP address. Must be used with the -m option.
 [-n domainname] Set domain name
 [-m xx.xx.xx.xx] Set subnet mask. Must be used with -a option.
 [-g xx.xx.xx.xx] Set gateway address
 [-p xx.xx.xx.xx] Set primary DNS address
 [-s xx.xx.xx.xx] Set secondary DNS address
 [-t dnstimeout] Set DNS timeout (set to 0 for backoff/retry)
 [-d] Use DHCP to lease an IP address
 [-r] Release currently held DHCP IP address

Configuring the Network 37

 [-x] Show all Interface data
 [-h xx.xx.xx.xx] Set mailhost
 [-C] Commit current network configuration to flash
 [-D] Disable restoration of configuration from flash
 [-f] Don’t prompt for confirmation

As you can see from the preceding usage message, ipconfig provides fine-
grain configuration and control of network settings and parameters. We won’t
cover all of them here, just enough to get TINI up and running on the network. If
there is a DHCP (Dynamic Host Configuration Protocol) server available on your
network, you can use the -d option to dynamically obtain an IP address and sub-
net mask as well as several other network parameters, depending on the configura-
tion of the DHCP server. Usually, if TINI is to be used as a server, you’ll want to
use a static IP address, making it easy for network clients to access the service(s)
TINI is providing. For static network configuration we need to set the IP address
and subnet mask at a minimum. The following command sets the IP address and
subnet mask.

TINI /> ipconfig -a 192.168.0.15 -m 255.255.255.0
Warning: This will disconnect any connected network users
and reset all network servers.
OK to proceed? (Y/N): y

[Sun Jan 28 14:52:46 GMT 2001] Message from System: Telnet server
started.

[Sun Jan 28 14:52:46 GMT 2001] Message from System: FTP server started.

You will of course substitute the IP address and subnet mask used here with
values provided by your network administrator. We can test our new settings by
“pinging” the TINI board from the host machine, using the ping command. Also,
we can see from this command that slush automatically starts Telnet and FTP
servers after setting the network information. At this point you should be able to
establish a Telnet session with TINI, using the host’s Telnet client. Win32, Solaris,
and Linux all provide command line Telnet client programs. There are also graph-
ical Telnet clients available for most platforms that should work fine with TINI.

C:\>telnet 192.168.0.15
Connecting To 192.168.0.15...
Welcome to slush. (Version 1.02)

TINI login: root
TINI password:
TINI />

Once connected, slush prompts the user for a user name and password. Use
the same name and password (root, tini) that we used to log in to the serial session
from JavaKit in the previous section. We can kill the Telnet session by using the
exit command.

38 Chapter 2 Getting Started

Now TINI is on the network and ready for action. However, with only the IP
address and subnet mask set, network messages intended for machines on differ-
ent physical networks can’t reach their destination. To extend TINI’s reach
beyond its physical network, we will need to set at least one more network param-
eter: the IP address of the default gateway (or router). The default gateway address
is set using the -g option. The other network parameter we would like to set now
is the IP address of the DNS (Domain Name System) server using the -p option.
This allows us to use host names rather than raw IP addresses when communicat-
ing with other hosts. Running the following command from our serial session
adds the default gateway and primary DNS server’s IP addresses to the current
network configuration.

TINI /> ipconfig -g 192.168.0.1 -p 192.168.0.2
Warning: This will disconnect any connected network users
and reset all network servers.

OK to proceed? (Y/N): y

[Sun Jan 28 15:02:53 GMT 2001] Message from System: FTP server stopped.
[Sun Jan 28 15:03:00 GMT 2001] Message from System: Telnet server

stopped.
[Sun Jan 28 15:03:00 GMT 2001] Message from System: Telnet server

started.
[Sun Jan 28 15:03:01 GMT 2001] Message from System: FTP server started.

Note that if the FTP and Telnet servers are running, slush stops them before
changing the requested network settings. After aborting any active FTP or Telnet
sessions, the new network parameters are set and the servers are restarted. We can
test both of the new settings by pinging a host machine on another network, using
that host’s name as opposed to its IP address.

TINI /> ping www.ibutton.com
Got a reply from node www.ibutton.com/198.3.123.121
Sent 1 request(s), got 1 reply(s)

At this point we’ll want to log out of the serial session and close JavaKit.
Now we can interact with TINI and run our examples over the network using the
host’s Telnet and FTP clients. From this point forward in the book nearly all
examples will be run from a Telnet client. Start a new Telnet session and run
ipconfig with no parameters.

Welcome to slush. (Version 1.02)

TINI /> ipconfig
Hostname : TINI.
Current IP : 192.168.0.15
Default Gateway : 192.168.0.1
Subnet Mask : 255.255.255.0

Some Simple Examples 39

Ethernet Address : 00:60:35:00:10:bb
Primary DNS : 192.168.0.2
Secondary DNS :
DNS Timeout : 0 (ms)
DHCP Server :
DHCP Enabled : false
Mailhost :
Restore From Flash: Not Committed

Allow this session to remain active because it will be used to run the examples
in the following section.

2.6 SOME SIMPLE EXAMPLES

At this point we’ve loaded the runtime environment and configured TINI for net-
work operation, and now we can interact with the runtime environment, using
slush. Now we’ll create three very small applications from scratch and detail the
process of building, loading, and running the examples. We’ll use slush via a Tel-
net session to run the applications, display any output, interact with the file sys-
tem, and control processes.

2.6.1 HelloWorld

Naturally, we simply must begin with the canonical HelloWorld program. While it
won’t exactly enhance our skills as Java coders, it does provide a nice vehicle for
describing the application development process in a step-by-step fashion. Typi-
cally, to develop and test your application requires these five steps.

1. Create the source file.
2. Compile the source file.
3. Convert the class file.
4. Load the converted image.
5. Run the converted image.

The remainder of this section will detail all five steps. We’ll recycle this expe-
rience for the remaining examples, allowing us to focus on other details. For the
sake of becoming familiar with the development process, we’ll perform all of
these steps manually. Since this quickly becomes tedious for real-world applica-
tion development, the process of building and loading applications should be
automated using a reasonable combination of make files and shell scripts (batch
file in Windows lingo).

Step 1: Create the source file. Create and save a file named HelloWorld.java

containing the source code in Listing 2.1.

40 Chapter 2 Getting Started

Listing 2.1 HelloWorld

class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World");
 }
}

Step 2: Compile the source file. Compile HelloWorld.java to a class file,
using your favorite Java compiler. If you’re using Sun’s JDK and the JDK’s bin
directory is in your path, change to the directory that contains the file we just cre-
ated and execute the following command.

javac HelloWorld.java

If the compile completes successfully, you should have a new file named Hel-

loWorld.class in the current working directory.

Step 3: Convert the class file. The utility program TINIConvertor performs a
conversion on input, specifically one or more Java class files, and outputs a binary
image suitable for execution on TINI. TINIConvertor’s function is described in
Section 1.4.2. However, it is worth mentioning that TINIConvertor is performing
a portion of the class loading process. The binary file produced by TINIConvertor

is typically about 25 to 35 percent of the size of the sum of the original class files.
TINIConvertor does not generate code native to TINI’s microcontroller; rather, it
generates a binary file containing Java bytecodes that are interpreted by TINI’s
JVM.

TINIConvertor is a Java application that lives in the tini.jar file and is run from
a command shell on the host. It is controlled by a series of command line parame-
ters that specify the converter’s input and output. A list of all required and extended
parameters can be obtained by running TINIConvertor with no parameters.

To convert HelloWorld.class to a binary image that we can execute on TINI,
run TINIConvertor supplying the three mandatory command line parameters:
input file or directory (-f), API database (-d), and output file (-o).

java -classpath c:\tini1.02\bin\tini.jar TINIConvertor -f HelloWorld.class
 -d c:\tini\tini1.02\bin\tini.db -o HelloWorld.tini

In this example, our application consists of only one class file, Hel-

loWorld.class, so we can specify the class file’s name with the -f parameter. In
general, our applications will consist of several classes in one or more packages.
In this case, supply the directory name of the root of the package structure hierar-
chy. This causes TINIConvertor to include all class files in and below the speci-
fied directory when creating the application binary.

Some Simple Examples 41

The other input required by TINIConvertor is the name of the API database
distributed in the SDK. This file is named tini.db and must be supplied with the
-d parameter. This file is used by the convertor to resolve information between
your application and the API. The tini.db file is specific to a version of the SDK,
so if you have multiple versions of the SDK installed on the host, be sure to use
the correct tini.db file.

TINIConvertor produces an output file with the name provided with the -o

parameter. Other than being a legal name, as determined by the file system, there
are no specific rules that restrict the name of the final application binary. By con-
vention, the name of the class that contains the main method is used for the file
name with an extension of “.tini.” The extension is used to indicate that this file is
a TINI executable. Following this convention produces a binary output file named
HelloWorld.tini.

Step 4: Load the converted image. Use the FTP client provided with your
operating system to connect to TINI and transfer the binary image, generated in
the previous step, to the TINI file system.

C:\tini1.02\HelloWorld>ftp 192.168.0.15
Connected to 192.168.0.15.
220 Welcome to slush. (Version 1.02) Ready for user login.
User (192.168.0.15:(none)): root
331 root login allowed. Password required.
Password:
230 User root logged in.
ftp>

After successfully establishing a connection and logging in to slush we can
transfer HelloWorld.tini to TINI’s file system. First type “bin” at the FTP
prompt to ensure that our binary image is not altered during the actual file transfer.

ftp> bin
200 Type set to Binary

Transfer HelloWorld.tini, using this put command.

ftp> put HelloWorld.tini
200 PORT Command successful.
150 BINARY connection open, putting HelloWorld.tini
226 Closing data connection.
ftp: 171 bytes sent in 0.00Seconds 171000.00Kbytes/sec.

Finally, close the FTP session by typing bye or quit at the prompt.

ftp> bye
221 Goodbye.

42 Chapter 2 Getting Started

We can check that our file transfer completed successfully by using the ls

command at the slush prompt in our Telnet session.

TINI /> ls -l
total 3
drwxr-x 1 root admin 2 Jan 28 14:45 .
-rwxr-- 1 root admin 171 Jan 28 15:46 HelloWorld.tini
drwxr-x 1 root admin 3 Jan 28 14:45 etc

The file HelloWorld.tini now appears in the root directory of the file system
and has the same size that was listed during the FTP transfer.

Note that all operating systems that are capable of hosting TINI application
development have an FTP client that works nearly identically to the preceding
session. There also exist several graphical FTP clients for various platforms.
These are useful for developers that prefer not to work from a command shell. For
some developers, a command line FTP client is preferable because it allows for
easy automation of the file transfer process. For example, using the Windows FTP
client, we can create a file with the following contents.

root
tini
bin
put HelloWorld.tini
bye

If we call this file load.cmd, we can use the following command to transfer
HelloWorld.tini without any interaction with the FTP client command prompt.

C:\TINI\tini1.02\myapps\HelloWorld>ftp -s:load.cmd 192.168.0.15

Using the -s option causes the FTP client to read the specified file and execute
each line as if it were typed in manually in response to a prompt.

Step 5: Run the converted image. Now we’re ready to run the application
using the java command at the slush prompt.

TINI /> java HelloWorld.tini
Hello World
TINI />

HelloWorld.tini executes and produces the output we expect. After the pro-
gram terminates, control of the user session returns to the command prompt.

2.6.2 Blinky, Your First TINI I/O

Now that we know how to build, load, and execute a Java application, let’s try an
example that performs the most basic form of I/O by controlling a single micro-

Some Simple Examples 43

controller port pin. There is a status LED (Light Emitting Diode) on the TINI
board that is connected to p3.5 (port 3, bit 5) of the microcontroller. This pin is
also shared with the internal 1-Wire network (see Table 9.1) but since we’re not
doing any 1-Wire at the moment, we’re free to play with it.

The relevant portion of the TBM390 schematic is shown in Figure 2.4. The
anode side of the LED is connected to Vcc (the power supply voltage). A 680-ohm
current limiting resistor separates the LED’s cathode and the source of transistor
Q2. In this circuit, Q2 is just used as a saturation switch to ground. So we can
think of it as either being off (nonconducting) or on (conducting). The port pin
drives the gate of Q2. Setting the pin high (a logic 1) forces Q2 into a conducting
state, causing current to flow through the LED and turning it on. Setting the pin
low (a logic 0), forces Q2 to a nonconducting state, stopping the flow of current
through the diode, thereby turning it off.

The Blinky program, shown in Listing 2.2, uses the class BitPort from the
com.dalsemi.system package to access p3.5. Once we have an instance of
BitPort, we can invoke the methods set and clear, to turn the LED on and off,
respectively.

public void set()
public void clear()

Listing 2.2 Blinky

import com.dalsemi.system.BitPort;

class Blinky {
 public static void main(String[] args) {
 BitPort bp = new BitPort(BitPort.Port3Bit5);
 for (;;) {
 // Turn on LED
 bp.clear();
 // Leave it on for 1/4 second
 try {

Q2
2N7002

R4

680

D1

Red LED

VCC

INTOWB (p3.5)

Figure 2.4 TINI’s status LED

44 Chapter 2 Getting Started

 Thread.sleep(250);
 } catch (InterruptedException ie) {}

 // Turn off LED
 bp.set();
 // Leave it off for 1/4 second
 try {
 Thread.sleep(250);
 } catch (InterruptedException ie) {}
 }
 }
}

Compile, convert, and load Blinky following the steps we used for the
HelloWorld example. However, we will make one small change to the way in
which we run this program. Blinky runs forever just brainlessly blinking the
status LED at 2 Hz. If we run it in the same fashion that we ran HelloWorld, as a
foreground process, we would never get our command prompt back in the Telnet
session.6 We would either have to start a new Telnet session just to halt Blinky by
using the kill command or removing power, forcing the system to reboot.
Instead, just execute Blinky in the background.

TINI /> java Blinky.tini &
TINI />

Now if you take a look at your TINI board, you should see the status LED
(D1) blinking about twice per second. It will continue to blink until you kill the
process. To kill a process from slush, you use the kill command specifying the
process id on the command line. To learn the process id, use the ps command.

TINI /> ps
3 processes
1: Java GC (Owner root)
2: init (Owner root)
4: Blinky.tini (Owner root)

The ps command shows us the total number of processes and lists each pro-
cess id followed by its name. Now let’s kill Blinky, since the thrill of a blinking
light is probably starting to wane.

TINI /> kill 4
TINI /> ps
2 processes
1: Java GC (Owner root)
2: init (Owner root)

6. Slush does not support the use of <ctrl>C to terminate foreground processes.

Some Simple Examples 45

After killing process 4 and examining the process list, we see that the process
count has gone from three to two, and only the background garbage collector and
command shell (Notice that the first Java process started during the bootup phase.
Slush in this case is always named “init.”) are running. Even if you kill and imme-
diately restart the same process, it will not get the same process id. Process ids are
always incrementing and are not recycled. So, if you were to run Blinky again and
do a ps, the process id would be 5. The process id is an unsigned 16-bit value and
therefore rolls to the lowest available value after 65535.

2.6.3 HelloWeb, a Trivial Web Server

Finally, we’ll upgrade the HelloWorld example, taking it to the World Wide Web.
The HelloWeb program, shown in Listing 2.3, is a very small Web server. The
“built-in” HTTPServer class, provided in the com.dalsemi.tininet.http package,
does the bulk of the work. HelloWeb creates an instance of HTTPServer that listens
for client HTTP requests on server port 80. It also logs all requests to a file named
web.log in the “/log” directory. The main loop simply spins forever, invoking the
serviceRequests method on the HTTPServer instance.

Listing 2.3 HelloWeb

import com.dalsemi.tininet.http.HTTPServer;
import com.dalsemi.tininet.http.HTTPServerException;

class HelloWeb {
 public static void main(String[] args) {
 // Constuct an instance of HTTPServer that listens for
 // requests port 80
 HTTPServer httpd = new HTTPServer(80);
 httpd.setHTTPRoot("/html");
 httpd.setIndexPage("index.html");
 // Specify a name for the log file and turn on logging
 httpd.setLogFilename("/log/web.log");
 httpd.setLogging(true);

 // Spin around forever servicing inbound requests
 for (;;) {
 try {
 // Wait for a new request
 httpd.serviceRequests();
 } catch (HTTPServerException e) {
 System.out.println(e.getMessage());
 }
 }
 }
}

46 Chapter 2 Getting Started

Compile, convert, and load HelloWeb, following the steps used in the
HelloWorld example. Like Blinky, HelloWeb runs forever and should therefore
be executed as a background process. But there’s a little more work to do before
we can run HelloWeb. Unlike the first two examples, HelloWeb requires some
application data in the form of an ASCII file, namely index.html. On the host,
create and save a file named index.html with the following contents.

<html>
<head><title>Hello Web!</title></head>
<body>
<h1>Hello from TINI!</h1>
</body>
</html>

Now let’s return to our slush Telnet session to make directories for our Web
root and log file.

TINI /> mkdir html
TINI /> mkdir log
TINI /> ls -l
total 7
drwxr-x 1 root admin 6 Jan 28 14:45 .
drwxr-- 1 root admin 0 Jan 28 18:06 log
drwxr-- 1 root admin 1 Jan 28 18:06 html
-rwxr-- 1 root admin 297 Jan 28 18:05 HelloWeb.tini
-rwxr-- 1 root admin 220 Jan 28 17:58 Blinky.tini
-rwxr-- 1 root admin 171 Jan 28 15:46 HelloWorld.tini
drwxr-x 1 root admin 3 Jan 28 14:45 etc

Use FTP again to “put” index.html into the “/html” directory we just created.
To make sure we transferred the file successfully, we can, from the slush prompt,
change to the “/html” directory and display the contents of index.html, using the
cat command.

TINI /> cd html
TINI /html> cat index.html
<html>
<head>
<title>Hello Web!</title>
</head>
<body>
<h1>Hello from TINI!</h1>
</body>
</html>

Now that we have the Web server application binary (HelloWeb.tini) and the
HTML file that it will serve in the Web root, we can return to the root directory
and start the program as a background process.

Some Simple Examples 47

TINI /html> cd ..
TINI /> java HelloWeb.tini &
TINI />

Typing the ps command at the slush prompt shows that our server is indeed up
and ready to receive and process client HTTP requests.

TINI /> ps
3 processes
1: Java GC (Owner root)
2: init (Owner root)
5: HelloWeb.tini (Owner root)

Now we can test our simple server, using any browser and typing TINI’s IP
address or DNS name in the URL line. Figure 2.5 shows the results of browsing
the elaborate Web site served by HelloWeb, using the Netscape browser.

Figure 2.5 Browsing HelloWeb

48 Chapter 2 Getting Started

Recall that when we created the instance of HTTPServer, we specified that it
generate a log file. Let’s take a look at its contents, using the cat command from
the slush prompt.

TINI /> cd log
TINI /log> cat web.log
192.168.0.3, GET, index.html
TINI /log>

The log file shows us that the server has processed 1 “GET” request for the
file index.html from a client with the IP address 192.168.0.3. You can hit the
reload (or refresh if you’re using Internet Explorer) button on your browser sev-
eral times and watch the log file grow by one entry for each new request. If this
were a real application serving real Web pages, we probably wouldn’t enable log-
ging, since we’re working with a relatively small memory footprint. If logging
were used by a real application, the log file would eventually grow too large to fit
in TINI’s memory.

2.7 DEBUGGING TIPS

Trivial applications like those in the previous section require little in the way of
debugging. So the development cycle of building the application on the host and
loading and running it on TINI isn’t really much of a burden. Real-world applica-
tions are of course much more complicated and involve a fair amount of debug-
ging. This is one of the more difficult areas of TINI application development.

As a general rule, do all of the debugging you possibly can on your develop-
ment host. On a host machine the use of a full-featured IDE that provides a run-
time environment with integrated source-level debugging can further aid in the
development and debugging cycle.

There are broad classes of applications that can be developed for the TINI
platform that will also run on larger, more traditional Java platforms. These
classes include applications that use the following mechanisms for monitoring
and controlling external devices and communicating with other networked
machines.

• Serial communication
• TCP/IP networking
• 1-Wire networking

If your application uses only the standard Java packages supported by TINI
(see Section 1.4.1) and extensions available on most Java platforms—namely, the
Java Communications API (Section 3.2) and the 1-Wire API (Chapter 4)—then all
debugging can be accomplished using just your host’s development environment.

Debugging Tips 49

Since TINI’s main purpose is interacting with physical devices, it also pro-
vides I/O capabilities above and beyond those supported by any other Java plat-
form. Once you’re writing applications that make use of the APIs that expose
these expanded I/O capabilities, your applications will only run on TINI and
therefore must be debugged on TINI. Here are some examples of TINI’s expanded
I/O capabilities.

• Parallel I/O
• Port pin I/O
• Controller Area Network (CAN)

If your application makes use of APIs that support any of the above, you lose
source level debugging capabilities and are relegated to using exceptions with
informative detail messages and old-fashioned console (System.out.println)
debug output.

Also, there’s a pretty good chance that if you’re using expanded I/O capabili-
ties, TINI is connected to specialized hardware. This often brings traditional hard-
ware diagnostic and debug equipment into the picture—anywhere from expensive
DSOs (Digital Storage Oscilloscopes) and logic analyzers to very inexpensive
tools like logic probes and DMMs (Digital Multi-Meters). This isn’t always a sim-
ple and user friendly environment for debugging. It proves to be very challenging
at times, but such is life in the murky world where hardware meets software.

51

CHAPTER 3 Serial
Communication

The sheer number of devices that use a serial port as a means for communicating
with other electronic devices is staggering: everything from very well-known
examples like personal computers and modems to manufacturing and industrial
automation equipment. In fact, for many, a serial port provides the sole mecha-
nism of communicating with the outside world. Such devices have no direct
means of participating in a larger computer network. For this reason bridging the
communications gap between serial-only devices to networked hosts is one of the
most popular applications of TINI technology.

This chapter will cover both the hardware and software aspects of developing
serial applications on TINI. It focuses on application programming, providing rea-
sonably detailed coverage of the serial portion of the Java Communications API.
The chapter concludes with a sample implementation of a general purpose serial
to Ethernet network bridge.

3.1 INTRODUCTION AND TERMINOLOGY

The asynchronous serial communication discussed in this chapter is based on a
standard that dates back to the earliest days of recorded history. Well, it’s not actu-
ally that old, but the RS-232-C standard was published way back in 1969, specifi-
cally. Most modern serial ports do not support all of the signals defined in the

52 Chapter 3 Serial Communication

standard. The signals that are implemented are used in a fashion that is fairly close
to that defined in the standard.

It’s difficult, if not impossible, to discuss asynchronous serial communication
based on the RS-232-C standard without delving into fairly tricky terminology
that brings with it a significant amount of historical baggage. Over the years,
terms commonly used in the industry have diverged somewhat from those defined
in the standard.1 The following text will define a few necessary terms, attempting
to stay reasonably close to the RS-232-C standard. It will also describe the hard-
ware and software test environment used to test the examples in this section.

The low-level details of asynchronous serial communication, such as manag-
ing tight timing tolerances on receive data sampling, are typically handled by a
dedicated piece of hardware known as a UART (Universal Asynchronous
Receiver Transmitter). This is often a dedicated piece of silicon that is either inte-
grated into a microcontroller or provided externally as a special purpose external
UART chip. TINI’s serial driver provides support for both of the internal UARTs
as well as optional support for an external dual-UART chip. This allows TINI to
communicate with up to four separate serial devices.

The standard specifies that the receiver shall acknowledge voltage levels of
+3V to +25V for a “SPACE” (a binary zero) bit and –3V to –25V for a “MARK”
(a binary one) bit. This is shown in Figure 3.1. The “no man’s land” between –3V
and +3V is the switching region. All of the UARTs supported by TINI transmit
and receive the much more common (and modern) TTL (Transistor Transistor
Logic) voltage levels of 0V and +5V. Special purpose chips commonly known as
level translators are used to convert between TTL and RS-232 levels to allow
communication with devices that transmit and receive true RS-232 levels. Many
small embedded serial devices also use TTL signals obviating the need for level
translation. All voltage levels discussed here are measured with respect to signal
ground (a.k.a., common, see Table 3.1).

The serial ports that we’re concerned with in this chapter come in the follow-
ing two configurations.

• DCE (Data Communications Equipment)
• DTE (Data Terminal Equipment)

The RS-232-C standard refers to the two endpoints of a communications
channel as being data terminal equipment (DTE) and data communications equip-
ment (DCE). A common example of data communications equipment is a modem
and a common example of data terminal equipment is a PC or workstation.

1. For example, the DCE acronym is now almost exclusively used to refer to data com-
munications equipment, as opposed to the original definition of data circuit-terminat-
ing equipment.

Introduction and Terminology 53

In general, systems that employ TINI technology can expose either DTE or
DCE serial ports. However, in the interest of constructing a concrete test environ-
ment, we’ll need to refer to specific hardware implementations. For our purposes
the most commonly available and generic configuration, which includes a
TBM390 and an E10 socket, is used.

For most serial applications, TINI controls or acts as a network bridge for
DCE serial devices and is therefore more likely to be used as data terminal equip-
ment. For this reason the E10 socket provides a DTE serial port that supports most
of the hardware handshake (flow control) lines. As we’ll see in the next section,
this serial port is identified by the system as serial0. It is often called the “default
serial port” because the UART is integrated within the microcontroller.

The pinout, along with signal names and descriptions for a DB-9 DTE serial
port connector, is shown in Table 3.1.

Table 3.1 DB-9 DTE serial connector pinout

Pin # Signal Name DTE Sense Description

1 CD (Carrier Detect) INPUT Asserted by DCE when it has
received a data carrier signal

2 RD (Receive Data) INPUT Data receive from DCE

3 TD (Transmit Data) OUTPUT Data transmit to DCE

4 DTR (Data Terminal Ready) OUTPUT Asserted by DTE when it is
ready for communication

SPACE

MARK

0V

– 3V

– 25V

+ 25V

+ 3V

Figure 3.1 RS-232 voltage levels

continues

54 Chapter 3 Serial Communication

The BlackBox example application, distributed with the comm API, is very
useful for test purposes. In fact, it was used to test all of the examples in this chap-
ter. BlackBox is a GUI application that allows the user to configure port settings
such as the baud (or bit) rate, number of data and stop bits, and flow control modes.

The difficulty is that the host machine on which BlackBox executes also has
DTE serial ports. So the same straight-through serial cable that connected to
TINI’s DCE connector to load the firmware is not sufficient by itself to allow TINI
and the development host to communicate over a serial link to TINI’s DTE con-
nector. If only a straight-through serial cable were used, both computers would
transmit data on the same pin (TD), causing an electrical contention. This conten-
tion shouldn’t cause any damage since RS-232 outputs are current-limited. How-
ever, it certainly prevents any communication. The hardware handshake outputs
(RTS and DTR) will also collide.

The use of a null modem solves this problem. At a minimum a null modem
swaps RD and TD and passes through signal ground. This would allow two
machines with DTE serial ports to communicate, assuming none of the hardware
handshake lines are required. We’ll make use of the handshake lines in a couple of
the following examples. For our testing we’ll use the common null modem config-
uration shown in Figure 3.2. This configuration also swaps RTS and CTS, which
is used for “hardware” flow control.

The entire hardware test configuration is shown in Figure 3.3. A straight-
through cable and null modem are used to connect TINI with the development
host machine. Both the TINI and development host have pin-male DB-9 connec-
tors. Both connectors on the null modem are pin-female DB-9.

5 Common (Signal Ground) N/A 0 volt reference

6 DSR (Data Set Ready) INPUT Asserted by DCE when it has
established a communications
channel and is ready to transmit

7 RTS (Request To Send) OUTPUT Asserted by DTE to request
permission to transmit data

8 CTS (Clear To Send) INPUT Asserted by DCE to grant per-
mission to DTE to transmit data

9 RI (Ring Indicator) INPUT Asserted by DCE when it
receives a ringing tone

Table 3.1 DB-9 DTE serial connector pinout (continued)

Pin # Signal Name DTE Sense Description

Introduction and Terminology 55

The null modem shown in Figure 3.3 is in a brick form factor. Null modems
are also available as cables. This would obviate the need for both a null modem
and a straight-through cable. Since straight-through cables are more common and
typically used with TINI anyway for loading the runtime environment, we have
chosen to use a separate null modem brick. If the development host has a DB-25
pin connector, you will need a DB-9 to DB-25 adapter as well. Depending on
whether your development host is pin-male or pin-female you may also need a
gender changer. With the hardware configuration shown in Figure 3.3 (or equiva-
lent) and BlackBox running on the development host, we’re ready to begin writing
and testing serial applications.

1

2

3

4

5

6

7

8

9

DB-9 DTE

1

2

3

4

5

6

7

8

9

DB-9 DTE

Pin names and descriptions are identical to those
shown in Table 3.1.

Figure 3.2 Null modem

TINI/E10 Dev. HostNULL

Null Modem Straight-Through Cable

Figure 3.3 Test configuration

56 Chapter 3 Serial Communication

3.2 THE JAVA COMMUNICATIONS API

The Java Communications API (or comm API for brevity) has been defined by
Sun Microsystems as an extension to the Java platform. The API is defined and
partially implemented in the javax.comm package. The platform specific portion
of the comm API implementation exists in the com.dalsemi.comm package. For
most applications there isn’t a compelling reason to use the serial port classes in
com.dalsemi.comm directly, so this section will focus entirely on the public speci-
fication in javax.comm. Unless explicitly stated otherwise, all classes described in
the next section are defined in the javax.comm package.

You may recall that when you installed the comm API on your host develop-
ment machine, you copied a file named javax.comm.properties to the “jre/lib/
ext” directory under the root of your JRE or JDK installation. This text file con-
tains a line that specifies a driver to be loaded to manage serial port communica-
tion. On TINI the serial port drivers are always installed and available in the
runtime environment and therefore the javax.comm.properties file is not
required or supported.

3.2.1 Acquiring and Configuring Serial Ports

Ultimately we’ll be working with SerialPort objects. SerialPort is a subclass of
the abstract class CommPort. CommPort provides a fairly generic abstraction of a
communications port. It provides methods for configuring port settings and
acquiring streams for reading data from and writing data to the underlying physi-
cal port. CommPort objects can’t be created directly using the new operator. Rather,
they are created by invoking the open method on a CommPortIdentifier object.

The CommPortIdentifier class manages access to the ports exposed by the
platform’s physical port drivers. It also provides a mechanism for notifying appli-
cations when port ownership status changes. This can be useful when multiple
applications need to share a single port. The ability to share ports among multiple
processes on TINI is supported, but it isn’t typically important and is therefore not
covered here. CommPortIdentifier objects can be created by invoking one of the
following getPortIdentifier methods.

public static CommPortIdentifier getPortIdentifier(String portName)
 throws NoSuchPortException
public static CommPortIdentifier getPortIdentifier(CommPort port)
 throws NoSuchPortException

An enumeration of CommPortIdentifiers for all communication2 ports sup-
ported by the system can be obtained by invoking the getPortIdentifiers

method.

2. On TINI this specifically means all serial ports.

The Java Communications API 57

public static Enumeration getPortIdentifiers()

The PortLister example, shown in Listing 3.1, gets an enumeration of all
CommPort objects on the system and displays their names.

Listing 3.1 PortLister

import java.util.Enumeration;
import javax.comm.CommPortIdentifier;

class PortLister {
 public static void main(String[] args) {
 Enumeration ports = CommPortIdentifier.getPortIdentifiers();
 while (ports.hasMoreElements()) {
 System.out.println(
 ((CommPortIdentifier)(ports.nextElement())).getName());
 }
 }
}

When this application is run on a Win32 machine with the communications
API properly installed, it will list both parallel and serial ports. On a system with
two serial ports and two parallel ports, it will generate output similar to the fol-
lowing:

COM1
COM2
LPT1
LPT2

On TINI, however, there are no parallel ports—at least not the IEEE-1284
type parallel ports that are comprehended by the comm API. In fact, there is no
implementation for the parallel classes defined by the comm API. TINI does
support parallel I/O, but in a far more flexible and powerful fashion by exposing
the processor bus to allow for arbitrary I/O expansion. From a programmer’s
perspective, parallel I/O on TINI-based systems is accomplished using the
com.dalsemi.system.DataPort class and is covered in Chapter 8.

The output of PortLister when executed on TINI shows that four serial ports
are supported by the system. They are named serial0 through serial3.

TINI /> java PortLister.tini
serial0
serial1
serial2
serial3

After we have a CommPortIdentifier object, we can invoke open to obtain a
CommPort object.

58 Chapter 3 Serial Communication

public synchronized CommPort open(String appname, int timeout)
 throws PortInUseException

Ownership of a communications port is mutually exclusive. In other words,
multiple processes cannot simultaneously access the underlying physical port.
The open method only returns when it has either obtained exclusive access to the
port or the input time-out value, specified in milliseconds, has elapsed. If the port
is owned by another process and a time-out occurs waiting for the process to relin-
quish ownership of the port, open throws a PortInUseException. The open
method also requires a string representation of the name of the application. This
string is used to identify the owner of the port. There is another open method that
takes a java.io.FileDescriptor object. Because the runtime environment does
not represent physical devices as files, TINI’s comm API implementation does not
support this version of open. Ownership of the port is relinquished by invoking the
close method on the CommPort object.

public void close()

The CommPort object returned from open must be cast to a SerialPort object
before we can begin altering the port settings. The SerialPort class provides pub-
lic “setter” methods for configuring individual parameters as well as symmetric
public “getter” methods for querying the parameters current value. These are a
few of the parameters that are typically set before transmitting or receiving data
on the underlying physical port.

• Baud rate
• Number of data bits
• Number of stop bits
• Type of parity checking (if any)
• Flow control (if any)

On TINI, the default settings are 115,2003 bps, 8 data bits, 1 stop bit, no par-
ity, and no flow control. The supported values for the number of data bits, stop
bits, flow control, and parity types are defined as public integer constants in the
SerialPort class. The most common set of serial port configuration parameters
can be set with a single invocation of the setSerialPortParams method.

public void setSerialPortParams(int baudrate, int dataBits,
 int stopBits, int parity)
 throws UnsupportedCommOperationException

All of the settings are supplied as integers. The number of data bits, stop bits,
and parity mode are supplied using the SerialPort constants. The baud rate is

3. The javax.comm documentation of setSerialPortParams specifies a default of 9600 bps.

The Java Communications API 59

simply an integer value equal to the desired speed. In the following code snippet
the serial port (represented by the SerialPort object sp) is configured for trans-
mitting and receiving data at 115,200 bps with 8 bit serial characters followed by
1 stop bit and no parity checking.

try {
 ...
 sp.setSerialPortParams(115200, SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1, SerialPort.PARITY_NONE);
 ...
} catch (UnsupportedCommOperationException usc) {
 ...
}

If any of the parameter values are invalid, setSerialPortParams will throw an
UnsupportedCommOperationException. If this occurs, all four parameters will
remain the same as before the setSerialPortParams method was invoked.

3.2.2 Flow Control

Another setting that should be configured before beginning serial data transfer is
the flow control mode. Flow control is a mechanism that allows a receiver to tell
the sender to pause when its internal receive data buffer is close to full. This
avoids lost data due to buffer overflow. The following flow control modes are sup-
ported by the comm API.

• None
• RTS/CTS (often loosely termed hardware flow control)
• XON/XOFF (often loosely termed software flow control)

If no flow control is specified, both sides of the communication transmit at
will, leaving no inherent protection against receive buffer overrun. This may not
be a problem, depending on the serial protocol employed by the end points of the
data channel. However, if one side of the channel transmits a continuous data
stream, the receiver must be dedicated to the task of servicing the receive buffer or
risk losing data. This is potentially a problem for multitasking systems, especially
those that are not driven by a real-time kernel.

XON/XOFF flow control works as follows. When the receiver’s (call it A)
internal receive buffer begins to reach capacity, it transmits an XOFF (0x13) char-
acter back to the sender (call it B) requesting that it pause its transmission. After
the application has unloaded some or all of the data, A transmits an XON (0x11)
character notifying B that it is ready to receive more data. XON/XOFF flow con-
trol has the advantage of not requiring support for any hardware handshake lines.
Its main drawback is that the in-band signalling is somewhat awkward in that an

60 Chapter 3 Serial Communication

application can inadvertently stop the remote endpoint from transmitting by send-
ing an XOFF character in a binary data stream. Also, it inhibits an application’s
ability to receive the XON or XOFF control characters because they are absorbed
by the serial driver.4

If available, RTS/CTS (hardware) flow control is the best way to avoid buffer
overflow. In this scheme the endpoint (call it A) wishing to transmit asserts the
request to send (RTS) signal. If the other endpoint (call it B) has sufficient room in
its buffer and is willing to receive data, it will assert the clear to send (CTS) sig-
nal. At this point device A begins transmitting. If B’s receive buffer approaches
capacity, it de-asserts CTS and A pauses its transmission. Eventually the applica-
tion will read the available serial data, and B’s serial port driver will assert CTS,
allowing A to resume data transmission.

The default flow control setting is no flow control. This is appropriate because
many devices have no support for hardware or software flow control. However, if
the device with which you are communicating supports flow control, this default
should be overridden. In fact, some devices may require the use of flow control.

The flow control mode is configured by invoking the setFlowControlMode

method on a SerialPort object. The current flow control mode in use by the
driver can be retrieved at any time using the getFlowControlMode method.

public void setFlowControlMode(int flowcontrol)
 throws UnsupportedCommOperationException
public int getFlowControlMode()

The desired flow control setting is passed to setFlowControlMode encoded as
an integer equal in value to any of the following constants. The value can also be
the bitwise-or of one input (_IN) mode constant and the matching output (_OUT)
constant.

public static final int FLOWCONTROL_NONE
public static final int FLOWCONTROL_RTSCTS_IN
public static final int FLOWCONTROL_RTSCTS_OUT
public static final int FLOWCONTROL_XONXOFF_IN
public static final int FLOWCONTROL_XONXOFF_OUT

Flow control can be specified as unidirectional only. For example, the applica-
tion can require that the remote endpoint specify RTS/CTS flow control without
implementing any flow control during its own data transmission. The use of flow
control can also be required of both devices protecting each endpoint in the com-
munication from receive buffer overflow. However, input and output flow control
modes can’t be mixed between RTS/CTS and XON/XOFF flow control. For
example, an application can’t specify RTS/CTS flow control for outbound data
and XON/XOFF flow control for inbound data.

4. Applications would have to “escape” XON/XOFF characters.

The Java Communications API 61

// Illegal setting!
SerialPort.FLOWCONTROL_RTSCTS_IN | SerialPort.FLOWCONTROL_XONXOFF_OUT

The following code snippet shows how to correctly select the use of RTS/CTS
flow control for both serial data input and output.

try {
 sp.setFlowControlMode(SerialPort.FLOWCONTROL_RTSCTS_IN |
 SerialPort.FLOWCONTROL_RTSCTS_OUT);
} catch (UnsupportedCommOperationException usc) {
 // Can't use hardware flow control with this serial port!
 ...
}

If the underlying driver or UART does not support the specified type of flow
control or the flow control mode is an invalid combination of the mode
constants that are listed above, the setFlowControlMode method throws an
UnsupportedCommOperationException. In this event the actual flow control mode
remains the same as it was before setFlowControlMode was invoked.

3.2.3 Sending and Receiving Serial Data

An application transmits and receives serial data using the read and write meth-
ods on input and output streams, respectively. java.io.InputStream and
java.io.OutputStream objects are acquired by invoking the getInputStream and
getOutputStream methods on a SerialPort object.

public InputStream getInputStream() throws IOException
public OutputStream getOutputStream() throws IOException

There is exactly one InputStream and one OutputStream attached to a serial
port. Multiple calls to either method will return a reference to the same stream.

The comm API supports the notion of receive time-outs and thresholds.
Receive time-outs and thresholds allow the application to control blocking reads
on serial port InputStream objects. A read time-out can be set by invoking the
enableReceiveTimeout method on a SerialPort object.

public void enableReceiveTimeout(int rcvTimeout)
 throws UnsupportedCommOperationException
public void disableReceiveTimeout()

The specified time-out value represents the number of milliseconds that any
of the InputStream’s read methods should block waiting for receive data. If the
specified number of milliseconds elapses before the number of bytes requested by
the read method is received, the read method will return immediately with any
data that was received. The receive time-out can be disabled at any time, using the
disableReceiveTimeout method.

62 Chapter 3 Serial Communication

A receive threshold value can be set by invoking the method
enableReceiveThreshold on a SerialPort object.

public void enableReceiveThreshold(int thresh)
 throws UnsupportedCommOperationException
public void disableReceiveThreshold()

The thresh parameter passed to enableReceiveThreshold represents a mini-
mum number of bytes that should be returned when reading serial data. Setting a
threshold value will cause the serial port InputStream’s read methods to block
until either thresh bytes have been received or a time-out (if one has been set by
enableReceiveTimeout) occurs. The receive threshold can be disabled at any time,
using the disableReceiveThreshold method.

Both enableReceiveTimeout and enableReceiveThreshold declare that an
UnsupportedCommOperationException will be thrown in the event that the native
serial driver doesn’t support the requested functionality. This exception should
never be thrown on TINI from either of these methods, since all serial port drivers
do in fact support receive time-outs and thresholds.

Using receive time-out values and receive threshold settings, an application
can read serial data from the serial port’s InputStream without polling the
InputStream’s available method to determine when data is available in the
serial driver’s receive buffer.

Since the receive buffers are of finite size, they can overflow if not serviced
(unloaded) frequently enough by the application. Without the use of any flow con-
trol, both sides must ensure that they can service the receive buffer before losing
any data. This problem can be avoided to some extent by using a large enough
receive buffer to give the application plenty of time to read the data. A receive
buffer of a specific size can be requested by invoking the setInputBufferSize

method on a SerialPort object.

public void setInputBufferSize(int size)
public int getInputBufferSize()

The requested buffer size is passed as an integer. On TINI the maximum sup-
ported input buffer size is 65535. If an invalid size is specified or another error,
such as insufficient memory for the new buffer occurs, the input buffer remains
the same size as it was before setInputBufferSize was invoked. No exception is
thrown. However, the actual input buffer size can be verified at any time using
the getInputBufferSize method. The combination of controlling the input
buffer size and using well-chosen receive thresholds and time-out values can
allow an otherwise busy application to service the serial port input buffer with
little overhead.

An application can manually query the state of all of the hardware flow con-
trol lines that are supported by the underlying serial port.

The Java Communications API 63

public boolean isCD()
public boolean isRI()
public boolean isDSR()
public boolean isCTS()
public boolean isRTS()
public boolean isDTR()

These methods return true if the signal was asserted at the exact time it was
sampled by the native driver and false otherwise.

The comm API only allows the DTR and RTS signals to be altered by the
applications. This is because DTR and RTS are the only two lines that are outputs
in a DTE serial port configuration, and the comm API assumes that it is imple-
mented on data terminal equipment. The state of DTR and RTS can be set using
the setRTS and setDTR methods.

public void setDTR(boolean dtr)
public void setRTS(boolean rts)

Passing either method a boolean value of true asserts the signal, while a
value of false de-asserts the signal. An application using RTS/CTS flow control
should not attempt to alter the state of RTS as it’s managed by the driver. We’ll
utilize the comm API’s ability to toggle the state of data terminal ready (DTR) to
reset an external modem in Section 7.6.2.

On TINI, the internal serial ports (serial0 and serial1) don’t support all of
the hardware handshake signals. We’ll cover the details of TINI’s serial port hard-
ware and driver support in Section 3.3

3.2.4 Serial Port Events

The communications API provides a mechanism for asynchronous
notification of interesting serial port events such as state changes in the modem
control lines and when data is available. On TINI the events are propagated by a
daemon thread that listens for state changes in the serial port drivers. The
daemon thread is created when the first event listener is registered using the
addEventListener method in the SerialPort class. The argument listener
passed to method addEventListener requires an instance of a class that
implements the SerialPortEventListener interface.

public void addEventListener(SerialPortEventListener listener)
 throws TooManyListenersException
public void removeEventListener()

The removeEventListener can only be invoked by a listener. Event listeners
are automatically removed when the port is closed.

For every serial port event there exists one method with a notifyOn prefix.
The listener chooses the events for which it wishes to be notified by invoking

64 Chapter 3 Serial Communication

the appropriate notifyOn* method on a SerialPort object. So, for example, to
receive notification when serial data is available, a listener invokes the
notifyOnDataAvailable method.

public void notifyOnDataAvailable(boolean enable)

An enable value of true enables notification for the specified event. Notifica-
tion can be disabled at any time by invoking the same method with an enable

value of false.
The SerialPortEventListener interface defines the serialEvent method that

is invoked when an event for which the listener has requested notification occurs.

public void serialEvent(SerialPortEvent ev)

Listeners invoke the getEventType method on the SerialPortEvent object
passed to serialEvent to determine the source of the event.

public int getEventType()

getEventType returns the type of the event encoded as an integer. There are
several serial port events defined as public constants in SerialPortEvent. We’ll
only cover the types supported by TINI’s comm API implementation. Other
events, such as FE (Framing Error), are also defined by the comm API but are not
supported by TINI’s serial drivers.

These are two of the most important events.

• DATA_AVAILABLE
• OUTPUT_BUFFER_EMPTY

These provide notification of the state of the serial driver’s transmit and
receive buffers. When these events are used properly it allows the application to
maximize serial port throughput with a minimum of CPU overhead and without
dedicated threads.

An application can periodically poll the available method on the serial port
input stream to determine when serial data has been received. However, polling is
typically inefficient in terms of CPU usage. Depending on the type of serial device
and the other things that the application is doing, it can be difficult to determine the
frequency at which to check for inbound data. If the application polls too frequently,
then much of the CPU is wasted asking the question “Any data yet (huh, huh, is
there, how about now)?” Even if the application can dedicate much of the CPU to
polling for receive data, there is no guarantee that other system operations such as
garbage collection won’t delay polling from time to time. If the serial device doesn’t
support either RTS/CTS (hardware) or (XON/XOFF) software flow control, infre-
quent polling can lead to loss of data due to the receive buffer overflowing.

The Java Communications API 65

An application can avoid polling either by using the receive time-outs and
thresholds discussed in Section 3.2.4 or the DATA_AVAILABLE event. The
DATA_AVAILABLE event is generated when data is received by the serial port. When
the listener receives notification of this event, it typically reads all data available
from the input stream and supplies it to another thread in the application for fur-
ther processing. The advantage of the DATA_AVAILABLE event is that it doesn’t
require a blocking invocation of one of the input stream’s read methods.

Managing the flow of outbound data is typically less critical and a little easier.
The OUTPUT_BUFFER_EMPTY event is generated when the serial driver’s transmit
buffer is empty. The listener can use this event to move data from an arbitrarily
large buffer to the serial port in smaller, more manageable blocks. This event can
be used as an alternative to invoking a write method that will block if the serial
transmit buffer is full.

Changes in the state of the control lines defined as inputs for DTE serial ports
can be detected by registering for any of the following events.

• CD (Carrier Detect)
• CTS (Clear To Send)
• DSR (Data Set Ready)
• RI (Ring Indicate)

The getNewValue method of class SerialPortEvent can be used to determine
the sense of the transition.

public boolean getNewValue()

It returns true if the specified signal is asserted and false otherwise. A
common example of how control line change notification is useful is found in
managing communications with a serial modem. When the modem has established
a connection with another modem, it asserts carrier detect. If the remote modem
“hangs up,” a SerialPortEvent.CD change event will be generated and
getNewValue returns false. The listener can use this information to notify the rest
of the application that the modem connection is no longer valid.

The CTSMonitor example, shown in Listing 3.2, listens for changes on the
CTS line.

Listing 3.2 CTSMonitor

import java.io.IOException;
import java.util.TooManyListenersException;
import javax.comm.*;
import com.dalsemi.system.TINIOS;

class CTSMonitor implements SerialPortEventListener {

66 Chapter 3 Serial Communication

 SerialPort sp;

 CTSMonitor() throws NoSuchPortException, PortInUseException {

 // Specify a timeout value of at least a few seconds before
 // failing on ’open’ attempt. This allows another process
 // (probably slush) to relinquish port ownership.
 sp = (SerialPort)
 CommPortIdentifier.getPortIdentifier("serial0").open(
 "CTSMonitor", 5000);
 try {
 // Enable the use of hardware handshake lines for serial0
 TINIOS.setRTSCTSFlowControlEnable(0, true);
 } catch (UnsupportedCommOperationException usce) {
 // Won’t happen on serial0
 }

 try {
 sp.addEventListener(this);
 sp.notifyOnCTS(true);
 } catch (TooManyListenersException tmle) {}
 }

 public void serialEvent(SerialPortEvent event) {
 switch (event.getEventType()) {
 case SerialPortEvent.CTS:
 System.out.println("CTS change, new value="+
 event.getNewValue());
 break;
 default:
 }
 }

 public static void main(String[] args) {
 try {
 CTSMonitor cm = new CTSMonitor();
 try {
 Thread.sleep(Long.MAX_VALUE);
 } catch (InterruptedException ie) {}
 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }
}

During construction CTSMonitor creates and opens a SerialPort object that
encapsulates serial0. It then adds itself as an event listener and requests notifica-
tion for CTS change events. After the CTSMonitor object is created, the primordial
thread puts itself to sleep for an almost infinite amount of time because the event
notifications are generated by a daemon thread. If we were to allow the primordial
thread to terminate by falling out of the main method, the event notification dae-
mon would also exit and the application would terminate.

TINI’s Serial Ports 67

From this point forward the application just waits for notification of a change
in the state of the serial port’s CTS line. We can test the application using the
BlackBox utility and the null modem configuration shown in Figure 3.2. The null
modem swaps, among other things, RTS and CTS. So by toggling RTS from the
BlackBox utility, we can generate transitions on the CTS pin of the TINI serial
port. When the BlackBox utility starts, RTS is asserted (high in this case), and CTS
on the TINI serial port should also be asserted. Toggling RTS from the BlackBox

will produce an event of type SerialPortEvent.CTS. Invoking getNewValue on the
SerialPortEvent object will return false, indicating that CTS has been de-
asserted.

In Chapter 7 we’ll use the comm API to control an analog phone line modem
with a serial interface. It takes advantage of much of the functionality described
here including carrier detect (CD) change notification to provide asynchronous
notification that the modem has lost the carrier signal (that is, the modem connec-
tion has been lost).

3.3 TINI’S SERIAL PORTS

This section covers details that are specific to TINI’s serial port hardware and
drivers. Limitations and configuration options for each port are described. If your
application requires only one serial port, then it can likely use the default serial
port (serial0) without worrying about many of the following details. However, if
your application targets unusual serial devices or requires the use of multiple
serial ports, you should read this section.

As mentioned earlier, the TINI runtime environment supports up to four serial
ports. The serial ports are designated serial0 through serial3. The UARTs used
by serial0 and serial1 are integrated within TINI’s microcontroller. For this rea-
son they are termed “internal” serial ports. The UARTs used by serial2 and
serial3 require a dedicated external dual-UART5 chip. These are referred to as
“external” serial ports. Because serial0 and serial1 use internal UARTs, they
are more efficient. The internal serial port drivers don’t have to do nearly as much
work to load or unload data from the UART. However, the internal serial ports are
somewhat limited in terms of configuration options. The serial character configu-
rations supported by serial0 and serial1 are the following.

• 8 data bits, 1 stop bit, no parity (default)
• 8 data bits, 1 stop bit, with parity (odd/even only)
• 7 data bits, 2 stop, no parity
• 7 data bits, 1 stop, with parity (odd/even only)

5. See the E10 socket schematic for details.

68 Chapter 3 Serial Communication

Configurations that use only 5 or 6 data bits or 1.5 stop bits are impossible if
using the internal ports. However, this is seldom of practical concern. The options
listed allow the internal ports to communicate with most common serial devices.
The external serial ports support all configurations that can be achieved using the
comm API with the exception of XON/XOFF flow control.

Both internal ports support XON/XOFF flow control. A single set of hardware
handshake lines is shared between the internal ports. This implies that only one port
at a time can be used with RTS/CTS flow control. By default serial0 does not own
the hardware handshake signals. This default can be changed using the method
setRTSCTSFlowControlEnable defined in class com.dalsemi.system.TINIOS.

public static boolean setRTSCTSFlowControlEnable(int portNumber,
 boolean enable)
 throws UnsupportedCommOperationException

The port number must specify one of the internal serial ports (0 or 1). If
enable is true, the hardware handshake signals will be dedicated for use as hard-
ware handshake signals for the specified serial port. If enable is false, the signals
are released to be used with the com.dalsemi.system.BitPort (see Chapter 9)
class as general purpose TTL I/O.

There are a couple of additional points to keep in mind when using serial1.
First, serial1 is by default dedicated to the task of communicating with the
external 1-Wire line driver. If your TINI hardware implementation does not
require (or support) the use of the external 1-Wire adapter, serial1 can be
reclaimed for use with a general purpose serial port. To override serial1’s
default usage, an application must invoke the enableSerialPort1 method
defined in the TINIOS class.6

public static final void enableSerialPort1()

This option persists across system boots. The other thing to keep in mind,
with respect to serial1, is that it does not support any data rates below 2400 bps.
This is seldom of practical concern when communicating with modern serial
devices.

The external serial ports must also be enabled using the method
setExternalSerialPortEnable in class TINIOS.

public static void setExternalSerialPortEnable(int portNum, boolean enable)

6. If you’re using serial1 on a TBM390, you will also need to disable the DS2480
1-Wire driver. This is accomplished by grounding the EN2480 signal (pin 26 of the
SIMM connector).

A Small Terminal Example 69

The port number must specify one of the external ports (2 or 3). An enable

value of true enables the use of external serial drivers. The settings established by
setExternalSerialPortEnable persist across system boots.

The external serial drivers allow flexibility where the external UART
hardware is mapped into TINI’s memory space. The default base address for the
external UART is 0x380020. This method can be overridden using the
setExternalSerialPortAddress method in TINIOS.

public static void setExternalSerialPortAddress(int portNum, int address)

The port number must specify one of the external ports (2 or 3). The address
refers to the base (or lowest) address consumed in the memory map. The settings
established by setExternalSerialPortAddress persist across reboots.

There is one final tidbit to keep in mind when developing applications that
control serial devices. When TINI boots, it transmits progress messages on
serial0 at the data rate of 115,200 bps. This can cause confusion for certain
embedded serial devices because the data is unsolicited and is transmitted at a
speed that may be different from the speed for which the device is configured to
receive data. Applications can disable boot progress messages using the
setSerialBootMessageState method in class TINIOS.

public static final void setSerialBootMessagesState(boolean on)

The serial boot message state is also persistent across system boots. If slush is
involved, the line “setenv SerialServer enable” should be removed from the
.startup file. This will prevent slush from chattering over serial0.

3.4 A SMALL TERMINAL EXAMPLE

A serial terminal program provides a reasonably small example that ties together
much of the functionality provided by the communications API. The TiniTerm

program presented in this section reads characters from the console (System.in)
and writes the same characters to a serial port. Data flow in the other direction is
supported as well. All characters received on the serial port are written to the con-
sole (System.out).

TiniTerm’s constructor and main method are shown in Listing 3.3. The baud
rate must be specified on the command line. The main method simply creates and
starts a new thread that blocks waiting for console input.

Listing 3.3 TiniTerm

...

class TiniTerm extends Thread implements SerialPortEventListener {

70 Chapter 3 Serial Communication

 private SerialPort sp;
 private InputStream sin;
 private OutputStream sout;

 private TiniTerm(String portName, int baudRate)
 throws NoSuchPortException,
 PortrtInUseException,
 UnsupportedCommOperationException,
 IOException {

 try {
 // Create SerialPort object for specified port
 sp = (SerialPort)
 CommPortIdentifier.getPortIdentifier(portName).open(
 "TiniTerm", 5000);
 // Configure port for 8 databits, 1 stop bit and no parity
 // checks
 sp.setSerialPortParams(baudRate, SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1,
 SerialPort.PARITY_NONE);

 // Get input and output streams for serial data I/O
 sin = sp.getInputStream();
 sout = sp.getOutputStream();
 } catch (NoSuchPortException nsp) {
 System.out.println("Specified serial port ("+portName+
 ") does not exist");
 throw nsp;
 } catch (PortInUseException piu) {
 System.out.println("Serial port "+portName+
 " in use by another application");
 throw piu;
 } catch (UnsupportedCommOperationException usc) {
 System.out.println("Unable to configure port:"+portName);
 throw usc;
 } catch (IOException ioe) {
 System.out.println(
 "Unable to acquire I/O streams for port " + portName);
 throw ioe;
 }
 }

 ...

 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: java TiniTerm.tini data_rate");
 System.exit(1);
 }

 try {
 TiniTerm term = new TiniTerm("serial0",
 Integer.parseInt(args[0]));
 term.start();

A Small Terminal Example 71

 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }
}

The getCommPortIdentifier method of class CommPortIdentifier is used to
obtain a CommPort object representing the port specified by name to the constructor.
The CommPort object is immediately cast as a SerialPort object. The resulting
serial port object is then initialized to transmit and receive data at the rate specified
on the command line. The serial characters will contain 8 data bits and 1 stop bit.
All parity checking is disabled. Finally, the constructor invokes the getInputStream

and getOutputStream methods on the SerialPort object to acquire streams for
receiving data from and transmitting data to the underlying serial port.

For the purpose of illustration, TiniTerm’s constructor catches each checked
exception that can be thrown during initialization and displays an appropriate
error message. The following are exceptions from the preceding catch blocks
along with a likely culprit.

• PortInUseException. The port specified is being used by another applica-
tion.

• NoSuchPortException. This exception won’t actually be thrown in this
example because it specifies serial0 as a hard-coded value.
NoSuchPortException is thrown if an invalid port name, such as “serial5”
or “Serial0,” is specified.

• UnsupportedCommOperationException. An unsupported baud rate was
specified.

Listing 3.4 TiniTerm’s run method

public void run() {
 // Return from read as soon as any bytes are available
 // (i.e. don’t wait for line termination)
 ((SystemInputStream) System.in).setRawMode(true);

 while (true) {
 try {
 byte b = (byte) System.in.read();
 if (b == (byte) ’~’)
 break;
 // Send the byte out the serial port
 sout.write(b);
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 }
}

72 Chapter 3 Serial Communication

By default on TINI, a PrintStream’s read method will block until a line sepa-
rator has been received. In general this behavior varies from platform to platform.
Win32 platforms perform the same buffering as TINI. However, in Linux this
behavior depends on how the shell that launches the application is configured. For
a terminal application it is nicer to have read return as soon as a character is avail-
able so that it can immediately be transmitted to the remote terminal and echoed to
the console. When an application is launched from slush, it inherits a System.in

that extends the class SystemInputStream. SystemInputStream is defined in the
com.dalsemi.shell.server package. It provides the setRawMode method to over-
ride the default readLine type behavior. In Listing 3.4 on the previous page, the
first thing the run method does is cast System.in to a SystemInputStream and set
its mode to “raw,” using the setRawMode method, so that the terminal application
behaves as we would expect. If you comment out the statement that invokes set-

RawMode, TiniTerm should run on any Java platform for which an implementation
of the communications API exists. However, you may have to hit <ENTER> before
the data you type is transmitted to the remote terminal or echoed to the console.

Next, the run method enters an infinite loop that blocks waiting for input on
System.in. It reads a byte at a time and echoes it to the serial port. The only
escape from the run method is to type the tilde (~) character at the prompt. Typing
the tilde character should cause the read thread to terminate, and the application
should exit gracefully.

TiniTerm implements SerialPortEventListener, which means it must pro-
vide an implementation for the serialEvent (Listing 3.5) method. In this case, we
requested notification whenever data is received on the serial port. serialEvent

invokes the getEventType method on the SerialPortEvent object. If it is a
DATA_AVAILABLE event, the serial port InputStream’s available method is queried
to determine how many bytes can be read without blocking. Since we received a
DATA_AVAILABLE event, the number of bytes available should be at least 1. If the
delay between when the first byte of data was received and when we read the data
is high enough, it is possible that multiple characters will be in the serial receive
buffer. In this example, the bottleneck is the speed at which a human can type
characters from a keyboard, so we’d expect to always read just one byte. Regard-
less, all characters received from the serial port input stream are read from the
input stream attached to the serial port and immediately written to the system out-
put stream. Any events other than DATA_AVAILABLE are ignored.

Listing 3.5 serialEvent

public void serialEvent(SerialPortEvent ev) {
 switch (ev.getEventType()) {
 case SerialPortEvent.DATA_AVAILABLE:

A Small Terminal Example 73

 try {
 int count = sin.available();
 if (count > 0) {
 byte[] buf = new byte[count];
 count = sin.read(buf, 0, count);
 System.out.write(buf, 0, count);
 }
 } catch (IOException ioe) {
 // Drain it
 }
 break;

 default:
 // Ignoring any unexpected events
 break;
 }
}

We can test TiniTerm using BlackBox and the null modem configuration
shown in Figure 3.2. BlackBox allows the user to select all necessary parameters
to communicate with the terminal program. For our purposes select the following
settings.

• Data bits: 8
• Stop bits: 1
• Parity: none
• Data rate: 115,200

Assuming that the data rate selected in BlackBox is 115,200 bps, you can start
TiniTerm in your Telnet session using a command similar to the following.

TINI /> java TiniTerm.tini 115200

Notice that the application is launched as a foreground process (that is, no
“&” at the end of the command). This is important because background processes
cannot read from System.in. For background processes, System.in is fed from a
com.dalsemi.comm.NullInputStream. This allows the Telnet session itself to con-
tinue to process characters typed at the prompt, while other processes run in the
background. In this case, we want the application, TiniTerm, to process all con-
sole input.

If the BlackBox settings and serial cable are correct, you should be able to
type data at the Telnet prompt and see the characters echoed at both the Telnet
prompt and the BlackBox receive window. You should also be able to type charac-
ters in the BlackBox transmit window and see them written to the Telnet prompt.

74 Chapter 3 Serial Communication

3.5 A SERIAL ⇔ ETHERNET CONVERTER

Although it may not be obvious, we actually implemented a simple serial to
Ethernet converter in the last section. When TiniTerm is run, it takes console input
System.in, which was most likely receiving data typed from a Telnet session. The
characters typed at the Telnet prompt ultimately wind up as network data traveling
over a TCP connection. In this section we’ll do a more formal job of making a
bridge between a serial device and another host on an Ethernet network. The big
difference is that the example presented in this section, SerialToEthernet, is
designed for communication with serial devices that transfer potentially large
amounts of information with very little delay between characters. This is as
opposed to TiniTerm that only needed to perform well enough to keep up with a
human typist. The main difference is the need to move large buffers, in the form of
byte arrays, in single, relatively few I/O operations. The need for fast, full-duplex
I/O over both the serial and network connections will lead to an application with a
different structure that configures and uses the serial port in a much different fash-
ion than TiniTerm.

The SerialToEthernet application reads data from an attached serial device
and writes it to a network server. Data received from the same network server is
transmitted to the serial device. Potentially network and serial data are traveling in
both directions simultaneously, as shown in Figure 3.4.

SerialToEthernet’s main method extracts the network server name, server
port, and serial port data rate from the command line and passes them to the con-
structor (shown in Listing 3.6). The constructor opens serial0 and configures the
port for operation at 8 data bits, 1 stop bit, and no parity. The baud rate is set to the
speed passed to the constructor. Since both serial and network I/O are potentially
full duplex, the serial port flow control mode is set for RTS/CTS flow control.
This will protect the serial receive buffers of both TINI and the attached device
from overflow under a potentially heavy load. Next, the constructor acquires an
InputStream and an OutputStream for reading from and writing to the serial port.

eth0: Ethernet Network Interface

serial0 eth0

TINI
ServerSerial Device Network

Figure 3.4 Serial to Ethernet bridge data flow

75

Listing 3.6 SerialToEthernet

...
class SerialToEthernet extends Thread {
 // Use a 1K buffer for serial data receive
 private static final int INPUT_BUF_LEN = 1024;

 // Serial port and associated streams
 private SerialPort sp;
 private InputStream spin;
 private OutputStream spout;

 // Socket and associated streams
 private Socket s;
 private InputStream sin;
 private OutputStream sout;
 ...
 private SerialToEthernet(String server, int port, int speed)
 throws Exception {

 // Create and initialize serial port
 sp = (SerialPort)
 CommPortIdentifier.getPortIdentifier("serial0").open(
 "SerialToEthernet", 5000);

 // Enable the use of hardware handshake lines for serial0
 TINIOS.setRTSCTSFlowControlEnable(0, true);

 // 8 data bits, 1 stop bit, no parity
 sp.setSerialPortParams(speed, SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1,
 SerialPort.PARITY_NONE);
 // Require RTS/CTS flow control from both serial channel
 // endpoints
 sp.setFlowControlMode(SerialPort.FLOWCONTROL_RTSCTS_IN |
 SerialPort.FLOWCONTROL_RTSCTS_OUT);

 // Initialize serial port input and output streams
 spin = sp.getInputStream();
 spout = sp.getOutputStream();
 // Set a 100 millisecond receive timeout
 sp.enableReceiveTimeout(100);
 // Set the receive threshold equal to buffer length
 sp.enableReceiveThreshold(INPUT_BUF_LEN);

 // Connect to network server
 s = new Socket(server, port);
 sin = s.getInputStream();
 sout = s.getOutputStream();

 // Create and launch Serial -> Ethernet thread
 (new Thread(new SerialReader(this, INPUT_BUF_LEN))).start();
 // Create and launch Ethernet -> Serial thread
 (new Thread(new SerialWriter(this))).start();

A Serial ⇔ Ethernet Converter

76 Chapter 3 Serial Communication

 // Launch maintenance thread
 super.start();
 }
 ...
}

A receive time-out of 100 milliseconds and a receive threshold equal to the
length of the serial port receive buffer are set to allow fairly large blocks of data to
be read in an efficient fashion from the input stream attached to the serial port.
After finishing the serial port configuration, a connection is established with the
network server, and input and output streams are obtained for data transfer to and
from the server.

Finally the constructor starts three new threads of execution. Their tasks are as
follows.

1. SerialReader. Reads from the serial port, writes to the socket
2. SerialWriter. Reads from the socket, writes to the serial port
3. SerialToEthernet. Provides periodic statistical updates

The run method of the maintenance thread is shown in Listing 3.7. It writes
the total number of bytes received from the serial port and the total number of
bytes received from the network to the console (System.out) and sleeps for about
a minute. This process is repeated as long as running is true. The cumulative byte
counts are maintained by the SerialReader and SerialWriter threads. Both of
the aforementioned threads keep a reference to the maintenance thread. If a
java.io.IOException occurs in or the network connection is closed by the remote
server, the thread (either SerialReader or SerialWriter) that detected the prob-
lem sets the running boolean to false and interrupts the maintenance thread. The
maintenance thread then falls out of the while loop and closes the serial port,
socket, and all associated streams.

Listing 3.7 run

...
private volatile boolean running = true;
private int serialTotal = 0;
private int networkTotal = 0;
...
public void run() {
 while (running) {
 try {
 Thread.sleep(60000);
 } catch (InterruptedException ie) {}
 System.out.println("Bytes received from serial:"+serialTotal);
 System.out.println("Bytes received from network:"+networkTotal);
 }

77

 try {
 // Close serial port and associated streams
 ...
 // Close socket and associated streams
 ...
 } catch (IOException e) {}
}

SerialToEthernet contains two inner classes: SerialReader and
SerialWriter. Each implement the Runnable interface so that they can each run
as separate threads of execution. This prevents either of the threads from having
to block while the other is performing serial or network data transfer. This helps
achieve the goal of high-speed, full-duplex I/O.

The inner class SerialReader, shown in Listing 3.8, creates a byte array of the
specified size that serves as a reusable buffer for serial receive data. The run
method enters a loop that reads data available from the serial port’s InputStream

and immediately writes that data to the socket’s OutputStream.
In SerialToEthernet’s constructor, we set a serial port read time-out of 100

milliseconds and a receive threshold equal to the length of the serial receive data
buffer length (1024 bytes in this case). The number of bytes read (that is, the value
of count) from the serial port’s InputStream will be the minimum of the number
of bytes received and the length of the input buffer.

• count = min(serial bytes received, serBuf.length)

At slower speeds the read method should not return due to receiving the num-
ber of bytes specified by the threshold value. For example, if the baud rate is set at
9600 bps, we’d expect to receive about 1 serial character (or byte7) every millisec-
ond8 assuming that the attached serial device is continuously transmitting. In this
case, we would expect the read method to return after the 100 millisecond time-
out has expired with approximately 100 bytes of receive data copied to the sup-
plied byte array. At the highest supported baud rate of 115,200 bps, we’d receive
about 12 serial characters per millisecond (9600 bps * 12 = 115,200 bps). Again,
assuming that the attached serial device is transmitting continuously, the number
of bytes received in the 100 ms time-out window—approximately 1200—is larger
than serBuf. In this case, read will return after the receive threshold of 1024 bytes

7. We’re reasonably safe in referring to the received serial characters as bytes because
the port is configured for 8 data bits.

8. With 8 data bits, 1 stop bit, and the mandatory start bit result in 10 bits received on the
wire for every 8 bits of data. At 9600 bps, 1 bit is received every 104 microseconds.
This results in a total time of 1040 microseconds (or 1.04 milliseconds) per byte of
serial data.

A Serial ⇔ Ethernet Converter

78 Chapter 3 Serial Communication

is reached. We would expect to hit the receive threshold in less than the 100 ms
time-out window.

Listing 3.8 SerialReader

...
private class SerialReader implements Runnable {
 private byte[] serBuf;
 private Thread maint;

 private SerialReader(Thread maint, int size) {
 serBuf = new byte[size];
 this.maint = maint;
 }

 public void run() {
 while (running) {
 try {
 // Read all available data in serial input buffer
 int count = spin.read(serBuf, 0, serBuf.length);
 if (count > 0) {
 // Blast serial data to network server
 sout.write(serBuf, 0, count);
 serialTotal += count;
 }
 } catch (IOException ioe) {
 // Trouble communicating with server
 System.out.println(ioe.getMessage());
 ioe.printStackTrace();
 running = false;
 maint.interrupt();
 break;
 }
 }
 }
}

The inner class SerialWriter is shown in Listing 3.9. SerialWriter’s run
method enters a loop that reads data available on the socket’s InputStream and
immediately writes the data to the serial port’s OutputStream. It also maintains a
single 1024-byte buffer that is (re)used for moving data from the socket to the
serial port.

SerialWriter’s job is just a bit less complicated than that of SerialReader as
it doesn’t need to be concerned with receive time-outs and thresholds. A time-out
could be set for reads from the socket’s InputStream, but in this example, it sim-
ply blocks until 1 or more bytes of data are available and returns the minimum of
the data available and the buffer length. If the remote server closes the network
connection, the socket’s InputStream read method returns –1. When this occurs,
running is set to false and the maintenance thread is interrupted. This will cause

79

all three threads to eventually fall out of their run methods, and the application
will terminate.

Listing 3.9 SerialWriter

...
private class SerialWriter implements Runnable {
 private byte[] ethBuf = new byte[1024];
 private Thread maint;

 private SerialWriter(Thread maint) {
 this.maint = maint;
 }

 public void run() {
 int count = 0;
 while (running) {
 try {
 // Read all available data from network server
 count = sin.read(ethBuf, 0, ethBuf.length);
 if (count > 0) {
 // Write data received from network out serial port
 spout.write(ethBuf, 0, count);
 networkTotal += count;
 } else if (count == -1) {
 running = false;
 maint.interrupt();
 }
 } catch (IOException ioe) {
 System.out.println(ioe.getMessage());
 ioe.printStackTrace();
 running = false;
 maint.interrupt();
 break;
 }
 }
 }
}

For this application we wanted to move relatively large amounts of data
between the serial port and the network. If we only moved a byte (or even a few
bytes) at a time, the CPU would be consumed, performing relatively heavyweight
context switches moving back and forth from Java to the native OS. This would
dramatically reduce the overall throughput. For this reason, a large receive thresh-
old and buffer size were chosen for serial input. Moving large buffers prorates the
overhead of the expensive context switches mentioned previously. Another way to
possibly increase the overall throughput is to provide a large buffer for the driver’s
receive buffer, using the setInputBufferSize method described in Section 3.2.3.
If the driver maintains a large receive buffer, it gives the application more time to
service the buffer before the driver must tell the attached serial device to stop

A Serial ⇔ Ethernet Converter

80 Chapter 3 Serial Communication

transmitting. Ideally, how large to make the receive time-out, threshold, and the
driver’s serial input buffer should be computed as a function of the serial data rate
and an estimate of the CPU load imposed by any other tasks your application may
be performing.

In the event that the SerialReader thread is unable, due to other system activ-
ity, to unload the serial receive data fast enough, the serial driver’s receive buffer
is protected by the use of RTS/CTS flow control. On the networking side of things
we don’t need to worry at all about the flow control. It’s automatically handled by
the fact that we’re using a Socket. A Socket (as opposed to a DatagramSocket)
encapsulates a TCP connection. TCP provides built-in flow control.

To test SerialToEthernet, the BlackBox utility was used to simulate the serial
device shown in Figure 3.4. When selected, its “auto transmit” mode will continu-
ously transmit data at the specified rate. Its receive window shows the continuous
stream of data that is received simultaneously. For testing the network portion of
the application, an echo server9 was used. With this particular test configuration,
all bytes originate from the BlackBox transmitter and terminate at the BlackBox

receiver.

9. The source for the EchoServer application wasn’t shown here, but it, along with all of
the source to SerialToEthernet, is included in the accompanying CD.

81

CHAPTER 4 The 1-Wire Net

Many of the gadgets that you might want to interface to TINI such as cameras,
vending machines, lab equipment, and so forth are electronic and have the built-in
capability to communicate with the outside world. Perhaps they are stand-alone
devices with some type of serial or parallel port. These are usually “smart”
devices endowed with their own processor that manages the underlying physical
port used to communicate with other electronic devices. What about all the other
things that lack the ability to communicate with the outside world—for example,
an appliance such as a light, dishwasher, or heater? Or maybe you’re trying to
gather information about something that isn’t even a physical device—the envi-
ronment in a remote-climate-controlled room, for example.

1-Wire chips provide network connectivity to otherwise mute entities. The var-
ious families of 1-Wire chips provide functionality ranging from object tagging for
the sole purpose of identification to sensing environmental conditions such as tem-
perature and humidity and scale all the way to secure cryptographic processors that
run JavaCard and provide an authentic digital identity. Once 1-Wire chips are
attached to an object, it becomes capable of joining a 1-Wire network. Once the
object is a part of a 1-Wire network, TINI provides the bridge to the Internet,
allowing it to be monitored and controlled by something as common and easy to
use as a Web browser.

This chapter begins with a brief introduction to 1-Wire networking. The
introduction defines the notion of a 1-Wire network and describes the low-level
communication protocols. The introduction is intended to present only the core

82 Chapter 4 The 1-Wire Net

concepts and terminology necessary to describe and illustrate the use of TINI’s
1-Wire API. An in-depth treatment of 1-Wire networking is beyond the scope of
this book.1 The rest of the chapter provides a detailed description of the 1-Wire
API and examines adapters and containers, the classes that represent them, and
how they are used to monitor and control devices on a 1-Wire network. Even
though all of the examples presented in this chapter were tested on TINI, it
should be mentioned that the 1-Wire API is also supported on several other Java
platforms as well.2

4.1 1-WIRE NETWORKING FUNDAMENTALS

A 1-Wire network is a collection of one or more uniquely addressable devices that
share a single conductor for communication and power. The single conductor is
often referred to as a bus. The 1-Wire devices attached to the bus are always
slaves. This implies the existence of a master that initiates all communication with
the devices.

4.1.1 1-Wire Signalling

The extremely simple hardware configuration of a 1-Wire network is shown in
Figure 4.1.

1. A thorough treatment of 1-Wire networking is provided at http://www.ibutton.com/
ibuttons/standard.pdf.

2. Details on platform support for the Java 1-Wire API can be found at
http://www.ibutton.com/software/1wire/1wire_api.html.

Rx

Tx

1-Wire master

Tx
100 Ohm
MOSFET

Rx

5uA
Typ.

1-Wire chip (slave)

Tx
100 Ohm
MOSFET

Rx

5uA
Typ.

1-Wire chip (slave)

VPUP

2.2 K Ohm (Typ.)

Rx = Receive
Tx = Transmit

Figure 4.1 1-Wire network hardware configuration

1-Wire Networking Fundamentals 83

1-Wire devices are open drain driven and can therefore only drive the bus low.
The devices rely on either an external pull-up resistor on the master end of the bus
or a pull-up resistor integrated into a dedicated master chip to return the bus to a
high state. In normal operating conditions the bus is not even driven high by the
master. There are, however, circumstances when a properly configured master will
actively drive the line high for very brief durations to aid communication over
long line lengths.

Most 1-Wire devices can communicate at two different speeds3: regular speed
and overdrive speed. If not explicitly set into the overdrive speed, devices will
communicate at regular speed. Regular speed results in a maximum data rate of
16.3 kilobits per second, while overdrive speed results in a maximum data rate of
144 kilobits per second. The characteristics of the waveforms at the two different
speeds are the same except for the duration.

There are four distinct signals (or waveforms) generated by the master on the
1-Wire bus.

1. Reset sequence
2. Write 0
3. Write 1
4. Read data

The reset sequence is used to return all devices on the bus to a known initial
state. It consists of a master generated reset pulse followed by a device generated
presence pulse. The master transmits a reset pulse by driving the bus low for a
minimum 480 µs at regular speed or 48 µs at overdrive speed. The master then
releases the bus and goes into receive mode. The bus is pulled to a high state via
the pull-up resistor. After detecting the rising edge on the bus, the devices wait 15
to 60 µs at regular speed or 2 to 6 µs at overdrive speed and then transmit the pres-
ence pulse by driving the bus low for a time of 60 to 240 µs at regular speed or 8
to 24 µs at overdrive speed. A reset pulse of 480 µs or longer will return any
devices communicating at overdrive speed to regular speed.

The read and write data signals are known as time slots. All time slots are initi-
ated by the master driving the bus low for at least 1 µs. The falling edge of the data
line synchronizes the slave devices to the master. Each slave device employs a
delay circuit that is triggered by this falling edge. During write time slots, the delay
circuit determines when the devices will sample the bus. For a read data time slot,
if a 0 is to be transmitted, the delay circuit determines how long the devices will
hold the data line low overriding the 1 generated by the master. If the data bit is a 1,
the device will leave the read data time slot unchanged. An important point to make

3. Some of the older 1-Wire devices are only capable of communication at regular
speeds. Supported speeds for any device are specified in that device’s data sheet.

84 Chapter 4 The 1-Wire Net

here is that any device that transmits a 0 in response to a master initiated read time
slot will override or hide any 1 transmitted by any other device. Since lows (logical
0s) are actively driven and highs (logical 1s) are soft due to the relatively large pull-
up resistor between the bus and power, 0s win any contention. This point is impor-
tant in understanding the address discovery process described in Section 4.1.3.

Note that the master samples the 1-Wire line whether it is transmitting or
receiving. This means that the application receives the data it transmits. This fact
can be used by an application as a quick check to ensure that the data it transmit-
ted was not altered by errors such as a momentary short of the 1-Wire line to
ground. We’ll put this to the test in Listing 4.6. This quick check, however, does
not obviate the need to protect 1-Wire data using CRCs (cyclic redundancy
checks) as described in Section 4.5.

4.1.2 1-Wire Transactions

A complete communication with a 1-Wire device is called a transaction. A trans-
action is divided into 3 phases.

1. Initialization
2. Addressing
3. Data exchange

The initialization phase consists of the bus master transmitting a reset pulse.
After receiving the reset pulse, all attached devices generate a presence pulse. At
this point the master knows that at least one device is attached to the bus. After the
initialization phase all devices are in a reset state waiting for the master to trans-
mit one of the address layer commands.

Typically, during the addressing phase, a specific device is targeted by broad-
casting its entire 64-bit address. This causes all but the addressed device to “drop
off the bus” by transitioning to a high-impedance idle state waiting for the master
to begin a new transaction. The device whose address was broadcast is “selected.”
The 1-Wire addressing commands and the addressing phase is covered in more
detail in Section 4.1.3.

After a device has been selected, it is ready to receive device-specific com-
mands that allow access to the services it provides. Different devices have differ-
ent capabilities. The details of special function commands and associated
protocols and data specific to a device family are described in a data sheet associ-
ated with the particular device. Most application software doesn’t need to worry
about these details because the 1-Wire API hides them through an abstraction
called a container, described in Section 4.4. However, applications with strict per-
formance requirements may wish to communicate directly with the device.

1-Wire Networking Fundamentals 85

Table 4.1 details a complete 1-Wire transaction for performing a temperature
conversion using a DS18S20 temperature sensor.

After the DS18S20 has finished with the temperature conversion, a second
transaction is required to read the result. This transaction is detailed in Table 4.2.
Note that both transactions begin with a reset followed by device selection using
the DS18S20’s address. This is true of almost all 1-Wire transactions.

Table 4.1 Perform temperature conversion

Master Data Comments

Transmit Reset Reset all 1-Wire devices

Receive Presence pulse All devices announce their presence on
the bus

Transmit Address match (0x55) Devices wait for an address to be broad-
cast

Transmit DS18S20’s address All other devices idle

Transmit Convert temperature com-
mand (0x44)

Send special function command

N/A None Master leaves bus high for ~.75s to
provide power for conversion

Table 4.2 Read temperature conversion results

Master Data Comments

Transmit Reset Reset all 1-Wire devices

Receive Presence pulse All devices announce their presence on
the bus

Transmit Address match (0x55) Devices wait for an address to be broad-
cast

Transmit DS18S20’s address All other devices idle

Transmit Read scratchpad command
(0xbe)

Results of conversion are stored in the
scratchpad

Receive Scratchpad data Read the temperature data

86 Chapter 4 The 1-Wire Net

4.1.3 Addressing 1-Wire Chips

All 1-Wire devices contain a unique 64-bit address. This address consists of three
distinct parts, as shown in Figure 4.2.

The family code is used to determine the type (or family) of the 1-Wire device
and therefore the services it provides. For example, the family id for the DS2406
Dual Addressable Switch is 0x12.4 After reading the 1-Wire address and extract-
ing the family id, the application knows it has discovered a switch with two
switched I/O channels and 128 bytes of EPROM. The Device id portion of the
address can be viewed simply as a large number used to ensure uniqueness. The
CRC (Cyclic Redundancy Check) byte is used to ensure the integrity of both the
family and device id. The use of CRCs to protect the address as well as other data
is covered in detail in Section 4.5.

There are two methods by which 1-Wire devices are addressed.

• Device discovery
• Device selection

When an application that uses a 1-Wire network is started, it doesn’t need to
know the number, types, or addresses of the attached devices. Device discovery is
also referred to as an address search and allows the master to use a process of elim-
ination to discover the addresses of all the devices on the network. Once the host
knows a device’s address, its type and therefore the services it provides are easily
attained by examination of the family id portion of the address. Device selection is
also called an address match and is used to select a specific device given its
address. After the host application has “discovered” the addresses of all of the
devices on the network, it uses the selection process to initiate further 1-Wire
transactions targeted at a specific device. Let’s consider device discovery and
device selection in more detail.

For the following discussion it is helpful to represent a 1-Wire address, A, as
an “array of bits.” The array has 64 elements labeled A0 to A63, where A0 is the
0th element of the array and least significant bit of the address. It is also useful to
imagine that both the master and all 1-Wire chips maintain an iteration variable

4. A list of all device types and associated family ids can be found online (see http://
www.dalsemi.com/products/autoinfo/families.html).

FamilyCRC Device Id

Figure 4.2 1-Wire address

1-Wire Networking Fundamentals 87

(call it i, where) that represents the position within the address during
the search process.

The process of device (or address) discovery begins with the master transmit-
ting a reset followed by the “search address” command byte (0xf0). The device
discovery process continues with the iterative execution of the following three-
step sequence: read a bit (R0), read the complement of the bit (R1), write an
acknowledgment bit (W). Each iteration of this sequence produces one bit of a
device address. The address bits are discovered in little-endian fashion, starting
with the least significant bit A0. This sequence is performed for each bit of the
address and terminates after bit A63 has been discovered. After one complete pass,
the host application knows the complete 64-bit address of one device. The remain-
ing number of devices and their addresses are discovered by additional passes.
This implies that a full discovery of every 1-Wire chip on the bus is a process that
is linear in time.

Now let’s consider the three-step sequence and how it is used to discover the
ith bit of a device address (Ai). When the master initiates the R0i and R1i time
slots, all devices respond with Ai and the bit complement of Ai, respectively.
When the master transmits the acknowledgment bit (Wi), each device compares it
to Ai. If both Wi and Ai have the same bit value, the device waits for R0i+1; other-
wise the device transitions to the idle state, where it remains until the master
transmits a reset. As this iterative process continues, all but one device “drop off
the bus.” The address of the single device that remains “on the bus” for all 64 iter-
ations has been discovered. The magic lies with the master’s determination of the
value of the acknowledgment bit Wi. There are multiple algorithms a master can
use in determining Wi and the choice of algorithm determines the order in which
device addresses are discovered.5

One final important note about the discovery process is that after a pass of the
search has completed, the device whose address was just discovered has also been
“selected.” This implies that the device is ready to accept a “special function”
command, the next step in a 1-Wire device transaction.

Device selection is a more straightforward process that begins with the master
transmitting a reset followed by the “match address” command byte (0x55). After
receiving the match address command, each device on the network initializes its
address iterator to 0 and waits for the master to begin transmitting an address.
Let’s denote the target device’s address as T with address bits T0 to T63. The mas-
ter then begins transmitting the address T in a bit-serial fashion, starting with T0.
Each device compares T0 to its A0 bit. Each device that has an A0 equal to T0
increments its own address iterator to 1 and remains in a “listen” state waiting for
the master to transmit the next bit, T1. All other devices transition to the idle state,

5. The algorithm used by the Java 1-Wire API is described in the Book of iButton Stan-
dards (http://www.ibutton.com/ibuttons/standard.pdf).

0 i 63≤ ≤

88 Chapter 4 The 1-Wire Net

awaiting a reset from the master. This process continues with the master transmit-
ting T1, T2, and so on, and completes when the master transmits the most signifi-
cant bit of the target address, T63. After the entire 64 bits of the address have been
transmitted, only the device with that exact address (A = T) remains “on the bus.”
This device has been selected and is now ready to receive a special function com-
mand, continuing the 1-Wire transaction.

The addressing modes just described can be bypassed completely by using the
“skip address” or broadcast command (0xCC). The broadcast command can be
used when there is only one 1-Wire device attached to the bus. This is typically
considered bad practice because it precludes adding any more parts to the bus with-
out modifying the software that implements the lowest layer of the 1-Wire commu-
nication protocol. The skip address command can also be used when performing a
write only operation to many devices of the same family. This command can never
be used in an operation that involves reading data from multiple devices. This is
due to the fact that the bus is open drain driven and each bit read by the master
would be the logical AND of the data transmitted simultaneously by all attached
devices. Because the use of “skip address” command is only applicable to very
specialized circumstances, it is seldom used. All code examples that follow in this
chapter will use the discovery process to attain a device’s address. After the address
is known to the application, it will use the selection process to begin every commu-
nication with that device. This avoids possible collisions with any other devices.

4.1.4 1-Wire Chips and iButtons

Many 1-Wire applications present challenging packaging requirements. Applica-
tions such as access control and tagging for inventory management require a physi-
cally durable package. iButtons, 1-Wire chips packaged in 16mm diameter stainless
steel micro-cans, were created to provide durable, roaming data carriers. While
every iButton contains a 1-Wire chip, not all 1-Wire chips are iButtons. Later in this
chapter we introduce the notion of containers for 1-Wire devices. Containers exist
for every type of 1-Wire device without regard to form-factor or packaging.

4.2 ADAPTERS

The term port adapter, or more simply adapter, is used to refer to a 1-Wire master.
Each 1-Wire network has exactly one master that is responsible for initiating all
network communication as well as delivering the power and programming pulses
required by certain device families. The term adapter is used because 1-Wire mas-
ters typically attach to another physical port—such as a serial, parallel, or USB
port—and perform a translation between the host port and the 1-Wire network it
controls. At the lowest level adapters receive data from the port and transmit the
data in the form of time slots to the devices attached to the 1-Wire bus. Time slots

Adapters 89

simultaneously received on the 1-Wire bus are returned by the adapter to the host
port.

4.2.1 Finding and Creating Adapters

The com.dalsemi.onewire package is the root of the 1-Wire API hierarchy and is
purposefully very small and simple in design. This package contains only two
classes: OneWireAccessProvider and OneWireException. OneWireAccessProvider
provides the static method enumerateAllAdapters, which returns an Enumeration
of all adapters registered with the operating system. Adapters are represented by the
abstract class DSPortAdapter, defined in the com.dalsemi.onewire.adapter pack-
age. The example in Listing 4.1 finds all of the adapters and displays their names.

Listing 4.1 FindAdapters

import java.util.Enumeration;
import com.dalsemi.onewire.OneWireAccessProvider;
import com.dalsemi.onewire.adapter.DSPortAdapter;

class FindAdapters {
 public static void main(String[] args) {
 Enumeration e = OneWireAccessProvider.enumerateAllAdapters();
 while (e.hasMoreElements()) {
 System.out.println(
 ((DSPortAdapter) e.nextElement()).getAdapterName());
 }
 }
}

Running this application on TINI produces this output.

TINIExternalAdapter
TINIInternalAdapter

Both TINIExternalAdapter and TINIInternalAdapter are subclasses of
DSPortAdapter. If you know exactly the type and name of the adapter your
application is using, you can instantiate the adapter directly. For example, the two
adapters found in Listing 4.1 using OneWireAccessProvider.enumerateAllAdapters

could be created directly as shown in Listing 4.2.

Listing 4.2 CreateAdapters

import com.dalsemi.onewire.adapter.TINIInternalAdapter;
import com.dalsemi.onewire.adapter.TINIExternalAdapter;

class CreateAdapters {
 public static void main(String[] args) {
 TINIExternalAdapter external = new TINIExternalAdapter();

90 Chapter 4 The 1-Wire Net

 TINIInternalAdapter internal = new TINIInternalAdapter();
 System.out.println(external.getAdapterName());
 System.out.println(internal.getAdapterName());
 }
}

Running this application produces the same result as Listing 4.1.
Often applications know the name of the target adapter and use the direct

method shown in Listing 4.2 to create an adapter instance. Once an adapter has
been created, there is seldom any reason for an application to create additional
adapter instances that reference the same physical port adapter. Adapter objects
are typically instantiated during application initialization and remain in use for the
lifetime of the application.

If the application simply needs to access one adapter on the system, it can use
the OneWireAccessProvider.getDefaultAdapter method. This method returns an
instance of the underlying platforms default adapter. Which adapter is the
“default adapter” is determined by one of the three following methods (in order
of priority).

1. The adapter/port combination specified by the system property specified
by the “onewire.adapter.default” and “onewire.port.default” keys

2. The adapter/port combination specified in the “onewire.properties” file6

3. A “best guess” default

On TINI the external adapter, represented by TINIExternalAdapter, is the
default adapter and the system property specified by the “onewire.adapter.default”
key always exists. Therefore, there is seldom the need to create a “onewire.proper-
ties” file. Using getDefaultAdapter leads to code that will run on other Java plat-
forms as well as TINI.

4.2.2 The Internal Adapter

The internal adapter is so named because its physical interface is simply one of
TINIs microcontroller’s port pins and therefore can never be omitted from any
hardware implementation. This adapter is used by the operating system during
the boot process to read the Ethernet address stored in the EPROM of the on-
board 1-Wire chip. The number of attached devices and the line length driven by
the internal adapter are limited by the electrical characteristics of the microcon-
troller port pin used by the adapter. The same port pin is shared by other system
functions such as bit-bang serial output for system-level debugging and control-
ling the status LED. However, assuming TINI is loaded with non-debug firmware

6. If this file exists on TINI, it is contained in the “/etc” directory.

Adapters 91

and no applications are using the status LED, the internal adapter can be used for
controlling very small networks of 1-Wire devices.

4.2.3 The External Adapter

The external adapter uses a serial to 1-Wire converter7 that is attached to the aux-
iliary serial port (serial1) of TINI’s microcontroller. All TINI hardware designs
(including the TBM390) from Dallas Semiconductor include the external adapter
chip.

The external adapter is a full-featured port adapter capable of controlling 1-
Wire networks that cover a large area and potentially have many attached devices.
It is also capable of the power delivery required by many 1-Wire chips to perform
special functions such as measuring temperatures and converting analog voltages
and currents to digital outputs. Since the external adapter is far more capable, it is
the one used for almost all TINI 1-Wire applications. Most of the examples in this
chapter will use the external adapter.

4.2.4 Determining an Adapter’s Capabilities

The previous section provided a description of the two 1-Wire adapters supported
by TINI. This same information is encapsulated in an adapter instance and can
therefore be determined programmatically. The methods can* (canOverdrive,
canDeliverPower, and so on) defined in DSPortAdapter return the boolean result
true if the underlying adapter has that particular ability.

Listing 4.3 AdapterFeatures

import com.dalsemi.onewire.adapter.TINIExternalAdapter;
import com.dalsemi.onewire.adapter.TINIInternalAdapter;
import com.dalsemi.onewire.OneWireException;

class AdapterFeatures {
 public static void main(String[] args) {
 try {
 TINIInternalAdapter internal = new TINIInternalAdapter();
 System.out.println("Internal Adapter:");
 System.out.println(" Supports overdrive speeds - " +
 internal.canOverdrive());
 System.out.println(" Supports flexible timing - " +
 internal.canFlex());

 TINIExternalAdapter external = new TINIExternalAdapter();
 System.out.println("External Adapter:");
 System.out.println(" Supports overdrive speeds - " +

7. Specifically, TINI uses the DS2480b (see http://www.dalsemi.com/datasheets/pdfs/
2480b.pdf) as the 1-Wire line driver.

92 Chapter 4 The 1-Wire Net

 external.canOverdrive());
 System.out.println(" Supports flexible timing - " +
 external.canFlex());
 } catch (OneWireException owe) {
 System.out.println(owe.getMessage());
 }
 }
}

The AdapterFeatures program, shown above in Listing 4.3, creates instances
of TINIInternalAdapter and TINIExternalAdapter and queries both for their
capabilities. Running AdapterFeatures produces the following output.

Internal Adapter:
 Supports overdrive speeds - true
 Supports flexible timing - false
External Adapter:
 Supports overdrive speeds - true
 Supports flexible timing - true

We see here that both adapters are capable of communications at overdrive
speeds, but only the external adapter is able to support the flexible timing mode
used to communicate with 1-Wire chips over long line lengths.

4.2.5 Searching for 1-Wire Devices

One of the major roles served by an adapter is managing the address discovery (or
search) process by which the address of every device attached to the network is
discovered. The super class of all adapters, DSPortAdapter, contains several
methods used to configure and execute the discovery process. The method
getAllOneWireDevices returns an Enumeration of OneWireContainer objects
(containers are described in Section 4.4). Listing 4.4 uses the
getAllOneWireDevices method to obtain a “census” of all chips on the 1-Wire
network controlled by TINI’s default (external) adapter.

Listing 4.4 Census

import java.util.Enumeration;
import com.dalsemi.onewire.OneWireAccessProvider;
import com.dalsemi.onewire.container.OneWireContainer;
import com.dalsemi.onewire.adapter.DSPortAdapter;
import com.dalsemi.onewire.OneWireException;

class Census {
 public static void main(String[] args) {
 try {
 DSPortAdapter adapter =
 OneWireAccessProvider.getDefaultAdapter();

Adapters 93

 adapter.targetAllFamilies();
 System.out.println("1-Wire net addresses:");
 Enumeration e = adapter.getAllDeviceContainers();
 while (e.hasMoreElements()) {
 System.out.println(
 ((OneWireContainer)
 e.nextElement()).getAddressAsString());
 }
 } catch (OneWireException owe) {
 owe.printStackTrace();
 }
 }
}

When executed, Census displays a string representation of every 1-Wire
address attached to the network by invoking the getAddressAsString method on
each OneWireContainer object.

1-Wire net addresses:
F300000018A4BC12
8F00000018A37A12
AD00000018A51612
D600000018A37912
3D34C00000609F21

There are a total of five 1-Wire devices in this example configuration.8 Four of
them have the family id of 0x12. These devices are all DS2406-addressable
switches. The device with family id 0x21 is DS1921 Thermocron iButton.9 Ther-
mocrons log temperature over time for the purposes of generating time versus
temperature histograms. We’ll be using this same network configuration for the
next few examples. The important property of this configuration is that we have
devices from different 1-Wire families on the same network.

Since our simple network consists of only five chips, it doesn’t take long to
search the entire network. So, for example, if we’re interested only in Thermo-
crons, it wouldn’t be unthinkable to just get an Enumeration of all available
devices and slug through the Enumeration looking for Thermocrons. However, if
the network contained tens or even hundreds of devices, this approach would be
far too cumbersome. For this reason, DSPortAdapter defines several methods that
allow the targeting or exclusion of certain families. These methods greatly
improve the efficiency with which an application can identify devices of interest.

8. The specific test configuration used here is the Systronix 8x1-Wire Digital I/O board
with the Thermocron inserted into the iButton clip. See http://www.systronix.com/
expansion/8x1wire/81w.htm for details on the 8x1-Wire Digital I/O board.

9. More detailed information on the Thermocron iButton can be found at http://
www.dalsemi.com/datasheets/pdfs/1921.pdf.

94 Chapter 4 The 1-Wire Net

public void targetFamily(int familyID);
public void targetFamily(byte[] familyID);
public void excludeFamily(int familyID);
public void excludeFamily(byte[] familyID);

The targetFamily methods allow an application to specify exactly which
device families it is interested in. The searches that follow will return only
devices in the specified families. So, for example, if a program is only interested
in discovering the switches currently attached to the network, it would invoke
targetFamily specifying a value of 0x12 for the familyID parameter.

Using the targetFamily method, we can create a smarter version of Census

that finds only devices of a specified family. Listing 4.5 takes the family id pro-
vided on the command line and passes that value to targetFamily.

Listing 4.5 FamilyCensus

import java.util.Enumeration;
import com.dalsemi.onewire.OneWireAccessProvider;
import com.dalsemi.onewire.container.OneWireContainer;
import com.dalsemi.onewire.adapter.DSPortAdapter;
import com.dalsemi.onewire.OneWireException;

class FamilyCensus {
 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println(
 "Usage: java FamilyCensus.tini family_id");
 System.exit(1);
 }
 try {
 DSPortAdapter adapter =
 OneWireAccessProvider.getDefaultAdapter();
 // Family id assumed to be input in hex
 adapter.targetFamily(Integer.parseInt(args[0], 16));
 Enumeration e = adapter.getAllDeviceContainers();
 while (e.hasMoreElements()) {
 System.out.println(((OneWireContainer)
 e.nextElement()).getAddressAsString());
 }
 } catch (OneWireException owe) {
 owe.printStackTrace();
 }
 }
}

Running FamilyCensus and providing the addressable switches family ID of
0x12 on the command line produces a list of only switch addresses.

1-Wire net addresses:
F300000018A4BC12
8F00000018A37A12

Adapters 95

AD00000018A51612
D600000018A37912

Running FamilyCensus again specifying a family id of 0x21 displays the
address of the only Thermocron on the network, ignoring all of the switches.

1-Wire net addresses:
3D34C00000609F21

The excludeFamily methods exclude the specified families from the search
process and return only devices that are members of non-excluded families. This
is particularly useful for large networks that use 1-Wire digital switches to either
isolate or include different network segments. Often when searching for devices
on such a network, it is useful to exclude the switches to expedite the search pro-
cess. The adapter object maintains a list of all excluded family ids. This list can be
cleared at any time by invoking the targetAllFamilies method.

Certain families are capable of responding to a special type of search called
an “alarm search.” The alarm search allows parts in need of special attention to be
discovered quickly even in a large network of 1-Wire devices. For example, the
DS18S20 temperature sensor allows for the setting of high and low thresholds. If
the temperature drops below the low temperature threshold or rises above the high
temperature threshold, the device will enter an alarm state. Once in an alarm state,
a device will respond to alarm-only searches as well as general searches. An alarm
search uses a 1-Wire addressing command distinct from the general search, which
causes all 1-Wire devices that either don’t generate alarms or are not in an alarm
state to immediately drop off the bus. The setSearchOnlyAlarmingDevices

method sets the adapter’s internal search state to perform searches that discover
only devices in an alarm state.

public abstract void setSearchOnlyAlarmingDevices()
public abstract void setSearchAllDevices()

This state can be cleared by invoking setSearchAllDevices. This causes the
adapter to issue searches using the global search command rather than the alarm
search.

4.2.6 Adapter Ownership

This section deals with the rather difficult issue of multiple threads or even pro-
cesses accessing the same adapter. We use the term adapter in a generic sense,
applying it to either an instance of a subclass of DSPortAdapter or to a physical
adapter such as TINI’s external adapter. However, to treat the subject of mutual
exclusion effectively, we will need to draw a clear distinction between an adapter
object and the underlying physical adapter. In the rest of this section we’ll use the
term port adapter to refer to the underlying physical 1-Wire bus master and the

96 Chapter 4 The 1-Wire Net

term adapter instance (or object) when referring to an instance of a subclass of
DSPortAdapter.

Creating an adapter object provides a means for interacting with the underly-
ing port adapter, but it does not guarantee exclusive access to that port adapter or
the 1-Wire network it controls. DSPortAdapter defines the abstract methods
beginExclusive and endExclusive, requiring subclasses to override these meth-
ods and provide a mechanism for mutual exclusion.

public abstract boolean beginExclusive(boolean block)
 throws OneWireException
public abstract void endExclusive()

The beginExclusive method is invoked on an adapter object to obtain a lock
on the underlying physical adapter. Once the lock is owned by a particular
adapter, no other adapter instance can invoke methods that result in communica-
tion with either the port adapter directly or the 1-Wire network it controls. Any
attempt to do so results in a OneWireException being thrown. The lock applies to
other processes as well as other threads within the same process. The lock can be
freed by either of two mechanisms. Typically, the adapter instance that owns the
lock will invoke endExclusive, voluntarily releasing the lock. Also, the lock will
automatically be freed in the event that the owning process terminates without
invoking endExclusive.

The boolean value passed to beginExclusive specifies whether the caller
wishes to wait until the lock is free or return immediately regardless of the lock’s
state. If block is false, beginExclusive will immediately return true in the event
that the lock was successfully acquired and false otherwise. If block is true,
beginExclusive will attempt to acquire the lock; if it is already owned by another
adapter instance, beginExclusive blocks indefinitely until the lock has been freed
and it can claim ownership. When block is true and beginExclusive returns nor-
mally (that is, non-abruptly), it will always return true.

4.3 DIRECT 1-WIRE COMMUNICATION

Typically, once an application has used the adapter’s search capability to obtain
containers for the devices in which it is interested, all further communication
with the device goes through the container, not the adapter. However, while con-
tainers provide a very useful abstraction from the low-level device details, there
are times when it is better to avoid the overhead of containers and communicate
directly with the devices. Several methods in the DSPortAdapter class provide
the support necessary to communicate with any 1-Wire chip. The following
methods provide the minimum set of primitives that allow any possible commu-
nication with any 1-Wire chip.

Direct 1-Wire Communication 97

public int reset() throws OneWireIOException, OneWireException
public abstract boolean getBit()
 throws OneWireIOException, OneWireException
public void putBit(boolean bitValue)
 throws OneWireIOException, OneWireException

A reset is required to begin any new communication. Invoking reset10 puts
all devices on the 1-Wire net in a known (RESET) state. After the reset signal has
been transmitted, all devices are waiting to receive one of the addressing com-
mands. Since there is only one data carrier, communication is done in a bit-serial
fashion. So theoretically, the rest of the communication can be accomplished just
using getBit for reads and putBit for writes. In practice almost all device com-
mands and data are structured on byte-boundaries. So the methods

public void putByte(int byteValue)
 throws OneWireIOException, OneWireException
public int getByte() throws OneWireIOException, OneWireException

provide an efficient way to move individual bytes to the bus. The getBit and put-
Bit methods are necessary for communication with a few 1-Wire devices. For
example, every operation that runs the processor in the Java Powered iButton
begins with a release sequence that terminates with a single bit acknowledgment.

Both of the methods that write to the bus, putBit and putByte, throw
OneWireIOException if the value written (or transmitted) is not identical to the
value read (or received). Consider the example in Listing 4.6.

Listing 4.6 ByteBlast

import com.dalsemi.onewire.OneWireAccessProvider;
import com.dalsemi.onewire.OneWireException;
import com.dalsemi.onewire.adapter.DSPortAdapter;
import com.dalsemi.onewire.adapter.OneWireIOException;

class ByteBlast {
 public static void main(String[] args) {
 DSPortAdapter adapter = null;
 try {
 adapter = OneWireAccessProvider.getDefaultAdapter();
 adapter.beginExclusive(true);

 adapter.reset();
 while (true) {
 adapter.putByte(0xFF);
 }
 } catch (OneWireIOException ioe) {

10. This assumes the adapter is configured for “regular” bus speeds. A reset issued at
“overdrive” speed will reset only the devices currently operating at overdrive speed.

98 Chapter 4 The 1-Wire Net

 System.out.println("1-Wire I/O problem:"+ioe.getMessage());
 } catch (OneWireException owe) {
 System.out.println(owe.getMessage());
 } finally {
 adapter.endExclusive();
 }
 }
}

The first thing ByteBlast does is transmit a reset to the bus to put all devices
into a high-impedance listen-only state. Then it repeatedly writes the value 0xff11

to the bus, producing a continuous stream of write-1 time slots. All devices should
be in a high-impedance state and therefore should not alter the state of the bus.
This implies that all data written should simply be echoed and the identical value
will be read. To terminate this application we can short the bus to ground, and the
logic 1s we were writing to the bus are read back as logic 0s. This causes putByte

to throw an instance of OneWireIOException, which is caught, and the following
output is displayed.

1-Wire I/O problem:Error during putByte()

In practice, OneWireIOException should be caught and the operation
retried. Transient problems can occur when roaming 1-Wire devices (typically
iButtons) attach to or detach from the network, causing a momentary short
between the 1-Wire bus and ground. This should not be sufficient to terminate a
well-written application. Retry logic must be intelligent enough to determine
when a problem is persistent and fatal.

Whenever possible an application should use block reads and writes when
accessing sequential memory addresses, as opposed to the less efficient approach
of invoking getByte or putByte in a loop. For example, a memory chip can be
read by selecting it, and transmitting a read memory command, followed by a
starting memory address. After this, all of the chip’s memory can be read using a
single invocation of a “block” read method. The following methods provide a
very efficient way to send and receive arbitrarily large blocks from 1-Wire
devices.

public byte[] getBlock(int len) throws OneWireIOException, OneWireException
public void getBlock(byte[] arr, int len)
 throws OneWireIOException, OneWireException
public void getBlock(byte[] arr, int off, int len)
 throws OneWireIOException, OneWireException

Writes can also be done in a block fashion using this dataBlock method.

11. The value 0xff was chosen because it is not a valid address command and all devices
will simply ignore it.

Direct 1-Wire Communication 99

public abstract void dataBlock(byte[] arr, int off, int len)
 throws OneWireIOException, iButtonException

A single invocation of dataBlock can be used for reading and writing multiple
bytes. The block transfer methods are put to use in Listing 4.8.

The discovery process can also be controlled directly using the methods
findFirstDevice and findNextDevice.

public abstract boolean findFirstDevice()
 throws OneWireIOException, OneWireException
public abstract boolean findNextDevice()
 throws OneWireIOException, OneWireException

Since different adapters provide different interfaces to control the search pro-
cess, findFirstDevice and findNextDevice are abstract, forcing the subclasses
that encapsulate real adapters to implement the search algorithm. Both methods
throw OneWireIOException if any communication error occurs during the search
process. To discover the addresses of all devices attached to the network, an appli-
cation invokes findFirstDevice and then invokes findNextDevice repeatedly
until findNextDevice returns false. Listing 4.7 discovers and displays all of the
devices attached to the default adapter.

Listing 4.7 FastCensus

import com.dalsemi.onewire.OneWireAccessProvider;
import com.dalsemi.onewire.OneWireException;
import com.dalsemi.onewire.adapter.DSPortAdapter;

class FastCensus {
 public static void main(String[] args) {
 DSPortAdapter adapter = null;
 try {
 adapter = OneWireAccessProvider.getDefaultAdapter();
 adapter.beginExclusive(true);
 adapter.setSpeed(adapter.SPEED_REGULAR);
 if (adapter.findFirstDevice()) {
 System.out.println(adapter.getAddressAsString());
 while (adapter.findNextDevice()) {
 System.out.println(adapter.getAddressAsString());
 }
 }
 } catch (OneWireException owe) {
 System.out.println(owe.getMessage());
 } finally {
 adapter.endExclusive();
 }
 }
}

100 Chapter 4 The 1-Wire Net

FastCensus produces the same output as Listing 4.4 but without the overhead
of creating an Enumeration of OneWireContainer objects. It is important to realize
that invoking findFirstDevice does not typically return the address of the 1-Wire
device that is physically nearest the adapter. The ordering of device discovery is
logical, not physical.

Now that we know all of the methods required for direct access to the 1-Wire
network, we can put it all together in a more comprehensive example. Earlier in
this chapter it was mentioned that the Ethernet address is contained in a 1-Wire
device on TINI’s internal 1-Wire network. The Ethernet address is read when the
system boots and is written to program memory as well as the Ethernet controller.
The Ethernet address can be displayed at the slush prompt by executing the
ipconfig command with no command line parameters. The ipconfig command
fetches the Ethernet address directly from system memory, using the
getEthernetAddress method in the class com.dalsemi.tininet.TININet.

Another method of accomplishing the same result is to read the Ethernet
address directly from the 1-Wire source. The device that maintains the MAC id is
called a DS2502. The DS2502 has a family id of 0x89 and contains 128 bytes of
EPROM memory. During the manufacturing process, the 48-bit Ethernet address
is programmed into the DS2502’s memory, starting at address 0x06. The memory
is programmed in a fashion that allows this address to be determined programmat-
ically. However, performing this exercise would add little value to the example, so
we’ll just accept the starting address as a magic number.12

Listing 4.8 EthernetAddressReader

import com.dalsemi.onewire.adapter.TINIInternalAdapter;
import com.dalsemi.onewire.OneWireException;

class EthernetAddressReader {
 static final int TARGET_FAMILY_ID = 0x89;
 static final int START_ADDRESS = 0x6;
 static final int READ_MEMORY_COMMAND = 0xf0;

 public static void main(String[] args) {
 TINIInternalAdapter adapter = new TINIInternalAdapter();
 boolean foundIt = false;

 try {
 adapter.beginExclusive(true);
 if (adapter.findFirstDevice()) {
 // Test LSB (family id) against target
 if ((adapter.getAddressAsLong()&0xff) ==
 TARGET_FAMILY_ID) {

12. For those interested, the storage format is governed by the UniqueWare specification
that can be viewed online (see http://www.dalsemi.com/datasheets/pdfs/app99.pdf).

Direct 1-Wire Communication 101

 foundIt = true;
 }
 while (!foundIt && adapter.findNextDevice()) {
 if ((adapter.getAddressAsLong() & 0xFF) ==
 TARGET_FAMILY_ID) {
 foundIt = true;
 }
 }
 if (foundIt) {
 /*
 * data[0] -> read memory command byte
 * data[1] -> low byte of starting address
 * data[2] -> high byte of starting address
 */
 byte[] command = new byte[3];
 command[0] = (byte) READ_MEMORY_COMMAND;
 command[1] = START_ADDRESS & 0xFF;
 command[2] = (START_ADDRESS >>> 8) & 0xFF;

 // Send the command and starting memory address
 adapter.dataBlock(command, 0, command.length);
 // Read 48-bit ethernet address
 byte[] macID = adapter.getBlock(6);
 for (int i = 5; i >= 0; i--) {
 System.out.print(
 Integer.toHexString(macID[i] & 0xff));
 if (i != 0) {
 System.out.print(":");
 }
 }
 System.out.println();
 } else {
 System.out.println("Device not found");
 }
 }
 } catch (OneWireException owe) {
 System.out.println(owe.getMessage());
 } finally {
 adapter.endExclusive();
 }
 }
}

EthernetAddressReader (Listing 4.8) begins by searching for a device with the
correct family id. Note that we assume there is only one DS2502 attached to TINI’s
internal 1-Wire network. After the correct part has been addressed, a 3-byte write is
performed using the dataBlock method to transmit the read memory command and
the starting address. This is immediately followed by reading the 6-byte (48-bit)
Ethernet address using getBlock. Finally, the result is formatted in a manner simi-
lar to that used by “arp” commands on Unix systems.

0:60:35:0:55:27

102 Chapter 4 The 1-Wire Net

This result should be identical to the Ethernet address displayed by slush upon
execution of ipconfig.

4.4 CONTAINERS

The container classes provide high-level access to the services offered by specific
families of devices, shielding the programmer from low-level details of possibly
complicated communication protocols. Consider, for example, the DS18S20 tem-
perature sensor device. In Section 4.1.2 we detailed the two 1-Wire transactions
required to obtain a temperature. For most development purposes we would prob-
ably want something as simple as a method that returns a floating point represen-
tation of the current temperature rather than worrying about the details of sending
and receiving the set of 1-wire commands and data specified in Tables 4.1 and 4.2.

4.4.1 The Class OneWireContainer

The OneWireContainer class, defined in the com.dalsemi.onewire.container
package, is the superclass of all device specific containers and implements default
fuctionality that is shared by all 1-Wire devices, specifically the address. It also
provides methods for identifying and describing the devices in a textual form.

All 1-Wire device families are represented by a subclass of
OneWireContainer and also exist in the com.dalsemi.onewire.container
package. The name of the container is simply a hexadecimal string
representation of the device family id appended to OneWireContainer’s fully
qualified class name. For example, devices with a family id 0x10 are
represented by the container class OneWireContainer10. The formation of a
container class name is done in this fashion to allow instances of device specific
container classes to be created as they are discovered on the 1-Wire network.
This is discussed in more detail in the next section.

An instance of OneWireContainer (or a subclass) maintains a reference to its
parent adapter that is used for all communication with the device.
OneWireContainer methods use the techniques described in Section 4.3 for
sending and receiving commands and data to and from the underlying device.

4.4.2 Creating Container Instances

OneWireContainer objects are created by invoking any of the following methods
on an instance of a subclass of DSPortAdapter.

public OneWireContainer getFirstDeviceContainer()
 throws OneWireIOException, OneWireException
public OneWireContainer getNextDeviceContainer()

Containers 103

 throws OneWireIOException, OneWireException
public Enumeration getAllDeviceContainers()
 throws OneWireIOException, OneWireException

The DSPortAdapter methods that create container objects use forName and
newInstance of class Class. The string passed to forName to get the Class object
is created by appending an uppercase, hexadecimal String representation of the
device’s family id to the String representation of the fully qualified name of One-

WireContainer: com.dalsemi.onewire.container.OneWireContainer.
The Census example in Listing 4.4 used the methods findFirstDevice and

findNextDevice to display all devices on the network. We can use the methods
getFirstDeviceContainer and getNextDeviceContainer to find the same devices
in the same order, but instead of just returning a boolean result,
getFirstDeviceContainer and getNextDeviceContainer return OneWireContainer
objects representing the devices found during the discovery process. Listing 4.9 is
essentially the same as Listing 4.7 except it uses getFirstDevice and
getNextDevice to obtain device containers. Once we have containers, we can print
out more information specific to the chips discovered during the search, as opposed
to just each chip’s address.

Listing 4.9 FindContainers

import com.dalsemi.onewire.OneWireAccessProvider;
import com.dalsemi.onewire.OneWireException;
import com.dalsemi.onewire.container.OneWireContainer;
import com.dalsemi.onewire.adapter.DSPortAdapter;

class FindContainers {
 public static void main(String[] args) {
 DSPortAdapter adapter = null;
 try {
 adapter = OneWireAccessProvider.getDefaultAdapter();
 adapter.beginExclusive(true);
 adapter.setSpeed(adapter.SPEED_REGULAR);
 OneWireContainer owc = null;
 if ((owc = adapter.getFirstDeviceContainer()) != null) {
 System.out.println(owc.getName()+","+
 owc.getAlternateNames() +
 " at address "+
 owc.getAddressAsString());

 while ((owc=adapter.getNextDeviceContainer()) != null) {
 System.out.println(owc.getName()+","+
 owc.getAlternateNames() +
 " at address "+
 owc.getAddressAsString());
 }
 }
 } catch (OneWireException owe) {
 System.out.println(owe.getMessage());

104 Chapter 4 The 1-Wire Net

 } finally {
 adapter.endExclusive();
 }
 }
}

Running FindContainers on the same 1-Wire network as Listing 4.7 outputs
each chip’s address as well as a short description and formal part name.

DS2406,Dual Addressable Switch at address F300000018A4BC12
DS2406,Dual Addressable Switch at address 8F00000018A37A12
DS2406,Dual Addressable Switch at address AD00000018A51612
DS2406,Dual Addressable Switch at address D600000018A37912
DS1921,Thermochron at address 3D34C00000609F21

Note that on TINI, device specific container classes are not available by
default as part of the API. They must be included with the application during the
conversion process (see Section 1.4.2). In Listing 4.9, OneWireContainer12 and
OneWireContainer21 were both included during the conversion process for
FindContainers. On large systems with no practical memory constraints, it is
reasonable to assume that all device specific containers will be available.

Finally, OneWireContainer objects can also be created directly in the event
that the application somehow knows a device’s address without going through the
discovery process. In this case the application can create a OneWireContainer

object using the container’s default constructor and invoking one of the setupCon-

tainer methods on the newly created container. All setupContainer methods
require an adapter to be used for device communication and the device’s address.

public void setupContainer(DSPortAdapter sourceAdapter, byte[] newAddress)
public void setupContainer(DSPortAdapter sourceAdapter, long newAddress)
public void setupContainer(DSPortAdapter sourceAdapter, String newAddress)

4.4.3 Example: 1-Wire Humidity Sensor

At the time of this writing there were over 20 containers, one for each device family.
Now we’ll take a closer look at the container for one of the more interesting 1-Wire
device families, the DS2438 A/D (Analog to Digital) converter. The DS2438
includes an A/D converter, a temperature sensor, an elapsed time meter, and 40 bytes
of nonvolatile memory. The practical uses for a device that can measure analog volt-
ages and currents as well as sense temperature are nearly unlimited. For example, the
DS2438 can be used to create sensors that monitor various environmental conditions
including temperature, solar radiance, humidity, and barometric pressure.

We would expect a container designed to encapsulate the DS2438’s behavior
to provide simple methods for accessing the memory, reading the current temper-
ature, and returning the voltage read on its A/D pin. For our purposes we’ll need
to be able to read the temperature and the input voltage on the Vad pin as well as

Containers 105

the supply voltage (Vdd). OneWireContainer26 (the DS2438 has a family id of
0x26) provides the following methods to serve these purposes13.

public void doADConvert(int channel, byte[] state)
 throws OneWireIOException, OneWireException
public double getADVoltage(int channel, byte[] state)
 throws OneWireIOException, OneWireException
public void doTemperatureConvert(byte[] state)
 throws OneWireIOException, OneWireException
public double getTemperature(byte[] state)

Both the voltage and temperature measurements are split into two phases: per-
forming a conversion and reading the result. So, for example, to read an analog
voltage from the DS2438, an application invokes doADConvert, followed by
getADVoltage. The channel parameter of the doADConvert method allows the
caller to specify which analog voltage is desired. In Example 4.1 we’ll need to
read both Vad and Vdd.

This example uses a DS2438 and its associated container to create a 1-Wire
humidity sensor. The circuit diagram for the humidity sensor is shown in Figure
4.3. This circuit uses a core humidity sensor from Honeywell that outputs an ana-
log voltage that can be used in conjunction with the supply voltage and tempera-
ture to calculate the relative humidity using Equation 1 and Equation 2. The
DS2438 (U1) provides a 1-Wire communication interface for the composite sen-
sor as well as the analog-to-digital conversion and the temperature measurement.
The schottky diode, D2, is used to protect the circuit from negative voltages
greater than about 400 millivolts in magnitude. D1 and C1 are used to build a par-
asite power supply that “steals” energy from the bus during high periods. Finally,
R1 and C1 serve as a low-pass filter.

13. This part actually contains much more functionality and therefore many more methods
than needed for our example.

C2
0.1uF

DATA (1- Wire)
Vdd

D2

Vdd

GND

D1

100K

R1

C1
.01uF

V
dd

1
G

N
D

3

Out
2

U2

HIH-3605-A

DQ
8

Vad
4

Vdd
5

V
s+

2

V
s-

3

G
N

D
1

U1

DS2438

Figure 4.3 1-Wire humidity sensor

106 Chapter 4 The 1-Wire Net

The output of the humidity sensor is an analog voltage proportional to the
supply voltage. From the HIH-3605 data sheet, the relative humidity at 25˚C can
be computed with respect to the supply voltage (Vdd) using Equation 1.

RHsensor = (Vout/Vdd – 0.16) / 0.0062 (EQ 1)

Of course, what we’re really interested in is the true relative humidity without
any dependence on the supply voltage or a fixed temperature. Equation 2 provides
the means to compute the true relative humidity.

RHtrue = RHsensor / (1.0546 – 0.00216*T) (EQ 2)

Where T is measured in degrees celsius (˚C). From these equations we can see
that we need three measurements to compute a value for RHtrue: Vout, Vdd, and T.
Fortunately, the A-to-D converter can measure both Vad and Vdd. Now we’re
armed with all of the information we need to write a small program to read the rel-
ative humidity using OneWireContainer26.

Listing 4.10 HumiditySensor

import com.dalsemi.onewire.OneWireAccessProvider;
import com.dalsemi.onewire.adapter.DSPortAdapter;
import com.dalsemi.onewire.OneWireException;
import com.dalsemi.onewire.container.OneWireContainer;
import com.dalsemi.onewire.container.OneWireContainer26;

public class HumiditySensor {
 DSPortAdapter adapter;
 OneWireContainer26 owc;
 byte[] state;

 HumiditySensor(DSPortAdapter adapter) throws OneWireException {
 this.adapter = adapter;
 // Only find DS2438 family devices
 adapter.targetFamily(0x26);
 adapter.setSpeed(adapter.SPEED_REGULAR);
 owc = (OneWireContainer26) adapter.getFirstDeviceContainer();
 if (owc == null) {
 throw new OneWireException("No DS2438 A to D chip found");
 }
 state = owc.readDevice();
 }

 public double getTemperature() throws OneWireException {
 owc.doTemperatureConvert(state);
 state = owc.readDevice();

 return owc.getTemperature(state);
 }

 public double getSensorRH() throws OneWireException {

Containers 107

 // Read Vad
 owc.doADConvert(OneWireContainer26.CHANNEL_VAD, state);
 double Vad = owc.getADVoltage(OneWireContainer26.CHANNEL_VAD,
 state);
 // Read Vdd
 owc.doADConvert(OneWireContainer26.CHANNEL_VDD, state);
 double Vdd = owc.getADVoltage(OneWireContainer26.CHANNEL_VDD,
 state);

 return (Vad/Vdd-0.16)/0.0062;
 }

 public double getTrueRH() throws OneWireException {
 return getSensorRH()/(1.0546-0.00216*getTemperature());
 }

 void displayData() {
 try {
 adapter.beginExclusive(true);
 System.out.println("Temperature = "+getTemperature()+" C");
 System.out.println("RHsensor = "+getSensorRH()+"%");
 System.out.println("RHtrue = "+getTrueRH()+"%");
 } catch (OneWireException owe) {
 System.out.println(owe.getMessage());
 } finally {
 adapter.endExclusive();
 }
 }

 public static void main(String[] args) {
 try {
 HumiditySensor humidity =
 new HumiditySensor(
 OneWireAccessProvider.getDefaultAdapter());
 humidity.displayData();
 } catch (OneWireException owe) {
 System.out.println(owe.getMessage());
 }
 }
}

HumiditySensor finds the appropriate container during construction by
invoking targetFamily on the adapter object to specify that the search should
ignore all devices that are not in the DS2438 family. We then know that when
we invoke getFirstDeviceContianer on the adapter, it will return either an
instance of OneWireContainer26 or null if no devices with family id 0x26 are
discovered on the 1-Wire network. The getSensorRH method uses the container
to read both the supply voltage (Vout) and the voltage output of the core
humidity sensor (Vad) and then uses Equation 1 to compute RHsensor. The
getTrueRH method invokes getSensorRH to obtain RHsensor and getTemperature
to obtain a current temperature reading. It then uses those two results as input to
Equation 2 to compute the true relative humidity (RHtrue).

108 Chapter 4 The 1-Wire Net

Running HumiditySensor on the TINI in my home office in the beautiful
wilds of Coppell, Texas, produces the following rather unspectacular output.

Temperature = 26.875C
RHsensor = 45.766129032258057%
RHtrue = 45.915238770164166%

In this case, the relative humidity as measured by the core analog humidity
sensor is not far from the true relative humidity computed taking supply voltage
and temperature into account. This makes sense because the temperature was
close to the nominal 25˚C used by the core sensor. As the temperature drifts far-
ther from 25˚C in either direction, we would expect wider divergence of RHsensor
from RHtrue.

4.5 ENSURING DATA INTEGRITY USING CRCS

The com.dalsemi.onewire.utils package contains two utility classes used exclu-
sively for the computation and verification of Cyclic Redundancy Checks (CRCs).
A CRC is a mathematical tool used to verify the integrity of data transferred over
an unreliable communication link.

It is common in 1-Wire networks to have devices that are both “hard-
wired” (permanently attached) and roaming. Roaming devices can cause tran-
sient short circuits on the 1-Wire bus that corrupt normal communications.
CRCs are employed to detect corruption in the transfer of data over the 1-Wire
bus. When errors are detected, the typical remedy is to retry the communica-
tion. Once the condition that caused the error is gone, the operation should
complete successfully.

Methods for the computation and verification of the two CRCs that are used
in the data transfer layers of the 1-Wire protocol, CRC-1614 and CRC-815 are pro-
vided by the classes CRC16 and CRC8, respectively. Both classes provide static util-
ity methods only and therefore have private constructors to explicitly disallow
their instantiation. The following method descriptions are from the CRC8 class, but
everything following applies to the CRC16 class as well. The following method is
the most flexible of the CRC generators.

public static int compute(byte[] data, int off, int len, int seed);

This method returns a CRC value computed over the range of bytes specified
by [off, off+len), using the specified seed. All of the other methods in the CRC8

14. The CRC-16 is described mathematically by the polynomial X16 + X15 + X2 + 1.
15. The 1-Wire CRC is an 8-bit CRC described mathematically by X8 + X5 + X4 + 1.

Ensuring Data Integrity Using CRCs 109

class simply provide some convenient subset of this functionality. For example,
the method

public static int compute(byte[] data);

computes the CRC over the entire byte[] using the default initial seed of 0. The
example in Listing 4.11 computes the CRC8 of the data input using hexadecimal
notation on the command line.

Listing 4.11 CRCCalculator

import com.dalsemi.onewire.utils.CRC8;

class CRCCalculator {
 public static void main(String[] args) {
 byte[] data = new byte[args.length];
 for (int i = 0; i < data.length; i++)
 data[i] = (byte) Integer.parseInt(args[i], 16);
 System.out.println("crc=" +

 Integer.toHexString(CRC8.compute(data)));
 }
}

Running CRCCalculator using the least significant 56 bits of the 1-Wire
address of the Thermocron on our example network

TINI /> java CRCCalculator.tini 21 9F 60 00 00 C0 34

produces the output

crc=3d

This implies that the last byte of the 1-Wire address (the CRC) is 0x3d.
Indeed, this agrees with the output from Listing 4.4. If we run the example again
with the CRC byte included

TINI /> java CRCCalculator.tini 21 9F 60 00 00 C0 34 3D

it produces the output

crc=0

The preceding two example outputs suggest the two different approaches that
an application may use to check a CRC value that it computes against the CRC
value read from the device. It can either compute the CRC of all of the data up to the
CRC byte(s) and then check that the resulting value is identical to the CRC returned
by the device, or it can compute the CRC of all of the data including the CRC
byte(s) returned by the device and check the computed CRC for a value of 0.16

110 Chapter 4 The 1-Wire Net

All methods that perform address searches in the API automatically check the
address CRC before returning an address to the caller. When a CRC check fails,
the search result is discarded. Several 1-Wire devices automatically generate
CRCs on various fields as they are being queried or updated. In these cases the
container implementation for that family is responsible for checking the CRC
before successfully returning to the caller. If the CRC fails, a OneWireIOException

is thrown to indicate that the operation failed. Applications that use 1-Wire mem-
ory devices for data storage and retrieval should be sure to protect their data using
the 16-bit CRC (CRC-16).

16. Note that the CRC-16 value is often stored bit-wise inverted (ones complement).
Computing the CRC-16 including the inverted CRC16 value results in a final value
of 0xB001 (as opposed to 0).

111

CHAPTER 5 TCP/IP
Networking

TINI’s main objective is to provide a powerful platform for developing small
embedded applications that connect non-networked devices to the network.
TINI’s broad networking is its most compelling feature, and Java’s suitability for
writing networked applications is one of the primary reasons TINI provides a Java
runtime environment. Java supports basic network access using classes in the
java.net package. Since TINI provides a full implementation of the java.net

package, many network applications written in Java will run on TINI without
modification. However, there are differences between developing a network appli-
cation for a PC or workstation and a dedicated network application for TINI.
These differences come from the fundamental nature of programming for embed-
ded networking devices. For example, configuring the network parameters on
general purpose computers or workstations is not handled programmatically as a
part of your application. However, in the embedded world, if your application
assumes control of the entire system, then it must be capable of configuring the
network as well as using it.

This chapter assumes a strong familiarity with writing networked applications
in Java. It is not intended to be a general treatment of TCP/IP networking or writ-
ing network applications in Java. There are many excellent books that cover both
of these subjects in detail. Rather, this chapter focuses primarily on programming
for TINI’s networking environment.

112 Chapter 5 TCP/IP Networking

5.1 TINI NETWORKING ENVIRONMENT AND
API OVERVIEW

A diagram of the networking environment is shown in Figure 5.1. The figure dis-
plays the following six application layer protocols that are supported in the API.

• HTTP (Hypertext Transfer Protocol)
• DNS (Domain Name System)
• DHCP (Dynamic Host Configuration Protocol)
• Telnet
• FTP (File Transfer Protocol)
• Ping (ICMP echo request/reply)

All of the application layer protocols except Ping are implemented using the
socket classes in the java.net package as the network transport mechanism. Ping
isn’t really a protocol. It’s an application wrapper over a subset of ICMP (Internet
Control Message Protocol). The Ping class, covered in Section 5.5, directly
invokes native methods that are exposed in the network stack’s ICMP module.

Support for most of the application layer protocols is provided by the sub-
packages of com.dalsemi.tininet.

• com.dalsemi.tininet.http
• com.dalsemi.tininet.icmp
• com.dalsemi.tininet.dhcp
• com.dalsemi.tininet.dns

We’ll cover TINI’s API for these protocols in detail in the next few sections. The
FTP and Telnet protocols are implemented in the com.dalsemi.shell.server.ftp

and com.dalsemi.shell.server.telnet packages, respectively. Both FTP and Tel-
net are implemented as servers and are typically only used by system shells such as
slush. Support for using FTP as a client is of course available using the URL classes
in the java.net package.

The protocols in Figure 5.1 are those for which the TINI networking API pro-
vides special support. Other networking protocols can and have been written in Java
and can run on TINI with little or no change to the code. Examples include both
servers and clients for network time and SNMP (Simple Network Management Pro-
tocol). Also, there is no reason that the protocol support provided in the networking
API cannot be extended or possibly even replaced by third-party implementations.

Parameters specific to the various network interfaces can be queried or config-
ured using the TININet class in the com.dalsemi.tininet package. TININet also
provides methods for setting global networking parameters such as the host and
domain name. Network configuration is covered in Section 5.2.

TINI Networking Environment and API Overview 113

5.1.1 The Network Interfaces

From Figure 5.1 we can see that TINI supports three distinct network interface types.

• Ethernet
• PPP over a serial link
• Loopback

There are a maximum of four network interfaces supported by the network
stack. For the sake of viewing the configuration of individual interfaces, assume
they are numbered starting with 0. Interface 0 is always the Ethernet interface
(eth0). Interface 1 is always the loopback (lo) interface, and interfaces 2 and 3
are available for use by up to two simultaneous PPP (Point-to-Point Protocol)
connections.

You can query the state of all network interfaces using the slush command
“ipconfig -x.”

Ethernet
DriverARP

ICMP

Ping

Loopback PPP

Ethernet
Controller

Serial Port

Modem

Ethernet Network Phone Switch Network

IP

Native Sockets

Java Networking API

DHCP DNS Telnet FTP HTTP

TCP UDP

IGMP

Application Protocols

Java
Native

Native

Hardware

Figure 5.1 Network protocol stack

114 Chapter 5 TCP/IP Networking

Interface 0 is active.
Name : eth0 (default)
Type : Ethernet
IP Address : 192.168.0.15
Subnet Mask : 255.255.255.0
Gateway : 192.168.0.1

Interface 1 is active.
Name : lo
Type : Local Loopback
IP Address : 127.0.0.1
Subnet Mask : 255.0.0.0
Gateway : 0.0.0.0

Interface 2 is not active.

Interface 3 is not active.

This sample output shows a fairly typical network configuration. In this case
the Ethernet interface (eth0) has been configured and is the default interface. This
means that an IP datagram that isn’t specifically destined for any host on the net-
works serviced by the other interfaces will be sent to the default (Ethernet in this
case) driver for transmission onto the physical link. Interfaces 2 and 3 as shown
above are not in use because there were no PPP connections on the system at the
time the ipconfig command was executed.

Network interfaces can be added or removed programmatically using TININet’s
addInterfaceEntry and removeInterfaceEntry methods. This operation is usually
handled indirectly through the PPP class using wrapper methods that provide the
details to the TININet methods. Neither the Ethernet nor loopback interface can be
removed from the system. Both are created as unconfigured network interfaces by
the system during the initial boot.

5.1.2 Ethernet

Ethernet is by far the most popular networking technology used today in con-
structing Local Area Networks (LANs). Ethernet networking is currently sup-
ported on TINI using a separate Ethernet controller to send and receive network
messages. All Ethernet nodes have a 48-bit address, usually called the Ethernet
address or MAC id. To ensure that networking hardware is built with a unique
address, the number pool is managed by the Institute of Electrical and Electronics
Engineers1 (IEEE). Organizations register for an Organizationally Unique Identi-
fier (OUI). The OUI is the most significant 24 bits of the MAC id and is 00:60:35
for TINI. The Ethernet address is stored in the EPROM of a 1-Wire chip on the

1. A list, searchable by organization name, of OUIs is online at http://standards.ieee.org/
regauth/oui/index.html

TINI Networking Environment and API Overview 115

internal 1-Wire net and is present in every TINI hardware implementation. It can
be queried but not altered programmatically. The following getEthernetAddress

methods are defined in TININet and return the ethernet address as either a byte
array or String.

public static void getEthernetAddress(byte[] address)
public static String getEthernetAddress()

The Ethernet address can also be used by applications as a unique identifier
for the TINI hardware on which it is running. The first method listed above fills in
the supplied byte array with the Ethernet address where the most significant byte
is stored in the 0th array element. Since the Ethernet address is 48 bits long, the
array must be of length 6 or greater. The second method returns a String repre-
sentation of the Ethernet address in a format similar to that output by a UNIX
style arp command. In Section 4.3 we read the Ethernet address directly from its
storage in the on-board 1-Wire chip. That was for the sake of learning how to
communicate directly with 1-Wire chips. But it was definitely the hard way to dis-
cover the MAC id. The SimpleEthernetAddressReader program, shown in
Listing 5.1, produces the same result in a trivial fashion.

Listing 5.1 SimpleEthernetAddressReader

import com.dalsemi.tininet.TININet;

class SimpleEthernetAddressReader {
 public static void main(String[] args) {
 System.out.println(TININet.getEthernetAddress());
 }
}

Notice that the following sample output is identical to that of the
EthernetAddressReader example in Listing 4.8.

TINI /> java SimpleEthernetAddressReader.tini
0:60:35:0:55:27

The Ethernet interface is typically configured as the default interface. It pro-
vides the most efficient means to transfer data to other networked hosts. On cur-
rent TINI hardware implementations, the highest sustainable data rate over a TCP
connection is about 1Mbps or 10 percent of the bandwidth of a 10Mbps Ethernet
network.

5.1.3 PPP

Just like the Ethernet driver, the Point-to-Point Protocol (PPP) module provides a
packet-oriented interface to the IP layer. PPP is actually a very broad and flexible

116 Chapter 5 TCP/IP Networking

protocol that allows for the transmission of various types of network packets over
various types of physical links such as serial, parallel, and even Ethernet. How-
ever, on TINI, PPP is used strictly as a mechanism to transmit IP datagrams over
a serial link. PPP uses one of the serial port drivers for all data transmission.
Usually a modem is attached to the serial port to support dial-up networking
applications.

If you’re using Ethernet (eth0) or Loopback (lo) interfaces only, you won’t
need to add or remove network interfaces. Only PPP interfaces can be dynam-
ically added to or removed from the system. By convention PPP interfaces are
named by appending the serial port number to the lowercase string “ppp.” Any of
the four serial ports can be used by the native stack’s PPP implementation to pro-
vide the physical data link. The network stack can support two simultaneous PPP
sessions over two independent serial ports.

For applications that support dial-up networking, the classes in the
com.dalsemi.tininet.ppp provide an API for establishing and controlling PPP
connections. The PPP API is discussed in Chapter 6.

5.1.4 Loopback

The loopback interface (lo) allows a server and (potentially multiple) clients to
communicate on the same host from possibly different processes. The class A net-
work id 127 is reserved for use by the loopback interface. Since it is a class A net-
work, it uses the subnet mask 255.0.0.0 so that all of the IP addresses between
127.0.0.1 and 127.255.255.2542 are valid IP addresses and use the loopback inter-
face. No IP traffic destined to a 127 address is transmitted to any physical network
interface. TINI follows the convention of binding the name “localhost” with the IP
address 127.0.0.1. If you use the slush “ping” command to ping localhost, you
will see the following output.

TINI /> ping localhost
Got a reply from node localhost/127.0.0.1
Sent 1 request(s), got 1 reply(s)

You should be able to execute this command regardless of whether you’ve
previously configured any of the other network interfaces, since loopback is auto-
matically configured during the boot process and therefore always exists. One
minor note here is that unlike “pinging” hosts on other network interfaces, ping-
ing localhost should never fail to get a reply. This is because the IP datagram car-
rying the ping (ICMP echo request) data is never transmitted “on the wire”
removing the possibility of a lost IP datagram.

2. 127.0.0.0 is the network address and 127.255.255.255 is the broadcast address for the
127 network.

Setting Network Parameters 117

The loopback interface is generally used by the network stack implementors
for testing purposes, but it can also be used by multiple applications running on
the same host as a mechanism for IPC (Inter-Process Communication).

5.2 SETTING NETWORK PARAMETERS

On non-embedded hosts, networking applications don’t need to worry about con-
figuring basic network parameters such as the IP address and subnet mask. This
task is performed by a network administrator using the network utility program
provided with the operating system. During application development this is also
true for TINI. The network settings are established using the slush ipconfig com-
mand. Ultimately, however, if your application is going to control the entire sys-
tem, it will replace slush as the Java application that is launched automatically
when the system boots. In this case, your application must be able to query and
configure network parameters.

The TININet class in the com.dalsemi.tininet package provides static meth-
ods for storing and retrieving all of the configuration information used by the dif-
ferent network interfaces, TCP/IP stack, and “built-in” application protocols. The
following are networking parameters configurable using TININet, with brief
descriptions.

• IP address. A 32-bit integer that encodes the host’s network identification
as well as the identification of the host on that network. Every host on an
internet has a unique IP address. Each network interface has its own IP
address.

• Subnet mask. A 32-bit integer used by the TCP/IP protocol stack as a bit
mask to separate the network and host portions of the IP address.

• Gateway (router) IP address. The IP address of the default router. A router is
(usually) a dedicated machine connected to at least two networks that for-
wards IP datagrams between the various networks.

• Primary DNS address. The IP address of the preferred DNS (Domain Name
System) server. A DNS server resolves IP addresses to human readable
host names, and vice-versa.

• Secondary DNS address. The IP address of an alternate DNS server. If a
request to the primary DNS server is unanswered, the DNS client imple-
mentation will send the request to the secondary DNS server.

• DNS time-out value. The amount of time (in milliseconds) that the DNS cli-
ent will wait for a response from a DNS server before timing out and pos-
sibly retransmitting the request.

• Domain name. A string representing the domain name (for example,
“dalsemi.com”).

118 Chapter 5 TCP/IP Networking

• DHCP server IP address. The IP address of the DHCP (Dynamic Host Con-
figuration Protocol) server. DHCP is discussed in detail in Section 5.2.2.

• Host name. A string representing the local host’s (not localhost) name. The
host’s name is not necessarily the same as its DNS name.

• Mailhost. The IP address of the machine running an SMTP (Simple Mail
Transfer Protocol) server. This must be set to use the mailto protocol sup-
ported by the Java URL classes.

• HTTP proxy server. The IP address of a machine that forwards HTTP
requests on your behalf. For example, if your TINI is behind a firewall, use
of a proxy server may be required to satisfy HTTP requests of hosts out-
side of the local network.

• HTTP proxy port. A 16-bit integer that specifies the port number on which
the HTTP proxy server expects to receive HTTP requests.

TININet provides both set (and the symmetric get) methods for each of these
parameters.

public static boolean setIPAddress(byte[] localIP)
public static boolean setIPAddress(String localIP)

The first method requires a byte array of length 4 with the IP address stored
using big-endian byte ordering (also known as network byte ordering), such that
the most significant byte of the address is stored in array element 0 and the least
significant byte is stored in element 3. This byte ordering applies for all of the
TININet setters that require a byte array to specify any IP address or subnet mask.
The second setIPAddress method here takes a String with an IP address speci-
fied in dotted-decimal notation—for example, “192.168.1.1.” These methods do
not require specification of the target network interface and therefore apply to the
default interface. All parameters that are specific to an interface, such as the inter-
face IP address and subnet mask, have an additional setter method that allows the
application to specify the interface to which the new settings apply.

public static boolean setIPAddress(String interfaceName, byte[] localIP)

The interfaceName parameter is a case-sensitive String equal to the target
interface—“eth0,” for example. All of the preceding methods return true if the
address has been successfully set on the targeted interface.

Note that while there are a lot of network parameters listed, it is not necessary
to configure each of them. In fact, it is possible to get up and running on an Ether-
net network by setting just the IP address and subnet mask. However, if you want
to be able to communicate with hosts on other networks, the default gateway IP
address must also be configured. Also, if you want to be able to use real names as
well as just IP addresses when creating instances of java.net.InetAddress,

Setting Network Parameters 119

you’ll have to set at least the IP address of the primary DNS server. It boils down
to a question of how much networking capability is required by your applica-
tion(s). We’ll cover additional TININet methods used for network configuration as
the need arises.

5.2.1 Committing Static Network Parameters

The network parameters are stored in a special system area just beneath the gar-
bage collected heap. By default, they persist across system reboots. However, an
application can force the entire RAM, including the system area, to be cleared
during the boot process. This provides a known, reliable state to allow the system
to boot, but it also wipes out all network configuration information. This is not an
issue for applications that use DHCP (described in the next section) to obtain their
network parameters, but it is fatal for systems that rely on statically configured
network information. The TININet class provides a commit/restore mechanism
that allows network parameters to be stored in flash ROM as well the RAM sys-
tem area. Use of the commit/restore capability assures that an application can
always boot up with network access.

The commitNetworkState method that follows copies the configuration infor-
mation for all network interfaces into a reserved space in flash memory. On boot
any change that is detected in the network parameters causes the configuration
information to be restored to its exact state at the time the commit operation was
executed.

public static void commitNetworkState() throws CommitException

Before invoking commitNetworkState, an application should set a minimum
of the IP address and subnet mask for the default (typically eth0) interface. An
application can determine whether a commit operation has been performed using
the getNetworkCommitState method.

public static int getNetworkCommitState()

It returns one of the following integer constants, also defined in TININet.

public static final int UNCOMMITED
public static final int COMMITTED
public static final int RESTORE_DISABLED

If commitNetworkState has never been invoked, getNetworkCommitState

returns UNCOMMITED. In this case, the commit/restore functionality is not used on
system reboot, and all network parameters are left unchanged. This is the only
state in which a call to commitNetworkState is guaranteed to succeed. If the
persistent memory technology used is the Flash ROM, the network parameters
may be committed only once without reloading the flashed application. In the

120 Chapter 5 TCP/IP Networking

future, external memory devices may be used to provide alternate storage in
support of multiple commit operations. If an attempt to commit network
parameters is made and the underlying persistent storage can be written only
once, commitNetworkState will throw a CommitException.

An application can override the system’s network restore operation using the
disableNetworkRestore method.

public static void disableNetworkRestore()

This allows the application to make changes to the network parameters with-
out the operating system overriding them on every reboot.

Finally, an application can determine whether a restore operation was re-
quired during the last system boot using the getBootState method in the TINIOS
class.

public static native int getBootState()

The value that getBootState returns is an integer that encodes informa-
tion about the state of the system during the boot process. The boot state
value is the bitwise-or of several possible bit masks. To extract the network
restore bit, the returned value from getBootState is bitwise anded with the
NETWORK_CONFIGURATION_RESTORED mask defined in TINIOS. If the result is
non-zero, then the network parameters were copied from the ROM to the RAM
system area during the system boot. This can serve as a warning that persistent
data in the heap may have been damaged, forcing the restore operation.

The network commit/restore capability can be tested using slush without writ-
ing a line of code or running any other applications. First execute the ipconfig

command with no command line parameters. The last line displayed shows
whether the network parameters have already been committed.

TINI /> ipconfig
...
Restore From Flash: Not Committed

Next, use the ipconfig command to configure your static network settings.
After verifying that the settings are correct, you can run ipconfig again, but this
time supply the -C option. You should see the following output.

TINI /> ipconfig -C
Network configuration committed to flash memory

If you were to run this exact command a second time, ipconfig would display
an error message due to a CommitException. Finally, use the “reboot -a” com-
mand to reboot and force both the heap and system area to be cleared. When the
system boots, slush uses getBootState to determine whether the network parame-

Setting Network Parameters 121

ters were restored. Immediately after logging on you should see output similar to
the following.

[Thu Feb 01 21:00:05 GMT 2001] Message from System: Network recovery
routines have run.

Executing ipconfig one final time, you can verify that the network settings are
identical to those committed prior to the heap clearing reboot.

5.2.2 Dynamic IP Configuration Using DHCP

The previous section dealt with directly setting static network configuration
parameters using the TININet class. It is possible, under certain circumstances, to
write your application so that it can dynamically obtain required network parame-
ters using the Dynamic Host Configuration Protocol3 (DHCP). A DHCP client
can obtain several network parameters without knowing anything other than its
own Ethernet address in advance. DHCP is an extension of the BOOTP protocol
that was designed to allow a diskless workstation to boot, determine its network
configuration information, and download a binary image of its operating system.
One of the big improvements with DHCP is that IP addresses are assigned dynam-
ically from a predetermined pool of available addresses.

When a client boots, it issues a DHCPDISCOVER message, looking for a
DHCP server. The discover message is a broadcast message that means that every
host on the same physical network as the client receives the message. It contains
information describing the network parameters requested by the client. If a DHCP
server is available and it receives the message and chooses to respond to the dis-
cover message, the server will respond with a DHCPOFFER message. The offer
contains a set of network parameters the server is willing to let the client use. The
client inspects the contents of the offer and, if acceptable, transmits a DHCPRE-
QUEST message to the server. After receiving the request, the server transmits a
final acknowledgment to the client.

It is possible that multiple DHCP servers can respond to the clients discover
message. In this case, the client chooses the offer it likes and issues a request to
only that offer. DHCP servers that made the offers that weren’t selected by the cli-
ent are notified of this rejection because the request message is also broadcast. In
the case of TINI’s DHCP client implementation, the offer that it chooses is the
first offer that contains at least an IP address and subnet mask.

At this point the client has successfully “leased” the IP address from the
server. With no further involvement from the client, however, the lease will expire
and the server will allow the IP address to be vended to another client at a later
time. This prevents IP addresses from being permanently consumed by clients that

3. The current version of DHCP is defined in RFC 2131.

122 Chapter 5 TCP/IP Networking

have “gone offline” for whatever reason. The amount of time for which the lease
is valid is determined during the negotiation phase. To maintain its lease, the cli-
ent periodically sends DHCPREQUEST messages with the same content as the
initial request message.

The description above assumed everything went perfectly; there was at least 1
DHCP server running on the network, and all messages transmitted were received
by their intended recipient. But DHCP requests and responses travel within UDP
messages, and since UDP provides an unreliable datagram delivery service, any of
the messages previously mentioned may fail to reach the intended recipient. The
details about how messages are retried and how this affects the DHCP client state
machine are all handled internally by the DHCP client. TINI’s client does, how-
ever, notify the application of important changes in state, including repeated fail-
ures when attempting to lease network configuration parameters.

If you’re running slush, you can use DHCP to configure your network settings
by using the ipconfig command with the -d option. An IP lease can be relin-
quished nicely (without the lease expiring) at any time using “ipconfig -r.” For
normal development purposes, your application can remain blissfully unaware of
whether the network settings were obtained statically or dynamically. However, if
your application is to acquire the network settings using DHCP, it will need to start
the DHCP client and process a few different types of events to ensure that the net-
working portion of the application can execute properly. The rest of this section
describes how to interact with TINI’s DHCP client from within an application.

The DHCP client is implemented by the following two classes in the
com.dalsemi.tininet.dhcp package.

• DHCPClient
• DHCPListener

DHCPClient runs as a separate thread of execution that acquires and maintains
a lease on an IP address. It spends the vast majority of the time sleeping, waking
only to renew the leased IP address. The sleep time is typically hours or even
days. So once DHCPClient has leased the IP address, it imposes very little over-
head on the overall system.

Both DHCPClient constructors require an instance of a class that implements
the DHCPListener interface. The listener is notified of important changes in the
DHCP client’s internal state machine.

public DHCPClient(DHCPListener listener) throws IllegalStateException
public DHCPClient(DHCPListener listener, byte[] serverIP, byte[] localIP)
 throws IllegalStateException

The first constructor is used to obtain a new lease on a new IP address. The
second constructor requires the IP address obtained during a previous execution

Setting Network Parameters 123

of the DHCP client. This is typically the IP address acquired before the last time
the system was rebooted. The serverIP array contains the IP address of the server
from which the client (or local) IP address was leased. Both byte arrays require
the most significant byte of the IP address to be stored in big-endian fashion with
the most significant byte of the address in array element 0 and so on. If this con-
structor is used, the client will attempt to renew a lease on the specified IP address
rather than obtain a new lease on a (possibly) different IP address. If the previ-
ously leased IP address is available, the renew operation will likely succeed. If,
however, while the client was not executing—and therefore not maintaining—the
lease, the server issued the address to a different host, it will reject the client’s
attempt to renew the lease. This does not have to be fatal. The client can be
stopped, and a new DHCPClient object can be created using the first constructor
listed to obtain a new lease.

DHCPClient does not begin negotiating for an IP address until the start

method, inherited from Thread, is invoked. After the client thread is started, it
immediately sends a broadcast discover message in the form of a DatagramPacket.
The datagram requests the following parameters from any DHCP server listening
on the network.

• An IP address
• The subnet mask
• The default gateway (router) IP address
• Primary and secondary DNS server IP addresses
• The mailhost IP address

Even if a server replies with an offer, there is no guarantee that all of the
requested parameters will be specified in the offer datagram. For example, the net-
work on which the DHCP server is running may not have an SMTP server (mail-
host) or a secondary DNS server. At a minimum, the client requires an IP address
and subnet mask. However, if the application is going to create InetAddress

objects using DNS names (Section 5.3), it will need an IP address of the primary
DNS server as well. All network parameters that are received from the server are
automatically set by the client after it receives acknowledgment of its request
from the server. An application can check the network settings using the methods
provided in the TININet class to ensure any additional parameters that it requires
have been set before initiating network activity.

The DHCPClient thread continues to execute until its stopDHCPThread method
is invoked.

public void stopDHCPThread()

If stopDHCPThread is invoked during a time when the client has successfully
leased an IP address, the lease is relinquished by transmitting a DHCPRELEASE

124 Chapter 5 TCP/IP Networking

message to the server. The only other way the client thread halts is if a fatal error
occurs in one of the DatagramSockets used in communicating with the server.

The DHCPListener interface can be implemented by any class that wants to be
notified of important DHCP events. The interface defines the following methods
for event notification.

public void ipLeased()
public void ipRenewed()
public void ipLost()
public void ipError(String error)

The ipLeased method is invoked after DHCPClient (or simply the client from
this point forward) has successfully negotiated the lease of an IP address with a
DHCP server. At this point, it is safe for the application to begin network commu-
nication. The ipRenewed method is invoked every time the client thread wakes up
and successfully renews the lease. This is for informational and debug purposes
only. The listener is not required to perform any action in ipLeased. The ipLost
method is invoked when the client fails to renew its lease. At this point the appli-
cation should close all open sockets and cease all network communication. The
ipError method is invoked when a serious error occurs, such as failure to receive
any response from a DHCP server. Note that ipError is not invoked every time
there is a minor error in communicating with the server. Only after repeated
attempts to communicate with the server will DHCPClient invoke the listener’s
ipError method.

5.3 DNS

The Domain Name System (DNS) is the globally distributed database that pro-
vides mappings between humanly readable names and IP addresses. To determine
a remote host’s IP address given its name, an application uses a DNS client run-
ning on the local machine to contact a DNS server, typically running on another
host. If the server doesn’t have an entry for the specified host, it will ask another
DNS server and so on until the name is resolved to an address or it is determined
that no entry for that host exists.

On TINI the DNS client (also known as a “resolver”) is used primarily to sup-
port the InetAddress class in the java.net package. The client is used for both
forward lookups—mapping a name to an IP address—and reverse lookups—map-
ping an IP address to a name. InetAddress objects are used explicitly during con-
struction of Socket and DatagramSocket objects and implicitly when using the
URL classes. On most Java platforms lookups are performed by a native DNS cli-
ent. TINI’s runtime environment, however, implements its DNS client in Java.
The client may be configured by a Java application.

DNS 125

To be able to use DNS names in creating InetAddress objects, the IP address
of the primary DNS server must be configured. The IP addresses of both the pri-
mary and secondary DNS servers can be set programatically using the following
methods. The server string is specified using dotted-decimal notation.

public static boolean setPrimaryDNS(String primaryDNS)
public static boolean setSecondaryDNS(String secondaryDNS)

It is also useful, but not required, to set the domain name using the
setDomainName method.

public static boolean setDomainname(String domain)

If the domain name has been configured and host names are passed to the
getByName method without specifying the domain portion of the DNS name, the
local domain name will automatically be appended before querying the server for
the remote host’s IP address. If you have configured the domain name on your
TINI, you can see this in action by using the ping command and pinging another
host on the local network. Here is some sample output.

TINI /> ping win2kpc
Got a reply from node win2kpc.tinitest.net/192.168.0.3
Sent 1 request(s), got 1 reply(s)

The domain name in this example is dalsemi.com. In this case “ping wally”
produces the same result as “ping wally.dalsemi.com.” For application develop-
ment purposes, all three DNS-related parameters: primary server, secondary
server, and domain name can be set from the slush prompt using the ipconfig

command.
Performing DNS lookups can be a time-consuming process, depending on

reachability of the server and how much work it has to do interacting with other
DNS servers to complete the lookup. When the getByName method of
InetAddress is used for the first time on a specified host, it can block for several
seconds, waiting for a response from the DNS server. A cache of successfully
resolved DNS entries is maintained in a private java.util.Hashtable to avoid
unnecessary DNS requests and delay in creating InetAddress objects for which
DNS bindings already exist.

DNS requests can travel over either a TCP connection (Socket) or within
UDP messages (DatagramSocket). TINI’s DNS client implementation uses UDP
with a time-out and retry scheme. The retry scheme deals with the fact that UDP
is an unreliable datagram delivery service. This problem can be exacerbated by
the fact that some network links come up slowly after periods of inactivity, so the
first couple of attempts to resolve a name might fail due to a time-out waiting for a

126 Chapter 5 TCP/IP Networking

reply. The initial time-out value used by the client can be set explicitly using the
setDNSTimeout method.

public static boolean setDNSTimeout(int dnsTimeout)

The dnsTimeout value is specified in milliseconds, but values of at least 1
second (1000 milliseconds) or greater should be specified. If a non-zero time-out
value is specified, the DNS client will send the request and wait for up to
dnsTimeout milliseconds for a response from the server. If no response is
received, it will not retry the request. If the time-out value is set to zero, a fallback
and retry procedure will take effect. The DNS client will retry after a 2-second
period and double the time-out value until it reaches 16 seconds. This produces a
maximum four retries before the DNS client finally gives up. If during the
creation of a new instance of InetAddress a forward lookup fails, either due to a
time-out or another DNS server error, an UnknownHostException is thrown. If,
however, an error occurs trying to perform a reverse lookup, no exception is
thrown, since the IP address is all that is required to communicate with the remote
host.

The class DNSClient in the com.dalsemi.tininet.dns package implements
TINI’s DNS client. It exposes public methods for performing both forward and
reverse lookups.

public String[] getByName(String name)
public String[] getByIP(String ip)

The getByName method performs a forward lookup, taking a host name as
input. It returns an array of Strings encoded in dotted-decimal notation represent-
ing all of the IP addresses that map to that name.4 The getByIP method takes as
input a String representation of the IP address encoded in dotted-decimal nota-
tion. It returns an array of strings representing all of the host names that map to
the input IP address. These methods can be used directly for name resolution
without adding entries to the DNS cache maintained internally by InetAddress.
You can interact with the raw (without going through InetAddress) DNS client
using the slush command nslookup. It takes either an IP address in dotted-decimal
notation or a host name as a command line parameter and performs either a for-
ward or reverse lookup, depending on the input.

It is a simple matter to create our own “nslookup” application using just the
InetAddress class. The DNSTest application is shown in Listing 5.2. It takes the
same command line input as the nslookup command.

4. A host name can have multiple IP addresses, and multiple host names can map to the
same IP address.

HTTP 127

Listing 5.2 DNSTest

import java.net.InetAddress;
import java.net.UnknownHostException;

class DNSTest {
 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: java DNSTest.tini name");
 System.exit(1);
 }
 try {
 InetAddress[] names = InetAddress.getAllByName(args[0]);
 for (int i = 0; i < names.length; i++) {
 System.out.println(names[i].toString());
 }
 } catch (UnknownHostException uhe) {
 System.out.println("Lookup error:" + uhe.getMessage());
 }
 }
}

The getAllByName method is used to generate an array of all DNS entries for
the given input. They are displayed using the InetAddress.toString method,
which generates a String containing both the host name and IP address. Before
this example is run on a TINI, the primary DNS server IP address must be set. The
following output shows the IP address of the iButton Web server.

TINI /> java DNSTest.tini www.ibutton.com
www.ibutton.com/198.3.123.121

If we run DNSTest again but this time supply a bogus host name,
getAllByName will be unable to resolve the name to an IP address and will throw
an UnknownHostException.

TINI /> java DNSTest.tini bogus.aintthere.com
Lookup error:Could not find an entry for bogus.aintthere.com

5.4 HTTP

The class HTTPServer in the com.dalsemi.tininet.http package implements a
very simple HTTP server. It supports only HTTP GET requests and serves up
static information contained within files at or below a specified root directory. It is
not intended to be a dedicated Web server application but rather provide HTTP
serving capability that an application can launch and forget about. HTTPServer

offers reasonable performance, and the overhead it imposes on an application is
relatively small. The basic idea is that the server should not detract much from the
application’s foreground processing requirements.

128 Chapter 5 TCP/IP Networking

An HTTPServer object is created using either of the following constructors. If
the constructor doesn’t specify the port to be used, the TCP port number defaults
to 80.

public HTTPServer() throws HTTPServerException
public HTTPServer(int httpPort) throws HTTPServerException

If the specified port is already in use by another thread or process, the construc-
tor will be unable to create a ServerSocket to listen for connections on the speci-
fied port and will throw an HTTPServerException. The HTTP root directory and
index page default to “webroot” and “index.html,” respectively. To change these
defaults, an application can use the setHTTPRoot and setIndexPage methods.

public void setHTTPRoot(String httpRoot)
public void setIndexPage(String indexPage)

Both of the serviceRequest methods block indefinitely waiting for an in-
bound connection from a client (for example, a browser).

public int serviceRequests() throws HTTPServerException
public int serviceRequests(Object lock) throws HTTPServerException

The only difference between the two is that the serviceRequests method that
requires the lock parameter will synchronize on the lock before servicing an
inbound connection. This method should be used by an application that will be
modifying the contents of files, at or below the Web root, from within another
thread. Either method will cause the server to create a new thread for each request.
The application typically dedicates a single thread that invokes the
serviceRequests method in an infinite loop. No other action is required of the
application for HTTPServer to continue processing client GET requests.

Because HTTPServer is very small and simple by design, it doesn’t meet every
application’s requirements as a general purpose Web server. However, there exist
powerful, full-featured, commercial grade HTTP servers5 written for TINI that
support the Java servlet API.

Applications that need access to information provided by Web servers use the
familiar URL classes in the java.net package. There is one additional configura-
tion parameter that can be set by an application using the URL classes: a proxy
server. Often corporate networks are protected behind a firewall and the only way
HTTP requests can reach the Internet is through a proxy server. A proxy server is
simply a machine that receives requests from a client and forwards them to
another server. The proxy server has special privileges to communicate with hosts

5. One such server (TiniHttpServer), available from Smart Software Consulting, is free and
OpenSource. It can be downloaded from http://www.smartsc.com/tini/TiniHttpServer.

HTTP 129

outside the firewall. The TININet class provides the following methods for config-
uring the use of a proxy server.

public static boolean setProxyServer(String proxyServer)
public static boolean setProxyPort(int proxyPort)

The setProxyServer method takes the server name as a String representing
either an IP address encoded in dotted-decimal notation or a DNS name. The
setProxyPort method takes an integer value specifying the 16-bit port number on
which the proxy server receives HTTP requests. Both the server and port are
persistent across system reboots. If setProxyServer is invoked with an empty
String, it will disable the use of a proxy server. By default, the URL protocol
handling classes do not use a proxy.

Listing 5.3 shows a small application that reads the contents of a URL
through a proxy server.

Listing 5.3 MiniBrowser

import java.net.*;
import java.io.*;
import com.dalsemi.tininet.TININet;

class MiniBrowser {
 public static void main(String[] args) {
 if (args.length != 3) {
 System.out.println(
 "Usage: MiniBrowser URL proxy_server proxy_port");
 System.exit(1);
 }

 TININet.setProxyServer(args[1]);
 TININet.setProxyPort(Integer.parseInt(args[2]));

 try {
 URL u = new URL(args[0]);
 InputStream in = u.openConnection().getInputStream();
 byte[] content = new byte[512];
 int count = 0;
 do {
 count = in.read(content);
 System.out.write(content, 0, count);
 } while (count != -1);
 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }
}

130 Chapter 5 TCP/IP Networking

MiniBrowser requires that the URL, proxy server name (or IP address), and
proxy port be specified on the command line. After setting both the proxy server
and proxy port, it opens a connection to the specified URL. It then reads the con-
tents of the URL in 512-byte blocks and displays them using System.out. The fol-
lowing is the output from browsing the small HelloWeb application, from Section
2.6.3. In this test configuration one TINI is running the HelloWeb HTTP server
application and another TINI (behind a firewall) is running MiniBrowser. The only
way for HTTP requests to escape the firewall is through the proxy server named
wally on port 576.

TINI /> java MiniBrowser.tini http://198.3.123.182/index.html
wally.dalsemi.com 576
<html>
<head>
<title>Hello Web!</title>
</head>
<body>
<h1>Hello from TINI!</h1>
</body>
</html>

The output should look familiar as it is identical to the contents of the
“index.html” file that we created to be served by HelloWeb.

5.5 ICMP

The Internet Control Message Protocol (ICMP) is the mechanism used by nodes
on a TCP/IP network to transfer error and control information. Even though
ICMP messages often provide error information regarding IP datagrams, they
travel encapsulated within IP datagrams. ICMP is used by routers to transmit
error messages and by hosts, like TINI, to determine the reachability of a remote
destination.

Unlike DNS, DHCP and the other protocols we’ve discussed to this point in
the chapter, ICMP is not actually an application layer protocol. ICMP is a module
that exists in the network stack and is used to send IP control and error messages.
However, the ICMP module does provide simple native method hooks to allow
Java applications to send ICMP echo requests and read the raw ICMP response.
Nearly every host on a TCP/IP network provides an application named “ping” that
uses ICMP’s echo request/reply mechanism to determine the reachability of other
network nodes. When a machine receives an ICMP echo request from a remote
host, it responds with an ICMP echo reply message that contains an exact copy of
the request packet data.

The pingNode method as follows effectively provides one bit of information:
if the remote node was reachable. It can be used to programmatically determine

ICMP 131

whether just a particular service running on the remote host has died or whether
the host machine itself has become unreachable on the network, providing for
more precise error reporting.

public static boolean pingNode(InetAddress addr)

It transmits a single ICMP echo request message to the node specified by addr
and waits for a response. The time-out period is about 500 milliseconds. It returns
true if a reply is received within the time-out period and false otherwise.
Because IP provides an unreliable datagram delivery service, ICMP messages are
not guaranteed to reach their destination. So one failure of pingNode does not nec-
essarily mean a node has become unreachable. Multiple successive failures
reported by pingNode, however, dictate, with a high probability, that it has indeed
gone “off line.” A remote host can become unreachable for several reasons,
including a failure with the remote host itself or persistent problems with one or
more routers between the hosts. The pingNode method used by the slush ping

command.
There is another pingNode method that is crude and more difficult to use but

provides much more information. It can be used to perform some reasonably
sophisticated network analysis.

public static long pingNode(InetAddress addr, byte ttl, byte[] response)

This version of pingNode requires two additional parameters: the ttl param-
eter specifying the time to live field in the IP datagram header of the outbound
ICMP echo request and a byte array that is filled in with the entire IP datagram
received in response to the echo request. The response array should be of length
128 or greater to avoid an ArrayIndexOutOfBounds exception. The method
returns the time, measured in milliseconds, between transmitting the ICMP echo
request message and receiving a response. The response is typically (but not
always, as we’ll see later) an ICMP echo reply. If no response is received prior
to the time-out period, pingNode returns –1. The round-trip time (RTT) estimate
is measured in the native network stack and is therefore reasonably (within a
few milliseconds) accurate. Any inaccuracy is on the high side, and therefore
the return value of pingNode provides an upper bound on the true round-trip
time.

To understand how to make full use of this method, we’ll have to dig a little
deeper into the format of the IP datagram header as well as the format of certain
ICMP messages. We will cover just enough of the details to be able to parse the
response array and extract useful information. The remainder of this section is
fairly technical and can be skipped by readers not interested in the low-level
details of ICMP. Figure 5.2 shows the overall format of an ICMP message encap-
sulated within an IP datagram.

132 Chapter 5 TCP/IP Networking

The ICMP header begins immediately following the IP header. The structure
of the IP header is shown in Figure 5.3. The exact length of the IP header can be
determined by examining its first byte. The IP version number and header length,
in 4-byte words, are combined in the first byte. The version number is contained
in the most significant nibble (4 bits), and the header word length in the least sig-
nificant nibble. So a byte value of 0x45 tells us that the IP version is 4 and the
header is 5*4 or 20 bytes in length. At the time of this writing, TINI’s network
stack and the Java platform only support IP version 4. However, due to the rather
limited number of IPv4 addresses, both will undoubtedly support IP version 6 in
the near future. The length of the entire IP datagram, including headers, is repre-
sented by the 16-bit value starting at byte offset 2 in the IP header. This represents
the total number of bytes copied into the response array passed to pingNode.

After computing the IP header length, we can extract the TYPE byte from the
ICMP header. The format of an ICMP header is shown in Figure 5.4. As the name
implies, the TYPE byte specifies the type of ICMP message, providing informa-
tion as to how the ICMP data should be interpreted. Initially, we’ll focus on two
types: echo request (8) and echo reply (0). When pingNode is invoked, an ICMP
message is transmitted to the remote host with the type byte set to 8. Under nor-
mal circumstances we expect to get a reply from the remote host with a type byte
of 0.

IP
Header ICMP DataICMP

Header

IP Data Area

Figure 5.2 ICMP message within an IP datagram

V/HL

0

. .

1

TL

2

. . . .

4

TTL

8

. . . .

9

Src addr

12

Dest addr

16

Opt . . .

20

V/HL—IP version and header length
TL—total length of IP datagram including header
TTL—time to live (hop count)
Scr addr—source IP address
Dest addr—destination IP address
Opt—optional header data (if any)

Figure 5.3 IP datagram header

ICMP 133

The code field in the ICMP header specifies additional information about the
type. For echo reply and echo response types, there are no code values defined,
and this field will always be 0.

The other ICMP type of interest is TIME_EXCEEDED (11) and is generated
by a router when the time to live (TTL) field of an IP datagram reaches 0. The TTL
field is byte offset 8 in the IP header (see Figure 5.3). The time to live value is often
called the hop count and represents the maximum number of routers a datagram
can pass through before it expires.6 Every time a datagram passes through a router,
the TTL value is decremented by 1. When a router receives a datagram with a TTL
of 1, it (logically speaking) decrements it to 0, discards it, and sends an ICMP time
exceeded message to the host that transmitted the original datagram.7

By explicitly manipulating the TTL field, we can determine the route a data-
gram travels when transmitted from the local host to the remote destination. If the
TTL field of an outbound ICMP echo request message is set to 1, the message
cannot leave the local network. If the message is destined for a host on another
network, the message will be sent to a router, and, since the TTL is 1, the router
will generate an ICMP TIME_EXCEEDED message. When the local machine
receives the TIME_EXCEEDED message, it can extract the router’s IP address
from the source address field of the IP header. Now we know the address of the
first router along with an estimate of how long it took to get a response. This pro-
cess is repeated with a TTL of 2, yielding the IP address of the second router and
so on. Eventually the TTL is set high enough to allow the datagram to be deliv-
ered to its final destination. After receiving the final ICMP echo reply, we have the
addresses of all routers and estimates for the amount of time required for a data-
gram to traverse each network segment.

A couple of additional points should be mentioned here. First, you may be
unable to ping certain machines on the Internet at all because some hosts don’t
process ICMP echo requests due to certain types of attacks such as denial of ser-
vice attacks that attempt to flood a host with ICMP messages, making its response

6. Older specifications of the behavior of routers dictated that the TTL should be decre-
mented by 1 for each additional second that a router held on to the datagram. Many
routers ignored this requirement and treated the TTL strictly as a hop count. Later ver-
sions of the specification relaxed this requirement, making it optional.

7. Under normal circumstances, TIME_EXCEEDED messages will only be seen when
there is a “routing loop.”

Type

0

Code

1

Checksum

2

Figure 5.4 ICMP header

134 Chapter 5 TCP/IP Networking

much slower when processing other network messages. Also, the route taken by
successive datagrams to the same destination may differ, and the time required to
reach a remote host can vary dramatically from datagram to datagram, depending
on network congestion. Finally, note that it is not a requirement to use ICMP for
the purpose of tracing a route. In fact, older versions of the ICMP specification8

stated that no ICMP error messages were to be generated in response to another
ICMP message. This was to avoid network congestion caused by endless loops of
error messages. However, the specification was changed to allow routers to send
TIME_EXCEEDED messages in response to echo request messages. The same
result can be accomplished using UDP messages. Older implementations of the
UNIX traceroute utility used UDP messages with a high, and hopefully bogus,
value for the remote port number. The same TTL scheme described previously is
used to solicit the ICMP TIME_EXCEEDED messages from the routers, and
finally, when the UDP message reaches its ultimate destination, the remote host
generates an ICMP PORT_UNREACHABLE message. This is not terribly clean,
however, as it assumes that no application on the remote host is listening for UDP
messages on the “bogus” port number.

Armed with the information from the previous discussion, we can now parse
the response array filled in by the pingNode message. The Pinger example, shown
in Listing 5.4, uses pingNode to create a ping type of application that is much
more useful than the slush ping command. It requires the remote node, number of
ICMP echo requests to be transmitted, and the TTL for the echo requests to be
specified on the command line.

Listing 5.4 Pinger

import java.net.*;
import com.dalsemi.tininet.icmp.Ping;

class Pinger {
 static final int ICMP_ECHO_REPLY = 0;
 static final int ICMP_TIME_EXCEEDED = 11;

 public static void main(String[] args) {
 if (args.length != 3) {
 System.out.println(
 "Usage: java Pinger.tini node count max_hops");
 System.exit(1);
 }
 try {
 InetAddress addr = InetAddress.getByName(args[0]);
 int count = Integer.parseInt(args[1]);
 int ttl = Integer.parseInt(args[2]);
 byte[] response = new byte[256];

8. ICMP is specified in RFC 792.

ICMP 135

 for (int i = 0; i < count; i++) {
 long rtt = Ping.pingNode(addr, (byte) ttl, response);
 if (rtt == -1) {
 System.out.println("No response from host:"+args[0]);
 } else {
 // Compute length of IP header
 int ipHdrLength = (response[0] & 0x0f)<<2;
 int type = response[ipHdrLength];
 switch (type) {
 case ICMP_ECHO_REPLY:
 int sequence = ((response[ipHdrLength+6] &
 0xFF) << 8) +
 (response[ipHdrLength+7] &
 0xFF);
 System.out.println("Reply from:"+
 addr.toString()+
 " in "+rtt+"ms"+
 " ttl="+
 (response[8]&0xff)+
 " sequence="+sequence);
 break;
 case ICMP_TIME_EXCEEDED:
 // Hack out the source IP address and
 // convert to a String.
 StringBuffer sb = new StringBuffer(15);
 for (int j = 0; j < 4; j++) {
 sb.append(Integer.toString(
 response[12+j] & 0xff));
 if (j < 3) {
 sb.append(’.’);
 }
 }
 System.out.println(
 "Time exceeded message from:"+
 InetAddress.getByName(sb.toString())+
 " in "+rtt+"ms");
 break;
 default:
 System.out.println(
 "Unexpected ICMP message type: "+type);
 break;
 }
 }
 try {
 Thread.sleep(1000);
 } catch (InterruptedException ie) { }
 }
 }
 catch (UnknownHostException uhe) {
 uhe.printStackTrace();
 }
 }
}

136 Chapter 5 TCP/IP Networking

If pingNode returns a negative value, then the specified remote node is
unreachable. Any nonnegative return value indicates that some type of message
was received in response to the outbound ICMP echo request message and the
response array contains an IP datagram carrying that response. Pinger computes
the length of the IP header and uses that value as an offset to extract the ICMP
type byte. The only two types processed by Pinger are ECHO_REPLY and
TIME_EXCEEDED.

If we’re just trying to determine the reachability of another network node,
we’d typically set the TTL to a large value such as 0xff to give the echo request
message the best chance to reach its destination. If the message is an echo reply,
Pinger displays the round-trip time, the sequence number, and the TTL of the
response. The sequence number is a 16-bit value assigned by the native ICMP
module immediately following the ICMP header in an echo request or reply. The
network stack uses this value along with another 16-bit value known as the iden-
tifier to match echo requests with replies. The following is sample output from
pinging the remote node “www.awl.com” from a TINI with global Internet
access.

TINI /> java Pinger.tini www.awl.com 3 255
Reply from:www.awl.com/204.179.152.52 in 65ms ttl=244 sequence=0
Reply from:www.awl.com/204.179.152.52 in 64ms ttl=244 sequence=1
Reply from:www.awl.com/204.179.152.52 in 64ms ttl=244 sequence=2

The TTL specified for the outbound echo request messages is 255, so we
expect that if the node is reachable at all, it should receive the request and send a
reply. In fact all three echo requests generated replies from the remote node, and
the round-trip times were all about the same. We’re not sure what the initial TTL
value was set to by the remote machines network stack, but 255 (0xff) is a pretty
good bet, since this is a common value used for echo request and reply messages.
If this is the case, then the fact that the datagram’s time to live when it reaches the
local machine is 244 suggests that it passed through 11 routers on its way from the
remote to the local machines.

Now we can play around a bit with the TTL value and begin to trace the route
between the local TINI and the remote host. The Pinger output for TTL values of
1 and 2 are as follows.

TINI /> java Pinger.tini www.awl.com 1 1
Time exceeded message from:gte-dsl-bvi4.fastlane.net/209.197.224.237 in
23ms
TINI /> java Pinger.tini www.awl.com 1 2
Time exceeded message from:dallas.tx.core1.fastlane.net/209.197.224.1 in
23ms

So the IP addresses of the first two routers encountered by datagrams trav-
eling between the local host and the destination are 209.197.224.237 and

ICMP 137

209.197.224.1, respectively. We can continue this process until we get an echo
reply from the final destination node (204.179.152.52). Pinger can easily be mod-
ified to automate this process and generate the names and IP addresses of the
intermediate routers as well as the time required to pass through each network
segment, turning it into a full-blown traceroute type of utility.

139

CHAPTER 6 Dial-Up
Networking
Using PPP

In Chapter 5 we touched on PPP (Point-to-Point Protocol) over serial as one of the
network interface types supported by TINI’s runtime environment. PPP is actually
a very general purpose protocol that supports data transfer over many different
physical media, including (but not limited to) serial, parallel, and Ethernet. On
TINI, however, PPP is currently used strictly as a transport mechanism for IP dat-
agrams over a serial link. In the native network stack, PPP exists below the IP
module and above the serial port drivers. To an application developer PPP is
exposed through Java classes in the com.dalsemi.tininet.ppp package. One of
the more compelling aspects of using PPP on TINI is that both endpoints of the
connection can be communicating with analog phone line modems. This allows
for the development of remote embedded networking applications for deployment
in areas where an Ethernet network is not available but the vast phone switch net-
work is.

6.1 THE PPP API CLASSES

The PPP API provides a fairly thin wrapper on the native PPP modules. This
allows application developers to choose their own mechanisms for authentication,
physical link configuration (that is, control of modem vs. hard serial link) and pro-
vides for fine-grained control of error handling. Once a PPP connection has been
established, the rest of the networking is business as usual, based on the classes in

140 Chapter 6 Dial-Up Networking Using PPP

the java.net package and possibly TINI’s networking extensions presented in
Chapter 5.

Unless otherwise specified, the methods mentioned in this section are defined
in the PPP class. A PPP object is used to control and monitor the state of a PPP
connection. An application that creates a PPP object must provide a listener to
receive notification of PPP events. A listener is an instance of a class that
implements the PPPEventListener interface. Listeners can be added or removed
using addEventListener and removeEventListener, respectively.

public void addEventListener(PPPEventListener listener)
 throws TooManyListenersException
public void removeEventListener(PPPEventListener listener)

PPPEventListener defines the method pppEvent. This method is invoked
whenever important state changes occur in the underlying PPP layer and require
attention from the listener. The listener is passed a PPPEvent object that encapsu-
lates the event type and any error information. The getEventType method returns
the event encoded as an integer.

public int getEventType()

The types of events and their meanings are discussed in Section 6.2.
Part of the overall process of establishing a PPP connection is the login (or

authentication) information. For this purpose TINI’s PPP implementation cur-
rently only supports the most basic authentication protocol used with PPP, known
as Password Authentication Protocol (PAP). PAP passes both the user name and
password over the physical data link in clear text. To set login information to be
used to authenticate TINI to a remote peer, the setPassword and setUsername
methods are used.

public void setPassword(String password) throws PPPException
public void setUsername(String userName) throws PPPException

To request login information from the remote peer, the setAuthenticate

method is invoked with a value of true.

public void setAuthenticate(boolean value)

This causes PPP to generate an AUTHENTICATION_REQUESTED event when login
information is received from the remote peer. This is examined in more detail in
the next section. PPP is a peer-to-peer protocol and therefore doesn’t have the
notion of a client or server. Both sides of the communication are equal and can
request authentication information from the other. In a typical configuration only
one peer requests authentication information, and in the case that the phone net-
work is being used, this is often the same peer that answers the phone. We’ll refer

The PPP API Classes 141

to this node as the authenticating peer. In the next chapter we’ll implement a PPP
daemon that acts strictly as an authenticating peer. However, the PPP API is suffi-
ciently flexible to allow for the creation of a general purpose PPP daemon.

Before the connection can support IP traffic, the IP addresses of both peers
must be established. Both the local and remote peer IP addresses can be set using
the following methods.

public void setLocalAddress(byte[] address)
public void setRemoteAddress(byte[] address)

Both methods require a byte array containing the IP address in big-endian
byte ordering. If a remote address is specified, it will be vended to the remote peer
during address negotiation. If a remote address is specified, the local address must
also be specified, and both addresses should be on the same network. If the local
address is set and the remote peer attempts to vend a different address, a STOPPED

event will be generated and the negotiation of the PPP connection halts. If the
local application is connecting to a dial-up server, it is not required to set either
the local or remote address. In this case, it is expected that the remote peer will
vend the local IP address.

After creating a PPP object, an application will typically set a new value for
the asynchronous control character map (ACCM) used by the native PPP imple-
mentation.

public void setACCM(int newACCM)

The setACCM method takes an integer that contains a bit map of the characters
to be escaped. If a bit in a specified position is 1, the corresponding character is
escaped; otherwise, it is transmitted normally. For example, an ACCM value of
0x80000001 would escape only characters 0 and 31. By default, during link nego-
tiation PPP instructs the remote peer to escape all characters between 0 and
0x1f—in other words, the default ACCM of 0xffffffff. Since you’ll most often be
working with physical links capable of receiving arbitrary binary data, the ACCM
should be set to 0. This will allow for more efficient data transfer because it will
avoid the unnecessary transmission of escape characters. One important exception
to this occurs when the use of software flow control (often referred to as XON/
XOFF flow control) is specified with the underlying serial port. In this case, the
software flow control characters XON (17 decimal) and XOFF (19 decimal) must
be escaped. This yields an ACCM of 0xa0000. If XON/XOFF flow control is to be
used, the setXonXoffEscape method must also be invoked.

public void setXonXoffEscape(boolean value)

When invoked with a value of true, the setXonXoffEscape method notifies
the local PPP interface to escape the XON/XOFF characters.

142 Chapter 6 Dial-Up Networking Using PPP

Another option that an application may want to configure before attempting to
establish PPP connections is passive mode. Passive mode can be enabled or dis-
abled using the setPassive method.

public void setPassive(boolean value)

The passive mode option affects the earliest phase in connection establish-
ment: Line Control Protocol (LCP) negotiation. The native LCP module attempts
to initiate a connection by sending a configuration request message. It will wait
for a certain amount of time for the remote peer to acknowledge receipt of the
message. If no acknowledgment is received, LCP will time out and send the con-
figuration request message again. The retry count is finite, however, which means
if no remote peer is actually receiving the message, PPP will time out and gener-
ate a STOPPED event. Passive mode disables this time-out. LCP will just wait indef-
initely for a remote peer to transmit its own configuration request message.

Passive mode should not be enabled when modems are being used to establish
the physical data link. In this case, LCP negotiation doesn’t begin until the
modem connection has been established. The time-out is required to notify the
application that the remote peer is not responding. However, in a configuration
where a raw serial port is being used in an environment where devices come and
go—handheld computers such as a Palm Pilot, for example—the application has
no way of knowing when a device will be attached to the serial port. In this case,
the use of passive mode frees the application from having to process STOPPED

events and restart PPP. When a device eventually attaches to the port, it will trans-
mit a configuration request message, the local LCP module will acknowledge the
message, send its own configuration request, and the rest of the connection negoti-
ation will continue in the normal fashion.

After using these methods to configure the PPP session to meet its require-
ments, the application invokes the open method.

public void open()

At this point the listener will start receiving PPP events.

6.2 PPP EVENTS

When a PPP object is created, it starts a daemon thread to listen for events in the
native PPP module. This thread generates the events that notify PPP event listeners
of important changes in the state of a PPP connection. The following events gener-
ated by the daemon thread are defined as integer constants in the PPPEvent interface.

• STARTING
• AUTHENTICATION_REQUESTED

PPP Events 143

• UP
• STOPPED
• CLOSED

6.2.1 STARTING Event

A STARTING event is generated by the application invoking the open method.

public void open()

The STARTING event provides the application with a chance to bring up the physi-
cal communication link. At a minimum this involves initializing the serial port
that will be used by all PPP traffic. If a modem is attached to the serial port, the
application also initializes the modem and either instructs it to dial a remote
modem or waits for the modem to answer an incoming call. After the physical
communication link has been established, the application invokes the up method.

pubic void up(SerialPort port) throws PPPException

The application passes a reference to the serial port that will be used for PPP
traffic. At this point, PPP assumes exclusive use of the port. Any other attempt to
read from or write to the serial port could disturb the PPP connection and will
most likely result in a STOPPED event being generated.

6.2.2 AUTHENTICATION_REQUESTED Event

The AUTHENTICATION_REQUESTED event is generated if the setAuthenticate
method is invoked with the parameter value equal to true. This will cause PPP to
request authentication information from the remote peer during its negotiation of
the connection. This gives the application a chance to verify the login information.
The getPeerID and GetPeerPassword methods as follows can be used to retrieve
the remote peer’s login data.

public String getPeerID()
public String getPeerPassword()

After the application examines the login information, it invokes this authenti-
cate method.

public void authenticate(boolean valid)

If the login information is correct, a boolean value of true is passed to
authenticate. In this case, PPP continues its negotiation of the connection. If the
login information is invalid, the application invokes authenticate, passing a
boolean value of false and causing PPP to reject the clients connection request
and generate a STOPPED event.

144 Chapter 6 Dial-Up Networking Using PPP

6.2.3 UP Event

If the connection is successfully established, the notifier thread generates an UP

event. At this point, the PPP connection is established and is ready for IP network
traffic. However, the application must invoke the addInterface method before the
TCP/IP stack will recognize the new PPP connection as a valid network interface.

public void addInterface(String name, boolean default)

The name passed to addInterface is typically formed by appending the num-
ber of the serial port being used for PPP traffic to the lowercase String “ppp.” So,
for example, if serial port 0 is being used, the new PPP interface will be named
“ppp0.” The name passed to addInterface is the same interface name that is
viewed when using the “ipconfig -x” slush command. If default is true, the
new interface will become the default network interface for the entire system.

6.2.4 STOPPED Event

The STOPPED event is typically generated in response to an error condition. Some
of the possible sources of errors include problems negotiating connection options,
rejection of authentication information, or the remote peer explicitly closing the
connection. The source of the error can be determined by invoking the
getLastError method on the PPPEvent object passed to the listener.

public int getLastError()

The PPPEvent class defines the following integer constants used to detect error
types.

• NONE—No error condition exists.
• ADDR—One (or both) of the IP addresses could not be negotiated.
• AUTH—The remote peer rejected the local peer’s authentication

credentials.
• TIME—Link negotiation timed out.
• REJECT—Link options were rejected by the remote peer.

Typically, the listener increments an error (or retry) count. The listener can
use a combination of the retry count and the error information to determine the
difference between transient and persistent (or fatal) problems. If a persistent
problem occurs, the listener may choose to notify the application of the failure
rather than trying again to establish a connection. Regardless of the source of the
error, the listener invokes the close method to allow PPP to shutdown the connec-
tion and generate a CLOSED event.

public void close()

PPP Events 145

6.2.5 CLOSED Event

After receiving a CLOSED event, the listener frees any resources that were con-
sumed establishing the connection. The removeInterface method is invoked by
the listener if an UP event was previously generated, causing a new network inter-
face to be added to the system.

public void removeInterface(name)

The removeInterface method takes the same String value that was passed to
addInterface during UP event processing. After removing the interface, the lis-
tener invokes the down method to force PPP to relinquish any claim to the serial
port. This makes the serial port available to the rest of the application.

public void down()

At this point, the listener may choose to invoke open to attempt to establish a
new connection.

Handling PPP events and dealing with error recovery can be fairly compli-
cated. The next chapter presents a remote data logging application that uses PPP
to allow remote machines to dial in and upload a log file. This example makes
extensive use of the PPP API and should help to clarify the concepts presented in
this chapter.

147

CHAPTER 7 Building a
Remote Data
Logger

7.1 DESCRIPTION

This chapter presents a comprehensive example intended to provide some insight
into writing powerful networked applications that take full advantage of big net-
working capabilities provided by this little computer. TINI will be put to work as a
network status reporting device. We’ll create a complete example that captures
and logs data and implements a TCP/IP network server, making the data available
to remote clients. Ultimately, the server will accept connections over both Ether-
net and the PSTN (Public Switched Telephone Network)1 using PPP to manage
dial-up connections. Support for dial-up networking is primarily what will make
the data logger truly remote. This allows access to any client computer anywhere
in the world with Internet access without requiring the presence of an Ethernet
network at the data collection site. It assumes nothing more than a serial modem
and a connection to the public phone network.

The actual data collected by the application isn’t terribly important. The main
point is that we can collect information from some sensor or other physical device
(or possibly multiple devices) and upload it to any interested client over a TCP/IP
network. For this reason we’ll try to keep the framework used for data collection
relatively general purpose and reusable to allow for collecting data from other

1. Also commonly known as POTS (Plain Old Telephone System).

148 Chapter 7 Building a Remote Data Logger

types of devices. However, to make the finished example reasonably concrete,
we’ll need some real data to sample. For this purpose we can recycle our effort
from the 1-Wire Networking chapter in which we created a humidity and temper-
ature sensing circuit and an accompanying Java class.

The data logging application consists of several classes. The class that con-
tains the main method is in a class named DataLogger. We will also refer to the
entire application as “DataLogger,” as this is the name of the binary that will be
executed on TINI.

The DataLogger example will combine three different concepts from this and
two previous chapters.

• TCP/IP networking
• Serial communications
• 1-Wire networking

Since the DataLogger example is rather large, it will be broken down into the
following steps.

1. Creating the network server. The TCP/IP server will be implemented in
the main class named DataLogger. The server will be implemented in a
multithreaded fashion and will handle all inbound connections over an
Ethernet network and eventually over the phone network using a modem.

2. Implementing the data collection classes. These classes will be responsi-
ble for collecting and managing the data samples as well as writing the
results to an output stream to the client.

3. Develop a test client application. After completing these first two steps,
we’ll have enough functionality to test an intermediate version of the
DataLogger application over an Ethernet network only.

4. Adding dial-up networking support. Create a class to manage PPP con-
nections.

5. Managing the serial data link used for PPP communications. We’ll
develop a set of classes that deal with all of the issues of communicating
with both a raw serial port and a modem attached to a serial port.

6. Testing the application. Finally we’ll be able to test the entire application
with a sample client downloading the data log over both an Ethernet net-
work and the PSTN.

Because the DataLogger example is fairly large, the following sections omit
portions of the source code. However, all of the source code for the DataLogger

application is provided in the accompanying CD.

The DataLogger Class 149

7.2 THE DATALOGGER CLASS

We’ll start by exploring the main class of the application: DataLogger. DataLogger
implements the network (TCP/IP) server and accepts and manages inbound con-
nections from remote clients. A skeleton of the DataLogger class including its
constructor is shown in Listing 7.1. The DataLogger class extends Thread and
overrides the run method, making it the server’s main loop. The primordial thread
is allowed to die after successful initialization of the application.

During construction of DataLogger an instance of HumidityLogger is created
specifying the sample count and delay time in seconds between samples. After the
logger thread is started, the DataLogger thread is not concerned with the operation
of the logger or even what kind of data it is collecting. It maintains a reference to
the logger object that is used to satisfy log requests for inbound client connec-
tions. We’ll cover the data collection classes in detail in the next section.

Listing 7.1 DataLogger

import java.io.*;
import java.net.*;

class DataLogger extends Thread {
 ...
 static final int SERVER_PORT = 5588;

 HumidityLogger logger;

 DataLogger(int samples, int delay) throws LoggingException {
 // Create and start the logging daemon
 logger = new HumidityLogger(samples, delay);
 logger.start();
 }

 ...
}

DataLogger requires the number of data readings to be maintained and the
delay in seconds between each reading to be specified on the command line.
DataLogger’s main method is shown in Listing 7.2.

Listing 7.2 DataLogger’s main method

public static void main(String[] args) {
 System.out.println("Starting DataLogger ...");
 if (args.length != 2) {
 System.out.println("Usage: java DataLogger samples delay");
 System.exit(1);

150 Chapter 7 Building a Remote Data Logger

 }
 int samples = Integer.parseInt(args[0]);
 int delay = Integer.parseInt(args[1]);
 try {
 (new DataLogger(samples, delay)).start();
 } catch (Exception e) {
 System.out.println("Error creating data logger");
 e.printStackTrace();
 // In case any non-daemon threads have been started
 // System.exit(1);
 }
}

After extracting the samples and count values from the command line, the
main method creates a new DataLogger object, which also creates a new thread of
execution. After constructing the new instance of DataLogger, the start method is
invoked to kick off the server.

The server spends eternity in the run method, processing network connections.
DataLogger’s run method along with the inner class LogWorker is shown in
Listing 7.3. It starts by creating a ServerSocket object to listen for inbound
connections from remote clients. The SERVER_PORT number used in creating the
ServerSocket object is simply chosen as a large magic number. Anything that is
comfortably above the range of “well-known port”2 numbers will do. As
implemented here, DataLogger uses a port number of 5588. The application could
easily be modified to use a port number specified on the command line.

Listing 7.3 DataLogger’s run method

public void run() {
 ServerSocket ss = null;
 try {
 ss = new ServerSocket(SERVER_PORT);
 } catch (Exception e) {
 e.printStackTrace();
 // Abort if we can’t create ServerSocket instance
 return;
 }

 while (true) {
 Socket s = null;
 try {
 // Wait for client connections over PPP or Ethernet
 s = ss.accept();
 } catch (IOException ioe) {
 // Shut down the logging daemon
 logger.stopLogging();
 System.out.println("Fatal problem with server socket");

2. The well-known ports are listed in RFC 1700.

The DataLogger Class 151

 ioe.printStackTrace();
 // Fall out of run method
 break;
 }

 // Create a new thread to handle this connection
 (new LogWorker(s)).start();
 }
}

private class LogWorker extends Thread {
 private Socket s;

 private LogWorker(Socket s) {
 this.s = s;
 }

 public void run() {
 DataOutputStream dout = null;
 try {
 dout = new DataOutputStream(
 new BufferedOutputStream(s.getOutputStream()));
 logger.writeLog(dout);
 dout.flush();
 } catch (IOException ioe) {
 System.out.println("I/O error writing log data");
 ioe.printStackTrace();
 } finally {
 try {
 s.close();
 dout.close();
 } catch (IOException e) {}
 }
 }
}

After the ServerSocket object is created, the run method enters an infinite
loop that accepts and processes inbound client connections. After a new instance
of Socket is returned from the ServerSocket object’s accept method, a new
thread (an instance of LogWorker) is created to manage the connection. The
socket’s getOutputStream method is invoked to obtain the lowest-level output
stream (an instance of SocketOutputStream) for writing data to the underlying
connection. This stream is used in constructing an instance of
BufferedOutputStream, and the resulting buffered output stream is wrapped in a
DataOutputStream.

The idea of using a buffered DataOutputStream for writing the log data is that
the data-collecting daemon will write all of the samples it has collected to the
output stream in an iterative fashion. If the output stream were not buffered, every
write method invoked on the output stream would perform a write to the low-
level SocketOutputStream. This forces a write to the native socket layer. Writing

152 Chapter 7 Building a Remote Data Logger

the log data in such a fashion could be termed “byte-banging.” Byte-banging is
very inefficient, since each of these writes is fairly expensive. With the
BufferedOutputStream, writes to the underlying SocketOutputStream occur only
when the BufferedOutputStreams internal buffer is full or the stream’s flush
method is invoked. The default internal buffer size used in TINI’s implementation
of all buffered streams is 512 bytes. This allows several log entries to be written to
the DataOutputStream before the write method on the SocketOutputStream is
invoked to write the contents of the buffer to the native socket layer.

The DataOutputStream object is passed to the writeLog method of the data
collecting daemon. The writeLog method is responsible for writing all data points
to the output stream. After the writeLog method returns, any data remaining in the
output stream’s internal buffer is flushed and both the stream and underlying
socket are closed.

There are two catch blocks in the run method. The first protects the accept

method. If an IOException is thrown from accept, the problem is assumed to be
fatal. There isn’t any good reason for accept to throw a runtime exception other
than that the port selected is already owned by another thread or process and this
problem won’t be fixed with retries. In this case, the while loop is exited by the
break statement, allowing the DataLogger thread to exit. As we’ll see in the next
few sections, all other threads created in the DataLogger process are daemon
threads, so when the server thread exits, all of the other threads stop executing and
the application terminates. The other catch block protects the writing of the log
data to the remote client. In this case, an error could result from the client terminat-
ing the connection unexpectedly. While this certainly does prohibit the successful
transfer of the log data, it shouldn’t cause the application to exit. In this case, we
just close down the socket and output stream and wait for a new connection.

In this section we developed the top-level framework necessary to accept net-
work connections and dispatch output requests to the data collector. Next, we’ll
focus on the details of collecting and managing the data samples.

7.3 COLLECTING THE DATA

The first task is deciding exactly what data we’ll be collecting. Since we’re using
the humidity sensing circuit we developed in Section 4.4.3, we should briefly
review its capabilities. The sensor used a 1-Wire chip as a digital front end to the
physical humidity sensor. The humidity sensor’s only output is an analog voltage.
The 1-Wire chip provided analog to digital conversion as well as temperature
readings. The HumiditySensor class we created to expose the sensor’s functional-
ity provides the following public methods.

public double getSensorRH() throws OneWireException
public double getTrueRH() throws OneWireException
public double getTemperature() throws OneWireException

Collecting the Data 153

Of the three readings we can obtain from the above methods, only two are
likely to be interesting to a client: the temperature and the true relative humidity.
The sensor relative humidity might be interesting for calibration purposes, but
we’ll ignore it here. We’ll also want to put a time stamp on each reading so that
clients can build logs and chart environmental change over time.

The next thing we need to decide is how to store the data samples. One
obvious approach would be to write the data to a file. Each new entry could be
appended to the end of the file. The advantage of using a file is that even if the
system loses power, the log data is not lost. When power is restored and the
application restarts, it can simply continue logging data samples by appending
each sample to the end of the same file. If the system were down long enough to
miss one or more samples, any client that downloads the file would be able to
detect this by examining the time stamps. The downside to logging the data to a
file is that DataLogger is running in a memory constrained environment. The file
system, Java objects, and all system data structures live in the same memory
space. If the log file grows too large, the application will likely terminate with an
OutOfMemoryError or some other fatal exception. Special tricks would be required
to ensure that the file didn’t grow beyond a certain size. This is further
complicated by the fact that we can’t just truncate the file at a certain size by
writing the latest sample over the sample at the end of the file. If a sample must be
lost, it should be the oldest sample. In this sense, we really want something like a
circular buffer. This can still be implemented with the file system using a
RandomAccessFile, but it is too cumbersome for our example. For our purposes, it
will be much simpler and more efficient to store the data in a Vector. Of course, if
we just continue to add elements to the vector, we’ll still run out of memory. But
by using a Vector we can easily avoid this problem by removing the oldest
sample, which will always be at index 0, before adding the new sample after the
maximum sample count has been reached.

Note that if we assumed a constant connection to a network, we could struc-
ture DataLogger so that it just wrote all samples to a socket as they were collected.
But we’re building this application with the idea that the network isn’t always
available. This allows the logger to do all of its work without the network. Then
when a client is interested in synching up with the logger, it can establish a con-
nection with the server and collect the necessary data. The more “remote” the sys-
tem is, the more important this ability becomes.

To keep the logging classes reasonably general purpose and reusable, we’ll
create an abstract class named LoggingDaemon to drive the data collection process.
Ideally we don’t want LoggingDaemon to have to be aware of what kind of data is
being logged or the details of how it is acquired. To accomplish this isolation,
LoggingDaemon defines the following abstract methods.

protected abstract Object captureSample();
protected abstract void writeLogEntry(Object sample, DataOutputStream dout)
 throws IOException;

154 Chapter 7 Building a Remote Data Logger

Subclasses of LoggingDaemon implement the captureSample method to handle
the details of collecting a single data sample. This sample must be encapsulated
within an object because it will be stored in a Vector. The writeLogEntry method
is used to write the individual fields contained in the sample object to the supplied
instance of DataOutputStream.

LoggingDaemon’s constructor is shown in Listing 7.4. The constructor requires
the maximum number of samples to be held in the samples Vector along with the
delay between consecutive samples. The maxSamples field is used to set the initial
size of the Vector. The delay is input to the constructor as a number of seconds.
The delay is converted to milliseconds so that it can be input directly into
Thread’s sleep method. Finally the LoggingDaemon thread is set to a daemon
thread. This means that when the last non-daemon thread exits, LoggingDaemon

will exit, along with any other daemon threads, allowing the process to terminate.
We do this because there isn’t any point in continuing to log data if there isn’t a
server running to allow clients to download it.

Listing 7.4 LoggingDaemon’s constructor

import java.io.*;
import java.util.*;

public abstract class LoggingDaemon extends Thread {
 private int maxSamples;
 private int delay;
 private Vector samples;

 ...

 public LoggingDaemon(int maxSamples, int delay)
 throws LoggingException {

 this.maxSamples = maxSamples;
 // Convert delay from seconds to milliseconds
 this.delay = delay * 1000;
 samples = new Vector(maxSamples);
 this.setDaemon(true);
 }

 public void stopLogging() {
 logEm = false;
 }
}

LoggingDaemon’s run method is shown in Listing 7.5. As long as the
stopLogging method is not invoked, the run method spins in an infinite loop
collecting data samples at the specified interval.

Collecting the Data 155

Listing 7.5 LoggingDaemon’s run method

...
public void run() {
 while (logEm) {
 Object smp = captureSample();
 if (smp != null) {
 synchronized (samples) {
 if (samples.size() == maxSamples) {
 // Remove the oldest entry
 samples.removeElementAt(0);
 }
 samples.addElement(smp);
 }
 }
 try {
 Thread.sleep(delay);
 } catch (InterruptedException ie) {}
 }
}

If the captureSample method returns null, there is no change in samples. The
run method simply goes to sleep until it is time to try another sample. This is a
rather simplistic mechanism for handling errors that occur during data collection,
but it is appropriate for our application. Since every sample carries with it a time
stamp, a client can determine that one or more samples were missed by simple
analysis of the time stamps.

LoggingDaemon’s writeLog method is shown in Listing 7.6. The writeLog

method is invoked by the server when a client establishes a connection with the
server, requesting a log of the recent data samples. The writeLog method simply
enumerates samples, invoking writeLogEntry for every data sample contained
within the Vector. The details of extracting and writing the actual field data con-
tained within the sample object are left to the subclass.

Listing 7.6 LoggingDaemon’s writeLog method

public void writeLog(DataOutputStream dout) throws IOException {
 Vector sc = (Vector) samples.clone();
 dout.writeInt(sc.size());
 for (Enumeration e = sc.elements(); e.hasMoreElements();) {
 writeLogEntry(e.nextElement(), dout);
 }
}

Since we need to encapsulate the individual data readings within an object,
we’ll create a class named HumiditySample (shown in Listing 7.7).
HumiditySample is just a thin wrapper on the sample data that provides public
“get” methods for the individual fields. HumiditySample’s constructor takes the

156 Chapter 7 Building a Remote Data Logger

readings attained using the HumiditySensor class and stores them in the
temperature and relHumidity fields. It also time stamps the readings using the
System.currentTimeMillis method, which returns the number of milliseconds
between the current time and midnight, January 1, 1970. This is much simpler and
faster for our purposes than storing the time stamp as a Date object. We can put
the burden of converting the timeStamp value to humanly readable date and time
on the client program. In the case that the client is written in Java, this job is
trivial. It can simply pass the timeStamp value received to the Date constructor
that takes the long value returned from currentTimeMillis. We’ll make use of
this in the next section, which presents a small sample client application.

Listing 7.7 HumiditySample

public class HumiditySample {
 private double temperature;
 private double relHumidity;
 private long timeStamp;

 public HumiditySample(double relHumidity, double temperature) {
 this.temperature = temperature;
 this.relHumidity = relHumidity;
 timeStamp = System.currentTimeMillis();
 }

 public long getTimeStamp() {
 return timeStamp;
 }

 public double getRelativeHumidity() {
 return relHumidity;
 }

 public double getTemperature() {
 return temperature;
 }
}

Now that we have a simple framework for collecting, maintaining, and out-
putting a group of samples, we can create the class that performs the actual work
of collecting individual samples. The class HumidityLogger, shown in Listing 7.8,
extends LoggingDaemon and provides implementations for the captureSample and
writeLogEntry methods.

Listing 7.8 HumidityLogger

import java.io.IOException;
import java.io.DataOutputStream;

Collecting the Data 157

import com.dalsemi.onewire.OneWireAccessProvider;
import com.dalsemi.onewire.adapter.DSPortAdapter;
import com.dalsemi.onewire.OneWireException;

public class HumidityLogger extends LoggingDaemon {
 private HumiditySensor sensor;
 private DSPortAdapter adapter;

 public HumidityLogger(int maxSamples, int delay)
 throws LoggingException {

 super(maxSamples, delay);
 try {
 adapter = OneWireAccessProvider.getDefaultAdapter();
 sensor = new HumiditySensor(adapter);
 } catch (OneWireException owe) {
 throw new LoggingException(
 "Error creating Environmental Sensor:" +
 owe.getMessage());
 }
 }

 public Object captureSample() {
 try {
 adapter.beginExclusive(true);
 double temp = sensor.getTemperature();
 double humidity = sensor.getTrueRH();
 return new HumiditySample(humidity, temp);
 } catch (OneWireException owe) {
 System.out.println("Error reading sensor");
 owe.printStackTrace();
 // No need to terminate app because of a failed reading
 return null;
 } finally {
 adapter.endExclusive();
 }
 }

 public void writeLogEntry(Object sample, DataOutputStream dout)
 throws IOException {

 dout.writeLong(((HumiditySample)sample).getTimeStamp());
 dout.writeDouble(((HumiditySample)sample).getRelativeHumidity());
 dout.writeDouble(((HumiditySample)sample).getTemperature());
 }
}

HumidityLogger creates a new instance of the class HumiditySensor, which is
used to perform the humidity and temperature measurements. When the
captureSample method is invoked, it simply creates a new HumiditySample object
to encapsulate the humidity and temperature values and returns that object to the
caller, in this case the run method of LoggingDaemon. It is important that a
transient error that could cause a failure while performing an individual

158 Chapter 7 Building a Remote Data Logger

measurement not cause the logging thread to terminate. If an exception is thrown
while performing the measurements, it is caught, and null is returned.

Since the LoggingDaemon class doesn’t know anything about the internal
details of the data sample object—HumiditySample, in this case—it invokes
writeLogEntry passing it a reference to the sample object and a
DataOutputStream used to write the sample object’s field information to the
underlying socket. The writeLogEntry method extracts the time stamp, humidity,
and temperature readings and writes them to the stream using the appropriate
methods, writeLong and writeDouble, preserving their primitive types. It is
assumed that the client will be using a DataInputStream for easy interpretation of
the data.

7.4 A SAMPLE CLIENT

At this point, we have a data logging application capable of capturing data and
serving up to any client over an Ethernet network connection. To test the data log-
ger, we’ll develop a small client application to connect to the server and download
its current log.

The DataLoggerClient class, shown in Listing 7.9, is a simple command line
application that can be run on any Java platform. The name of the server, the TINI
running the DataLogger application, is extracted from the first argument on the
command line. DataLoggerClient then uses the server name to establish a
connection to the server. After the connection has been established, the
getInputStream method is invoked on the socket instance to get a stream that can
be used for uploading the log information from the server. The input stream is
buffered, and the result is wrapped in a DataInputStream. Now the client is ready
to read the data in the same format in which it is written by the server.

Listing 7.9 DataLoggerClient

import java.io.*;
import java.net.*;
import java.util.Date;

class DataLoggerClient {
 static final int PORT = 5588;

 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: java DataLoggerClient server");
 System.exit(1);
 }

 Socket s = null;

A Sample Client 159

 DataInputStream din = null;
 try {
 s = new Socket(InetAddress.getByName(args[0]), PORT);
 din = new DataInputStream(
 new BufferedInputStream(s.getInputStream()));
 // Read number of data entries coming our way
 int entries = din.readInt();
 System.out.println("Total readings="+entries);
 for (int i = 0; i < entries; i++) {
 System.out.print("Entry " + i + ":" +
 new Date(din.readLong()));
 System.out.print(", RH=" + din.readDouble());
 System.out.println(", TEMP=" + din.readDouble());
 }
 } catch (IOException ioe) {
 System.out.println("Error downloading readings:"+
 ioe.getMessage());
 ioe.printStackTrace();
 } finally {
 try {
 s.close();
 din.close();
 } catch (IOException _) {}
 }
 }
}

The first thing the server sends to us is an integer value that tells the client the
number of log entries to expect. After the client has read this value, it can loop
through all entries, reading each individual sample. The client simply displays
each entry as it’s being read, but a real client application would probably be log-
ging this information to a database. The individual fields of each entry—time-
stamp, humidity, and temperature—must be read by the client in the same order
they are written by the server. The time stamp is read in as a long and passed to a
constructor of the Date class. The toString method of Date is then used to display
a human readable date and time. The humidity and temperature measurements are
simply read as doubles and displayed.

Now we have both the client and server programs and are ready to run both
applications. The server can be launched on TINI using a command line similar to
the following.

TINI /> java DataLogger.tini 60 120 &
Starting DataLogger ...

A maximum number of 60 samples was specified along with a 120-second
delay between each sample. After running the server for several minutes to allow
it to acquire a few samples, we can run the client. Here is the sample output for
DataLoggerClient that is run on a Win2K machine.

160 Chapter 7 Building a Remote Data Logger

java DataLoggerClient 192.168.0.15
Total readings=3
Entry 0:Fri Feb 02 14:20:41 CST 2001, RH=27.733103869596295, TEMP=23.53125
Entry 1:Fri Feb 02 14:22:42 CST 2001, RH=28.067076700395877, TEMP=23.4375
Entry 2:Fri Feb 02 14:24:42 CST 2001, RH=27.73123954744912, TEMP=23.28125

By examining the time stamp, we can see that each sample was taken just over
two minutes apart. If we let the server run more than two hours, it will fill its sam-
ple vector, and running the client would result in 60 data samples. If we let the
server continue to run for days, weeks, or even months, we would still get 60 sam-
ples, but they would always represent readings taken within the last two hours.

In the next section, support will be provided for managing a PPP interface. We
can then use the same client we developed in this section to test DataLogger’s
ability to accept connections over both Ethernet and PPP network interfaces.

7.5 IMPLEMENTING THE PPP DAEMON

Now on to the business of making our “remote data logger” truly remote. We’ll
accomplish this by adding support for establishing dial-up networking connec-
tions to our logger using the PPP network interface and supporting API classes. At
this point we’re going to bring a second server into the picture, which could
become confusing. The top-level network server is what we implemented in the
DataLogger class in Section 7.2. It blocks on accept, waiting for a connection
over any network interface. It doesn’t really care if the connection is established
over an Ethernet network or a serial line using PPP. The server we’ll implement in
this section is a “dial-up” server that allows clients to establish TCP/IP connec-
tions to TINI using a PPP interface. For the sake of brevity, we’ll just refer to the
dial-up server as the “server.” However, when both servers are a part of the discus-
sion context, we’ll explicitly refer to the “dial-up server.”

We’ll implement our dial-up server in a class named PPPDaemon. A portion of
the PPPDaemon class is shown in Listing 7.10. PPPDaemon implements two inter-
faces: PPPEventListener to receive PPP event notification and DataLinkListener

to receive notification about errors that occur with the physical data link. In this
section, we won’t get too concerned about the details of the underlying physical
link and whether the connection is established over a hard-wired serial link or
using modems. Then next section will deal with the low-level data link handling
issues.

On construction PPPDaemon requires an instance of a class that implements the
PPPDaemonListener interface shown in Listing 7.11. The daemonError interface
method is invoked by PPPDaemon to provide asynchronous notification of a PPP or
data link error to the listener. The isValidUser method is invoked after the server
has received the client’s login information. This gives the listener the final say on
whether a PPP connection is accepted or rejected.

Implementing the PPP Daemon 161

Listing 7.10 PPPDaemon

import java.io.*;
import com.dalsemi.tininet.ppp.*;

public class PPPDaemon implements PPPEventListener, DataLinkListener {
 private PPP ppp;
 private PPPDataLink dataLink;
 private int maxRetries;
 private PPPDaemonListener listener;

 ...
 public PPPDaemon(PPPDaemonListener listener,
 String portName, int speed)
 throws PPPException {

 this(listener, portName, speed, 3, true);
 }

 public PPPDaemon(PPPDaemonListener listener, String portName,
 int speed, int maxRetries, boolean modemLink)
 throws PPPException {

 this.listener = listener;
 this.maxRetries = maxRetries;
 try {
 if (modemLink) {
 dataLink = new PPPModemLink(portName, speed, this);
 } else {
 dataLink = new PPPSerialLink(portName, speed, this);
 }
 } catch (DataLinkException dle) {
 throw new PPPException("Unable to initialize PPPDaemon:" +
 dle.getMessage());
 }

 ppp = new PPP();
 ppp.setLocalAddress(new byte[] {(byte) 192, (byte) 168, 1, 1});
 ppp.setRemoteAddress(new byte[] {(byte) 192, (byte) 168, 1, 2});
 ppp.setAuthenticate(true);
 }

 ...

 public void dataLinkError(String error) {
 System.err.println("Error in data link:"+error);
 ppp.close();
 }
}

After initializing the listener and maxRetries fields, PPPDaemon’s constructor
creates an object to manage the physical data link. It creates either a
PPPSerialLink or a PPPModemLink object, depending on the modemLink boolean

162 Chapter 7 Building a Remote Data Logger

passed to the constructor. Both of these classes and the PPPDataLink interface they
implement will be covered in detail in the next section. For now it’s sufficient to
know that by using the PPPDataLink object, the daemon can initialize the link and
obtain a reference to its underlying serial port. From this point forward the
daemon doesn’t care if the physical link is over a hard-wired serial connection or
a modem.

Next, a new PPP object is created and the IP addresses for both the local inter-
face and the remote peer are set.

Listing 7.11 PPPDaemonListener interface

public interface PPPDaemonListener {
 public void daemonError(String error);
 public boolean isValidUser(String name, String password);
}

It is easiest to understand the operation of PPPDaemon as a Finite State
Machine (FSM). The state diagram for the FSM implemented by the PPPDaemon

class is shown in Figure 7.1. The solid lines represent state transitions caused by
PPPDaemon invoking methods on its PPP object. The dashed lines represent transi-
tion caused by errors detected by the native PPP implementation.

Note that there are actually two finite state machines at work here: the true
PPP state machine3 that is implemented as a part of the network stack beneath the
IP module (see Figure 5.1) and the high-level state machine implemented by
PPPDaemon, whose state transitions are driven by events generated by the PPP

daemon thread and method invocations on a PPP object. The low-level PPP state
machine is very complex and has several additional states. For the most part, the
arcane details of its implementation are hidden from the application developer by
the PPP class. The purpose of the PPPEventListener interface is to provide a
mechanism to drive a much simpler, higher-level state machine that gives the
application an opportunity to control the physical data link, user authentication,
and the handling of error information.

After creating a new PPP object, PPPDaemon is in the INIT state. At this point,
there is no PPP traffic traveling across the physical data link. To transition to the
STARTING state, the owner of the PPPDaemon object invokes the startDaemon
method shown in Listing 7.12. startDaemon adds its own object (this) as a lis-
tener for PPP events and invokes the open method on its PPP object.

3. The PPP finite state machine is described in RFC 1661.

Implementing the PPP Daemon 163

Listing 7.12 StartDaemon

public void startDaemon() throws PPPException {
 retryCount = 0;
 try {
 // Add PPP event listener to driver state machine
 ppp.addEventListener(this);
 } catch (java.util.TooManyListenersException le) {
 throw new PPPException("Unable to add event listener");
 }
 ppp.open();
}

public void stopDaemon() {
 // Don’t receive any more PPP events
 ppp.removeEventListener(this);
 ppp.close();
}

INIT

START

CLOSED AUTH

open()

open() up()

UP

Link terminated
by remote peer

STOPPED

close()

close()

au
the

nti
ca

te(
fal

se
)

au
th

en
tic

at
e(

tru
e)

LCP
Negotiation
failed

Figure 7.1 PPP daemon FSM

164 Chapter 7 Building a Remote Data Logger

The bulk of the FSM is implemented in the pppEvent method shown in
Listing 7.13. pppEvent is invoked by a daemon thread that is created during con-
struction of the PPP object. It is passed a PPPEvent object that is used to determine
the event type. The pppEvent method switches on the event type to determine the
next appropriate action. The event processing usually completes by invoking a
method on a PPP object forcing another state transition. The possible events were
described in the previous chapter and are listed here for convenience.

• STARTING
• AUTHENTICATION_REQUEST
• UP
• STOPPED
• CLOSED

The STARTING state provides the application with a chance to initialize the
physical data link. Our sample PPP daemon implementation does so using the
initializeLink method defined in the PPPDataLink (Listing 7.14) interface. If
initializeLink returns normally, the server invokes the up method on its PPP
object, passing it a reference to the serial port. All PPP traffic flows over this port.
This is really a handoff of serial port ownership. Once the port reference is passed
to PPP, it assumes exclusive access to the serial port. If initializeLink fails to
bring up the link successfully for any reason, it throws a DataLinkException,
which is caught, and close is invoked on the PPP object. This will cause the
notifier thread to generate a CLOSED event transitioning PPPDaemon to the CLOSED
state.

At this point, PPP waits for a client to begin LCP (Line Control Protocol)
negotiation. Once a client successfully completes the line negotiation, PPP
requests login information and the remote peer replies with a user name and pass-
word. This generates an AUTHENTICATION_REQUESTED event (the AUTH state in Fig-
ure 7.1), and pppEvent gets the user name and password for the PPP object and
passes them to the listener’s isValidUser method. If the listener likes the login
information, PPP completes its negotiation with the client, establishing the IP
addresses for both the local and remote peer, and generates an UP event. pppEvent
then invokes addInterface on the PPP object, which adds a new network interface
to the OS.

Now the communication link is fully established and ready for IP traffic. If
the listener didn’t like the login information, a STOPPED event is generated, and the
retryCount, which is used to track errors, is incremented. A STOPPED event can
also be generated by the remote peer breaking the connection. Regardless of how
we transitioned to the STOPPED state, we’ll invoke close on the PPP object to gen-
erate a CLOSED event. This gives both the underlying PPP object and our daemon a
chance to perform an orderly shutdown of the connection. If the connection had

Implementing the PPP Daemon 165

been fully established (that is, it had at some point transitioned to the UP state),
then we’ll invoke down on the PPP object and remove the network interface that
was added during the UP state processing.

Listing 7.13 pppEvent

...
private int retryCount;

public void pppEvent(PPPEvent ev) {
 switch (ev.getEventType()) {
 case PPPEvent.STARTING:
 try {
 // Now we need to bring up the physical link
 dataLink.initializeLink();
 ppp.up((SerialPort) dataLink.getPort());
 } catch (DataLinkException dle) {
 listener.serverError("Data link error:"+
 dle.getMessage());
 ppp.close();
 }
 break;

 case PPPEvent.AUTHENTICATION_REQUEST:
 ppp.authenticate(listener.isValidUser(ppp.getPeerID(),
 ppp.getPeerPassword()));
 break;

 case PPPEvent.UP:
 // Reset error count after successfully bringing
 // up connection
 retryCount = 0;
 ppp.addInterface("ppp0");
 isUp = true;
 break;

 case PPPEvent.STOPPED:
 ppp.close();
 if (++retryCount < maxRetries) {
 ppp.close();
 } else {
 listener.serverError(
 "Unable to establish PPP connection");
 }
 break;

 case PPPEvent.CLOSED:
 if (isUp) {
 ppp.removeInterface("ppp0");
 ppp.down();
 isUp = false;
 }
 try {

166 Chapter 7 Building a Remote Data Logger

 // Sleep before recycling ppp connection
 Thread.sleep(1000);
 } catch (InterruptedException ie) {}
 ppp.open();
 break;

 default:
 break;
 }
}

The state machine as implemented in Listing 7.13 is designed to run continu-
ously, retrying if transient errors occur. Every time a connection is successfully
established (the UP state is reached), the error count is reset to 0. Unless a maxi-
mum retry count (maxRetries) is reached, the daemon continues to run. Once the
error count threshold is reached, the listener is notified that a persistent problem is
preventing the daemon from establishing PPP connections. The listener can
choose to either stop the daemon entirely by invoking stopDaemon or take some
action to fix the problem and recycle the server by stopping and restarting it. The
problem may be with the modem or phone line and may require some human
intervention.

7.6 MANAGING THE PPP DATA LINK

The PPP daemon we implemented in the previous section maintained a reference
to an instance of a class that implemented the PPPDataLink interface. This
reference is used by the server to control the data link. Now we’ll create the
PPPDataLink interface shown in Listing 7.14. Both of the link management
classes we will create in this section will implement this interface.

Listing 7.14 PPPDataLink

import javax.comm.SerialPort;

public interface PPPDataLink {
 public SerialPort getPort();
 public void initializeLink() throws DataLinkException;
}

The initializeLink method is used to perform any specific setup required to
use that data link. After the link has been successfully initialized, the PPP daemon
invokes getPort to acquire a reference to the link’s serial port. This reference is
transferred to the native PPP implementation and is used for all PPP communica-
tion. Other than during construction and execution of the initializeLink

method, the data link classes should not access the serial port.

Managing the PPP Data Link 167

Because data link errors can occur asynchronously and without the knowl-
edge of the underlying native PPP implementation, an object that owns the data
link needs a mechanism for notifying PPPDaemon that an error has occurred. The
most common example of a link error is the modem hanging up. This results in
loss of carrier detect from the modem. We’ll discuss this further in Section 7.6.2.
The interface DataLinkListener shown in Listing 7.15 defines the method
dataLinkError that will be invoked by the object controlling the data link upon
detection of an unrecoverable error.

Listing 7.15 DataLinkListener

public interface DataLinkListener {
 public void dataLinkError(String error);
}

When the listener’s dataLinkError (see Listing 7.16) is invoked, it will typi-
cally set some internal state and call the close method on the PPP object. The
internal state allows the CLOSED event code to determine why the CLOSED event was
generated. In the case of a link error, it will invoke the down method on the PPP
object, freeing the serial port and forcing a transition to the START state. This pro-
vides a clean way to reset the link and hopefully clear the condition that generated
the error.

Listing 7.16 dataLinkError

public void dataLinkError(String error) {
 System.err.println("Error in data link:"+error);
 ++linkErrors;
 ppp.close();
}

In our example PPP server, we maintain a retry count and put an upper limit
on the number of retries that can be caused by a persistent error in either the data
link or the underlying PPP object. The retry count is reset to 0 after every success-
ful transition to the UP state.

7.6.1 The Serial Link

All PPP traffic flows over a serial port. The serial port may or may not have a
modem attached. Now we’ll create a class named PPPSerialLink that provides
functionality that is common to both hard-wired serial and modem configurations.
PPPSerialLink is shown in Listing 7.17. Notice first that PPPSerialLink
implements the PPPDataLink interface providing implementations for the
initializeLink and getPort methods. These are the only public methods needed
by PPPDaemon to manage the data link.

168 Chapter 7 Building a Remote Data Logger

During construction, PPPSerialLink creates a new serial port object and uses
that object to configure the physical port. In this example, we set the port for 8 data
bits, 1 stop bit, and no parity. This is a very common configuration and shouldn’t
cause us any problems in communicating with other modems or directly with
another serial port. We also select the use of RTS/CTS (Request to Send/Clear to
Send) hardware flow control (see Section 3.2.2), assuming that the underlying
physical port has support for the necessary hardware flow control lines.4 Finally,
the constructor creates input and output streams for reading from and writing to the
serial port, respectively. Note that this class could be made more flexible by adding
parameters to the constructor that allowed for the selection of either hardware or
software flow control as well as other data transfer settings.

Listing 7.17 PPPSerialLink

import javax.comm.*;
import java.io.*;

public class PPPSerialLink implements PPPDataLink {
 protected DataLinkListener listener;
 protected SerialPort sp;
 protected InputStream in;
 protected OutputStream out;

 public PPPSerialLink(String portName, int speed,
 DataLinkListener listener)
 throws DataLinkException {

 this.listener = listener;
 try {
 // Create and initialize serial port
 sp = (SerialPort)
 CommPortIdentifier.getPortIdentifier(portName).open(
 "PPPDataLink", 5000);

 sp.setSerialPortParams(speed, SerialPort.DATABITS_8,
 SerialPort.STOPBITS_1,
 SerialPort.PARITY_NONE);

 TINIOS.setRTSCTSFlowControlEnable(0, true);
 sp.setFlowControlMode(SerialPort.FLOWCONTROL_RTSCTS_IN |
 SerialPort.FLOWCONTROL_RTSCTS_OUT);

 in = sp.getInputStream();
 out = sp.getOutputStream();
 } catch (Exception e) {

4. If your TINI hardware does not support the hardware handshake lines on serial0,
remove the statements that configure flow control or use a serial port that supports
RTS/CTS flow control.

Managing the PPP Data Link 169

 throw new DataLinkException("Error configuring serial port"+
 e.getMessage());
 }
 }

 public void initializeLink() throws DataLinkException {
 }

 public SerialPort getPort() {
 return sp;
 }
}

If the constructor fails to properly acquire ownership or properly initialize the
specified serial port for any reason, it throws a DataLinkException. Typical causes
of failure would be that the port is already owned by another process or it doesn’t
support one of the selected options.

A PPPSerialLink object doesn’t need to do much after it has initialized the
port. The initializeLink method simply returns because the link is always ready
for data traffic.5 In the next section, when we add modem support, we’ll have to
do a bit of work in initializeLink.

The PPPSerialLink class implements the functionality needed to provide PPP
communication over a hard-wired serial link. This type of connectivity is useful as
a quick and simple mechanism for testing PPP code written for TINI. No modem
is required in this configuration, and it allows for a faster connection because you
don’t have to wait for normal modem delays such as dialing and answering the
phone. In practice, it is probably most useful for direct communication between
TINI and a hand-held PDA that supports PPP connections such as the Palm Pilot
or Visor.

7.6.2 Controlling the Modem

Most practical uses of PPP on TINI require the use of an external serial modem.
Ultimately, if an application similar to DataLogger is deployed in an Ethernet
challenged location, its only connection to a TCP/IP network could be using the
public phone network. A hardware configuration of TINI plus a serial modem
allow applications to either accept or make dial-up network connections with
remote clients or servers.

Since all communication with the modem will be over a serial port, we can
create the class to manage modem communications as a subclass of
PPPSerialLink, defined in the previous section. The class PPPModemLink is shown

5. If you’re using Windows 2000 or NT for your direct link testing, you will need to
modify the initializeLink method to wait for the string “CLIENT” and respond
with the string “CLIENTSERVER.”

170 Chapter 7 Building a Remote Data Logger

in Listing 7.18. Upon construction PPPModemLink invokes its superclass’s
constructor to acquire and initialize the serial port. It also creates a ModemCommand

object to manage sending commands to and receiving responses from the modem.
The ModemCommand class is described later in this section.

Listing 7.18 PPPModemLink

import javax.comm.*;
import java.io.*;
import java.util.TooManyListenersException;

public class PPPModemLink extends PPPSerialLink
 implements SerialPortEventListener {
 private ModemCommand mc;

 public PPPModemLink(String portName, int speed,
 DataLinkListener listener)
 throws DataLinkException {

 super(portName, speed, listener);
 mc = new ModemCommand(sp, in, out);
 try {
 sp.addEventListener(this);
 } catch (TooManyListenersException tmle) {
 throw new DataLinkException(
 "Unable to register for serial events");
 }
 }
 ...
 public void serialEvent(SerialPortEvent ev) {
 if ((ev.getEventType() == SerialPortEvent.CD) &&
 !ev.getNewValue()) {

 listener.dataLinkError("Lost carrier detect");
 }
 }
}

PPPModemLink implements the SerialPortEventListener interface. In this
case we’re specifically interested in the SerialPortEvent.CD (Carrier Detect)
event because we need to be notified if and when the modem hangs up. When the
modem hangs up, the CD signal transitions from high (carrier present) to low
(carrier not present). If this happens, the serialEvent method is invoked by the
serial port event daemon notification thread. serialEvent checks the event type to
see if it is a carrier detect change event. All other events are ignored. If the
returned event value is false, this signals that the modem has indeed hung up, and
serialEvent invokes the DataLinkListener’s (PPPDaemon in this case)
dataLinkError method, notifying the listener that the data link is no longer valid.

Managing the PPP Data Link 171

The PPP daemon then closes the underlying PPP connection and frees any
resources that were consumed.

Initializing the modem link involves the following three steps:

1. Reset the modem.
2. Wait for a ring.
3. Answer the phone.

Both the initializeLink and resetModem methods are shown in Listing 7.19.
The modem reset is initiated by dropping the DTR (Data Terminal Ready) line
low, delaying for a couple of seconds, and then raising DTR back high. After tog-
gling DTR, resetModem sends the string “AT\r” to the modem and waits for a
response string of “OK.” If the expected response is received, resetModem returns
normally. If the response is not received within the specified time-out value—six
seconds in this case—a DataLinkException is thrown by the sendCommand method
of the ModemCommand class. This exception is allowed to propagate up the call stack
to notify the method that invoked initializeLink of the failure to initialize the
modem.

Listing 7.19 initializeLink and resetModem

public void initializeLink() throws DataLinkException {
 resetModem();
 mc.receiveMatch("RING", null, 0);
 mc.sendCommand("ATA\r", "CONNECT", 25);
}

private void resetModem() throws DataLinkException {
 // Clear RTS and DTR
 sp.setDTR(false);
 sp.setRTS(false);

 try {
 Thread.sleep(2000);
 } catch (InterruptedException ie) {}

 // Set RTS and DTR
 sp.setDTR(true);
 sp.setRTS(true);

 try {
 Thread.sleep(2000);
 } catch (InterruptedException ie) {}

 // Sync modem to serial port baud rate
 mc.sendCommand("AT\r", "OK", 6);
}

172 Chapter 7 Building a Remote Data Logger

Note that depending on the specific modem you’re using, you may have to do
more or different work in initializeLink. For example, the modems used to test
this class all autobaud by default when the “AT\r” string is transmitted immedi-
ately after the DTR reset. If your modem initializes to some predefined hard-
coded speed after a DTR reset, initializeLink would have to transmit a com-
mand at the predefined speed, setting the new desired speed. Other commands
may also be required to correctly reset and initialize the modem.

After successfully resetting the modem, initializeLink waits for a ring.
When the modem detects a ring on the phone line, it transmits the string “RING.”
initializeLink blocks indefinitely by specifying a time-out value of 0, waiting
for this string. Once it receives the string, it sends the “ATA” command to the
modem, instructing it to answer the incoming call. After answering the phone, the
modem will respond with the string “CONNECT.” We allow a 25-second time-out
for the modem to answer the phone and respond because this is a time-consuming
process. It should typically complete within 10 or 15 seconds of ring detection.
After receiving the “CONNECT” string from the modem, the communication
channel is fully established and initializeLink returns normally.

The ModemCommand class, partially shown in Listing 7.20, is a utility class
used by PPPModemLink to handle the details of serial communication with the
modem. It is passed references to the serial port as well as serial port input and
output streams for the actual data transfer. ModemCommand provides these two pub-
lic methods.

public void sendCommand(String command, String response, int timeout)
 throws DataLinkException
public void receiveMatch(String match, String response, int timeout)
 throws DataLinkException

The sendCommand method converts command to a byte array and transmits the
result over the serial port to the attached modem. After transmitting the command
string, sendCommand invokes the waitForResponse method (described below) to
wait for the modem to transmit a response equal (ignoring case) to the value sup-
plied in response. If no response is expected from the modem, null can be sup-
plied for the response String. In this case, sendCommand returns immediately after
transmitting the command. The receiveMatch command has the opposite sense. It
first waits for a transmission from the modem equal (again ignoring case) to the
supplied value of match and then transmits a response to the modem. If nothing is
to be transmitted to the modem after receipt of the desired match String, null is
passed for the response. Both methods throw DataLinkException in the event of a
time-out waiting for the desired response.

Managing the PPP Data Link 173

Listing 7.20 ModemCommand

import javax.comm.*;
import java.io.*;

public class ModemCommand {
 private SerialPort sp;
 private InputStream in;
 private OutputStream out;

 public ModemCommand(SerialPort sp, InputStream in,
 OutputStream out) {
 this.sp = sp;
 this.in = in;
 this.out = out;
 }

 public void sendCommand(String command, String response,
 int timeout)
 throws DataLinkException {

 try {
 // Transmit the command
 out.write(command.getBytes());
 } catch (IOException ioe) {
 ioe.printStackTrace();
 throw new DataLinkException(
 "Error sending command to modem");
 }

 waitForMatch(response, timeout);
 }

 public void receiveMatch(String match, String response, int timeout)
 throws DataLinkException {

 try {
 waitForMatch(match, timeout);
 if ((response != null) && (response.length() > 0)) {
 out.write(response.getBytes());
 }
 } catch (IOException ioe) {
 ioe.printStackTrace();
 throw new DataLinkException(
 "IO Error receiving a match to:"+match);
 }
 }

 ...
}

174 Chapter 7 Building a Remote Data Logger

The waitForMatch method, shown in Listing 7.21, takes a String used for the
desired pattern match. The pattern match is performed in a case insensitive man-
ner. It also takes an integer number of seconds used as a time-out value, where a
value of 0 seconds is used to specify an infinite time-out. It uses both serial port
receive time-outs and thresholds to control the reading of data and manage a
timer. The receive time-out is set to 100 milliseconds and the threshold to the
number of bytes equal to the length of the match String. The overall time that has
elapsed is tracked using System.currentTimeMillis.

Listing 7.21 waitForMatch

private void waitForMatch(String match, int timeout)
 throws DataLinkException {
 try {
 sp.enableReceiveTimeout(100);
 sp.enableReceiveThreshold(match.length());

 byte[] mb = new byte[match.length()];
 long timer = 0;
 if (timeout > 0) {
 // Time out when timer > currentTimeMillis
 timer = timeout*1000+System.currentTimeMillis();
 }

 StringBuffer modemSpew = new StringBuffer();
 while ((timer == 0) || (System.currentTimeMillis() < timer)) {
 int count = in.read(mb);
 if (count > 0) {
 modemSpew.append((new String(mb,0,count)).toUpperCase());
 if (modemSpew.toString().indexOf(
 match.toUpperCase()) >= 0) {
 return;
 }
 }
 }

 throw new DataLinkException("Timed out waiting for match:"+
 match);
 } catch (Exception e) {
 e.printStackTrace();
 throw new DataLinkException("IO Error receiving a match to:"+
 match);
 }
}

The trick here is that the modem might send other unwanted bytes of
information in the same stream of data that has the pattern that we’re trying to
match. To deal with this problem, waitForMatch reads all serial bytes and stores
them in a StringBuffer. Each time data is available, the new bytes are appended

Adding the PPP Daemon to DataLogger 175

to the end of the StringBuffer. To check for a match, the StringBuffer is
converted to a String, and the indexOf method is used to check to see if the
desired response is contained anywhere within the resulting String. If a match
is found, waitForMatch returns normally. Otherwise, it performs another
blocking read until either the number of bytes equal to the length of the match

String is available or until 100 milliseconds elapses. If no match is found
within the specified overall time-out, a DataLinkException is thrown. The
DataLinkException propagates up the call stack eventually notifying the PPP
daemon of the modem’s failure to respond.

7.7 ADDING THE PPP DAEMON TO
DATALOGGER

Now that we have an implementation of a PPP daemon and the supporting data
link classes, we can enhance the DataLogger class to accept network connections
over both PPP and Ethernet interfaces.

Listing 7.22 shows the additions and modifications made to the DataLogger

class for the purpose of adding PPP daemon support. The first change to notice is
that DataLogger creates and starts a new instance of PPPDaemon on construction.
The other change to DataLogger is that it now implements the PPPDaemonListener

(Listing 7.11) interface and therefore provides implementations for the
daemonError and isValidUser methods. The daemonError method is invoked when
a persistent error is preventing PPPDaemon from establishing PPP connections. As
implemented below, daemonError stops the PPP server. However, DataLogger

continues to run, allowing connections over the Ethernet network interface only.

Listing 7.22 DataLogger changes

class DataLogger extends Thread implements PPPDaemonListener {
 ...
 PPPDaemon pppd;
 private String name;
 private String password;

 DataLogger(int samples, int delay, String name, String password)
 throws PPPException, LoggingException {

 // Set authentication information
 this.name = name;
 this.password = password;
 ...
 // Create a server to manage PPP dial-up requests
 PPPDaemon pppd = new PPPDaemon(this, "serial0", 19200);
 pppd.startDaemon();
 }

176 Chapter 7 Building a Remote Data Logger

 public void daemonError(String error) {
 System.err.println("Error in PPP server:"+error);
 pppd.stopDaemon();
 }

 public boolean isValidUser(String name, String password) {
 return (this.name.equals(name) &&
 this.password.equals(password));
 }

 ...

 public static void main(String[] args) {
 System.out.println("Starting DataLogger ...");
 if (args.length != 4) {
 System.out.println(
 "Usage: java DataLogger samples delay username password");
 System.exit(1);
 }
 ...
 try {
 (new DataLogger(samples, delay, args[2], args[3])).start();
 } catch (Exception e) {
 ...
 }
 }
}

Since DataLogger is now responsible for validating login requests, we’ll add
instance fields to store a user name and password. Rather than choose arbitrary
hard-coded strings to use for validation of login information, we’ll modify the
main method to require the user name and password on the command line. We’ll
also modify the constructor as well to accept login information and store it in the
name and password private instance fields. These strings will be used as a direct
comparison to the login information passed to the isValidUser method. Note that
the login scheme that we’re supporting in this example with our simple user name
and password match is PAP (Password Authentication Protocol). PAP was chosen
because it is the most straightforward to implement. The main goal of this exam-
ple is to focus on the mechanics of writing multihomed network servers rather
than getting bogged down with security details.

7.8 TESTING THE ENTIRE APPLICATION

Now our remote data logging example is multihomed. That is to say that it will
accept TCP connections (sockets) from multiple network interfaces—specifically,
the PPP and Ethernet interfaces. We tested DataLogger over Ethernet only using
the DataLoggerClient developed in Section 7.4. Testing our new PPP functional-

Testing the Entire Application 177

ity is going to take a little more work. However, we can use DataLoggerClient

without modification for testing both interfaces simultaneously.
The test setup tests the full dial-up networking capabilities provided by

PPPDaemon using analog modems and a phone line simulator. However, you can
also test DataLogger’s PPP support using a hard-wired serial connection. The
test configuration used here includes the following equipment.

• A TINI board—running the DataLogger server
• A Windows 2000 machine—dial-up networking client
• A Linux machine—Ethernet networking client
• Two analog modems—one attached to the Windows 2000 PC and the

other attached to serial port 0 of the TINI
• The humidity sensing circuit detailed in Section 4.4.3

A diagram of a sample test configuration is shown in Figure 7.2. This is one of
the smallest test configurations that can be used to test the full networking capa-
bilities of the DataLogger application. TINI’s network interface IP addresses are
192.168.0.15 and 192.168.1.1 for Ethernet and PPP, respectively.

To keep the necessary equipment to a minimum, the Linux (Ethernet) client
connects directly to TINI using an Ethernet crossover cable. The Linux box and
TINI could also be connected using straight-through cable with an Ethernet hub.
The PPP connection is made using two analog modems on either side of a phone

192.168.0.100
Linux
Client

192.168.0.15
TINI

(DataLogger)
192.168.1.1

1 - Wire Humidity
Sensor

Phone
Cable

Phone
CablePhone Line

Simulator
(or PSTN)

Win2K
Client

192.168.1.2
Modem1 Modem2

RS232
Serial

RS232
Serial

Ethernet Crossover Cable

Figure 7.2 Sample test configuration

178 Chapter 7 Building a Remote Data Logger

line simulator. If two different phone lines are available, you can of course use the
public phone network instead.

If we add a couple of debug statements (see Listing 7.23) to DataLogger’s run
method, it will display connection information, including both the remote client’s
IP address and TINI’s local interface IP address.

Listing 7.23 Adding debug statements

public void run() {
 ...
 while (true) {
 ...
 s = ss.accept();
 ...
 System.out.println("New client:" + s.toString());
 System.out.println("Local interface:" + s.getLocalAddress());
 ...
 }
}

Now we can launch DataLogger, supplying the sample count, sample rate, and
client authentication information as command line parameters.

TINI /> java DataLogger.tini 60 120 ducto kid
Starting DataLogger ...

To test the PPP interface, you’ll need to create a new dial-up network connec-
tion. The details on how this is accomplished are platform specific and are not
covered here. After you’ve created the new dial-up connection, you can use it to
manually connect to the TINI or optionally use whatever dial-on demand capabil-
ity is provided on the client OS. Regardless, once you initiate the connection, the
following sequence of events occurs.

1. Client modem dials TINI’s modem.
2. TINI’s modem answers the incoming call.
3. PPP option negotiation begins.
4. Authentication information is transmitted from the remote peer to TINI.
5. IP addresses of TINI and remote peer are established.

At this point, the communication link is ready for network traffic. After suc-
cessfully establishing the link, executing the “ipconfig -x” command at the slush
prompt will produce the output shown here. Note that the Ethernet and loopback
interfaces are not shown for brevity.

...
Interface 2 is active.

Testing the Entire Application 179

Name : ppp0
Type : Point-to-Point Protocol
IP Address : 192.168.1.1
Subnet Mask : 255.255.255.0
Gateway : 0.0.0.0
...

A new network interface has been added to the system as a result of the
PPPDaemon invoking addInterface on its PPP object after the modem link was
established. The local address is set to the value specified during construction of
PPPDaemon, and the interface name is the same as supplied by addInterface. The
“ppp0” interface will remain in the system until removeInterface is invoked in
response to a PPP CLOSED event.

Now that both the Ethernet (eth0) and PPP (ppp0) interfaces are active, we
can connect to the server over both using the DataLoggerClient.

Output from launching the Linux (Ethernet) Client

java DataLoggerClient 192.168.0.15
Total readings=2
Entry 0:Fri Feb 02 14:31:06 CST 2001, RH=27.738698340362145, TEMP=23.40625
Entry 1:Fri Feb 02 14:33:07 CST 2001, RH=27.402815524359628, TEMP=23.46875

Output from launching the Win2K (PPP) Client

java DataLoggerClient 192.168.1.1
Total readings=2
Entry 0:Fri Feb 02 14:31:06 CST 2001, RH=27.738698340362145, TEMP=23.40625
Entry 1:Fri Feb 02 14:33:07 CST 2001, RH=27.402815524359628, TEMP=23.46875

DataLogger (TINI) output

New client:Socket[addr=192.168.0.100/192.168.0.100,port=1056,
 localport=5588]

Local interface:192.168.0.15/192.168.0.15
New client:Socket[addr=192.168.1.2/192.168.1.2,port=1949,localport=5588]
Local interface:192.168.1.1/192.168.1.1

From the output above we can see that DataLoggerClient was launched on
both the Linux and Win2K client at about the same time and within a few
minutes of starting the DataLogger application on TINI. Each client receives the
same log data, but each connects to the server using a different IP address.
Notice, however, that the local port value displayed in the TINI output is
DataLogger’s SERVER_PORT number (5588) for both connections. When the
Linux box establishes its connection, DataLogger displays the remote client’s IP
address (192.168.0.100) and the IP address of its own local Ethernet interface
(192.168.0.15). When the Win2K client connects the client (192.168.1.2) and
server (192.168.1.1) the IP addresses displayed are those selected in

180 Chapter 7 Building a Remote Data Logger

PPPDaemon’s constructor during initialization of the PPP object. In the Ethernet
case, both IP addresses were statically configured outside of program control. In
the PPP case, however, the IP addresses were set programatically by PPPDaemon.

Further improvements to the DataLogger application are certainly possible.
For example, we could improve its flexibility by allowing more parameters to be
supplied on the command line or perhaps read from a configuration file. Some
examples of additional useful parameters are serial port number, serial port data
rate, and client and server IP addresses to be used by the PPP network interface.
We could also modify PPPDaemon to support multiple PPP interfaces. This requires
using multiple serial ports to allow two different clients to establish dial-up con-
nections simultaneously.

181

CHAPTER 8 Parallel I/O

For our purposes, we’ll use the term Parallel I/O to refer to communication with
devices interfaced to the microcontroller’s address and data busses. The parallel
data interface can be thought of as a catchall, since it can be used for interfacing
with a very broad range of devices from LCDs to external memory devices or
even other microcontrollers. TINI hardware implementations, such as the
TBM390, communicate with the real-time clock and Ethernet controller over the
controller’s bus. The parallel I/O bus is very fast and very flexible. However, this
flexibility often comes at the cost of additional interface circuitry such as octal
buffers, latches, and address decoders.

This, more than any other chapter, requires some comfort with hardware and
device driver software concepts. To fully understand this section the reader must,
at a minimum, be able to study a simple schematic to determine the address range
used to communicate with attached devices. Despite the complexities of the paral-
lel bus interface, the TINI API provides a very simple abstraction, known as a
DataPort, to communicate with devices attached to the bus. Given the address
range and device speeds, a pure software engineer can focus on code and write
Java drivers for attached devices without fully understanding the details of the
underlying hardware design.

This chapter begins by describing TINI’s parallel bus interface, providing an
operational description of the relevant bus signals. A memory map, used to access
the microcontroller’s entire address space, is presented. This is followed by a
description of how a Java application can communicate with devices interfaced to

182 Chapter 8 Parallel I/O

the parallel bus. The chapter concludes with a couple of detailed examples aimed
at solidifying both the hardware and software details of communicating with par-
allel devices on TINI.

8.1 TINI’S PARALLEL BUS

TINI’s parallel bus is used, at a minimum, for interfacing with external memory
chips for code and data storage. Peripheral devices such as an Ethernet controller
and real-time clock are also accessed via the parallel bus. The block diagram
shown in Figure 8.1 presents a fairly generic configuration for interfacing external
devices to the bus. As their names suggest, the address bus specifies the target
address of the read or write operations, while the data bus transfers the binary data
to and from the device. The combination of certain control signals and possibly
certain address lines can be used in conjunction with decoding logic to act as an
enable signal for the peripheral. The purpose of the enable signal is to ensure that
only bus operations intended for the device are actually seen by the device. Note
that some devices, including many memory chips, can be interfaced directly to the
bus without using any decode logic. (See Section 8.3.2 for an example of interfac-
ing a memory device to the parallel bus.)

An important point to be made here is that Figure 8.1 shows the address and
data bus signals connected directly to the external device. This is often appropri-
ate. However, depending on the total number of devices on the parallel bus, either
or both the address and data signals may require external buffering to ensure reli-
able system operation.1 Buffers are chips that provide isolation from the capaci-

1. See http://www.ibutton.com/TINI/dstini1.pdf for bus loading specifications for the
TBM390.

Decode
Logic

Control
Signals Enable

Peripheral
Device

Data Bus

Address Bus

Figure 8.1 Interfacing to the controller bus

TINI’s Parallel Bus 183

tive loading of bus interfaced peripherals. Whether or not buffering is required,
and how to buffer the bus if it is required, are design specific issues.

The signals that comprise the microcontroller’s parallel bus can be grouped
into the following categories.

• Data—bidirectional data bus
• Address—unidirectional address bus, driven by the controller
• Control—provides signals for distinguishing between read and write oper-

ations as well as device (or chip) selection

All data, address, and control signals are listed, along with brief descriptions,
in Table 8.1.2 The data bus (D0–D7) is an 8-bit bidirectional bus. All data transfer
occurs on this bus, including code fetches from flash ROM, data fetches from
static RAM, and read and write operations to bus interfaced peripherals. External
devices are addressed using the 20-bit address bus (A0–A19) along with one of
eight predecoded “chip select” signals. The 20-bit address bus provides a 1-mega-
byte address range. However, this range is extended by the eight chip select lines
that each decode a separate megabyte of address space. The chip selects come in
two flavors: chip enables (CEs) and peripheral chip enables (PCEs). There are
four CE signals (CE0–CE3) and four PCE signals (PCE0–PCE3).

2. A complete description of all of the microcontroller, including the signals described in
this table, can be found in the DS80C390 data sheet at http://www.dalsemi.com/
datasheets/pdfs/80c390.pdf.

Table 8.1 Bus control signals

Signal
Designator Full Signal Name Description

D0–D7 Data Bus 8-bit wide bidirectional data bus

A0–A19 Address Bus 20-bit wide address bus

CE0–CE3 Chip Enables Chip enable lines are used to select mem-
ory or attached peripherals. Code fetches
must occur from memory chips enabled
by one of these signals.

PCE0–PCE3 Peripheral Chip enables Peripheral chip enable lines are com-
monly used to enable memories for pur-
poses of data storage only. No native code
can be fetched from memory chips
enabled by these signals.

continues

184 Chapter 8 Parallel I/O

The memory map, shown in Figure 8.2, is split into two separate 4-megabyte
ranges. The CE space contains all memory chips used as program and data storage
for the runtime environment. It also contains a 1-megabyte peripheral area for
addressing high-speed devices that support a parallel bus interface. A more
detailed memory map of the CE space is contained in Figure 1.4.

The primary difference between the CE and PCE signals is that the PCE sig-
nals can only be used for data reads and writes. In other words, the microcontrol-
ler cannot fetch native code from memory devices that are enabled using the PCE
signals. This is why the flash ROM and static RAM used by the runtime environ-
ment are accessed using the CE signals.

The CE addresses correspond to true physical addresses in the microcontrol-
ler’s memory map. The starting address of memory enabled by PCE signals is
somewhat arbitrary because it’s a virtual address mapping. Real PCE addresses
actually overlap CE addresses. This requires the microcontroller to change mem-
ory maps when transitioning from accessing devices mapped into CE space to
accessing devices mapped into PCE space. Applications accessing devices in PCE
space don’t need to worry about the details of this address map swapping because
they are managed automatically by the parallel I/O driver. However, the system
designer should be aware that there is overhead associated with swapping between
CE and PCE memory maps. Data transfer rates on block move operations are
about three times faster when only CE mapped devices are involved.

PSEN Program Store Enable Strobe line used to control code fetches
(reads) from external memory devices
enabled by CE lines. It can also be used
for data fetches.

RD Read Strobe Read strobe line used for data fetches
from memory and other peripheral
devices enabled by PCE lines

WR Write Strobe Strobe line used for data writes to mem-
ory and other peripheral devices

DRST Device Reset Pin 3.4 of the microcontroller. This is not
a formal signal defined in the parallel bus.
On TINI it is used to reset external
devices.

Table 8.1 Bus control signals (continued)

Signal
Designator Full Signal Name Description

The DataPort Class 185

TINI’s runtime environment does not reserve any of the PCE space for
peripheral devices. This implies that all four PCE signals, and the four megabytes
of address space they control, are wide open for system designers. However, many
high-speed peripheral devices are mapped into the CE3 address space because it
can be accessed more efficiently by the microcontroller. If no devices are mapped
into PCE space, the four PCE pins can be used as general purpose port pins. The
system designer is free to use the peripheral area either for interfacing hardware
directly to the microcontroller’s parallel bus or as general purpose TTL I/O but
not both. The topic of accessing the microcontroller’s port pins is covered in
Chapter 9.

8.2 THE DATAPORT CLASS

Access to the parallel I/O bus is accomplished using the DataPort class defined in
the com.dalsemi.system package. A DataPort object provides a thin, but efficient,
encapsulation of the parallel bus. It allows an application to control bus timings
and read data from and write data to the bus.

public DataPort(int address)

CE0

CE1

CE2

CE3

0x000000

0x3FFFFF

0x0FFFFF
0x100000

0x2FFFFF
0x300000

0x1FFFFF
0x200000

PCE0

PCE1

PCE2

PCE3

0x800000

0xBFFFFF

0x8FFFFF
0x900000

0xAFFFFF
0xB00000

0x9FFFFF
0xA00000

= Not accessible using DataPort

Figure 8.2 DataPort mapping of CE and PCE address ranges

186 Chapter 8 Parallel I/O

The address parameter of DataPort’s constructor specifies the initial address
for I/O operations. The address must be in either of the following ranges.

• [0x300000–0x3FFFFF]—CE3 space
• [0x800000–0xBFFFFF]—PCE0–PCE3 space

Note that only the last megabyte of CE space, enabled by CE3, can be used as
a DataPort address. The lower three megabytes, enabled by CE0–CE2, are
reserved for code and data storage and are therefore owned by the operating sys-
tem. While all addresses in CE3 space are legal, two address ranges that should be
avoided are those consumed by the Ethernet controller and real-time clock.

• Ethernet controller address range—[0x300000–0x307FFF]
• Real-Time clock—0x310000

A DataPort object can be used to transfer data to and from these devices,
though it is not recommended. The operating system3 assumes that it has exclu-
sive access to these devices and their respective address ranges. However, it is
possible that some sophisticated networking applications may benefit from query-
ing certain status registers in the Ethernet controller.

Note that DataPort’s constructor does not throw an exception when passed an
invalid address. A DataPort object can be initialized with any address and the
address can be changed at any time using the setAddress method.

public void setAddress(int address)

However, any attempt to read from or write to an invalid address will result in an
exception being thrown. Parallel bus read and write operations are discussed in
the next section.

8.2.1 Data Transfer

For transferring data to and from peripherals interfaced to the parallel bus, the
DataPort class provides read and write methods similar to those defined in
java.io.InputStream and java.io.OutputStream. After a DataPort object has
been properly initialized, the following read and write methods can be used to
transfer a single byte of data to or from an attached device.

public int read() throws IllegalAddressException
public void write(int value) throws IllegalAddressException

3. Specifically the Ethernet driver and the clock driver.

The DataPort Class 187

The read method returns an integer value between 0 and 255 representing the
byte fetched during the bus read operation. The write method writes the least sig-
nificant eight bits, specified in the value parameter, to the data bus. The value

parameter is treated as unsigned and should be between 0 and 255.
When transferring multiple bytes using a DataPort object, the following read

and write methods are much more efficient than their single-byte equivalents. In
the remainder of the chapter we will refer to the methods below as block read and
write methods.

public int read(byte[] arr, int off, int len)
 throws IllegalAddressException
public void write(byte[] arr, int off, int len)
 throws IllegalAddressException

The read method takes a byte array, an offset into the array and a byte count
as parameters. Data is read from the parallel bus and stored in arr starting at the
offset specified by the off parameter. A total of len bytes is read from the bus.
The read method returns the number of bytes read. If read returns normally
(without throwing an IllegalAddressException), the return value will be equal to
the number of bytes requested by the len parameter. The write method takes an
identical list of parameters but reverses the direction of the data transfer. In this
case, bytes are fetched from the array and are written to the parallel bus.

Both the block and single-byte read and write methods will throw an
IllegalAddressException if the address specified during construction of the
DataPort object (or later using the setAddress method) is not in either of the
valid ranges specified previously. The IllegalAddressException class is also
defined in the com.dalsemi.system package.

Depending on the speed of the attached device, parallel I/O can be the fastest
form of data transfer supported by the TINI platform. With current implementa-
tions of TINI hardware, speeds of up to 170 kilobytes per second when accessing
devices in PCE space and up to 650 kilobytes per second when accessing devices
in CE space are achievable on large block move4 operations. In contrast, moving
data using the single-byte read and write methods results in transfer rates of
about 750 bytes per second, a difference of nearly three orders of magnitude!

8.2.2 Memory Access Modes

DataPort provides two addressing modes that can be used with the read and
write methods: FIFO (First In First Out) mode and sequential memory mode. In
FIFO mode, the address is not altered when performing block read or write opera-
tions. So, for example, if a 32-kilobyte block write is performed using a DataPort

4. In this context, a “large block move” refers to moving several kilobytes of data, con-
tained within a byte array, to a parallel device with a single method invocation.

188 Chapter 8 Parallel I/O

object in FIFO mode, all 32,768 writes will occur at the same address. In sequen-
tial memory mode, the address is automatically incremented following each bus
read or write operation. After a block read or write method returns, the address is
restored to its value prior to the operation.

The addressing mode is only relevant when using the block read and write
methods. The single-byte read and write methods don’t cause the address to be
incremented. This implies that performing successive single-byte operations
results in behavior that, from an addressing perspective, is identical to FIFO
mode. So, if sequential memory mode is desired, the application must increment
the address between single-byte reads or writes by using the setAddress method.
In most cases, an application that must perform parallel I/O in sequential memory
mode should be using the more efficient block read and write methods.

The setFIFOMode method is used to change the addressing mode for block
read and write operations.

public void setFIFOMode(boolean useFIFOAccess)
public boolean getFIFOMode()

Invoking setFIFOMode with the boolean value of true for the useFIFOAccess
parameter will force successive block reads and writes to use FIFO mode address-
ing. When a DataPort object is initialized, the addressing mode defaults to
sequential memory mode. The addressing mode can be changed at any time. The
current mode can be queried using getFIFOMode. This method returns true if the
DataPort object is using the FIFO addressing mode and false if it is using sequen-
tial memory mode. Examples of parallel I/O using both addressing modes are pre-
sented in Section 8.3.

8.2.3 Controlling Bus Timing

To accommodate different logic families and peripherals with varying speeds, the
DataPort class provides a method for specifying the number of stretch cycles5 to
be used for bus access. Stretch cycles are used to increase data setup and hold
times for bus accesses. One stretch cycle adds exactly one machine cycle to the
execution time of a bus access instruction. In the case of a TINI hardware imple-
mentation executing at a clock rate of 36.864 MHz, one machine cycle requires
approximately 110 nanoseconds. This implies that each stretch cycle adds 110
nanoseconds to the total time required for each read or write operation.

The valid ranges of stretch cycles are [0–3] and [7–10].
The low range is fine for most CMOS logic families and medium- to high-

speed peripherals. However, there are some slow devices, such as certain LCDs,
that may require a large number of stretch cycles. For these devices the high

5. Stretch cycles are also commonly referred to as wait states.

Parallel I/O Examples 189

range may be appropriate. The number of stretch cycles is specified using the
setStretchCycles method.

public void setStretchCycles(byte stretch) throws IllegalArgumentException
public int getStretchCycles()

Each valid stretch cycle value is represented by a public constant that is
defined in the DataPort class. If values outside of either of those ranges are speci-
fied, setStretchCycles throws an IllegalArgumentException. The number of
stretch cycles being used by the DataPort object can be queried at any time using
the getStretchCycles method.

The stretch cycle count can be changed at any time. The change will apply to
successive read and write operations. However, in most cases, the stretch cycle
count only needs to be specified once. The default stretch cycle count is 0, which
assumes that attached peripherals have fast bus access times. Determining the cor-
rect number of stretch cycles requires analysis of both the microcontroller’s bus
timing diagrams6 as well as the peripheral’s timing diagrams.

8.3 PARALLEL I/O EXAMPLES

This section contains a couple of examples to help clarify the somewhat technical
nature of managing devices interfaced to the parallel bus. Both the hardware and
software portions of each example are presented. A fair amount of time is spent
describing the hardware configuration for each example. These descriptions are
aimed at software engineers with an only modest hardware background and will
therefore be rather obvious to hardware designers.

8.3.1 Additional TTL I/O

Many embedded applications use microcontroller port pins as general purpose
digital I/O for monitoring and controlling external hardware. (Controlling micro-
controller port pins is the subject of Chapter 9.) However, on TINI, many of the
microcontroller’s port pins are dedicated to the purpose of addressing a relatively
large amount of memory. For many embedded applications this doesn’t leave
enough general purpose digital I/O. The example presented in this section solves
this problem by creating eight additional digital inputs and eight digital outputs,
interfaced to the microcontroller’s parallel bus using a few commonly available
CMOS chips.

The circuitry, shown in Figure 8.3, uses an octal latch (74HC574) to provide
eight output lines and an octal buffer (74HC541) for eight input lines. Each input

6. The bus timings are provided in the microcontroller’s data sheet, which can be viewed
online at http://www.dalsemi.com/datasheets/pdfs/80c390.pdf.

190 Chapter 8 Parallel I/O

is pulled to Vcc using a 10-k ohm resistor. Both chips are decoded in the 1-mega-
byte space controlled by CE3. One important requirement for this circuit is that
the I/O lines occupy an address range distinct from the Ethernet controller and
real-time clock, both of which are mapped within the CE3 address space in the
ranges listed in Section 8.2.

The decoder chip used in this circuit, a 74HC138, provides a one of eight
decode. If the decoder’s three enable lines (E1, E2, and E3) are in their active
states (low, low, and high, respectively), the three address lines (A5, A6, and A7)
are used to provide eight (23) distinct input values. The state of these three address
lines causes exactly one of the decoder’s eight outputs to be in its active low state,
as shown in Table 8.2. Because the least significant five address lines are not used
in this circuit for decoding purposes, each output decodes a 32-byte (25) range in
memory.7 In this example, we only use one of these outputs (Y0) for selecting the
latch and buffer used for output and input, respectively.

12345678

161514131211109

10K

A
1

B
2

C
3

E1
4

E2
5

E3
6

Y0
15

Y1
14

Y2
13

Y3
12

Y4
11

Y5
10

Y6
9

Y7
7

74HC138

1

2
3A

74HC32

D1
2

D2
3

D3
4

D4
5

D5
6

D6
7

D7
8

D8
9

Q1
18

Q2
17

Q3
16

Q4
15

Q5
14

Q6
13

Q7
12

Q8
11

E1
1

E2
19

74HC541

OC
1

CLK
11

1D
2

2D
3

3D
4

4D
5

5D
6

6D
7

7D
8

8D
9

1Q
19

2Q
18

3Q
17

4Q
16

5Q
15

6Q
14

7Q
13

8Q
12

74HC574

VCC

A5
A6
A7

CE3
A16
A19

WR

PSEN

IN8

IN1

IN7
IN6
IN5
IN4
IN3
IN2

OUT1
OUT2
OUT3
OUT4
OUT5
OUT6
OUT7
OUT8

DRST

D0-D7

Figure 8.3 Eight I/O lines decoded in CE space

Parallel I/O Examples 191

The signals CE3, A16, and A19 drive the decoder’s enable lines. By studying
the chip enable and all of the address lines used by the decoder, we can determine
an address that can be used to access the additional I/O lines using a DataPort

object. DataPort operates with 32-bit addresses. For the purposes of this discus-
sion, we’ll refer to the address bits as a0 through a31, where a0 is the least signif-
icant address bit and a31 is the most significant address bit. Note that we use a
lowercase “a” to avoid confusion with the address bus signal names (A0–A19).
Because the circuit is decoded in CE space, we know from the memory map
shown in Figure 8.2 that the highest possible address is 0x3FFFFF. This means
that a22–a31 must all be 0. Bits a20 and a21 are determined by our choice of chip
select signals, as shown in Table 8.3.

7. This decode logic is compatible with, but not identical to, the decode used in the E
series socket boards. The E series socket board schematics are included in the accom-
panying CD and can also be found online at http://www.ibutton.com/TINI/developers/
index.html.

Table 8.2 74HC138 truth table

A B C Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

0 0 0 0 1 1 1 1 1 1 1

1 0 0 1 0 1 1 1 1 1 1

0 1 0 1 1 0 1 1 1 1 1

1 1 0 1 1 1 0 1 1 1 1

0 0 1 1 1 1 1 0 1 1 1

1 0 1 1 1 1 1 1 0 1 1

0 1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 0

Table 8.3 Chip enable to high-order address bit mapping

CE0 CE1 CE2 CE3 a20 a21

0 1 1 1 0 0

1 0 1 1 1 0

continues

192 Chapter 8 Parallel I/O

Because we’re using CE3, both a20 and a21 are 1. The lower 20 bits of the
address (a0 through a19) are determined simply by a 1 to 1 mapping of the 20-
address bus signals (A0–A19). The states of the address lines that are not used in
the decode are irrelevant, so we’ll refer to them as don’t care bits (or lines). Figure
8.4 shows the combination of the different address fields. The bit positions
marked with an X are don’t care bits.

Note that because a0–a4 are all don’t cares, all addresses in the range
[0x380000–0x3801F] will enable bus access to the I/O circuitry. Also, because
there are higher-order don’t care bits in the address, there are many such 32-byte
address ranges. To select a specific address, we’ll simply set all of the don’t care
bits to 0, resulting in an address of 0x380000.

While this is not a precise decode, it does ensure that our new I/O circuitry
will not conflict with the other devices attached to the microcontroller’s bus. Spe-
cifically, the decision to require that address line A19 be high and address line
A16 be low keeps the new I/O lines out of the way of the Ethernet controller and
the real-time clock.

Now that we’ve covered the somewhat tricky subject of decoding a valid
address for transferring data to and from the additional I/O lines, the overall oper-
ation of the circuit can be described simply. During a bus write operation to
address 0x380000, both Y0 and WR will be in their active states, causing the con-
tents of the data bus (D0–D7) to be written to the latch’s output lines (1Q–8Q).
Likewise, during a bus read operation from address 0x380000, both Y0 and PSEN
will be in their active states, causing the contents of the buffers’s input lines to be
transferred onto the data bus.

The circuit can be tested by connecting IN1 to OUT1, IN2 to OUT2, and so
on, producing a simple loopback configuration. The ParallelLoopBack test pro-
gram, shown in Listing 8.1, creates a DataPort object attached to address

1 1 0 1 0 1

1 1 1 0 1 1

Table 8.3 Chip enable to high-order address bit mapping (continued)

CE0 CE1 CE2 CE3 a20 a21

a31—> a22 a21 a20 a19 a18 a17 a16 a15—>a8 a7 a6 a5 a4—>a0
0000000000 1 1 1 X X X XXXXXXXX 0 0 0 XXXXX

X => don't care

Figure 8.4 Constructing the DataPort address

Parallel I/O Examples 193

0x380000. The DataPort object is used to perform byte-wide writes to the latch
and byte-wide reads from the buffer.

Listing 8.1 ParallelLoopback

import com.dalsemi.system.DataPort;
import com.dalsemi.system.IllegalAddressException;

class ParallelLoopback {
 static final int ADDRESS = 0x380000;

 public static void main(String[] args) {
 DataPort dp = new DataPort(ADDRESS);
 // All reads and writes go to the same address
 dp.setFIFOMode(true);
 // Allow for use of slow logic
 dp.setStretchCycles(DataPort.STRETCH1);
 boolean passed = true;
 try {
 // Cycle through all possible 8-bit values
 for (int val = 0; val < 256; val++) {
 dp.write((byte) val);
 if ((dp.read() & 0xff) != val) {
 System.out.println("Loopback test failed at:"+val);
 passed = false;
 break;
 }
 }
 } catch (IllegalAddressException iae) {
 iae.printStackTrace();
 }
 if (passed) {
 System.out.println("Loopback test passed");
 }
 }
}

Because all reads and writes are to the same address, the DataPort object is
placed into FIFO mode. Also, to allow for the use of slower logic, the stretch cycle
count is set to 1. After the DataPort object is configured, a test loop is entered in
which each possible byte value (0–255) is written to the latch and then immedi-
ately read back from the buffer. If all eight output lines of the latch are connected
to the eight input lines of the buffer, as previously described, the test should pass.
Due to the pull-up resistors on the input lines, any unconnected signals result in
the corresponding bit positions being read back as a logic 1. So, for example, if
none of the I/O lines are tied together and all of the input lines on the latch are
open, each read from address 0x380000 will return a byte of all logic 1s (0xFF).

If for cost or size reasons total chip count is a serious concern, the same func-
tionality can be achieved without the decoder by mapping the I/O circuitry into

194 Chapter 8 Parallel I/O

PCE space. This obviates the need to avoid any particular address range. The cir-
cuit shown in Figure 8.5 provides the same additional digital I/O capability using
the same buffer and latch. However, it uses PCE1 as the chip select signal. The
other important difference is that bus reads from the 74HC541 buffer are now
enabled using RD as opposed to PSEN. As a rule, PSEN controls bus read opera-
tions for devices enabled using CE signals and RD controls bus read operations
for devices enabled with PCE signals.

Because PCE space ends at 0xC00000, the high-order address bits a31–a24
must all be 0. Also, from the memory map shown in Figure 8.2, the lowest address
in PCE space is 0x800000. This implies that a23 must be 1. Setting bit a23 pro-
duces the same result as adding an offset of 0x800000. Because there is a hole in
the memory map between 0x400000 and 0x800000, a22 must be zero. This range
is a no-man’s-land because the microcontroller maps several system areas, includ-
ing the stack, into this address range.

12345678

161514131211109

10K

1

2
3A

74HC32

D1
2

D2
3

D3
4

D4
5

D5
6

D6
7

D7
8

D8
9

Q1
18

Q2
17

Q3
16

Q4
15

Q5
14

Q6
13

Q7
12

Q8
11

E1
1

E2
19

74HC541

OC
1

CLK
11

1D
2

2D
3

3D
4

4D
5

5D
6

6D
7

7D
8

8D
9

1Q
19

2Q
18

3Q
17

4Q
16

5Q
15

6Q
14

7Q
13

8Q
12

74HC574

VCC

WR

RD

IN8

IN1

IN7
IN6
IN5
IN4
IN3
IN2

OUT1
OUT2
OUT3
OUT4
OUT5
OUT6
OUT7
OUT8

DRST

PCE1

D0-D7

Figure 8.5 Eight I/O lines in PCE space without address decode

Parallel I/O Examples 195

As with all DataPort addresses, bits a20 and a21 are determined by the choice
of the chip select signal. Table 8.4 shows the values of a20 and a21 for the various
PCE signals. Table 8.4 is identical to Table 8.3 with the CE signals replaced by
PCE signals.

Because this circuit uses PCE1, a20 is 1 and a21 is 0. Finally, we use a 1 to 1
mapping of the address bus lines to determine the values of a19 through a0. In this
example, none of the address lines are used to enable the circuit. This makes the
low-order 20 bits of the address don’t care bits.

The address construction for the circuit shown in Figure 8.5 is summarized in
Figure 8.6.

Using the convention of choosing the don’t care bits to be 0 produces an
address of 0x900000. So, if we simply change the address used in the
ParallelLoopBack test application from

 static final int ADDRESS = 0x380000;

to

 static final int ADDRESS = 0x900000;

it will work fine with the circuit shown in Figure 8.5. Note that because no address
lines are used to enable the circuit, any address in the 1-megabyte range controlled
by PCE1 (0x900000–0x9FFFFF) can be used.

Table 8.4 Peripheral chip enable to a20 and a21 mapping

PCE0 PCE1 PCE2 PCE3 a20 a21

0 1 1 1 0 0

1 0 1 1 1 0

1 1 0 1 0 1

1 1 1 0 1 1

a31—>a24 a23 a22 a21 a20 a19—>a0
00000000 1 0 0 1 XXXXXXXXXXXXXXXXXXXX

X => don't care

Figure 8.6 Constructing the DataPort address

196 Chapter 8 Parallel I/O

Finally, it is worth mentioning that even though the two circuits presented in
this section produce only eight digital inputs and outputs, more can easily be cre-
ated in the same fashion by using the other outputs of the decoder to select addi-
tional buffers and latches.8

8.3.2 Reading and Writing External Memory

Often, embedded applications require nonvolatile storage that is distinct from the
garbage collected heap and the file system. It may be used to store critical system
data required for bootstrapping the system or some sort of log data. This func-
tional requirement can be met by interfacing a nonvolatile memory device to the
parallel bus.

The circuit shown in Figure 8.7 shows the parallel bus interface between the
microcontroller and a 32-kilobyte nonvolatile SRAM module.9 Because the
SRAM’s density is 32 kilobytes, it uses the 15 low-order address lines.10 The
SRAM is enabled using PCE0, which implies that the read strobe (RD) is used to
control read operations (as opposed to PSEN for CE reads). Because none of the
high-order address lines are used in this circuit, the contents of the memory will
actually be decoded as many times as its 32-kilobyte “image” can fit in PCE0’s 1-
megabyte address space. This produces 32 identical images of the 32-kilobyte
memory, since 1 megabyte is 220, 32 kilobytes is 215, and 220/215 = 25 = 32. We’ll
use the lowest address range to access the memory. This results in a DataPort

address range from 0x800000 to 0x807FFF.
The MemoryTester application, shown in Listing 8.2, begins by creating a 32-

kilobyte array and initializing it with a “checkerboard” test pattern. Next, a
DataPort object is created and attached to the base (lowest) address of the SRAM.
The stretch cycle count is set to 1 to give the memory plenty of time for bus
accesses. Because TINI’s bus is operating at a high frequency, memories with
access times greater than 55 nanoseconds require at least one stretch cycle for safe
I/O. The final step of DataPort initialization is setting the memory access mode to
sequential mode by invoking the setFIFOMode method with a boolean value of
false. Now the DataPort object is ready to write to and read from the external
memory.

8. At some point, of course, the data bus will have to be buffered to prevent it from
becoming too heavily loaded.

9. An SRAM module includes an SRAM, an SRAM nonvolatizer, and a lithium battery
for backup power.

10. 215 = 32768

Parallel I/O Examples 197

Listing 8.2 MemoryTester

import com.dalsemi.system.DataPort;
import com.dalsemi.system.IllegalAddressException;
import com.dalsemi.system.ArrayUtils;

class MemoryTester {
 // Assuming a 32 kilobyte SRAM
 static final int MEM_SIZE = 32768;
 // Least significant byte of SRAM
 static final int BASE_ADDRESS = 0x800000;

 public static void main(String[] args) {
 byte[] testPattern = new byte[MEM_SIZE];
 for (int i = 0; i < MEM_SIZE; i += 2) {
 testPattern[i] = 0x55;
 testPattern[i+1] = (byte) 0xaa;
 }
 DataPort dp = new DataPort(BASE_ADDRESS);
 // Need incrementing addresses
 dp.setFIFOMode(false);
 // Allow for communication with slow memories
 dp.setStretchCycles(DataPort.STRETCH1);
 try {
 // Write test pattern to memory
 dp.write(testPattern, 0, testPattern.length);
 // Read back the contents of the memory

DQ7
DQ6
DQ5
DQ4
DQ3
DQ2
DQ1
DQ0

A7
3

A6
4

A5
5

A4
6

A3
7

A2
8

A1
9

A0
10

11
12
13
15
16
17
18
19

DS1230Y/AB

A8
25

A9
24

A10
21

A11
23

A12
2

A13
26

A14
1

CE
20

OE
22

WE
27

D0-D7

WR

RD

PCE0

A0-A14

Figure 8.7 32-kilobyte nonvolatile SRAM interfaced to PCE0

198 Chapter 8 Parallel I/O

 byte[] ramContents = new byte[MEM_SIZE];
 dp.read(ramContents, 0, ramContents.length);
 // Verify test pattern
 boolean passed = ArrayUtils.arrayComp(testPattern, 0,
 ramContents, 0,
 MEM_SIZE);
 System.out.print("RAM test results:");
 System.out.println(passed ? "PASS" : "FAIL");
 } catch (IllegalAddressException iae) {
 System.err.println("Invalid address: Memory test aborted");
 iae.printStackTrace();
 }
 }
}

The entire test pattern is then written to the memory with just one invocation
of the block write method. Next, the test pattern is read back into a separate 32-
kilobyte array using the block read method. The array containing the results of the
read operation (ramContents) is then compared with the original test pattern data.
If the contents of the two arrays are identical, the test is considered successful.
Note that the address does not need to be reset to 0x800000 after returning from
write because DataPort’s block read and write methods automatically restore
the address after each operation.

199

CHAPTER 9 Just the Bits

Embedded programmers are accustomed to having direct access to microcontrol-
ler port pins. This is important for many embedded applications because port pins
are often used on an individual basis to provide a single bit of output for driving
devices such as LEDs, relays,1 or stepper motors. Because the port pins we’re
concerned with are bidirectional, they can also be used to provide a single bit of
input for tasks such as reading the state of a switch.

This chapter focuses on the ports and port pins provided by TINI’s microcon-
troller. Specifically, we’ll cover their default usage by the native portion of the
runtime environment and under what circumstances they can be manipulated
directly by a Java application.

9.1 TINI’S PORTS AND PORT PINS

On TINI’s microcontroller, all port pins belong to one of six ports. The ports are
numbered sequentially starting from 0. A port is a group of eight pins. So, for
example, port 3 (or P3) is the collection of the eight port pins [p3.0–p3.7]. Ports 0,
1, 2, and 4 are consumed by the data bus, address bus, and chip enable signals.

1. Typically, a port pin drives the gate of a FET (Field Effect Transistor), which drives
the actual relay.

200 Chapter 9 Just the Bits

This leaves the pins within ports 3 and 5 available as candidates for use as general
purpose input and output.

We touched on accessing port pins from Java in Section 2.6.2 with the awe-
inspiring “Blinky” application. In this example, we flashed a TINI board’s status
LED on and off by toggling the state of one of the microcontroller’s port pins.2

There’s not much more to it than that. The only real trick is knowing which port
pins are available to use with your application, since most port pins serve two, and
sometimes three, distinct purposes. Determining which port pins can be used
requires a careful study of the “built-in” I/O resources the application is using,
such as serial and CAN. Table 9.1 lists all of the port pins that can be controlled
directly by a Java application along with their default usage.

2. The status LED on the TBM390 is controlled by P3.5.

Table 9.1 Java accessible port pins

Micro Pin
Number/Name

TBM390 Pin
Numbera/Name Default Use(s)

4 (P3.0) 22 (XRX0) Receive data for serial0

5 (P3.1) 21 (TX) Transmit data for serial0

6 (P3.2) N/Ab Ethernet controller interrupt

7 (P3.3) 23 (EXTINT) General purpose external interrupt

10 (P3.4) 18 (DRST) External device reset

11 (P3.5) 17 (INTOW) Internal 1-Wire net

21 (P5.0) 10 (CTX) Transmit data for CAN0, clock signal for
2-wire synchronous serial I/O

20 (P5.1) 11 (CRX) Receive data for CAN0, data transmit and
receive for 2-wire synchronous serial I/O

19 (P5.2) 15 (XRX1) Receive data for CAN1, receive data for
serial1

18 (P5.3) 14 (TX1) Transmit data for CAN1, transmit data for
serial1

17 (P5.4) 30 (PCE0) Peripheral chip enable 0

16 (P5.5) 29 (PCE1) Peripheral chip enable 1

continues

The BitPort Class 201

Consider the four high-order pins of port 5 (p5.4–5.7). Their normal use is for
decoding hardware interfaced to the controller’s bus. If a system doesn’t use any
of the PCE signals for logic decoding purposes, then all four of these pins can be
used as general purpose port pins.3 Similarly, if the system isn’t using CAN0 or
the 2-wire synchronous serial port normally associated with pins p5.0 and p5.1,
the Java application can assume direct control of these pins.

9.2 THE BITPORT CLASS

Access to individual port pins is achieved using the BitPort class contained in the
com.dalsemi.system package. The following BitPort constructor is used to
attach a BitPort object to a specific port pin.

public BitPort(byte bitname)

The port pin is specified by the bitname parameter. Valid values for bitname

are defined as public constants in the BitPort class. The constant names are
formed by concatenating the “Port” string, followed by the port number to the
“Bit” string, followed by the bit’s (or pin’s) position within the port. So, for exam-
ple, the following statement creates a new BitPort object attached to the micro-
controller’s p5.3 port pin.

BitPort bp = new BitPort(BitPort.Port5Bit3);

The set and clear methods are used to control the state of the pin.

public void set()
public void clear()

15 (P5.6) 28 (PCE2) Peripheral chip enable 2

14 (P5.7) 27 (PCE3) Peripheral chip enable 3

a. These pin numbers are valid for 72-pin TBM390s only.
b. This pin is not presented at the TBM390’s edge connector.

3. With the PCE signals it’s all or nothing. If a system uses any one of the PCE signals as
true “chip enables” then none of the remaining signals can be used as general purpose
port pins.

Table 9.1 Java accessible port pins (continued)

Micro Pin
Number/Name

TBM390 Pin
Numbera/Name Default Use(s)

202 Chapter 9 Just the Bits

For the clear method, the story is simple: When it is invoked, the port pin is
actively driven to a low (to a logic 0) voltage level. Likewise, one might naturally
expect that when set is invoked, the pin is driven to a high4 (a logic 1) voltage
level. This is not necessarily the case. If set is invoked following an invocation of
clear, the pin will be actively driven high for a very brief period of time5 and then
it will transition to a “soft” high6 through a weak pull-up. This behavior allows the
pin to be used as an input because external circuitry can easily overdrive the weak
pull-up. So, if the external circuitry is driving a low-impedance low, the actual
voltage level of the pin will be low, even following the invocation of set. If the
external load on the port pin is sufficiently high-impedance, or completely open,
then both set and clear drive true logic levels.

The read method returns the value sampled from the port pin. If at the time of
sampling the pin was high (logic 1), read returns 1. Otherwise, read returns 0. The
set method should be invoked before the first call to read. Also, if at any time the
port pin is driven low via an invocation of the clear method, the set method must
be invoked to allow external circuitry to override the pin before invoking read.

public int read()
public int readLatch()

The readLatch method always returns the state of the last “write” operation,
where a write operation is defined as an invocation of either of the set or clear
methods. The readLatch method does not perform a true read of a hardware latch;
it simply “remembers” the last write operation that was performed by the applica-
tion. Therefore, it returns a 0 if the previous write operation was a “clear” or 1 if
the previous write operation was a “set.”

9.3 SYNTHETIC PORT PINS

Some applications require more port pins than are provided by the microcontroller
as “built-in” port pins. Depending on your application’s I/O requirements, it can
be especially difficult to find free (that is, not used by any of the platform’s built-
in I/O capability) port pins. One solution is to throw hardware at the problem. A
small amount of external circuity can be used to synthesize additional port pins. In
this section we loosely define the notion of synthetic ports as ports created using

4. In this context, high implies a voltage level at or near the controller’s supply voltage
(Vcc), and a low voltage implies a voltage level at or near the ground reference.

5. The pin will be actively driven for two clock cycles (half of one machine cycle). This
is about 220 ns on a TINI system running at 36.864 MHz.

6. See the DS803C90 data sheet (http://www.dalsemi.com/datasheets/pdfs/80c390.pdf)
for details on the electrical characteristics of the port pins for ports 3 and 5.

Synthetic Port Pins 203

external I/O circuitry7 as “external ports.” We’ll refer to the pins created by these
ports as “external pins.”

Like internal ports, external ports can contain a maximum of eight pins. How-
ever, multiple addresses can be used to decode additional circuitry, producing a
practically unlimited number of external port pins. Whether these pins are output-
only, input-only, or bidirectional is completely up to the system designer. Because
external ports are interfaced to the system using the microcontroller bus, this section
assumes that the reader is comfortable with the material presented in Chapter 8.

To access external pins, an application can use a BitPort object created using
the following constructor.

public BitPort(DataPort port)

The constructor requires a DataPort object attached to the address of the external
port. Because TINI’s data bus is eight bits wide, a BitPort object constructed in
this manner can control up to 8 distinct pins. Controlling more than eight pins
requires multiple BitPort objects, each constructed using a different DataPort

object associated with a unique address.
Just as with true port pins, set and clear methods exist for controlling the

state of external pins.

public void set(int bitpos) throws IllegalAddressException
public void clear(int bitpos) throws IllegalAddressException

There are a few differences between these methods and their true port pin analogs.
First, the methods used with external pins require the bitpos parameter, which
specifies the position of a pin within an external port. Because a port can contain a
maximum of eight pins, the value of the bitpos parameter must be between 0 and
7. Another difference is that the set and clear methods associated with external
pins will throw an IllegalAddressException if invoked on a BitPort object that
was constructed using a DataPort object attached to an invalid address. Finally,
the I/O characteristics described for set and clear in Section 9.2 do not necessar-
ily apply to external ports. Rather, the electrical characteristics of external pins
depend completely on the circuitry used to implement the external port.

The readBit and readLatch methods are used to query the state of an external
pin. The position of the pin within the external port is specified by the bitpos

parameter using the same rules just described for the set and clear methods. The
readBit method throws an IllegalAddressException when invoked on a BitPort
object that was constructed using a DataPort object attached to an invalid address.

public int readBit(int bitpos) throws IllegalAddressException
public int readLatch(int bitpos)

7. Typically octal buffers and latches.

204 Chapter 9 Just the Bits

Just as with the readLatch method used in conjunction with “built-in” (or
true) port pins, this is a “software latch” that simply maintains the state of the last
write operation as a convenience. Because readLatch is not performing a true bus
read operation, it does not throw an IllegalAddressException.

9.3.1 Example: Creating Additional Outputs

To make the concepts presented in this section a little more concrete, let’s con-
sider a very basic, but useful, example in which eight output-only external pins are
created using a minimal amount of circuitry. First, the hardware will be described,
and then a small application that controls the hardware will be presented.

The schematic shown in Figure 9.1 shows a simple circuit used to control a
bank of eight LEDs. The circuit uses a 74HC574 octal latch (hereafter known as
the latch) to control the state of the cathodes of each of the LEDs. When an output
is low, the LED that it controls will be “on” (emitting light). So, for example, if
output 1Q is low and the remaining outputs (2Q–7Q) are high, D1 will be on and
D2 through D8 will all be off. The latch is decoded using PCE0. This is a very
lazy decode in which the goal is to minimize the amount of external logic. In this
case, no address lines are used in the decode. This implies that any address in the
range [0x800000–0x8FFFFF] can be used to write to the latch. (See the memory
map shown in Figure 8.2.) Note that in this example, our eight “external port
pins” are output only. Any attempt to read the states of the latch’s outputs pro-
duces a meaningless result.

OC
1

CLK
11

1D
2

2D
3

3D
4

4D
5

5D
6

6D
7

7D
8

8D
9

1Q
19

2Q
18

3Q
17

4Q
16

5Q
15

6Q
14

7Q
13

8Q
12

74HC574

1

2
3A

74HC32

D1

D2 D4

D5

D6

D7

D8

VCC

D3

WR

PCE0

D0-D7

O1
O2
O3
O4
O5
O6
O7
O8

DRST

470

Figure 9.1 8x1 LED test configuration

Synthetic Port Pins 205

The BitTwiddler example, shown in Listing 9.1, uses a BitPort object to
individually control each LED in the circuit in Figure 9.1. The application begins
by creating a DataPort object, attached to address 0x800000, for the purpose of
writing to the latch. The DataPort object is set to FIFO mode to prevent the
address from being incremented on every write. After the DataPort object has
been correctly initialized, it is handed off to BitPort’s constructor to be used for
low-level control of the latch.

Listing 9.1 BitTwiddler

import com.dalsemi.system.BitPort;
import com.dalsemi.system.DataPort;
import com.dalsemi.system.IllegalAddressException;

class BitTwiddler {
 static final int ADDRESS = 0x800000;

 public static void main(String[] args) {
 // Create and initialize DataPort object
 DataPort dp = new DataPort(ADDRESS);
 dp.setStretchCycles(DataPort.STRETCH2);
 dp.setFIFOMode(true);

 // Create BitPort object to expose 8 independant I/O lines
 BitPort bp = new BitPort(dp);
 try {
 while (true) {
 int pos = 0;
 for (pos = 0; pos < 8; pos++) {
 bp.set(pos);
 try {
 Thread.sleep(100);
 } catch (InterruptedException ie) {}
 }
 for (pos = 7; pos >= 0; pos--) {
 bp.clear(pos);
 try {
 Thread.sleep(100);
 } catch (InterruptedException ie) {}
 }
 }
 } catch (IllegalAddressException iae) {
 iae.printStackTrace();
 }
 }
}

Next, BitTwiddler enters an infinite loop in which all LEDs are repeatedly
turned off by driving each latch output high and then turned back on by driving
each latch output low. The inner loops invoke the set and clear methods on the

206 Chapter 9 Just the Bits

BitPort object to turn the LEDs off and on, respectively. Both loops “touch”
every output individually so that only one LED changes state at any given time.

Note that the same exact result can be accomplished using just a DataPort

object and by forming appropriate bit masks associated with the write operation.
In this case BitPort is simply used as a programming convenience, making it eas-
ier to change an individual output of the latch without altering the state of any
other outputs.

9.4 THE BytePort CLASS

Besides being able to manipulate individual port pins, embedded programs can
also perform single byte-wide read and write operations to and from a port. The
BytePort class in the com.dalsemi.system package provides the mechanism to
read a byte from or write a byte to a port.

public BytePort(byte portname)

BytePort’s lone constructor requires a byte value specifying the port that is to
be the target of any subsequent read or write operations. Note that, unlike
BitPort, the BytePort class cannot be used in conjunction with DataPort to
access external ports. This is because DataPort already contains methods for byte-
wide I/O to external logic.

Legal values for the portname parameter are specified as public constants in
the BytePort class. Currently, the only port that can be used to construct a
BytePort object is port 5 (P5). You may have noticed in Table 9.1 that, under the
correct circumstances, all eight pins that comprise P5 can be used as port pins.
The following line of code creates a new BytePort object attached to the
microcontroller’s port 5.

BytePort bp = new BytePort(BytePort.Port5);

What’s not obvious from the preceding statement are the side effects caused
by creating the BytePort object. From Table 9.1 we can see that the pins that com-
prise port 5 serve several different purposes. The functionality provided by these
pins, such as synchronous serial I/O, CAN, and 1-Wire, must all be disabled
before all of port 5’s pins can be used in a general purpose fashion. Specifically,
BytePort’s constructor performs the following operations.

• Disables the use of pins 5.0 and 5.1 for use by CAN0 or as a 2-wire syn-
chronous serial interface

• Disables the use of p5.2 and p5.3 for use by CAN1 or serial1; this also dis-
ables the external 1-Wire network adapter

• Disables the use of p5.4, p5.5, p5.6, and p5.7 as peripheral chip enables

Performance of BitPort and BytePort 207

After taking these steps, the application can safely read from or write to the
port. Read and write operations are accomplished using these read and write
methods.

public int read()
public void write(int value)

The read method returns a value between 0 and 255 decimal that represents
the state of eight pins of the port at the exact time it was sampled. The value of the
0th position pin (p5.0) is stored in the least significant bit of the return value and
so on. So, for example, if the read method is invoked on a BytePort object that is
attached to port P5 and read returns a value of 0xc1, then at the time the port was
sampled, p5.0, p5.6, and p5.7 were high (logic 1s), and the remaining pins were
low (logic 0s).

Notice the lack of read or write methods that take byte arrays as parameters.
This is because there is no way for the native code responsible for performing the
actual operation to pace the transmission or reception of multiple bytes. This is
due to the fact that there are no strobe lines associated with the port for controlling
the read and write operations. To write multiple bytes using BytePort, the applica-
tion must “byte-bang” all data destined for the port.

9.5 PERFORMANCE OF BITPORT AND
BYTEPORT

Accesses to either a port or an individual port pin are very fast, single instruction
operations in native code. The instructions look something like these pseudo-code
snippets.

mov p5, a // move the 8 bit contents of accumlator to port 5

or

clr p5.0 // force bit 5.0 to a logic 0 (low)

However, setting the state of a port pin using the set method of BitPort, for
example, requires two method invocations. The first is the invocation of the set

method itself, and the second is a native method invocation that ultimately sets the
desired state of the port pin. Each of these method invocations imposes a non-neg-
ligible overhead and requires the execution of hundreds (or even thousands) of
native instructions. This brings the overall time required for accessing a port pin
from a few hundred nanoseconds to a few hundred microseconds!

This is an instance where the overhead of the Java runtime environment can
adversely impact the I/O performance of the system. In many cases, such as serial
and network I/O, read and write operations can be performed using large blocks

208 Chapter 9 Just the Bits

of data. This prorates the overhead of the method invocations and greatly reduces
the runtime environment’s impact on performance. But in the case of BitPort and
BytePort operations, only a single read or write can be accomplished per method
invocation(s).

For purposes such as driving status LEDs or relays, this overhead has no prac-
tical impact on the overall system performance. Often with such examples the
only thing that is important is that the time delay is imperceptible to a human, and
a few hundred microseconds easily meets this requirement. However, there are
cases where a port pin must be driven at medium to high frequencies. For exam-
ple, imagine a scenario where a port pin is being used to generate the clock signal
for a synchronous serial protocol. For this type of application, a native library may
be required to achieve the desired performance levels for reading and writing indi-
vidual ports or port pins.

209

CHAPTER 10 Accessing
System
Resources

In this chapter we’ll take a detailed look at the following three very important and
distinct system resources.

• The real-time clock—supports the java.util.Date class and is often used
by embedded applications to provide time-stamping functionality

• The external interrupt—provides asynchronous notification when an inter-
rupt is generated by an attached peripheral device

• The watchdog—adds robustness in the form of system crash detection and
recovery

A section is dedicated to each of these topics. Each contains a simple example
that demonstrates how to access and control the specific system resource.

10.1 THE REAL-TIME CLOCK

While the real-time clock (RTC) is not a requirement for TINI hardware
designs, most implementations provide it. During the development phase when
slush is in use, you can set the current date, time, and time zone using the date

shell command.
For the most part, your interaction with the RTC will be through the Date

class in the java.util package. However, the Date class does not provide any

210 Chapter 10 Accessing System Resources

method for setting the current date and time in the underlying platform’s hardware
clock. The Clock class in the com.dalsemi.system package provides the ability to
read and write all of the RTC registers, allowing the current date and time to be set
programatically. Clock provides getters and setters for each of the following pub-
lic fields.

• int year—two-digit year
• int month
• int date—day of the month
• int day—day of the week
• int hour
• int minute
• int second
• int hundredth—the RTC resolution is hundredths of seconds—that is, 0

milliseconds
• boolean is12Hour—12/24-hour mode flag
• boolean pm—true for PM, false otherwise

Each instance field corresponds to a value in one of the real-time clock’s hard-
ware registers. Constructing of a new instance of Clock does not force a read of
any of the RTC’s registers. After construction, all instance fields are set to their
default initial values. Invoking the method getRTC on an instance of Clock forces a
read of the RTC and copies the raw registers to their respective instance fields.
The RTC’s register set does not provide any information about the local time zone
or the first two digits of the year. Code that uses Clock to set or retrieve the date
and time must take both of these facts into account.

The example in Listing 10.1 creates an instance of Clock, invokes getRTC to
take a snapshot of the current value of the RTC registers, and displays their values.

Listing 10.1 ReadClockRaw

import com.dalsemi.system.Clock;

class ReadClockRaw {
 public static void main(String[] args) {
 Clock rtc = new Clock();
 rtc.getRTC();
 System.out.println("Year: " + rtc.getYear());
 System.out.println("Month: " + rtc.getMonth());
 System.out.println("Day of the month: " + rtc.getDate());
 System.out.println("Day of the week: " + rtc.getDay());
 System.out.println("Hour: " + rtc.getHour());
 System.out.println("Minute: " + rtc.getMinute());
 System.out.println("Second: " + rtc.getSecond());
 System.out.println("Hundredths of seconds: " +

The Real-Time Clock 211

 rtc.getHundredth());
 System.out.println("Is pm: " + rtc.getPm());
 if (rtc.get12Hour()) {
 System.out.println("In 12 hour mode");
 } else {
 System.out.println("In 24 hour mode");
 }
 }
}

Running ReadClockRaw produces output similar to the following.

Year: 1
Month: 1
Day of the month: 31
Day of the week: 5
Hour: 22
Minute: 30
Second: 15
Hundredths of seconds: 63
Is pm: true
In 24 hour mode

This is the output from the slush date command run just two seconds after
executing ReadClockRaw.

TINI /> date
Thu Jan 31 22:30:17 GMT 2001
Wed Jan 31 16:30:17 CST 2001

Note that the first line displayed by the date command agrees, within a couple
of seconds, with the output from the raw RTC registers. To properly support the
platform and location, independent functionality specified in java.util.Date,
TINI always uses the RTC in 24-hour mode and computes the register values
using the GMT (Greenwich Mean Time) zone. If a time zone other than GMT was
specified during a previous run of the date command, the current date and time
are also displayed for the local time zone. The local time zone in this instance is
CST (Central Standard Time).

The default (or local) time zone used by the Date class can be set and
retrieved using the following methods in the class com.dalsemi.system.TINIOS.

public static String getTimeZone()
public static void setTimeZone(String zone)
 throws IllegalArgumentException

The setTimeZone method requires a String that specifies the time zone. A list
of all supported time zones can be acquired using the getAvailableIDs method in
the class java.util.TimeZone.

public static String[] getAvailableIDs()

212 Chapter 10 Accessing System Resources

All time zone ids are uppercase letters and are three characters in length. You
can also view a list of all supported time zones using slush’s date command sup-
plying the -t option.

10.1.1 Setting the Current Date and Time

To set the date and time, an application creates a Clock object and sets all of the
public fields to their desired values. Invoking the setRTC method commits those
values to the real-time clock. This is how the slush date command works. It
parses user input from the command line and calculates the correct values for all
of the clock registers. If a time zone is specified, it adjusts the input date and
time with respect to GMT before setting the Clock instance fields.

There is another method for setting the real-time clock that sets all registers
and commits them to the RTC.

public synchronized void setTickCount(long millis)

The millis parameter required by setTickCount is the difference between
the current time and midnight, January 1, 1970 UTC (coordinated universal
time). For our very practical purposes, we can think of UTC as equivalent to
GMT. The value millis is the same number that is returned from an invocation
of System.currentTimeMillis. If you’re interested in the difference between
UTC and GMT, the documentation for the Date class is a good place to start.

10.1.2 Using a Network Time Server

The setTickCount method is an ideal way to set the real-time clock if you have
a convenient means of acquiring the correct value of the millis parameter. One
way to accomplish this is to get millis from System.currentTimeMillis on a
host that already has the correct time and feed that value to setTickCount.
Another way is to get the value from a network time server. If your TINI is on
(or has access to) a network running a Time Protocol (RFC868)1 server, you can
connect to the server to read the current time.2

An RFC868 server listens for connections on “well-known port” number 37.
When a connection is established, it returns the time as an unsigned 32-bit value
and closes the connection. The returned time is the number of seconds since mid-
night, January 1, 1900 GMT. Ultimately, the number we’re interested in is the
number of milliseconds since midnight, January 1, 1970. From RFC868 we know
the number of seconds between midnight, January 1, 1970 and midnight, January

1. RFC868 can be viewed at http://www.faqs.org/rfcs/rfc868.html
2. SNTP (Simple Network Time Protocol) is actually a much better protocol. We use

Time Protocol here because of its simplicity. SNTP is specified in RFC2030
(see http://www.faqs.org/rfcs/rfc2030.html).

The Real-Time Clock 213

1, 1900 is 2,208,988,800. To convert the value received from the time server to a
value that can be passed to setTickCount, we subtract from it the offset shown
previously to get the total number of seconds since midnight, January 1, 1970.
Finally, we multiply the result by 1000 for the unit conversion from seconds to
milliseconds.

Listing 10.2 uses an RFC868 Time Protocol server to set the current date and
time in TINI’s RTC.

Listing 10.2 SetClock

import java.io.IOException;
import java.io.DataInputStream;
import java.net.Socket;
import java.util.Date;

import com.dalsemi.system.Clock;
import com.dalsemi.system.TINIOS;

public class SetClock
{
 // Well known port for Time Protocol (RFC 868)
 static int TIME_PORT = 37;

 // Number of seconds between 00:00 1 Jan 1900 GMT and
 // 00:00 1 Jan 1970 GMT
 static long SECONDS_OFFSET = 2208988800L;

 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: java TiniClock TIMESERVER");
 System.exit(1);
 }

 Socket s = null;
 try {
 System.out.println("Crusty date: " + new Date());

 // Establish a connection with the TIME server and read
 // 32 bit seconds count since 00:00 1 Jan 1900 GMT
 s = new Socket(args[0], TIME_PORT);
 DataInputStream din = new DataInputStream(
 s.getInputStream());

 // Compute # of seconds between now and 00:00 1 Jan 1970 GMT
 long time = (din.readInt() & 0xFFFFFFFFL) - SECONDS_OFFSET;

 Clock rtc = new Clock();
 // Commit the new date/time settings to the system clock
 rtc.setTickCount(time * 1000);
 // Set the local timezone
 TINIOS.setTimeZone("CST");

214 Chapter 10 Accessing System Resources

 System.out.println("Shiny new date: " + new Date());
 } catch (IOException ioe) {
 ioe.printStackTrace();
 } finally {
 try {
 s.close();
 } catch (IOException e) {}
 }
 }
}

SetClock takes the host name (wally, in this case) or IP address of the time
server from the command line. It connects to the specified host and reads the 32-
bit time value using the readInt method on a java.io.DataInputStream object.
There is one somewhat subtle point here. Since the int primitive type is signed,
the result returned from readInt must be promoted to a long and then truncated
using the mask 0xFFFFFFFFL. This choice of a mask results in both the promotion
of the value returned from readInt as well as removing the effect of the unwanted
sign extension. The result is the true, unsigned 32-bit value returned by the time
server represented within a long. Since longs are 64 bits in width, this leaves
plenty of room to perform the final multiplication without the possibility of over-
flow. Note that we could solve the problem more directly using the readLong

method of DataInputStream. The time server returns only 4 bytes before closing
the connection. The readLong method would attempt to read 8 bytes, and this
would result in a java.io.IOException being thrown by the underlying socket.

It is easier to see the effect of this example by first setting a bogus date and
time using the slush date command before running SetClock.

TINI /> date 010120250000 GMT
TINI /> date
Wed Jan 1 00:00:22 GMT 2025

TINI /> java SetClock.tini wally
Crusty date: Wed Jan 01 00:01:06 GMT 2025
Shiny new date: Wed Jan 31 16:33:09 CST 2001

SetClock uses the Date class to display the date and time before and after set-
ting the RTC using setTickCount. Just for good measure, it also sets the local
time zone before displaying the new date and time.

Finally, note that setting the clock is not something that an application must
perform every time it is run. The clock is powered by a small lithium cell so that
accurate time is maintained even in the absence of main power (Vcc). However,
some applications may want to use a network time server to synchronize the clock
with the network time during the initialization phase and perhaps periodically
thereafter.

The Watchdog 215

10.2 THE WATCHDOG

The watchdog timer provides a hardware reset of TINI’s microcontroller to
recover from fatal problems in software that prevent normal operation of the
embedded system as a whole. This section presents the need for a watchdog and
describes its use from a Java application.

10.2.1 Motivation for Using the Watchdog

Many embedded systems are deployed in remote locations and must run contin-
uously without manual intervention. To achieve very reliable operation over
long periods of time, an embedded system needs a mechanism for detecting and
correcting fatal execution errors in the software that controls the system.

Unresponsive software can be caused by several distinct problems such as the
following.

• Thread termination due to an unhandled exception
• Deadlocked threads
• A crash of the underlying OS
• Momentary hardware failures due to environmental stresses such as ESD

(Electrostatic Discharge)

Of course application software should be written and tested to avoid these
problems to the largest extent possible. However, for large applications executing
under complex operating environments, like TINI, it is very difficult to guarantee
flawless operation under all conditions. Also, there is no way for application or
system-level software to guard against things like processor glitches, possibly
caused by environmental stresses, that usually result in “runaway” code.

Whatever mechanism we use to protect against hanging applications, it can’t
be a purely software-based solution, since unreliable software operation is exactly
what we’re trying to protect against in the first place. The system software must be
protected by a simple and reliable underlying hardware construct. For this reason,
TINI’s microcontroller supports a hardware-based timer known as the watchdog.
The purpose of the watchdog is to guard against runaway code. The watchdog
timer can be thought of as a countdown to a “hard” reset. If the timer ever expires,
it produces an effect that is roughly equivalent to hitting the reset button on your
PC. Using the watchdog timer is a harsh but effective way to ensure that your
application does not “hang” indefinitely, leaving the system in an unresponsive
and useless state.

The basic idea behind the operation of the watchdog is that periodically in
your code you reinitialize or “feed” the watchdog, preventing a reset. If the code
has become unresponsive to the point that it can’t execute the critical sections of

216 Chapter 10 Accessing System Resources

code that feed the watchdog, it is better to reset the entire system, returning it to a
known state, than to continue executing “hung” code.

10.2.2 A Tail of Two Dogs

There are actually two different watchdog timers on TINI, one hardware based
and one software based, that are used together to protect the entire embedded
system, both the OS and the application(s), from runaway code. The hardware
watchdog, completely managed by the operating system, has a limited range of
time-out values that are determined by the processor clock. The largest possible
time-out value of the hardware watchdog is less than three seconds. Three sec-
onds is plenty of time for very small, dedicated embedded applications that have
highly deterministic behavior and are written entirely in native code. In this
case, feeding the watchdog is as simple and fast as writing to one of the proces-
sor’s registers.

However, in a large, multi-threaded Java application, the amount of time that
elapses between opportunities to feed the watchdog is nondeterministic and can
be long. So a more flexible watchdog is required to allow for longer time-out val-
ues. The software watchdog provides arbitrarily large time-out values. The soft-
ware watchdog is managed by the OS and is checked for expiration every time the
task scheduler runs. By itself it would be sufficient to detect runaway application-
level code, but it can’t guard against a crash in the operating system. If the OS
itself were to crash and the timer maintenance routine stopped getting called, the
entire system could still hang indefinitely. For this reason, the hardware watchdog
is used to ensure the integrity of the software watchdog. The software watchdog’s
timer maintenance routine feeds the hardware watchdog every time it is called by
the task scheduler. During normal operation, a Java application feeds the software
watchdog and the software watchdog feeds the hardware watchdog, keeping the
system from resetting.

10.2.3 Using the Watchdog Timer

The com.dalsemi.system.TINIOS class provides these two methods for control-
ling the watchdog.

public static void setWatchdogTimeout(int mstimeout);
public static void feedWatchdog();

The setWatchdogTimeout method sets the watchdog timer to expire in the
specified number of milliseconds. The watchdog timer can be disabled by invok-
ing setWatchdogTimeout with a time-out value of 0. By default, the watchdog is
disabled during bootup. Once setWatchdogTimeout has been invoked with a non-
zero time-out, the watchdog timer begins. Finally, the feedWatchdog method is
used to “knock back” the timer and prevent a system reset.

The Watchdog 217

Even though it can be accessed by multiple applications, it should be used by
only one application: the application that performs the lion’s share of the system
critical work. This is typically the application that is started after the OS boots.

Using the watchdog in your application is easy. The only trick is picking a
good time-out value and choosing where and how often to feed it. Often an appli-
cation has a main loop that runs periodically and performs some critical task. This
is an excellent place to feed the watchdog. Other applications, such as Web serv-
ers, spend most of their time blocking with all threads sleeping, waiting for
incoming network connections or some other asynchronous event. Applications
that don’t have a natural place to perform periodic maintenance can create a sepa-
rate thread with the sole purpose of feeding the watchdog. This is not quite as
effective as embedding the timer reset in critical code that must execute periodi-
cally and also adds the cost of an additional thread to the application. It is, how-
ever, a solid mechanism for recovering from a system-level crash.

Since the watchdog contributes nothing to the actual functionality of your
application, you want the resources consumed by the watchdog to be as small as
possible. This suggests the use of a large time-out value, typically on the order of
several seconds. Also, it is important to feed the watchdog in intervals that are
comfortably smaller than the time-out value. This avoids unnecessary resets due
to race conditions caused by process and thread scheduling.

10.2.4 Example Use of the Watchdog Timer

Listing 10.3 illustrates the use of the watchdog timer.

Listing 10.3 Watchdog

import java.io.IOException;
import com.dalsemi.system.TINIOS;

class Watchdog {
 boolean feedDog;
 int interval;

 // Create a thread for timer maintainence
 Thread feeder = new Thread(new Runnable() {
 public void run() {
 while (feedDog) {
 try {
 Thread.sleep(interval);
 } catch (InterruptedException ie) {}
 System.out.println("Feeding the dog!");
 TINIOS.feedWatchdog();
 }
 }
 });

218 Chapter 10 Accessing System Resources

 Watchdog(int timeout, int frequency) {
 // # of milliseconds between watchdog feedings
 interval = timeout / frequency;
 feedDog = true;
 feeder.start();
 // Set watchdog timeout value, this also starts the timer.
 TINIOS.setWatchdogTimeout(timeout);
 }

 public static void main(String[] args) throws IOException {
 // Set the timeout for 8 seconds and knock back the
 // timer 2 times during each timeout period (i.e. every
 // 4 seconds)
 Watchdog wd = new Watchdog(8000, 2);

 System.out.println("Hit <ENTER> and die!!!");
 int c = System.in.read();
 System.out.println("Shutting down Watchdog thread");
 // Allow Feeder thread to fall out of its run loop
 wd.feedDog = false;
 // Now we’re just waiting to die!
 while (true) {
 System.out.println("Still breathing ...");
 try {
 Thread.sleep(2000);
 } catch (InterruptedException ie) {}
 }
 }
}

Watchdog creates a thread to feed the watchdog, feeder, that keeps the system
from resetting. The watchdog time-out is set to 8 seconds. As soon as the set-

WatchdogTimeout method is invoked, the timer starts running. The timer mainte-
nance thread resets the watchdog timer twice per time-out period. So every 4
seconds feeder wakes up, knocks back the watchdog, and goes back to sleep. As
long as the feedDog boolean remains true, feeder will keep the system from
resetting. The program’s other thread of execution, the primordial thread, blocks
waiting for user input. Once user input has been received, the primordial thread
sets the feedDog boolean to false. The next time feeder wakes up, it detects that
feedDog is false and falls out of the run loop. At this point, there is nothing run-
ning in the system that can stop the watchdog timer from expiring. From that
point, the system is 8 seconds from a hard reset.

Watchdog should be run from a serial session to view the boot progress mes-
sages just shown. Also, since a watchdog reset is abrupt, the OS doesn’t have any
time to perform an orderly system shutdown, closing network connections and
open files. So, before running Watchdog, be sure to exit any Telnet or FTP ses-
sions, and kill all processes other than slush and the garbage collector. Here is a
sample output of Watchdog.

The External Interrupt 219

TINI /> java Watchdog.tini
Hit <ENTER> and die!!!
Feeding the dog!
Feeding the dog!
Feeding the dog!
Shutting down Watchdog thread
Still breathing ...
Still breathing ...
Still breathing ...
Still breathing ...

----> TINI Boot <----
TINI OS 1.02
API Version 8009

Here we can see that the watchdog timer was knocked back three times before
user input was received. So the application ran peacefully for about 12 seconds.
At the point user input was received, the warning message “Shutting down Watch-
dog thread” was displayed, and the infinite loop in the primordial thread began
executing. Somewhere between the fourth and fifth iteration of the “would be”
infinite loop, the watchdog timer expired, rebooting the system.

10.2.5 Beware of Dog!

The watchdog is a very powerful and important tool in helping to ensure reliable
operation for systems that use TINI technology. However, since a watchdog reset is
a very abrupt action, it should be used only as a last resort to regain control of a
completely unresponsive system. If an application is executing well enough to
detect fatal errors, it should use the reboot method, provided in TINIOS, instead of
forcing a watchdog reset. To avoid extraneous resets, use long time-out values, and
feed the watchdog at least a couple of times per time-out interval.

10.3 THE EXTERNAL INTERRUPT

The external interrupt is so called because it is accessible to hardware not integrated
into TINI’s microcontroller. The external interrupt is exposed to peripheral devices
as a port pin on the microcontroller. The external interrupt is exposed to the Java
programmer through the small set of classes in the com.dalsemi.system package.
These classes are used to configure the external interrupt and receive asynchronous
notification from the system when an interrupt occurs. This section describes the
important features and the correct use of the external interrupt classes.

10.3.1 Polling versus Interrupts

Polling is a pure software technique in which a thread of execution repeatedly
asks all attached peripheral devices whether they have undergone a change in

220 Chapter 10 Accessing System Resources

state that requires some action by the application software. If the answer is yes,
the thread performs whatever action is required by the device, clearing the con-
dition that caused the interrupt. If the answer is no, the thread will typically
sleep for some small amount of time and ask again later.

Interrupts provide a much more efficient method of determining when a
peripheral device requires attention. Instead of the application asking a peripheral
whether it has data, the peripheral tells the application that it has data by interrupt-
ing it. Once the microcontroller detects the interrupt, it transfers execution control
to a special software handler for the interrupt known as an ISR (Interrupt Service
Routine). At this point, the ISR determines the source of the interrupt and what
additional code, if any, is required to handle it.

The advantage of using interrupts is that no CPU cycles are burned unless one
of the attached peripherals actually requires attention. This leaves the application
free to go on about its business performing other, more useful, tasks.

10.3.2 Properties of the External Interrupt

The external interrupt pin is a “low true” pin. This is to say that the “active”
state of the pin is a logic 0. The pin is pulled high (a logic 1) to its inactive state
by a resistor internal to the microcontroller. To generate an interrupt, the periph-
eral drives this pin to a low level.

TINI’s microcontroller provides three interrupt priority levels: low, high, and
highest. The only interrupt that runs at the highest priority level is the “power fail”
interrupt. The external interrupt is set by the OS during bootup to a high-priority
interrupt. This implies that it will preempt the execution of code in either a normal
(noninterrupting) state or code executing under a low-priority interrupt. This
ensures that the ISR will receive quick notification of the interrupt.

10.3.3 Triggering the External Interrupt

The external interrupt can be configured to be either edge or level triggered. If
edge triggering is selected, an interrupt is generated by a falling edge (a transi-
tion from a logic 1 to a logic 0) on the external interrupt pin. When using edge
triggering, the interrupt is latched. This means that it is “remembered” by a
memory element in the microcontroller, and the interrupt condition persists
until it has been acknowledged by software. During the TINI OS boot process,
the external interrupt is configured for edge triggering.

If level triggering is selected, the external interrupt pin must remain at a logic
0 until the microcontroller begins executing the low-level software routine that
first handles interrupts. In other words, the fact that the interrupt occurred is not
“remembered” by the microcontroller. So if the external interrupt pin returns to a
logic 1 before the low-level ISR executes, it is as if the interrupt never occurred.

The External Interrupt 221

This results in loss of interrupts and a possible loss of synchronization between
the processor and the peripheral generating the interrupts.

The triggering mechanism for the external interrupt can be configured from
Java by invoking the following method on class ExternalInterrupt.

public static void setTrigger(boolean edgeTrigger,
 ExternalInterruptEventListener owner)
 throws ExternalInterruptException

The boolean parameter edge is set to true for edge triggering and false for
level triggering. The owner parameter is used by the system to provide a mutex
(mutual exclusion) type semaphore. Once setTriggering is invoked by a process,
that process is considered to be the owner of the interrupt. If another thread from
the same process or a thread in a different process attempts to alter the triggering
mode, an ExternalInterruptException is thrown. After the owning process ter-
minates, the interrupt becomes unowned and the triggering mechanism can be
altered by another process. Note that threads in other processes can still receive
interrupt event notification. The triggering mode can be queried at any time by
any thread using the getTrigger method.

public static boolean getTrigger()

The getTrigger method returns true for edge triggering and false for level triggering.

10.3.4 Receiving Notification of Interrupts

Notification of the occurrence of external interrupts is accomplished using an
event listener model. ExternalInterrupt provides methods that allow an appli-
cation to register and unregister for receiving interrupt notifications.

public void addEventListener(ExternalInterruptEventListener listener)
 throws TooManyListenersException
public void removeEventListener(ExternalInterruptEventListener listener)

Both methods require an instance of a class that implements the ExternalIn-

terruptEventListener interface. ExternalInterruptEventListener defines the
following method.

public void externalInterruptEvent(ExternalInterruptEvent ev)

This is the method that is invoked when an external interrupt has been
received. The method is passed an ExternalInterruptEvent object.
ExternalInterruptEvent extends java.util.EventObject. Currently, an
ExternalInterruptEvent object encapsulates no information about the source of

222 Chapter 10 Accessing System Resources

the interrupt. It is left to the application to communicate with the attached
peripheral to determine additional information about the nature of the interrupt.

Applications can have multiple listeners for external interrupts. The first time
addEventListener is successfully called, a daemon thread is created that immedi-
ately invokes a blocking native method. The native method puts the thread to sleep
until an external interrupt occurs. When the interrupt occurs, the daemon thread is
awakened by the system and returns from the native method. The thread then enu-
merates a vector of the event listeners and notifies them of the interrupt. Once the
last listener invokes the removeEventListener method, the daemon thread is
destroyed.

The program shown in Listing 10.4 listens for external interrupts. Every time
an external interrupt occurs, it simply increments an event counter. For the sake of
making the event causing the interrupts more concrete, a push-button switch was
used to generate the interrupts.3 To test the example one side of the switch is con-
nected to the external interrupt pin4 and the other side to ground. Recall that the
external interrupt pin is pulled high to its inactive state internally. When the switch
is closed, by depressing the push button, the external interrupt pin is pulled to
ground, generating a falling edge that causes the interrupt.

Listing 10.4 PushButton

import java.util.TooManyListenersException;

import com.dalsemi.system.ExternalInterrupt;
import com.dalsemi.system.ExternalInterruptEvent;
import com.dalsemi.system.ExternalInterruptEventListener;

class PushButton implements ExternalInterruptEventListener {
 // Maintain a count of external interrupt events
 int count;
 ExternalInterrupt extInt;

 PushButton() throws TooManyListenersException {
 extInt = new ExternalInterrupt();
 extInt.addEventListener(this);
 }

 public void externalInterruptEvent(ExternalInterruptEvent ev) {
 ++count;
 System.out.println("Event count: " + count);
 }

 public static void main(String[] args)

3. This example ignores debounce problems altogether because it adds little to the
discussion.

4. Pin 23 on the TINI Board Model 390.

The External Interrupt 223

 throws TooManyListenersException {
 PushButton pb = new PushButton();
 // Don’t let the primordial thread die!
 try {
 Thread.sleep(Long.MAX_VALUE);
 } catch (InterruptedException ie) {}
 }
}

The PushButton class implements the ExternalInterruptEventListener
interface and must provide an implementation of the externalInterruptEvent

method. Every time an interrupt occurs, this method is invoked and it
increments and displays the number of interrupts that have occurred since the
listener was added.

After adding itself as a listener for external interrupts, the primordial thread
itself has nothing left to do. So it puts itself to sleep for a practically infinite
amount of time. This is roughly equivalent to invoking Thread.suspend, but it
avoids using a deprecated method. We need to sleep forever as opposed to just
exiting the main method because the notifier thread is a daemon thread and will
exit when the last user thread exits. In this example, the only user thread is the pri-
mordial thread. If it exits, the application will terminate almost immediately after
starting.

Every time the push button is depressed, the externalInterruptEvent

method is invoked by the daemon notifier thread and the event count is incre-
mented and displayed. This is the output from running PushButton as a back-
ground process from a Telnet session.

TINI /> java PushButton.tini &
Id:7 Event count: 1
Id:7 Event count: 2
Id:7 Event count: 3
Id:7 Event count: 4
Id:7 Event count: 5
Id:7 Event count: 6

The fact that the external interrupt is a shared system-wide resource can be
seen by running another instance of PushButton in the background of the same
Telnet session.

TINI /> java PushButton.tini &
Id:7 Event count: 7
Id:8 Event count: 1
Id:8 Event count: 2
Id:7 Event count: 8
Id:8 Event count: 3
Id:7 Event count: 9

224 Chapter 10 Accessing System Resources

Now there are two instances of the same application listening for the same
external interrupts. Every time the push button is depressed, both processes incre-
ment and display their own internal event counter.

A closer look at the preceding output suggests an important point. The first
two lines of output show that the first instance of PushButton received notification
of the interrupt before the second instance. The next two lines of output show just
the opposite: the second instance receives the first notification. The order in which
event listeners are invoked is not guaranteed between different processes or differ-
ent threads in the same process. The ordering depends on what process and/or
thread is executing when the interrupt occurs. For all practical purposes, the
ordering should be considered random.

10.3.5 Sharing a Common Interrupt Source

In the PushButton example, there was only one source for interrupts in the entire
system: the push button. In a large embedded system, there may be multiple
peripherals, each providing one or possibly more interrupt sources. This
requires a mechanism for sharing the external interrupt.

An interrupt controller chip can be used to multiplex several different sources
of interrupts into the same external interrupt pin. It is up to each listener to deter-
mine whether it is interested in the source of the interrupt. If so, it takes the appro-
priate action and acknowledges receipt of the interrupt in a fashion completely
dependent on the hardware that generated the interrupt.

225

CHAPTER 11 Application
Programming
Tips

This chapter discusses techniques for profiling I/O performance, execution time,
and memory use. These methods are employed to study the impact of I/O, mem-
ory, and code speed optimizations. It concludes with a discussion of how to
harden an application for production deployment. All the suggestions and prac-
tices described in this chapter were written with TINI’s runtime environment in
mind. Some of these tips may be beneficial on other platforms, while others may
not. In other words, your mileage may vary.

11.1 PERFORMANCE PROFILING

To avoid being vague about how a suggested optimization may improve applica-
tion performance, most of the examples presented here will be timed before and
after a specific optimization. This section describes the procedure used to time the
performance of most of the code snippets in the following sections. It also pro-
vides some insight into issues that should be considered to accurately profile por-
tions of your application.

The uptimeMillis method, defined in the com.dalsemi.system.TINIOS class,
can be used for timing operations that execute over a period of a few milliseconds
to several minutes with reasonable accuracy.

public static native final long uptimeMillis()

226 Chapter 11 Application Programming Tips

This method returns a long integer representing the number of milliseconds
that have elapsed since the system was booted. It is maintained by the high-priority
timer interrupt that drives system operations such as task scheduling. It is not tied
to the real-time clock in any way, but it drifts only about 1 millisecond every
second. The currentTimeMillis method, defined in java.lang.System, returns a
long integer that represents the number of milliseconds that have elapsed since
midnight, January 1, 1970 UTC. Its value is derived from reading the real-time
clock and over long periods of time is very accurate. However, the smallest time
interval granularity supported by TINI’s real-time clock is 10 milliseconds, making
it difficult to use currentTimeMillis to measure small intervals of time. Also, a lot
of expensive arithmetic must be performed to compute the specified return value.
In fact, it takes nearly 20 milliseconds per invocation of currentTimeMillis on a
TINI Board model 390. Either method can be used for our purposes, but the
execution times reported in this chapter are measured using uptimeMillis because
of its relatively low overhead compared with currentTimeMillis.

To keep the overhead of profiling code to a dull roar, the timing measure-
ments are taken in-line by capturing the OS tick count just before and just after
the operation being timed. Additional method invocations are avoided. A sample
code snippet is shown in Listing 11.1. With a granularity of approximately 1 mil-
lisecond returned by uptimeMillis, we should expect timing errors roughly
within a +/– 2-millisecond range for two invocations of uptimeMillis.

Listing 11.1 Measuring elapsed time

import com.dalsemi.system.TINIOS;
...
class SomeClass {
 ...

 void someMethod() {
 ...
 long startTime = TINIOS.uptimeMillis();

 // Do stuff we're interested in timing
 ...
 long elapsed = TINIOS.uptimeMillis() - startTime;
 System.out.println("Time elapsed : " + elapsed);
 }
}

All source was compiled with javac distributed in JDK1.2.2. The time mea-
surements were taken by executing the code snippets on a TINI Board Model 390
that runs at processor clock rate of 36.8641 MHz. The TINI runtime version used

1. The external crystal is actually 18.432 MHz, but the clock rate is doubled on the
processor by a phase locked loop (PLL) to 36.864 MHz.

Efficient I/O 227

is v1.02, and all applications were launched from slush. No other processes were
running. The numbers achieved when the applications are loaded directly into the
flash ROM are about 3 to 4 percent faster. The performance of other TINI hard-
ware implementations will of course vary depending largely on the processor
clock rate. System loading caused by processing network and other interrupts can
also cause noticeable timing variations.

Serious variations can occur when measuring operations that require only a
small amount of time for execution. The variations can be caused by sudden
changes in CPU load due to interrupts, from sources such as the Ethernet network
controller, or just due to loss of execution because of either thread or process
swapping. For this reason, the test environment should be reasonably well con-
trolled. First, only one process should be actively executing. Other live processes,
such as init (typically the shell) and gc (the garbage collector), are fine as long as
they are dormant (not actively being scheduled). To avoid high percentage errors
in measurement when measuring relatively quick operations, perform the opera-
tion a number of times, typically in a loop, and measure the entire time. Then
divide the result by the number of loop iterations. If the overall execution time is
aimed at several seconds, then any error due to interrupt latency under normal
loads will be negligibly small.

11.2 EFFICIENT I/O

For most TINI applications, the first priority is efficiently moving data to and
from system resources such as the serial port or Ethernet controller, as well as
external application-specific hardware. TINI’s runtime environment was written
with this in mind. The native I/O infrastructure was carefully coded so that data
can be moved quickly from application provided buffers (byte arrays) to system
resources or attached circuitry. The most important thing a Java application must
do to take advantage of this infrastructure is to move data between the applica-
tion and native drivers quickly. This means moving data in reasonably large
blocks as opposed to a single byte at a time. The process of moving data to and
from streams, or other I/O mechanisms, a byte at a time will be loosely termed
byte-banging.

11.2.1 Block Data Transfer versus Byte-Banging

Like other Java platforms, much of the I/O on TINI is stream based, including net-
work, file system, and serial port communication. This means that moving data to
and from an I/O resource usually boils down to invoking read and write methods
on instances of subclasses of java.io.InputStream and java.io.OutputStream.
Efficient I/O using streams can be achieved by utilizing these “block” read and
write methods.

228 Chapter 11 Application Programming Tips

public int read(byte[] b, int off, int len) throws IOException
public void write(byte[] b, int off, int len) throws IOException

The default implementation of these methods provided in InputStream and
OutputStream is very inefficient. The write method, for example, simply
invokes the single byte write method iteratively len times to move len bytes of
data to the underlying resource. This makes sense because InputStream and
OutputStream are not tied to any concrete I/O resource and therefore are unable
to make any assumptions about the native interface provided for a specific
device or resource. However, subclasses of InputStream and OutputStream
override the read and write methods just shown. The subclass’s implementation
maps directly to a native method call to a driver that takes the same parameters
and performs the requested I/O. The requested data transfer occurs at the
expense of only one, rather than len, context switches from the Java application
to the native runtime.

Listing 11.2 shows the worker thread of an echo server. The echo server
accepts connections from clients and creates an EchoWorker thread to manage
the connection. EchoWorker’s constructor invokes the getInputStream and
getOutputStream methods on the socket to get the lowest level, and therefore
most efficient, streams available for reading data from and writing data to the
underlying connection. These are actually instances of SocketInputStream and
SocketOutputStream, which are private classes defined in the java.net package.
The run method waits for receive data. All data received is immediately
transmitted (or echoed) back to the sender. The run method will exit normally if
the echo client closes the connection or abruptly if an IOException occurs
during a network read or write operation. Inbound data from the client is read by
invoking the single-byte read method on the socket’s input stream and written to
the client using the single-byte write method on the socket’s output stream.

Listing 11.2 EchoWorker

...
private class EchoWorker implements Runnable {
 Socket s;
 InputStream sin;
 OutputStream sout;

 private EchoWorker(Socket s) throws IOException {
 this.s = s;
 sin = s.getInputStream();
 sout = s.getOutputStream();
 }

 public void run() {
 try {

Efficient I/O 229

 int count = 0;
 while (count != -1) {
 int c = sin.read();
 if (c != -1) {
 sout.write(c);
 }
 }
 } catch (IOException ioe) {
 System.out.println(ioe.getMessage());
 ioe.printStackTrace();
 } finally {
 try {
 s.close();
 sin.close();
 sout.close();
 } catch (IOException _) {}
 }
 }
}

To test the echo server, we’ll need an echo client.2 The echo client used here
connects to the server and transmits a fixed amount of data to the server. It closes
the connection after it has received all of the data it transmitted. The effective
throughput of the server is measured by the client by dividing the number of
bytes transmitted by the time elapsed between when the first byte is transmitted
and the last byte is received. This is a measurement of the full-duplex3 through-
put of the server. The total number of bytes flowing between the client and
server, ignoring network packet overhead, is twice the number of bytes transmit-
ted by the client.

With the run method implemented as shown in Listing 11.2, the echo server
achieves a total throughput of 110 bytes per second. We can see why the server is
so slow by examining the series of events that occurs every time we invoke the
write method on the SocketOutputStream. First, the write method invokes a
native method to send the byte to the socket layer of the network stack. The native
socket write routine copies the byte into a TCP output buffer. From there the byte
makes its way down the network stack and finally is transmitted onto the network.
In the read case, the data flow is reversed, but the cost per byte is about the same.
Even if the overhead incurred by data processing in the network stack were negli-
gible, the throughput would still be greatly limited just by the number of Java
method invocations. We’ll see in the next section that method invocations are
fairly expensive.

2. The source code of the echo client and server used to generate the performance num-
bers that follow is included in the CD that accompanies this text.

3. Data is being simultaneously transmitted and received by both the client and server.

230 Chapter 11 Application Programming Tips

Listing 11.3 Modified run method

...
byte[] buf = new byte[4096];
...
public void run() {
 try {
 int count = 0;
 while (count != -1) {
 count = sin.read(buf, 0, buf.length);
 if (count > 0) {
 sout.write(buf, 0, count);
 }
 }
 } catch (IOException ioe) {
 ...
 }
}

If we change the run method to do block reads and writes, each method invo-
cation can move multiple bytes at almost the same cost as moving a single byte.
Listing 11.3 shows a modified run method. The new version creates a 4-kilobyte
buffer that is used for both reads from and writes to the socket’s streams. The
read method that takes a byte array, an offset into the array, and a byte count is
used to receive data from the client. It blocks until at least 1 byte of data is avail-
able to the stream. Once 1 or more bytes are available, they are copied into the
caller-provided byte array. The number of bytes actually copied into the byte
array is returned by read. All of the bytes read from the SocketInputStream are
then written to the SocketOutputStream. The write operation is accomplished
using the efficient write method that also takes a byte array, an offset into the
array, and a length. The length supplied to write is identical to the number of
bytes received by read.

If only 1 byte is available every time read is invoked, then the situation hasn’t
improved any. The read method will return the byte, and it will be echoed to the
client. However, if the client is transmitting data at a rapid pace, there will usually
be multiple bytes available on the input stream. In this example, data is being
received over a TCP connection on an Ethernet network. This means the messages
received by the network stack can contain as much as 14604 bytes of application
data. Since there is no guarantee that an application will be ready to receive net-
work data as soon as it’s available, the network stack maintains fairly large buffers
for receive and transmit data. TINI’s network stack uses input buffers of 4 kilo-
bytes in length—hence the size of buf chosen in Listing 11.3.

4. The maximum length of an unfragmented IP datagram encapsulated within an Ether-
net frame is 1500 bytes. Accounting for a 20-byte IP header and a 20-byte TCP
header, the resulting segment payload can be as large as 1460 bytes.

Efficient I/O 231

Running the new and improved version of EchoServer results in a total
throughput of about 60,000 bytes per second. This is well over 500 times faster
than the results obtained from the byte-banging version. This dramatic improve-
ment underscores the point that the cost of moving a single byte at a time through
a stream can be nearly as expensive as moving multiple bytes using byte arrays. If
at all possible, an application should prorate the overhead of read and write opera-
tions by moving reasonably large blocks of data.

Byte-banging is appropriate, and actually a requirement, for some applica-
tions. The TiniTerm program, presented in Section 3.4, is a good example of an
application that needs to move data in small, often single-byte, chunks. A terminal
program appears more responsive to the user if it is not buffering the data before
displaying it. As soon as a character is received by the terminal program, it should
be echoed to the display. Also, data rates comparable to the 110 bytes per second
achieved by the slow echo server are fine in the case of a terminal program
because it’s awfully tough to type more than 100 keystrokes in one second. How-
ever, the majority of TINI applications interface with hardware (as opposed to
humans) that move data in bursts and often at the maximum rate supported by the
communications channel. The SerialToEthernet example, presented in Section
3.5, was written to be able to move large amounts of data between a serial device
and an Ethernet network. A throughput of only a few hundred bytes per second
would render that application useless.

Since both the EchoClient and EchoServer programs used in this section are
written in Java, it is a trivial matter to collect similar numbers for other platforms.
When the byte-banging version of the echo server was run on a PIII Win2K
machine, the server processed only about 1000 bytes per second. This is faster
than the equivalent server running on TINI but still much slower than the efficient
version of the echo server on TINI. This demonstrates that byte-banging isn’t just
inefficient on resource-constrained environments. It can be painfully slow on
almost any platform.

In the echo client/server example, we focused on stream-based I/O, but this
also applies to other forms of data transfer such as parallel I/O and 2-wire
synchronous serial data transfer. The classes that expose these forms of I/O
provide block read and write methods that accept a parameter list identical to
those defined in InputStream and OutputStream. The performance differences
between byte-banging and block moves are huge for both of these cases as well.
If the MemoryTester application, developed in Section 8.3.2, used the single-byte
read method on the DataPort object to read from and write to the external
memory, the throughput would have been a few hundred bytes per second
versus more than a hundred thousand bytes per second. In most cases,
converting the I/O portions of an application to block moves from byte-banging
will lead to throughput improvements of two to three orders of magnitude.

232 Chapter 11 Application Programming Tips

This section can be summarized as follows.

• Byte-banging: Bad, very bad!
• Moving data from stream to stream (or port to port, as the case may be) in

reasonably large blocks: Good!

11.2.2 Buffered Streams

Under the right circumstances, the use of a java.io.BufferedInputStream or
java.io.BufferedOutputStream can improve a program’s performance, and when
used for network I/O, they can also reduce the total amount of network traffic. As
the names suggest, both provide buffering on top of another stream. The buffer is
maintained internally as a byte array whose size can be specified during construc-
tion of the stream. The main idea is that most reads from or writes to the stream
can occur directly to the internal buffer without incurring the overhead of native
method invocations to transfer the data to or from the operating system. In the case
of a BufferedOutputStream, for example, only when the internal buffer fills or the
flush method is invoked is the underlying stream’s write method called.

Using buffered streams does not always lead to greater efficiency. While buff-
ering would improve the performance of the inefficient echo server from
Listing 11.2, it would actually degrade the results produced by the modified ver-
sion of the echo server in Listing 11.3. In this case, the buffered streams serve
only to introduce another layer of data handling between the application and the
network stack. In general, if an application already has a large block of data (that
is, a buffer), it should probably use the stream that is the “closest to the metal” for
greatest efficiency.

If your application consumes or produces data in small chunks, the use of
buffered streams provides a large benefit. The DataLogger example, from Chapter
7, collected measurements that were represented as a couple of doubles and a long.
The measurements were transmitted to a network client using a
java.io.DataOutputStream object attached to a socket. DataOutputStream’s
writeDouble and writeLong methods each write 8 bytes of data to the underlying
output stream. If that output stream were not buffered, each of these writes would
copy the data directly to the native socket layer’s write routine. The network stack
would then be generating lots of small messages, transmitting most of the values in
separate segments. By wrapping the DataOutputStream object in a
BufferedOutputStream, the values written to the DataOutputStream are not copied
to the network stack until the BufferedOutputStream’s internal buffer is full or its
flush method is invoked. The result is that fewer network segments need to be
generated because each segment contains more data. Network bandwidth is
utilized more efficiently, and the overall application performance is improved.

Memory Usage 233

11.3 MEMORY USAGE

As Java programmers we’re used to enjoying the freedom of developing programs
without considering how much memory we use or when we’re using it. We torch
memory with reckless abandon and let the garbage collector clean up the mess.
For the most part, we would rather not concern ourselves with memory manage-
ment issues at all, and there is certainly no requirement to do so when writing
TINI applications. However, on TINI, we’re working with heap sizes as small as a
few hundred kilobytes versus a few hundred megabytes on a PC or workstation. A
little consideration, especially during the design phase, of how your application
behaves with respect to memory consumption can go a long way.

11.3.1 Object Creation

Object creation, initiated by the new operator, is expensive both in terms of mem-
ory and CPU consumption. All objects that are created are either arrays or class
instances. When either is created, a malloc (memory allocation operation) is per-
formed by the memory manager on behalf of the VM. Further adding to the cost
of the malloc operation is the fact that malloc is effectively a “calloc” that clears
all of the allocated memory to 0s. This is done so that all array elements, or
instance fields, are properly initialized to their specified default values. The vast
majority of the time required to create an array is spent performing the malloc
operation. When a class instance is created, allocating the memory is just the first
step. Next, the object’s internal structure is initialized, and then its constructor and
its superclasses’s constructor (and so on) are all interpreted by the VM. The time
this takes depends largely on what operations are performed by the individual
constructors, but it can easily dwarf the amount of time required to allocate mem-
ory for the object. In some cases, the amount of object creation can be reduced by
reusing previously created objects. Depending on the application, this may require
care to avoid using stale information from an old object or possibly creating
thread-safety problems.

11.3.2 Strings

Strings have a sneaky way of gobbling up lots of memory (and CPU in the pro-
cess), but they are extremely useful. Every attempt has been made to make string
operations efficient. For example, many of the methods in the String class are
implemented as native methods. However, there isn’t much that can be done about
the amount of memory consumed by various methods in the String class. Meth-
ods like toUpperCase, toLowerCase, substring, and so forth all create and return
new String objects. Imagine a scenario in which an array of strings is being
parsed within a loop and in each iteration of the loop the string is compared to the

234 Chapter 11 Application Programming Tips

lowercase version of a portion of some source string using a statement like the fol-
lowing.

if (s[i].equals(src.toLowerCase().substring(3, 6))) {
 ...
}

Two temporary strings are created. Each pass through the loop, chewing up
both memory and time. In this case, the problem can be avoided by creating the
string required for comparison outside of the loop and storing a reference to it in a
local variable. The local reference can then be used for comparison within the
loop.

String concatenation using the + operator is also expensive. The java compiler
generates code that creates a StringBuffer object and uses its append method to
copy the individual strings into the StringBuffer’s internal character array. The
result is then converted back to a string by invoking StringBuffer’s toString
method. The cost of string concatenation can be lowered by creating an appropri-
ately sized StringBuffer directly. If the StringBuffer is created using the follow-
ing constructor

public StringBuffer(int length)

with a capacity (the value of length) large enough to contain the final string, the
StringBuffer’s internal character array will not have to be resized during concat-
enation (append) operations. This prevents creating new arrays as well as the array
copy operations that would be required to copy the contents of the old buffer to
the new buffer.

11.3.3 Profiling Memory Usage

There are a few things to keep in mind when analyzing your application’s memory
usage. First, because TINI is a multi-threaded, multi-process system, memory
profiling is an inexact science. If you’re analyzing a particular method executing
within a particular thread, you may need to suspend other processes as well as
other threads within the same process in case they are consuming memory as well.
If your application, slush, and the garbage collector are the only processes run-
ning in the system, you shouldn’t need to worry about the other processes. Slush
won’t use any memory unless you’re interacting with a slush session. The only
kernel process that could consume memory without direct cause from the applica-
tion is the network stack’s TCP process. When it establishes a connection with a
remote peer, it allocates approximately 12 kilobytes of memory (for circular input
and output buffers) from the garbage collected heap. Most other kernel processes
use a fast memory manager that allocates data from a separate, small heap.

Memory Usage 235

There are two methods that return the amount of free memory available in the
garbage collected heap (Java heap). The freeMemory method that is defined in the
java.lang.Runtime class

public long freeMemory()

and the getFreeRAM method defined in com.dalsemi.system.TINIOS.

public static final int getFreeRAM()

Both return the same value, but getFreeRAM is static and therefore doesn’t require
the creation of an object just for the sake of memory reporting.

If you’re going to write the amount to the console using System.out or any
PrintStream using a harmless-looking statement like the following

System.out.println("Free RAM:"+TINIOS.getFreeRAM());

be aware that just executing that statement consumes a noticeable amount of
memory. To see this, you can execute the MemReporter example shown in Listing
11.4. It simply loops forever, displaying the amount of free memory.

Listing 11.4 MemReporter

import com.dalsemi.system.TINIOS;

class MemReporter {
 public static void main(String[] args) {
 while (true) {
 System.out.println("Free RAM:"+TINIOS.getFreeRAM());
 }
 }
}

Sample output from MemReporter is shown in Listing 11.5.

Listing 11.5 MemReporter output

TINI /> java MemReporter.tini &
...
Free RAM:312512
Free RAM:312224
Free RAM:311936
...

Each iteration consumes 288 bytes. The exact number of bytes consumed
from iteration to iteration may vary by a small amount. Also, note that since the
smallest chunk of memory allocated by the memory manager is 32 bytes, the

236 Chapter 11 Application Programming Tips

difference between return values getFreeRAM from successive iterations will be
a multiple of 32.

Let’s take a look at where some of the memory is going. To manage the string
concatenation, the compiler generates code to create a StringBuffer. The “Free
RAM:” string is copied to the StringBuffer. Also, memory is consumed, convert-
ing the integer returned by getFreeRAM to a String using Integer.toString. The
string representation of the free memory is then appended to the StringBuffer.
Finally, the resulting StringBuffer is converted to a String. After the display
string is fully cooked, it is written to the PrintStream. During that process the
message string is first converted to a character array and then a byte array. All of
these steps create objects, reducing the actual amount of free memory before it’s
even displayed. Of course, all of the memory consumed by the preceding state-
ment quickly becomes garbage and will eventually be reclaimed.

To get a handle on where and how much memory your application is consum-
ing, it helps to view the free memory without altering it. The displayRAM method
shown in Listing 11.6 writes the current amount of free memory to System.out

without consuming any memory.

Listing 11.6 displayRAM

...
private static final byte[] prompt = "Free RAM:".getBytes();
private static final byte[] lt =
 System.getProperty("line.separator").getBytes();

private static void displayRAM() {
 try {
 synchronized (prompt) {
 System.out.write(prompt);
 Debug.intDump(TINIOS.getFreeRAM());
 System.out.write(lt);
 }
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
}

It looks a little awkward, but it is effective. The memory for the fixed-text
portion of the output is allocated only once when the class (static) initializers
are run. Both the prompt and the line separator are maintained as byte arrays so
that they can be used directly with PrintStream’s write method that takes a byte
array as input. The static method intDump, defined in the class
com.dalsemi.system.Debug, converts the integer to a printable form and writes
the result to System.out. This replaces the memory-consuming method
Integer.toString, used by MemReporter.

Other Optimization Tips 237

11.3.4 Garbage Collection

The garbage collector is launched in one of the following three ways:

• An application explicitly invokes System.gc().
• A new operation reduces the amount of free RAM to drop below a low-

memory threshold (64 kilobytes).
• A Java process terminates.

On TINI, when an application invokes the gc method, it is treated as more
than just a suggestion. If the garbage collector isn’t already running on behalf of
the application,5 it will be launched immediately. It executes as an independent
process as opposed to a separate thread executing within the same process. When
the garbage collector runs, it will compete, on equal footing, with other processes
for CPU time. This can cause a temporary degradation in your application’s per-
formance. For example, consider the typical case where only one Java process is
actively competing for the CPU. When the garbage collector is idle, the Java pro-
cess can utilize nearly 100 percent of the CPU. However, when the garbage col-
lector is active, the Java process will share the CPU equally with the garbage
collector. This reduces the Java process’s maximum possible CPU utilization to
50 percent. After the garbage collector has completed its task, the gc process
returns to an idle state in which it consumes no CPU. You can see this in action by
letting the MemReporter example (Listing 11.4) run for a while. Once the free
memory dips below 64 kilobytes, the garbage collector will start automatically
and MemReporter’s updates will slow. Once the garbage collector has finished, the
updates will speed up again.

If the structure of your application is such that there exists a natural location
to explicitly launch the garbage collector, then it may be possible to reduce the
overall impact that garbage collection has on the application to a negligible level.
Perhaps it periodically communicates with some device or network host, consum-
ing memory in the process, and then goes quiet for long periods. During this quiet
period your application can launch the garbage collector, allowing it to use most
of the available CPU to quickly do its job and go back to sleep. The combination
of reusing objects when appropriate and launching the garbage collector at oppor-
tune times can lead to a faster and more responsive application.

11.4 OTHER OPTIMIZATION TIPS

The controller at the heart of TINI’s runtime environment is geared much more
toward efficient I/O than quick execution of computationally intensive tasks.

5. The gc can collect garbage on multiple processes simultaneously.

238 Chapter 11 Application Programming Tips

Because of this, applications that perform a lot of data processing and analysis
present performance challenges. In order to improve the performance of such
applications and squeeze the most out of TINI’s small controller, we’ll spend just
a little time under the hood of the JVM to see why certain operations are expen-
sive. We’ll discuss ways to exploit this knowledge for the sake of enhancing appli-
cation performance in critical sections of code.

Most of the operations that are expensive on TINI execute in a negligible
amount of time on your Hexium X, 2 Jillion Hz host development machine. Many
coding inefficiencies can go completely unnoticed when running on a very fast
machine. The tips presented here are geared for the TINI platform. Due to JiTs
and other runtime optimizers, some of the following optimizations may not be
nearly as effective when applied to other Java platforms. On TINI there is no JiT,
no hotspot, and no runtime optimizations performed by the virtual machine. The
techniques described here reduce the amount of work that must be undertaken by
the bytecode interpreter and can therefore make a real difference to your applica-
tion’s overall performance.

11.4.1 Relative Cost of Common Operations

Before getting into specific optimizations, it is worth spending a little time explor-
ing the cost, in terms of execution time, of common operations like accessing
instance variables and invoking methods. Those listed below are ordered from
most to least expensive.

• Class instance creation
• Array creation
• Method invocation
• Instance and class (static) variable access
• Array access6

• Local variable access

As discussed in Section 11.3, object creation is a very expensive operation, and
creating class instances takes longer than creating new arrays. Method invocations,
either static or instance, are also time consuming. They take about 5 to 10 times
longer than storing or retrieving instance or static field values. The difference in
execution speed of array access and field accesses isn’t usually too dramatic.
Finally, by comparison to the other operations listed, working with local variables
is very fast. In certain cases, an application can save a lot of time by moving some

6. This assumes single-dimensional arrays. The use of multidimensional arrays is very
expensive, both in terms of memory usage and access time.

Other Optimization Tips 239

of the slower operations from within loops that must execute quickly. We discuss a
few possible ways to accomplish this in the following section.

11.4.2 Loop Optimizations

There may be occasions where your application will need to charge through an
array in a loop performing some operation(s) on the individual array elements.
The tips described in this section are designed to speed up performance of loops
with modest to large iteration counts. The iteration count should be sufficient to
prorate the overhead of single operations that are added outside of the loop with
the goal of speeding operations within the loop.

For the purpose of illustration, we’ll use a concrete, though highly contrived,
example. The Bogus class, shown in Listing 11.7, contains the static method char-

Counter that counts the number of occurrences of the specified character encapsu-
lated within a String object. The main method concocts a test String that
encapsulates a character array whose length is specified on the command line. The
character array is initialized with a repeating sequence of incrementing lowercase
ASCII characters (a–z). The string’s length should be large enough to reduce the
effect that short-duration transient spikes of system activity could have on the tim-
ing measurements.

Listing 11.7 Bogus

import com.dalsemi.system.TINIOS;

class Bogus {
 public static int charCounter(String s, char ch) {
 long startTime = TINIOS.uptimeMillis();
 int count = 0;
 for (int i = 0; i < s.length(); i++) {
 if (s.charAt(i) == ch) {
 ++count;
 }
 }
 long elapsed = TINIOS.uptimeMillis() - startTime;
 System.out.println("elapsed time: " + elapsed +
 "ms for String of length " + s.length());
 return count;
 }

 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: java Bogus.tini length");
 System.exit(1);
 }
 // Create a bogus String
 char[] ca = new char[Integer.parseInt(args[0])];
 for (int i = 0; i < ca.length; i++) {

240 Chapter 11 Application Programming Tips

 ca[i] = (char) (’a’ + (i%26));
 }
 String s = new String(ca);
 System.out.println("number of a’s="+charCounter(s, ’a’));
 }
}

All of the run times listed below apply to the time required for the char-

Counter method’s loop to process a test String of length 16384 (16 kilobytes). It
will take charCounter plenty of time (on the order of several seconds) to slug its
way through the entire string, leaving us with a reasonably accurate idea of just
how effective the performance enhancements really are. Running the Bogus appli-
cation as in Listing 11.7 produces an output similar to the following.

TINI /> java Bogus.tini 16384
elapsed time: 8564ms for String of length 16384
number of a’s=631

It took about 8.6 seconds to count the number of a’s contained within the
String.

Now let’s focus on charCounter’s loop that computes the count and look for
some possible performance improvements. We can start by looking at the for

loop’s conditional expression.

i < s.length()

Each iteration through the loop invokes the length method on the String
object. We know from the previous section that method invocations are relatively
expensive operations. Since strings are immutable, we know that their length will
remain constant. To avoid this method invocation on every loop operation, we can
cache the length in a local variable. So when the loop conditional is evaluated, the
length is fetched quickly from the local variable rather than returned from a
method. The modifications are shown in Listing 11.8.

Listing 11.8 Caching the length in a local variable

...
// Copy String length to local for faster access
int len = s.length();
for (int i = 0; i < len; i++) {
 if (s.charAt(i) == ch) {
 ++count;
 }
}

Executing Bogus again with these modifications reduces the execution time to
5997 milliseconds.

Other Optimization Tips 241

Next we can take a look inside the loop. Every iteration invokes the charAt

method to determine the character value at the specified index. Again we can
exploit the fact that strings are immutable to safely acquire a local copy of the
character array and extract the characters directly from the array. The modifica-
tions are shown in Listing 11.9

Listing 11.9 Directly accessing character data

...
// Copy String length to local for faster access
int len = s.length();
// Get a local copy of char[]
char[] ca = new char[len];
s.getChars(0, len, ca, 0);
for (int i = 0; i < len; i++) {
 if (ca[i] == ch) {
 ++count;
 }
}

With this implementation, the execution time drops to 3248 milliseconds.
Now there isn’t much left to optimize away. No methods are invoked in the loop,
the only array access is necessary, and all variables are local, as opposed to
instance or static variables. We can still squeeze a few more CPU cycles out of the
loop by optimizing the loop structure itself. To this point, a for loop has been used
to iterate through the array elements. The loop expression compares two non-zero
integer values to decide whether to terminate the loop. This comparison is accom-
plished by the JVM using one of a set (of six) Java opcodes that compare the top
two integers on the operand stack and, depending on the result of the comparison,
branch to a new location in the bytecode stream. Both integers are copied from a
local variable to the top of the operand stack prior to the comparison. This all
occurs reasonably quickly, but the comparison of an arbitrary integer with 0 is
faster. There is a separate set of opcodes in which one of the operands (0) in the
comparison is implied. This means that the VM only needs to copy the contents of
one local variable to the top of the operand stack. If we convert our for loop to a
while loop that just counts down to 0, we should see a small performance
enhancement. The modifications are shown in Listing 11.10.

Listing 11.10 Using a faster loop

...
// Copy String length to local for faster access
int len = s.length();
// Get a local copy of char[]
char[] ca = new char[len];
s.getChars(0, len, ca, 0);

242 Chapter 11 Application Programming Tips

while (len > 0) {
 if (ca[--len] == ch) {
 ++count;
 }
}

This final tweak runs in a time of 2877 milliseconds. So from our starting
point to now we’ve improved the method’s performance by about 300 percent. It
still isn’t blazingly fast, but certainly the improvement is well worth the small
amount of additional code.

The charCounter example was of course just used as a simple vehicle to dis-
cuss techniques for optimizing code within time-consuming loops. If we were
actually interested in the functionality provided by the charCounter method, we
might consider the implementation shown in Listing 11.11. At first glance, it
seems reasonable that this approach would be more efficient than the original
technique used in Listing 11.7 but somewhat less efficient than our fastest attempt
shown in Listing 11.10.

Listing 11.11 Using indexOf

...
int count = 0;
int index = 0;
while (true) {
 index = s.indexOf(ch, index);
 if (index != -1) {
 ++count;
 ++index;
 } else {
 break;
 }
}

The results obtained using the above implementation of charCounter on the
test string are in the neighborhood of 630 milliseconds. However, only the fact
that indexOf is implemented as a native method on TINI makes it faster than
Listing 11.10.

What wasn’t mentioned in the previous discussion was the possible benefit of
unrolling loops to further reduce the impact of the overhead of the loop structure.
This isn’t specific to TINI or Java. It is a time-honored tradition usually employed
out of true desperation. Whether unrolling a loop is beneficial really depends on
the time required testing for loop termination versus the time required for the sum
of the operations performed inside the loop. If the loop structure is lean and mean
when compared with the operations performed inside the loop, there is little prac-
tical benefit to unrolling the loop. On the other hand, if the loop terminator
requires a large amount of time (perhaps due to necessary method invocations)

Other Optimization Tips 243

compared to the time required to execute the code within the loop, it may be
worthwhile.

In the previous example, we achieved substantial performance gains by
replacing unnecessary method invocations with fast local variable accesses. Under
certain circumstances we can also improve performance by caching class or
instance fields in local variables. Accessing an instance variable is somewhat
expensive because it requires the JVM to parse the object’s internal structure and
extract the specified field. Consider the array compare example shown in
Listing 11.12. In this case the arrays a and b are private instance variables. If the
arrays are of identical length, the isEqual method iterates through the elements of
the array, checking for equality. If the array elements are unequal at any index,
isEqual aborts immediately and returns false.

Listing 11.12 Array compare

...
private byte[] a;
private byte[] b;
...
private boolean isEqual() {
 if (a.length != b.length) {
 return false;
 }
 for (int i = 0; i < a.length; i++) {
 if (a[i] != b[i]) {
 return false;
 }
 }
 return true;
}
...

The worst-case execution time results when the arrays are identical. If
isEqual is run on arrays 16 kilobytes in length with identical contents, it
requires 7390 milliseconds to compare all of the elements. If we modify the
method slightly and cache the array references, a and b, in local variables as
shown in Listing 11.13, the resulting run time is 4431 milliseconds. In this case
three instance variable accesses are replaced by local variable accesses for each
loop iteration: two used in the comparison of the array elements and one used in
extracting the array length.

Listing 11.13 Caching instance fields in local variables

...
byte[] a = this.a;
byte[] b = this.b;
for (int i = 0; i < a.length; i++) {

244 Chapter 11 Application Programming Tips

 if (a[i] != b[i]) {
 return false;
 }
}
...

The way the loop’s conditional expression is constructed requires the JVM to
interpret the arraylength opcode, fetching the length from the specified array for
each iteration. This seems like a bit of a waste, since the array length is guaranteed
to remain constant. Fetching the length of an array isn’t a terribly slow operation
but it is still faster to load a value from a local variable. In the code snippet in List-
ing 11.14, the array length is stored in the local variable len, which is then used in
the loop’s conditional expression.

Listing 11.14 Caching array length in a local variable

...
byte[] a = this.a;
byte[] b = this.b;
int len = a.length;
for (int i = 0; i < len; i++) {
 if (a[i] != b[i]) {
 return false;
 }
}
...

The resulting execution time is 4001 milliseconds. Finally, we can apply the
same trick we used in the charCounter method in the previous example and
restructure the loop so that the termination expression performs a comparison
against 0. This change, shown in Listing 11.15, results in a run time of 3538 milli-
seconds, shaving an additional 363 milliseconds.

Listing 11.15 Using a faster loop

...
while (len > 0) {
 if (a[--len] != b[len]) {
 return false;
 }
}
...

11.4.3 Arithmetic Operations

Arithmetic operations on identical primitive types all take about the same amount
of time, with the exception of multiplication and division (including the % opera-

Other Optimization Tips 245

tion that produces the remainder of an integer division). The fastest operations are
those performed on the int primitive type. This is due to the fact that the smaller
primitives like byte and short are widened to ints before an arithmetic operation
is performed.

Whenever possible, integer (not just specifically the int data type) multiplica-
tion and division operations should be replaced by the equivalent shift operations.
For example, you could replace the following statement

i /= 32;

with its mathematical equivalent7 using the logical right shift operator.

i >>>= 5;

You can also improve the performance of mod (%) operations when the modu-
lus is an even power of 2 by bit wise ANDing with the value of the modulus minus
one. For example the following statement

i %= 32;

can be replaced with

i &= 0x1f// 31 decimal

The use of the shift operators, when possible, will be faster on most platforms,
but the difference on TINI is far more striking. This is because the controller on
which TINI is built does not have 32-bit ALU registers that can perform multipli-
cation and division operations quickly in hardware. Instead, 32-bit multiplication
or division requires many individual operations. The CPU does, however, offer
some support for 32-bit shift operations, which results in shift operations on int

primitives being much faster than multiplication or division.
By far the most time-consuming arithmetic operations are floating point cal-

culations. Unlike your host development machine, TINI’s controller does not con-
tain a “built-in” floating point unit. So floating point operations must be carried
out purely by a software floating point library. Surprisingly, using calculations on
doubles is faster than calculations on floats. This is because, on TINI, all floats
are widened to doubles before the calculation is performed. If your application
needs to perform floating point arithmetic, it’s probably best to use doubles. One
thing to keep in mind, however, is that doubles are represented in 64 bits (8 bytes)
and floats only 32 bits (4 bytes). So, for example, moving a double around using
DataInputStream and DataOutputStream takes about twice as long.

7. It is assumed here that i is non-negative.

246 Chapter 11 Application Programming Tips

11.4.4 The ArrayUtils Class

While array accesses are not nearly as expensive as object creation or method
invocations, they can still cause performance bottlenecks. One reason is that each
array access requires bounds checking. To enhance the performance of array
operations, the API provides a class named ArrayUtils in the com.dalsemi.system
package. ArrayUtils consists entirely of static native methods geared toward
speeding up common array operations. Because all of the methods in ArrayUtils

are native, they are much faster than equivalent methods implemented in Java.
The arraycopy method, defined in the java.lang.System class, is imple-

mented as a native method in most Java platforms (including TINI) and therefore
has no analog in the ArrayUtils class. It allows the caller to quickly copy a por-
tion of the contents of one array to another.

public static native void arraycopy(Object src, int src_position,
 Object dst, int dst_position, int length)

It copies data from a source array (src) to a destination (dst) array. When
copying arrays of primitives, both of the arrays must be of identical type. The off-
sets into the source and destination arrays are src_position and dst_position,
respectively. The total number of bytes copied is equal to the value specified by
the length parameter.

The rest of the methods discussed in this section are defined in the
com.dalsemi.system.ArrayUtils class.

The arrayCopyUnequal method takes a parameter list identical to that of
arraycopy and performs a similar operation with a couple of exceptions.

public static native void arrayCopyUnequal(Object fromArray,
 int fromOffset,

 Object toArray, int toOffset,
 int length)

First, arrays of object references may not be copied using this method. The
System.arraycopy method should be used for reference array copies. Next, and
most important, arrays can be of different types. For example, a char array can be
copied into a byte array and vice versa. If the primitive type of the source array
(fromArray) is wider than the primitive type of the destination array (toArray), a
truncating operation is performed on each element during the copy. For example,
when copying from an int array to byte array, only the least significant byte of
each integer in the int array will be copied to the byte array. If an int value of
0xffffff7f w ere extracted from a source int array, it would be truncated to 0x7f
and stored in the byte array. If the primitive type of the toArray array is narrower
than the primitive type of fromArray, then the most significant bytes of the ele-
ments copied to fromArray are set to 0. For example, if a short value of 0xff7f

Other Optimization Tips 247

were extracted from a source short array, it equals 0x0000ff7f after a copy opera-
tion into an int array. In other words, the value is not sign extended.

The arrayComp method is a comparison analog to arraycopy.

public static native boolean arrayComp(Object array1, int offset1,
 Object array2, int offset2, int length)

It compares two arrays from specified offsets (offset1, offset2). The number
of bytes compared is specified by the length parameter. Both arrays (array1,
array2) must be of identical type. If the array elements in the specified range are
equal, arrayComp returns true. The arrayComp method is a general purpose and
very fast version of the isEqual method we experimented with in Listing 11.12.

The arrayFill method that follows fills each element in the range specified
by fromIndex and toIndex (inclusive) with the value specified by fillValue.

public static native void arrayFill(byte[] thisArray, int fromIndex,
 int toIndex, byte fillValue)

The getLong and setLong methods store and retrieve a long primitive to and
from a byte array.

public static native byte[] setLong(byte[] thisArray, int offset,
 long value)

public static native long getLong(byte[] thisArray, int offset)

The setLong method returns a reference to the target array (thisArray). Cor-
responding get* and set* methods exist for the short and int primitive types as
well. The byte ordering for all methods is big-endian. So for example the follow-
ing statement

setInt(b, offset, val);

extracts bytes from the specified integer value and places them in the target array
as shown here.

b[offset] = (byte) (val>>>24);
b[offset+1] = (byte) (val>>>16);
b[offset+2] = (byte) (val>>>8);
b[offset+3] = (byte) (val>>>0);

Primitive values returned from the get* methods construct a return value by
shifting the bytes into the target primitive in big-endian fashion. The most signifi-
cant byte is located in the array element whose index is specified by offset.

int i = b[offset] << 24;
i = i | ((b[offset+1]<<16)&0xff0000);
i = i | ((b[offset+2]<<8)&0xff00);
i = i | ((b[offset+3]<<0)&0xff);

248 Chapter 11 Application Programming Tips

11.5 AN OPTIMIZATION STRATEGY

First, simply develop your application in a clean fashion without worrying too
much about optimization. Otherwise, you may wind up writing awkward, hard to
maintain code. After the application is functionally complete, focus on perfor-
mance enhancements, if necessary. When you do get to the point of optimizing
your code, go after the big targets first: I/O and memory usage. Use profiling tech-
niques, such as those discussed in Section 11.1 and Section 11.3.3, to identify
execution bottlenecks. After discovering where the bulk of the CPU cycles are
being consumed, consider some of these techniques, discussed previously, sum-
marized roughly in order of effectiveness.

• Identify the real performance bottlenecks. Then optimize only the code
that must be fast.

• Optimize I/O by transferring relatively large blocks of data whenever
possible. When your application must read and write small amounts of
data to an underlying stream, use buffered streams. Use the print and
println methods on PrintStream objects sparingly, since they are fairly
abstract and consume memory when converting from character to byte
arrays.

• Try reducing unnecessary memory usage. Reuse objects when feasible
(that is, easy to do and thread-safe). Reducing unnecessary object creation
will not only save memory, it will also speed code execution.

• Make judicious use of strings and be aware of their tendency to use mem-
ory. Consider using StringBuffers. This should allow some recycling of
memory, and the StringBuffer can be easily converted to a String when
necessary.

• For better performance within a tight loop try the loop optimization sug-
gestions from Section 11.4.2. Avoid unnecessary method invocations and
field accesses.

• If after a reasonable attempt at optimization you still need better perfor-
mance, a native library may be required.

11.6 APPLICATION HARDENING

To this point in the chapter we’ve been discussing how to make your application
faster and more responsive. Now we’ll shift the focus to hardening the applica-
tion. A production application must ultimately be able to deliver the uptime and
reliability required of embedded network devices, as well as recover from unex-
pected events such as loss of power or runaway code.

Application Hardening 249

11.6.1 TINI’s Memory Technology and Data
Persistence

First, it’s important to understand the different types of memory technology used
by TINI hardware and the purpose each serves so that you can make two impor-
tant decisions.

• Where should your application be stored?
• Where should any other required persistent data be stored?

For the purposes of this discussion, persistent storage is defined as memory
that retains its contents for long periods of time in the absence of primary power
(Vcc). There are two distinct types of memory used by any TINI hardware imple-
mentation: flash ROM and static RAM (SRAM). The flash ROM is of course per-
sistent and stores the bootstrap loader, the runtime environment, and the “flashed”
Java application. Figure 1.6 shows how the different binary images are mapped
into the flash ROM’s memory space. The SRAM can also be made persistent
using a small amount of additional circuitry and a lithium coin cell battery (see
Figure 1.3). System configuration information such as static network parameters
are stored in the SRAM along with the garbage collected heap and file system
data.

If the SRAM is persistent, network parameters and file system data remain
intact even in the absence of primary power. If the SRAM is volatile, critical sys-
tem data must be stored in another memory device. The runtime environment
makes provisions for storing network parameters in the flash ROM and restoring
these parameters during the OS boot phase. Otherwise, the flash memory can’t be
used for arbitrary data storage. However, any hardware implementation may pro-
vide a separate persistent external memory device to store important data needed
to bootstrap the system. This additional memory device can take the form of either
a full parallel access memory with an address and data bus that is decoded in an
unused portion of the system memory map (Figure 1.4) or a small serial memory
such as an 1-Wire EEPROM. The TINI Board Model 3908 for example, provides
a small 1-Wire EEPROM (electrically erasable programmable read-only memory)
chip to allow the application(s) to store up to 512 bytes of configuration data. The
TBM390 also nonvolatilizes the SRAM, providing a total of three distinct types of
persistent read/write memory.

Executing from Flash Memory. During the application development phase,
the persistent Java application is typically slush, or perhaps another shell, that

8. Included on board revisions D and later

250 Chapter 11 Application Programming Tips

allows the developer to load, execute, and test her application. Slush can also be
used in production because applications can be automatically launched by adding
the appropriate line of text in the “/etc/.startup” file. This line is normally the same
command used when launching your application from the command line. As a
rule, however, the safest place for your application to live is in the flash ROM.
This ensures the application binary image will withstand any damage that could
be caused by heap corruption.9 It also means that your application is automati-
cally launched as the first Java process when the system is booted. This reduces
the amount of time required for the application to begin executing from 11 sec-
onds to about 3 seconds.

You can target your application for execution from the flash ROM by using
the “–l” option on the TINIConvertor command line. This overrides the SRAM
(file system) default execution target. The only change you may have to make to
your application for it to execute properly from flash is to initialize the streams
used for console I/O: System.in, System.out, and System.err. Use of the default
serial port cannot be assumed by the system because there may be a picky serial
device attached to the port that could get confused by unsolicited chatter when the
system boots. If your application performs no console I/O, then it is not necessary
to invoke either of the following methods.

A flashed application can enable console I/O on a serial port by invoking the
setDefaultStreams method defined in the com.dalsemi.system.Debug class.

public static void setDefaultStreams(String port, int speed)

It takes a String, such as “serial0,” specifying the serial port to be used for
console I/O and the serial port baud rate. After setDefaultStreams has been
invoked, System.in, System.out, and System.err will use the specified serial port
for the actual data transfer.

public static void resetDefaultStreams()

The resetDefaultStreams method sets System.in to a NullInputStream and
System.out and System.err to NullOutputStreams. Both “null” stream classes
are defined in the com.dalsemi.comm package. This mutes all console I/O and
allows the serial port to be used by the rest of the application. By invoking
setDefaultStreams immediately after startup a flashed application can send
console output and report progress during its startup phase. After its
initialization is complete, it can invoke resetDefaultStreams to release the port
for other, possibly more useful, serial communication.

9. If a corrupt heap is detected on bootup, the memory manager will clear the heap and
re-initialize the file system, destroying your application. While this is an unlikely
event, it can occur and should be guarded against for any production development.

Application Hardening 251

11.6.2 Application Startup

The system boot flow was described in Section 1.4.5. We’ll briefly review a small
portion of the boot process and extend the startup discussion into the early phases
of an application’s initialization. Early in the boot process, the OS analyzes the
contents of the SRAM, performing integrity checks on each of the following.

• Network parameters
• Heap
• File system

The network parameters are checked only if the network information was
committed to the Flash ROM (see Section 5.2.1). If committed, the network infor-
mation in the SRAM is compared to the contents of the flash ROM. If they differ,
the flash version of the network data is copied to the SRAM. Next, the heap struc-
tures are checked for consistency. If the heap is found to be in a damaged state, it
is reinitialized. Because the file system is contained in the heap, it will be
destroyed and reinitialized in the event that the heap integrity check fails. If the
integrity check succeeds, the file system structure is examined and any structural
damage to the file system is repaired.

Detecting Boot-Up Problems. The class com.dalsemi.system.TINIOS provides
a method named getBootState that can be invoked to determine what, if any,
recovery actions were performed by the operating system during the boot process.

public static native int getBootState()

It returns the boot state encoded as an integer value that is the bit-wise OR of
zero or more of the following public constants defined in TINIOS.

NETWORK_CONFIGURATION_RESTORED
MASTER_ERASE_OCCURRED
HEAP_CLEAR_OCCURRED
FS_MODIFICATION_OCCURRED

If no recovery action was required during system boot, getBootState returns 0.
Using this method, an application can determine whether it needs to initialize and/
or restore any of its own persistent state. For example, it may need to load a con-
figuration file from the network or an external memory device.

Forced Heap Initialization. To force either the entire SRAM or just the file
system to be reinitialized during system boot, an application can invoke the
blastHeapOnReboot method in the TINIOS class.

public static final void blastHeapOnReboot(int blastType)

252 Chapter 11 Application Programming Tips

Invoking blastHeapOnReboot serves only as a trigger to reset the file system,
and possibly the system configuration information, the next time the system boots.
It does not have any immediate impact on the system. The blastType parameter
can be either of the following public integer constants defined in TINIOS.

BLAST_HEAP
BLAST_ALL

The BLAST_ALL parameter should only be specified when the network commit/
restore functionality has been enabled or when the application has network
parameters stored in another persistent memory device. Resetting the heap hap-
pens automatically if the SRAM is not persistent. The blastHeapOnReboot method
forces this action even if the SRAM is persistent, overriding the utility of the non-
volatizing circuitry. It should only be used if it is necessary to guarantee that the
heap is reinitialized during the boot process. This also assumes that the applica-
tion can restore any necessary persistent system parameters and files.

To guard against heap corruption due to sudden loss of power, the memory
manager maintains state in the system area of the SRAM. This state allows the
memory manager to back out during system startup of an incomplete memory
operation such as a “malloc” or a “free.” Maintaining this state during normal exe-
cution imposes about a 30 percent overhead on memory management operations.
This behavior can be disabled by invoking the disablePowerFailRecovery

method in the TINIOS class.

public static final void disablePowerFailRecovery()

This result is faster memory operations and somewhat better performance for
applications that perform lots of object creation. However, it should only be used
in conjunction with blastHeapOnReboot. In this case, the heap’s consistency at
boot time isn’t an issue because it will unconditionally be reinitialized.

Starting the Watchdog. For most applications the watchdog timer should be
armed early in the initialization phase. The watchdog timer guards against a run-
away or otherwise unresponsive system. Once armed, the timer must be reset peri-
odically by the application or the system will automatically reboot. This is ideal,
for example, at preventing the system from becoming permanently hung due to
deadlocked threads. The watchdog’s use is described thoroughly in Section 10.2.

Application Hardening 253

11.6.3 Hardening Summary

For robust applications that can recover from otherwise fatal problems, keep the
following tips in mind.

• Target your application for execution in the flash ROM.
• Use network commit/restore capabilities for static network parameters.

This is not necessary if your application acquires network settings dynam-
ically using DHCP.

• Check getBootState early in application execution, and, if necessary, take
the appropriate recovery action.

• Use the watchdog to guard against runaway or unresponsive code.

All of these techniques can be used together to ensure that your application,
and the embedded system it controls, can recover from unexpected problems
gracefully. Combined, their implementation amounts to only a few lines of code
and therefore they have only a negligible impact on the application’s footprint and
performance.

255

APPENDIX Almanac

LEGEND

The following is a very condensed summary of all of the classes defined in the
TINI API, listed alphabetically. It also includes all useful 1-Wire API classes that
are relavent to the TINI platform. The almanac is presented in the style introduced
by Patrick Chan in the Java Developers Almanac.

Object
➥ Thread Runnable

➥ DHCPClient

DHCPClient com.dalsemi.tininet.dhcp

void addDHCPListener(DHCPListener newListener)
❉ DHCPClient(DHCPListener DL)

throws IllegalStateException
❉ DHCPClient(DHCPListener DL, byte[] serverIP,

byte[] localIP)
throws IllegalStateException

void removeDHCPListener(DHCPListener thisListener
)

void run()

void stopDHCPThread()

1 2

3 4

5 6

7

256 Appendix Almanac

1. The name of the class.
2. The name of the package containing the class
3. The chain of superclasses. Each class is a subclass of the one above it.
4. The names of the interfaces implemented by each class.
5. A constructor. Other icons that may occur in this column are:

❍ abstract
● final
❏ static
■ static final
© protected
✍ field

6. The return type of a method or the declared type of an instance variable.
7. The name of the class member. If it is a method, the parameter list and

optional throws clause follows. Members are arranged alphabetically.

Appendix Almanac 257

ADContainer OneWireSensor

ADContainer com.dalsemi.onewire.container

✍■ int ALARM_HIGH

✍■ int ALARM_LOW

boolean canADMultiChannelRead()

void doADConvert(boolean[] doConvert,
byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void doADConvert(int channel, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

double getADAlarm(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

boolean getADAlarmEnable(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

double getADRange(int channel, byte[] state)

double[] getADRanges(int channel)

double getADResolution(int channel, byte[] state)

double[] getADResolutions(int channel, double range)

double[] getADVoltage(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

double getADVoltage(int channel, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

int getNumberADChannels()

boolean hasADAlarmed(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

boolean hasADAlarms()

void setADAlarm(int channel, int alarmType,
double alarm, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

258 Appendix Almanac

Object
➥ Address

Object
➥ ArrayUtils

void setADAlarmEnable(int channel, int alarmType,
boolean alarmEnable, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setADRange(int channel, double range,
byte[] state)

void setADResolution(int channel,
double resolution, byte[] state)

Address com.dalsemi.onewire.utils

❏ boolean isValid(byte[] address)

❏ boolean isValid(long address)

❏ boolean isValid(String address)

❏ byte[] toByteArray(long address)

❏ byte[] toByteArray(String address)

❏ long toLong(byte[] address)

❏ long toLong(String address)

❏ String toString(byte[] address)

❏ String toString(long address)

ArrayUtils com.dalsemi.system

❏ boolean arrayComp(Object array1, int offset1,
Object array2, int offset2, int length)

❏ void arrayCopyUnequal(Object fromArray,
int fromOffset, Object toArray,
int toOffset, int length)

❏ void arrayFill(byte[] thisArray, int fromIndex,
int toIndex, byte fillValue)

❏ int getInt(byte[] thisArray, int offset)

❏ long getLong(byte[] thisArray, int offset)

❏ short getShort(byte[] thisArray, int offset)

❏ byte[] setInt(byte[] thisArray, int offset,
int value)

❏ byte[] setLong(byte[] thisArray, int offset,
long value)

❏ byte[] setShort(byte[] thisArray, int offset,
short value)

Appendix Almanac 259

Object
➥ Bit

Object
➥ BitPort

Bit com.dalsemi.onewire.utils

❏ int arrayReadBit(int index, int offset,
byte[] buf)

❏ void arrayWriteBit(int state, int index,
int offset, byte[] buf)

❉ Bit()

BitPort com.dalsemi.system

❉ BitPort(byte bitname)

❉ BitPort(DataPort port)

void clear()

void clear(int bitpos)
throws IllegalAddressException

✍■ byte ETH_EEDO

✍■ byte ETH_EESK

✍■ byte ETH_IOS0

✍■ byte ETH_IOS1

✍■ byte ETH_IOS2

✍ int latchValue

✍■ byte Port3Bit0

✍■ byte Port3Bit1

✍■ byte Port3Bit2

✍■ byte Port3Bit3

✍■ byte Port3Bit4

✍■ byte Port3Bit5

✍■ byte Port5Bit0

✍■ byte Port5Bit1

✍■ byte Port5Bit2

✍■ byte Port5Bit3

✍■ byte Port5Bit4

✍■ byte Port5Bit5

✍■ byte Port5Bit6

✍■ byte Port5Bit7

int read()

int readBit(int bitpos)
throws IllegalAddressException

int readLatch()

260 Appendix Almanac

Object
➥ BytePort

Object
➥ CanBus

int readLatch(int bitpos)

void set()

void set(int bitpos)
throws IllegalAddressException

BytePort com.dalsemi.system

❉ BytePort(byte portname)

✍■ byte Port5

int read()

void write(int value)

CanBus com.dalsemi.comm

void autoAnswerRemoteFrameRequest(int messageCent
er, int ID, byte[] data)
throws CanBusException

❉ CanBus(byte portnum) throws CanBusException

✍■ byte CANBUS0

✍■ byte CANBUS1

void close() throws CanBusException

void disableController() throws CanBusException

void disableMessageCenter(int messageCenter)
throws CanBusException

void enableController() throws CanBusException

void enableControllerPassive()
throws CanBusException

void enableMessageCenter(int messageCenter)
throws CanBusException

int getRXErrorCount() throws CanBusException

int getTXErrorCount() throws CanBusException

void open() throws CanBusException

void receive(CanFrame frame)
throws CanBusException

int receiveFramesAvailable()
throws CanBusException

boolean receivePoll(CanFrame frame)
throws CanBusException

void resetController() throws CanBusException

void sendDataFrame(int ID, boolean extendedID,
byte[] data) throws CanBusException

void sendFrame(CanFrame frame)
throws CanBusException

Appendix Almanac 261

Object
➥ Throwable java.io.Serializable

➥ Exception
➥ CanBusException

void sendRemoteFrameRequest(int ID,
boolean extendedID, byte[] data)
throws CanBusException

void set11BitGlobalIDMask(int mask)
throws CanBusException

void set11BitMessageCenterArbitrationID(int messa
geCenter, int ID) throws CanBusException

void set29BitGlobalIDMask(int mask)
throws CanBusException

void set29BitMessageCenter15IDMask(int mask)
throws CanBusException

void set29BitMessageCenterArbitrationID(int messa
geCenter, int ID) throws CanBusException

void setBaudRatePrescaler(int prescaler)
throws CanBusException

void setMessageCenterMessageIDMaskEnable(int mess
ageCenter, boolean maskEnable)
throws CanBusException

void setMessageCenterRXMode(int messageCenter)
throws CanBusException

void setMessageCenterTXMode(int messageCenter)
throws CanBusException

void setMessageCenterWriteOverEnable(int messageC
enter, boolean writeover)
throws CanBusException

void setReceiveQueueLimit(int numframes)
throws CanBusException

void setSampleRate(int sampleRate)
throws CanBusException

void setSiestaMode() throws CanBusException

void setSynchronizationJumpWidth(int jumpWidth)
throws CanBusException

void setTransmitQueueLimit(int numframes)
throws CanBusException

void setTSEG1(int tseg1) throws CanBusException

void setTSEG2(int tseg2) throws CanBusException

CanBusException com.dalsemi.comm

✍■ int ALLOCATION_ERROR

✍■ int BIT_ONE

✍■ int BIT_STUFF

✍■ int BIT_ZERO

❉ CanBusException()

❉ CanBusException(String s, int reason)

✍■ int CLOSE_NOTOWNER

✍■ int COUNT_EXCEEDED

262 Appendix Almanac

Object
➥ CanFrame

Object
➥ Clock

✍■ int CRC

✍■ int FORMAT

int getReason()

✍■ int NONE

✍■ int OPEN_ALREADYOPEN

✍■ int PORT_DISABLED

✍■ int PORT_NOTOPENED

✍■ int TRANSMIT_NO_ACK

CanFrame com.dalsemi.comm

❉ CanFrame()

❉ CanFrame(int ID, boolean extendedID,
byte[] buf, int length)

✍ byte[] data

✍ boolean extendedID

byte[] getData()

boolean getExtendedID()

int getID()

int getLength()

int getMessageCenter()

boolean getRemoteFrameRequest()

✍ int ID

✍ int length

✍ int messageCenter

✍ boolean remoteFrameRequest

void setData(byte[] buf)

void setExtendedID(boolean extendedID)

void setID(int ID)

void setLength(int length)

void setMessageCenter(int MC)

void setRemoteFrameRequest(boolean RTR)

Clock com.dalsemi.system

❏ int bcdToInt(int bcdVal)

❏ int calculateDayOfWeek(int month, int date,
int fullYear)

❉ Clock()

boolean get12Hour()

int getDate()

int getDay()

Appendix Almanac 263

ClockContainer OneWireSensor

int getHour()

int getHundredth()

int getMinute()

int getMonth()

boolean getPm()

void getRTC()

int getSecond()

long getTickCount()

int getYear()

❏ byte intToBCD(int intVal)

void set12Hour(boolean is12Hour)

void setDate(int date)

void setDay(int day)

void setHour(int hour)

void setHundredth(int hundredth)

void setMinute(int minute)

void setMonth(int month)

void setPm(boolean pm)

void setRTC()

void setSecond(int second)

void setTickCount(long millis)

void setYear(int year)

ClockContainer com.dalsemi.onewire.container

boolean canDisableClock()

long getClock(byte[] state)

long getClockAlarm(byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

long getClockResolution()

boolean hasClockAlarm()

boolean isClockAlarmEnabled(byte[] state)

boolean isClockAlarming(byte[] state)

boolean isClockRunning(byte[] state)

void setClock(long time, byte[] state)

void setClockAlarm(long time, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setClockAlarmEnable(boolean alarmEnable,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setClockRunEnable(boolean runEnable,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

264 Appendix Almanac

Object
➥ CommandAPDU

Object
➥ Throwable java.io.Serializable

➥ Exception
➥ CommitException

CommandAPDU com.dalsemi.onewire.container

✍■ int CLA

❉ CommandAPDU(byte[] buffer)

❉ CommandAPDU(byte cla, byte ins, byte p1,
byte p2)

❉ CommandAPDU(byte cla, byte ins, byte p1,
byte p2, byte[] data)

❉ CommandAPDU(byte cla, byte ins, byte p1,
byte p2, byte[] data, int le)

❉ CommandAPDU(byte cla, byte ins, byte p1,
byte p2, int le)

● byte[] getBuffer()

● byte getByte(int index)

● byte[] getBytes()

byte getCLA()

byte getINS()

int getLC()

int getLE()

● int getLength()

byte getP1()

byte getP2()

✍■ int INS

✍■ int LC

✍■ int P1

✍■ int P2

● void setByte(int index, byte value)

String toString()

CommitException com.dalsemi.system

❉ CommitException()

❉ CommitException(String error)

Appendix Almanac 265

Object
➥ CRC16

Object
➥ CRC8

Object
➥ DataPort

CRC16 com.dalsemi.onewire.utils

❏ int compute(byte[] dataToCrc)

❏ int compute(byte[] dataToCrc, int seed)

❏ int compute(byte[] dataToCrc, int off, int len)

❏ int compute(byte[] dataToCrc, int off, int len,
int seed)

❏ int compute(int dataToCrc)

❏ int compute(int dataToCrc, int seed)

CRC8 com.dalsemi.onewire.utils

❏ int compute(byte[] dataToCrc)

❏ int compute(byte[] dataToCrc, int seed)

❏ int compute(byte[] dataToCrc, int off, int len)

❏ int compute(byte[] dataToCrc, int off, int len,
int seed)

❏ int compute(int dataToCRC)

❏ int compute(int dataToCRC, int seed)

DataPort com.dalsemi.system

✍ int address

❉ DataPort()

❉ DataPort(int address)

int getAddress()

boolean getFIFOMode()

int getStretchCycles()

✍ int latchValue

int read() throws IllegalAddressException

int read(byte[] arr, int off, int len)
throws IllegalAddressException

int readLatch()

void setAddress(int address)

void setFIFOMode(boolean useFIFOAccess)

void setStretchCycles(byte stretch)
throws IllegalArgumentException

✍■ byte STRETCH0

✍■ byte STRETCH1

266 Appendix Almanac

Object
➥ Debug

Object
➥ java.io.OutputStream

➥ DebugOutputStream

✍■ byte STRETCH10

✍■ byte STRETCH2

✍■ byte STRETCH3

✍■ byte STRETCH7

✍■ byte STRETCH8

✍■ byte STRETCH9

✍ byte stretchCycles

✍ boolean useFIFOAccess

void write(byte[] arr, int off, int len)
throws IllegalAddressException

void write(int value)
throws IllegalAddressException

Debug com.dalsemi.system

❏ void debugDump(byte[] arr, int length)

❏ void debugDump(int b)

❏ void debugDump(String out)

✍❏ boolean defaultStreams

❏ void dump(byte[] arr, int length)

❏ void dump(int b)

❏ void dump(String out)

❏ void hexDump(byte[] b)

❏ void hexDump(byte[] b, int length)

❏ void hexDump(int i)

❏ void hexDump(java.io.PrintStream out, byte[] b)

❏ void hexDump(java.io.PrintStream out, int i)

❏ void intDump(int iVal)

❏ void resetDefaultStreams()

❏ void setDefaultStreams()

❏ void setDefaultStreams(String port, int speed)

❏ void setNativeVerboseDebugSpew(boolean verbose)

DebugOutputStream com.dalsemi.comm

❉ DebugOutputStream()

void write(byte[] barr, int offset, int length)
throws java.io.IOException

void write(int b) throws java.io.IOException

Appendix Almanac 267

Object
➥ TINIShell

➥ DefaultTINIShell

Object
➥ Thread Runnable

➥ DHCPClient

DHCPListener

DefaultTINIShell com.dalsemi.shell

❉ DefaultTINIShell()

void execute(Object[] commandLine,
server.SystemInputStream in,
server.SystemPrintStream out,
server.SystemPrintStream err,
java.util.Hashtable env)
throws Exception

java.util.Hash-
table

getCurrentEnvironment()

byte getCurrentUID()

String getCurrentUserName()

String getFromCurrentEnvironment(String key)

String getName()

int getUIDByUserName(String username)

String getUserNameByUID(byte uid)

String getVersion()

int login(String userName, String password)

void logout(Object info)

DHCPClient com.dalsemi.tininet.dhcp

void addDHCPListener(DHCPListener newListener)

❉ DHCPClient(DHCPListener DL)
throws IllegalStateException

❉ DHCPClient(DHCPListener DL, byte[] serverIP,
byte[] localIP)
throws IllegalStateException

void removeDHCPListener(DHCPListener thisListener
)

void run()

void stopDHCPThread()

DHCPListener com.dalsemi.tininet.dhcp

void ipError(String error)

void ipLeased()

void ipLost()

void ipRenewed()

268 Appendix Almanac

Object
➥ DNSClient

Object
➥ java.io.File java.io.Serializable,

Comparable
➥ DSFile

DNSClient com.dalsemi.tininet.dns

❉ DNSClient()

String[] getByIP(byte[] ip)

String[] getByIP(String ip)

String[] getByName(String name)

void setDNSTimeout(int timeout)

void setPrimaryDNS(String dns1)

void setSecondaryDNS(String dns2)

DSFile com.dalsemi.fs

❏ byte[] buildAbsolutePath(String parent,
String name)

boolean canExec()

❉ DSFile(java.io.File dir, String name)

❉ DSFile(String path)

❉ DSFile(String path, String name)

int executeFile() throws java.io.IOException

int executeFile(java.io.InputStream stdin,
java.io.OutputStream stdout,
java.io.OutputStream stderr,
String[] args, boolean foreground,
String processName)
throws java.io.IOException

int executeFile(java.io.InputStream stdin,
java.io.OutputStream stdout,
java.io.OutputStream stderr,
String[] args, String[] env,
boolean foreground, String processName)
throws java.io.IOException

int executeFile(java.io.InputStream stdin,
java.io.OutputStream stdout,
java.io.OutputStream stderr,
String[] args, String[] env,
boolean foreground, String processName,
Process procObj)
throws java.io.IOException

int getOtherPermissions()
throws java.io.FileNotFoundException

int getUser()
throws java.io.FileNotFoundException

int getUserPermissions()
throws java.io.FileNotFoundException

Appendix Almanac 269

Object
➥ DSPortAdapter

boolean listLong(java.io.OutputStream out,
boolean unixStyle)
throws java.io.IOException

void setOtherPermissions(int perms)
throws java.io.IOException

void setUser(byte uid) throws java.io.IOException

void setUserPermissions(int perms)
throws java.io.IOException

void touch() throws java.io.IOException

DSPortAdapter com.dalsemi.onewire.adapter

❍ boolean adapterDetected() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❍ boolean beginExclusive(boolean blocking)
throws com.dalsemi.onewire.OneWireExcept
ion

boolean canBreak() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean canDeliverPower() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean canDeliverSmartPower()
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean canFlex() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean canHyperdrive() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean canOverdrive() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean canProgram() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

✍■ int CONDITION_AFTER_BIT

✍■ int CONDITION_AFTER_BYTE

✍■ int CONDITION_NOW

❍ void dataBlock(byte[] dataBlock, int off,
int len) throws OneWireIOException,
com.dalsemi.onewire.OneWireException

✍■ int DELIVERY_CURRENT_DETECT

✍■ int DELIVERY_EPROM

✍■ int DELIVERY_FOUR_SECONDS

✍■ int DELIVERY_HALF_SECOND

✍■ int DELIVERY_INFINITE

✍■ int DELIVERY_ONE_SECOND

✍■ int DELIVERY_SMART_DONE

✍■ int DELIVERY_TWO_SECONDS

❉ DSPortAdapter()

❍ void endExclusive()

270 Appendix Almanac

void excludeFamily(byte[] family)

void excludeFamily(int family)

❍ boolean findFirstDevice() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❍ boolean findNextDevice() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❍ void freePort()
throws com.dalsemi.onewire.OneWireExcept
ion

String getAdapterAddress()
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❍ String getAdapterName()

String getAdapterVersion()
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❍ void getAddress(byte[] address)

long getAddressAsLong()

String getAddressAsString()

java.util.Enumer-
ation

getAllDeviceContainers()
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❍ boolean getBit() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❍ void getBlock(byte[] arr, int len)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❍ void getBlock(byte[] arr, int off, int len)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❍ byte[] getBlock(int len) throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❍ int getByte() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❍ String getClassVersion()

com.dalsemi.one-
wire.con-

tainer.OneWireCon
tainer

getDeviceContainer()

com.dalsemi.one-
wire.con-

tainer.OneWireCon
tainer

getDeviceContainer(byte[] address)

com.dalsemi.one-
wire.con-

tainer.OneWireCon
tainer

getDeviceContainer(long address)

com.dalsemi.one-
wire.con-

tainer.OneWireCon
tainer

getDeviceContainer(String address)

Appendix Almanac 271

com.dalsemi.one-
wire.con-

tainer.OneWireCon
tainer

getFirstDeviceContainer()
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

com.dalsemi.one-
wire.con-

tainer.OneWireCon
tainer

getNextDeviceContainer()
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❍ String getPortName()
throws com.dalsemi.onewire.OneWireExcept
ion

❍ java.util.Enumer-
ation

getPortNames()

❍ String getPortTypeDescription()

int getSpeed()

boolean isAlarming(byte[] address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean isAlarming(long address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean isAlarming(String address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean isPresent(byte[] address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean isPresent(long address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean isPresent(String address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

✍■ char LEVEL_BREAK

✍■ char LEVEL_NORMAL

✍■ char LEVEL_POWER_DELIVERY

✍■ char LEVEL_PROGRAM

❍ void putBit(boolean bitValue)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❍ void putByte(int byteValue)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

void registerOneWireContainerClass(int family,
Class OneWireContainerClass)
throws com.dalsemi.onewire.OneWireExcept
ion

✍■ int RESET_ALARM

✍■ int RESET_NOPRESENCE

✍■ int RESET_PRESENCE

✍■ int RESET_SHORT

272 Appendix Almanac

❍ int reset() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean select(byte[] address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean select(long address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean select(String address)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❍ boolean selectPort(String portName)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❍ void setNoResetSearch()

void setPowerDuration(int timeFactor)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

void setPowerNormal() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

void setProgramPulseDuration(int timeFactor)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❍ void setSearchAllDevices()

❍ void setSearchOnlyAlarmingDevices()

void setSpeed(int speed)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

✍■ int SPEED_FLEX

✍■ int SPEED_HYPERDRIVE

✍■ int SPEED_OVERDRIVE

✍■ int SPEED_REGULAR

void startBreak() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean startPowerDelivery(int changeCondition)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean startProgramPulse(int changeCondition)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

void targetAllFamilies()

void targetFamily(byte[] family)

void targetFamily(int family)

Appendix Almanac 273

Object
➥ ExternalInterrupt

Object
➥ java.util.EventObject java.io.Serializable

➥ ExternalInterruptEvent

ExternalInterruptEventListener java.util.EventListener

Object
➥ Throwable java.io.Serializable

➥ Exception
➥ ExternalInterruptException

ExternalInterrupt com.dalsemi.system

void addEventListener(ExternalInterruptEventListe
ner externalEventListener)
throws java.util.TooManyListenersExcepti
on

❉ ExternalInterrupt()

❏ boolean getTrigger()

void removeEventListener(ExternalInterruptEventLi
stener externalEventListener)

❏ void setTrigger(boolean edgeTrigger,
ExternalInterruptEventListener owner)
throws ExternalInterruptException

✍■ int TRIGGER_EDGE

✍■ int TRIGGER_LEVEL

ExternalInterruptEvent com.dalsemi.system

❉ ExternalInterruptEvent(ExternalInterrupt ext
ernalInterrupt)

ExternalInterrupt-
EventListener

com.dalsemi.system

void externalInterruptEvent(ExternalInterruptEven
t ev)

ExternalInterruptExcep-
tion

com.dalsemi.system

❉ ExternalInterruptException()

❉ ExternalInterruptException(String error)

274 Appendix Almanac

Object
➥ Thread Runnable

➥ com.dalsemi.shell.server.Server
➥ FTPServer

Object
➥ Thread Runnable

➥ com.dalsemi.shell.server.Session
➥ FTPSession

Object
➥ GetOpt

Object
➥ HTTPServer

FTPServer com.dalsemi.shell.server.ftp

void broadcast(String sendThis)

❉ FTPServer() throws java.io.IOException

❉ FTPServer(int port)
throws java.io.IOException

❏ String getConnectionMsgFile()

❏ String getWelcomeMsgFile()

❏ boolean isAnonymousAllowed()

❏ boolean isRootAllowed()

❏ String logAnon()

FTPSession com.dalsemi.shell.server.ftp

String getNextCommand() throws java.io.IOException

void login() throws java.io.IOException

GetOpt com.dalsemi.shell.server

int getopt()

❉ GetOpt(String[] args, String opts)

String optArgGet()

✍■ int optEOF

✍■ int optERR

HTTPServer com.dalsemi.tininet.http

✍■ int DEFAULT_HTTP_PORT

✍■ int DELETE

✍■ int GET

String getHTTPRoot()

String getIndexPage()

Appendix Almanac 275

Object
➥ Throwable java.io.Serializable

➥ Exception
➥ RuntimeException

➥ HTTPServerException

String getLogFilename()

boolean getLogging()

int getPortNumber()

✍■ int HEAD

✍■ int HTTP_BAD_REQUEST

✍■ int HTTP_CREATED

✍■ int HTTP_FORBIDDEN

✍■ int HTTP_INTERNAL_ERROR

✍■ int HTTP_NOT_FOUND

✍■ int HTTP_OK

✍■ int HTTP_SERVER_ERROR

✍■ int HTTP_UNAUTHORIZED

✍■ int HTTP_UNSUPPORTED_TYPE

❉ HTTPServer() throws HTTPServerException

❉ HTTPServer(int httpPort)
throws HTTPServerException

❉ HTTPServer(int httpPort, boolean logEnabled)
throws HTTPServerException

✍■ int OPTIONS

✍■ int POST

✍■ int PUT

int serviceRequests() throws HTTPServerException

int serviceRequests(Object lock)
throws HTTPServerException

❏ void setBitmapMimeType(String newMimeType)

void setHTTPRoot(String httpRoot)

void setIndexPage(String indexPage)

void setLogFilename(String logFileName)

void setLogging(boolean logEnabled)
throws HTTPServerException

void setPortNumber(int httpPort)
throws HTTPServerException

✍■ int TRACE

✍■ int TYPE_FULL_REQUEST

✍■ int TYPE_FULL_RESPONSE

✍■ int TYPE_SIMPLE_REQUEST

✍■ int UNSUPPORTED

HTTPServerException com.dalsemi.tininet.http

❉ HTTPServerException()

❉ HTTPServerException(String error)

276 Appendix Almanac

Object
➥ I2CPort

Object
➥ Throwable java.io.Serializable

➥ Exception
➥ IllegalAddressException

I2CPort com.dalsemi.system

✍ byte clockDelay

int getStretchCycles()

❉ I2CPort()

❉ I2CPort(int SCLAddress, byte SCLMask,
int SDAAddress, byte SDAMask)

int read(byte[] barr, int off, int len)
throws IllegalAddressException

✍ int SCLAddress

✍ byte SCLMask

✍ int SDAAddress

✍ byte SDAMask

void setAddress(byte address)

void setClockDelay(byte delay)

void setStretchCycles(byte stretch)
throws IllegalArgumentException

✍ byte slaveAddress

✍■ byte STRETCH0

✍■ byte STRETCH1

✍■ byte STRETCH10

✍■ byte STRETCH2

✍■ byte STRETCH3

✍■ byte STRETCH7

✍■ byte STRETCH8

✍■ byte STRETCH9

✍ byte stretchCycles

int write(byte[] barr, int off, int len)
throws IllegalAddressException

IllegalAddressException com.dalsemi.system

❉ IllegalAddressException()

❉ IllegalAddressException(String s)

Appendix Almanac 277

Object
➥ java.io.OutputStream

➥ LCDOutputStream

Object
➥ LCDPort

MemoryBank

LCDOutputStream com.dalsemi.comm

void close() throws java.io.IOException

❉ LCDOutputStream(LCDPort lcd)

void write(byte[] barr, int offset, int len)
throws java.io.IOException

void write(int ch) throws java.io.IOException

LCDPort com.dalsemi.comm

void close() throws java.io.IOException

int getOutputBufferSize()

java.io.Output-
Stream

getOutputStream() throws java.io.IOException

❉ LCDPort(int portNum, int stream)
throws java.io.IOException

void open()

❏ void sendControl(int value)

❏ void sendData(int value)

❏ void setAddress(int address)

❏ void setLCDParams(int paramNum, byte[] params,
int length)

❏ void setNumberOfLines(int num)

❏ void setShiftDirection(boolean dir)

❏ void setShiftInterval(int num_ms)

❏ void setShiftMode(boolean on)

void write(byte[] arr) throws java.io.IOException

void write(byte[] arr, int offset, int len)
throws java.io.IOException

void write(int ch) throws java.io.IOException

MemoryBank com.dalsemi.onewire.container

String getBankDescription()

int getSize()

int getStartPhysicalAddress()

boolean isGeneralPurposeMemory()

boolean isNonVolatile()

boolean isReadOnly()

boolean isReadWrite()

278 Appendix Almanac

Object
➥ Thread Runnable

➥ NetworkMonitor

Object
➥ java.util.EventObject java.io.Serializable

➥ NetworkMonitorEvent

boolean isWriteOnce()

boolean needsPowerDelivery()

boolean needsProgramPulse()

void read(int startAddr, boolean readContinue,
byte[] readBuf, int offset, int len)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void setWriteVerification(boolean doReadVerf)

void write(int startAddr, byte[] writeBuf,
int offset, int len)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

NetworkMonitor com.dalsemi.onewire.utils

void addEventListener(NetworkMonitorEventListener
 nmel)

boolean isMonitorRunning()

void killMonitor()

❉ NetworkMonitor(com.dalsemi.onewire.adapter.D
SPortAdapter adapter)

void pauseMonitor()

void removeEventListener(NetworkMonitorEventListe
ner nmel)

void resumeMonitor()

void run()

NetworkMonitorEvent com.dalsemi.onewire.utils

com.dalsemi.one-
wire.adapter.DSPo

rtAdapter

getAdapter()

byte[] getAddress()

long getAddressAsLong()

String getAddressAsString()

Appendix Almanac 279

NetworkMonitorEventListener

Object
➥ java.io.InputStream

➥ NullInputStream

Object
➥ java.io.OutputStream

➥ NullOutputStream

Object
➥ OneWireAccessProvider

com.dalsemi.one-
wire.con-

tainer.OneWireCon
tainer

getDeviceContainer()

OWPath getOWPath()

❉ NetworkMonitorEvent(NetworkMonitor nm,
com.dalsemi.onewire.adapter.DSPortAdapt
er adapter, long address, OWPath path)

NetworkMonitorEventLis-
tener

com.dalsemi.onewire.utils

void networkArrival(NetworkMonitorEvent nme)

void networkDeparture(NetworkMonitorEvent nme)

void networkException(Exception ex)

NullInputStream com.dalsemi.comm

❉ NullInputStream()

int read()

NullOutputStream com.dalsemi.comm

❉ NullOutputStream()

void write(byte[] barr, int offset, int length)

void write(int b)

OneWireAccessProvider com.dalsemi.onewire

❏ java.util.Enumer-
ation

enumerateAllAdapters()

280 Appendix Almanac

Object
➥ OneWireContainer

❏ adapter.DSPort-
Adapter

getAdapter(String adapterName,
String portName)
throws adapter.OneWireIOException, One-
WireException

❏ adapter.DSPort-
Adapter

getDefaultAdapter()
throws adapter.OneWireIOException, One-
WireException

❏ String getProperty(String propName)

OneWireContainer com.dalsemi.onewire.container

void doSpeed()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

com.dalsemi.one-
wire.adapter.DSPo

rtAdapter

getAdapter()

byte[] getAddress()

long getAddressAsLong()

String getAddressAsString()

String getAlternateNames()

String getDescription()

int getMaxSpeed()

java.util.Enumer-
ation

getMemoryBanks()

String getName()

boolean isAlarming()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

boolean isPresent()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

❉ OneWireContainer()

❉ OneWireContainer(com.dalsemi.onewire.adapter
.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer(com.dalsemi.onewire.adapter
.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer(com.dalsemi.onewire.adapter
.DSPortAdapter sourceAdapter,
String newAddress)

void setSpeed(int newSpeed, boolean fallBack)

Appendix Almanac 281

Object
➥ OneWireContainer

➥ OneWireContainer01

Object
➥ OneWireContainer

➥ OneWireContainer02

void setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
byte[] newAddress)

void setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
long newAddress)

void setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
String newAddress)

OneWireContainer01 com.dalsemi.onewire.container

String getAlternateNames()

String getDescription()

String getName()

❉ OneWireContainer01()

❉ OneWireContainer01(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer01(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer01(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

OneWireContainer02 com.dalsemi.onewire.container

void copyScratchpad(int key, byte[] passwd,
int blockNum)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

String getAlternateNames()

String getDescription()

String getName()

❉ OneWireContainer02()

❉ OneWireContainer02(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer02(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

282 Appendix Almanac

Object
➥ OneWireContainer

➥ OneWireContainer04 ClockContainer

❉ OneWireContainer02(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

byte[] readScratchpad()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void readSubkey(byte[] data, int key,
byte[] passwd)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

byte[] readSubkey(int key, byte[] passwd)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

void writePassword(int key, byte[] oldName,
byte[] newName, byte[] newPasswd)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

void writeScratchpad(int addr, byte[] data)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

void writeSubkey(int key, int addr,
byte[] passwd, byte[] data)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

OneWireContainer04 com.dalsemi.onewire.container

boolean canDisableClock()

boolean canReadAfterExpire(byte[] state)

String getAlternateNames()

long getClock(byte[] state)

long getClockAlarm(byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

long getClockResolution()

long getCycleCounter(byte[] state)

long getCycleCounterAlarm(byte[] state)

String getDescription()

long getIntervalTimer(byte[] state)

long getIntervalTimerAlarm(byte[] state)

java.util.Enumer-
ation

getMemoryBanks()

Appendix Almanac 283

String getName()

boolean hasClockAlarm()

boolean isAutomaticDelayLong(byte[] state)

boolean isClockAlarmEnabled(byte[] state)

boolean isClockAlarming(byte[] state)

boolean isClockRunning(byte[] state)

boolean isClockWriteProtected(byte[] state)

boolean isCycleCounterAlarmEnabled(byte[] state)

boolean isCycleCounterAlarming(byte[] state)

boolean isCycleCounterWriteProtected(byte[] state)

boolean isIntervalTimerAlarmEnabled(byte[] state)

boolean isIntervalTimerAlarming(byte[] state)

boolean isIntervalTimerAutomatic(byte[] state)

boolean isIntervalTimerStopped(byte[] state)

boolean isIntervalTimerWriteProtected(byte[] state)

❉ OneWireContainer04()

❉ OneWireContainer04(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer04(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer04(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

byte[] readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void setAutomaticDelayLong(boolean delayLong,
byte[] state)

void setClock(long time, byte[] state)

void setClockAlarm(long time, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setClockAlarmEnable(boolean alarmEnable,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setClockRunEnable(boolean runEnable,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setCycleCounter(long cycles, byte[] state)

void setCycleCounterAlarm(long cycles,
byte[] state)

void setCycleCounterAlarmEnable(boolean alarmEnab
le, byte[] state)

void setIntervalTimer(long time, byte[] state)

284 Appendix Almanac

Object
➥ OneWireContainer

➥ OneWireContainer05 SwitchContainer

void setIntervalTimerAlarm(long time,
byte[] state)

void setIntervalTimerAlarmEnable(boolean alarmEna
ble, byte[] state)

void setIntervalTimerAutomatic(boolean autoTimer,
byte[] state)

void setIntervalTimerRunState(boolean runState,
byte[] state)

void setReadAfterExpire(boolean readAfter,
byte[] state)

void writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void writeProtectClock(byte[] state)

void writeProtectCycleCounter(byte[] state)

void writeProtectIntervalTimer(byte[] state)

OneWireContainer05 com.dalsemi.onewire.container

void clearActivity()
throws com.dalsemi.onewire.OneWireExcept
ion

String getAlternateNames()

String getDescription()

boolean getLatchState(int channel, byte[] state)

boolean getLevel(int channel, byte[] state)

String getName()

int getNumberChannels(byte[] state)

boolean getSensedActivity(int channel, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

boolean hasActivitySensing()

boolean hasLevelSensing()

boolean hasSmartOn()

boolean isHighSideSwitch()

❉ OneWireContainer05()

❉ OneWireContainer05(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer05(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer05(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

boolean onlySingleChannelOn()

Appendix Almanac 285

Object
➥ OneWireContainer

➥ OneWireContainer06

Object
➥ OneWireContainer

➥ OneWireContainer08

byte[] readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void setLatchState(int channel,
boolean latchState, boolean doSmart,
byte[] state)

void writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer06 com.dalsemi.onewire.container

String getDescription()

java.util.Enumer-
ation

getMemoryBanks()

String getName()

❉ OneWireContainer06()

❉ OneWireContainer06(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer06(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer06(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

OneWireContainer08 com.dalsemi.onewire.container

String getDescription()

java.util.Enumer-
ation

getMemoryBanks()

String getName()

❉ OneWireContainer08()

❉ OneWireContainer08(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer08(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer08(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

286 Appendix Almanac

Object
➥ OneWireContainer

➥ OneWireContainer09

Object
➥ OneWireContainer

➥ OneWireContainer0A

OneWireContainer09 com.dalsemi.onewire.container

String getAlternateNames()

String getDescription()

int getMaxSpeed()

java.util.Enumer-
ation

getMemoryBanks()

String getName()

❉ OneWireContainer09()

❉ OneWireContainer09(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer09(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer09(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

OneWireContainer0A com.dalsemi.onewire.container

String getDescription()

int getMaxSpeed()

java.util.Enumer-
ation

getMemoryBanks()

String getName()

❉ OneWireContainer0A()

❉ OneWireContainer0A(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer0A(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer0A(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

Appendix Almanac 287

Object
➥ OneWireContainer

➥ OneWireContainer0B

Object
➥ OneWireContainer

➥ OneWireContainer0C

OneWireContainer0B com.dalsemi.onewire.container

String getAlternateNames()

String getDescription()

java.util.Enumer-
ation

getMemoryBanks()

String getName()

❉ OneWireContainer0B()

❉ OneWireContainer0B(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer0B(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer0B(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

OneWireContainer0C com.dalsemi.onewire.container

String getDescription()

int getMaxSpeed()

java.util.Enumer-
ation

getMemoryBanks()

String getName()

❉ OneWireContainer0C()

❉ OneWireContainer0C(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer0C(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer0C(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

288 Appendix Almanac

Object
➥ OneWireContainer

➥ OneWireContainer0F

Object
➥ OneWireContainer

➥ OneWireContainer10 TemperatureContainer

OneWireContainer0F com.dalsemi.onewire.container

String getAlternateNames()

String getDescription()

int getMaxSpeed()

java.util.Enumer-
ation

getMemoryBanks()

String getName()

❉ OneWireContainer0F()

❉ OneWireContainer0F(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer0F(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer0F(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

OneWireContainer10 com.dalsemi.onewire.container

❏ double convertToCelsius(double fahrenheitTemperatur
e)

❏ double convertToFahrenheit(double celsiusTemperatur
e)

void doTemperatureConvert(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

String getAlternateNames()

String getDescription()

double getMaxTemperature()

double getMinTemperature()

String getName()

double getTemperature(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException

double getTemperatureAlarm(int alarmType,
byte[] state)

double getTemperatureAlarmResolution()

double getTemperatureResolution(byte[] state)

double[] getTemperatureResolutions()

boolean hasSelectableTemperatureResolution()

Appendix Almanac 289

Object
➥ OneWireContainer

➥ OneWireContainer12 SwitchContainer

boolean hasTemperatureAlarms()

❉ OneWireContainer10()

❉ OneWireContainer10(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer10(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer10(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

byte[] readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

✍■ double RESOLUTION_MAXIMUM

✍■ double RESOLUTION_NORMAL

void setTemperatureAlarm(int alarmType,
double alarmValue, byte[] state)

void setTemperatureResolution(double resolution,
byte[] state)

void writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer12 com.dalsemi.onewire.container

✍■ byte CHANNEL_A_ONLY

✍■ byte CHANNEL_B_ONLY

✍■ byte CHANNEL_BOTH

✍■ byte CHANNEL_NONE

byte[] channelAccess(byte[] inbuffer,
boolean toggleRW,
boolean readInitially, int CRCMode,
int channelMode, boolean clearActivity,
boolean interleave)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException

void clearActivity()

✍■ byte CRC_DISABLE

✍■ byte CRC_EVERY_32_BYTES

✍■ byte CRC_EVERY_8_BYTES

✍■ byte CRC_EVERY_BYTE

✍■ byte DONT_CHANGE

String getAlternateNames()

290 Appendix Almanac

String getDescription()

boolean getLatchState(int channel, byte[] state)

boolean getLevel(int channel, byte[] state)

java.util.Enumer-
ation

getMemoryBanks()

String getName()

int getNumberChannels(byte[] state)

boolean getSensedActivity(int channel, byte[] state)

boolean hasActivitySensing()

boolean hasLevelSensing()

boolean hasSmartOn()

boolean isHighSideSwitch()

boolean isPowerSupplied(byte[] state)

❉ OneWireContainer12()

❉ OneWireContainer12(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer12(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer12(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

boolean onlySingleChannelOn()

✍■ byte POLARITY_ONE

✍■ byte POLARITY_ZERO

byte[] readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void setLatchState(int channel,
boolean latchState, boolean doSmart,
byte[] state)

void setSearchConditions(byte channel,
byte source, byte polarity,
byte[] state)

void setSpeedCheck(boolean doSpeedCheck)

✍■ byte SOURCE_ACTIVITY_LATCH

✍■ byte SOURCE_FLIP_FLOP

✍■ byte SOURCE_PIO

void writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

Appendix Almanac 291

Object
➥ OneWireContainer

➥ OneWireContainer13

Object
➥ OneWireContainer

➥ OneWireContainer14

OneWireContainer13 com.dalsemi.onewire.container

String getAlternateNames()

String getDescription()

java.util.Enumer-
ation

getMemoryBanks()

String getName()

❉ OneWireContainer13()

❉ OneWireContainer13(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer13(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer13(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

OneWireContainer14 com.dalsemi.onewire.container

String getAlternateNames()

String getDescription()

java.util.Enumer-
ation

getMemoryBanks()

String getName()

❉ OneWireContainer14()

❉ OneWireContainer14(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer14(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer14(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

292 Appendix Almanac

Object
➥ OneWireContainer

➥ OneWireContainer16

OneWireContainer16 com.dalsemi.onewire.container

✍■ int AID_LENGTH_OFFSET

✍■ int AID_LENGTH_SIZE

✍■ int AID_NAME_OFFSET

✍■ int AID_SIZE

✍❏ int APDU_PACKET_LENGTH

✍■ int APPLET_FILE_HEADER_SIZE

ResponseAPDU deleteAppletByAID(String aid)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU deleteAppletByNumber(int index)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU deleteSelectedApplet()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU getAIDByNumber(int index)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

String getAlternateNames()

ResponseAPDU getAppletGCMode()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU getATR()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

CommandAPDU getCommandAPDUInfo()

ResponseAPDU getCommandPINMode()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

Appendix Almanac 293

ResponseAPDU getCommitBufferSize()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

String getDescription()

ResponseAPDU getEphemeralGCMode()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU getErrorReportingMode()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU getExceptionMode()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU getFirmwareVersionString()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU getFreeRAM()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU getLastError()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

int getLoadPacketSize()

ResponseAPDU getLoadPINMode()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

int getMaxSpeed()

String getName()

ResponseAPDU getPORCount()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

294 Appendix Almanac

ResponseAPDU getRandomBytes(int numBytes)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU getRealTimeClock()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU getResponseAPDUInfo()

ResponseAPDU getRestoreMode()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

int getRunTime()

ResponseAPDU loadApplet(String fileName,
String directoryName, String aid)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion, java.io.FileNotFoundException,
java.io.IOException

ResponseAPDU masterErase()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

❉ OneWireContainer16()

❉ OneWireContainer16(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer16(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer16(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

✍■ int PASSWORD_LENGTH_SIZE

✍■ int PASSWORD_SIZE

ResponseAPDU process(CommandAPDU capdu)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU select(String aid)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

Appendix Almanac 295

ResponseAPDU sendAPDU(CommandAPDU capdu, int runTime)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU setAppletGCMode(int mode)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU setCommandPINMode(int mode)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU setCommitBufferSize(int size)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU setCommonPIN(String newPIN)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU setEphemeralGCMode(int mode)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU setErrorReportingMode(int mode)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

ResponseAPDU setExceptionMode(int mode)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

boolean setLoadPacketSize(int size)

ResponseAPDU setLoadPINMode(int mode)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

void setPIN(String passwd)

ResponseAPDU setRestoreMode(int mode)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException, IllegalArgumentExcep-
tion

void setRunTime(int newRunTime)
throws IllegalArgumentException

296 Appendix Almanac

Object
➥ OneWireContainer

➥ OneWireContainer18

void setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
byte[] newAddress)

void setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
long newAddress)

void setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
String newAddress)

void setupJibComm(com.dalsemi.onewire.adapter.DSP
ortAdapter sourceAdapter,
byte[] newAddress)

OneWireContainer18 com.dalsemi.onewire.container

✍■ byte AUTH_HOST

boolean bindSecretToiButton(int page,
byte[] bind_data, byte[] bind_code,
int secret_number)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

✍■ byte COMPUTE_CHALLENGE

✍■ byte COMPUTE_FIRST_SECRET

✍■ byte COMPUTE_NEXT_SECRET

✍■ byte COMPUTE_SHA

✍■ byte COPY_SCRATCHPAD

boolean copyScratchPad()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

✍■ byte ERASE_SCRATCHPAD

boolean eraseScratchPad(int page)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

String getAlternateNames()

String getDescription()

int getMaxSpeed()

java.util.Enumer-
ation

getMemoryBanks()

String getName()

boolean installMasterSecret(int page, byte[] secret,
int secret_number)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

✍■ byte MATCH_SCRATCHPAD

Appendix Almanac 297

boolean matchScratchPad(byte[] mac)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

❉ OneWireContainer18()

❉ OneWireContainer18(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer18(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer18(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

✍■ byte READ_AUTHENTICATED_PAGE

✍■ byte READ_MEMORY

✍■ byte READ_SCRATCHPAD

boolean readAuthenticatedPage(int pageNum,
byte[] data, int start)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void readMemoryPage(int pageNum, byte[] data,
int start)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

int readScratchPad(byte[] data, int start)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

✍■ byte RESUME

void setSpeedCheck(boolean doSpeedCheck)

void setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
byte[] newAddress)

boolean SHAFunction(byte function)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

boolean SHAFunction(byte function, int T)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

✍■ byte SIGN_DATA_PAGE

void useResume(boolean set)

✍■ byte VALIDATE_DATA_PAGE

boolean waitForSuccessfulFinish()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

298 Appendix Almanac

Object
➥ OneWireContainer

➥ OneWireContainer1A

Object
➥ OneWireContainer

➥ OneWireContainer1D

✍■ byte WRITE_SCRATCHPAD

boolean writeDataPage(int page_number,
byte[] page_data)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

boolean writeScratchPad(int targetPage,
int targetPageOffset,
byte[] inputbuffer, int start,
int length)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer1A com.dalsemi.onewire.container

String getAlternateNames()

String getDescription()

int getMaxSpeed()

java.util.Enumer-
ation

getMemoryBanks()

String getName()

❉ OneWireContainer1A()

❉ OneWireContainer1A(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer1A(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer1A(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

OneWireContainer1D com.dalsemi.onewire.container

String getDescription()

int getMaxSpeed()

java.util.Enumer-
ation

getMemoryBanks()

String getName()

❉ OneWireContainer1D()

❉ OneWireContainer1D(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

Appendix Almanac 299

Object
➥ OneWireContainer

➥ OneWireContainer1F SwitchContainer

❉ OneWireContainer1D(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer1D(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

long readCounter(int counterPage)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer1F com.dalsemi.onewire.container

✍■ int CHANNEL_AUX

✍■ int CHANNEL_MAIN

void clearActivity()
throws com.dalsemi.onewire.OneWireExcept
ion

void dischargeLines(int time)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

String getAlternateNames()

int getControlChannelAssociation(byte[] state)

int getControlData(byte[] state)

String getDescription()

boolean getLastSmartOnDeviceDetect()

boolean getLatchState(int channel, byte[] state)

boolean getLevel(int channel, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

String getName()

int getNumberChannels(byte[] state)

boolean getSensedActivity(int channel, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

boolean hasActivitySensing()

boolean hasLevelSensing()

boolean hasSmartOn()

boolean isHighSideSwitch()

boolean isModeAuto(byte[] state)

❉ OneWireContainer1F()

❉ OneWireContainer1F(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

300 Appendix Almanac

Object
➥ OneWireContainer

➥ OneWireContainer20 ADContainer

❉ OneWireContainer1F(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer1F(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

boolean onlySingleChannelOn()

byte[] readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void setControlChannelAssociation(int channel,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setControlData(boolean data, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setLatchState(int channel,
boolean latchState, boolean doSmart,
byte[] state)

void setModeAuto(boolean makeAuto, byte[] state)

void setSpeedCheck(boolean doSpeedCheck)

void writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer20 com.dalsemi.onewire.container

✍■ int ALARM_OFFSET

✍■ int BITMAP_OFFSET

boolean canADMultiChannelRead()

✍■ int CHANNELA

✍■ int CHANNELB

✍■ int CHANNELC

✍■ int CHANNELD

void doADConvert(boolean[] doConvert,
byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void doADConvert(boolean[] doConvert,
int[] preset, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

Appendix Almanac 301

void doADConvert(int channel, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void doADConvert(int channel, int preset,
byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

✍■ int EXPOWER_OFFSET

double getADAlarm(int channel, int alarmType,
byte[] state)

boolean getADAlarmEnable(int channel, int alarmType,
byte[] state)

double getADRange(int channel, byte[] state)

double[] getADRanges(int channel)

double getADResolution(int channel, byte[] state)

double[] getADResolutions(int channel, double range)

double[] getADVoltage(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

double getADVoltage(int channel, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

String getAlternateNames()

String getDescription()

boolean getDevicePOR(byte[] state)

int getMaxSpeed()

java.util.Enumer-
ation

getMemoryBanks()

String getName()

int getNumberADChannels()

boolean getOutputState(int channel, byte[] state)
throws IllegalArgumentException

boolean hasADAlarmed(int channel, int alarmType,
byte[] state)

boolean hasADAlarms()

❏ double interpretVoltage(long rawVoltage,
double range)

boolean isOutputEnabled(int channel, byte[] state)
throws IllegalArgumentException

boolean isPowerExternal(byte[] state)

✍■ int NO_PRESET

✍■ int NUM_CHANNELS

❉ OneWireContainer20()

❉ OneWireContainer20(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

302 Appendix Almanac

Object
➥ OneWireContainer

➥ OneWireContainer21 TemperatureContainer,
ClockContainer

❉ OneWireContainer20(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer20(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

✍■ int PRESET_TO_ONES

✍■ int PRESET_TO_ZEROS

byte[] readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void setADAlarm(int channel, int alarmType,
double alarm, byte[] state)

void setADAlarmEnable(int channel, int alarmType,
boolean alarmEnable, byte[] state)

void setADRange(int channel, double range,
byte[] state)

void setADResolution(int channel,
double resolution, byte[] state)

void setOutput(int channel, boolean outputEnable,
boolean outputState, byte[] state)

void setPower(boolean external, byte[] state)

❏ int voltageToInt(double voltage, double range)

void writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer21 com.dalsemi.onewire.container

boolean canDisableClock()

void clearMemory()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

✍■ int CONTROL_REGISTER

double decodeTemperature(byte tempByte)

void disableMission()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void doTemperatureConvert(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

Appendix Almanac 303

void enableMission(int sampleRate)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

byte encodeTemperature(double temperature)

byte[] getAlarmHistory(byte alarmBit)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

boolean getAlarmStatus(byte alarmBit, byte[] state)

java.util.Calen-
dar

getAlarmTime(byte[] state)

String getAlternateNames()

long getClock(byte[] state)

long getClockAlarm(byte[] state)

long getClockResolution()

String getDescription()

int getDeviceSamplesCounter(byte[] state)

long getFirstLogOffset(byte[] state)

boolean getFlag(int register, byte bitMask)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

boolean getFlag(int register, byte bitMask,
byte[] state)

int getMaxSpeed()

double getMaxTemperature()

java.util.Enumer-
ation

getMemoryBanks()

double getMinTemperature()

int getMissionSamplesCounter(byte[] state)

java.util.Calen-
dar

getMissionTimeStamp(byte[] state)

String getName()

int getSampleRate(byte[] state)

double getTemperature(byte[] state)

double getTemperatureAlarm(int alarmType,
byte[] state)

double getTemperatureAlarmResolution()

int[] getTemperatureHistogram()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

byte[] getTemperatureLog(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

double getTemperatureResolution(byte[] state)

double[] getTemperatureResolutions()

boolean hasClockAlarm()

304 Appendix Almanac

boolean hasSelectableTemperatureResolution()

boolean hasTemperatureAlarms()

boolean isClockAlarmEnabled(byte[] state)

boolean isClockAlarming(byte[] state)

boolean isClockRunning(byte[] state)

✍■ byte MEMORY_CLEAR_ENABLE_FLAG

✍■ byte MEMORY_CLEARED_FLAG

✍■ byte MISSION_ENABLE_FLAG

✍■ byte MISSION_IN_PROGRESS_FLAG

✍■ byte ONCE_PER_DAY

✍■ byte ONCE_PER_HOUR

✍■ byte ONCE_PER_MINUTE

✍■ byte ONCE_PER_SECOND

✍■ byte ONCE_PER_WEEK

❉ OneWireContainer21()

❉ OneWireContainer21(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer21(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer21(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

✍■ byte OSCILLATOR_ENABLE_FLAG

byte readByte(int memAddr)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

byte[] readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

✍■ byte ROLLOVER_ENABLE_FLAG

✍■ byte SAMPLE_IN_PROGRESS_FLAG

void setClock(long time, byte[] state)

void setClockAlarm(int hours, int minutes,
int seconds, int day,
int alarmFrequency, byte[] state)

void setClockAlarm(long time, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setClockAlarmEnable(boolean alarmEnable,
byte[] state)

void setClockRunEnable(boolean runEnable,
byte[] state)

Appendix Almanac 305

Object
➥ OneWireContainer

➥ OneWireContainer23

void setFlag(int register, byte bitMask,
boolean flagValue)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void setFlag(int register, byte bitMask,
boolean flagValue, byte[] state)

void setMissionStartDelay(int missionStartDelay,
byte[] state)

void setSpeedCheck(boolean doSpeedCheck)

void setTemperatureAlarm(int alarmType,
double alarmValue, byte[] state)

void setTemperatureResolution(double resolution,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

✍■ int STATUS_REGISTER

✍■ byte TEMP_CORE_BUSY_FLAG

✍■ byte TEMP_HIGH_SEARCH_FLAG

✍■ byte TEMP_LOW_SEARCH_FLAG

✍■ byte TEMPERATURE_HIGH_ALARM

✍■ byte TEMPERATURE_HIGH_FLAG

✍■ byte TEMPERATURE_LOW_ALARM

✍■ byte TEMPERATURE_LOW_FLAG

✍■ byte TIMER_ALARM

✍■ byte TIMER_ALARM_FLAG

✍■ byte TIMER_ALARM_SEARCH_FLAG

void writeByte(int memAddr, byte source)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer23 com.dalsemi.onewire.container

String getAlternateNames()

String getDescription()

int getMaxSpeed()

java.util.Enumer-
ation

getMemoryBanks()

String getName()

❉ OneWireContainer23()

306 Appendix Almanac

Object
➥ OneWireContainer

➥ OneWireContainer26 ADContainer, Temperature-
Container, ClockContainer

❉ OneWireContainer23(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer23(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer23(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

OneWireContainer26 com.dalsemi.onewire.container

✍■ byte AD_FLAG

✍■ byte ADB_FLAG

✍■ byte CA_FLAG

void calibrateCurrentADC()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

boolean canADMultiChannelRead()

boolean canDisableClock()

✍■ int CHANNEL_VAD

✍■ int CHANNEL_VDD

void doADConvert(boolean[] doConvert,
byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void doADConvert(int channel, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void doTemperatureConvert(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

✍■ byte EE_FLAG

double getADAlarm(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

boolean getADAlarmEnable(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

double getADRange(int channel, byte[] state)

double[] getADRanges(int channel)

Appendix Almanac 307

double getADResolution(int channel, byte[] state)

double[] getADResolutions(int channel, double range)

double[] getADVoltage(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

double getADVoltage(int channel, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

String getAlternateNames()

int getCCA()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

long getClock(byte[] state)

long getClockAlarm(byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

long getClockResolution()

double getCurrent(byte[] state)

int getDCA()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

String getDescription()

long getDisconnectTime(byte[] state)

long getEndOfChargeTime(byte[] state)

boolean getFlag(byte flagToGet)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

int getICA()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

double getMaxTemperature()

double getMinTemperature()

String getName()

int getNumberADChannels()

double getRemainingCapacity()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

double getSenseResistor()

double getTemperature(byte[] state)

double getTemperatureAlarm(int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

308 Appendix Almanac

double getTemperatureAlarmResolution()
throws com.dalsemi.onewire.OneWireExcept
ion

double getTemperatureResolution(byte[] state)

double[] getTemperatureResolutions()

boolean hasADAlarmed(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

boolean hasADAlarms()

boolean hasClockAlarm()

boolean hasSelectableTemperatureResolution()

boolean hasTemperatureAlarms()

✍■ byte IAD_FLAG

boolean isCharging(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

boolean isClockAlarmEnabled(byte[] state)

boolean isClockAlarming(byte[] state)

boolean isClockRunning(byte[] state)

✍■ byte NVB_FLAG

❉ OneWireContainer26()

❉ OneWireContainer26(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer26(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer26(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

byte[] readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

byte[] readPage(int page)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

void setADAlarm(int channel, int alarmType,
double alarm, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setADAlarmEnable(int channel, int alarmType,
boolean alarmEnable, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setADRange(int channel, double range,
byte[] state)

void setADResolution(int channel,
double resolution, byte[] state)

Appendix Almanac 309

void setCCA(int ccaValue)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

void setClock(long time, byte[] state)

void setClockAlarm(long time, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setClockAlarmEnable(boolean alarmEnable,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setClockRunEnable(boolean runEnable,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setDCA(int dcaValue)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

void setFlag(byte flagToSet, boolean flagValue)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

void setICA(int icaValue)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException, IllegalArgumentException

void setSenseResistor(double resistance)

void setSpeedCheck(boolean doSpeedCheck)

void setTemperatureAlarm(int alarmType,
double alarmValue, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException

void setTemperatureResolution(double resolution,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException

void setThreshold(byte thresholdValue)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

310 Appendix Almanac

Object
➥ OneWireContainer

➥ OneWireContainer28 TemperatureContainer

✍■ byte TB_FLAG

void writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void writePage(int page, byte[] source,
int offset)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer28 com.dalsemi.onewire.container

✍■ byte CONVERT_TEMPERATURE_COMMAND

float convertToFahrenheit(float celsiusTemperature
)

✍■ byte COPY_SCRATCHPAD_COMMAND

void copyScratchpad()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void doTemperatureConvert(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

String getAlternateNames()

String getDescription()

double getMaxTemperature()

double getMinTemperature()

String getName()

double getTemperature(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException

double getTemperatureAlarm(int alarmType,
byte[] state)

double getTemperatureAlarmResolution()

double getTemperatureResolution(byte[] state)

double[] getTemperatureResolutions()

boolean hasSelectableTemperatureResolution()

boolean hasTemperatureAlarms()

boolean isExternalPowerSupplied()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

❉ OneWireContainer28()

Appendix Almanac 311

❉ OneWireContainer28(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer28(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer28(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

✍■ byte READ_POWER_SUPPLY_COMMAND

✍■ byte READ_SCRATCHPAD_COMMAND

byte[] readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

byte[] readScratchpad()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

✍■ byte RECALL_E2MEMORY_COMMAND

byte[] recallE2()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

✍■ byte RESOLUTION_10_BIT

✍■ byte RESOLUTION_11_BIT

✍■ byte RESOLUTION_12_BIT

✍■ byte RESOLUTION_9_BIT

void setTemperatureAlarm(int alarmType,
double alarmValue, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException

void setTemperatureResolution(double resolution,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

✍■ byte WRITE_SCRATCHPAD_COMMAND

void writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void writeScratchpad(byte[] data)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

312 Appendix Almanac

Object
➥ OneWireContainer

➥ OneWireContainer2C PotentiometerContainer

OneWireContainer2C com.dalsemi.onewire.container

int decrement()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

int decrement(boolean reselect)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

String getAlternateNames()

int getCurrentWiperNumber(byte[] state)

String getDescription()

int getMaxSpeed()

String getName()

int getWiperPosition()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

int increment()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

int increment(boolean reselect)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

boolean isChargePumpOn(byte[] state)

boolean isLinear(byte[] state)

int numberOfPotentiometers(byte[] state)

int numberOfWiperSettings(byte[] state)

❉ OneWireContainer2C()

❉ OneWireContainer2C(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer2C(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer2C(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

int potentiometerResistance(byte[] state)

byte[] readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

Appendix Almanac 313

Object
➥ OneWireContainer

➥ OneWireContainer30 ADContainer, Temperature-
Container

void setChargePump(boolean charge_pump_on,
byte[] state)

void setCurrentWiperNumber(int wiper_number,
byte[] state)

boolean setWiperPosition(int position)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

boolean wiperSettingsAreVolatile(byte[] state)

void writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireContainer30 com.dalsemi.onewire.container

boolean canADMultiChannelRead()

✍■ byte CC_PIN_STATE_FLAG

✍■ byte CHARGE_ENABLE_FLAG

✍■ byte CHARGE_OVERCURRENT_FLAG

void clearConditions()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

✍■ byte DC_PIN_STATE_FLAG

✍■ byte DISCHARGE_ENABLE_FLAG

✍■ byte DISCHARGE_OVERCURRENT_FLAG

void doADConvert(boolean[] doConvert,
byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void doADConvert(int channel, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void doTemperatureConvert(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

✍■ byte EEPROM_BLOCK_0_LOCK_FLAG

✍■ byte EEPROM_BLOCK_1_LOCK_FLAG

✍■ byte EEPROM_COPY_FLAG

✍■ byte EEPROM_LOCK_ENABLE_FLAG

✍■ byte EEPROM_REGISTER

314 Appendix Almanac

double getADAlarm(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

boolean getADAlarmEnable(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

double getADRange(int channel, byte[] state)

double[] getADRanges(int channel)

double getADResolution(int channel, byte[] state)

double[] getADResolutions(int channel, double range)

double[] getADVoltage(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

double getADVoltage(int channel, byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

String getAlternateNames()

double getCurrent(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

String getDescription()

boolean getFlag(int memAddr, byte flagToGet)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

boolean getLatchState()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

double getMaxTemperature()

double getMinTemperature()

String getName()

int getNumberADChannels()

double getRemainingCapacity(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

double getTemperature(byte[] state)

double getTemperatureAlarm(int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

double getTemperatureAlarmResolution()
throws com.dalsemi.onewire.OneWireExcept
ion

double getTemperatureResolution(byte[] state)

double[] getTemperatureResolutions()

Appendix Almanac 315

boolean hasADAlarmed(int channel, int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

boolean hasADAlarms()

boolean hasSelectableTemperatureResolution()

boolean hasTemperatureAlarms()

void lockBlock(int blockNumber)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

❉ OneWireContainer30()

❉ OneWireContainer30(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer30(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer30(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

✍■ byte OVERVOLTAGE_FLAG

✍■ byte PIO_PIN_SENSE_AND_CONTROL_FLAG

✍■ byte PROTECTION_REGISTER

✍■ byte PS_PIN_STATE_FLAG

✍■ byte READ_NET_ADDRESS_OPCODE_FLAG

byte readByte(int memAddr)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void readBytes(int memAddr, byte[] buffer,
int start, int len)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

byte[] readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

byte[] readEEPROMBlock(int blockNumber)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void setADAlarm(int channel, int alarmType,
double alarm, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setADAlarmEnable(int channel, int alarmType,
boolean alarmEnable, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

316 Appendix Almanac

void setADRange(int channel, double range,
byte[] state)

void setADResolution(int channel,
double resolution, byte[] state)

void setFlag(int memAddr, byte flagToSet,
boolean flagValue)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void setLatchState(boolean on)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void setRemainingCapacity(double remainingCapacit
y)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void setResistorExternal(double Rsens)

void setResistorInternal()

void setTemperatureAlarm(int alarmType,
double alarmValue, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException

void setTemperatureResolution(double resolution,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException

✍■ byte SLEEP_MODE_ENABLE_FLAG

✍■ byte SPECIAL_FEATURE_REGISTER

✍■ byte STATUS_REGISTER

✍■ byte UNDERVOLTAGE_FLAG

void writeByte(int memAddr, byte data)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void writeEEPROMBlock(int blockNumber,
byte[] data)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

Appendix Almanac 317

Object
➥ OneWireContainer

➥ OneWireContainer33

OneWireContainer33 com.dalsemi.onewire.container

void computeNextSecret(int addr,
byte[] nextsecret,
byte[] partialsecret, byte[] mac)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

String getAlternateNames()

void getChallenge(byte[] get)

String getDescription()

int getMaxSpeed()

java.util.Enumer-
ation

getMemoryBanks()

String getName()

void getSecret(byte[] get)

boolean isContainerSecretSet()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

❏ boolean isMACValid(int addr, byte[] SerNum,
byte[] memory, byte[] mac,
byte[] challenge, byte[] secret)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException

boolean isPageOneEPROMmode()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

boolean isSecretWriteProtected()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

boolean isWriteProtectAllSet()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

boolean isWriteProtectPageZeroSet()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

boolean loadFirstSecret(byte[] data)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

❉ OneWireContainer33()

318 Appendix Almanac

Object
➥ Throwable java.io.Serializable

➥ Exception
➥ OneWireException

Object
➥ Throwable java.io.Serializable

❉ OneWireContainer33(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
byte[] newAddress)

❉ OneWireContainer33(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
long newAddress)

❉ OneWireContainer33(com.dalsemi.onewire.adapt
er.DSPortAdapter sourceAdapter,
String newAddress)

void setChallenge(byte[] challengeset)

void setContainerSecret(byte[] secretset)

void setEPROMModePageOne()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
byte[] newAddress)

void setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
long newAddress)

void setupContainer(com.dalsemi.onewire.adapter.D
SPortAdapter sourceAdapter,
String newAddress)

void writeProtectAll()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void writeProtectPageZero()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void writeProtectSecret()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OneWireException com.dalsemi.onewire

❉ OneWireException()

❉ OneWireException(String desc)

OneWireIOException com.dalsemi.onewire.adapter

Appendix Almanac 319

➥ Exception
➥ com.dalsemi.onewire.OneWireException

➥ OneWireIOException

Object
➥ Thread Runnable

➥ OneWireMonitor

Object
➥ java.util.EventObject java.io.Serializable

➥ OneWireMonitorEvent

OneWireMonitorEventListener

❉ OneWireIOException()

❉ OneWireIOException(String desc)

OneWireMonitor com.dalsemi.onewire.utils

void addEventListener(OneWireMonitorEventListener
 owmel)

void killMonitor()

❉ OneWireMonitor(com.dalsemi.onewire.adapter.D
SPortAdapter adapter)

void removeEventListener(OneWireMonitorEventListe
ner owmel)

void run()

OneWireMonitorEvent com.dalsemi.onewire.utils

com.dalsemi.one-
wire.adapter.DSPo

rtAdapter

getAdapter()

byte[] getAddress()

long getAddressAsLong()

String getAddressAsString()

com.dalsemi.one-
wire.con-

tainer.OneWireCon
tainer

getDeviceContainer()

❉ OneWireMonitorEvent(OneWireMonitor owm,
com.dalsemi.onewire.adapter.DSPortAdapt
er adapter, long address)

OneWireMonitorEventLis-
tener

com.dalsemi.onewire.utils

void oneWireArrival(OneWireMonitorEvent owme)

void oneWireDeparture(OneWireMonitorEvent owme)

320 Appendix Almanac

OneWireSensor

OTPMemoryBank PagedMemoryBank

OneWireSensor com.dalsemi.onewire.container

byte[] readDevice()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void writeDevice(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

OTPMemoryBank com.dalsemi.onewire.container

boolean canLockPage()

boolean canLockRedirectPage()

boolean canRedirectPage()

int getRedirectedPage(int page)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

boolean isPageLocked(int page)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

int isPageRedirected(int page)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

boolean isRedirectPageLocked(int page)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void lockPage(int page)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void lockRedirectPage(int page)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void redirectPage(int page, int newPage)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

Appendix Almanac 321

Object
➥ OWFile

OWFile com.dalsemi.onewire.utils

boolean canRead()

boolean canWrite()

void close() throws java.io.IOException

int compareTo(Object o)

int compareTo(OWFile pathname)

boolean createNewFile() throws java.io.IOException

boolean delete()

boolean equals(Object obj)

boolean exists()

void format() throws java.io.IOException

OWFile getAbsoluteFile()

String getAbsolutePath()

OWFile getCanonicalFile() throws java.io.IOException

String getCanonicalPath() throws java.io.IOException

OWFileDescriptor getFD() throws java.io.IOException

int getFreeMemory() throws java.io.IOException

int getLocalPage(int page)

com.dalsemi.one-
wire.con-

tainer.PagedMemor
yBank

getMemoryBankForPage(int page)

String getName()

com.dalsemi.one-
wire.con-

tainer.OneWireCon
tainer

getOneWireContainer()

int[] getPageList() throws java.io.IOException

String getParent()

OWFile getParentFile()

String getPath()

int hashCode()

boolean isAbsolute()

boolean isDirectory()

boolean isFile()

boolean isHidden()

long lastModified()

long length()

String[] list()

OWFile[] listFiles()

❏ OWFile[] listRoots(com.dalsemi.onewire.container.OneW
ireContainer owc)

boolean mkdir()

322 Appendix Almanac

Object
➥ OWFileDescriptor

Object
➥ java.io.InputStream

➥ OWFileInputStream

boolean mkdirs()

❉ OWFile(com.dalsemi.onewire.container.OneWire
Container owd, String pathname)

❉ OWFile(com.dalsemi.onewire.container.OneWire
Container owd, String parent,
String child)

❉ OWFile(OWFile parent, String child)

✍■ String pathSeparator

✍■ char pathSeparatorChar

boolean renameTo(OWFile dest)

✍■ String separator

✍■ char separatorChar

boolean setLastModified(long time)

boolean setReadOnly()

String toString()

OWFileDescriptor com.dalsemi.onewire.utils

❉ OWFileDescriptor()

void sync() throws java.io.SyncFailedException

boolean valid()

OWFileInputStream com.dalsemi.onewire.utils

int available() throws java.io.IOException

void close() throws java.io.IOException

void finalize() throws java.io.IOException

● OWFileDescriptor getFD() throws java.io.IOException

void mark(int readlimit)

boolean markSupported()

❉ OWFileInputStream(com.dalsemi.onewire.contai
ner.OneWireContainer owd, String name)
throws java.io.FileNotFoundException

❉ OWFileInputStream(OWFile file)
throws java.io.FileNotFoundException

❉ OWFileInputStream(OWFileDescriptor fdObj)

int read() throws java.io.IOException

int read(byte[] b) throws java.io.IOException

int read(byte[] b, int off, int len)
throws java.io.IOException

void reset() throws java.io.IOException

long skip(long n) throws java.io.IOException

Appendix Almanac 323

Object
➥ java.io.OutputStream

➥ OWFileOutputStream

Object
➥ OWPath

OWFileOutputStream com.dalsemi.onewire.utils

void close() throws java.io.IOException

void finalize() throws java.io.IOException

OWFileDescriptor getFD() throws java.io.IOException

❉ OWFileOutputStream(com.dalsemi.onewire.conta
iner.OneWireContainer owd, String name)
throws java.io.FileNotFoundException

❉ OWFileOutputStream(com.dalsemi.onewire.conta
iner.OneWireContainer owd, String name,
boolean append)
throws java.io.FileNotFoundException

❉ OWFileOutputStream(OWFile file)
throws java.io.FileNotFoundException

❉ OWFileOutputStream(OWFileDescriptor fdObj)

void write(byte[] b) throws java.io.IOException

void write(byte[] b, int off, int len)
throws java.io.IOException

void write(int b) throws java.io.IOException

OWPath com.dalsemi.onewire.utils

void add(com.dalsemi.onewire.container.OneWireCon
tainer owc, int channel)

void close()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException

void copy(OWPath currentOWPath)

boolean equals(OWPath compareOWPath)

java.util.Enumer-
ation

getAllOWPathElements()

void open()
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException

❉ OWPath(com.dalsemi.onewire.adapter.DSPortAda
pter adapter)

❉ OWPath(com.dalsemi.onewire.adapter.DSPortAda
pter adapter, OWPath currentOWPath)

String toString()

324 Appendix Almanac

Object
➥ OWPathElement

PagedMemoryBank MemoryBank

OWPathElement com.dalsemi.onewire.utils

int getChannel()

com.dalsemi.one-
wire.con-

tainer.OneWireCon
tainer

getContainer()

❉ OWPathElement(com.dalsemi.onewire.container.
OneWireContainer owcInstance,
int channelNumber)

PagedMemoryBank com.dalsemi.onewire.container

String getExtraInfoDescription()

int getExtraInfoLength()

int getMaxPacketDataLength()

int getNumberPages()

int getPageLength()

boolean hasExtraInfo()

boolean hasPageAutoCRC()

boolean haveExtraInfo()

void readPage(int page, boolean readContinue,
byte[] readBuf, int offset)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void readPage(int page, boolean readContinue,
byte[] readBuf, int offset,
byte[] extraInfo)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void readPageCRC(int page, boolean readContinue,
byte[] readBuf, int offset)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void readPageCRC(int page, boolean readContinue,
byte[] readBuf, int offset,
byte[] extraInfo)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

Appendix Almanac 325

Object
➥ Ping

PotentiometerContainer OneWireSensor

int readPagePacket(int page,
boolean readContinue, byte[] readBuf,
int offset)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

int readPagePacket(int page,
boolean readContinue, byte[] readBuf,
int offset, byte[] extraInfo)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void writePagePacket(int page, byte[] writeBuf,
int offset, int len)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

Ping com.dalsemi.tininet.icmp

✍■ byte DEFAULT_TTL

❏ boolean pingNode(java.net.InetAddress addr)

❏ long pingNode(java.net.InetAddress addr,
byte ttl, byte[] response)

❏ int pingNode(java.net.InetAddress addr,
int count)

PotentiometerContainer com.dalsemi.onewire.container

int decrement()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

int decrement(boolean reselect)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

int getCurrentWiperNumber(byte[] state)

int getWiperPosition()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

int increment()
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

326 Appendix Almanac

Object
➥ Thread Runnable

➥ PPP

int increment(boolean reselect)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

boolean isChargePumpOn(byte[] state)

boolean isLinear(byte[] state)

int numberOfPotentiometers(byte[] state)

int numberOfWiperSettings(byte[] state)

int potentiometerResistance(byte[] state)

void setChargePump(boolean charge_pump_on,
byte[] state)

void setCurrentWiperNumber(int wiper_number,
byte[] state)

boolean setWiperPosition(int position)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

boolean wiperSettingsAreVolatile(byte[] state)

PPP com.dalsemi.tininet.ppp

void addEventListener(PPPEventListener eventListe
ner)
throws java.util.TooManyListenersExcepti
on

void addInterface(String name)

void authenticate(boolean value)

void close()

void down()

void freeInterfaceWrapper()

int getACCM()

boolean getAuthenticate()

boolean getDefaultInterface()

byte[] getLocalAddress()

int getMaxConfig()

int getMaxFailure()

int getMaxTerminate()

boolean getPassive()

String getPeerID()

String getPeerPassword()

byte[] getRemoteAddress()

int getRestartPeriod()

❏ int getTransmitter(byte index)

int getUsernamePassword(int option,
byte[] value)

Appendix Almanac 327

Object
➥ java.util.EventObject java.io.Serializable

➥ PPPEvent

boolean getXonXoffEscape()

void open()

✍■ byte PEER_ID

✍■ byte PEER_PASSWORD

❉ PPP()

void removeEventListener(PPPEventListener eventLi
stener)

void removeInterface(String name)

● void run()

void setACCM(int newACCM)

void setAuthenticate(boolean value)

void setDefaultInterface(boolean value)

void setLocalAddress(byte[] address)

void setMaxConfig(int count) throws PPPException

void setMaxFailure(int count) throws PPPException

void setMaxTerminate(int count)
throws PPPException

void setPassive(boolean value)

void setPassword(String password)
throws PPPException

void setRemoteAddress(byte[] address)

void setRestartPeriod(int timeout)
throws PPPException

void setUsername(String userName)
throws PPPException

void setXonXoffEscape(boolean value)

void stopPPPThread()

void up(javax.comm.SerialPort sp)

PPPEvent com.dalsemi.tininet.ppp

✍■ int ADDR

✍■ int AUTH

✍■ int AUTHENTICATION_REQUEST

✍■ int CLOSED

int getEventType()

int getLastError()

✍■ int NONE

✍■ int REJECT

✍■ int STARTING

✍■ int STOPPED

✍■ int TIME

✍■ int UP

328 Appendix Almanac

PPPEventListener java.util.EventListener

Object
➥ Throwable java.io.Serializable

➥ Exception
➥ PPPException

Object
➥ ResponseAPDU

Object
➥ Security

Object
➥ java.io.InputStream

➥ SerialInputStream

PPPEventListener com.dalsemi.tininet.ppp

void pppEvent(PPPEvent ev)

PPPException com.dalsemi.tininet.ppp

❉ PPPException()

❉ PPPException(String s)

ResponseAPDU com.dalsemi.onewire.container

● byte getByte(int index)

● byte[] getBytes()

byte[] getData()

● int getLength()

● int getSW()

● byte getSW1()

● byte getSW2()

❉ ResponseAPDU(byte[] buffer)

String toString()

Security com.dalsemi.system

❏ int getRandom()

❏ byte[] hashMessage(byte[] MsgStr)

SerialInputStream com.dalsemi.comm

int available() throws java.io.IOException

void close() throws java.io.IOException

Appendix Almanac 329

Object
➥ java.io.OutputStream

➥ SerialOutputStream

Object
➥ Thread Runnable

➥ com.dalsemi.shell.server.Server
➥ SerialServer

Object
➥ Thread Runnable

➥ com.dalsemi.shell.server.Session
➥ SerialSession

Object
➥ Thread Runnable

➥ Server

int read() throws java.io.IOException

int read(byte[] barr, int offset, int len)
throws java.io.IOException

void unread(byte b) throws java.io.IOException

SerialOutputStream com.dalsemi.comm

void close() throws java.io.IOException

❉ SerialOutputStream(InternalSerialPort sp)

void write(byte[] barr, int offset, int len)
throws java.io.IOException

void write(int ch) throws java.io.IOException

SerialServer com.dalsemi.shell.server.serial

void broadcast(String sendThis)

void closeAllPorts() throws java.io.IOException

❉ SerialServer(String portName, int speed,
int dataBits, int stopBits, int parity)
throws Exception

SerialSession com.dalsemi.shell.server.serial

String getNextCommand() throws java.io.IOException

void login() throws java.io.IOException

void updatePrompt(String withThis)

Server com.dalsemi.shell.server

void broadcast(String sendThis)

String[] getConnectedUsers()

330 Appendix Almanac

Object
➥ Thread Runnable

➥ Session

Object
➥ SHAiButton

void run()

void sessionEnded(Session session)

void shutDown() throws java.io.IOException

Session com.dalsemi.shell.server

void addToHistory(String str)

void broadcast(String sendThis)

✍❏ String CURRENT_COMMAND

✍❏ String CURRENT_DIRECTORY

● void endSession()

● void forceEndSession()

java.util.Hash-
table

getEnvironment()

java.io.Print-
Stream

getErrStream()

String getFromEnvironment(String key)

String getHistoryNumber(int number)

String getNextCommand() throws java.io.IOException

java.io.Print-
Stream

getOutputStream()

❏ Object[] getParams(String str)

String getUserName()

boolean inCommand()

void printHistory(java.io.PrintStream out)

✍❏ String PROMPT

● void run()

String stepDownHistory()

String stepUpHistory()

boolean su(String userName, String password)

void updatePrompt(String withThis)

✍❏ String welcomeMessage

SHAiButton com.dalsemi.onewire.container

int answerChallenge(byte[] challenge,
byte[] mac, byte[] pagedata)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

✍■ int AUTHENTICATION_FAILED_ERROR

✍■ int BIND_SECRET_ERROR

Appendix Almanac 331

✍■ int CRC_ERROR

✍■ int ERASE_SCRATCHPAD_ERROR

boolean generateChallenge(int page_number,
int offset, byte[] ch)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

byte[] getBindCode()

byte[] getBindData()

int getLastError()

int getUserFileExtension()

String getUserFileName()

boolean isCoprocessor()

✍■ int NO_COPROCESSOR_ERROR

✍■ int NO_ERROR

✍■ int NO_USER_ERROR

✍■ int READ_AUTHENTICATED_ERROR

✍■ int READ_MEMORY_PAGE_ERROR

✍■ int READ_SCRATCHPAD_ERROR

int readFile(int start_page, byte[] page)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

void setAuthenticationPageNumber(int pg)

void setBindCode(byte[] buf, int offset)

void setBindData(byte[] buf, int offset)

void setFilename(byte[] buf, int start)

void setiButton(OneWireContainer18 ibc)

void setInitialSignature(byte[] sig_ini,
int start)

void setSigningChallenge(byte[] ch, int start)

void setSigningPageNumber(int pg)

boolean setUser(int file_page_number)

void setWorkspacePageNumber(int pg)

✍■ int SHA_FUNCTION_ERROR

❉ SHAiButton()

❉ SHAiButton(OneWireContainer18 ibc)

boolean signDataFile(SHAiButton user,
int newbalance,
int write_cycle_counter,
byte[] pagedata)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

String toString()

✍■ int VERIFICATION_FAILED_ERROR

332 Appendix Almanac

SwitchContainer OneWireSensor

Object
➥ java.io.InputStream

➥ SystemInputStream

int verifyAuthentication(SHAiButton user,
byte[] pagedata)
throws com.dalsemi.onewire.OneWireExcept
ion, com.dalsemi.onewire.adapter.One-
WireIOException

boolean verifyUserMoney(byte[] userpage,
SHAiButton user, int wcc)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

✍■ int WRITE_MEMORY_PAGE_ERROR

✍■ int WRITE_SCRATCHPAD_ERROR

SwitchContainer com.dalsemi.onewire.container

void clearActivity()
throws com.dalsemi.onewire.OneWireExcept
ion

boolean getLatchState(int channel, byte[] state)

boolean getLevel(int channel, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

int getNumberChannels(byte[] state)

boolean getSensedActivity(int channel, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

boolean hasActivitySensing()

boolean hasLevelSensing()

boolean hasSmartOn()

boolean isHighSideSwitch()

boolean onlySingleChannelOn()

void setLatchState(int channel,
boolean latchState, boolean doSmart,
byte[] state)

SystemInputStream com.dalsemi.shell.server

● int available() throws java.io.IOException

boolean errorOccurred()

✍ String fileInName

java.io.Input-
Stream

getRootStream()

● int read() throws java.io.IOException

int read(byte[] buff, int off, int len)
throws java.io.IOException

String readLine()

Appendix Almanac 333

Object
➥ java.io.OutputStream

➥ java.io.FilterOutputStream
➥ java.io.PrintStream

➥ SystemPrintStream

void setEcho(boolean echo)

void setEchoStream(java.io.PrintStream echo)

void setRawMode(boolean rawMode)

void setRootStream(java.io.InputStream newIn)

void setSession(Session session)

❉ SystemInputStream(java.io.InputStream in,
java.io.PrintStream out)

❉ SystemInputStream(java.io.InputStream in,
java.io.PrintStream out,
String fileInName)

SystemPrintStream com.dalsemi.shell.server

✍ boolean append

boolean checkError()

✍ String fileOutName

java.io.Output-
Stream

getRootOutputStream()

void print(boolean b)

void print(char c)

void print(char[] s)

void print(double d)

void print(float f)

void print(int i)

void print(long l)

void print(Object obj)

void print(String s)

void println()

void println(boolean x)

void println(char x)

void println(char[] x)

void println(double x)

void println(float x)

void println(int x)

void println(long x)

void println(Object x)

void println(String x)

void setRootStream(java.io.OutputStream root)

void setSession(Session s)

✍ boolean shieldsUp

❉ SystemPrintStream(java.io.OutputStream root)

334 Appendix Almanac

Object
➥ Thread Runnable

➥ com.dalsemi.shell.server.Server
➥ TelnetServer

Object
➥ Thread Runnable

➥ com.dalsemi.shell.server.Session
➥ TelnetSession

TemperatureContainer OneWireSensor

❉ SystemPrintStream(java.io.OutputStream out,
boolean autoFlush)

❉ SystemPrintStream(java.io.OutputStream root,
String fileOutName, boolean append)

void write(byte[] buf, int off, int len)

void write(int b)

TelnetServer com.dalsemi.shell.server.telnet

❏ String getWelcomeFile()

❏ boolean isRootAllowed()

❉ TelnetServer() throws java.io.IOException

❉ TelnetServer(int port)
throws java.io.IOException

TelnetSession com.dalsemi.shell.server.telnet

void login() throws java.io.IOException

void updatePrompt(String withThis)

TemperatureContainer com.dalsemi.onewire.container

✍■ int ALARM_HIGH

✍■ int ALARM_LOW

void doTemperatureConvert(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException, com.dalsemi.onewire.One-
WireException

double getMaxTemperature()

double getMinTemperature()

double getTemperature(byte[] state)
throws com.dalsemi.onewire.adapter.OneWi
reIOException

double getTemperatureAlarm(int alarmType,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

double getTemperatureAlarmResolution()
throws com.dalsemi.onewire.OneWireExcept
ion

Appendix Almanac 335

Object
➥ DSPortAdapter

➥ TINIAdapter
➥ TINIExternalAdapter

double getTemperatureResolution(byte[] state)

double[] getTemperatureResolutions()

boolean hasSelectableTemperatureResolution()

boolean hasTemperatureAlarms()

void setTemperatureAlarm(int alarmType,
double alarmValue, byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

void setTemperatureResolution(double resolution,
byte[] state)
throws com.dalsemi.onewire.OneWireExcept
ion

TINIExternalAdapter com.dalsemi.onewire.adapter

boolean canDeliverPower() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean canFlex() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean canHyperdrive() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean canOverdrive() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

String getAdapterName()

String getClassVersion()

String getPortName()
throws com.dalsemi.onewire.OneWireExcept
ion

java.util.Enumer-
ation

getPortNames()

String getPortTypeDescription()

boolean selectPort(String portName)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

void setProgramPulseDuration(int timeFactor)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean startProgramPulse(int changeCondition)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❉ TINIExternalAdapter()

336 Appendix Almanac

Object
➥ DSPortAdapter

➥ TINIAdapter
➥ TINIInternalAdapter

Object
➥ TININet

TINIInternalAdapter com.dalsemi.onewire.adapter

boolean canDeliverPower() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean canFlex() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean canHyperdrive() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

boolean canOverdrive() throws OneWireIOException,
com.dalsemi.onewire.OneWireException

String getAdapterName()

String getClassVersion()

String getPortName()
throws com.dalsemi.onewire.OneWireExcept
ion

java.util.Enumer-
ation

getPortNames()

String getPortTypeDescription()

boolean selectPort(String portName)
throws OneWireIOException,
com.dalsemi.onewire.OneWireException

❉ TINIInternalAdapter()

TININet com.dalsemi.tininet

❏ void addInterfaceEntry(byte[] name,
byte[] ipAddr, byte[] subnet,
byte[] gateway, byte flags, byte type,
int transmitter)

❏ void commitNetworkState()
throws com.dalsemi.system.CommitExceptio
n

✍■ int COMMITTED

❏ byte[] createIPFromString(String fromThis)

❏ String createIPString(byte[] fromThis)

❏ void disableNetworkRestore()

✍■ int ETH_STATUS_LINK

✍■ int ETH_STATUS_RX

✍■ int ETH_STATUS_TX

❏ byte[] getARPCacheTable()

❏ byte[] getConnectionTable()

❏ String getDHCPServerIP()

Appendix Almanac 337

❏ void getDHCPServerIP(byte[] address)

❏ int getDNSTimeout()

❏ String getDomainname()

❏ String getEthernetAddress()

❏ void getEthernetAddress(byte[] address)

❏ int getEthernetStatus()

❏ String getGatewayIP()

❏ void getGatewayIP(byte[] address)

❏ String getGatewayIP(String interfaceName)

❏ void getGatewayIP(String interfaceName,
byte[] address)

❏ String getHostname()

❏ boolean getInterfaceInfo(int interfaceNum,
byte[] data)

❏ String getIPAddress()

❏ void getIPAddress(byte[] address)

❏ String getIPAddress(String interfaceName)

❏ void getIPAddress(String interfaceName,
byte[] address)

❏ String getMailhost()

❏ int getNetworkCommitState()

❏ String getPrimaryDNS()

❏ int getProxyPort()

❏ String getProxyServer()

❏ String getSecondaryDNS()

❏ String getSubnetMask()

❏ void getSubnetMask(byte[] address)

❏ String getSubnetMask(String interfaceName)

❏ void getSubnetMask(String interfaceName,
byte[] address)

❏ void removeInterfaceEntry(byte[] name)

✍■ int RESTORE_DISABLED

❏ boolean setDefaultInterface(byte[] name)

❏ boolean setDHCPServerIP(String dhcpServer)

❏ boolean setDNSTimeout(int dnsTimeout)

❏ boolean setDomainname(String domain)

❏ boolean setGatewayIP(byte[] gateway)

❏ boolean setGatewayIP(String gateway)

❏ boolean setGatewayIP(String interfaceName,
byte[] gateway)

❏ boolean setGatewayIP(String interfaceName,
String gateway)

❏ boolean setHostname(String host)

❏ boolean setIPAddress(byte[] localIP)

❏ boolean setIPAddress(String localIP)

❏ boolean setIPAddress(String interfaceName,
byte[] localIP)

338 Appendix Almanac

Object
➥ TINIOS

❏ boolean setIPAddress(String interfaceName,
String localIP)

❏ boolean setMailhost(String mailhost)

❏ boolean setOptions(byte[] dhcp, byte[] ip,
byte[] gateway, byte[] subnet,
byte[] dns1, byte[] dns2,
byte[] domain, byte[] mailhost)

❏ boolean setPrimaryDNS(String primaryDNS)

❏ boolean setProxyPort(int proxyPort)

❏ boolean setProxyServer(String proxyServer)

❏ boolean setSecondaryDNS(String secondDNS)

❏ boolean setSubnetMask(byte[] subnetMask)

❏ boolean setSubnetMask(String subnetMask)

❏ boolean setSubnetMask(String interfaceName,
byte[] subnetMask)

❏ boolean setSubnetMask(String interfaceName,
String subnetMask)

❉ TININet()

✍■ int UNCOMMITTED

❏ void update()

TINIOS com.dalsemi.system

✍■ int BLAST_ALL

✍■ int BLAST_HEAP

■ void blastHeapOnReboot(int blastType)

■ void disablePowerFailRecovery()

■ void enableSerialPort1()

■ void enableSerialPort1(boolean enable)

❏ void execute(Object[] commandLine,
com.dalsemi.shell.server.SystemInputStr
eam in,
com.dalsemi.shell.server.SystemPrintStr
eam out,
com.dalsemi.shell.server.SystemPrintStr
eam err, java.util.Hashtable env)
throws Exception

❏ void feedWatchdog()

✍■ int FS_MODIFICATION_OCCURRED

❏ int getBootState()

❏ java.util.Hash-
table

getCurrentEnvironment()

❏ byte getCurrentUID()

❏ String getCurrentUserName()

❏ int getExternalSerialPortAddress(int portNum)

❏ boolean getExternalSerialPortEnable(int portNum)

Appendix Almanac 339

❏ boolean getExternalSerialPortSearchEnable()

■ int getFreeRAM()

❏ String getFromCurrentEnvironment(String key)

❏ int getLCDAddress()

❏ int getOwnerIDByTaskID(int taskid)

❏ boolean getRecoveryHash(byte[] recoveryHash)

❏ boolean getRTSCTSFlowControlEnable(int portNumber)

■ boolean getSerialBootMessagesState()

❏ com.dalsemi.shell
.TINIShell

getShell()

❏ String getShellName()

❏ String getShellVersion()

❏ java.util.Hash-
table

getSystemEnvironment()

❏ int getTaskID()

❏ String[] getTaskTable()

❏ int[] getTaskTableIDs()

❏ String getTimeZone()

❏ String getTINIHWVersion()

❏ String getTINIOSFirmwareVersion()

■ String getTINISerialNumber()

❏ int getUIDByUserName(String username)

❏ String getUserNameByUID(byte uid)

✍■ int HEAP_CLEAR_OCCURRED

❏ boolean isAdmin(byte uid)

❏ boolean isConsoleOutputEnabled()

❏ boolean isCurrentTaskInit()

❏ boolean isCurrentUserAdmin()

❏ boolean isTaskRunning(int taskid)

❏ void killTask(int taskID)

❏ void lockInitProcesses()

❏ int login(String userName, String password)

❏ void logout(Object info)

✍■ int MASTER_ERASE_OCCURRED

✍■ int NETWORK_CONFIGURATION_RESTORED

■ void reboot()

❏ void setConsoleOutputEnabled(boolean set)

■ void setDebugMessagesState(boolean on)

❏ void setExternalSerialPortAddress(int portNum,
int address)

❏ void setExternalSerialPortEnable(int portNum,
boolean enable)

❏ void setExternalSerialPortSearchEnable(boolean en
able)

❏ void setIrDAClockPinState(boolean on)

❏ void setLCDAddress(int address)

❏ void setRecoveryHash(byte[] recoveryHash)

340 Appendix Almanac

Object
➥ TINIShell

❏ boolean setRTSCTSFlowControlEnable(int portNumber,
boolean enable)
throws javax.comm.UnsupportedCommOperati
onException

■ void setSerialBootMessagesState(boolean on)

❏ void setShell(com.dalsemi.shell.TINIShell newShel
l) throws SecurityException

❏ void setTimeZone(String zone)
throws IllegalArgumentException

❏ void setWatchdogTimeout(int mstimeout)

■ void sleepProcess(int ms)

■ long uptimeMillis()

TINIShell com.dalsemi.shell

✍■ byte adminUID

❍ void execute(Object[] commandLine,
server.SystemInputStream in,
server.SystemPrintStream out,
server.SystemPrintStream err,
java.util.Hashtable env)
throws Exception

❍ java.util.Hash-
table

getCurrentEnvironment()

❍ byte getCurrentUID()

❍ String getCurrentUserName()

❍ String getFromCurrentEnvironment(String key)

❍ String getName()

java.util.Hash-
table

getSystemEnvironment()

❍ int getUIDByUserName(String username)

❍ String getUserNameByUID(byte uid)

❍ String getVersion()

boolean isAdmin(byte uid)

boolean isCurrentUserAdmin()

❍ int login(String userName, String password)

❍ void logout(Object info)

❉ TINIShell()

341

Index

+ operator, 234
1-Wire. See One (1-Wire) network

A
accept() method, 152
ACCM (asynchronous control character

map), 141
Acquiring serial ports, 56–59
Adapter instance (object), 96
AdapterFeatures program, 91–92
Adapters (1-Wire), 88–96
adapter instance (object), 96
AdapterFeatures program, 91–92

“alarm search,” 95
beginExclusive() method, 96
capabilities determination, 91–92
Census program, 94
com.dalsemi.onewire package, 12, 89,

279–280, 318
com.dalsemi.onewire.adapter package,

89, 269–272, 318–319, 335–336
CreateAdapters program, 89–90
default adapters, 90

DSPortAdapter class, 89, 91–93, 95–96,
269–272

endExclusive() method, 96
enumerateAllAdapters () method, 89
excludeFamily() method, 95
external adapters, 91
Family Census program, 94–95
FindAdapters program, 89
getAddressAsString() method, 93
getAllOneWireDevices() method, 92
getDefaultAdapter() method, 90
internal adapters, 90–91
locking adapters, 96

multiple threads/processes and, 95–96
mutual exclusion, 95–96
OneWireAccessProvider class, 89, 279–

280
OneWireContainer classes, 92–93, 102–

104, 280–318
OneWireException class, 89, 96, 318
ownership, 95–96
port adapters, 95–96
searching for 1-Wire devices, 92–95
setSearchAllDevices() method, 95

342 Index

setSearchOnlyAlarmingDevices()
method, 95

targetAllFamilies() method, 95
targetFamily() method, 94

TINIExternalAdapter class, 89–90, 92,
335

TINIInternalAdapter class, 89, 92, 336
See also 1-Wire network

ADContainer class, 257–258
addEventListener() method, 63, 140,

221–222
addInterface() method, 144, 164, 179
addInterfaceEntry() method, 114
Address bus, 183
Address class, 258
Address discovery process, 84, 86–88
Address match (device selection), 86–88
address parameter, DataPort class, 186
Address search (device discovery), 86–87
Addressing phase of a 1-Wire transaction, 84
Alarm search 95
API classes, PPP, 139–142
API portion of runtime environment, 10–13
append() method, 234
Application hardening, 248–253

application startup, 251–252
blastHeapOnReboot() method, 251–252
boot-up problem detection, 251
data persistence, 249
disablePowerFailRecovery() method,

251–252
electrically erasable programmable read

only memory (EEPROM), 4, 249
flash ROM memory, 4–5, 249–250
forced heap initialization, 251–252
getBootState() method, 251
heap initialization, forced, 251–252
memory technology, 249–250
persistence storage, 249
resetDefaultStreams() method, 250
starting applications, 251–252
static RAM (SRAM) memory, 4–5,

249
TINIOS class, 251–252, 338–340
watchdog, starting, 252
See also Application programming opti-

mization

Application programming, 39–49
1-Wire applications, debugging, 48
background processes, 44, 46, 73
BitPort class, 43, 201–203, 207,

259–260
Blinky program, 42–45, 200
class file conversion, 40–41
clear() method, 43
compiling source files, 40
converting class files, 40–42
creating source files, 39–40
debugging tips, 48–49
expanded I/O capabilities, debugging, 49
HelloWeb program, 45–48
HelloWorld program, 39–42
hosts for debugging, 48
HTTPServer class, 45, 48, 127–128, 274–

275
I/O example, 42–45

kill command, 44–45
loading converted image, 41–42

ports and port pins, 43
ps (process) command, 44–45, 47
running converted image, 42
serial communication applications,

debugging, 48
set() method, 43
source file creation, 39–40
TCP/IP (Transmission Control Protocol/

Internet Protocol) applications, debug-
ging, 48

TINIConvertor, 40–41
Web server example, 45–48
See also Application programming opti-

mization; Hardware; Ports and port
pins; Runtime environment; Serial
communication applications; Slush
command shell; TINI (Tiny InterNet
Interface) platform

Application programming optimization,
225–253
arithmetic operations, 244–245
arrayComp() method, 247
arraycopy() method, 246–247
arrayCopyUnequal() method, 246
arrayFill() method, 247
ArrayUtils class, 246–247, 258

Index 343

com.dalsemi.system package, 12, 185,
187, 201, 206, 210–211, 216, 225,
246, 258–260, 262–266, 273, 276,
328, 338–340

common operations, relative cost of,
238–239

currentTimeMillis() method, 226
data processing and, 237–238
doubles, 245
floating point calculations, 245
getLong() method, 247
int primitive type, 245
integer operations, 245
java.lang.System class, 246
Measuring elapsed time program,

226–227
performance profiling, 225–227
profiling code, 225–227
quick operations, measuring, 227
setLong() method, 247
shift operations, 245
strategy for, 248
TINIOS class, 225, 338–340
uptimeMillis() method, 225–226
See also Application hardening; I/O

efficiency; Loop optimization; Mem-
ory usage

Arithmetic operations, 244–245
Array comparison, loop optimization,

243
arrayComp() method, 247
arraycopy() method, 246–247
arrayCopyUnequal() method, 246
arrayFill() method, 247
ArrayIndexOutOfBounds exception, 131
arraylenth opcode, 244
ArrayUtils class, 246–247, 258
Asynchronous control character map

(ACCM), 141
Asynchronous serial protocol support, 8. See

also Serial communication applications
AUTH error, 144
Authenticating peer node, 140–141
Authentication (login) information, 140
AUTHENTICATION_REQUESTED event,

140, 143, 164
available() method, 64

B
Background processes, 44, 46, 73
Battery-back circuitry, 5–6
Baud rate, 58
beginExclusive() method, 96
Binary one (MARK) bit, 52–53
Binary zero (SPACE) bit, 52–53
Bit class, 259
BitPort class, 43, 201–203, 207, 259–260
BitTwiddler program, 204–206
BlackBox program, 54, 67, 73, 80
blastHeapOnReboot() method, 251–252
Blinky program, 42–45, 200
Block data transfer

byte-banging versus, 227–232
1-Wire communication, 98–102

read/write operations, 188
Bogus class, 239–240
Boot-up problem detection, 251
BOOTP protocol, 121
Bootstrap loader, 18–20, 29, 31, 251
Bosch-Siemens, 8
Broadcast (skip address) command, 88
Buffered streams, I/O efficiency, 232
BufferedOutputStream, 151–152
Buffers

Java Communications API, 62
parallel I/O, 182
serial communication applications, 79–80

Bus timing control, 188–189
Byte-banging, 152, 207, 227–232
ByteBlast program, 97–99
BytePort class, 206–208, 260

C
Caching

instance fields in local variables, 243–244
length in a local variable, 240–241

CAN (controller area network) support, 8,
260–262

CanBus class, 260–261
CanBusException class, 261–262
CanFrame class, 262
Capabilities determination of adapters,

91–92
Capacitive loading, 6

344 Index

captureSample() method, 154–157
Carrier Detect (CD) signal, 53, 65, 67, 170
cat command, 34, 48
Catch blocks, 152
cd (change directory) command, 33, 35
Census program, 94
CEs (chip enables), 183–186, 190
Change directory (cd) command, 33, 35
charAt() method, 241
charCounter() method, 239–240, 242
Chip enables (CEs), 183–186, 190
Chips, 88
Class

files conversion, 40–41
initializer methods, 13
loading, 13–14
TINI specific, 10

Class object, 103
clear() method, 43, 201–203
Clear To Send (CTS) signal, 54, 60, 65, 67
Clock. See RTC (Real-time clock)
Clock class, 210, 262–263
ClockContainer class, 263
close() method, 58
CLOSED event, 144–145, 164, 167
Code segment of memory map, 5–7, 18–19
Collecting data, 152–158
Collisions, 54
com.dalsemi packages, 12, 255–340
com.dalsemi.comm package, 12, 56, 260–

262, 266, 277, 279, 328–329
com.dalsemi.fs package, 268–269
com.dalsemi.onewire package, 12, 89, 279–

280, 318
com.dalsemi.onewire.adapter package, 89,

269–272, 318–319, 335–336
com.dalsemi.onewire.container package,

102, 257–258, 263–264, 277–278, 280–
318, 320, 324–326, 328, 330–332, 334–
335

com.dalsemi.onewire.utils package, 108,
258–259, 265, 278–279, 319, 321–324

com.dalsemi.shell package, 12, 267, 340
com.dalsemi.shell.server package, 274, 329–

330, 332–334
com.dalsemi.shell.server.ftp package, 112,

274
com.dalsemi.shell.server.serial package, 329

com.dalsemi.shell.server.telnet package,
112, 334

com.dalsemi.system package, 12, 185, 187,
201, 206, 210–211, 216, 225, 246, 258–
260, 262–266, 273, 276, 328, 338–340

com.dalsemi.tininet package, 12, 112, 117,
336–338

com.dalsemi.tininet.dhcp package, 122,
267

com.dalsemi.tininet.dns package, 126, 268
com.dalsemi.tininet.http package, 127,

274–275
com.dalsemi.tininet.icmp package, 325
com.dalsemi.tininet.ppp package, 139,

326–328
comm API. See Java Communications API
Command shell application, 16
CommandAPDU class, 264
CommitException class, 120, 264
commitNetworkState() method, 119–120
Committing static network parameters,

119–121
Common interrupt source sharing, 224
Common operations, relative cost of,

238–239
Common (Signal Ground) signal, 54
CommPort object, 56–58, 71
CommPortIdentifier object, 56–57
Communication (1-Wire), 96–102

block transfer methods, 98–102
ByteBlast program, 97–99
dataBlock() method, 99
DS2502 device, 100
Ethernet address, 100
EthernetAddressReader program,

100–102
FastCensus program, 99–100
findFirstDevice() method, 99–100
findNextDevice() method, 99
getBlock() method, 101
getByte() method, 97–98
ipconfig (network configuration) com-

mand, 100, 102
OneWireIOException class, 97–99, 110,

318–319
putByte() method, 97–98
reset() method, 97–98
See also 1-Wire network

Index 345

Communications. See DHCP (Dynamic Host
Configuration Protocol); DNS (Domain
Name System); HTTP (HyperText Trans-
fer Protocol); ICMP (Internet Control
Message Protocol); Java Communications
API (comm API); Network parameters,
setting; 1-Wire network; PPP (Point-to-
Point Protocol) network; Serial communi-
cation applications; TCP/IP (Transmis-
sion Control Protocol/Internet Protocol)
network

Compiling source files, 40
compute() methods, 108–109
Configuring network. See Network parame-

ters, setting
Configuring serial ports, 56–59

baud rate, 58
close() method, 58
CommPort object, 56–58
CommPortIdentifier object, 56–57
data bits, 58
getPortIdentifier() method, 56

open() method, 58
ownership of communications ports, 58
parallel I/O, 57
parity checking, 58
PortInUSee xception class, 58
PortLister class, 57
SerialPort object, 56, 58, 60–61, 64, 66
setSerialPortParams() method, 58–59

stop bits, 58
See also Java Communications API

(comm API)
Constructor

DataPort class, 186
remote data logger, 154

Containers (1-Wire), 102–108
Class object, 103
com.dalsemi.onewire.container package,

102, 257–258, 263–264, 277–278,
280–318, 320, 324–326, 328, 330–
332, 334–335

creating container instances, 102–104
defined, 84
doADConvert() method, 105
DS2438 A/D (Analog to Digital) con-

verter, 104–108
DSPortAdapter() methods, 102–103

FindContainers program, 103–104
getFirstDeviceContainer() method,

103, 107
getNextDeviceContainer() method, 103
getSensorRH() method, 107
getTrueRH() method, 107
HumiditySensor program, 104–108
instances, creating, 102–104
newInstance() method, 103
OneWireContainer classes, 92–93,

102–104, 280–318
overhead of, 96
setupContainer() methods, 104
targetFamily() method, 107
transactions and, 84
See also 1-Wire network

Contention, 54
Control signals, 183
Controller area network (CAN) support, 8,

260–262
Converting class files, 40–42
Convertor utility (TINIConvertor), 13
Coordinated universal time (UTC), 212
Core Java packages, 11–12
CRC (Cyclic Redundancy Check) part of

address, 86, 108–110
CRC8 class, 265
CRC16 class, 265
CRCCalculator program, 109–110
CreateAdapters program, 89–90
Creating

container instances, 102–104
initial processes, 20
source files, 39–40

CTS (Clear To Send) signal, 54, 60, 65,
67

CTSMonitor program, 65–67
currentTimeMillis() method, 156, 174, 226
Cyclic Redundancy Check (CRC) part of

address, 86, 108–110

D
daemonError interface, 160, 175
Dallas Semiconductor, 1, 23, 27
Data bits, 58
Data bus, 183
Data collection, 152–158

346 Index

Data Communications Equipment (DCE)
serial port, 52–53

Data exchange phase of transaction, 84
Data integrity, 108–110
Data logger. See Remote data logger
Data persistence, 249
Data processing application optimization,

237–238
Data rates of serial communication, 68
Data segment of memory map, 5–7, 16
Data Set Ready (DSR) signal, 54, 65
Data Terminal Equipment (DTE) serial port,

52–54
Data Terminal Ready (DTR) signal, 53, 63
Data transfer, DataPort class, 186–187
DATA_AVAILABLE event, 64–65, 72
dataBlock() method, 99
DatagramPacket, 123
DatagramSocket object and DNS, 124–125
DataInputStream, 158
dataLinkError() method, 167, 170
DataLinkException class, 164, 169,

171–172, 175
DataLinkListener interface, 160, 167
DataLogger class, 149–152, 175–176, 232
DataLoggerClient class, 158–160, 177
DataOutputStream, 151–152, 158
DataPort class, 185–189

address parameter, 186
block read/write operations, 188
bus timing control, 188–189
chip enables (CEs) and, 186
com.dalsemi.system package, 185, 187
constructor, 186
data transfer, 186–187
defined, 181, 185–189
First In First Out (FIFO), 187–188, 193
getFIFOMode() method, 188
getStretchCycles() method, 189
IllegalAddressException class, 187, 203–

204, 276
IllegalArgumentException class, 189
memory access modes, 187–188
read() method, 186–188, 198
sequential memory mode, 188
setAddress() method, 186–188
setFIFOMode() method, 188, 196
setStretchCycles() method, 189

speed of data transfer, 187
stretch cycles, 188–189
write() method, 186–188, 198
See also Parallel I/O; Ports and port pins

Date class, 209–211
date command, 211–212, 214
DCE (Data Communications Equipment)

serial port, 52–53
Debug class, 266
Debug statements, 178
Debugging tips for applications, 48–49
DebugOutputStream class, 266
Decoder chips, 190–192
Default

adapters, 90
serial ports, 53, 67–69
time zone, 211
user accounts, slush command shell, 32

DefaultTINIShell class, 267
Development platform requirements, 26–28
Development tool of TBM390, 9
Device discovery (address search), 86–87
Device driver initialization, 20
Device id part of address, 86
Device reset (DRST), 184
Device selection (address match), 86–88
DHCP (Dynamic Host Configuration Proto-

col), 121–124
address setting, 123
application layer protocol, 112–113
BOOTP protocol, 121
com.dalsemi.tininet.dhcp package, 122,

267
DHCPClient class, 122–123, 267

DHCPDISCOVER message, 121
DHCPListener class, 122, 124, 267
DHCPOFFER message, 121
DHCPRELEASE message, 123–124
DHCPREQUEST message, 121–122

IP address, 118, 123
ipconfig (network configuration) com-

mand, 122
ipError() method, 124
ipLeased() method, 124
ipLost() method, 124
ipRenewed() method, 124
“leased” IP addresses, 121–123

start() method, 123

Index 347

stopDHCPThread() method, 123–124
subnet mask, 123
See also TCP/IP (Transmission Control

Protocol/Internet Protocol) network
DHCPClient class, 122–123, 267
DHCPDISCOVER message, 121
DHCPListener class, 122, 124, 267
DHCPOFFER message, 121
DHCPRELEASE message, 123–124
DHCPREQUEST message, 121–122
Dial-up networking. See PPP (Point-to-Point

Protocol) network
Directly accessing character data, 241
disableNetworkRestore() method, 120
disablePowerFailRecovery() method,

251–252
disableReceiveThreshold() method, 62
disableReceiveTimeout() method, 61
displayRAM() method, 236
DNS (Domain Name System), 124–127

address setting, slush command shell, 38
application layer protocol, 112–113
com.dalsemi.tininet.dns package, 126,

268
DatagramSocket object and, 124–125
DNSClient class, 126, 268
DNSTest program, 126–127
Dynamic Host Configuration Protocol

(DHCP) and address setting, 123
forward lookups, 124, 126
getAllByName() method, 127
getByIP() method, 126
getByName() method, 125–126
InetAddress class, 124–126
IP addresses mapping, 124
IP addresses of primary and secondary

servers, 125
lookups, 124–126

nslookup (lookup) command, 126
Ping (ICMP echo request/reply), 125
public methods, 126
resolver, 124
reverse lookups, 124, 126
server IP address, 123
setDNSTimeout() method, 126
setDomainName() method, 125
slush command shell for setting address,

38

Socket object and, 124–125
time-out value, 117
UnknownHostException class, 126–127
See also TCP/IP (Transmission Control

Protocol/Internet Protocol) network
DNSClient class, 126, 268
DNSTest program, 126–127
doADConvert() method, 105
Domain name, 117
Domain Name System. See DNS
doubles, 245
down() method, 145
DRST (device reset), 184
DS18S20 temperature sensor example, 85,

102
DS80C390 microcontroller, 4
DS2438 A/D (Analog to Digital) converter,

104–108
DS2502 device, 100
DSFile class, 268–269
DSPortAdapter class, 89, 91–93, 95–96,

269–272
DSPortAdapter() methods, 102–103
DSR (Data Set Ready) signal, 54, 65
DTE (Data Terminal Equipment) serial port,

52–54
DTR (Data Terminal Ready) signal, 53, 63
Dynamic Host Configuration Protocol. See

DHCP
Dynamic loading of class files (omitted func-

tionality), 13

E
E10 socket, 25–26, 53
Echo client/server program, 230–232
ECHO_REPLY message, 136
EchoWorker program, 228–229
Edge triggering, 220–221
EEPROM (electrically erasable programma-

ble read only memory), 4, 249
enableReceiveThreshold() method, 62
enableReceiveTimeout() method, 61–62
enableSerialPort1() method, 68
endExclusive() method, 96
enumerateAllAdapters () method, 89
Environmental monitors applications, 2
Error and control information, 130

348 Index

Ethernet
address, 1-Wire communication, 100
address, slush command shell, 36
controller, 4, 6
converter, 74–80
runtime environment support of, 18
SerialToEthernet program, 74–80, 231
TCP/IP (Transmission Control Protocol/

Internet Protocol) network, 113–115
EthernetAddressReader program, 100–102
Event listeners, 63–67
Events, 142–145
Exceptions

ArrayIndexOutOfBounds exception, 131
CanBusException class, 261–262
CommitException class, 120, 264
DataLinkException class, 164, 169,

171–172, 175
ExternalInterruptException class, 221,

273
HTTPServerException class, 128, 275
IllegalAddressException class, 187,

203–204, 276
IllegalArgumentException class, 189
IOException class, 152

NoSuchPortException class, 71
OneWireException class, 89, 96, 318
OneWireIOException class, 97–99, 110,

318–319
PortInU See xception class, 58, 71
PPPException class, 328
UnknownHostException class, 126–127
UnsupportedCommOperationException

class, 59, 61–62, 71
excludeFamily() method, 95
Executable files in file system, 17
Execution error detection. See Watchdog
exit command, 37
Expanded I/O capabilities, debugging, 49
External adapters, 91
External device interface to bus, 182
External interrupt, 219–224

addEventListener() method, 221–222
common interrupt source sharing, 224
defined, 209
edge triggering, 220–221
ExternalInterrupt class, 221, 273

externalInterruptEvent() method,
221–223

ExternalInterruptEventListener interface,
221, 223

ExternalInterruptException class, 221,
273

falling edge, 220, 222
getTrigger() method, 221
Interrupt Service Routine (ISR), 15, 220
interrupts versus polling, 219–220
latched interrupts, 220
level triggering, 220–221
“low true” pin interrupt, 220
notification of interrupts, 221–224
ordering of event listeners, 224
polling versus interrupts, 219–220
“power fail” interrupt, 220
priority levels, 220
PushButton program, 222–224
receiving notification of interrupts,

221–224
removeEventListener() method, 221–222
setTrigger() method, 221
sharing a common interrupt source, 224
triggering, 220–221
See also Ports and port pins

External memory, reading/writing, 196–198
External pins, 202–206
External reset, 19–20
External serial ports configuration, 67–69
ExternalInterrupt class, 221, 273
ExternalInterruptEvent class, 273
externalInterruptEvent() method, 221–223
ExternalInterruptEventListener class, 273
ExternalInterruptEventListener interface,

221, 223
ExternalInterruptException class, 221, 273

F
Falling edge, 220, 222
Family Census program, 94–95
Family code part of address, 86
FastCensus program, 99–100
Faster loop, 241–242, 244
feedWatchdog() method, 216–217
FIFO (First In First Out), 187–188, 193

Index 349

File system
exploration using slush command shell,

33–35
integrity check, 20
manager, 17

File Transfer Protocol (FTP), 112–113
FindAdapters program, 89
FindContainers program, 103–104
findFirstDevice() method, 99–100
findNextDevice() method, 99
Finite State Machine (FSM), 162–164
First In First Out (FIFO), 187–188, 193
Flash ROM memory, 4–5, 249–250
Floating point calculations, 245
Flow control (hardware handshake), 53,

59–63, 68, 80
flush() method, 232
for loop, 240
Forced heap initialization, 251–252
Foreground processes, 73
Forward lookups, 124, 126
freeMemory() method, 235
FSM (Finite State Machine), 162–164
FTP (File Transfer Protocol), 112–113
FTPServer class, 274
FTPSession class, 274
Full-duplex throughput, 229

G
Garbage collector (gc) process, 16–17,

20–21, 234, 237
Gateway (router) address setting, 38, 117,

123
gc (garbage collector) process, 16–17,

20–21, 234, 237
Gender changer, 55
General purpose I/O, 200–201
getAddressAsString() method, 93
getAllByName() method, 127
getAllOneWireDevices() method, 92
getAvailableTableIDs() method, 211
getBlock() method, 101
getBootState() method, 120, 251
getByIP() method, 126
getByName() method, 125–126
getByte() method, 97–98

getCommPortIdentifier() method, 71
getDefaultAdapter() method, 90
getEthernetAddress() method, 115
getEventType() method, 64, 72, 140
getFIFOMode() method, 188
getFirstDeviceContainer() method, 103, 107
getFlowControlMode() method, 60
getFreeRAM() method, 235–236
getInputBufferSize() method, 62
getInputStream() method, 61, 158, 228
getIPAddress() methods, 118
getLastError() method, 144
getLong() method, 247
getNetworkCommitState() method, 119
getNewValue() method, 65
getNextDeviceContainer() method, 103
GetOpt class, 274
getOutputStream() method, 61, 71, 151, 228
getPeerID() method, 143
getPeerPassword() method, 143
getPort() method, 166–167
getPortIdentifier() method, 56
getRTC() method, 210
getSensorRH() method, 107
getStretchCycles() method, 189
getTimeZone() method, 211
getTrigger() method, 221
getTrueRH() method, 107
GMT (Greenwich Mean Time), 211

H
“Hard” reset countdown, 215
“Hard-wired” devices, 108
Hardening applications. See Application

hardening
Hardware, 3–9, 23–26

asynchronous serial protocol support, 8
battery-back circuitry, 5–6
capacitive loading, 6
code segment of memory map, 5–7,

18–19
configuration, 1-Wire, 82
controller area network (CAN) support, 8,

260–262
data segment of memory map, 5–7, 16

DS80C390 microcontroller, 4

350 Index

E10 socket, 25–26, 53
electrically erasable programmable read

only memory (EEPROM), 4, 249
Ethernet controller, 4, 6
flash ROM memory, 4–5, 249–250
hardware reference design, 8–9
integrated I/O, 7–8

Java methods and the real-time clock,
4

large-scale integration (LSI) chips, 3–5
lithium cell for clock, 5
memory map, 5–7, 184–185, 191
microcontroller, 4–5, 7
nonvolatized static RAM (NVSRAM),

4–5, 17
parallel I/O expansion, 4–7
peripheral chip enable (PCE) space, 7,

183–185, 194–195
peripheral devices, 4–7
peripheral segment of memory map, 5–7
reference implementation of TBM390, 9
serial communication support, 7–8
static RAM (SRAM) memory, 4–5, 249
synchronous serial protocol support, 8

TINI Board Model 390 (TBM390), 9,
24

TTL I/O support, 8, 189–196
Universal Asynchronous Receiver Trans-

mitter (UART), 8, 52, 67
watchdog, 216
See also 1-Wire network; Parallel I/O;

Ports and port pins; RTC (Real-time
clock); Serial communication applica-
tions

Hardware handshake (flow control), 53,
59–63, 68, 80

Heap
initialization, forced, 251–252
runtime environment, 16–17, 20, 30–31
sizes, 233

HelloWeb program, 45–48
HelloWorld program, 39–42
help command, 35–36
Host name, 118
Hosts for debugging, 48
HTTP (HyperText Transfer Protocol),

127–130

application layer protocol, 112–113
com.dalsemi.tininet.http package, 127,

274–275
HTTPServer class, 45, 48, 127–128,

274–275
HTTPServerException class, 128, 275
MiniBrowser program, 129–130
proxy port/server setting, 118, 128–130
ServerSocket object, 128
serviceRequests() method, 128
setHTTPRoot() method, 128
setIndexPage() method, 128
SetProxyServer() method, 129
URL and, 128–130
Web root, 128
See also TCP/IP (Transmission Control

Protocol/Internet Protocol) network
HTTPServer class, 45, 48, 127–128,

274–275
HTTPServerException class, 128, 275
Human interfaces and TINI, 3
HumidityLogger class, 149, 156–157
HumiditySample class, 155–156
HumiditySensor class, 152, 157
HumiditySensor program, 104–108
“Hung” code, 215–216
HyperText Transfer Protocol. See HTTP

I
I/O efficiency, 227–232

Blinky program, 42–45
block data transfer versus byte-banging,

227–232
buffered streams, 232
byte-banging, 152, 207, 227–232
DataLogger class, 149–152, 175–176,

232
echo client/server program, 230–232
EchoWorker program, 228–229
flush() method, 232
full-duplex throughput, 229
getInputStream() method, 228
getOutputStream() method, 228
InputStream object, 228, 231
MemoryTester program, 196–198, 231
method invocations, expense of, 230–232

Index 351

OutputStream, 228, 231
read() method, 227–228, 230

SerialToEthernet program, 74–80, 231
SocketInputStream, 228, 230
SocketOutputStream, 228–230
throughput of server, 229
TiniTerm program, 69–73, 231
write() method, 227–229, 232
See also Application programming opti-

mization
I/O management subsystem, 11, 15, 17–18
I2CPort class, 276
iButtons, 88
ICMP (Internet Control Message Protocol),

130–137
ArrayIndexOutOfBounds exception, 131
com.dalsemi.tininet.icmp package, 325
ECHO_REPLY message, 136
error and control information, 130
ICMP data, 132
ICMP header, 132–134
IP data area, 132
IP header, 132–133, 136
message within an IP datagram, 131–132
module, 112–113, 130
Ping (ICMP echo request/reply), 37–38,

112–113, 116, 125
Pinger program, 134–137
pingNode() method, 130–131, 136
PORT_UNREACHABLE message, 134
round-trip time (RTT), 131
TIME_EXCEEDED message, 133–134,

136
TTL field, 133–134, 136
TYPE byte, 132–133
See also TCP/IP (Transmission Control

Protocol/Internet Protocol) network
IEEE (Institute of Electrical and Electronics

Engineers), 114
IllegalAddressException class, 187, 203–

204, 276
IllegalArgumentException class, 189
Immutable strings and loop optimization,

240–241
index.html file, 46, 48
indexOf() method, 242–243
Industrial controls applications, 2

InetAddress class, 124–126
Initialization phase of transaction, 84
initializeLink() method, 164, 166–167, 169,

171–172
Initializing runtime environment, 20–21,

29–31
InputStream object, 61–62, 228, 231
Instance fields, RTC, 210
Instances of containers, creating, 102–104
int primitive type, 245
intDump() method, 236
Integer operations, 245
Integrated I/O, 7–8
Integrity checks, 20
Inter-Process Communication (IPC), 16, 117
Internal adapters, 90–91
Internal serial ports configurations, 67–68
Internet Control Message Protocol. See

ICMP
Interrupt Service Routine (ISR), 15, 220
Interrupts versus polling, 219–220. See also

External interrupt
IOException class, 152
IP address

DHCP (Dynamic Host Configuration Pro-
tocol), 118, 123

DNS (Domain Name System) mapping,
123–125

gateway (router), 38, 117, 123
“leased,” 121–123
network parameters, setting, 117, 119
slush command shell for setting, 37

IP data/header area, ICMP, 132
IP datagram transmissions, 116
IPC (Inter-Process Communication), 16, 117
ipconfig (network configuration) command

communication (1-Wire), 100, 102
DHCP (Dynamic Host Configuration Pro-

tocol), 122
network parameters, setting, 117, 120–

121
PPP (Point-to-Point Protocol144
remote data logger, 178
slush command shell, 36–39
TCP/IP (Transmission Control Protocol/

Internet Protocol) network, 113–114,
117, 120–122

352 Index

ipError() method, 124
ipLeased() method, 124
ipLost() method, 124
ipRenewed() method, 124
isEqual() method, 243
ISR (Interrupt Service Routine), 15, 220
isValidUser() method, 160, 164, 175–176

J
java command, 35
Java Communications API (comm API),

56–67
addEventListener() method, 63
available() method, 64
buffer sizes, 62

com.dalsemi.comm package, 12, 56,
260–262, 266, 277, 279, 328–329

core packages, 11–12
CTSMonitor program, 65–67
DATA_AVAILABLE event, 64–65, 72
defined, 27, 56
disableReceiveThreshold() method, 62
disableReceiveTimeout() method, 61
enableReceiveThreshold() method, 62
enableReceiveTimeout() method, 61–62
event listeners, 63–67
flow control, 58–63
getEventType() method, 64
getFlowControlMode() method, 60
getInputBufferSize() method, 62
getInputStream() method, 61
getNewValue() method, 65
getOutputStream() method, 61
InputStream object, 61–62
javax.comm package, 56

notifyOn() method, 63–64
OUTPUT_BUFFER_EMPTY event,

64–65
OutputStream object, 61
receive time-outs and thresholds, 61–62,

65
receiving serial data, 61–63
removeEventListener() method, 63
RTS/CTS (hardware flow control), 59–61,

63, 68, 168
sending serial data, 61–63
serial port events, 63–67

serialEvent() method, 64
SerialPortEvent object, 64–65, 72
SerialPortEventListener interface, 64,

170
setDTR() method, 63
setFlowControlMode() method, 60–61
setInputBufferSize() method, 62
setRTS() method, 63
UnsupportedCommOperationException

class, 59, 61–62
XON/XOFF (software flow control),

59–60, 68, 141
See also Configuring serial ports; Parallel

I/O; Serial communication applica-
tions

Java Developer’s Kit (JDK), 10, 27
Java Native Interface (JNI), 14
Java Virtual Machine (JVM), 10, 13–14, 17
java.io.IOException class, 76, 214
JavaKit launching, 29–30
java.lang.System class, 246
java.util package, 209, 211
java.util.Date class, 209–214
java.util.Hashtable, 125
javax.comm package, 56
JDK (Java Developer’s Kit), 10, 27
JNI (Java Native Interface), 14
JVM (Java Virtual Machine), 10, 13–14, 17

K
Kernel processes, 18
kill command, 44–45
“Knocking back,” 216, 219

L
LANs (Local Area Networks), 114
Large-scale integration (LSI) chips, 3–5
Latched interrupts, 220
LCDOutputStream class, 277
LCDPort class, 277
LCP (Line Control Protocol), 142, 164
“Leased” IP addresses, 121–123
length() method, 240
Level translators, 52
Level triggering, 220–221
Limitations, 14

Index 353

Line Control Protocol (LCP), 142, 164
Link errors, 167, 169–175
Linux, 26–27
List (ls) command, 33
Listeners

Java Communications API, 63–67
Point-to-Point Protocol (PPP) network,

140
Lithium cell for clock, 5
Loading

converted image, applications program-
ming, 41–42

runtime environment, 29–31
loadlibrary method, 14
Local Area Networks (LANs), 114
Locking adapters, 96
Log file, 45, 48
Logging on, 32–33
LoggingDaemon class, 153–154, 157–158
Login (authentication) information, 140
Lookup (nslookup) command, 126
Lookups, 124–126
Loop optimization, 239–244

array comparison, 243
arraylenth opcode, 244
Bogus class, 239–240
caching instance fields in local variables,

243–244
caching length in a local variable,

240–241
charAt() method, 241
charCounter() method, 239–240, 242
directly accessing character data, 241
faster loop, 241–242, 244
for loop, 240
immutable strings and, 240–241
indexOf() method, 242–243
isEqual() method, 243
length() method, 240
opcodes, 241
unrolling loops, 242–243
See also Application programming opti-

mization
Loopback interface, 113–114, 116–117
“Low true” pin interrupt, 220
ls (list) command, 33
LSI (large-scale integration) chips, 3–5

M
MAC id, 114
Mailhost IP address, 118, 123
main() method, 149–150, 176
Malloc (memory allocation operation), 233
MARK (binary one) bit, 52–53
Masters, 1-Wire adapters, 88
Measuring elapsed time program, 226–227
Memory

access modes, DataPort class, 187–188
blocks, 16
constrained environment, remote data

logger, 153
management subsystem, 7, 11, 15–17
map, 5–7, 184–185, 191
technology and application hardening,

249–250
See also Memory usage

Memory allocation operation (malloc), 233
Memory usage, 233–237

+ operator, 234
append() method, 234
displayRAM() method, 236
freeMemory() method, 235
garbage collector (gc) process, 16–17,

20–21, 234, 237
getFreeRAM() method, 235–236
heap sizes, 233
intDump() method, 236
malloc (memory allocation operation),

233
MemReporter program, 235–236
multi-thread/multi-process systems and,

234
new operator, 233
object creation and, 233
PrintStream, 236
profiling memory usage, 234–236
StringBuffers, 233–234, 236
TCP process and, 234
See also Application programming opti-

mization
MemoryBank class, 277–278
MemoryTester program, 196–198, 231
MemReporter program, 235–236
Message within an IP datagram, 131–132
Method invocations, expense of, 230–232

354 Index

Microcontrollers, 4–5, 7. See also Ports and
port pins

MiniBrowser program, 129–130
Modem control, 167, 169–175
ModemCommand class, 170–173
Module, ICMP, 112–113, 130
Multi-thread/multi-process systems

memory usage and, 234
slush command shell, 32

Multiple threads/processes and adapters, 95–
96

Mutual exclusion, 95–96

N
Native code, 184, 207
Native method interface (TNI), 11, 14
Native methods, 10–11, 14
Network I/O, 11, 17–18
Network parameters, setting, 117–124

com.dalsemi.tininet package, 12, 112,
117, 336–338

CommitException class, 120, 264
commitNetworkState() method, 119–120
committing static network parameters,

119–121
disableNetworkRestore() method, 120
domain name, 117
Domain Name System (DNS) time-out

value, 117
gateway (router) IP address, 38, 117, 123
getBootState() method, 120
getIPAddress() methods, 118
getNetworkCommitState() method, 119
host name, 118
HTTP proxy port/server, 118, 128–130
IP address, 117, 119
ipconfig (network configuration) com-

mand, 117, 120–121
loopback interface, 113–114, 116–117
mailhost IP address, 118, 123
NETWORK_CONFIGURATION_REST

ORED mask, 120
primary DNS address, 117
secondary DNS address, 117
setIPAddress() methods, 118
slush command shell for configuring,

36–39

subnet mask, 37, 117, 119, 123
TININet class, 112, 117–118, 336–338
TINIOS class, 120, 338–340
See also DHCP (Dynamic Host Configu-

ration Protocol); DNS (Domain Name
System); HTTP (HyperText Transfer
Protocol); ICMP (Internet Control
Message Protocol); Java Communica-
tions API (comm API); 1-Wire net-
work; PPP (Point-to-Point Protocol)
network; Serial communication appli-
cations; TCP/IP (Transmission Con-
trol Protocol/Internet Protocol)
network

Network server creation, 148–152
Network time server, 212–214
NETWORK_CONFIGURATION_RESTOR

ED mask, 120
NetworkMonitor class, 278
NetworkMonitorEvent class, 278–279
NetworkMonitorEventListener class, 279
new operator, 233
newInstance() method, 103
Non-network I/O, 11, 17–18
Nonvolatized static RAM, 4–5, 17
NoSuchPortException class, 71
Notification of interrupts, 221–224
notifyOn() method, 63–64
nslookup (lookup) command, 126
Null modems, 54–55, 73
NullInputStream class, 279
NullOutputStream class, 279
Numbers and names of ports, 200–201

O
Object

creation and memory usage, 233
finalization/serialization, 12–13

1-Wire network, 81–110
address discovery process, 84, 86–88
addressing phase of transaction, 84
broadcast (skip address) command, 88
chips, 88
com.dalsemi.onewire.utils package, 108,

258–259, 265, 278–279, 319, 321–324
compute() methods, 108–109
CRCCalculator program, 109–110

Index 355

Cyclic Redundancy Check (CRC) part of
address, 86, 108–110

data exchange phase of transaction, 84
data integrity, 108–110
debugging, 48
device discovery (address search), 86–87
device id part of address, 86
device selection (address match), 86–88

DS18S20 temperature sensor example,
85, 102

family code part of address, 86
“hard-wired” devices, 108
hardware configuration, 82
iButtons, 88
initialization phase of transaction, 84

OneWireIOException class, 97–99,
110, 318–319

open drain driven, 83
overdrive speed, 83
read data time slot, 83
regular speed, 83
reset sequence signal, 83
roaming devices, 98, 108
“selected” device, 84
signaling (waveforms), 82–84
temperature conversion example, 85
time slots, 83–84
transactions, 84–85
write 0 time slot, 83–84
write 1 time slot, 83–84
See also Adapters (1-Wire); Communica-

tion (1-Wire); Containers (1-Wire);
Remote data logger

OneWireAccessProvider class, 89, 279–280
OneWireContainer classes, 92–93, 102–104,

280–318
OneWireException class, 89, 96, 318
OneWireIOException class, 97–99, 110,

318–319
OneWireMonitor class, 319
OneWireMonitorEvent class, 319
OneWireMonitorEventListener class, 319
OneWireSensor class, 320
Opcodes, 241
Open drain driven devices, 83
open() method

Java Communications API (comm API),
58

PPP (Point-to-Point Protocol) daemon,
162

PPP (Point-to-Point Protocol) network,
142–143

OpenSource Project RXTX, 27
Opening a serial port, 29
Operating systems, 11, 15–18, 26
Optimization. See Application programming

optimization
Ordering of event listeners, 224
Organizationally Unique Identifier (OUI),

114–115
OTPMemoryBank class, 320
OUI (Organizationally Unique Identifier),

114–115
OutOfMemoryError, 153
OUTPUT_BUFFER_EMPTY event, 64–65
OutputStream object, 61, 228, 231
Overdrive speed, 1-Wire, 83
Overhead of containers, 96
OWFile class, 321–322
OWFileDescriptor class, 322
OWFileInputStream class, 322
OWFileOutputStream class, 323
Ownership

adapters, 95–96
communications ports, 58

OWPath class, 323
OWPathElement class, 324

P
PagedMemoryBank class, 324–325
PAP (Password Authentication Protocol),

140, 176
Parallel bus, 7, 182–185
Parallel I/O, 181–198

additional TTL I/O, 8, 189–196
address bus, 183
block move operations, 184
buffers, 182
chip enables (CEs), 183–186, 190
control signals, 183
data bus, 183
address decoder chips, 190–192
defined, 181
device reset (DRST), 184
don’t care bits, 192, 195

356 Index

examples, 189–198
expansion, 4–7
external device interface to bus, 182
external memory, reading/writing, 196–

198
memory map, 5–7, 184–185, 191

MemoryTester program, 196–198, 231
native code, 184
parallel bus, 7, 182–185
ParallelLoopBack program, 192–193
peripheral chip enables (PCEs), 7,

183–185, 194–195
ports and port pins, 185, 198
program store enable (PSEN), 184
read strobe (RD), 184
reading/writing external memory,

196–198
speed of data transfer, 187
swapping overhead, 184
TTL I/O, additional, 8, 189–196
write strobe (WR), 184
See also DataPort class

ParallelLoopBack program, 192–193
Parity checking, 58
Passive mode, 142
Password Authentication Protocol (PAP),

140, 176
Passwords, 32, 34, 37
PCEs (peripheral chip enables), 7, 183–185,

194–195
Performance

ports, 207–208
profiling, 225–227
See also Application programming opti-

mization
Peripheral chip enables (PCEs), 7, 183–185,

194–195
Peripheral devices, 4–7
Persistence storage, 249
Ping class, 325
Ping (ICMP echo request/reply), 37–38,

112–113, 116, 125
Pinger program, 134–137
pingNode() method, 130–131, 136
Pinout, 53–54
Point-to-Point Protocol. See PPP
Polling versus interrupts, 219–220

POR (power-on reset), 19
Port adapters, 95–96. See also Adapters

(1-Wire)
PortInUSee xception class, 58, 71
PortLister class, 57
Ports and port pins, 199–208

application programming and, 43
BitPort class, 43, 201–203, 207, 259–260
bitpos parameter, 203
BitTwiddler program, 204–206
Blinky program, 42–45, 200
byte-banging, 152, 207, 227–232
BytePort class, 206–208, 260
clear() method, 201–203
com.dalsemi.system package, 201, 206
creating additional outputs example,

204–206
defined, 7
external pins, 202–206
general purpose I/O, 200–201
IllegalAddressException class, 187,

203–204, 276
native code, 207
numbers and names of, 200–201
parallel I/O and, 185, 198
performance, 207–208
read() method, 207
readBit() method, 203
readLatch() method, 202–204
set() method, 201–203, 207
synthetic port pins, 202–206
write() method, 207
See also DataPort class; External inter-

rupt; Parallel I/O
PORT_UNREACHABLE message, 134
PotentiometerContainer class, 325–326
“Power fail” interrupt, 220
Power-on reset (POR), 19
PPP class, 140, 161–162, 326–327
PPP (Point-to-Point Protocol) daemon,

160–166
adding to remote data logger, 175–176
addInterface() method, 164
AUTHENTICATION_REQUESTED

event, 140, 143, 164
class, 140, 161–162, 326–327
CLOSED event, 144–145, 164, 167

Index 357

daemonError interface, 160, 175
DataLinkException class, 164, 169, 171–

172, 175
DataLinkListener interface, 160
Finite State Machine (FSM), 162–164
initializeLink() method, 164
isValidUser() method, 160, 164, 175–176
Line Control Protocol (LCP), 142, 164
open() method, 162
PPPDataLink interface, 162, 166
pppEvent program, 164–166
PPPEventListener interface, 140, 160,

162, 175
PPPModemLink class, 161–162,

169–170
PPPSerialLink class, 161–162, 167–169
startDaemon() method, 162–163
STARTING event, 143, 162, 164
STOPPED event, 141–144, 164
UP event, 144–145, 164–165
See also PPP (Point-to-Point Protocol)

data link; PPP (Point-to-Point Proto-
col) network; Remote data logger

PPP (Point-to-Point Protocol) data link,
166–176
Carrier Detect (CD) signal, 170
CLOSED event, 144–145, 164, 167
currentTimeMillis() method, 174
dataLinkError() method, 167, 170
DataLinkException class, 164, 169,

171–172, 175
DataLinkListener interface, 167
getPort() method, 166–167
initializeLink() method, 166–167, 169,

171–172
link errors, 167, 169–175
modem control, 167, 169–175
ModemCommand class, 170–173
PPPDataLink interface, 162, 166
PPPModemLink class, 161–162,

169–170
PPPSerialLink class, 161–162, 167–169
receiveMatch() method, 172
resetModem() method, 171–172
RTS/CTS (hardware flow control), 59–61,

63, 68, 168
sendCommand() method, 171–172

serial link, 167–169
serialEvent() method, 170
SerialPortEventListener interface, 64,

170
waitForMatch() method, 174–175
See also PPP (Point-to-Point Protocol)

daemon; PPP (Point-to-Point Proto-
col) network; Remote data logger

PPP (Point-to-Point Protocol) network,
139–145
addEventListener() method, 140
addInterface() method, 144
ADDR error, 144
API classes, 139–142
application layer protocol, 113–116
asynchronous control character map

(ACCM), 141
AUTH error, 144
authenticating peer node, 140–141
AUTHENTICATION_REQUESTED

event, 140, 143, 164
CLOSED event, 144–145, 164, 167
com.dalsemi.tininet.ppp package, 139,

326–328
down() method, 145
events, 142–145
getEventType() method, 140
getLastError() method, 144
getPeerID() method, 143
getPeerPassword() method, 143
IP datagram transportation, 139
ipconfig (network configuration) com-

mand, 144
Line Control Protocol (LCP), 142, 164
listeners, 140
login (authentication) information, 140
NONE error, 144
open() method, 142–143
passive mode, 142
Password Authentication Protocol (PAP),

140, 176
PPP class, 140
PPPEvent class, 144
PPPEvent interface, 142–143
pppEvent() method, 140
PPPEventListener interface, 140, 160,

162, 175

358 Index

REJECT error, 144
removeEventListener() method, 140
removeInterface() method, 145
runtime environment support of, 18
setACCM() method, 141
setAuthenticate() method, 140
setLocalAddress() method, 141
setPassive() method, 142
setPassword() method, 140
setRemoteAddress() method, 141
setUsername() method, 140
setXonXoffEscape() method, 141
STARTING event, 143, 162, 164
STOPPED event, 141–144, 164
TIME error, 144
UP event, 144–145, 164–165
up() method, 143
XON/XOFF (software flow control), 59–

60, 68, 141
See also PPP (Point-to-Point Protocol)

daemon; PPP (Point-to-Point Proto-
col) data link; Remote data logger

PPPDataLink interface, 162, 166
PPPEvent interface, 142–143
pppEvent() method, 140
pppEvent program, 164–166
PPPEventListener class, 328
PPPEventListener interface, 140, 160, 162,

175
PPPException class, 328
PPPModemLink class, 161–162, 169–170
PPPSerialLink class, 161–162, 167–169
Primary

Domain Name System (DNS) address,
117

JAVA application, 18–19, 21–22
Printstream, 236
Priority levels, external interrupt, 220
Process (ps) command, 44–45, 47
Process schedulers, 11, 15–16
Profiling

code, 225–227
memory usage, 234–236

Program store enable (PSEN), 184
Progress messages, 69
Protocol conversion (link) applications, 2–3
Proxy port/server setting, 118, 128–130

ps (process) command, 44–45, 47
PSEN (program store enable), 184
Public methods, 126
PushButton program, 222–224
putByte() method, 97–98

Q
Quick operations, measuring, 227

R
RamdomAccessFile, 153
RD (read strobe), 184
RD (Receive Data) signal, 53–54
Read data time slot, 83
read() method

DataPort class, 186–188, 198
I/O efficiency, 227–228, 230
ports and port pins, 207
serial communication applications, 72,

77–78
Read strobe (RD), 184
readBit() method, 203
ReadClockRaw program, 210–211
Reading/writing external memory, 196–198
readInt() method, 214
readLatch() method, 202–204
readLong() method, 214
README.txt file, 28
Real-time clock. See RTC
reboot() method versus, 219
Receive Data (RD) signal, 53–54
Receive time-outs and thresholds, 61–62, 65
receiveMatch() method, 172
Receivers, 52–53
Receiving

notification of interrupts, 221–224
serial data, 61–63

Reference implementation of TINI
(TBM390), 9

Reflection (omitted), 12
Register set, 210
Regular speed, 1-Wire, 83
REJECT error, 144
Remote data logger, 147–180

accept() method, 152

Index 359

adding Point-to-Point Protocol (PPP) to,
175–176

addInterface() method, 179
BufferedOutputStream, 151–152
byte-banging, 152, 207, 227–232
captureSample() method, 154–157

collecting data, 152–158
constructor, 154
currentTimeMillis() method, 156
data collection, 152–158
DataInputStream, 158
DataLogger class, 149–152, 175–176,

232
DataLoggerClient class, 158–160, 177
DataOutputStream, 151–152, 158
debug statements, 178
getInputStream() method, 158
getOutputStream() method, 151
HumidityLogger class, 149, 156–157
HumiditySample class, 155–156
HumiditySensor class, 152, 157
IOException class, 152

LoggingDaemon class, 153–154,
157–158

main() method, 149–150, 176
memory constrained environment of, 153
network server creation, 148–152
OutOfMemoryError, 153
overview, 147–148
RamdomAccessFile, 153
removeInterface() method, 179
run() method, 150–151, 154–155
sample client for testing, 158–160
ServerSocket object, 150–151
SocketOutputStream, 151–152
start() method, 150
storage of data samples, 153
testing application, 176–180
testing sample, 158–160
toString() method, 159
writeDouble() method, 158
writeLog() method, 152
writeLogEntry() method, 154–156, 158
writeLong() method, 158
See also 1-Wire network; PPP (Point-to-

Point Protocol) daemon; PPP (Point-
to-Point Protocol) data link; PPP

(Point-to-Point Protocol) network;
Serial communication applications;
TCP/IP (Transmission Control Proto-
col/Internet Protocol) network

removeEventListener() method, 63, 140,
221–222

removeInterface() method, 145, 179
removeInterfaceEntry() method, 114
Request To Send (RTS) signal, 54, 60, 63, 67
reset() method, 97–98
Reset sequence signal, 83
resetDefaultStreams() method, 250
resetModem() method, 171–172
Resets, 19
Resetting watchdog, 215–219
Resolver, 124
ResponseADPU class, 328
Reverse lookups, 124, 126
RFC868 (Time Protocol) server, 212–213
RI (Ring Indicator) signal, 54, 65
Roaming devices, 98, 108
“Rolled back” transactions, 20
Root account, 32, 37
Round-trip time (RTT), 131
Router (gateway) address setting, 38, 117,

123
RS-232-C standard, 51–52
RS232 serial port, 26
RTC (real-time clock), 209–214

Clock class, 210, 262–263
com.dalsemi.system package, 210–211
coordinated universal time (UTC), 212
Date class, 209–211
date command, 211–212, 214
default (local) time zone, 211
defined, 4–6, 209
getAvailableTableIDs() method, 211
getRTC() method, 210
getTimeZone() method, 211
Greenwich Mean Time (GMT), 211
instance fields, 210

java.util package, 209, 211
java.util.Date class, 209–214
millis parameter, 212
network time server, 212–214
ReadClockRaw program, 210–211
readInt() method, 214

360 Index

readLong() method, 214
register set, 210
SetClock program, 213–214
setRTC() method, 212
setTickCount() method, 212–214
setTimeZone() method, 211
setting date and time, 212
Time Protocol (RFC868) server, 212–213
“well-known port,” 212

RTS/CTS (hardware flow control), 59–61,
63, 68, 168

RTS (Request To Send) signal, 54, 60, 63, 67
RTT (round-trip time), 131
run() method

I/O efficiency, 228–232
Remote data logger, 150–151, 154–155
serial communication applications, 72,

76–77
“Runaway” code, 215
Running converted image, 42
Runtime binaries loading, 29–30
Runtime environment, 10–22

API portion of, 10–13
bootstrap loader, 18–20, 29, 31, 251

class loading, 13–14
classes specific to TINI, 10
com.dalsemi packages, 12, 255–340

command shell application, 16
convertor utility (TINIConvertor), 13
core Java packages, 11–12
creation of initial processes, 20
device driver initialization, 20

Ethernet support, 18
executable files in file system, 17
external reset, 19–20
file system integrity check, 20
file system manager, 17
garbage collector (gc) process, 16–17,

20–21, 234, 237
heap, 16–17, 20, 30–31
I/O management subsystem, 11, 15,

17–18
initializing runtime environment, 20–21,

29–31
integrity checks, 20
Inter-Process Communication (IPC), 16,

117

Interrupt Service Routine (ISR), 15, 220
Java core packages, 11–12
Java Developer’s Kit (JDK), 10, 27
Java Native Interface (JNI), 14
Java Virtual Machine (JVM), 10, 13–14,

17
JavaKit launching, 29–30
kernel processes, 18
limitations, 14
loading the runtime environment, 29–31
loadlibrary method, 14
memory blocks, 16
memory management subsystem, 7, 11,

15–17
native method interface (TNI), 11, 14
native methods, 10–11, 14
network I/O, 11, 17–18
non-network I/O, 11, 17–18
object finalization (omitted functionality),

13
object serialization (omitted functional-

ity), 12
opening a serial port, 29
operating systems, 11, 15–18, 26
Point-to-Point Protocol (PPP) support, 18
power-on reset (POR), 19
primary JAVA application, 18–19, 21–22
process schedulers, 11, 15–16
public static void main() method, 10
reflection (omitted), 12
resets, 19
“rolled back” transactions, 20
runtime binaries loading, 29–30
“sandbox” restrictions, 10
schedulers, 11, 15–16
serial port opening, 29
slush command shell and, 22
sweeper, 20–21
synchronization, 16
tagging memory, 17
thread execution limits, 14
thread schedulers, 11, 15–16
Transmission Control Protocol/Internet

Protocol (TCP/IP) stack, 11, 18
See also Application programming;

Application programming optimiza-
tion; External interrupt; Hardware;

Index 361

1-Wire network; Parallel I/O; Ports
and port pins; PPP (Point-to-Point
Protocol) network; Remote data log-
ger; RTC (Real-time clock); Serial
communication applications; Slush
command shell; TCP/IP (Transmission
Control Protocol/Internet Protocol)
network; TINI (Tiny InterNet Inter-
face) platform; Watchdog

RXTX Open Source Project, 27

S
Sample client for testing, 158–160
“Sandbox” restrictions, 10
Schedulers, 11, 15–16
SDK (Software Development Kit), 27–28
Searching for 1-Wire devices, 92–95
Secondary DNS address, 117
Secure Hash Algorithm (SHAI), 34
Security class, 328
“Selected” device, 84
sendCommand() method, 171–172
Sending serial data, 61–63
Sequential memory mode, 188
Serial communication applications, 51–80

BlackBox program, 54, 67, 73, 80
buffer sizes, 79–80

Carrier Detect (CD) signal, 53, 65, 67
Clear To Send (CTS) signal, 54, 60, 65,

67
collisions, 54
Common (Signal Ground) signal, 54
CommPort object, 71
contention, 54
Data Communications Equipment (DCE)

serial port, 52–53
data rates supported, 68
Data Set Ready (DSR) signal, 54, 65
Data Terminal Equipment (DTE) serial

port, 52–54
Data Terminal Ready (DTR) signal, 53,

63
DATA_AVAILABLE event, 64–65, 72
debugging, 48
defaults, 53, 67–69
E10 socket, 25–26, 53

enableSerialPort1() method, 68
Ethernet converter, 74–80
external serial ports configuration, 67–69
flow control (hardware handshake), 53,

59–63, 68, 80
foreground processes, 73
gender changer, 55
getCommPortIdentifier() method, 71
getEventType() method, 72
getOutputStream() method, 71
hardware support of, 7–8
internal serial ports configurations, 67–68

level translators, 52
MARK (binary one) bit, 52–53
NoSuchPortException class, 71
null modems, 54–55, 73
pinout, 53–54
PortInUSee xception class, 71
progress messages, 69
read() method, 72, 77–78
Receive Data (RD) signal, 53–54
receivers, 52–53
Request To Send (RTS) signal, 54, 60, 63,

67
Ring Indicator (RI) signal, 54, 65
RS-232-C standard, 51–52
run() method, 72, 76–77
serial port events, 63–67
serial port opening, 29
serial ports, 56–59, 67–69
serialEvent program, 72–73
SerialPort object, 56, 58, 60–61, 64, 66,

71
SerialPortEvent object, 64–65, 72
SerialReader program, 76–78, 80
SerialToEthernet program, 74–80, 231
SerialWriter program, 76–79
setExternalSerialPortAddress() method,

69
setExternalSerialPortEnable() method,

68–69
setInputBufferSize() method, 79
setRawMode() method, 72
setRTSCTSFlowControlEnable() method,

68
signal ground, 52, 54
SPACE (binary zero) bit, 52–53

362 Index

switching region, 52–53
System.in, 72–73
terminal example, 69–73
test configuration, 55
throughput, 79–80
TiniTerm program, 69–73, 231
Transistor Transistor Logic (TTL), 52
Transmit Data (TD) signal, 53–54
Universal Asynchronous Receiver Trans-

mitter (UART), 8, 52, 67
UnsupportedCommOperationException

class, 71
voltage levels, 52–53
See also Application programming; Java

Communications API (comm API);
Remote data logger

Serial link, 167–169
Serial port events, 63–67
Serial port opening, 29
Serial ports, 56–59, 67–69
serial0 and slush, 69
serialEvent() method, 64, 170
serialEvent program, 72–73
SerialInputStream class, 328–329
SerialOutputStream class, 329
SerialPort object, 56, 58, 60–61, 64, 66, 71
SerialPortEvent object, 64–65, 72
SerialPortEventListener interface, 64, 170
SerialReader program, 76–78, 80
SerialServer class, 329
SerialSession class, 329
SerialToEthernet program, 74–80, 231
SerialWriter program, 76–79
Server class, 329–330
ServerSocket object, 128, 150–151
serviceRequests() method, 128
Session class, 330
set() method, 43, 201–203, 207
setACCM() method, 141
setAddress() method, 186–188
setAuthenticate() method, 140
SetClock program, 213–214
setDNSTimeout() method, 126
setDomainName() method, 125
setDTR() method, 63
setExternalSerialPortAddress() method, 69
setExternalSerialPortEnable() method,

68–69

setFIFOMode() method, 188, 196
setFlowControlMode() method, 60–61
setHTTPRoot() method, 128
setIndexPage() method, 128
setInputBufferSize() method, 62, 79
setIPAddress() methods, 118
setLocalAddress() method, 141
setLong() method, 247
setPassive() method, 142
setPassword() method, 140
SetProxyServer() method, 129
setRawMode() method, 72
setRemoteAddress() method, 141
setRTC() method, 212
setRTS() method, 63
setRTSCTSFlowControlEnable() method, 68
setSearchAllDevices() method, 95
setSearchOnlyAlarmingDevices() method,

95
setSerialPortParams() method, 58–59
setStretchCycles() method, 189
setTickCount() method, 212–214
setTimeZone() method, 211
Setting date and time, 212
setTrigger() method, 221
setupContainer() methods, 104
setUsername() method, 140
setWatchdogTimeout() method, 216
setXonXoffEscape() method, 141
SHA1 (Secure Hash Algorithm), 34
SHAiButton class, 330–332
Sharing a common interrupt source, 224
Shift operations, 245
Signal ground, 52, 54
Signaling (waveforms), 82–84
Simple Network Management Protocol

(SNMP), 112
SimpleEthernetAddressReader program, 115
Skip address (broadcast) command, 88
Slush command shell, 31–39

cat command, 34, 48
cd (change directory) command, 33, 35
configuring the network, 36–39
date command, 211–212, 214
defaults, user accounts, 32
defined, 31–32
Domain Name Server (DNS) address set-

ting, 38

Index 363

Dynamic Host Configuration Protocol
(DHCP), 37

Ethernet address, 36
exit command, 37
file system exploration, 33–35
gateway (router) address setting, 38
help command, 35–36
IP address setting, 37
ipconfig (network configuration) com-

mand, 36–39, 100, 102, 113–114, 117,
120–122, 144, 178

java command, 35
logging on, 32–33
ls (list) command, 33
memory usage, 234
multi-threaded, multi-user system, 32
network configuration, 36–39
nslookup (lookup) command, 126
passwords, 32, 34, 37
Ping (ICMP echo request/reply), 37–38,

116
primary Java application and, 22
root account, 32, 37
runtime environment and, 22
Secure Hash Algorithm (SHA1), 34
serial0 and, 69
slush.tbin file, 28–29
starting a new session, 32–33
subnet mask setting, 37
“super user,” 32
Telnet session, 37–39
testing network settings, 37–38
tini.passwd file, 34
tini.startup file, 34–35
user accounts defaults, 32

slush.tbin file, 28–29
SNMP (Simple Network Management Proto-

col), 112
SocketInputStream, 228, 230
SocketOutputStream, 151–152, 228–230
Software. See Application programming
Software and watchdog, 215–216
Software Development Kit (SDK), 27–28
Software flow control (XON/XOFF), 59–60,

68, 141
Solaris, 26–27
Source files creation, 39–40
SPACE (binary zero) bit, 52–53

Speed of data transfer, 187
SRAM (static RAM) memory, 4–5, 249
start() method, 123, 150
startDaemon() method, 162–163
Starting

applications, 251–252
new session, 32–33

STARTING event, 143, 162, 164
Static RAM (SRAM) memory, 4–5, 249
Status reporting. See Remote data logger
Stop bits, 58
stopDHCPThread() method, 123–124
STOPPED event, 141–144, 164
Storage of data samples, 153
Stretch cycles, 188–189
StringBuffers, 233–234, 236
Subnet mask, 37, 117, 119, 123
Sun Microsystems, 10, 27, 56
“Super user,” 32
Swapping overhead, 184
Sweeper, 20–21
SwitchContainer class, 332
Switching region, 52–53
Synchronization, 16
Synchronous serial protocol support, 8
Synthetic port pins, 202–206
System component of TBM390, 9
System resources. See External interrupt;

RTC (Real-time clock); Watchdog
System.in, 72–73
SystemInputStream class, 332–333
SystemPrintStream class, 333–334

T
Tagging memory, 17
targetAllFamilies() method, 95
targetFamily() method, 94, 107
TBM390 (TINI Board Model 390), 9, 24
TCP/IP (Transmission Control Protocol/

Internet Protocol) network, 111–137
addInterfaceEntry() method, 114
com.dalsemi.shell.server.ftp package,

112, 274
com.dalsemi.shell.server.telnet package,

112, 334
com.dalsemi.tininet package, 12, 112,

117, 336–338

364 Index

debugging applications, 48
Ethernet, 113–115
File Transfer Protocol (FTP), 112–113
getEthernetAddress() method, 115
Inter-Process Communication (IPC), 16,

117
IP datagram transmissions, 116
ipconfig (network configuration) com-

mand, 113–114, 117, 120–122
Local Area Networks (LANs), 114
MAC id, 114
memory usage, 234
Organizationally Unique Identifier (OUI),

114–115
Ping (ICMP echo request/reply), 37–38,

112–113, 116, 125
removeInterfaceEntry() method, 114
Simple Network Management Protocol

(SNMP), 112
SimpleEthernetAddressReader program,

115
stack, 11, 18
Telnet, 112–113
TININet class, 112, 117–118, 336–338
See also DNS (Domain Name System);

DHCP (Dynamic Host Configuration
Protocol); HTTP (HyperText Transfer
Protocol); ICMP (Internet Control
Message Protocol); Network parame-
ters, setting; PPP (Point-to-Point Pro-
tocol) network; Remote data logger

TD (Transmit Data) signal, 53–54
Telnet session, 37–39, 112–113
TelnetServer class, 334
TelnetSession class, 334
Temperature conversion example, 85
TemperatureContainer class, 334–335
Terminal example, 69–73
Testing

application programming, debugging,
48–49

network settings, 37–38
remote data logger application, 176–180
sample for remote data logger, 158–160
serial communication applications, 55

Thermocron iButton, 93
Thread execution limits, 14

Thread schedulers, 11, 15–16
Throughput, 79–80, 229
TIME error, 144
Time-out values, 216–217, 219
Time Protocol (RFC868) server, 212–213
Time slots, 83–84
TIME_EXCEEDED message, 133–134, 136
TINI Board Model 390 (TBM390), 9, 24
TINI (Tiny InterNet Interface) platform,

1–39
development platform requirements,

26–28
environmental monitors applications, 2
human interfaces, 3
industrial controls applications, 2
operating systems, 11, 15–18, 26
protocol conversion (link) applications,

2–3
README.txt file, 28
RS232 serial port, 26
slush.tbin file, 28–29
Software Development Kit (SDK), 27–28
tiniclasses.jar file, 28
tini.db file, 28
tini.jar file, 28
tini.tbin file, 28–29
Web-based equipment monitoring and

control applications, 2
See also Application programming;

Application programming optimiza-
tion; External interrupt; Hardware; 1-
Wire network; Parallel I/O; Ports and
port pins; PPP (Point-to-Point Proto-
col) network; Remote data logger;
RTC (Real-time clock); Runtime envi-
ronment; Serial communication appli-
cations; Slush command shell; TCP/IP
(Transmission Control Protocol/Inter-
net Protocol) network; Watchdog

tiniclasses.jar file, 28
TINIConvertor, 40–41
TINIConvertor (convertor utility), 13
tini.db file, 28
TINIExternalAdapter class, 89–90, 92, 335
TINIInternalAdapter class, 89, 92, 336
tini.jar file, 28
TININet class, 112, 117–118, 336–338

Index 365

TINIOS class, 120, 216, 219, 225, 251–252,
338–340

TINIShell class, 340
tini.startup file, 34–35
tini.tbin file, 28–29
TiniTerm program, 69–73, 231
Tiny InterNet Interface. See TINI
Transactions and containers, 84–85
Transistor Transistor Logic (TTL), 52
Transmission Control Protocol/Internet Pro-

tocol. See TCP/IP
Transmit Data (TD) signal, 53–54
Triggering, 220–221
TTL field, ICMP, 133–134, 136
TTL I/O, 8, 189–196
TTL (Transistor Transistor Logic), 52
TYPE byte, ICMP, 132–133

U
UART (Universal Asynchronous Receiver

Transmitter), 8, 52, 67
UnknownHostException class, 126–127
Unrolling loops, 242–243
UnsupportedCommOperationException

class, 59, 61–62, 71
UP event, 144–145, 164–165
up() method, 143
uptimeMillis() method, 225–226
URL and HTTP, 128–130
User accounts defaults, 32
UTC (coordinated universal time), 212

V
Voltage levels, 52–53

W
waitForMatch() method, 174–175
Watchdog, 215–219

com.dalsemi.system package, 216

defined, 209
feedWatchdog() method, 216–217
“hard” reset countdown, 215
hardware watchdog, 216
“hung” code, 215–216
“knocking back,” 216, 219
optimization for, 252
reboot() method versus, 219
resetting, 215–219
“runaway” code, 215
setWatchdogTimeout() method, 216
software problems, 215
software watchdog, 216
starting, 252
time-out values, 216–217, 219
TINIOS class, 216, 219, 338–340
Watchdog Timer program, 217–219

Waveforms (signaling), 82–84
Web-based equipment monitoring and con-

trol applications, 2
Web root, 128
Web server example, 45–48
“Well-known port,” 212
Win32, 26–27
WR (write strobe), 184
Write 1 time slot, 83–84
write() method

DataPort class, 186–188, 198
I/O efficiency, 227–229, 232
ports and port pins, 207

Write strobe (WR), 184
writeDouble() method, 158
writeLog() method, 152
writeLogEntry() method, 154–156,

158
writeLong() method, 158

X
XON/XOFF (software flow control), 59–60,

68, 141

