
[1] [] 1 [Generated on Tue Dec 14 09:10:53 2004 for DS80C400CLibraries by

Doxygen ] []Generated on Tue Dec 14 09:10:53 2004 for DS80C400CLibraries by Doxy-

gen

[1] [] 1 [Generated on Tue Dec 14 09:10:53 2004 for DS80C400CLibraries by Doxygen ]
[]Generated on Tue Dec 14 09:10:53 2004 for DS80C400CLibraries by Doxygen

1



DS80C400CLibraries Reference Manual
1

Generated by Doxygen 1.3-rc3

Tue Dec 14 09:10:48 2004



Contents

1 DS80C400CLibraries Data Structure Index 1

2 DS80C400CLibraries File Index 2

3 DS80C400CLibraries Data Structure Documentation 4

4 DS80C400CLibraries File Documentation 26

1 DS80C400CLibraries Data Structure Index

1.1 DS80C400CLibraries Data Structures

Here are the data structures with brief descriptions:

hostinfo 4

http request 5

http response 5

http session 6

http variable 7

mailheader 7

sbufhdr 8

type1msg 9

type1msghdr 10

type2msg 10

type2msghdr 11

type3msg 12

type3msghdr 12

userheader 13

dirent 14

1



file structure 14

hostent 15

in6 addr 16

in addr 16

mailhostent 17

netstat arp entry 17

netstat tcp socket 18

netstat udp entry 21

sockaddr 22

sockaddr in 22

TCB 23

TIME 24

tm 25

2 DS80C400CLibraries File Index

2.1 DS80C400CLibraries File List

Here is a list of all documented files with brief descriptions:

dirent.h (Functions for directory listing) 26

rom400 dhcp.h (DHCP functions in the DS80C400 ROM) 30

rom400 err.h (Error codes used by functions in the DS80C400 ROM) 37

rom400 flash.h(Flash programming functions for the TINIm400 module) 39

rom400 http.h (Http Server functions in the DS80C400 ROM) 41

rom400 init.h (ROM Initialization functions in the DS80C400 ROM) 59

rom400 kmem.h (Kernel Memory initialization functions for the
DS80C400 ROM) 73

2



rom400 mem.h(Memory management functions in the DS80C400 ROM) 76

rom400 netif.h (Network interface library for the DS80C400) 80

rom400 netstat.h(Network statistics library for the DS80C400) 83

rom400 ow.h (Raw 1-Wire functions in the DS80C400 ROM) 88

rom400 rarp.h (RARP library for the DS80C400) 92

rom400 sock.h(Socket functions in the DS80C400 ROM) 93

rom400 task.h (Process scheduler functions in the DS80C400 ROM) 133

rom400 tftp.h (TFTP Client functions in the DS80C400 ROM) 150

rom400 useriopoll.h (User IO Poll registration routines for the DS80C400
ROM) 154

rom400 util.h (Utility functions in the DS80C400 ROM) 158

rom400 xnetstack.h(Enhanced network stack for the DS80C400 ROM) 168

stdio.h (File and other IO functions) 171

tini400 crypt.h (SHA-1 and MD4 functions for the DS80C400) 198

tini400 debugport.h(Functions supporting the debug port on the TINIs400
module) 200

tini400 dns.h(DNS Client functions for the DS80C400 ROM) 202

tini400 ftpclient.h (FTP Client functions for DS80C400) 208

tini400 isr.h (Interrupt Service Routine installation functions) 217

tini400 mime.h (MIME Library functions for DS80C400 processor) 223

tini400 ntlm.h (NTLM Library functions for DS80C400 processor) 225

tini400 smtp.h (SMTP Library functions for DS80C400 processor) 229

tini400 spi.h (SPI library for the TINIm400 module) 236

tini400 time.h (Date/Time utilities, tailored for the DS80C400 C Libraries)241

tini400 xnetboot.h(External NetBoot library for the DS80C400) 244

tini i2c.h (I2C function library) 246

3



tini rtc.h (RTC function library) 250

3 DS80C400CLibraries Data Structure Documenta-
tion

3.1 hostinfo Struct Reference

#include <tini400 smtp.h >

3.1.1 Detailed Description

Structure for host configuration information that has to be registered with smtp library

Data Fields

• longdnsprimary address

primary dns server IP address

• longdnssecondaryaddress

secondary dns server IP address

• longdns timeout

dns server response timeout

• longmailqueuetimeinterval

interval time before resend queued mails

• longsmtphost

IP address of SMTP host,if IP address is zero, smtp library look for IP address through
DNS library calls.

• char∗ localhostname

char pointer that holds local host name value

The documentation for this struct was generated from the following file:

• tini400 smtp.h

4



3.2 http request Struct Reference

#include <rom400 http.h >

3.2.1 Detailed Description

Structure for http request

Data Fields

• charpath[HTTP MAX URL]

URL path name.

• charrequestmethod

Request method flag.

• char∗ querystring

Query string value passed in http request.

• char∗ req headers

string holds http request headers

• char∗ messagebody

message body value passed in http request

• http variable∗ varlist

Http variable list.

The documentation for this struct was generated from the following file:

• rom400http.h

3.3 http response Struct Reference

#include <rom400 http.h >

3.3.1 Detailed Description

Structure for http response

5



Data Fields

• char∗ resheaders

string holds http response headers

• charresponse[HTTP MAX BUFSIZE]

response code and string

• charcontenttype[HTTP MAX BUFSIZE]

content type of response message

• int contentlength

length of response message body

The documentation for this struct was generated from the following file:

• rom400http.h

3.4 http session Struct Reference

#include <rom400 http.h >

3.4.1 Detailed Description

Structure for http session

Data Fields

• int sockhandler

socket handler for client connection

• sockaddraddress

client socket address

• http requestrequest

http request

• http responseresponse

http response

6



The documentation for this struct was generated from the following file:

• rom400http.h

3.5 http variable Struct Reference

#include <rom400 http.h >

3.5.1 Detailed Description

Structure for http variable names and values

Data Fields

• char∗ var name

http variable name

• char∗ value

http variable value

• http variable∗ next

next http variable node address, NULL value to indicate end of the list

The documentation for this struct was generated from the following file:

• rom400http.h

3.6 mailheader Struct Reference

#include <tini400 smtp.h >

3.6.1 Detailed Description

Structure for standard mail header holds standard mail header values

Data Fields

• char∗ from id

string contains from id mailheader value

7



• char∗ sendername

string contains sendername mailheader value

• char∗ to id

string contains toid mailheader value

• char∗ recipientname

string contains recipientname mailheader value

• char∗ subject

string contains subject mailheader value

• char∗ reply to id

string contains replyto id mailheader value

• char∗ cc id

string contains ccid mailheader value

• char∗ bcc id

string contains bccid mailheader value

• char∗ errorsto id

string contains errorsto id mailheader value

• char∗ date

string contains date mailheader value

The documentation for this struct was generated from the following file:

• tini400 smtp.h

3.7 sbufhdr Struct Reference

#include <tini400 ntlm.h >

3.7.1 Detailed Description

Structure for security buffer header

8



Data Fields

• unsigned intlen

length of the data

• unsigned intbuflen

length of the security buffer

• unsigned longstart loc

starting address of the data

The documentation for this struct was generated from the following file:

• tini400 ntlm.h

3.8 type1msg Struct Reference

#include <tini400 ntlm.h >

3.8.1 Detailed Description

Structure for type1 message

Data Fields

• type1msghdrt1hdr

type 1 message header

• unsigned charbuf [1024]

security buffer

• unsigned intbuf index

security buffer length

The documentation for this struct was generated from the following file:

• tini400 ntlm.h

9



3.9 type1msghdr Struct Reference

#include <tini400 ntlm.h >

3.9.1 Detailed Description

Structure for type1 message header

Data Fields

• charsignature[8]

char array to store NTLM signature

• unsigned longmsgtype

NTLM Message Type.

• unsigned longflags

The NTLM flags.

• sbufhdrusr

user name security buffer header

• sbufhdrdomain

domain name security buffer header

The documentation for this struct was generated from the following file:

• tini400 ntlm.h

3.10 type2msg Struct Reference

#include <tini400 ntlm.h >

3.10.1 Detailed Description

Structure for type2 message

10



Data Fields

• type2msghdrt2hdr

char array to store NTLM signature

• unsigned charbuf [1024]

security buffer

• unsigned intbuf index

security buffer length

The documentation for this struct was generated from the following file:

• tini400 ntlm.h

3.11 type2msghdr Struct Reference

#include <tini400 ntlm.h >

3.11.1 Detailed Description

Structure for type2 message header

Data Fields

• charsignature[8]

char array to store NTLM signature

• unsigned longmsgtype

The NTLM message type.

• sbufhdrdomain

domain name security buffer header

• unsigned longflags

The NTLM flags.

• unsigned charchallenge[8]

the 8 byte server challenge

11



• unsigned charcontext[8]

reserved for future use

• sbufhdrtargetinfo

target information.

The documentation for this struct was generated from the following file:

• tini400 ntlm.h

3.12 type3msg Struct Reference

#include <tini400 ntlm.h >

3.12.1 Detailed Description

Structure for type3 message

Data Fields

• type3msghdrt3hdr

char array to store NTLM signature

• unsigned charbuf [1024]

security buffer

• unsigned intbuf index

security buffer length

The documentation for this struct was generated from the following file:

• tini400 ntlm.h

3.13 type3msghdr Struct Reference

#include <tini400 ntlm.h >

3.13.1 Detailed Description

Structure for type3 message header

12



Data Fields

• charsignature[8]

char array to store NTLM signature

• unsigned longmsgtype

The NTLM message type.

• sbufhdrlmresponse

lan manager response

• sbufhdrntlmresponse

network lan manager response

• sbufhdrdomain

domain name buffer header

• sbufhdrusr

user name buffer header

• sbufhdrworkstation

workstation name buffer header

• sbufhdrsession

session buffer header.

• unsigned longflags

The NTLM flags.

The documentation for this struct was generated from the following file:

• tini400 ntlm.h

3.14 userheader Struct Reference

#include <tini400 smtp.h >

3.14.1 Detailed Description

Structure for user defined mail header contains user header name list and user header
value list

13



Data Fields

• char∗ headernamelist[SMTP MAXUSERHEADERSIZE]

array of string contains user mail header name list

• char∗ headervaluelist[SMTP MAXUSERHEADERSIZE]

array of string contains user mail header value list

The documentation for this struct was generated from the following file:

• tini400 smtp.h

3.15 dirent Struct Reference

#include <dirent.h >

3.15.1 Detailed Description

Structure used to return the name of a directory listing entry.

Data Fields

• unsigned longd ino

File serial number.

• chard name[256]

Name of the file.

The documentation for this struct was generated from the following file:

• dirent.h

3.16 file structure Struct Reference

#include <stdio.h >

3.16.1 Detailed Description

Structure for FILE object. Includes file flags, last error code, file type, and a pointer to
the file descriptor.

14



Data Fields

• int flags

Flags for the file. Can denote the EOF is reached, or that file is temporary.

• int error

Last error code for the file.

• int type

File type. currently on theFILE TYPETINIFSis supported.

• void ∗ fd

Pointer to the file descriptor, used internally by the TINI File System.

• unsigned char∗ fnamecopy

Copy of the name of the file used internally. Destroyed onfclose.

The documentation for this struct was generated from the following file:

• stdio.h

3.17 hostent Struct Reference

#include <tini400 dns.h >

3.17.1 Detailed Description

Structure for host information that will be returned by the DNS client functions.

Data Fields

• char∗ h name

String with the official name of the host.

• char∗∗ h aliases

String with alternative host names.

• int h addrtype

Address type (AF INET or AF INET6 ).

15



• int h length

Length of the address.

• char∗∗ h addr list

List of network addresses, each ofh lengthbytes. The list is null-terminated.

The documentation for this struct was generated from the following file:

• tini400 dns.h

3.18 in6 addr Struct Reference

#include <rom400 sock.h >

3.18.1 Detailed Description

Structure representing a 16 byte IPv6 address.

Data Fields

• unsigned chars6 addr[16]

IPv6 compatible address.

The documentation for this struct was generated from the following file:

• rom400sock.h

3.19 in addr Struct Reference

#include <rom400 sock.h >

3.19.1 Detailed Description

Structure representing a 4 byte IPv4 address, for use with thesockaddrin structure.

16



Data Fields

• unsigned longs addr

Address as an unsigned long (32 bits).

The documentation for this struct was generated from the following file:

• rom400sock.h

3.20 mailhostent Struct Reference

#include <tini400 dns.h >

3.20.1 Detailed Description

Structure for host information requested with an MX record type.

See also:
dnsgetmx

Data Fields

• char∗ h name

String with the name of a mail host.

• int preference

Preference value reported by the DNS query.

The documentation for this struct was generated from the following file:

• tini400 dns.h

3.21 netstatarp entry Struct Reference

#include <rom400 netstat.h >

3.21.1 Detailed Description

Structure for a single ARP entry. The netstatget arp table function returns a pointer to
a table that contains NETSTATARP ENTRIES of this structure. Each entry maps an
Ethernet MAC address to an IPv4 address.

17



Data Fields

• unsigned charflags

Flags: NETSTATARPUSED, NETSTATARPREPLYPENDING or NETSTAT-
ARPSTATIC.

• unsigned charttl

Time to live for this entry (in ticks).

• unsigned charmac[6]

MAC address associated with this entry.

• unsigned charip [4]

IPv4 address for the MAC address.

The documentation for this struct was generated from the following file:

• rom400netstat.h

3.22 netstattcp socket Struct Reference

#include <rom400 netstat.h >

3.22.1 Detailed Description

Structure for a TCP socket. The netstatget tcp socket function returns a pointer to this
structure for a given socket number (up toNETSTAT TCP MAXSOCKETS).

Data Fields

• unsigned charflags

Flags: NETSTATTCP OUTPUTNEEDEDMASKto NETSTATTCP SENDFIN -
MASK.

• unsigned charstate

Socket state – see NETSTATTCP STATExxx (e.g. NETSTATTCP STATE-
CLOSED).

• unsigned charserversock

Server socket number (only valid for server).

18



• unsigned charack timer

Timer for delayed ACKs.

• unsigned shortremoteport

Remote port (if not a server socket).

• unsigned charremoteaddr[16]

Remote IP address (if not a server socket).

• unsigned shortlocal port

Local port.

• unsigned charlocal addr[16]

Local IP address (may be the wildcard address 0).

• unsigned longsequencenum

Current TCP sequence number.

• unsigned longack num

Last ACK number.

• unsigned shortinput retrieveptr

Tail pointer to input queue.

• unsigned shortinput storeptr

Head pointer to input queue.

• unsigned charinput buffer hpp[5]

Input queue.

• unsigned shortoutput retrieveptr

Tail pointer to output queue.

• unsigned shortoutput storeptr

Head pointer to output queue.

• unsigned charoutputbuffer hpp[5]

Output queue.

• unsigned shortreceiverwin size

Receiver’s TCP windows size.

19



• unsigned shortsenderwin size

Sender’s TCP window size.

• unsigned shortreceivermss

Maximum segment size of receiver.

• unsigned shortsock

Socket number.

• unsigned longlast ack received

Largest (usually last) ACK.

• unsigned shortoutputack ptr

Pointer to last acknowledged byte.

• unsigned charreloadretry min

Lower bound on the retry timer reload.

• unsigned charretry timer [2]

Retry timer (one byte counter with overflow bit).

• unsigned charretry flags

(Reserved/unused)

• unsigned charretry count

Number of times the last segment has been retried.

• unsigned charretry timer reload

Start value for the retry timer reload.

• unsigned shortdeathtimer

Time until a forced close of the connection.

• unsigned charoptions

TCP option flags – see NETSTATTCP OPTIONxxx (e.g.NETSTATTCP OPTION-
NAGLEENABLEDMASK).

• unsigned charunackedsegs

Number of unacknowledged segments.

• unsigned charmax unackedsegs

Maximum number of unacknowledged segments.

20



• unsigned charpersisttimer

TCP persist timer.

• unsigned charpersisttimer cap

Current cap for TCP persist timer.

• unsigned shortsendmss

Maximum segment size for sending.

The documentation for this struct was generated from the following file:

• rom400netstat.h

3.23 netstatudp entry Struct Reference

#include <rom400 netstat.h >

3.23.1 Detailed Description

Structure for a single UDP port table entry. The netstatget udp table function returns
a pointer to a table that containsNETSTAT UDP ENTRIESof this structure.

Data Fields

• unsigned charflags

Flags: NETSTATUDP USED.

• unsigned shortport

Port number for this entry.

• unsigned charqueuehpp[5]

Incoming packet queue for this port.

• unsigned charreserved

(Reserved)

The documentation for this struct was generated from the following file:

• rom400netstat.h

21



3.24 sockaddr Struct Reference

#include <rom400 sock.h >

3.24.1 Detailed Description

Structure for an IP address. For a normal, IPv4 (4 byte) address, set the address in
sin addr[12,13,14,15], with the most significant byte at sinaddr[12]. Notice the 3 byte
bogusptr to deal with the TNI native interface overhead.

Data Fields

• unsigned charbogusptr [3]

Overhead for TNI native interface.

• unsigned charsin addr[16]

IP address. IPv4 address is in sinaddr[12-15] with MSB at sinaddr[12].

• unsigned intsin port

16 bit port number for the socket.

• unsigned charsin family

Ignored by DS80C400 implementation.

The documentation for this struct was generated from the following file:

• rom400sock.h

3.25 sockaddrin Struct Reference

#include <rom400 sock.h >

3.25.1 Detailed Description

Alternate structure for an IP address. For a normal, IPv4 (4 byte) address, set the
address in sinaddr.saddr, and set sinzero to all 0’s. Notice the 3 bytebogusptr to
deal with the TNI native interface overhead.

22



Data Fields

• unsigned charbogusptr [3]

Overhead for TNI native interface.

• unsigned charsin zero[12]

Zeroes in IP address due to IPv6 support.

• in addrsin addr

IPv4 address structure.

• unsigned intsin port

16 bit port number for the socket.

• unsigned charsin family

Ignored by DS80C400 implementation.

The documentation for this struct was generated from the following file:

• rom400sock.h

3.26 TCB Struct Reference

#include <rom400 task.h >

3.26.1 Detailed Description

Task control buffer.

Data Fields

• unsigned charPriority

Priority of the task.

• unsigned charID

ID of the task.

• void ∗ Next

Next task in the queue.

23



• unsigned charFlags

Flags for the task.

• TIME WakeupTime

Time that the task is scheduled to wake from a sleep.

• unsigned intStateSize

Size of the saved state for the task.

• void ∗ StatePtr

Pointer to the saved state for the task.

The documentation for this struct was generated from the following file:

• rom400task.h

3.27 TIME Struct Reference

#include <rom400 task.h >

3.27.1 Detailed Description

Structure to be used when handling the DS80C400’s 5 byte time values.

See also:
taskgettimemillis

Data Fields

• unsigned charmsb

Most significatnt byte of the time stamp. The Keil compiler does not have data types
longer than 4 bytes.

• unsigned longmillis

The lower 4 bytes of a DS80C400 time stamp (in milliseconds). This will cover up to
49.7 days.

The documentation for this struct was generated from the following file:

• rom400task.h

24



3.28 tm Struct Reference

#include <tini400 time.h >

3.28.1 Detailed Description

Structure for calendar time. Note that the computation of these values depends on the
time base year set by thetime settimebasefunction.

Data Fields

• int tm sec

Seconds after the minute (0..59).

• int tm min

Minutes after the hour (0..59).

• int tm hour

Hours since midnight (0..23).

• int tm mday

Day of the month (1..31).

• int tm mon

Months since January (0..11).

• int tm year

Year.

• int tm wday

Days since Sunday (0..6).

• int tm yday

Days since January 1 (0..365).

• int tm isdst

Daylight savings time flag, currently not supported.

The documentation for this struct was generated from the following file:

• tini400 time.h

25



4 DS80C400CLibraries File Documentation

4.1 dirent.h File Reference

4.1.1 Detailed Description

Functions for directory listing.

This library contains functions that allow applications to list the contents of a directory.
To use this library, the file system must also be installed and initialized.

Note that not all of the traditionaldirent functions are implemented.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
Some functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Data Structures

• structdirent

Defines

• #defineROM400DIRENT VERSION2

Typedefs

• typedef unsigned char∗ DIR

Functions

• int closedir(DIR ∗dir)

Close a directory stream.

• DIR ∗ opendir(const char∗name)

Open a directory stream.

• dirent∗ readdir(DIR ∗dir)

Read a directory entry from a directory stream.

26

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• void rewinddir(DIR ∗dir)

Resets the directory stream.

• void seekdir(DIR ∗dir, long int ptr)

Sets the directory stream location.

• long int telldir (DIR ∗dir)

Returns the current location in the directory stream.

• unsigned intdirent version(void)

Returns the version number of this DIRENT library.

4.1.2 Define Documentation

4.1.2.1 #define ROM400DIRENT VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thedirent versionfunction.

See also:
dirent version

4.1.3 Typedef Documentation

4.1.3.1 typedef unsigned char∗ DIR

Type definition for a directory structure. This object must not be altered by the appli-
cation during use. Make sure to call theclosedirfunction when finished with any DIR
object.

4.1.4 Function Documentation

4.1.4.1 int closedir (DIR ∗ dir)

Close a directory stream.

Closes the directory streamdir , and frees the resources allocated to it.

Parameters:
dir Directory resource to free.

Returns:
0 on success, non-zero if the directory could not be closed.

27



See also:
opendir

4.1.4.2 unsigned int direntversion (void)

Returns the version number of this DIRENT library.

Returns:
Version number of this DIRENT library.

4.1.4.3 DIR∗ opendir (const char∗ name)

Open a directory stream.

Opens a directory stream for the directoryname . The argumentname should not
have leading or trailing slashes. To open the root directory, use the empty string
(opendir(””); ).

Parameters:
name Name of the directory to open

Returns:
Pointer to a directory stream object, or NULL if the directory could not be found.

See also:
closedir

4.1.4.4 structdirent∗ readdir (DIR ∗ dir)

Read a directory entry from a directory stream.

Reads the current directory entry from the directory streamdir . This function also
increments the internal stream counter, so the next call toreaddir will read the next
directory entry.

Before using the returned file name, callfexiststo make sure the file still exists. It could
have been deleted between the time the directory stream was opened and now, which
would yield an invalid result.

Parameters:
dir Directory stream to read an entry from.

Returns:
Pointer to a directory entry, or NULL if the end of the directory stream has been
reached.

28



See also:
rewinddir
seekdir
telldir

4.1.4.5 void rewinddir (DIR ∗ dir)

Resets the directory stream.

Resets the directory stream to the beginning, so the first directory entry is read again.

Parameters:
dir Directory stream to be reset.

See also:
seekdir
telldir

4.1.4.6 void seekdir (DIR ∗ dir, long int ptr)

Sets the directory stream location.

Sets the current ’pointer’ into the directory stream to the valueptr . Internally, the
directory stream is simply an array of file pointers. This function sets the current index
into that array. Ifptr is beyond the bounds of the array, the next call toreaddir will
return NULL;

Parameters:
dir Directory stream to set location

ptr Location to point to in stream

See also:
readdir
telldir

4.1.4.7 long int telldir (DIR ∗ dir)

Returns the current location in the directory stream.

Returns the current location in the directory stream. Internally, the directory stream is
simply an array of file pointers. This function returns the current index into that array.

Parameters:
dir Directory stream to get location

29



See also:
readdir
seekdir

4.2 rom400dhcp.h File Reference

4.2.1 Detailed Description

DHCP functions in the DS80C400 ROM.

This library contains functions that allow the DS80C400 to lease addresses from a
DHCP server. Only Ipv4 addresses can be leased using DHCP. Ipv6 addresses are
automatically configured. Once the DHCP client negotiates a lease on an address,
functions from the socket libraries (rom400sock.h) can be used to get the current IP
address and communicate with other devices.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library are multi-process safe–that is, if you call the same
method from two different processes at the same time, the parameters to the func-
tion will not be destroyed. However, it is recommended that only one process
manage the DHCP client as it is a system-wide resource.

Defines

• #defineROM400DHCP VERSION10
• #defineDHCP STATUS INIT 0
• #defineDHCP STATUS SELECTING1
• #defineDHCP STATUS REQUESTING2
• #defineDHCP STATUS INITREBOOT3
• #defineDHCP STATUS REBOOTING4
• #defineDHCP STATUS BOUND 5
• #defineDHCP STATUS RENEWING6
• #defineDHCP STATUS REBINDING 7
• #defineDHCP MSG DHCPDISCOVER1
• #defineDHCP MSG DHCPOFFER2
• #defineDHCP MSG DHCPREQUEST3
• #defineDHCP MSG DHCPDECLINE4
• #defineDHCP MSG DHCPACK5
• #defineDHCP MSG DHCPNAK 6
• #defineDHCP MSG DHCPRELEASE7
• #defineDHCP MSG DHCPINFORM8

30

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Functions

• unsigned chardhcp init (void)

Initializes the DHCP client.

• unsigned intdhcpstatus(void)

Gets the status of the DHCP client.

• void dhcpstop(void)

Disabled the DHCP client.

• void dhcp registernotify (void(∗functionptr)(unsigned int newstate, unsigned
char far∗packet))

Register a function to be notified when DHCP acquires or loses an IP.

• void dhcp registerparseoption(void(∗functionptr)(unsigned char far∗option))

Register a function to be called when an unknown or unhandled DHCP option is
encountered.

• void dhcp registerbuildpacket(unsigned char(∗functionptr)(unsigned char far
∗option, unsigned char msgtype))

Register a function to be called when a DHCP packet is about to be sent.

• unsigned intdhcpversion(void)

Returns the version number of this DHCP library.

• void dhcpgetserverip(structsockaddr∗address, int len)

Returns the IP address of the DHCP server.

• void dhcpgetprimarydns(structsockaddr∗address)

Returns the IP address of the primary DNS server.

• void dhcpgetsecondarydns(structsockaddr∗address)

Returns the IP address of the secondary DNS server.

• unsigned intdhcpgettaskid()

Returns task ID of the DHCP process.

4.2.2 Define Documentation

4.2.2.1 #define DHCPMSG DHCPACK 5

DHCP message type ACK

31



4.2.2.2 #define DHCPMSG DHCPDECLINE 4

DHCP message type DECLINE

4.2.2.3 #define DHCPMSG DHCPDISCOVER 1

DHCP message type DISCOVER

4.2.2.4 #define DHCPMSG DHCPINFORM 8

DHCP message type INFORM

4.2.2.5 #define DHCPMSG DHCPNAK 6

DHCP message type NAK

4.2.2.6 #define DHCPMSG DHCPOFFER 2

DHCP message type OFFER

4.2.2.7 #define DHCPMSG DHCPRELEASE 7

DHCP message type RELEASE

4.2.2.8 #define DHCPMSG DHCPREQUEST 3

DHCP message type REQUEST

4.2.2.9 #define DHCPSTATUS BOUND 5

DHCP status code returned bydhcpstatus. The DHCP client is in theBOUND state:
it has been configured with a valid address.

See also:
dhcpstatus

4.2.2.10 #define DHCPSTATUS INIT 0

DHCP status code returned bydhcpstatus. The DHCP client is in theINIT state: it
has not yet sent a DHCPDISCOVER message.

See also:
dhcpstatus

32



4.2.2.11 #define DHCPSTATUS INITREBOOT 3

DHCP status code returned bydhcpstatus. The DHCP client is in theINITREBOOT
state: it has rebooted, and is trying to acquire its old address.

See also:
dhcpstatus

4.2.2.12 #define DHCPSTATUS REBINDING 7

DHCP status code returned bydhcpstatus. The DHCP client is in theREBINDING
state: it is attempting to get a new lease after its current lease expired.

See also:
dhcpstatus

4.2.2.13 #define DHCPSTATUS REBOOTING 4

DHCP status code returned bydhcpstatus. The DHCP client is in theREBOOTING
state: after a reboot, it is waiting for permission to use its old address.

See also:
dhcpstatus

4.2.2.14 #define DHCPSTATUS RENEWING 6

DHCP status code returned bydhcpstatus. The DHCP client is in theRENEWING
state: it is attempting to extend the current, valid lease of its address.

See also:
dhcpstatus

4.2.2.15 #define DHCPSTATUS REQUESTING 2

DHCP status code returned bydhcpstatus. The DHCP client is in theREQUESTING
state: it has requested a DHCP address, and is awaiting a reply.

See also:
dhcpstatus

33



4.2.2.16 #define DHCPSTATUS SELECTING 1

DHCP status code returned bydhcpstatus. The DHCP client is in theSELECTING
state: it is collecting DHCP offers.

See also:
dhcpstatus

4.2.2.17 #define ROM400DHCP VERSION 10

Version number associated with this header file. Should be the same as the version
number returned by thedhcpversionfunction.

See also:
dhcpversion

4.2.3 Function Documentation

4.2.3.1 void dhcpgetprimarydns (struct sockaddr∗ address)

Returns the IP address of the primary DNS server.

Returns the IP address of the primary DNS server. The DNS server can be set by an
option received from a DHCP response, or by setting it manually from the DNS library
function dnssetprimary. Note that this DNS server information entry is cleared out
on initialization.

Parameters:
addresswill fill in the primary DNS server IP address

See also:
dhcpgetsecondarydns
dnssetprimary
dnsgetprimary

4.2.3.2 void dhcpgetsecondarydns (structsockaddr∗ address)

Returns the IP address of the secondary DNS server.

Returns the IP address of the primary DNS server. The DNS server can be set by an
option received from a DHCP response, or by setting it manually from the DNS library
function dnssetprimary. Note that this DNS server information entry is cleared out
on initialization.

Parameters:
addresswill fill in the secondary DNS server IP address

34



See also:
dhcpgetprimarydns
dnssetsecondary
dnsgetsecondary

4.2.3.3 void dhcpgetserverip (struct sockaddr∗ address, int len)

Returns the IP address of the DHCP server.

Parameters:
addresswill fill in the DHCP server IP address

len length of the address structure (ignored)

4.2.3.4 unsigned int dhcpgettaskid ()

Returns task ID of the DHCP process.

Returns the task ID of the DHCP process. If the DHCP process has not been initialized
(but theinit rom function has been called), this function returns 0.

The value returned by this function is suitable to use with the task library–for instance,
to alter the priority of the DHCP task.

Returns:
Task ID of the DHCP process.

See also:
#dhcpgetinit
#dhcpisinitialized

4.2.3.5 unsigned char dhcpinit (void)

Initializes the DHCP client.

Starts a DHCP Client task and returns to the caller. DHCP is implemented for IPv4
only. The IPv6 portion of the network stack uses neighbor discovery. To read the
address that the DHCP client has leased, use the socket library functiongetnetwork-
params.

Returns:
0 for success, non-zero for failure.

See also:
dhcpstop
getnetworkparams[in the socket library]

35



4.2.3.6 void dhcpregisterbuildpacket (unsigned char(∗ functionptr)(unsigned
char far ∗option, unsigned char msgtype))

Register a function to be called when a DHCP packet is about to be sent.

The function passed asfunctionptrwill be called when the DHCP client is about to
send a DHCP packet. The function pointed to byfunctionptrshould take two argu-
mentis (a pointer and a byte) and return a byte. Whenever the function at functionptr is
called, the pointer will be pointing to the first byte after the default options. The user
can fill in additional DHCP options, e.g. 0x0c,0x04,’T’,’I’,’N’,’I’ would be a DHCP
hostname option. The msgtype argument contains the current DHCP message type
(DHCP MSG DISCOVER or DHCPMSG REQUEST). The return value is the num-
ber of bytes added to the DHCP options, 6 in the hostname example above.

The function does not need to save/restore any registers.

Parameters:
functionptr Pointer to a function with the signature unsigned char fn(unsigned

char far∗ option, unsigned char msgtype)

4.2.3.7 void dhcpregisternotify (void(∗ functionptr)(unsigned int newstate, un-
signed char far∗packet))

Register a function to be notified when DHCP acquires or loses an IP.

The function passed asfunctionptrwill be called when the DHCP client acquires or
loses an IP.

Parameters:
functionptr Pointer to a function with the signature void fn(unsigned int new-

state, unsigned char far∗packet). The function will be provided with the
new DHCP state and a pointer to the last DHCP packet received (the packet
pointer points to the beginning of the BOOTP data structure).

See also:
dhcpstatus

4.2.3.8 void dhcpregisterparseoption (void(∗ functionptr)(unsigned char far
∗option))

Register a function to be called when an unknown or unhandled DHCP option is en-
countered.

The function passed asfunctionptr will be called when the DHCP client is parsing
an unknown DHCP option. The function pointed to byfunctionptrshould take one
argument (a pointer) and return void. Whenever the function at functionptr is called,
the argument will be pointing to the current unhandled or vendor specific DHCP option.

36



The function does not need to save/restore any registers.

Parameters:
functionptr Pointer to a function with the signature void fn(unsigned char far∗

option).

4.2.3.9 unsigned int dhcpstatus (void)

Gets the status of the DHCP client.

Returns the current state of the DHCP Client. DHCP Clients that have leased a valid
address should returnDHCP STATUS BOUND .

Returns:
Status of the DHCP client.

4.2.3.10 void dhcpstop (void)

Disabled the DHCP client.

Kills the DHCP client task. Usedhcp init to restart the DHCP client.

See also:
dhcp init

4.2.3.11 unsigned int dhcpversion (void)

Returns the version number of this DHCP library.

Returns:
Version number of this DHCP library.

4.3 rom400err.h File Reference

4.3.1 Detailed Description

Error codes used by functions in the DS80C400 ROM.

This file contains error codes that might be returned by functions that call into the
ROM.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

37

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Defines

• #defineROM400ERR VERSION1
• #defineROM400 IOEXCEPTION0x0B
• #defineROM400 INTERRUPTEDIOEXCEPTION0x36
• #defineROM400ARRAYINDEXOUTOFBOUNDSEXCEPTION0x0D
• #defineROM400 INTERNALERROR0x2C
• #defineROM400NULLPOINTEREXCEPTION0x08
• #defineROM400OUTOFMEMORYERROR0x30
• #defineROM400BINDEXCEPTION0x35
• #defineROM400CONNECTEXCEPTION0x46
• #defineROM400SOCKETEXCEPTION0x32

4.3.2 Define Documentation

4.3.2.1 #define ROM400ARRAYINDEXOUTOFBOUNDSEXCEPTION 0x0D

Indicates that the index or offset to an array access was out of bounds.

4.3.2.2 #define ROM400BINDEXCEPTION 0x35

Indicates that application cannot bind to address (interface unavailable, not a server
socket or socket not bound).

4.3.2.3 #define ROM400CONNECTEXCEPTION 0x46

Indicates that an error occurred trying to connect to a remote port. The connection was
probably refused remotely.

4.3.2.4 #define ROM400ERR VERSION 1

Version number associated with this header file.

4.3.2.5 #define ROM400INTERNALERROR 0x2C

Indicates a problem with the network queue.

4.3.2.6 #define ROM400INTERRUPTEDIOEXCEPTION 0x36

Indicates that a sleep or wait was interrupted.

38



4.3.2.7 #define ROM400IOEXCEPTION 0x0B

General error that is returned when a resource (memory, port) is not available or an
internal data structure (table) cannot hold more elements or is corrupted.

4.3.2.8 #define ROM400NULLPOINTEREXCEPTION 0x08

Indicates that a pointer was not able to be dereferenced.

4.3.2.9 #define ROM400OUTOFMEMORYERROR 0x30

Indicates that the system has run out of kernel or regular memory to allocate.

4.3.2.10 #define ROM400SOCKETEXCEPTION 0x32

Indicates that a socket is not available (port in use or socket closed).

4.4 rom400flash.h File Reference

4.4.1 Detailed Description

Flash programming functions for the TINIm400 module.

This library contains functions that allow applications to access the ROM’s flash eras-
ing and programming algorithms. Any flash that is compatible with the DS80C400
boot loader’s functions will be compatible with this library.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

The functions in this library are multi-process safe–that is, if you call the same method
from two different processes at the same time, the parameters to the function will not
be destroyed. However, multiple processes should not be performing flash altering
operations without some kind of synchronization control.

Defines

• #defineROM400FLASH VERSION2

Functions

• unsigned charflasheraseblock(unsigned char blocknum)

Erase a flash block.

• unsigned charflashprogrambyte(void ∗location, unsigned char b)

39

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Program a byte of flash.

• unsigned intflashversion(void)

Returns the version number of this flash library.

4.4.2 Define Documentation

4.4.2.1 #define ROM400FLASH VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by theflashversionfunction.

See also:
flashversion

4.4.3 Function Documentation

4.4.3.1 unsigned char flasheraseblock (unsigned charblocknum)

Erase a flash block.

Erases the block of flash that begins at addressblocknum:00:00. This operation checks
to see if the block is RAM or is the ROM (blocknumequals FF), in which case the
operation fails.

Parameters:
blocknum bank/block number of flash to erase

Returns:
0 if the erase was successful, 1 if the erase could not be performed.

4.4.3.2 unsigned char flashprogrambyte (void ∗ location, unsigned charb)

Program a byte of flash.

Programs the byteb to the addresslocation . If the location is unprogrammable (too
many zero bits have already been set) the operation fails.

Parameters:
location The address to write the valueb to

b The value to be programmed

Returns:
0 if the program is successful, 1 if the operation could not be performed.

40



4.4.3.3 unsigned int flashversion (void)

Returns the version number of this flash library.

Returns:
Version number of this flash library.

4.5 rom400http.h File Reference

4.5.1 Detailed Description

Http Server functions in the DS80C400 ROM.

This library contains functions for implementing http server in DS80C400 ROM

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
Some functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Data Structures

• struct http request
• struct http response
• struct http session
• struct http variable

Defines

• #defineHTTP VERSION3
• #defineHTTP INSUFFICIENT MEMORY -1
• #defineHTTP LOGFILE ERROR-2
• #defineHTTP SOCKETERROR-3
• #defineHTTP REQUESTNOT PROCESSED-4
• #defineHTTP DENY CONNECTION-5
• #defineHTTP TASK ERROR-6
• #defineHTTP SERVERALREADY RUNNING -7
• #defineHTTP NOSERVERTASK-8
• #defineHTTP STATUS SUCCESS0
• #defineHTTP DISABLE LOG 0

41

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• #defineHTTP ENABLE LOG 1
• #defineHTTP ENABLE VARIABLE PARSING1
• #defineHTTP DISABLE VARIABLE PARSING0
• #defineHTTP STOPSERVERTASK0
• #defineHTTP RUN SERVERTASK1
• #defineDEFAULT BUF SIZE400
• #defineDEFAULT MAX PENDING CONNECIONS5
• #defineHTTP DEFAULT PORT80
• #defineHTTP MAX URL 400
• #defineHTTP MAX BUFSIZE400
• #defineHTTP GET METHOD 1
• #defineHTTP POSTMETHOD 2
• #defineHTTP HEAD METHOD 3

Typedefs

• typedef http variablehttp variable
• typedef http requesthttp request
• typedef http responsehttp response
• typedef http sessionhttp session

Functions

• unsigned inthttp version(void)

Returns the version number of http server library.

• int http init (structsockaddrserveraddr)

Initializes http server library.

• int http setrootdir(char∗rootdir)

Sets http root directory.

• char∗ http getrootdir(void)

Returns http root directory.

• int http setindexpage(char∗index)

Sets index page name.

• char∗ http getindexpage(void)

Returns current index page.

• void http setportnumber(int portnumber)

42



Sets HTTP Server Port number.

• int http getportnumber(void)

Returns current http server port number.

• void http setheaderbufsize(int buffersize)

Sets header buffer size.

• int http getheaderbufsize(void)

Returns header buffer size.

• void http set req linesize(int buffersize)

Sets the maximum size value of each line of http request.

• int http get req linesize(void)

Returns the maximum size value of each line of http request.

• void http set req processoptions(char flag)

Sets Http request Variable parsing status flag value.

• charhttp get req processoptions(void)

Returns Http request Variable parsing status flag value.

• int http getlogging(void)

Returns logging status.

• int http setlogging(char logstatus)

Sets logging status.

• char∗ http getlogfilename(void)

Returns log file name.

• int http setlogfilename(char∗logfilename)

Sets log file name.

• void http setmaxconnections(int max connection)

Sets maximum number of pending connections value.

• int http getmaxconnections(void)

Returns the current value for maximum number of pending connections.

• void http setclientsocktimeout(long milli sec)

43



Sets http client socket timeout value.

• longhttp getclientsocktimeout(void)

Returns the current value for http client socket timeout.

• void http reg req callback(int(∗func)())

Registers callback function to process http request.

• void http reg acl callback(int(∗func)())

Registers access control callback function.

• void http sendheaders(http session∗https)

Sends http response headers to client.

• int http start server(void)

Starts http server.

• int http kill server(void)

Terminates http server.

• void http decodeurlencodeddata(char∗pathname)

Decodes the url path which was encoded in ”application/x-www-form-urlencoded”
format.

• charhttp hex from ascii(char c)

Returns hexadecimal value for input ascii digit.

• int http changeserverstate(char serverstate)

Changes Http Server state.

4.5.2 Define Documentation

4.5.2.1 #define DEFAULTBUF SIZE 400

Define for default header buffer size

See also:
http getheaderbufsize
http setheaderbufsize

44



4.5.2.2 #define DEFAULTMAX PENDING CONNECIONS 5

Define for default maximum pending connections allowed

See also:
http setmaxconnections
http getmaxconnections

4.5.2.3 #define HTTPDEFAULT PORT 80

Define for default http port number

See also:
http getportnumber
http setportnumber

4.5.2.4 #define HTTPDENY CONNECTION -5

Error value to indicate that http client connection is denied by access control callback
function

See also:
http reg acl callback

4.5.2.5 #define HTTPDISABLE LOG 0

Define for disabling logging activity

See also:
http setlogging
http getlogging

4.5.2.6 #define HTTPDISABLE VARIABLE PARSING 0

Define for disabling variable parsing status flag

See also:
http set req processoptions
http get req processoptions

45



4.5.2.7 #define HTTPENABLE LOG 1

Define for enabling logging activity

See also:
http setlogging
http getlogging

4.5.2.8 #define HTTPENABLE VARIABLE PARSING 1

Define for enabling variable parsing status flag

See also:
http set req processoptions
http get req processoptions

4.5.2.9 #define HTTPGET METHOD 1

Get request method type

See also:
http request
http session

4.5.2.10 #define HTTPHEAD METHOD 3

Head request method type

See also:
http request
http session

4.5.2.11 #define HTTPINSUFFICIENT MEMORY -1

Insufficient memory error value

See also:
http setrootdir
http setindexpage
http setlogfilename

46



4.5.2.12 #define HTTPLOGFILE ERROR -2

Error opening log file

See also:
http setlogging

4.5.2.13 #define HTTPMAX BUFSIZE 400

Define for maximum buffer size

See also:
http request
http session

4.5.2.14 #define HTTPMAX URL 400

Define for maximum url path name size

See also:
http request
http session

4.5.2.15 #define HTTPNOSERVERTASK -8

Error value to indicate that http server task is not running

See also:
http start server
http kill server
http changeserverstate

4.5.2.16 #define HTTPPOST METHOD 2

Post request method type

See also:
http request
http session

4.5.2.17 #define HTTPREQUEST NOT PROCESSED -4

Error value to indicate that http request was not processed by callback function

See also:
http reg req callback

47



4.5.2.18 #define HTTPRUN SERVERTASK 1

Define for running http server task

See also:
http changeserverstate

4.5.2.19 #define HTTPSERVER ALREADY RUNNING -7

Error value to indicate that server is already running

See also:
http start server

4.5.2.20 #define HTTPSOCKET ERROR -3

Socket error value

See also:
http start server

4.5.2.21 #define HTTPSTATUS SUCCESS 0

Http Status Success value, this value is returned when operation is completed success-
fully

See also:
http setrootdir
http setindexpage
http setlogfilename
http start server
#http stopserver

4.5.2.22 #define HTTPSTOP SERVERTASK 0

Define for stopping http server task

See also:
http changeserverstate

4.5.2.23 #define HTTPTASK ERROR -6

New task creation error

See also:
http start server

48



4.5.2.24 #define HTTPVERSION 3

Version number associated with this header file. Should be the same as the version
number returned by thehttp versionfunction.

See also:
http version

4.5.3 Typedef Documentation

4.5.3.1 typedef struct http requesthttp request

Structure for http request

4.5.3.2 typedef struct http responsehttp response

Structure for http response

4.5.3.3 typedef struct http sessionhttp session

Structure for http session

4.5.3.4 typedef struct http variable http variable

Structure for http variable names and values

4.5.4 Function Documentation

4.5.4.1 int http changeserver state (charserverstate)

Changes Http Server state.

This function sets http server state

This function is safe to be called from multiple processes at the same time.

Parameters:
serverstate Server state. Should be eitherHTTP RUN SERVERTASKor HTTP -

STOPSERVERTASK

Returns:
HTTP STATUSSUCCESSor HTTP NOSERVERTASK

49



4.5.4.2 void http decodeurlencodeddata (char∗ pathname)

Decodes the url path which was encoded in ”application/x-www-form-urlencoded” for-
mat.

This function decodes the url path which was encoded in ”application/x-www-form-
urlencoded” format.

This function is safe to be called from multiple processes at the same time.

Parameters:
pathname pointer to url path name

4.5.4.3 int http get req linesize (void)

Returns the maximum size value of each line of http request.

This function returns the maximum size value of each line of http request

This function is safe to be called from multiple processes at the same time.

Returns:
the maximum size value of each http request line

4.5.4.4 char http get req processoptions (void)

Returns Http request Variable parsing status flag value.

This function is safe to be called from multiple processes at the same time.

Returns:
The variable parsing status flag value

4.5.4.5 long httpgetclientsocktimeout (void)

Returns the current value for http client socket timeout.

This function returns the current value for http client socket timeout

This function is safe to be called from multiple processes at the same time.

Returns:
The current value for http client socket timeout

50



4.5.4.6 int http getheaderbufsize (void)

Returns header buffer size.

This function returns buffer size value for http request and response headers.

This function is safe to be called from multiple processes at the same time.

Returns:
header buffer size

4.5.4.7 char∗ http getindexpage (void)

Returns current index page.

This function returns the current index page name.

This function is safe to be called from multiple processes at the same time.

Returns:
The starting address of index page name. NULL will be returned if there is no
index page set.

4.5.4.8 char∗ http getlogfilename (void)

Returns log file name.

This function returns the log file name.

This function is safe to be called from multiple processes at the same time.

Returns:
The address of log file name. NULL will be returned if there is no log file set.

4.5.4.9 int http getlogging (void)

Returns logging status.

This function returns the current logging status

This function is safe to be called from multiple processes at the same time.

Returns:
HTTP DISABLELOGor HTTP ENABLELOG

51



4.5.4.10 int http getmaxconnections (void)

Returns the current value for maximum number of pending connections.

This function returns the current value for maximum number of pending connections

This function is safe to be called from multiple processes at the same time.

Returns:
The current value for maximum number of pending connections.

4.5.4.11 int http getportnumber (void)

Returns current http server port number.

This function returns the current http server port number

This function is safe to be called from multiple processes at the same time.

Returns:
http server port number

4.5.4.12 char∗ http getrootdir (void)

Returns http root directory.

This function returns the current root directory path name.

This function is safe to be called from multiple processes at the same time.

Returns:
The starting address of root directory path name. NULL will be returned if there
is no root directory set.

4.5.4.13 char httphex from ascii (charc)

Returns hexadecimal value for input ascii digit.

This function returns hexadecimal value for input ascii digit

This function is safe to be called from multiple processes at the same time.

Parameters:
c ascii digit

Returns:
hexadecimal value for input ascii digit

52



4.5.4.14 int http init (struct sockaddrserveraddr)

Initializes http server library.

This function initializes the internal data structures of http server library

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
serveraddr Address of http server. Should be initialized with the IP address of

the TINI it is running on.

Returns:
Always returnsHTTP STATUSSUCCESS

4.5.4.15 int http kill server (void)

Terminates http server.

This function Terminates http server

This function is safe to be called from multiple processes at the same time.

Returns:
HTTP STATUSSUCCESS, HTTP NOSERVERTASK

4.5.4.16 void httpreg acl callback (int(∗ func)())

Registers access control callback function.

This function registers callback function to process http request

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
func - the function pointer to call back function

NOTE:

Access control callback function should have the following function prototype to re-
ceive the sockaddr pointer

int << http access control call back function name>> (sockaddr∗address)

53



NOTE: Access control callback routine should returnHTTP STATUSSUCCESSvalue
to process the http request,HTTP DENYCONNECTIONerror value to deny the client
connection

Warning:
this callback function should be multi-task safe.

4.5.4.17 void httpreg req callback (int(∗ func)())

Registers callback function to process http request.

This function registers callback function to process http request

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
func - the function pointer to call back function

NOTE: Http request process callback function should have the following function pro-
totype to receive http session structure pointer.

int << http request process call back function name>> (http session∗https)

NOTE: Http request process callback routine should returnHTTP STATUSSUCCESS
value, if the request was processed.HTTP REQUESTNOT PROCESSEDerror value
to let http library process the request.

Warning:
this callback function should be multi-task safe.

4.5.4.18 void httpsendheaders (http session∗ https)

Sends http response headers to client.

This function sends http response headers to client

This function is safe to be called from multiple processes at the same time.

NOTE: the response code, content type, content length, and response header values
can be modified from application before sending response headers

Parameters:
https the pointer to http session object that contains response header value

54



4.5.4.19 void httpset req linesize (intbuffersize)

Sets the maximum size value of each line of http request.

This function sets the maximum size value of each line of http request

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
buffersize the maximum size value of each http request line

4.5.4.20 void httpset req processoptions (charflag)

Sets Http request Variable parsing status flag value.

This function sets http request variable parsing status flag value. By default, the flag
containsHTTP ENABLE VARIABLE PARSING value. When the flag is set with
HTTP ENABLE VARIABLE PARSING, The http server parses the variables from
”query string”, and ”message body” and stores it in variable list. The variable needs
to be passed using standard convention(variablename=value) to make http server li-
brary to parse the variables successfully. The parsing process can be disabled by set-
ting HTTP DISABLE VARIABLE PARSINGvalue, and user can access both ”query
string” and ”messagebody” values from querystring,messagebody members of http ses-
sion object.

This function is safe to be called from multiple processes at the same time.

Parameters:
flag Http request Variable parsing status flag value. Should be one of

HTTP ENABLE VARIABLE PARSING, HTTP DISABLE VARIABLE -
PARSING

4.5.4.21 void httpsetclientsocktimeout (longmilli sec)

Sets http client socket timeout value.

This function sets http client socket timeout value

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
milli sec timeout value in milliseconds

55



4.5.4.22 void httpsetheaderbufsize (intbuffersize)

Sets header buffer size.

This function sets both http request and http response header buffer size

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
buffersize the input buffer size value

4.5.4.23 int http setindexpage (char∗ index)

Sets index page name.

This function sets index page name in http library. Index page will be sent to http client
if url request path is ”/”

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
index Index page name

Returns:
• HTTP STATUSSUCCESSif the operation is completed successfully

• HTTP INSUFFICIENTMEMORYif memory can’t be allocated for storing
new index page name

4.5.4.24 int http setlogfilename (char∗ logfilename)

Sets log file name.

This function sets log file name with http library.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
logfilename - name of the log file

56



Returns:
• HTTP STATUSSUCCESSif the operation is completed successfully

• HTTP INSUFFICIENTMEMORY>/i> if memory can’t be allocated for
storing new log file name

NOTE: Logging activity has to be disabled and re-enabled in order to use new log file
name for logging

4.5.4.25 int http setlogging (charlogstatus)

Sets logging status.

This function sets the logging status with http server library

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
logstatus Logging status value. EitherHTTP DISABLELOG or HTTP -

ENABLELOG

Returns:
HTTP STATUSSUCCESSor HTTP LOGFILE ERROR

4.5.4.26 void httpsetmaxconnections (intmax connection)

Sets maximum number of pending connections value.

This function sets maximum number of pending connections allowed in the listen
queue

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
max connection Value for maximum number of pending connections

4.5.4.27 void httpsetportnumber (int portnumber)

Sets HTTP Server Port number.

This function sets http server port number

57



Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
portnumber the input http server port number

NOTE: http server has to be stopped and re-started in order to use new http port number.

4.5.4.28 int http setrootdir (char ∗ rootdir)

Sets http root directory.

This function sets http root directory in http library. url pathname for particular re-
source is ”relative path name” to root directory.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
rootdir root directory path

Returns:
• HTTP STATUSSUCCESSif the operation is completed successfully

• HTTP INSUFFICIENTMEMORYif memory can’t be allocated for storing
new root directory name

4.5.4.29 int http start server (void)

Starts http server.

This function starts http server

This function is safe to be called from multiple processes at the same time.

Returns:
One of: HTTP STATUSSUCCESS, HTTP TASKERROR, HTTP SOCKET-
ERROR, or HTTP SERVERALREADYRUNNING

4.5.4.30 unsigned int httpversion (void)

Returns the version number of http server library.

Returns:
Version number of http server library.

58



4.6 rom400init.h File Reference

4.6.1 Detailed Description

ROM Initialization functions in the DS80C400 ROM.

This library contains functions for initializing the functionality in the ROM. Note that
the preferred way of initializing the ROM is to simply call theinit rom function. How-
ever, you can also initialize the various modules individually. To do this, call these
functions in this order:

1. init clearXSEG

2. init copyivt

3. init redirect

4. init clearSystemRAM

5. init mm

6. init km

7. init ow

8. init network

9. init eth

10. init sockets

11. init tick

12. taskgenesis[in the process scheduler library]

13. init enableinterrupts

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Functions in this library should only be called once on startup. The safety of calling
these functions from multiple processes at the same time is irrelevant.

Defines

• #defineROM400 INIT VERSION17
• #defineUSE KEIL MONITOR
• #defineINIT DIVISOR 3MHZ 0x01
• #defineINIT DIVISOR 4MHZ 0x08
• #defineINIT DIVISOR 5MHZ 0x02

59

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• #defineINIT DIVISOR 6MHZ 0x05
• #defineINIT DIVISOR 7MHZ 0x03
• #defineINIT DIVISOR 8MHZ 0x0C
• #defineINIT DIVISOR 10MHZ 0x06
• #defineINIT DIVISOR 12MHZ 0x09
• #defineINIT DIVISOR 14MHZ 0x07
• #defineINIT DIVISOR 16MHZ 0x10
• #defineINIT DIVISOR 20MHZ 0x0A
• #defineINIT DIVISOR 24MHZ 0x0D
• #defineINIT DIVISOR 28MHZ 0x0B
• #defineINIT DIVISOR 32MHZ 0x14
• #defineINIT DIVISOR 40MHZ 0x0E
• #defineINIT DIVISOR 48MHZ 0x11
• #defineINIT DIVISOR 56MHZ 0x0F
• #defineINIT DIVISOR 64MHZ 0x18
• #defineINIT DIVISOR 80MHZ 0x12
• #defineINIT DIVISOR 96MHZ 0x15
• #defineINIT DIVISOR 112MHZ0x13
• #defineINIT DIVISOR 128MHZ0x1C
• #defineINIT POWERFAIL RESET0x08
• #defineINIT WATCHDOG RESET0x10
• #defineINIT CRYSTALFAIL RESET0x20
• #define DEFAULT HEAP START ((((long)&HEAP START)&0x7fffffL)-

0x10000L)
• #defineinit setfrequency(clock) init setclock(((clock)∗5L)/6)

Sets the crystal frequency.

Functions

• void HEAP START (void)
• void init rom (unsigned long memstart address, unsigned long memend-

address)

Initializes the modules in the ROM.

• void init netboot(void)

Starts the netboot functionality. Note that this will negate any initialization that has
already been performed.

• void init copyivt (void)

Copies the interrupt vector table into memory.

• void init redirect(void)

60



Sets up the redirect table for ROM redirected calls.

• void init clearSystemRAM(void)

Clears system variables in internal RAM.

• void init clearXSEG(void)

Clears system variables in external RAM.

• void init mm (unsigned long memstart address, unsigned long memend-
address)

Initializes the heap.

• void init km (void)

Initializes fast kernel memory.

• void init ow (unsigned char DIVISOR)

Initializes the internal 1-Wire.

• void init network(void)

Initializes the network.

• void init eth(void)

Initializes the ethernet support.

• void init sockets(void)

Initializest the socket layer.

• void init tick (void)

Initializes the system timer.

• void init enableinterrupts(void)

Enables system interrupts.

• void init usekeilmonitor(void)

Performs initialization necessary for using the Keil Monitor.

• unsigned intinit version(void)

Returns the version number of this initialization library.

• unsigned charinit getbootstate(void)

Returns the boot status flags.

• void init setclock(unsigned int value)

61



Sets the crystal frequency.

4.6.2 Define Documentation

4.6.2.1 #define INITCRYSTALFAIL RESET 0x20

Crystal failure reset status.

See also:
init getbootstate

4.6.2.2 #define INITDIVISOR 10MHZ 0x06

1-Wire divisor value for operating frequencies greater than 10 MHz but less than 12
MHz.

See also:
init ow

4.6.2.3 #define INITDIVISOR 112MHZ 0x13

1-Wire divisor value for operating frequencies greater than 112 MHz but less than 128
MHz.

See also:
init ow

4.6.2.4 #define INITDIVISOR 128MHZ 0x1C

1-Wire divisor value for operating frequencies greater than 128 MHz.

See also:
init ow

4.6.2.5 #define INITDIVISOR 12MHZ 0x09

1-Wire divisor value for operating frequencies greater than 12 MHz but less than 14
MHz.

See also:
init ow

62



4.6.2.6 #define INITDIVISOR 14MHZ 0x07

1-Wire divisor value for operating frequencies greater than 14 MHz but less than 16
MHz.

See also:
init ow

4.6.2.7 #define INITDIVISOR 16MHZ 0x10

1-Wire divisor value for operating frequencies greater than 16 MHz but less than 20
MHz.

See also:
init ow

4.6.2.8 #define INITDIVISOR 20MHZ 0x0A

1-Wire divisor value for operating frequencies greater than 20 MHz but less than 24
MHz.

See also:
init ow

4.6.2.9 #define INITDIVISOR 24MHZ 0x0D

1-Wire divisor value for operating frequencies greater than 24 MHz but less than 28
MHz.

See also:
init ow

4.6.2.10 #define INITDIVISOR 28MHZ 0x0B

1-Wire divisor value for operating frequencies greater than 28 MHz but less than 32
MHz.

See also:
init ow

4.6.2.11 #define INITDIVISOR 32MHZ 0x14

1-Wire divisor value for operating frequencies greater than 32 MHz but less than 40
MHz.

See also:
init ow

63



4.6.2.12 #define INITDIVISOR 3MHZ 0x01

1-Wire divisor value for operating frequencies greater than 3 MHz but less than 4
MHz.

See also:
init ow

4.6.2.13 #define INITDIVISOR 40MHZ 0x0E

1-Wire divisor value for operating frequencies greater than 40 MHz but less than 48
MHz.

See also:
init ow

4.6.2.14 #define INITDIVISOR 48MHZ 0x11

1-Wire divisor value for operating frequencies greater than 48 MHz but less than 56
MHz.

See also:
init ow

4.6.2.15 #define INITDIVISOR 4MHZ 0x08

1-Wire divisor value for operating frequencies greater than 4 MHz but less than 5
MHz.

See also:
init ow

4.6.2.16 #define INITDIVISOR 56MHZ 0x0F

1-Wire divisor value for operating frequencies greater than 56 MHz but less than 64
MHz.

See also:
init ow

4.6.2.17 #define INITDIVISOR 5MHZ 0x02

1-Wire divisor value for operating frequencies greater than 5 MHz but less than 6
MHz.

See also:
init ow

64



4.6.2.18 #define INITDIVISOR 64MHZ 0x18

1-Wire divisor value for operating frequencies greater than 64 MHz but less than 80
MHz.

See also:
init ow

4.6.2.19 #define INITDIVISOR 6MHZ 0x05

1-Wire divisor value for operating frequencies greater than 6 MHz but less than 7
MHz.

See also:
init ow

4.6.2.20 #define INITDIVISOR 7MHZ 0x03

1-Wire divisor value for operating frequencies greater than 7 MHz but less than 8
MHz.

See also:
init ow

4.6.2.21 #define INITDIVISOR 80MHZ 0x12

1-Wire divisor value for operating frequencies greater than 80 MHz but less than 96
MHz.

See also:
init ow

4.6.2.22 #define INITDIVISOR 8MHZ 0x0C

1-Wire divisor value for operating frequencies greater than 8 MHz but less than 10
MHz.

See also:
init ow

4.6.2.23 #define INITDIVISOR 96MHZ 0x15

1-Wire divisor value for operating frequencies greater than 96 MHz but less than 112
MHz.

See also:
init ow

65



4.6.2.24 #define INITPOWERFAIL RESET 0x08

Power fail reset status.

See also:
init getbootstate

4.6.2.25 #define initsetfrequency(clock) init setclock(((clock)∗5L)/6)

Sets the crystal frequency.

Parameters:
clock Clock frequency in kHz (e.g. 14746 for a 14.7456 MHz crystal). The op-

erating frequency is the oscillator adjusted by any setting of the frequency
multiplier (i.e. a 14 MHz oscillator with the clock doubler enabled should
set 28 MHz)

Note that this macro has to be called beforeinit rom .

See also:
tasksettickreload
init rom
init setclock

4.6.2.26 #define INITWATCHDOG RESET 0x10

Watchdog reset status.

See also:
init getbootstate

4.6.2.27 #define ROM400INIT VERSION 17

Version number associated with this header file. Should be the same as the version
number returned by theinit versionfunction.

See also:
init version

4.6.2.28 #define USEKEIL MONITOR

Macro that allows the use of a define to determine whether or not to call the function
init usekeilmonitor. This macro can be called after callinginit rom , and will correct
some monitor configuration details that are destroyed wheninit rom is called.

66



See also:
init rom
init usekeilmonitor

4.6.3 Function Documentation

4.6.3.1 void HEAPSTART (void)

Defines the default start address for the heap.

See also:
init rom

4.6.3.2 void init clearSystemRAM (void)

Clears system variables in internal RAM.

Note that callinginit rom is the preferred way of initializing the ROM.

See also:
init rom

4.6.3.3 void init clearXSEG (void)

Clears system variables in external RAM.

Note that callinginit rom is the preferred way of initializing the ROM.

This function also sets theEPFI bit.

See also:
init rom

4.6.3.4 void init copyivt (void)

Copies the interrupt vector table into memory.

Note that callinginit rom is the preferred way of initializing the ROM.

See also:
init rom

67



4.6.3.5 void init enableinterrupts (void)

Enables system interrupts.

Note that callinginit rom is the preferred way of initializing the ROM.

See also:
init rom

4.6.3.6 void init eth (void)

Initializes the ethernet support.

Note that callinginit rom is the preferred way of initializing the ROM.

See also:
init rom

4.6.3.7 unsigned char initgetbootstate (void)

Returns the boot status flags.

The status flags are defined as follows: Status.3 (0x08) - Power Fail Reset INIT-
POWERFAIL RESET Status.4 (0x10) - Watchdog Reset INITWATCHDOG RESET
Status.5 (0x20) - Crystal Oscillator Failure Reset INITCRYSTALFAIL RESET All
other bits are reserved, but not necessarily 0.

Returns:
Status flags

See also:
INIT POWERFAIL RESET
INIT WATCHDOG RESET
INIT CRYSTALFAIL RESET

4.6.3.8 void init km (void)

Initializes fast kernel memory.

Note that callinginit rom is the preferred way of initializing the ROM.

See also:
init rom

68



4.6.3.9 void init mm (unsigned long memstart address, unsigned longmem-
end address)

Initializes the heap.

Note that callinginit rom is the preferred way of initializing the ROM.

Parameters:
memstart addressThe absolute beginning address for the heap (seeinit rom for

a detailed discussion of the input parameters). Unlike theinit rom function,
this function cannot accept0 for default parameters. The start address must
be specified. Use#DEFAULTHEAP STARTto specify the default start ad-
dress.

memend addressThe absolute ending address for the heap (seeinit rom for a
detailed discussion of the input parameters). Unlike theinit rom function,
this function cannot accept0 for default parameters. The end address must
be specified.

See also:
init rom
#DEFAULT HEAP START

4.6.3.10 void init netboot (void)

Starts the netboot functionality. Note that this will negate any initialization that has
already been performed.

See also:
init rom

4.6.3.11 void init network (void)

Initializes the network.

Note that callinginit rom is the preferred way of initializing the ROM.

See also:
init rom

4.6.3.12 void init ow (unsigned charDIVISOR)

Initializes the internal 1-Wire.

Note that callinginit rom is the preferred way of initializing the ROM.

69



Parameters:
DIVISOR Divisor value for given the DS80C400’s operating frequency. The op-

erating frequency is the oscillator adjusted by any setting of the frequency
multiplier (i.e. a 14 MHz oscillator with the clock doubler enabled should
look for a divisor for 28 MHz)

See also:
init rom
INIT DIVISOR 3MHZ
INIT DIVISOR 4MHZ
INIT DIVISOR 5MHZ
INIT DIVISOR 6MHZ
INIT DIVISOR 7MHZ
INIT DIVISOR 8MHZ
INIT DIVISOR 10MHZ
INIT DIVISOR 12MHZ
INIT DIVISOR 14MHZ
INIT DIVISOR 16MHZ
INIT DIVISOR 20MHZ
INIT DIVISOR 24MHZ
INIT DIVISOR 28MHZ
INIT DIVISOR 32MHZ
INIT DIVISOR 40MHZ
INIT DIVISOR 48MHZ
INIT DIVISOR 56MHZ
INIT DIVISOR 64MHZ
INIT DIVISOR 80MHZ
INIT DIVISOR 96MHZ
INIT DIVISOR 112MHZ
INIT DIVISOR 128MHZ

4.6.3.13 void init redirect (void)

Sets up the redirect table for ROM redirected calls.

Note that callinginit rom is the preferred way of initializing the ROM.

See also:
init rom

4.6.3.14 void init rom (unsigned longmemstart address, unsigned longmem-
end address)

Initializes the modules in the ROM.

70



Initializes the network stack, memory manager, process scheduler, and other modules
in the DS80C400 Silicon Software. Calling this method is the preferred way of initial-
izing the ROM.

Note that calling this function will cause the ROM to copy its own interrupt table into
memory. If you have any interrupts installed before calling this function (for instance,
you use the Keil compilersinterrupt keyword to declare your function an interrupt
handler), the entry in the interrupt table will be erased.

init romprints status information to the serial port if serial 0 is set to use timer 2. If that
is not desired, cleartr2 . #include "reg400.h" ... TR2 = 0; init -
rom(...); TR2 = 1;

init rom will probe all available 1-Wire devices for an approximate clock frequency
and it will try to find a DS2502-E48 for an Ethernet MAC address. If no DS2502-E48
is present, you must useinit setfrequencyto specify a clock frequency, and you must
modify startup.a51 to manually set a MAC address.

Parameters:
memstart addressThe absolute beginning address for the heap.

memend addressThe absolute ending address for the heap.

Use memstart address==0 to use the default settings for both start and end, or pass a
value to memstart address and use memendaddress==0 to use the remaining mem-
ory in the same bank, or use valid values for both addresses. For example...

memstart -
address

memend-
address

actual start actual end size of heap

0x000000 0x000000 0x002900 0x00FFFF 55040
#DEFAULT-
HEAP -
START

0x07FFFF 0x002900 0x07FFFF 513792

0x010440 0x000000 0x010440 0x01FFFF 64448
0x010440 0x07FFFF 0x010440 0x07FFFF 457663

See also:
#DEFAULT HEAP START

4.6.3.15 void init setclock (unsigned intvalue)

Sets the crystal frequency.

Parameters:
value Clock frequency in kHz∗ 5/6 (e.g. 12288 for a 14.7456 MHz crystal). The

operating frequency is the oscillator adjusted by any setting of the frequency
multiplier (i.e. a 14 MHz oscillator with the clock doubler enabled should
set 28 MHz)

71



Note that this function has to be called beforeinit rom . Users should call the more
friendly macroinit setfrequency.

See also:
tasksettickreload
init rom
init setfrequency

4.6.3.16 void init sockets (void)

Initializest the socket layer.

Note that callinginit rom is the preferred way of initializing the ROM.

See also:
init rom

4.6.3.17 void init tick (void)

Initializes the system timer.

Note that callinginit rom is the preferred way of initializing the ROM.

See also:
init rom

4.6.3.18 void init usekeilmonitor (void)

Performs initialization necessary for using the Keil Monitor.

Performs initialization needed when using the Keil MON390 Monitor to debug pro-
grams that access the DS80C400’s ROM. This function should be called after calling
init rom , and only if the monitor will be used.

This file includes a macroUSEKEIL MONITORwhich is defined to call this function
if #MONITORis defined. Use the following code to make use of this macro:

init_rom() ;
USE_KEIL_MONITOR

See also:
init rom
USE KEIL MONITOR

72



4.6.3.19 unsigned int initversion (void)

Returns the version number of this initialization library.

Returns:
Version number of this INIT library.

4.7 rom400kmem.h File Reference

4.7.1 Detailed Description

Kernel Memory initialization functions for the DS80C400 ROM.

This library allows users to allocate different amounts of memory as fast kernel buffers
for use as ethernet buffers and as task control structures. The default allocation by the
ROM may not be sufficient, and the use of multiple processes and multiple sockets
might combine to drain all kernel memory. This library allows you to increase that
amount for more complex applications.

There are two ways to use this library. 1) When usinginit rom : Call kmeminstall
before callinginit rom .

2) When using the individual initialization functions: The functionkmeminit is meant
to replace the functioninit kmfrom the initialization library.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

The functions in this library are multi-process safe–that is, if you call the same method
from two different processes at the same time, the parameters to the function will not
be destroyed. However, the functionkmeminit is a system initialization function and
should only be called once before the process scheduler is active.

Defines

• #defineROM400KMEM VERSION5
• #defineROM400KMEM MODEL SMALLEST 1
• #defineROM400KMEM MODEL LARGEST11

Functions

• unsigned charkmeminit (unsigned char MODEL)

Initializes the kernel buffers.

• unsigned intkmemversion(void)

Returns the version number of this KMEM library.

73

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• void kmeminstall (unsigned char MODEL)

Installs the kmem library.

4.7.2 Define Documentation

4.7.2.1 #define ROM400KMEM MODEL LARGEST 11

The largest value of the argument to be passed tokmeminit .

See also:
ROM400KMEM MODEL SMALLEST
kmeminit

4.7.2.2 #define ROM400KMEM MODEL SMALLEST 1

The smallest value of the argument to be passed tokmeminit .

See also:
ROM400KMEM MODEL LARGEST
kmeminit

4.7.2.3 #define ROM400KMEM VERSION 5

Version number associated with this header file. Should be the same as the version
number returned by thekmemversionfunction.

See also:
kmemversion

4.7.3 Function Documentation

4.7.3.1 unsigned char kmeminit (unsigned char MODEL)

Initializes the kernel buffers.

Allows user applications to specify the amount of kernel memory that will be available
to the system. Kernel memory is used internally for Ethernet buffers and task control
structures, and as such can limit the number of processes or sockets an application can
use concurrently if there is not enough kernel buffer space. The default kernel buffer
allocation given by the ROM is:

• 90 byte buffers (20 count)

74



• 256 byte buffers (2 count)

• 512 byte buffers (1 count)

• 768 byte buffers (1 count)

• 1024 byte buffers (1 count)

• 1280 byte buffers (1 count)

• 1600 byte buffers (2 count)

By calling this function, the count of kernel buffers is multiplied by the valueMODEL
. Note that whileROM400 KMEM MODEL LARGEST is the largest amount of
kernel memory that the system can support, few applications will need to go beyond
ROM400 KMEM MODEL SMALLEST + 2 .

Parameters:
MODEL specifies how much kernel memory will be allocated for the system

Returns:
0 for success, non-zero for failure.

See also:
init rom

4.7.3.2 void kmeminstall (unsigned charMODEL)

Installs the kmem library.

This function must be called beforeinit rom .

Allows user applications to specify the amount of kernel memory that will be available
to the system. Kernel memory is used internally for Ethernet buffers and task control
structures, and as such can limit the number of processes or sockets an application can
use concurrently if there is not enough kernel buffer space. The default kernel buffer
allocation given by the ROM is:

• 90 byte buffers (20 count)

• 256 byte buffers (2 count)

• 512 byte buffers (1 count)

• 768 byte buffers (1 count)

• 1024 byte buffers (1 count)

• 1280 byte buffers (1 count)

75



• 1600 byte buffers (2 count)

By calling this function, the count of kernel buffers is multiplied by the valueMODEL
. Note that whileROM400 KMEM MODEL LARGEST is the largest amount of
kernel memory that the system can support, few applications will need to go beyond
ROM400 KMEM MODEL SMALLEST + 2 .

Parameters:
MODEL specifies how much kernel memory will be allocated for the system

See also:
init rom

4.7.3.3 unsigned int kmemversion (void)

Returns the version number of this KMEM library.

Returns:
Version number of this KMEM library.

4.8 rom400mem.h File Reference

4.8.1 Detailed Description

Memory management functions in the DS80C400 ROM.

This library contains functions for allocating and de-allocating blocks of memory
through the ROM’s memory manager.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

The methods in this library are all multi-process safe. That is, a function can be called
by more than one process at the same time and its parameters won’t be destroyed.

Defines

• #defineROM400MEM VERSION6

Functions

• void ∗ memmalloc(unsigned int size)

Requests a block of memory to be allocated.

76

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• void ∗ memmallocdirty(unsigned int size)

Requests a block of memory to be allocated.

• unsigned charmemfree(void ∗ptr)

De-allocates a block of memory.

• unsigned longmemgetfreeram(void)

Returns the amount of memory available for allocation.

• unsigned intmemsizeof(void ∗ptr)

Gets the size of an allocated block of memory.

• unsigned intmemversion(void)

Returns the version number of this memory management library.

• void memcoalesce(void)

Join adjacent chunks of freed memory.

4.8.2 Define Documentation

4.8.2.1 #define ROM400MEM VERSION 6

Version number associated with this header file. Should be the same as the version
number returned by thememversionfunction.

See also:
memversion

4.8.3 Function Documentation

4.8.3.1 void memcoalesce (void)

Join adjacent chunks of freed memory.

When the memory manager frees allocated memory, it makes no attempt to rejoin
adjacent pieces of memory, Therefore, the memory becomes fragmented over time
unless the allocation calls are very careful. This function will join adjacent pieces of
memory and make the larger piece available for allocation.

4.8.3.2 unsigned char memfree (void ∗ ptr)

De-allocates a block of memory.

77



Deallocates a block of memory that was previously allocated by callingmemmalloc
or memmallocdirty , making this block available for re-allocation. Use the function
memgetfreeramto determine how much memory is available for allocation.

This is a redirected function. The ROM includes a default memory manager implemen-
tation. See theDS80C400 User’s Guide for information on replacing the default
memory manager with your own memory manager.

Parameters:
ptr pointer to the beginning of the previously allocated memory

Returns:
0 for success, non-zero for failure

See also:
memmalloc
memmallocdirty
memgetfreeram
memsizeof

4.8.3.3 unsigned long memgetfreeram (void)

Returns the amount of memory available for allocation.

Returns the total amount of memory available for allocation. Memory is allocated in
increments of 32 bytes. Due to fragmentation, large memory allocations may not be
possible.

Note that the size returned by this function includes the memory manager overhead for
this particular block. For example, if you request 512 bytes in a call tomemmalloc
, this function will report the amount 512 plus overhead size, rounded up to the next
32-byte block (thus returning 544).

This is a redirected function. The ROM includes a default memory manager implemen-
tation. See theDS80C400 User’s Guide for information on replacing the default
memory manager with your own memory manager.

See also:
memsizeof

Returns:
The amount of memory available for allocation from the memory manager.

4.8.3.4 void∗ mem malloc (unsigned intsize)

Requests a block of memory to be allocated.

78

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Tries to allocate a block of memory of the requested size. The data allocated is
filled with 0’s. To request non-cleared memory (and save the extra time) usemem-
mallocdirty. To de-allocate the memory block, usememfree.

This is a redirected function. The ROM includes a default memory manager implemen-
tation. See theDS80C400 User’s Guide for information on replacing the default
memory manager with your own memory manager.

Parameters:
size amount of data requested for allocation

Returns:
pointer to the newly allocated memory, or NULL (0) if the operation failed

See also:
memmallocdirty
memfree
memsizeof

4.8.3.5 void∗ mem mallocdirty (unsigned int size)

Requests a block of memory to be allocated.

Tries to allocate a block of memory of the requested size. The data allocated is NOT
filled with 0’s, and is likely to be filled with unpredictable values. To request cleared
memory, usememmalloc. To de-allocate the memory block, usememfree.

This is a redirected function. The ROM includes a default memory manager implemen-
tation. See theDS80C400 User’s Guide for information on replacing the default
memory manager with your own memory manager.

Parameters:
size amount of data requested for allocation

Returns:
pointer to the newly allocated memory, or NULL (0) if the operation failed

See also:
memmalloc
memfree
memsizeof

4.8.3.6 unsigned int memsizeof (void∗ ptr)

Gets the size of an allocated block of memory.

79

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Returns the size of a block of memory that was allocated by the ROM’s default memory
manager. If the input pointer is not a valid pointer that was created by an earlier call to
memmallocor #memdirtymalloc, the value returned has no meaning.

This is NOT a redirected function, and only functions if the ROM’s default memory
manager is used.

Parameters:
ptr pointer to the beginning of the previously allocated memory

Returns:
size of the memory allocated for a valid input pointer

See also:
memmalloc
memmallocdirty
memgetfreeram

4.8.3.7 unsigned int memversion (void)

Returns the version number of this memory management library.

Returns:
Version number of this memory management library.

4.9 rom400netif.h File Reference

4.9.1 Detailed Description

Network interface library for the DS80C400.

This library allows a user to add network interface drivers to the network stack.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Defines

• #defineROM400NETIF VERSION2

Functions

• unsigned intnetif version(void)

Returns the version number of this NETIF library.

80

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• int netif packetreceived(unsigned char∗packet, int len)

Submit an inbound packet to the network stack.

• int netif addinterface(char ∗name, unsigned long ip, unsigned long subnet,
unsigned long gateway, unsigned char flags, int(∗transmitter)(unsigned char
∗packet, int len), int mtu, unsigned char timeout)

Add an interface to the network interface list.

• int netif removeinterface(char∗name)

Remove specified interface from the network interface list.

• int netif setdefaultinterface(char∗name)

Set the specified interface Ras default interface.

4.9.2 Define Documentation

4.9.2.1 #define ROM400NETIF VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thenetif versionfunction.

See also:
netif version

4.9.3 Function Documentation

4.9.3.1 int netif addinterface (char∗ name, unsigned longip, unsigned longsub-
net, unsigned longgateway, unsigned charflags, int(∗ transmitter)(unsigned char
∗packet, int len), int mtu, unsigned chartimeout)

Add an interface to the network interface list.

Parameters:
name name of network interface (e.g. ”ppp0”)

ip IP address of the new interface (MSB first, e.g. 0x0a000002L for 10.0.0.2)

subnet subnet mask of the new interface (e.g. 0xff000000L for 255.0.0.0)

gatewaygateway IP address of the new interface (e.g. 0x0a000001L for 10.0.0.1)

flags set to 1 if new interface should be the default interface (else 0)

transmitter address of the user supplied transmit function (see below)

mtu maximum transmission unit

81



timeout initial tcp timout period based on an 8Hz tick; must be 8, 16, 32,6 4 or
128 (default: 128)

Returns:
1 for success, 0 for failure

See also:
netif removeinterface

The transmitter functionint transmitter(unsigned char∗packet, int len)should return
1 when the packet was successfully sent (or dropped) and the packet memory should
be freed. If the packet couldn’t be sent and the packet should be retried, the transmitter
should return 0. The argumentpacketpoints to the IP packet data to be transmitted
and length is the length of the IP packet. Note that the transmit function runs under
interrupt. Registers are saved, but only thread-safe functions can be called.

4.9.3.2 int netif packetreceived (unsigned char∗ packet, int len)

Submit an inbound packet to the network stack.

Parameters:
packet IP packet

len length of the packet

Returns:
1 for success, 0 for failure

4.9.3.3 int netif removeinterface (char∗ name)

Remove specified interface from the network interface list.

Parameters:
name name of network interface to remove

Returns:
1 for success, 0 for failure

See also:
netif addinterface

NOTE: The behavior of this function is not guaranteed if a network interface is re-
moved while output traffic for the interface is still pending. It is recommended to close
all sockets and delay for a few seconds before removing any network interface.

82



4.9.3.4 int netif setdefaultinterface (char∗ name)

Set the specified interface Ras default interface.

Parameters:
name name of network interface

Returns:
1 for success, 0 for failure

4.9.3.5 unsigned int netifversion (void)

Returns the version number of this NETIF library.

Returns:
Version number of this NETIF library.

4.10 rom400netstat.h File Reference

4.10.1 Detailed Description

Network statistics library for the DS80C400.

This library contains functions that return pointers to network information tables in the
socket library.

Note that the tables and structures returned by these functions are the actual, physical
tables used by the network stack and should not be modified by user applications.
Since these are the actual network structures, it is possible they might change while
an application is processing them. Any critical analysis of these structures should be
protected from interruption.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Data Structures

• structnetstatarp entry
• structnetstattcp socket
• structnetstatudp entry

Defines

• #defineROM400NETSTAT VERSION1
• #defineNETSTAT ARP ENTRIES8

83

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Number of entries in the ARP table.

• #defineNETSTAT ARP USED1

Value for#netstatarp entry.flags. Table entry is used.

• #defineNETSTAT ARP REPLYPENDING2

Value for#netstatarp entry.flags. Table entry is not yet valid, request has been sent
out.

• #defineNETSTAT ARP STATIC 4

Value for#netstatarp entry.flags. Table entry does not expire.

• #defineNETSTAT UDP ENTRIES16

Number of entries in the UDP port table.

• #defineNETSTAT UDP USED1

Values for#netstatudp entry.flags. Table entry is used.

• #defineNETSTAT TCP MAXSOCKETS25

Maxmimum number of sockets supported.

• #defineNETSTAT TCP OUTPUT NEEDED MASK 2

Value fornetstattcp socket.flags. Either ACK or data or both.

• #defineNETSTAT TCP ACK NEEDED MASK 4

Value fornetstattcp socket.flags. Need an ACK.

• #defineNETSTAT TCP SERVERMASK 8

Value fornetstattcp socket.flags. This is a server connection.

• #defineNETSTAT TCP RESERVEDMASK 16

Value fornetstattcp socket.flags. (Reserved).

• #defineNETSTAT TCP HAVE OUTPUT DATA MASK 32

Value fornetstattcp socket.flags. Have data in output buffer.

• #defineNETSTAT TCP HAVE FIN MASK 64

Value fornetstattcp socket.flags. Set when we receive a FIN.

• #defineNETSTAT TCP SEND FIN MASK 128

Value fornetstattcp socket.flags. Send a FIN after all data sent.

• #defineNETSTAT TCP OPTION NAGLE ENABLED MASK 1

84



Value fornetstattcp socket.options. Set when Nagle’s algorithm enabled.

• #defineNETSTAT TCP OPTION IPV6 MASK 2

Value fornetstattcp socket.options. Set when we should talk IPv6 on the socket.

• #defineNETSTAT TCP OPTION SOCKETASSIGNED4

Value fornetstattcp socket.options. Assigned an application socket for thisTCB.

• #defineNETSTAT TCP STATE CLOSED0

Value fornetstattcp socket.state. The socket is closed.

• #defineNETSTAT TCP STATE LISTEN 1

Value fornetstattcp socket.state. The socket is listening.

• #defineNETSTAT TCP STATE SYN SENT2

Value fornetstattcp socket.state. The socket has sent a SYN.

• #defineNETSTAT TCP STATE SYN RECEIVED3

Value fornetstattcp socket.state. The socket had received a SYN.

• #defineNETSTAT TCP STATE ESTABLISHED4

Value fornetstattcp socket.state. The socket connection has been established.

• #defineNETSTAT TCP STATE FIN WAIT 1 5

Value fornetstattcp socket.state. The socket has been closed, and is waiting for its
peer to close.

• #defineNETSTAT TCP STATE FIN WAIT 2 6

Value fornetstattcp socket.state. The socket’s peer has ACKed a FIN.

• #defineNETSTAT TCP STATE CLOSEWAIT 7

Value fornetstattcp socket.state. The socket’s peer has sent a FIN, the application
should now close the socket.

• #defineNETSTAT TCP STATE LAST ACK 8

Value fornetstattcp socket.state. The socket has closed, and is waiting for it’s peer
to ACK.

• #defineNETSTAT TCP STATE CLOSING9

Value fornetstattcp socket.state. Both ends have closed the socket.

• #defineNETSTAT TCP STATE TIME WAIT 10

Value fornetstattcp socket.state. Timeout wait before returning to closed state.

85



Functions

• unsigned intnetstatversion(void)

Returns the version number of this NETSTAT library.

• netstatarp entryfar ∗ netstatget arp table(void)

Returns a pointer to the ARP cache table.

• unsigned intnetstatnum arp entries(void)

Returns the number of entries in the ARP cache table.

• netstatudp entryfar ∗ netstatget udp table(void)

Returns a pointer to the UDP port table.

• unsigned intnetstatnum udp entries(void)

Returns the number of entries in the UDP port table.

• netstattcp socketfar ∗ netstatget tcp socket(unsigned int conn)

Returns a pointer to a TCP socket information block.

• unsigned intnetstatnum tcp sockets(void)

Returns the number of entries in the TCP socket table.

4.10.2 Define Documentation

4.10.2.1 #define ROM400NETSTAT VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by thenetstatversionfunction.

See also:
netstatversion

4.10.3 Function Documentation

4.10.3.1 netstat arp entry far∗ netstat get arp table (void)

Returns a pointer to the ARP cache table.

This function returns a pointer to the ARP cache table. There areNETSTAT ARP -
ENTRIESin the ARP cache. Each entry is anetstatarp entry. The entry is used when
its ”flags” has theNETSTAT ARP USEDbit set.

86



Returns:
Far pointer to the ARP cache table

4.10.3.2 netstat tcp socketfar∗ netstat get tcp socket (unsigned intconn)

Returns a pointer to a TCP socket information block.

This function returns a pointer to a specific TCP socket information block of type
netstattcp socket. There are at mostNETSTAT TCP MAXSOCKETS, the function
returns NULL when a given socket number doesn’t exist. Note that the actual number
of sockets in the socket table might change at any time. Table entries are not guaranteed
to be contiguous. A user application∗ should therefore call this function for all values
from 0 toNETSTAT TCP MAXSOCKETS- 1 and discard non-existent entries.

Parameters:
conn Socket number

Returns:
Far pointer to the socket’s information block (or NULL if the socket doesn’t exist).

4.10.3.3 netstat udp entry far∗ netstat get udp table (void)

Returns a pointer to the UDP port table.

This function returns a pointer to the UDP port table. There areNETSTAT UDP -
ENTRIESin the UDP port table. Each entry is anetstatudp entry. The entry is used
when its ”flags” has theNETSTAT UDP USEDbit set.

Returns:
Far pointer to the UDP port table

4.10.3.4 unsigned int netstatnum arp entries (void)

Returns the number of entries in the ARP cache table.

This function returns the number of used entries in the ARP cache table (entries with
theNETSTAT ARP USEDflag set).

Returns:
Number of entries in the ARP cache table

87



4.10.3.5 unsigned int netstatnum tcp sockets (void)

Returns the number of entries in the TCP socket table.

This function returns the number of used entries in the TCP socket table.

Returns:
Number of entries in the TCP socket table

4.10.3.6 unsigned int netstatnum udp entries (void)

Returns the number of entries in the UDP port table.

This function returns the number of used entries in the UDP port table (entries with the
NETSTAT UDP USEDflag set).

Returns:
Number of entries in the UDP port table

4.10.3.7 unsigned int netstatversion (void)

Returns the version number of this NETSTAT library.

Returns:
Version number of this NETSTAT library.

4.11 rom400ow.h File Reference

4.11.1 Detailed Description

Raw 1-Wire functions in the DS80C400 ROM.

This library contains functions for finding and communicating with devices on the
internal 1-Wire. These functions use the DS80C400’s 1-Wire master, applications do
not need to worry about protecting the ROM 1-Wire routines from interruption.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

These functions are all safe to be called from multiple processes simultaneously. That
is, if two processes call one of these functions at the same time, the function parameters
will not be destroyed. However, two processes attempting 1-Wire communications at
the same time will surely cause communications problems. In addition, the memory
space that ROM ID’s are stored in is global for the system. Therefore, processes should
synchronize around all 1-Wire communication sessions.

88

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Defines

• #defineROM400OW VERSION4
• #defineOW RESETSHORT0
• #defineOW RESETPRESENCE1
• #defineOW RESETALARM 2
• #defineOW RESETNO PRESENCE3

Functions

• unsigned charow first (void)

Searches for the first device on the 1-Wire bus.

• unsigned charow next(void)

Searches the 1-Wire for subsequent devices.

• unsigned charow reset(void)

Sends a reset signal to the 1-Wire bus.

• unsigned charow byte(unsigned char x)

Sends/receives a byte to/from the 1-Wire bus.

• unsigned char∗ ow getcurrentid(void)

Returns a pointer to the address of the current device in a 1-Wire bus search.

• unsigned intow version(void)

Returns the version number of this 1-Wire library.

4.11.2 Define Documentation

4.11.2.1 #define OWRESET ALARM 2

Result of aow resetoperation. There is an alarming device on the 1-Wire bus.

See also:
ow reset

4.11.2.2 #define OWRESET NO PRESENCE 3

Result of aow resetoperation. There is no device on the 1-Wire bus.

See also:
ow reset

89



4.11.2.3 #define OWRESET PRESENCE 1

Result of aow resetoperation. There is a device on the 1-Wire bus.

See also:
ow reset

4.11.2.4 #define OWRESET SHORT 0

Result of aow resetoperation. The 1-Wire bus is shorted.

See also:
ow reset

4.11.2.5 #define ROM400OW VERSION 4

Version number associated with this header file. Should be the same as the version
number returned by theow versionfunction.

See also:
ow version

4.11.3 Function Documentation

4.11.3.1 unsigned char owbyte (unsigned charx)

Sends/receives a byte to/from the 1-Wire bus.

Sends the input byte to the 1-Wire bus, and returns any byte transmitted from the 1-
Wire bus. Send the byte 0xFF to return the result of a transmission by the slave (the
device or iButton).

Parameters:
x byte to write to the 1-Wire bus

Returns:
Byte read from the 1-Wire bus

4.11.3.2 unsigned char owfirst (void)

Searches for the first device on the 1-Wire bus.

Tries to access the first device on the 1-Wire bus. After a call toow first , use the
address returned byow getcurrentidto read the 8 byte Address of the device. To read
all the devices present, call this method only once, and then callow next to read all
subsequent devices.

90



Returns:
Non-zero if a device is found, 0 if no devices are found.

See also:
ow next
ow getcurrentid

4.11.3.3 unsigned char∗ ow getcurrentid (void)

Returns a pointer to the address of the current device in a 1-Wire bus search.

Use the pointer returned by this method after every call toow first andow next. Note
that calls to these functions destroy what was previously held at this address. Programs
that need to remember all the devices found should copy the addresses one at a time as
the 1-Wire bus is searched.

Returns:
Pointer to the 8-byte device address.

See also:
ow first
ow next

4.11.3.4 unsigned char ownext (void)

Searches the 1-Wire for subsequent devices.

Call ow first once before making subsequent calls toow nextto find the second, third,
and so on devices. After a successful call toow next, call the functionow getcurrentid
to get the unique 64-bit address of the device found.

Returns:
Non-zero if a device is found, 0 if no more devices are found.

See also:
ow first
ow getcurrentid

4.11.3.5 unsigned char owreset (void)

Sends a reset signal to the 1-Wire bus.

The result of a reset tells you if the bus is shorted, if a device is present, if an alarming
device is present, or if no device is present.

91



Returns:
Result of reset (i.e.OW RESETSHORT)

See also:
OW RESETSHORT
OW RESETPRESENCE
OW RESETALARM
OW RESETNO PRESENCE

4.11.3.6 unsigned int owversion (void)

Returns the version number of this 1-Wire library.

Returns:
Version number of this 1-Wire library.

4.12 rom400rarp.h File Reference

4.12.1 Detailed Description

RARP library for the DS80C400.

This library allows a user to send a RARP request to the network.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Defines

• #defineROM400RARP VERSION1

Functions

• unsigned intrarp version(void)

Returns the version number of this RARP library.

• void rarp send(void(∗callback)(unsigned long))

Send a RARP request.

• void rarp stop(void)

Disable reception of RARP packets (in the event of a timeout).

92

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


4.12.2 Define Documentation

4.12.2.1 #define ROM400RARP VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by therarp versionfunction.

See also:
rarp version

4.12.3 Function Documentation

4.12.3.1 void rarp send (void(∗ callback)(unsigned long))

Send a RARP request.

Parameters:
callback function that gets called when RARP receives an IP address (the IP ad-

dress will be supplied to callback MSB first)

4.12.3.2 void rarp stop (void)

Disable reception of RARP packets (in the event of a timeout).

If RARP receives an IP address, it is not necessary to call this funtion. This function is
only necessary if the callback fromrarp sendwas never called.

4.12.3.3 unsigned int rarpversion (void)

Returns the version number of this RARP library.

Returns:
Version number of this RARP library.

4.13 rom400sock.h File Reference

4.13.1 Detailed Description

Socket functions in the DS80C400 ROM.

This library contains functions for TCP, UDP and Multicast sockets, as well as net-
work configuration. The functions in this libraryare safe to be called from multiple
processes at the same time, with the exception of the functionping . Both the tradi-
tional Berkeley style socket API and thesynchronizedsocket functions are supported

93



(the Berkeley style API is supported through macros implemented by the synchronized
functions).

It is recommended that new applications use the Berkeley style API for portability.

Note that in order to run at 100 Mbs, the DS80C400 must be running at least 25MHz.
This can be accomplished on the TINIm400 module by enabling the clock doubler.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

#include <stdlib.h >

Data Structures

• structin6 addr
• structin addr
• structpingdata
• structsockaddr
• structsockaddrin

Defines

• #defineROM400SOCK SYNCH VERSION10
• #defineROM400SOCK VERSION10
• #defineSOCKETTYPE DATAGRAM 0
• #defineSOCKETTYPE STREAM1
• #defineSOCK DGRAM 0
• #defineSOCK STREAM1
• #definePF INET 4
• #defineAF INET 4
• #defineAF INET6 6
• #defineIPPROTOUDP0
• #defineTCP NODELAY 0
• #defineSO LINGER 1
• #defineSO TIMEOUT 2
• #defineSO BINDADDR 3
• #defineETH STATUS LINK 1
• #definehtons(x) (x)

Convert a number to network byte order.

• #definentohs(x) (x)

Convert a number to host byte order.

• #definesocket(domain, type, protocol) synsocket((type))

94

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Create a network socket for TCP or UDP communication.

• #defineclosesocket(socketnum) synclosesocket((socketnum))

Closes a specific socket.

• #definesendto(socketnum, buffer, length, flags, address, addresslength) syn-
sendto(synsetDatagramAddress((socketnum),1,(address)),(length),(buffer))

Sends a UDP datagram to a specified address.

• #define recvfrom(socketnum, buffer, length, flags, address, ad-
dresslength) synrecvfrom(synsetDatagramAddress((socket-
num),0,(address)),(length),(buffer))

Receive a UDP datagram.

• #define connect(socketnum, address, addresslength) synconnect((socket-
num),(address))

Connects a TCP socket to a specified address.

• #define bind(socketnum, address, addresslength) synbind((socket-
num),(address))

Binds a socket to a specified address.

• #definelisten(socketnum, backlog) synlisten((socketnum),(backlog))

Tells a socket to listen for incoming connections.

• #define accept(socketnum, address, addresslength) synaccept((socket-
num),(address))

Accepts TCP connections on the specified socket.

• #define recv(socketnum, buffer, length, flags) synrecv((socket-
num),(length),(buffer))

Reads data from a TCP socket.

• #define send(socketnum, buffer, length, flags) synsend((socket-
num),(length),(buffer))

Sends data to a TCP socket.

• #define getsockopt(socketnum, level, name, buffer, length) syn-
getsockopt((socketnum),(name),(buffer))

Get various socket options.

• #define setsockopt(socketnum, level, name, buffer, length) syn-
setsockopt((socketnum),(name),(buffer))

95



Set various socket options.

• #define getsockname(socketnum, address, addresslength) syn-
getsockname((socketnum),(address))

Gets the local IP and port of a socket.

• #define getpeername(socketnum, address, addresslength) syn-
getpeername((socketnum),(address))

Gets the remote address of a connection-based (TCP socket).

• #definecleanup(processid) syn cleanup((processid))

Close all sockets associated with a task.

• #defineavail(socketnum) synavail((socketnum))

Reports number of bytes available on a TCP socket.

• #define join(socketnum, address, addresslength) synjoin((socket-
num),(address))

Adds a socket to a specified multicast group.

• #define leave(socketnum, address, addresslength) synleave((socket-
num),(address))

Removes a socket from the specified multicast group.

• #define getnetworkparams(parambuffer) syngetnetworkparams((param-
buffer))

Get the IPv4 configuration parameters.

• #define setnetworkparams(parambuffer) synsetnetworkparams((param-
buffer))

Set the IPv4 configuration parameters.

• #definegetipv6params(parambuffer) syngetipv6params((parambuffer))

Get the IPv6 address.

• #definegetethernetstatus() syn getethernetstatus()

Get the ethernet status.

• #definegettftpserver(address, addresslength) syngettftpserver((address))

Get the address of the TFTP server.

• #definesettftpserver(address, addresslength) synsettftpserver((address))

Set the address of the TFTP server.

96



• #definegetmacid() syn getmacid()

Get the pointer to the MAC ID storage area.

• #definesetmacid() syn setmacid()

Stores the MAC ID into the MAC ID storage area.

• #definesockversion() syn version()

Returns the version number of this socket library.

• #define arp generaterequest(address, addresslength) synarp -
generaterequest((address))

Unconditionally generate an ARP request for a given IPv4 address.

• #define arp cacherequest(address, addresslength) synarp -
cacherequest((address))

Generate an ARP request for a given IPv4 address and add to the ARP cache.

Functions

• char∗ inet ntop(int family, void ∗addr, char∗strptr,size t len)

Converts a numeric address to a string.

• unsigned intinet pton(int family, char∗str, void∗addr)

Converts a string to a numeric IP address.

• unsigned longinet addr(char∗inet string)

Converts a string representing an IPv4 address to numeric form.

• int syn socket(unsigned int type)

Create a network socket for TCP or UDP communication.

• int syn closesocket(int socketnum)

Closes a specific socket.

• int syn setDatagramAddress(int socketnum, unsigned char sending, struct
sockaddr∗addr)

Set the IP address parameter for future datagram calls.

• int syn sendto(int socketnum, unsigned int length, void∗buffer)

Sends a UDP datagram to an address earlier specified by a call tosyn setDatagram-
Address.

97



• int syn recvfrom(int socketnum, unsigned int length, void∗buffer)

Receive a UDP datagram.

• int syn connect(int socketnum, structsockaddr∗address)

Connects a TCP socket to a specified address.

• int syn bind (int socketnum, structsockaddr∗address)

Binds a socket to a specified address.

• int syn listen(int socketnum, unsigned int backlog)

Tells a socket to listen for incoming connections.

• int syn accept(int socketnum, structsockaddr∗address)

Accepts TCP connections on the specified socket.

• int syn recv(int socketnum, unsigned int length, void∗buffer)

Reads data from a TCP socket.

• int syn send(int socketnum, unsigned int length, void∗buffer)

Sends data to a TCP socket.

• int syn getsockopt(int socketnum, unsigned int name, void∗buffer)

Get various socket options.

• int syn setsockopt(int socketnum, unsigned int name, void∗buffer)

Set various socket options.

• int syn getsockname(int socketnum, structsockaddr∗address)

Gets the local IP and port of a socket.

• int syn getpeername(int socketnum, structsockaddr∗address)

Gets the remote address of a connection-based (TCP socket).

• int syn cleanup(unsigned int processid)

Close all sockets associated with a task.

• int syn avail (int socketnum)

Reports number of bytes available on a TCP socket.

• int syn join (int socketnum, structsockaddr∗address)

Adds a socket to a specified multicast group.

98



• int syn leave(int socketnum, structsockaddr∗address)

Removes a socket from the specified multicast group.

• int syn getnetworkparams(void ∗parambuffer)

Get the IPv4 configuration parameters.

• int syn setnetworkparams(void ∗parambuffer)

Set the IPv4 configuration parameters.

• int syn getipv6params(void ∗parambuffer)

Get the IPv6 address.

• unsigned intsyn getethernetstatus(void)

Get the ethernet status.

• int syn gettftpserver(structsockaddr∗address)

Get the address of the TFTP server.

• int syn settftpserver(structsockaddr∗address)

Set the address of the TFTP server.

• unsigned char∗ syn getmacid(void)

Get the pointer to the MAC ID storage area.

• void syn setmacid(void)

Stores the MAC ID into the MAC ID storage area.

• void clearparambuffers(void)

Clears the parameter buffers used by the socket library.

• unsigned intsyn version(void)

Returns the version number of this socket library.

• int syn arp generaterequest(structsockaddr∗address)

Generate an ARP request for a given IPv4 address.

• int syn arp cacherequest(structsockaddr∗address)

Generate an ARP request for a given IPv4 address and add to the ARP cache.

• int acceptqueue(int sockethandle, structsockaddr∗address)

Returns the number of sockets in the wait queue for this listening socket.

99



• int udpavailable(int sockethandle, structsockaddr∗address)

Returns whether or not data is available to be read on a datagram socket.

• long ping (structsockaddr∗address, unsigned int addresslength, unsigned int
time to live, struct pingdata∗response)

Pings the specified address.

• unsigned inteth readmii(unsigned int phy, unsigned int reg)

Read a PHY register via MII.

• void eth writemii (unsigned int phy, unsigned int reg, unsigned int val)

Write a PHY register via MII.

• void eth disablemulticastreceiver(void)

Disable multicast hardware receiver.

4.13.2 Define Documentation

4.13.2.1 #define accept(socketnum, address, addresslength) syn -
accept((socketnum),(address))

Accepts TCP connections on the specified socket.

Accepts a TCP conection on the specified socket. This function moves the first pend-
ing connection request from the listen queue into the established state, assigning a
new local socket to the connection for communication.acceptblocks if there are no
pending incoming requests. The socketsocketnummust have been created with type
SOCKETTYPESTREAM, bound to an address usingbind , and given a listen queue
by calling listen.

Parameters:
socketnum the handle of the socket that will wait for connections

addresslocation to write remote address

addresslength the length of the address structure (ignored)

Returns:
New socket handle for communicating with remote socket, or 0x0FFFF for failure

See also:
socket
bind
listen

100



4.13.2.2 #define AFINET 4

IPv4 family define, ignored by DS80C400 Silicon Software, but included for compati-
bility

4.13.2.3 #define AFINET6 6

IPv6 family define, ignored by DS80C400 Silicon Software, but included for compati-
bility

4.13.2.4 #define arpcacherequest(address, addresslength) syn arp -
cacherequest((address))

Generate an ARP request for a given IPv4 address and add to the ARP cache.

If the given IP address is not in the ARP cache, generate an ARP request and add it to
the cache.

Parameters:
addressstructure to store the address

addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

4.13.2.5 #define arpgeneraterequest(address, addresslength) syn arp -
generaterequest((address))

Unconditionally generate an ARP request for a given IPv4 address.

Unconditionally generate an ARP request for a given IPv4 address. This functionality
can be used to implement Zeroconf protocols.

Parameters:
addressstructure to store the address

addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

4.13.2.6 #define avail(socketnum) syn avail((socketnum))

Reports number of bytes available on a TCP socket.

Reports the number of bytes available on a TCP socket. This is the number of bytes
that can currently be read using therecvfunction without blocking.

101



Parameters:
socketnum the handle of the socket to check for available data

Returns:
The number of bytes available for arecv function call on this socket, or 0x0FFFF
on failure.

See also:
recv

4.13.2.7 #define bind(socketnum, address, addresslength) syn bind((socket -
num),(address))

Binds a socket to a specified address.

Assigns a local address and port (stored in theaddressparameter) to a socket. Binding
a socket is necessary for server sockets. For client sockets, usebind if a specific source
port is desirable.

Fill addresswith 0’s (for sin addr and sinport) to bind to any available local port. Use
getsocknameto discover which port the socket was bound to.

NOTE: When binding a UDP socket, matching inbound UDP packets will be queued
up for the socket. Callrecvfromperiodically to avoid the risk of running out of kernel
memory.

Parameters:
socketnum socket handle to bind to a local port number

addresscontains the local address (including port number)

addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
listen
getsockname
recvfrom

4.13.2.8 #define cleanup(processid) syn cleanup((processid))

Close all sockets associated with a task.

Close all sockets associtaed with a process ID. User applications should call this func-
tion whenever a task dies or is killed to ensure all associated resources are freed by the
socket layer.

102



Warning:
The DS80C400 Silicon Software task scheduler doesNOT call this function. User
applications should callcleanupafter each call totaskkill .

Parameters:
processid Task PID to clean up sockets associated with

Returns:
0 for success, non-zero for failure.

4.13.2.9 #define closesocket(socketnum) syn closesocket((socketnum))

Closes a specific socket.

Closes the specified socket that was created using thesocketfunction.

Parameters:
socketnum the socket handle to close

Returns:
0 for success, non-zero for failure.

See also:
socket

4.13.2.10 #define connect(socketnum, address, addresslength) syn -
connect((socketnum),(address))

Connects a TCP socket to a specified address.

Connects to a specified address with a streaming socket. This function can only be
used once with each socket. The socketsocketnummust have been created with type
SOCKETTYPESTREAM.

Parameters:
socketnum the socket handle to use to wait for and read a UDP packet

addressIP address and port number to create a streaming connection to

addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
socket

103



4.13.2.11 #define ETHSTATUS LINK 1

Flag for analyzing ethernet status.

See also:
getethernetstatus

4.13.2.12 #define getethernetstatus() syngetethernetstatus()

Get the ethernet status.

Returns the ethernet status byte. This is a bit-wise OR of the following flags:

Flag Value Description
ETH STATUS LINK 01h Ethernet link status

Currently, no other flags are defined.

Returns:
Bitmapped ethernet status byte.

4.13.2.13 #define getipv6params(parambuffer) syn getipv6params((param-
buffer))

Get the IPv6 address.

Gets the IPv6 address of the ethernet interface. The format for the buffer after this
function returns is:

Parameter Offset Length Description
IP6ADDR 0 16 IP address
IP6PREFIX 16 1 IP prefix length

Parameters:
param buffer pointer to buffer to store IPv6 configuration data

Returns:
0 for success, non-zero for failure

See also:
getnetworkparams
setnetworkparams

4.13.2.14 #define getmacid() syngetmacid()

Get the pointer to the MAC ID storage area.

Returns the pointer to the MAC ID storage area. This area will store the MAC ID after
a successful call tosetmacid.

104



Returns:
Pointer to the 400’s MAC ID (6 bytes stored at this location)

See also:
setmacid

4.13.2.15 #define getnetworkparams(parambuffer) syn -
getnetworkparams((param buffer))

Get the IPv4 configuration parameters.

Get the IPv4 configuration parameters, including IP address, subnet mask, and gateway.
The parameters are returned in a buffer in the following form:

Parameter Offset Length Description
(zero) 0 12 Must be 0
IP4ADDR 12 4 IP address
IP4SUBNET 16 4 Subnet mask
IP4PREFIX 20 1 Number of 1 bits

in subnet mask
(zero) 21 12 Must be 0
IP4GATEWAY 33 4 Gateway IP

address

IPv6 addresses are autoconfigured. To retrieve the IPv6 address, use thegetipv6params
function.

Parameters:
param buffer pointer to buffer to store IP configuration data

Returns:
0 for success, non-zero for failure

See also:
setnetworkparams
getipv6params

4.13.2.16 #define getpeername(socketnum, address, addresslength) syn -
getpeername((socketnum),(address))

Gets the remote address of a connection-based (TCP socket).

Stores the IP address of the remote socket communicating with the socket specified by
socketnum. Usegetsocknameto get the local port’s information.

Parameters:
socketnum handle of the socket to get remote IP and port for

105



addressstructure where IP and port will be stored

addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

See also:
getsockname

4.13.2.17 #define getsockname(socketnum, address, addresslength) syn -
getsockname((socketnum),(address))

Gets the local IP and port of a socket.

Stores the local IP and port number of the specified socket in the theaddressparameter.
Usegetpeernameto get the remote port’s information for a connection-based (TCP)
socket.

Parameters:
socketnum handle of the socket to get local IP and port for

addressstructure where IP and port will be stored

addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

See also:
getpeername

4.13.2.18 #define getsockopt(socketnum, level, name, buffer, length) syn-
getsockopt((socketnum),(name),(buffer))

Get various socket options.

Reads a number of supported socket options. Data written into the buffer depends on
the requested socket option.

Name Description Data in buffer
TCP NODELAY TCP Nagle Enable 1 byte
SO LINGER Ignored N/A
SO TIMEOUT Inactivity timeout 4 bytes (milliseconds,

MSB first)
SO BINDADDR Local socket IP 16 bytes

106



Parameters:
socketnum socket to get option information for

level ignored

name option to get

buffer location where option data will be written

length length of the buffer

Returns:
0 for success, non-zero for failure

See also:
setsockopt

4.13.2.19 #define gettftpserver(address, addresslength) syn -
gettftpserver((address))

Get the address of the TFTP server.

Returns the address of the server accessed by the TFTP functions. To communicate
with a TFTP server, use the functions listed inrom400tftp.h, the TFTP library.

Parameters:
addressstructure to store the address of the TFTP server

addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

See also:
settftpserver

4.13.2.20 #define htons(x) (x)

Convert a number to network byte order.

Converts a word from host byte order to network byte order. On the DS80C400, the
orders are the same, so this function does not alter the input data. This function is
included for compatibility.

Parameters:
x Input data to convert to network byte order

Returns:
Input data converted to network byte order

107



4.13.2.21 #define IPPROTOUDP 0

Protocol ID define, ignored by DS80C400 Silicon Software, but included for compati-
bility

4.13.2.22 #define join(socketnum, address, addresslength) syn join((socket -
num),(address))

Adds a socket to a specified multicast group.

Adds a UDP socket to a specified multicast group. In order to receive multicasts from
a group, firstbind the socket to the port number that the multicast group is using (it is
not sufficient to include it here in order to receive).

Use theleavefunction to leave a multicast group.

Warning:
IPv6 multicasting is not supported

Parameters:
socketnum handle for the datagram socket that will join a multicast group

addressIP address of the multicast group to join

addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
leave

4.13.2.23 #define leave(socketnum, address, addresslength) syn leave((socket-
num),(address))

Removes a socket from the specified multicast group.

Removes a UDP socket from the specified multicast group.

Parameters:
socketnum handle for the datagram socket that will leave a multicast group

addressIP address of the multicast group to leave

addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
join

108



4.13.2.24 #define listen(socketnum, backlog) synlisten((socket-
num),(backlog))

Tells a socket to listen for incoming connections.

Tells the socket to listen for connections. A queue of lengthbacklog is created for
pending (un-accepted connections). It is required to usebind to assign a local port
before callinglisten . Useacceptto move an incoming request to an established state,
or wait for incoming connections.

Parameters:
socketnum socket handle that will listen for connections

backlog the maximum number of pending connections (max 16 for the
DS80C400)

Returns:
0 for success, non-zero for failure.

See also:
bind
accept

4.13.2.25 #define ntohs(x) (x)

Convert a number to host byte order.

Converts a word from network byte order to host byte order. On the DS80C400, the
orders are the same, so this function does not alter the input data. This function is
included for compatibility.

Parameters:
x Input data to convert to network byte order

Returns:
Input data converted to network byte order

4.13.2.26 #define PFINET 4

IPv4 protocol family define

4.13.2.27 #define recv(socketnum, buffer, length, flags) synrecv((socket-
num),(length),(buffer))

Reads data from a TCP socket.

109



Reads data from a TCP socket. If there is no data available,recvblocks until there is
data, subject to the value ofSOTIMEOUT . NOTE: This function readsup to length
bytes. Call this function repeatedly if you need to read a minimum number of bytes.

Parameters:
socketnum handle of the streaming socket that will read data

buffer location to write any data read

length maximum amount of data to read

flags ignored

Returns:
The number of bytes read. If the operation times out according to theSO-
TIMEOUT , a value of -2 is returned. If another error occurs, -1 is returned. If
the socket was closed by the other side, 0 is returned.

See also:
connect
send

4.13.2.28 #define recvfrom(socketnum, buffer, length, flags, ad-
dress, addresslength) syn recvfrom(syn setDatagramAddress((socket-
num),0,(address)),(length),(buffer))

Receive a UDP datagram.

Receives a message on the specified socket, and stores the address that sent it. If no data
is available,recvfromblocks subject to theSOTIMEOUTvalue. The socketsocket-
nummust have been created with a typeSOCKETTYPEDATAGRAM. It is required
to usebind to assign a local port to the socket, before receiving data.NOTE: This
function readsup to lengthbytes of a datagram. Any data not read in the datagram will
be discarded.

Parameters:
socketnum the socket handle to use to wait for and read a UDP packet

buffer the location to write any data read from the datagram socket

length the maximum number of bytes to read from a datagram socket

flags ignored

addresslocation to fill in the address and port of the sender

addresslength the length of the address structure (ignored)

Returns:
The number of bytes read. If the operation times out according to theSO-
TIMEOUT, a value of -2 is returned. If another error occurs, -1 is returned.

110



See also:
sendto
socket
bind

4.13.2.29 #define ROM400SOCK SYNCH VERSION 10

Version number associated with this header file. Should be the same as the version
number returned by thesynversionfunction.

See also:
syn version

4.13.2.30 #define ROM400SOCK VERSION 10

Version number associated with this header file. Should be the same as the version
number returned by thesockversionfunction.

See also:
sockversion

4.13.2.31 #define send(socketnum, buffer, length, flags) synsend((socket-
num),(length),(buffer))

Sends data to a TCP socket.

Writes data to a TCP socket. The return value of this function is only a local suc-
cess/failure code, and may not necessarily detect transmission errors.

Parameters:
socketnum handle of the streaming socket that will write data

buffer location of data to write

length number of bytes to write

flags ignored

Returns:
0 for success, non-zero for failure.

See also:
connect
recv

111



4.13.2.32 #define sendto(socketnum, buffer, length, flags, ad-
dress, addresslength) syn sendto(synsetDatagramAddress((socket-
num),1,(address)),(length),(buffer))

Sends a UDP datagram to a specified address.

Sends a UDP datagram to a specified address. The success/failure code this function
returns says nothing of if the packet was recieved by the target, only that the socket
layer was able to push the data out. The socketsocketnummust have been created
with a typeSOCKETTYPEDATAGRAM.

Parameters:
socketnum the socket handle to use to send a UDP packet

buffer the data to send in the datagram packet

length the number of bytes to send in the datagram packet

flags ignored

addressthe destination address and port

addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure.

See also:
recvfrom
socket

4.13.2.33 #define setmacid() synsetmacid()

Stores the MAC ID into the MAC ID storage area.

This is a redirected function. The DS80C400’s default implementation of this function
searches the 1-Wire for a DS2502U-E48 1-Wire chip which contains a MAC ID. This
MAC ID is then stored into the MAC ID storage area, the location of which is stored in
a pointer in the export table. Use thegetmacidfunction to return a pointer to the MAC
ID storage area.

See also:
getmacid

4.13.2.34 #define setnetworkparams(parambuffer) syn -
setnetworkparams((parambuffer))

Set the IPv4 configuration parameters.

112



Set the IPv4 configuration parameters, including IP address, subnet mask, and gateway.
Input parameters should be formatted in the following form:

Parameter Offset Length Description
(zero) 0 12 Must be 0
IP4ADDR 12 4 IP address
IP4SUBNET 16 4 Subnet mask
IP4PREFIX 20 1 Number of 1 bits

in subnet mask
(zero) 21 12 Must be 0
IP4GATEWAY 33 4 Gateway IP

address

Use this method to give the DS80C400 a static IP address. To dynamically configure
an IP address, use methods from the DHCP library inrom400dhcp.h(IP addresses
leased by the DHCP client can still be retrieved by callinggetnetworkparams).

IPv6 addresses are autoconfigured. To retrieve the IPv6 address, use thegetipv6params
function.

Parameters:
param buffer pointer to buffer with IP configuration data

Returns:
0 for success, non-zero for failure

See also:
getnetworkparams
getipv6params

4.13.2.35 #define setsockopt(socketnum, level, name, buffer, length) syn-
setsockopt((socketnum),(name),(buffer))

Set various socket options.

Sets a number of supported socket options. Input data in the buffer depends on the
desired socket option.

Name Description Data in buffer
TCP NODELAY TCP Nagle Enable 1 byte
SO LINGER Ignored N/A
SO TIMEOUT Inactivity timeout 4 bytes (milliseconds,

MSB first)
SO BINDADDR Read only N/A

Parameters:
socketnum socket to set option information for

113



level ignored

name option to set

buffer location of option data that will be written

length length of the buffer

Returns:
0 for success, non-zero for failure

See also:
getsockopt

4.13.2.36 #define settftpserver(address, addresslength) syn -
settftpserver((address))

Set the address of the TFTP server.

Set the address of the server that the TFTP functions will use. Thesettftpserverfunction
must be used if the address of the TFTP server is not acquired by DHCP or 1-Wire.
Once the TFTP server’s address is set, use the functions listed inrom400tftp.h to begin
receiving files.

Parameters:
addressstructure to store the address of the TFTP server

addresslength the length of the address structure (ignored)

Returns:
0 for success, non-zero for failure

See also:
gettftpserver

4.13.2.37 #define SOBINDADDR 3

Argument for socket option. Local binding address.

See also:
getsockopt
setsockopt

4.13.2.38 #define SOLINGER 1

Argument for socket option. Ignored by DS80C400 ROM.

See also:
getsockopt
setsockopt

114



4.13.2.39 #define SOTIMEOUT 2

Argument for socket option. Socket inactivity timeout.

See also:
getsockopt
setsockopt

4.13.2.40 #define SOCKDGRAM 0

Argument to functionsocket to create a UDP socket (same asSOCKETTYPE-
DATAGRAM)

See also:
socket

4.13.2.41 #define SOCKSTREAM 1

Argument to functionsocketto create a TCP socket (same asSOCKETTYPESTREAM
)

See also:
socket

4.13.2.42 #define sockversion() synversion()

Returns the version number of this socket library.

Returns:
Version number of this SOCK library.

4.13.2.43 #define socket(domain, type, protocol) synsocket((type))

Create a network socket for TCP or UDP communication.

Creates a socket for network communication. This function returns a socket handle, but
has not specific local address assigned to it. Note that this function callstaskgettaskid
through the function redirect table.

Parameters:
domain ignored

type SOCKETTYPE DATAGRAM or SOCK DGRAM for UDP, SOCKET-
TYPE STREAMor SOCK STREAMfor TCP

115



protocol ignored

Returns:
0x0FFFF for failure, or the socket handle (socket number)

See also:
bind
connect
closesocket

4.13.2.44 #define SOCKETTYPE DATAGRAM 0

Argument to functionsocketto create a UDP socket (same asSOCKDGRAM)

See also:
socket

4.13.2.45 #define SOCKETTYPE STREAM 1

Argument to functionsocketto create a TCP socket (same asSOCKSTREAM)

See also:
socket

4.13.2.46 #define TCPNODELAY 0

Argument for socket option. Enables/disables Nagle algorithm.

See also:
getsockopt
setsockopt

4.13.3 Function Documentation

4.13.3.1 int acceptqueue (intsockethandle, struct sockaddr∗ address)

Returns the number of sockets in the wait queue for this listening socket.

Returns the number of sockets in the queue attempting to connect to this server socket.

Parameters:
sockethandle handle to socket to check for waiting connections

addresslocation where the IP and port number will be written

116



Returns:
-1 if the socket is not a streaming socket set up to listen 0 or greater for the number
of sockets waiting

The IP and port of the socket are returned inaddress.

4.13.3.2 void clearparam buffers (void)

Clears the parameter buffers used by the socket library.

Clears buffers used to store parameters for the socket library. This function should be
called immediately after calling theinit rom function, and before any socket library
functions are called.

See also:
init rom

4.13.3.3 void ethdisablemulticastreceiver (void)

Disable multicast hardware receiver.

This function disables the ”pass multicast” (PM) bit in the DS80C400 MAC control
register. This improves performance if the application doesn’t use multicast. This
function must be called after initialization of the Ethernet. WARNING: IPv6 requires
multicast. Disabling the receiver disables IPv6 address resolution.

4.13.3.4 unsigned int ethreadmii (unsigned int phy, unsigned int reg)

Read a PHY register via MII.

This function reads a PHY register via the MII interface. See the IEEE 802.3 specifi-
cation (22.2.4) for a description of the MII management register set.

Parameters:
phy PHY address (0 to 31)

reg register address (0 to 31, 16 through 31 are vendor specific)

Returns:
value read from the register specified

4.13.3.5 void ethwritemii (unsigned int phy, unsigned int reg, unsigned int val)

Write a PHY register via MII.

This function writes a PHY register via the MII interface. See the IEEE 802.3 specifi-
cation (22.2.4) for a description of the MII management register set.

117



Parameters:
phy PHY address (0 to 31)

reg register address (0 to 31, 16 through 31 are vendor specific)

val value to write to the specified register

4.13.3.6 unsigned long inetaddr (char ∗ inet string)

Converts a string representing an IPv4 address to numeric form.

Converts the input string into an IPv4 address suitable for setting in asockaddrin
structure.

Parameters:
inet string IPv4 address in string form

Returns:
Numberic IPv4 address

See also:
sockaddrin

4.13.3.7 char∗ inet ntop (int family, void ∗ addr, char ∗ strptr, size t len)

Converts a numeric address to a string.

Converts a numeric IP address to a presentable format as a null terminated string. IPv4
addresses are formatted such as in ”192.0.1.1”. IPv6 addresses are formatted such
as in ”b803:8a11:0000:2121:fec5:0601:aa01:0102”. Note that the ’::’ shortcut isnot
supported–a ’0000’ must be fully specified.

Parameters:
family AF INET or AF INET6

addr pointer to numeric representation of IP address

strptr storage location for presentation string

len size of storage area for strptr

Returns:
Reference to strptr, or NULL if thefamily is not recognized or if there is not enough
space as declared bylen

See also:
inet pton

118



4.13.3.8 unsigned int inetpton (int family, char ∗ str, void ∗ addr)

Converts a string to a numeric IP address.

Converts a string represenation of an IP address into numeric format. IPv4 addresses
are expected to be input in a format such as in ”192.0.1.1”. IPv6 addresses are expected
to be formatted such as in ”b8:03:8a:11:00:00:21:21:fe:c5:06:01:aa:01:01:02”.

Parameters:
family AF INET or AF INET6

str address string to translate

addr pointer to storage for numeric representation of IP address

Returns:
1 for successful translation. 0 if the format was invalid, or thefamily was not
recognized.

See also:
inet ntop

4.13.3.9 long ping (structsockaddr ∗ address, unsigned int addresslength, un-
signed int time to live, struct pingdata ∗ response)

Pings the specified address.

Sends an ICMP echo request (ping) to a specified address. Note that this function is
NOT safe to be called from multiple processes at the same time.

Parameters:
addressIP address to send an ICMP echo request to

addresslength the length of the address structure (ignored)

time to live packets send by ping have this ”time to live” setting

responsedata structure to fill in returned data (this argument must not be NULL)

Returns:
response time in milliseconds (0 means less than 1ms), or -1L for failure

The ping return data structure is defined as follows: reserved - Reserved field ip-
header - The IP header of the return packet icmpheader - The ICMP header of the
return packet icmpdata - The ICMP data portion of the return packet (should be
0x20,0x21,0x22,...,0x3f)

119



4.13.3.10 int synaccept (intsocketnum, struct sockaddr∗ address)

Accepts TCP connections on the specified socket.

Accepts a TCP conection on the specified socket. This function moves the first pend-
ing connection request from the listen queue into the established state, assigning a
new local socket to the connection for communication.acceptblocks if there are no
pending incoming requests. The socketsocketnummust have been created with type
SOCKETTYPESTREAM, bound to an address usingbind , and given a listen queue
by calling listen.

Parameters:
socketnum the handle of the socket that will wait for connections

addresslocation to write remote address

Returns:
New socket handle for communicating with remote socket, or -1 for failure

See also:
socket
bind
listen

4.13.3.11 int synarp cacherequest (structsockaddr∗ address)

Generate an ARP request for a given IPv4 address and add to the ARP cache.

If the given IP address is not in the ARP cache, generate an ARP request and add it to
the cache.

Parameters:
addressstructure to store the address

Returns:
0 for success, non-zero for failure

4.13.3.12 int synarp generaterequest (structsockaddr∗ address)

Generate an ARP request for a given IPv4 address.

Unconditionally generate an ARP request for a given IPv4 address. This functionality
can be used to implement Zeroconf protocols.

Parameters:
addressstructure to store the address

Returns:
0 for success, non-zero for failure

120



4.13.3.13 int synavail (int socketnum)

Reports number of bytes available on a TCP socket.

Reports the number of bytes available on a TCP socket. This is the number of bytes
that can currently be read using therecvfunction without blocking.

Parameters:
socketnum the handle of the socket to check for available data

Returns:
The number of bytes available for arecv function call on this socket, or -1 on
failure.

See also:
recv

4.13.3.14 int synbind (int socketnum, struct sockaddr∗ address)

Binds a socket to a specified address.

Assigns a local address and port (stored in theaddressparameter) to a socket. Binding
a socket is necessary for server sockets. For client sockets, usebind if a specific source
port is desirable.

Fill addresswith 0’s (for sin addr and sinport) to bind to any available local port. Use
getsocknameto discover which port the socket was bound to.

NOTE: When binding a UDP socket, matching inbound UDP packets will be queued
up for the socket. Callrecvfromperiodically to avoid the risk of running out of kernel
memory.

Parameters:
socketnum socket handle to bind to a local port number

addresscontains the local address (including port number)

Returns:
0 for success, non-zero for failure.

See also:
listen
getsockname
recvfrom

121



4.13.3.15 int syncleanup (unsigned intprocessid)

Close all sockets associated with a task.

Close all sockets associtaed with a process ID. User applications should call this func-
tion whenever a task dies or is killed to ensure all associated resources are freed by the
socket layer.

Warning:
The DS80C400 Silicon Software task scheduler doesNOT call this function. User
applications should callcleanupafter each call totaskkill .

Parameters:
processid Task PID to clean up sockets associated with

Returns:
0 for success, non-zero for failure.

4.13.3.16 int synclosesocket (intsocketnum)

Closes a specific socket.

Closes the specified socket that was created using thesocketfunction.

Parameters:
socketnum the socket handle to close

Returns:
0 for success, non-zero for failure.

See also:
socket

4.13.3.17 int synconnect (intsocketnum, struct sockaddr∗ address)

Connects a TCP socket to a specified address.

Connects to a specified address with a streaming socket. This function can only be
used once with each socket. The socketsocketnummust have been created with type
SOCKETTYPESTREAM.

Parameters:
socketnum the socket handle to use to wait for and read a UDP packet

addressIP address and port number to create a streaming connection to

122



Returns:
0 for success, non-zero for failure.

See also:
socket

4.13.3.18 unsigned int syngetethernetstatus (void)

Get the ethernet status.

Returns the ethernet status byte. This is a bit-wise OR of the following flags:

Flag Value Description
ETH STATUS LINK 01h Ethernet link status

Currently, no other flags are defined.

Returns:
Bitmapped ethernet status byte.

4.13.3.19 int syngetipv6params (void∗ param buffer)

Get the IPv6 address.

Gets the IPv6 address of the ethernet interface. The format for the buffer after this
function returns is:

Parameter Offset Length Description
IP6ADDR 0 16 IP address
IP6PREFIX 16 1 IP prefix length

Parameters:
param buffer pointer to buffer to store IPv6 configuration data

Returns:
0 for success, non-zero for failure

See also:
getnetworkparams
setnetworkparams

4.13.3.20 unsigned char∗ syn getmacid (void)

Get the pointer to the MAC ID storage area.

Returns the pointer to the MAC ID storage area. This area will store the MAC ID after
a successful call tosetmacid.

123



Returns:
Pointer to the 400’s MAC ID (6 bytes stored at this location)

See also:
setmacid

4.13.3.21 int syngetnetworkparams (void∗ param buffer)

Get the IPv4 configuration parameters.

Get the IPv4 configuration parameters, including IP address, subnet mask, and gateway.
The parameters are returned in a buffer in the following form:

Parameter Offset Length Description
(zero) 0 12 Must be 0
IP4ADDR 12 4 IP address
IP4SUBNET 16 4 Subnet mask
IP4PREFIX 20 1 Number of 1 bits

in subnet mask
(zero) 21 12 Must be 0
IP4GATEWAY 33 4 Gateway IP

address

IPv6 addresses are autoconfigured. To retrieve the IPv6 address, use thegetipv6params
function.

Parameters:
param buffer pointer to buffer to store IP configuration data

Returns:
0 for success, non-zero for failure

See also:
setnetworkparams
getipv6params

4.13.3.22 int syngetpeername (intsocketnum, struct sockaddr∗ address)

Gets the remote address of a connection-based (TCP socket).

Stores the IP address of the remote socket communicating with the socket specified by
socketnum. Usegetsocknameto get the local port’s information.

Parameters:
socketnum handle of the socket to get remote IP and port for

addressstructure where IP and port will be stored

124



Returns:
0 for success, non-zero for failure

See also:
getsockname

4.13.3.23 int syngetsockname (intsocketnum, struct sockaddr∗ address)

Gets the local IP and port of a socket.

Stores the local IP and port number of the specified socket in the theaddressparameter.
Usegetpeernameto get the remote port’s information for a connection-based (TCP)
socket.

Parameters:
socketnum handle of the socket to get local IP and port for

addressstructure where IP and port will be stored

Returns:
0 for success, non-zero for failure

See also:
getpeername

4.13.3.24 int syngetsockopt (int socketnum, unsigned int name, void ∗ buffer)

Get various socket options.

Reads a number of supported socket options. Data written into the buffer depends on
the requested socket option.

Name Description Data in buffer
TCP NODELAY TCP Nagle Enable 1 byte
SO LINGER Ignored N/A
SO TIMEOUT Inactivity timeout 4 bytes (milliseconds,

MSB first)
SO BINDADDR Local socket IP 16 bytes

This function assumes there is enough room inbufferto store the requested data.

Parameters:
socketnum socket to get option information for

name option to get

buffer location where option data will be written

125



Returns:
0 for success, non-zero for failure

See also:
setsockopt

4.13.3.25 int syngettftpserver (struct sockaddr∗ address)

Get the address of the TFTP server.

Returns the address of the server accessed by the TFTP functions. To communicate
with a TFTP server, use the functions listed inrom400tftp.h, the TFTP library.

Parameters:
addressstructure to store the address of the TFTP server

Returns:
0 for success, non-zero for failure

See also:
settftpserver

4.13.3.26 int synjoin (int socketnum, struct sockaddr∗ address)

Adds a socket to a specified multicast group.

Adds a UDP socket to a specified multicast group. In order to receive multicasts from
a group, firstbind the socket to the port number that the multicast group is using (it is
not sufficient to include it here in order to receive).

Use theleavefunction to leave a multicast group.

Warning:
IPv6 multicasting is not supported

Parameters:
socketnum handle for the datagram socket that will join a multicast group

addressIP address of the multicast group to join

Returns:
0 for success, non-zero for failure.

See also:
leave

126



4.13.3.27 int synleave (intsocketnum, struct sockaddr∗ address)

Removes a socket from the specified multicast group.

Removes a UDP socket from the specified multicast group.

Parameters:
socketnum handle for the datagram socket that will leave a multicast group

addressIP address of the multicast group to leave

Returns:
0 for success, non-zero for failure.

See also:
join

4.13.3.28 int synlisten (int socketnum, unsigned intbacklog)

Tells a socket to listen for incoming connections.

Tells the socket to listen for connections. A queue of lengthbacklog is created for
pending (un-accepted connections). It is required to usebind to assign a local port
before callinglisten . Useacceptto move an incoming request to an established state,
or wait for incoming connections.

Parameters:
socketnum socket handle that will listen for connections

backlog the maximum number of pending connections (max 16 for the
DS80C400)

Returns:
0 for success, non-zero for failure.

See also:
bind
accept

4.13.3.29 int synrecv (int socketnum, unsigned int length, void ∗ buffer)

Reads data from a TCP socket.

Reads data from a TCP socket. If there is no data available,recvblocks until there is
data, subject to the value ofSOTIMEOUT . NOTE: This function readsup to length
bytes. Call this function repeatedly if you need to read a minimum number of bytes.

127



Parameters:
socketnum handle of the streaming socket that will read data

length maximum amount of data to read

buffer location to write any data read

Returns:
The number of bytes read. If the operation times out according to theSO-
TIMEOUT , a value of -2 is returned. If another error occurs, -1 is returned. If
the socket was closed by the other side, 0 is returned.

See also:
connect
send

4.13.3.30 int synrecvfrom (int socketnum, unsigned int length, void ∗ buffer)

Receive a UDP datagram.

Receives a message on the specified socket, and stores the address that sent it in the
address structure set by an earlier call tosynsetDatagramAddress. If no data is avail-
able,syn recvfromblocks subject to theSOTIMEOUTvalue. The socketsocketnum
must have been created with a typeSOCKETTYPEDATAGRAM. It is required to use
synbind to assign a local port to the socket, before receiving data.NOTE: This func-
tion readsup to lengthbytes of a datagram. Any data not read in the datagram will be
discarded.

Parameters:
socketnum the socket handle to use to wait for and read a UDP packet

length the maximum number of bytes to read from a datagram socket

buffer the location to write any data read from the datagram socket

Returns:
The number of bytes read. If the operation times out according to theSO-
TIMEOUT, a value of -2 is returned. If another error occurs, -1 is returned.

See also:
syn sendto
syn socket
syn bind

4.13.3.31 int synsend (intsocketnum, unsigned int length, void ∗ buffer)

Sends data to a TCP socket.

Writes data to a TCP socket. The return value of this function is only a local suc-
cess/failure code, and may not necessarily detect transmission errors.

128



Parameters:
socketnum handle of the streaming socket that will write data

length number of bytes to write

buffer location of data to write

Returns:
0 for success, non-zero for failure.

See also:
connect
recv

4.13.3.32 int synsendto (intsocketnum, unsigned int length, void ∗ buffer)

Sends a UDP datagram to an address earlier specified by a call tosynsetDatagram-
Address.

Sends a UDP datagram to an address earlier specified by a call tosynsetDatagram-
Address. The success/failure code this function returns says nothing of if the packet
was recieved by the target, only that the socket layer was able to push the data out. The
socketsocketnummust have been created with a typeSOCKETTYPEDATAGRAM.

Parameters:
socketnum the socket handle to use to send a UDP packet

length the number of bytes to send in the datagram packet

buffer the data to send in the datagram packet

Returns:
0 for success, non-zero for failure.

See also:
syn recvfrom
syn socket
syn setDatagramAddress

4.13.3.33 int synsetDatagramAddress (intsocketnum, unsigned charsending,
struct sockaddr∗ addr)

Set the IP address parameter for future datagram calls.

In order to keep the functions in this library multi-process-safe, datagram functions
synsendtoandsyn recvfromcannot have as many parameters as their traditional coun-
terparts. This function sets the pointer to the address structure that will be used as the
address parameter for functionssynsendtoandsyn recvfrom.

Note that the Berkeley style API is now supported and is multi-process safe.

129



Parameters:
socketnum Socket number to set address for

sending Set to 0 if this is an address for receiving, Set to 1 if this is an address for
sending

addr Address structure that will be used in future calls tosynsendtoor syn -
recvfrom.

Returns:
socketnum (for Macro purposes)

See also:
syn sendto
syn recvfrom

4.13.3.34 void synsetmacid (void)

Stores the MAC ID into the MAC ID storage area.

This is a redirected function. The DS80C400’s default implementation of this function
searches the 1-Wire for a DS2502U-E48 1-Wire chip which contains a MAC ID. This
MAC ID is then stored into the MAC ID storage area, the location of which is stored in
a pointer in the export table. Use thegetmacidfunction to return a pointer to the MAC
ID storage area.

See also:
getmacid

4.13.3.35 int synsetnetworkparams (void∗ param buffer)

Set the IPv4 configuration parameters.

Set the IPv4 configuration parameters, including IP address, subnet mask, and gateway.
Input parameters should be formatted in the following form:

Parameter Offset Length Description
(zero) 0 12 Must be 0
IP4ADDR 12 4 IP address
IP4SUBNET 16 4 Subnet mask
IP4PREFIX 20 1 Number of 1 bits

in subnet mask
(zero) 21 12 Must be 0
IP4GATEWAY 33 4 Gateway IP

address

130



Use this method to give the DS80C400 a static IP address. To dynamically configure
an IP address, use methods from the DHCP library inrom400dhcp.h(IP addresses
leased by the DHCP client can still be retrieved by callinggetnetworkparams).

IPv6 addresses are autoconfigured. To retrieve the IPv6 address, use thegetipv6params
function.

Parameters:
param buffer pointer to buffer with IP configuration data

Returns:
0 for success, non-zero for failure

See also:
getnetworkparams
getipv6params

4.13.3.36 int synsetsockopt (intsocketnum, unsigned intname, void ∗ buffer)

Set various socket options.

Sets a number of supported socket options. Input data in the buffer depends on the
desired socket option.

Name Description Data in buffer
TCP NODELAY TCP Nagle Enable 1 byte
SO LINGER Ignored N/A
SO TIMEOUT Inactivity timeout 4 bytes (milliseconds,

MSB first)
SO BINDADDR Read only N/A

Parameters:
socketnum socket to set option information for

name option to set

buffer location of option data that will be written

Returns:
0 for success, non-zero for failure

See also:
getsockopt

131



4.13.3.37 int synsettftpserver (struct sockaddr∗ address)

Set the address of the TFTP server.

Set the address of the server that the TFTP functions will use. Thesettftpserverfunction
must be used if the address of the TFTP server is not acquired by DHCP or 1-Wire.
Once the TFTP server’s address is set, use the functions listed inrom400tftp.h to begin
receiving files.

Parameters:
addressstructure to store the address of the TFTP server

Returns:
0 for success, non-zero for failure

See also:
gettftpserver

4.13.3.38 int synsocket (unsigned inttype)

Create a network socket for TCP or UDP communication.

Creates a socket for network communication. This function returns a socket handle, but
has not specific local address assigned to it. Note that this function callstaskgettaskid
through the function redirect table.

Parameters:
type SOCKETTYPE DATAGRAM or SOCK DGRAM for UDP, SOCKET-

TYPE STREAMor SOCK STREAMfor TCP

Returns:
-1 for failure, or the socket handle (socket number)

See also:
bind
connect
closesocket

4.13.3.39 unsigned int synversion (void)

Returns the version number of this socket library.

Returns:
Version number of this SOCK library.

132



4.13.3.40 int udpavailable (intsockethandle, struct sockaddr∗ address)

Returns whether or not data is available to be read on a datagram socket.

Returns1 if there is data available to be read on a UDP socket.

Parameters:
sockethandle handle to socket to check for available datagrams

addresslocation where the IP and port number will be written

Returns:
-1 if the socket is not a datagram socket 0 if no datagram packets are available 1 if
a datagram is available

The IP and port of the socket are returned inaddress.

4.14 rom400task.h File Reference

4.14.1 Detailed Description

Process scheduler functions in the DS80C400 ROM.

This library contains functions for starting, suspending, killing, and managing tasks
using the ROM’s process scheduler.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
Some functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Data Structures

• structTCB
• structTIME

Defines

• #defineROM400TASK VERSION8
• #defineROM400SCHEDVERSIONROM400TASK VERSION

Included for legacy reasons. Please useROM400TASKVERSIONinstead.

133

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• #defineRELOAD 14 7460xfb33
• #defineRELOAD 18 4320xfa00
• #defineRELOAD 29 4910xfd99
• #defineRELOAD 36 8640xfd00
• #defineRELOAD 58 9820xfecc
• #defineRELOAD 73 7280xfe80
• #defineMIN PRIORITY1
• #defineNORM PRIORITY128
• #defineMAX PRIORITY255
• #defineFLAG SLEEPING1
• #defineFLAG IO WAIT 2
• #defineFLAG DHCP WAIT 4
• #defineROM SAVESIZE384
• #define taskwait(task id, eventmask, millis) tasksynch-

wait(((long)(millis))>>16,(millis), (taskid) | ((eventmask)<< 8))

Puts the specified task to sleep.

• #define tasksleep(task, timeout) tasksynch-
sleep(((long)(timeout))>>16,(timeout),(task));

Redirected function to put a specified task to sleep for a number of milliseconds.

Functions

• void taskgenesis(unsigned int savesize)

Initializes the process scheduler.

• unsigned chartaskgetcurrent(void)

Gets the process ID for the current task.

• unsigned chartaskgetpriority(unsigned char taskid)

Gets the priority level for the given task.

• unsigned chartasksetpriority(unsigned char taskid, unsigned char priority)

Sets the priority level for a given task.

• unsigned inttask fork (unsigned char priority, unsigned int savesize)

Attempts to create a new task.

• unsigned chartaskkill (unsigned char taskid)

Kills the specified task.

134



• unsigned chartasksuspend(unsigned char taskid, unsigned char eventmask)

Suspends the specified task.

• unsigned chartasksynchwait (unsigned int millish, unsigned int millisl, un-
signed int taskevent)

Puts the specified task to sleep.

• unsigned chartasksignal(unsigned char taskid, unsigned char eventmask)

Posts events to the specified task.

• void taskgettimemillis(structTIME ∗t)

Returns the system tick count.

• unsigned chartaskgetthreadid()

Redirected function to return the current thread’s ID number.

• unsigned chartask threadresume(unsigned char thread, unsigned char task)

Redirected function to resume the specified thread.

• unsigned chartask threadiosleep(unsigned char infinite, unsigned long time-
out)

Redirected function to put the current thread to sleep.

• unsigned chartask threadiosleepnc(unsigned char infinite, unsigned long time-
out)

Redirected function to put the current thread (which is already in a critical section)
to sleep.

• void task threadsave(void)

Redirected function to save the state of the current thread in anticipation of a
task/thread swap.

• void task threadrestore(void)

Redirected function to restore the state of a thread.

• unsigned chartasksynchsleep(unsigned int timeouth, unsigned int timeoutl,
unsigned char task)

Redirected function to put a specified task to sleep for a number of milliseconds.

• unsigned chartaskgettaskid()

Redirected function to get the ID of the current task.

• void taskentercritsection(void)

135



Enters a critical section.

• void task leavecritsection(void)

Leaves a critical section.

• unsigned inttaskgettickreload(void)

Gets the current reload value for the system’s millisecond ticker.

• void tasksettickreload(unsigned int reload)

Sets the current reload value for the system’s millisecond ticker.

• unsigned inttaskversion(void)

Returns the version number of this process scheduling library.

4.14.2 Define Documentation

4.14.2.1 #define FLAGDHCP WAIT 4

Flag for putting a task to sleep.

See also:
taskwait

4.14.2.2 #define FLAGIO WAIT 2

Flag for putting a task to sleep.

See also:
taskwait

4.14.2.3 #define FLAGSLEEPING 1

Flag for putting a task to sleep.

See also:
taskwait

4.14.2.4 #define MAXPRIORITY 255

Maximum priority level assignable to a task.

See also:
tasksetpriority
taskgetpriority

136



4.14.2.5 #define MINPRIORITY 1

Minimum priority level assignable to a task.

See also:
tasksetpriority
taskgetpriority

4.14.2.6 #define NORMPRIORITY 128

Normal priority for a task. This is the default priority for the default task.

See also:
tasksetpriority
taskgetpriority

4.14.2.7 #define RELOAD14 746 0xfb33

Timer reload value for 14.746 MHz crystal.

See also:
tasksettickreload
taskgettickreload

4.14.2.8 #define RELOAD18 432 0xfa00

Timer reload value for 18.432 MHz crystal.

See also:
tasksettickreload
taskgettickreload

4.14.2.9 #define RELOAD29 491 0xfd99

Timer reload value for 29.491 MHz crystal.

See also:
tasksettickreload
taskgettickreload

137



4.14.2.10 #define RELOAD36 864 0xfd00

Timer reload value for 36.864 MHz crystal.

See also:
tasksettickreload
taskgettickreload

4.14.2.11 #define RELOAD58 982 0xfecc

Timer reload value for 58.982 MHz crystal.

See also:
tasksettickreload
taskgettickreload

4.14.2.12 #define RELOAD73 728 0xfe80

Timer reload value for 73.728 MHz crystal.

See also:
tasksettickreload
taskgettickreload

4.14.2.13 #define ROM400TASK VERSION 8

Version number associated with this header file. Should be the same as the version
number returned by thetaskversionfunction.

See also:
taskversion

4.14.2.14 #define ROMSAVESIZE 384

Default size for task switching buffer.

See also:
taskgenesis

138



4.14.2.15 #define tasksleep(task, timeout) tasksynch -
sleep(((long)(timeout))>>16,(timeout),(task));

Redirected function to put a specified task to sleep for a number of milliseconds.

This is a redirected function that should be used to put a task to sleep for some known
period of time. The default implementation of this function calls the functiontaskwait
.

For more information on redirected functions, see the section
ROM Redirect Function Table in the DS80C400 User’s Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This ”function” is now multi-process safe. If two processes try to call this function at
the same time, its parameters will not be destroyed. This ”function” is now a macro
that actually callstasksynchsleep.

Parameters:
task task ID to put to sleep. A value of zero means put the current task to sleep.

timeout amount of time to put ’task’ to sleep for

See also:
taskwait
tasksynchwait
tasksynchsleep

4.14.2.16 #define taskwait(task id, event mask, millis) task synch -
wait(((long)(millis))>>16,(millis), (task id) | ((event mask)<< 8))

Puts the specified task to sleep.

Suspends the execution of the specified task until a set of events have occurred, or until
a set amount of time has elapsed. Use the functiontasksignalto wake the task up.

This ”function” is now multi-process safe. If two processes try to call this function at
the same time, its parameters will not be destroyed. This ”function” is now a macro
that actually callstasksynchwait .

Parameters:
task id Task PID to put to sleep. A task PID of zero means put the current task to

sleep.

eventmask Bitmap of events to wait for before wakeup

millis Maximum number of milliseconds to sleep for

Returns:
0 for Success, non-zero for failure

139

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


See also:
tasksignal
tasksynchwait
tasksleep
tasksynchsleep
tasksuspend

4.14.3 Function Documentation

4.14.3.1 void taskentercritsection (void)

Enters a critical section.

Enters a critical section, which disallows process swapping until the critical section is
left. Calls totaskentercritsectionshould be balanced with calls totask leavecritsection
(or task threadiosleepnc).

This function is safe to be called from multiple processes at the same time.

See also:
task leavecritsection
task threadiosleepnc

4.14.3.2 unsigned int taskfork (unsigned char priority, unsigned intsavesize)

Attempts to create a new task.

Spawns a new task, returning the process ID of the new task to the parent task. Note
that because of the way the Keil compiler assigns variables, calls to taskfork should
be wrapped inside a critical section. Make sure the child’s process ID is stored in a
secure location before exiting the critical section. Note that only the parent need leave
the critical section, the child will not run until the parent has left it.

This function is safe to be called from multiple processes at the same time.

Parameters:
priority priority level for the new task.

savesizesize of the task state buffer for the new task

Returns:
0x0FFFF for failure, else 0 if this is the child task, or the child’s PID if this is the
parent.

See also:
MIN PRIORITY
NORM PRIORITY

140



MAX PRIORITY
ROM SAVESIZE
taskkill

4.14.3.3 void taskgenesis (unsigned intsavesize)

Initializes the process scheduler.

Note that calling the functioninit rom from the initialization library is the preferred
way of initializing the ROM.

This function is safe to be called from multiple processes at the same time.

Parameters:
savesizeSize of the task buffer for saving information on task switches.

4.14.3.4 unsigned char taskgetcurrent (void)

Gets the process ID for the current task.

Returns the process ID for the current task, which can be used to manage that task.

This function is safe to be called from multiple processes at the same time.

Returns:
PID for the current task.

See also:
taskkill
tasksetpriority
taskgetpriority

4.14.3.5 unsigned char taskgetpriority (unsigned char task id)

Gets the priority level for the given task.

Given the process ID of a task, return the priority level for that task. Use atask id of 0
for the current task.

This function is safe to be called from multiple processes at the same time.

Parameters:
task id Task PID to get the priority for. A task PID of zero means the current task.

Returns:
Priority level of the task.

141



See also:
MIN PRIORITY
NORM PRIORITY
MAX PRIORITY

4.14.3.6 unsigned char taskgettaskid ()

Redirected function to get the ID of the current task.

This is a redirected function that should be used to get the process ID of the current
task. The default implementation of this function calls the functiontaskgetcurrent.

For more information on redirected functions, see the section
ROM Redirect Function Table in the DS80C400 User’s Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

Returns:
Task Id of the current task.

See also:
taskgetcurrent

4.14.3.7 unsigned char taskgetthreadid ()

Redirected function to return the current thread’s ID number.

This is a redirected function that should be used to retrieve the current thread’s ID
number. However, the DS80C400 ROM does not support threads, so the default imple-
mentation of this function always returns 0x01.

For more information on redirected functions, see the section
ROM Redirect Function Table in the DS80C400 User’s Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf.

This function is safe to be called from multiple processes at the same time.

Returns:
default implementation returns 0x01

4.14.3.8 unsigned int taskgettickreload (void)

Gets the current reload value for the system’s millisecond ticker.

Gets the current reload value for the system’s millisecond ticker. When initialized, this
reload value may not be correct for the system, and calls totaskgettimemillismay

142

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf.


show the resulting inaccuracy (for example, wall time may record 10 seconds while
the DS80C400 thinks 12 seconds have passes). Use this function to verify the system’s
current system millisecond ticker reload value.

This function is safe to be called from multiple processes at the same time.

See also:
tasksettickreload
taskgettimemillis

4.14.3.9 void taskgettimemillis (struct TIME ∗ t)

Returns the system tick count.

The default implementation of this function returns the approximate number of mil-
liseconds since the system started. Note that the largest raw data structure supported
by Keil is 4 bytes, yet the DS80C400’s tick counter is 5 bytes, therefore the special
TIME structure is used.

This is a redirected function. The ROM includes a default process scheduler imple-
mentation. See theDS80C400 User’s Guide for information on replacing the
default process scheduler with your own.

This function is safe to be called from multiple processes at the same time.

Parameters:
t pointer to a structure of typeTIME (a 5-byte structure). The result is written to

this pointer, MSB first.

See also:
TIME

4.14.3.10 unsigned char taskkill (unsigned char task id)

Kills the specified task.

Kill the specified task. Use atask id of 0 to indicate the current task. This function
does not close or clean up any sockets. Use the socket library functioncleanupto clean
any sockets owned by the task before any more processes are created.

This function is safe to be called from multiple processes at the same time.

Parameters:
task id Task PID to kill.

Returns:
0 for Success, non-zero for failure

143

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


See also:
task fork

4.14.3.11 void taskleavecritsection (void)

Leaves a critical section.

Leaves a critical section, which allows process swapping to continue. Calls totask -
leavecritsectionshould have a matching call totaskentercritsection.

This function is safe to be called from multiple processes at the same time.

See also:
taskentercritsection
task threadiosleepnc

4.14.3.12 unsigned char tasksetpriority (unsigned char task id, unsigned char
priority)

Sets the priority level for a given task.

Given the process ID of a task, set the priority level for that task. Use atask id of 0 for
the current task.

This function is safe to be called from multiple processes at the same time.

Parameters:
task id Task PID to set the priority for. A task PID of zero means the current task.

priority Priority setting for PIDtask id . Can be any value betweenMIN -
PRIORITYandMAX PRIORITY

Returns:
0 for Success, non-zero for failure

See also:
MIN PRIORITY
NORM PRIORITY
MAX PRIORITY

4.14.3.13 void tasksettickreload (unsigned intreload)

Sets the current reload value for the system’s millisecond ticker.

Sets the current reload value for the system’s millisecond ticker. When initialized, this
reload value may not be correct for the system, and calls totaskgettimemillismay

144



show the resulting inaccuracy (for example, wall time may record 10 seconds while
the DS80C400 thinks 12 seconds have passes). Use this function to set the system’s
current system millisecond ticker reload value.

This function is safe to be called from multiple processes at the same time. This
function should only be called afterinit rom has been called. If you do not have a
1-Wire device attached for MAC address storage, you should callinit setclockor init -
setfrequencybefore callinginit rom to initialize the system with a good clock reload
value.

Parameters:
reload New value for the system’s millisecond reload timer. Some reloads for

common crystal frequencies includeRELOAD 14 746, RELOAD 18 432,
RELOAD 29 491, RELOAD 36 864, RELOAD 58 982, and RELOAD -
73 728. Values for other crystals (and crystal settings) can also be used.
See theHigh Speed Microcontroller’s User Guide for more
information on timers and timer settings.

See also:
init setclock
init setfrequency
taskgettickreload
taskgettimemillis

4.14.3.14 unsigned char tasksignal (unsigned chartask id, unsigned charevent-
mask)

Posts events to the specified task.

Sends the event(s) ineventmaskto processtask id . If the task is waiting for no other
events, it will wake up and be electable to run by the task scheduler.

This function is safe to be called from multiple processes at the same time.

Parameters:
task id Task PID to signal.

eventmask Bitmap of events to signal

Returns:
0 for Success, non-zero for failure

See also:
tasksleep
tasksuspend

145

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


4.14.3.15 unsigned char tasksuspend (unsigned chartask id, unsigned char
eventmask)

Suspends the specified task.

Suspends the execution of the specified task until a set of events have occurred. Use
the functiontasksignalto wake the task up.

This function is safe to be called from multiple processes at the same time.

Parameters:
task id Task PID to suspend. A task PID of zero means suspend the current task.

eventmask Bitmap of events to wait for before wakeup

Returns:
0 for Success, non-zero for failure

See also:
tasksignal
tasksleep

4.14.3.16 unsigned char tasksynch sleep (unsigned inttimeout h, unsigned int
timeout l, unsigned chartask)

Redirected function to put a specified task to sleep for a number of milliseconds.

This is a redirected function that should be used to put a task to sleep for some known
period of time. The default implementation of this function calls the functiontaskwait
.

For more information on redirected functions, see the section
ROM Redirect Function Table in the DS80C400 User’s Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This functionIS multi-process safe. Two processes may safely call this function at the
same time.

Parameters:
timeout h high 16 bits of amount of time to put ’task’ to sleep for

timeout l low 16 bits of amount of time to put ’task’ to sleep for

task task ID to put to sleep. A value of zero means put the current task to sleep.

See also:
taskwait
tasksynchwait
tasksleep

146

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


4.14.3.17 unsigned char tasksynch wait (unsigned int millis h, unsigned intmil-
lis l, unsigned int task event)

Puts the specified task to sleep.

Suspends the execution of the specified task until a set of events have occurred, or until
a set amount of time has elapsed. Use the functiontasksignalto wake the task up.

This functionIS multi-process safe. Two processes may safely call this function at the
same time.

Parameters:
millis h high 16 bits of amount of time to put ’task’ to sleep for

millis l low 16 bits of amount of time to put ’task’ to sleep for

task event Most significant byte contains bitmap of events to wait for before
wakeup. Least significant byte contains task PID to put to sleep. A task
PID of zero means put the current task to sleep.

Returns:
0 for Success, non-zero for failure

See also:
tasksignal
taskwait
tasksleep
tasksynchsleep
tasksuspend

4.14.3.18 unsigned char taskthreadiosleep (unsigned charinfinite, unsigned
long timeout)

Redirected function to put the current thread to sleep.

This is a redirected function that should be used to put a thread to sleep. However,
the DS80C400 does not support threads, so the default implementation of this function
puts the current task to sleep.

For more information on redirected functions, see the section
ROM Redirect Function Table in the DS80C400 User’s Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
infinite 0 for non-infinite timeout, non-zero for infinite timeout (until woken)

147

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


timeout amount of time to sleep (if infinite==0)

Returns:
0 for Success, non-zero for failure

See also:
task threadiosleepnc
task threadresume

4.14.3.19 unsigned char taskthreadiosleepnc (unsigned charinfinite, unsigned
long timeout)

Redirected function to put the current thread (which is already in a critical section) to
sleep.

This is a redirected function that should be used to put a thread to sleep, when the
thread has already entered a critical section. However, the DS80C400 does not support
threads, so the default implementation of this function puts the current task to sleep
(which is assumed to be operating within a critical section).

For more information on redirected functions, see the section
ROM Redirect Function Table in the DS80C400 User’s Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
infinite 0 for non-infinite timeout, non-zero for infinite timeout (until woken)

timeout amount of tuime to sleep (if infinite==0)

Returns:
0 for Success, non-zero for failure

See also:
task threadiosleep
task threadresume
taskentercritsection

4.14.3.20 void taskthreadrestore (void)

Redirected function to restore the state of a thread.

148

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


This is a redirected function that should be used to restore the state of a thread that was
earlier saved with a call totask threadsave. However, the DS80C400 does not support
threads, so the default implementation of this function does nothing.

For more information on redirected functions, see the section
ROM Redirect Function Table in the DS80C400 User’s Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

See also:
task threadsave

4.14.3.21 unsigned char taskthreadresume (unsigned charthread, unsigned
char task)

Redirected function to resume the specified thread.

This is a redirected function that should be used to resume a suspended or sleeping
thread. However, the DS80C400 ROM does not support threads, so the default imple-
mentation of this function resumes the task with a process ID matchingtask.

For more information on redirected functions, see the section
ROM Redirect Function Table in the DS80C400 User’s Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

Parameters:
thread thread ID to resume

task ID of the process thatthreadbelongs to

Returns:
0 for Success, non-zero for failure

See also:
task threadiosleep
task threadiosleepnc

4.14.3.22 void taskthreadsave (void)

Redirected function to save the state of the current thread in anticipation of a task/thread
swap.

This is a redirected function that should be used to save the state of the current thread
so it may be executed again later, after a call totask threadrestore. However, the

149

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


DS80C400 does not support threads, so the default implementation of this function
does nothing.

For more information on redirected functions, see the section
ROM Redirect Function Table in the DS80C400 User’s Guide at
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf

This function is safe to be called from multiple processes at the same time.

See also:
task threadrestore

4.14.3.23 unsigned int taskversion (void)

Returns the version number of this process scheduling library.

This function is safe to be called from multiple processes at the same time.

Returns:
Version number of this TASK library.

4.15 rom400tftp.h File Reference

4.15.1 Detailed Description

TFTP Client functions in the DS80C400 ROM.

This library contains functions for downloading files from a TFTP server. Note that the
functionsettftpserverfrom the socket library must be used to initialize the IP address
of the TFTP server before communication can begin.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library are multi-process safe–that is, if you call the same
method from two different processes at the same time, the parameters to the func-
tion will not be destroyed. However, only one TFTP client is a available, and it
uses system-wide resources. Therefore, it is recommended that one process man-
age the TFTP client.

Defines

• #defineROM400TFTP VERSION5
• #defineTFTP MORE DATA 0
• #defineTFTP LAST SEGMENT1

150

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Functions

• unsigned inttftp init (void)

Initialize the TFTP client.

• unsigned inttftp first (unsigned char∗filename)

Requests a file from the TFTP server.

• unsigned inttftp next(unsigned int ackonly)

Read subsequent blocks of a file from a TFTP server.

• void ∗ tftp getdata(void)

Get the pointer to the TFTP client’s read buffer.

• void tftp close(void)

Closes the socket used by the TFTP library.

• unsigned inttftp version(void)

Returns the version number of this TFTP library.

4.15.2 Define Documentation

4.15.2.1 #define ROM400TFTP VERSION 5

Version number associated with this header file. Should be the same as the version
number returned by thetftp versionfunction.

See also:
tftp version

4.15.2.2 #define TFTPLAST SEGMENT 1

Agrument to functiontftp nextrequesting the connection be closed.

See also:
tftp next

4.15.2.3 #define TFTPMORE DATA 0

Agrument to functiontftp nextrequesting more data.

See also:
tftp next

151



4.15.3 Function Documentation

4.15.3.1 void tftp close (void)

Closes the socket used by the TFTP library.

Closes the socket used by the TFTP library. Every call totftp first creates a new socket,
and must be balanced by a call totftp closeor the system will have lingering, inacces-
sible sockets.

See also:
tftp first
tftp next

4.15.3.2 unsigned int tftpfirst (unsigned char∗ filename)

Requests a file from the TFTP server.

Requests the specified file from the TFTP server. As long as the file exists and this
function returns successfully, use the buffer pointer returned fromtftp getdatato read
the first block of the requested file. Usetftp nextto read subsequent blocks of data. Af-
ter the TFTP transaction is complete (or an error has occurred and the TFTP transaction
will be abandoned), usetftp closeto clean up the transmission socket.

Parameters:
filename pointer to a null-terminated string that is the file to be requested from

the TFTP server

Returns:
0x0FFFF on failure, else the number of bytes read this time

See also:
tftp next
tftp close
tftp getdata

4.15.3.3 void∗ tftp getdata (void)

Get the pointer to the TFTP client’s read buffer.

Applications should read the TFTP data after every call totftp first or tftp next. This
function only needs to be called once aftertftp init has been called (the buffer pointer
does not change).

Returns:
Pointer to the area that the TFTP client is writing to

152



See also:
tftp first
tftp next

4.15.3.4 unsigned int tftpinit (void)

Initialize the TFTP client.

Initializes the TFTP client. Note that the IP address of the TFTP server must be set
using thesettftpserverfunction from the socket library. After the TFTP Client is ini-
tialized, call thetftp getdatafunction to request a pointer to the TFTP client’s buffer.

Returns:
0 for success, non-zero for failure

See also:
tftp getdata

4.15.3.5 unsigned int tftpnext (unsigned intack only)

Read subsequent blocks of a file from a TFTP server.

Requests the next block of a file be read from the TFTP server. Use the buffer pointer
returned fromtftp getdatato read the block read from the TFTP server. If this function
returns less than 512 bytes read, it means this is the last block of data. Calltftp next
one more time with the argumentTFTP LASTSEGMENTto clean up. After the TFTP
transaction is complete (or an error has occurred and the TFTP transaction will be
abandoned), usetftp closeto clean up the transmission socket.

Parameters:
ack only UseTFTP MOREDATAto request more data until the amount returned

is less than 512 bytes. UseTFTP LASTSEGMENTto acknowledge the last
segment was recieved.

Returns:
0x0FFFF on failure, or the number of bytes read.

See also:
tftp first
tftp close
tftp getdata
TFTP MORE DATA
TFTP LAST SEGMENT

153



4.15.3.6 unsigned int tftpversion (void)

Returns the version number of this TFTP library.

Returns:
Version number of this TFTP library.

4.16 rom400useriopoll.h File Reference

4.16.1 Detailed Description

User IO Poll registration routines for the DS80C400 ROM.

This library contains functions to register User IO Poll routines. User IO Poll routines
are called at least every 4 milliseconds by the system task scheduler. These allow
programs to put their applications to sleep while waiting for input, and register a polling
routine that will be called to check for that input. The sleeping process can then be
signalled to wake up from the polling routine.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

The functions in this library are multi-process safe–that is, if you call the same method
from two different processes at the same time, the parameters to the function are pre-
served, and the function should execute correctly.

Defines

• #defineROM400USERIOPOLLVERSION1

Functions

• unsigned charuseriopoll isinstalled(void)

Checks to see if the User IO Poll library has already been initialized.

• void useriopoll init (unsigned char numroutines)

Initializes the User IO Poll library.

• unsigned charuseriopollregisterpollroutine(void ∗funct, unsigned char num-
ber)

Registers an IO Poll routine.

• unsigned charuseriopollremovepollroutine(unsigned char number)

Removes a registered IO Poll routine.

154

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• void ∗ useriopollgetpollroutine(unsigned char number)

Gets the address of a registered IO Poll routine.

• unsigned charuseriopollgetlistsize(void)

Returns the number of polling routines allowed.

• unsigned intuseriopollversion(void)

Returns the version number of this User IO Poll library.

4.16.2 Define Documentation

4.16.2.1 #define ROM400USERIOPOLL VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by theuseriopoll versionfunction.

See also:
useriopollversion

4.16.3 Function Documentation

4.16.3.1 unsigned char useriopollgetlistsize (void)

Returns the number of polling routines allowed.

Returns the size of the internal array that holds the registered polling routines. This
is the same as the number of entries that this library was initialized for. This num-
ber can be considered the bounds of valid indexes for theuseriopoll getpollroutine,
useriopoll removepollroutine, anduseriopoll registerpollroutinefunctions.

Returns:
Size of the list of polling routines.

See also:
useriopoll init
useriopollregisterpollroutine
useriopollgetpollroutine
useriopollremovepollroutine

4.16.3.2 void∗ useriopoll getpollroutine (unsigned charnumber)

Gets the address of a registered IO Poll routine.

Gets the address of an entry in the list of registered IO Poll routines. If no entry exists
in the list at this location, this function returns NULL.

155



Parameters:
number location in the list of polling routines to clear

Returns:
address of the registered IO Poll routine, or NULL if no routine exists at that
position in the list

See also:
useriopoll init
useriopollregisterpollroutine
useriopollremovepollroutine

4.16.3.3 void useriopollinit (unsigned char num routines)

Initializes the User IO Poll library.

Initializes memory space required by the User IO Poll library. The argument should
be the maximum number of IO Poll routines that will be needed by the library. In-
ternally, this is represented by an array of function pointers. Every 4 milliseconds (or
more often), all the function pointers in the array are invoked (if they have been set).
Therefore, it is in an application’s best interest to make this number the lowest possible
to reduce overhead.

The functions registered as IO Poll routines should not destroy any registers aside from
the following: psw, acc, dptr0. All other registers should be preserved.

Parameters:
num routines number of IO Poll routines that can be registered

See also:
useriopoll isinstalled
useriopollregisterpollroutine

4.16.3.4 unsigned char useriopollisinstalled (void)

Checks to see if the User IO Poll library has already been initialized.

Checks to see if theuseriopoll init function has already been called. This function
allows libraries to determine if they need to initialize this library or not.

Returns:
0 if the library has not been initialized, 1 if it has

See also:
useriopoll init

156



4.16.3.5 unsigned char useriopollregisterpollroutine (void ∗ funct, unsigned
char number)

Registers an IO Poll routine.

Registers the given IO Poll routine to be called by the task scheduler. The function will
be installed in the list of functions at the position defined bynumber, even if a function
already exists at that location.

Parameters:
funct function pointer of the IO Poll routine

number location in the list of polling routines to place this function

Returns:
0 if the operation was successful, 1 ifnumberwas out of bounds

See also:
useriopoll init
useriopollremovepollroutine
useriopollgetpollroutine

4.16.3.6 unsigned char useriopollremovepollroutine (unsigned charnumber)

Removes a registered IO Poll routine.

Removes an entry in the list of registered IO Poll routines. If no entry exists in the list
at this location, this function has no effect.

Parameters:
number location in the list of polling routines to clear

Returns:
0 if the operation was successful, 1 ifnumberwas out of bounds

See also:
useriopoll init
useriopollregisterpollroutine
useriopollgetpollroutine

4.16.3.7 unsigned int useriopollversion (void)

Returns the version number of this User IO Poll library.

Returns:
Version number of this User IO Poll library.

157



4.17 rom400util.h File Reference

4.17.1 Detailed Description

Utility functions in the DS80C400 ROM.

This library contains CRC, pseudo-RNG and utility memory functions.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
Some functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Defines

• #defineROM400UTIL VERSION5
• #defineREDIRECTKERNELMALLOC 1
• #defineREDIRECTKERNELFREE2
• #defineREDIRECTMALLOC 3
• #defineREDIRECTFREE4
• #defineREDIRECTMALLOCDIRTY 5
• #defineREDIRECTTINIEXPORT MM DEREF6
• #defineREDIRECTGETFREERAM7
• #defineREDIRECTGETTIMEMILLIS 8
• #defineREDIRECTGETTHREADID9
• #defineREDIRECTTHREADRESUME10
• #defineREDIRECTTHREADIOSLEEP11
• #defineREDIRECTTHREADIOSLEEPNC12
• #defineREDIRECTTHREADSAVE13
• #defineREDIRECTTHREADRESTORE14
• #defineREDIRECTSLEEP15
• #defineREDIRECTGETTASKID 16
• #defineREDIRECTINFOSENDCHAR17
• #defineREDIRECTIP COMPUTECHECKSUMSOFTWARE18
• #defineREDIRECT0 19
• #defineREDIRECTDHCPNOTIFY20
• #defineREDIRECTROM TASK CREATE21
• #defineREDIRECTROM TASK DUPLICATE 22
• #defineREDIRECTROM TASK DESTROY23
• #defineREDIRECTROM TASK SWITCH IN 24

158

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• #defineREDIRECTROM TASK SWITCH OUT 25
• #defineREDIRECTOWIP READCONFIG26
• #defineREDIRECTSETMACID 27
• #defineREDIRECTMM UNDEREF28
• #defineREDIRECTUSERIOPOLL 29
• #defineREDIRECTERRORNOTIFICATION 30

Functions

• unsigned intutil crc16(unsigned char value, unsigned int seed)

Generates a 16-bit CRC given a seed.

• unsigned charutil getpseudorandom(void)

Gets a pseudo-random byte.

• void util setrandomseed(unsigned int seed)

Sets the seed of the random number generator.

• void util memclear(void ∗target, unsigned int length)

Clears a block of memory.

• void util memcopy(void ∗source, void∗dest, unsigned int length)

Copies a block of memory.

• unsigned charutil memcompare(void ∗block0, void ∗block1, unsigned int
length)

Compares the values in 2 blocks of memory.

• void util infosendchar(unsigned char ch)

Sends a character to serial port 0.

• void util installhook(void ∗fncptr, unsigned int fncindex)

Installs a new function pointer into the ROM redirect table.

• unsigned intutil version(void)

Returns the version number of this utility library.

4.17.2 Define Documentation

4.17.2.1 #define REDIRECT0 19

Reserved for future use with theutil installhookmethod.

159



See also:
util installhook

4.17.2.2 #define REDIRECTDHCPNOTIFY 20

Value to be used in conjunction with theutil installhookmethod to override theDHCP-
Notifymethod.

See also:
util installhook

4.17.2.3 #define REDIRECTERROR NOTIFICATION 30

Value to be used in conjunction with theutil installhookmethod to override theError-
Notificationmethod.

See also:
util installhook

4.17.2.4 #define REDIRECTFREE 4

Value to be used in conjunction with theutil installhookmethod to override themem-
freemethod.

See also:
util installhook

4.17.2.5 #define REDIRECTGETFREERAM 7

Value to be used in conjunction with theutil installhookmethod to override themem-
getfreerammethod.

See also:
util installhook

4.17.2.6 #define REDIRECTGETTASKID 16

Value to be used in conjunction with theutil installhookmethod to override thetask -
gettaskidmethod.

See also:
util installhook

160



4.17.2.7 #define REDIRECTGETTHREADID 9

Value to be used in conjunction with theutil installhookmethod to override thetask -
getthreadidmethod.

See also:
util installhook

4.17.2.8 #define REDIRECTGETTIMEMILLIS 8

Value to be used in conjunction with theutil installhookmethod to override thetask -
gettimemillismethod.

See also:
util installhook

4.17.2.9 #define REDIRECTINFOSENDCHAR 17

Value to be used in conjunction with theutil installhookmethod to override theutil -
infosendcharmethod.

See also:
util installhook

4.17.2.10 #define REDIRECTIP COMPUTECHECKSUM SOFTWARE 18

Value to be used in conjunction with theutil installhookmethod to override theIP -
ComputeChecksummethod.

See also:
util installhook

4.17.2.11 #define REDIRECTKERNELFREE 2

Value to be used in conjunction with theutil installhookmethod to override theKernel-
Freemethod.

See also:
util installhook

161



4.17.2.12 #define REDIRECTKERNELMALLOC 1

Value to be used in conjunction with theutil installhookmethod to override theKernel-
Malloc method.

See also:
util installhook

4.17.2.13 #define REDIRECTMALLOC 3

Value to be used in conjunction with theutil installhookmethod to override themem-
mallocmethod.

See also:
util installhook

4.17.2.14 #define REDIRECTMALLOCDIRTY 5

Value to be used in conjunction with theutil installhookmethod to override themem-
mallocdirtymethod.

See also:
util installhook

4.17.2.15 #define REDIRECTMM UNDEREF 28

Value to be used in conjunction with theutil installhookmethod to override theM Un-
Derefmethod.

See also:
util installhook

4.17.2.16 #define REDIRECTOWIP READCONFIG 26

Value to be used in conjunction with theutil installhookmethod to override theOWIP -
ReadConfigmethod.

See also:
util installhook

162



4.17.2.17 #define REDIRECTROM TASK CREATE 21

Value to be used in conjunction with theutil installhookmethod to override theTask-
Createmethod.

See also:
util installhook

4.17.2.18 #define REDIRECTROM TASK DESTROY 23

Value to be used in conjunction with theutil installhookmethod to override thetask -
kill method.

See also:
util installhook

4.17.2.19 #define REDIRECTROM TASK DUPLICATE 22

Value to be used in conjunction with theutil installhookmethod to override theTask-
Duplicatemethod.

See also:
util installhook

4.17.2.20 #define REDIRECTROM TASK SWITCH IN 24

Value to be used in conjunction with theutil installhookmethod to override theTask-
SwitchInmethod.

See also:
util installhook

4.17.2.21 #define REDIRECTROM TASK SWITCH OUT 25

Value to be used in conjunction with theutil installhookmethod to override theTask-
SwitchOutmethod.

See also:
util installhook

4.17.2.22 #define REDIRECTSETMACID 27

Value to be used in conjunction with theutil installhookmethod to override theSet-
MACID method.

See also:
util installhook

163



4.17.2.23 #define REDIRECTSLEEP 15

Value to be used in conjunction with theutil installhookmethod to override thetask -
sleepmethod.

See also:
util installhook

4.17.2.24 #define REDIRECTTHREADIOSLEEP 11

Value to be used in conjunction with theutil installhookmethod to override thetask -
threadiosleepmethod.

See also:
util installhook

4.17.2.25 #define REDIRECTTHREADIOSLEEPNC 12

Value to be used in conjunction with theutil installhookmethod to override thetask -
threadiosleepncmethod.

See also:
util installhook

4.17.2.26 #define REDIRECTTHREADRESTORE 14

Value to be used in conjunction with theutil installhookmethod to override thetask -
threadrestoremethod.

See also:
util installhook

4.17.2.27 #define REDIRECTTHREADRESUME 10

Value to be used in conjunction with theutil installhookmethod to override thetask -
threadresumemethod.

See also:
util installhook

164



4.17.2.28 #define REDIRECTTHREADSAVE 13

Value to be used in conjunction with theutil installhookmethod to override thetask -
threadsavemethod.

See also:
util installhook

4.17.2.29 #define REDIRECTTINIEXPORT MM DEREF 6

Value to be used in conjunction with theutil installhookmethod to override theMM -
Derefmethod.

See also:
util installhook

4.17.2.30 #define REDIRECTUSER IOPOLL 29

Value to be used in conjunction with theutil installhookmethod to override theUser -
IOPoll method.

See also:
util installhook

4.17.2.31 #define ROM400UTIL VERSION 5

Version number associated with this header file. Should be the same as the version
number returned by theutil versionfunction.

See also:
util version

4.17.3 Function Documentation

4.17.3.1 unsigned int utilcrc16 (unsigned charvalue, unsigned intseed)

Generates a 16-bit CRC given a seed.

Implements the Cyclic-Redundancy Check CRC16. This CRC is based on the poly-
nomial X∧16 + X∧15 + X∧2 + 1. It is used extensively in operations with Dallas
Semiconductor 1-Wire devices.

This function is safe to be called from multiple processes at the same time.

Parameters:
value single byte input value to the crc function

165



seed16 bit ’previous result’ seed

Returns:
16 bit CRC result

4.17.3.2 unsigned char utilgetpseudorandom (void)

Gets a pseudo-random byte.

Returns a pseudo-random byte generated with the help of the CRC function. This is
not a true random byte, as there is no real source of entropy.

This function is safe to be called from multiple processes at the same time.

Returns:
One pseudorandom byte.

4.17.3.3 void util infosendchar (unsigned charch)

Sends a character to serial port 0.

This is a redirected function. The DS80C400 silicon software version of this function
accesses the serial loader pin (P1.7) and does nothing if this pin is in the logic low state.
The DS80C400 silicon software does not use interrupt driver I/O to the serial port.

This function is safe to be called from multiple processes at the same time.

Parameters:
ch character to send to the debug port

4.17.3.4 void util installhook (void ∗ fncptr, unsigned int fncindex)

Installs a new function pointer into the ROM redirect table.

This function alters the redirect table, which allows functions in the ROM to be overrid-
den by intredpid users. The function that is redirected will now call the code at address
fncptr . It is not advised thatfncptr point to a C function unless no arguments are ex-
pected (there is no way without writing an assembler wrapper to get the arguments to
the C function in the Keil compiler).

See the DS80C400 User’s Guide Supplement for more on the meaning ofredirected
functions.

This function is safe to be called from multiple processes at the same time.

Parameters:
fncptr address of the function that will be inserted into the redirect table

166



fncindex number of the redirected function that will be altered (i.e.REDIRECT-
KERNELMALLOC)

4.17.3.5 void util memclear (void∗ target, unsigned int length)

Clears a block of memory.

Setslengthbytes to zero starting at addresstarget.

This function is safe to be called from multiple processes at the same time.

Parameters:
target beginning address of memory to clear

length number of bytes to clear

4.17.3.6 unsigned char utilmemcompare (void∗ block0, void ∗ block1, unsigned
int length)

Compares the values in 2 blocks of memory.

Compareslengthbytes fromblock0to lengthbytes fromblock1for equality. If the two
memory blocks are identical, the function returns 0.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
block0 first input block to compare

block1 second input block to compare

length maximum number of bytes to compare

Returns:
0 if the blocks are identical, non-zero otherwise

4.17.3.7 void util memcopy (void∗ source, void ∗ dest, unsigned int length)

Copies a block of memory.

Copieslengthbytes of data from thesourcepointer to thedestpointer. The copy oper-
ation starts from the beginning of thesourcepointer, placing bytes from the beginning
of thedestbuffer. Therefore, f the buffers referenced bysourceanddestoverlap, some
bytes fromsourcebytes will be overwritten prior to being copied to the target.

167



Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
source pointer to bytes that will be the source of the copy

dest pointer to the bytes that will to copied to

length number of bytes to copy fromsourceto dest

4.17.3.8 void util setrandomseed (unsigned intseed)

Sets the seed of the random number generator.

Changes the current value of the random seed to the random number generator, allow-
ing for additional randomness to be inserted into the generation. Note that additional
randomness is also generated by the timer bytes and the millisecond counter, so this
seed is not the only source.

This function is safe to be called from multiple processes at the same time.

Parameters:
seednew random seed

4.17.3.9 unsigned int utilversion (void)

Returns the version number of this utility library.

This function is safe to be called from multiple processes at the same time.

Returns:
Version number of this UTIL library.

4.18 rom400xnetstack.h File Reference

4.18.1 Detailed Description

Enhanced network stack for the DS80C400 ROM.

This library contains a replacement network stack with better performance and more
standards compliant functionality. Since this library will replace the default ROM net-
work stack, be careful of the physical location this library. If this library is targeted to
reside in flash memory, your system will be limited by the speed of your flash.

To use this functionality, addxnetstackinstall() to your program before calling rominit
and add the library to your build process.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

168

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Defines

• #defineROM400XNETSTACK VERSION11

Functions

• void xnetstackinstall (void)

Installs the enhanced network stack.

• unsigned intxnetstackversion(void)

Returns the version number of this library.

• void xnetstackset tcptimeoutfactor(int factor)

Sets a factor to scale all TCP timeouts.

• int xnetstackget tcptimeoutfactor(void)

Gets the factor to scale all TCP timeouts.

• void xnetstackset ipv6 (int enable)

Enables/disables IPv6.

• void xnetstackset icmpechoreplies(int enable)

Enables/disables ICMP echo replies.

• void xnetstackset icmpdestinationunreachable(int enable)

Enables/disables ICMP destination unreachable messages.

• void xnetstackset igmpreporttype(int type)

Sets the IGMP membership report type.

4.18.2 Define Documentation

4.18.2.1 #define ROM400XNETSTACK VERSION 11

Version number associated with this header file. Should be the same as the version
number returned by thexnetstackversionfunction.

See also:
xnetstackversion

169



4.18.3 Function Documentation

4.18.3.1 int xnetstackget tcptimeoutfactor (void)

Gets the factor to scale all TCP timeouts.

Returns:
TCP scale factor

See also:
xnetstackset tcptimeoutfactor

4.18.3.2 void xnetstackinstall (void)

Installs the enhanced network stack.

This function installs the enhanced network stack functionality. The function has to be
called before rominit().

4.18.3.3 void xnetstackset icmpdestinationunreachable (intenable)

Enables/disables ICMP destination unreachable messages.

Parameters:
enable 1 to enable, 0 to disable

Setting this to 0 prevents the network stack from generating ICMP destination unreach-
ables (i.e. the device will not respond when an unused port is accessed).

4.18.3.4 void xnetstackset icmpechoreplies (intenable)

Enables/disables ICMP echo replies.

Parameters:
enable 1 to enable, 0 to disable

Setting this to 0 prevents the network stack from generating ICMP echo replies (i.e. the
device will no longer respond to ”ping”).

4.18.3.5 void xnetstackset igmpreporttype (int type)

Sets the IGMP membership report type.

Parameters:
type (0x12 for version 1, 0x16 for version 2)

170



NOTE: This does not enable IGMPv2 compatibility, it merely changes the type of
membership reports to work around a problem with certain switches. The default is
IGMPv1.

4.18.3.6 void xnetstackset ipv6 (int enable)

Enables/disables IPv6.

Parameters:
enable 1 to enable, 0 to disable

NOTE: This function disables the IPv6 receiver and transmitter. An application can
still send packet to IPv6 addresses without receiving an error message; these packets
will be discarded at the driver level.

4.18.3.7 void xnetstackset tcptimeoutfactor (int factor)

Sets a factor to scale all TCP timeouts.

Parameters:
factor TCP scale factor (1 to 255, default: 32)

See also:
xnetstackget tcptimeoutfactor

4.18.3.8 unsigned int xnetstackversion (void)

Returns the version number of this library.

Returns:
Version number of this library.

4.19 stdio.h File Reference

4.19.1 Detailed Description

File and other IO functions.

This library contains functions for file system operations and formatting input and out-
put data. The file system has been adapted from TINI’s Java Runtime Environment to
be able to be called from a C program.

The file system must reside in contiguous memory. The maximum size of the file
system is likely to be far beyond the needs of most/any applications. Following is a
more rigorous definition of the maximum file system size for those interested:

171



Pages in the file system are 256-byte blocks (on 256-byte boundaries). The file system’s
memory manager has several overhead blocks to maintain some information on block
allocation. The number of overhead blocks cannot exceed 255 blocks (65280 bytes).
11 pages of overhead are consumed by file system specific overhead. The remaining
possible overhead blocks are consumed by:

• 5 bytes magic signature

• ’num blocks’ bytes for the free list

• ’maxfd’ ∗ 26 bytes for open file descriptors

This data must therefore fit into 244 pages (62464 bytes). Assuming we use the usual
’maxfd’ value of 8, this leaves space for a free list covering 62251 blocks, which yields
a little over 15 MB of file system. Note that the file system overhead eats into the total
file system space.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
Some functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

#include <stddef.h >

Data Structures

• structfile structure

Defines

• #defineFS VERSION8
• #defineNULL ((void ∗) 0)
• #defineFILE FLAGS EOF1
• #defineFILE FLAGS TEMP 2
• #defineFILE TYPE TINIFS 1
• #defineFILENAME MAX 255
• #defineFOPENMAX 8
• #defineL tmpnam20
• #defineSEEK CUR 0x5555
• #defineSEEK END 0x5556
• #defineSEEK SET0x5557

172

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• #defineTMP MAX 10
• #defineEOF-1
• #defineP tmpdir ”temp”

Typedefs

• typedef unsigned intsize t
• typedef unsigned intoff t
• typedef longfpos t
• typedeffile structureFILE

Functions

• void clearerr(FILE ∗f handle)

Clear the error indicators for a file stream.

• int fclose(FILE ∗f handle)

Closes the file stream.

• int feof (FILE ∗f handle)

Checks to see if this stream has reached the end of the file.

• int ferror (FILE ∗f handle)

Gets the error indicator for the file stream.

• int fgetc(FILE ∗f handle)

Gets the next unsigned character from the file stream.

• int fgetpos(FILE ∗f handle,fpos t ∗position)

Gets the current value of the file position indicator.

• char∗ fgets(char∗string, int num,FILE ∗f handle)

Reads a string from the file stream.

• FILE ∗ fopen(const char∗filename, const char∗mode)

Opens the specified file.

• int fputc (int ch,FILE ∗f handle)

Writes a character to a file stream.

• int fputs(const char∗str,FILE ∗f handle)

Writes a string to a file stream.

173



• size t fread(void ∗ptr, size t size,size t num,FILE ∗f handle)

Read a number of bytes from a file stream.

• FILE ∗ freopen (const char∗newfilename, const char∗mode, FILE ∗old -
handle)

Associates an open stream with a different file.

• int fseek(FILE ∗f handle, long int offset, int tag)

Sets the file position indicator.

• int fseeko(FILE ∗f handle,off t offset, int tag)

Sets the file position indicator.

• int fsetpos(FILE ∗f handle, constfpos t ∗position)

Sets the file position indicator.

• long ftell (FILE ∗f handle)

Gets the file position indicator.

• off t ftello (FILE ∗f handle)

Gets the file position indicator.

• void flockfile (FILE ∗f handle)

Gets exclusive access to a file.

• int ftrylockfile (FILE ∗f handle)

Tries to get exclusive accress to a file.

• void funlockfile (FILE ∗f handle)

Release exclusive access on a file.

• size t fwrite (const void∗ptr, size t size,size t num,FILE ∗f handle)

Write a number of bytes to a file stream.

• int getc(FILE ∗f handle)

Gets the next unsigned character from the file stream.

• int putc(int value,FILE ∗f handle)

Writes a character to a file stream.

• int remove(const char∗filename)

174



Removes a file from the file system.

• int rename(const char∗oldname, const char∗newname)

Renames a file.

• void rewind(FILE ∗f handle)

Resets the file position indicator for a stream.

• char∗ tempnam(const char∗dirname, const char∗pfx)

Generates a path/filename that can be used for a temporary file.

• FILE ∗ tmpfile (void)

Generates a stream to a temporary file.

• char∗ tmpnam(char∗nametarget)

Generates a uniqe temporary filename.

• int fflush (FILE ∗f handle)

Flushes the buffers for a file stream.

• int fcleaninit(char numfd, int numblocks, void∗start address)

Initializes the file system to a blank state.

• int finit (char numfd, int numblocks, void∗start address)

Initializes the file system.

• int fexists(char∗filename)

Tests for the existence of a file.

• void ∗ fopen fd (const char∗filename, const char∗mode)

Helper function that opens a file descriptor.

• unsigned intfreadbytes(void ∗buffer, int length,FILE ∗stream)

Reads bytes into a buffer from a file stream.

• unsigned intfwritebytes(void ∗buffer, int length,FILE ∗stream)

Writes bytes to a file stream.

• unsigned longgetfreefsram()

Gets the amount of free space in the file system.

• int mkdir (char∗dirname)

175



Creates a directory.

• char getkey(void)

Keil-provided function.

• chargetchar(void)

Keil-provided function.

• charungetchar(char)

Keil-provided function.

• charputchar(char)

Keil-provided function.

• int printf (const char∗,...)

Keil-provided function.

• int sprintf (char∗, const char∗,...)

Keil-provided function.

• int vprintf (const char∗, char∗)

Keil-provided function.

• int vsprintf (char∗, const char∗, char∗)

Keil-provided function.

• char∗ gets(char∗, int n)

Keil-provided function.

• int scanf(const char∗,...)

Keil-provided function.

• int sscanf(char∗, const char∗,...)

Keil-provided function.

• int puts(const char∗)

Keil-provided function.

• unsigned intfilesystemversion(void)

Returns the version number of this file system library.

176



4.19.2 Define Documentation

4.19.2.1 #define EOF -1

Define for end-of-file.

4.19.2.2 #define FILEFLAGS EOF 1

Definition for file flag. Denotes that the end of the file has been reached for this file.

See also:
FILE

4.19.2.3 #define FILEFLAGS TEMP 2

Definition for file flag. Denotes that this is a temporary file.

See also:
FILE

4.19.2.4 #define FILETYPE TINIFS 1

Type for the file. Currently, this file system only supports the TINI File System type.

See also:
FILE

4.19.2.5 #define FILENAME MAX 255

Maximum size in bytes of the longest filename string that the implementation guaran-
tees can be opened.

See also:
fopen

4.19.2.6 #define FOPENMAX 8

Number of streams which the implementation guarantees can be open simultane-
ously.

See also:
fopen

177



4.19.2.7 #define FSVERSION 8

Version number associated with this header file. Should be the same as the version
number returned by thefilesystemversionfunction.

See also:
filesystemversion

4.19.2.8 #define Ltmpnam 20

Maximum size of character array to holdtmpnamoutput.

See also:
tmpnam

4.19.2.9 #define NULL ((void∗) 0)

Definition for a null pointer.

4.19.2.10 #define Ptmpdir ”temp”

Default directory that temporary file names will be built into.

See also:
tmpnam

4.19.2.11 #define SEEKCUR 0x5555

Seek offset is from the current location in the file.

Warning:
Option currently not supported.

See also:
fseek
fseeko

4.19.2.12 #define SEEKEND 0x5556

Seek offset is from the end of the file.

Warning:
Option currently not supported.

178



See also:
fseek
fseeko

4.19.2.13 #define SEEKSET 0x5557

Seek offset is from the beginning of the file.

See also:
fseek
fseeko

4.19.2.14 #define TMPMAX 10

Maximum number of guaranteed unique file names that can be created by thetmpnam
function.

See also:
tmpnam

4.19.3 Typedef Documentation

4.19.3.1 typedef structfile structure FILE

Type definition for a C file object.

4.19.3.2 typedef long fpost

Type definition for the position in a file.

4.19.3.3 typedef unsigned int offt

Type definition for the offset in a file.

4.19.3.4 typedef unsigned int sizet

Type definition for the amount of data to be written or read.

4.19.4 Function Documentation

4.19.4.1 char getkey (void)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

179



4.19.4.2 void clearerr (FILE ∗ f handle)

Clear the error indicators for a file stream.

Clears the error and end-of-file indicators for a file stream.

This function is safe to be called from multiple processes at the same time.

Parameters:
f handle file handle to file to clear error flag for

4.19.4.3 int fcleaninit (charnumfd, int numblocks, void ∗ start address)

Initializes the file system to a blank state.

Initializes the file system. This method (orfinit ) must be called every time the
DS80C400 boots up and wants to use the file system. Starts with a blank file system
automatically.

Note that theinit rom function must be called before the file system is initialized.

This function is safe to be called from multiple processes at the same time.

Parameters:
numfd Maximum number of file descriptors that can be open at one time in the

system.

numblocks Number of 256-byte blocks available to the file system.

start addressStarting address of the memory allocated for the file system. The
bounds of the memory allocated for the file system are then fromstart -
addressto (start address+ 256∗ numblocks).

Returns:
Non-zero, since the file system memory had to be erased.

See also:
init rom [in the initialization library]
finit

4.19.4.4 int fclose (FILE ∗ f handle)

Closes the file stream.

Closes the stream associated withf handle . In the TINI File System, there are no
buffers, so this function has nothing to flush before closing.

This function is safe to be called from multiple processes at the same time.

180



Parameters:
f handle handle of file to close

Returns:
Always 0

See also:
fopen

4.19.4.5 int feof (FILE ∗ f handle)

Checks to see if this stream has reached the end of the file.

Tests the end-of-stream indicator for this file stream.

This function is safe to be called from multiple processes at the same time.

Parameters:
f handle handle to file to check end-of-file condition for

Returns:
Non-zero if the end of the file has been reached, otherwise 0

4.19.4.6 int ferror (FILE ∗ f handle)

Gets the error indicator for the file stream.

Gets the current error indicator for the file stream.

This function is safe to be called from multiple processes at the same time.

Parameters:
f handle handle to file to get current error code for

Returns:
Current error code for file denoted byf handle. 0 means no error.

4.19.4.7 int fexists (char∗ filename)

Tests for the existence of a file.

Checks to see if the filefilenameexists in this file system.

This function is safe to be called from multiple processes at the same time.

Parameters:
filename File to check for the existence of.

181



Returns:
0 if the file exists, non-zero if it does not exist.

4.19.4.8 int fflush (FILE ∗ f handle)

Flushes the buffers for a file stream.

The TINI File System has no buffers (data is read and written directly on the file system,
since it resides in XDATA). Therefore, this function only clears the error flag.

This function is safe to be called from multiple processes at the same time.

Parameters:
f handle File handle to flush output buffers for

Returns:
0 on success.

4.19.4.9 int fgetc (FILE ∗ f handle)

Gets the next unsigned character from the file stream.

Returns the next unsigned character (if available) from the file stream (converted to an
int), advancing the file position pointer.

This function is safe to be called from multiple processes at the same time.

Parameters:
f handle handle of the file we will read from

Returns:
The next character from the file, orEOFif the end of file has been reached

See also:
getc
feof
fputc

4.19.4.10 int fgetpos (FILE ∗ f handle, fpos t ∗ position)

Gets the current value of the file position indicator.

Puts the current value of the file position indicator into the locationposition. The value
in positionafter the function call is to be used for resetting the stream to this position
using a later call tofsetpos.

182



Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
f handle handle to file to get current position for

position pointer to location for position information

Returns:
Always 0

See also:
fsetpos
ftell

4.19.4.11 char∗ fgets (char∗ string, int num, FILE ∗ f handle)

Reads a string from the file stream.

Reads at mostnum -1 characters from the file stream. Will not return any data read
after a newline character (which is included) or the end of the file. A null character is
appended to the data read.

Note that the implementation of this method is not efficient. For more efficient reading
of data, use thefreadfunction.

This function is safe to be called from multiple processes at the same time.

Parameters:
string buffer to write string data to

num read a maximum of (num-1) bytes, leaving 1 for a terminating 0

f handle handle to file to read from

Returns:
Input pointerstring , or NULL if EOF or errors were encountered. Data will be
written as 0-terminated string tostring

See also:
fread
fputs
feof

183



4.19.4.12 unsigned int filesystemversion (void)

Returns the version number of this file system library.

Returns:
Version number of this FILESYSTEM library.

4.19.4.13 int finit (charnumfd, int numblocks, void ∗ start address)

Initializes the file system.

Initializes the file system. This method (orfcleaninit ) must be called every time the
DS80C400 boots up and wants to use the file system. If the file system does not exist
or is corrupted, it will erase and start with a blank file system. Also, if any of the
parameters given tofinit do not match how the file system was previously initialized,
the file system will erase and start blank.

Note that theinit rom function must be called before the file system is initialized.

This function is safe to be called from multiple processes at the same time.

Parameters:
numfd Maximum number of file descriptors that can be open at one time in the

system.

numblocks Number of 256-byte blocks available to the file system.

start addressStarting address of the memory allocated for the file system. The
bounds of the memory allocated for the file system are then fromstart -
addressto (start address+ 256∗ numblocks).

Returns:
0 if the file system previously existed and was restored. Non-zero if the file system
memory had to be erased.

See also:
init rom [in the initialization library]
fcleaninit

4.19.4.14 void flockfile (FILE ∗ f handle)

Gets exclusive access to a file.

Sleeps until exclusive access to a file is available. Note that locks cannot be nested. A
nested lock will be released on the very first call tofunlockfile, andnot the matching
call.

This function is safe to be called from multiple processes at the same time.

184



Parameters:
f handle handle of file to acquire exclusive access for

See also:
ftrylockfile
funlockfile

4.19.4.15 FILE ∗ fopen (const char∗ filename, const char∗ mode)

Opens the specified file.

Opens the file specified and associates a stream with it. Files can be opened in read,
write, or append mode.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
filename name of the file to get a handle for

mode - If mode[0] == ’r’, open a reading file stream. If mode[0] == ’a’, open a
writing stream for appending. If mode[0] == ’w’, open a writing stream for
a blank file.

Returns:
handle to the file, orNULL on failure

See also:
freopen
fclose

4.19.4.16 void∗ fopen fd (const char∗ filename, const char∗ mode)

Helper function that opens a file descriptor.

Helper function that opens a file descriptor. File descriptors are not immediately useful
to any C library function. Applications should use thefopenfunction to open a file.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
filename Name of the file to get a descriptor for. The data pointed to byfilename

must stay consistent for the duration of the use of the file descriptor. The
fopenmethod avoids this limitation by creating a copy of the name data.

185



mode Read/Write/Append mode string

Returns:
pointer to a file descriptor

See also:
fopen

4.19.4.17 int fputc (intch, FILE ∗ f handle)

Writes a character to a file stream.

Writes the specified character (converted from an int) to a file stream, advancing the
file position indicator.

This function is safe to be called from multiple processes at the same time.

Parameters:
ch character that will be written to the filef handle

f handle handle of the file we will write character to

Returns:
Character written if successful, elseEOF

See also:
fgetc
putc

4.19.4.18 int fputs (const char∗ str, FILE ∗ f handle)

Writes a string to a file stream.

Writes a null-terminated string to a file stream. The terminating character is not written.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
str null-terminated string to write to a file

f handle handle to file to write string to

Returns:
number of bytes written, orEOFon failure

See also:
fgets
fwrite

186



4.19.4.19 size t fread (void ∗ ptr, size t size, size t num, FILE ∗ f handle)

Read a number of bytes from a file stream.

Reads a block of data from a file stream. This function allows you to readnumelements
of sizesize. However, note that this function always behaves as if it had been called
by:

fread(ptr, 1, size*num, f_handle);

This function is safe to be called from multiple processes at the same time.

Parameters:
ptr pointer to buffer to read data into

size size of each element to be read

num number of elements to read

f handle handle to file to read from

Returns:
number of elements read

See also:
fgetc
fwrite

4.19.4.20 unsigned int freadbytes (void∗ buffer, int length, FILE ∗ stream)

Reads bytes into a buffer from a file stream.

Reads a specified number of bytes into a buffer from a file stream. This function is used
by freadas a helper function. It may safely be used from user applications, although it
is not a standard file reading function (is not part of an ANSI-C standard library).

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
buffer Location to read data into

length Number of bytes to read

stream File to read data from

Returns:
Number of bytes read, orEOFif the end of file is reached.

187



See also:
fread
fwritebytes

4.19.4.21 FILE ∗ freopen (const char∗ newfilename, const char∗ mode, FILE ∗
old handle)

Associates an open stream with a different file.

Closes the file associated withold handleand opens a stream to the filenewfilename.

This function is safe to be called from multiple processes at the same time.

Parameters:
newfilenamename of file to open

mode mode to opennewfilenamein (seefopenfor details)

old handle file handle to flush and close

Returns:
Handle to filenewfilename, or NULL if the file could not be opened.

See also:
fopen
fclose

4.19.4.22 int fseek (FILE ∗ f handle, long int offset, int tag)

Sets the file position indicator.

Sets the file position indicator for a file stream. Note that the only currently supported
value fortag is SEEK SET, meaning that the valueoffsetwil always be interpreted as
the offset from the beginning of the file.

After a call tofseek, the end-of-file indicator for the file stream is reset.

This function behaves the same asfseeko. The only difference is thatfseekoaccepts
anoffsetparameter of typeoff t.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
f handle handle of file to set posision for

offset offset to set for file position

188



tag only SEEK SETis supported

Returns:
Always 0.

See also:
ftell
fseeko
fsetpos

4.19.4.23 int fseeko (FILE ∗ f handle, off t offset, int tag)

Sets the file position indicator.

Sets the file position indicator for a file stream. Note that the only currently supported
value fortag is SEEK SET, meaning that the valueoffsetwil always be interpreted as
the offset from the beginning of the file.

After a call tofseeko, the end-of-file indicator for the file stream is reset.

This function behaves the same asfseek. The only difference is thatfseekaccepts an
offsetparameter of typelong int .

This function is safe to be called from multiple processes at the same time.

Parameters:
f handle handle of file to set posision for

offset offset to set for file position

tag only SEEK SETis supported

Returns:
Always 0.

See also:
ftello
fseek
fsetpos

4.19.4.24 int fsetpos (FILE ∗ f handle, constfpos t ∗ position)

Sets the file position indicator.

Sets a stream’s file position indicator from the position information pointed to bypo-
sition . The value inposition should have been obtained by a call tofgetpos. If
successful, this function will also clear the end-of-file indicator for the stream.

189



Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
f handle handle of file we will set the position for

position position in the file to set

Returns:
Always 0

See also:
fgetpos
fseek

4.19.4.25 long ftell (FILE ∗ f handle)

Gets the file position indicator.

Gets the file position indicator for the specified file. This is the number of characters
from the beginning of the file.

This function behaves the same asftello . The only difference is thatftello returns a
value of typeoff t.

This function is safe to be called from multiple processes at the same time.

Parameters:
f handle handle of file to get current position of

Returns:
Current position in file, or -1L on failure.

See also:
fseek
ftello
fgetpos

4.19.4.26 off t ftello (FILE ∗ f handle)

Gets the file position indicator.

Gets the file position indicator for the specified file. This is the number of characters
from the beginning of the file.

This function behaves the same asftell . The only difference is thatftell returns a value
of type long .

This function is safe to be called from multiple processes at the same time.

190



Parameters:
f handle handle of file to get current position of

Returns:
Current position in file, or -1L on failure.

See also:
fseek
ftello
fgetpos

4.19.4.27 int ftrylockfile (FILE ∗ f handle)

Tries to get exclusive accress to a file.

Obtains exclusive access to a file if it is available. Otherwise, returns without waiting
for exclusive access. Note that locks cannot be nested. A nested lock will be released
on the very first call tofunlockfile, andnot the matching call.

This function is safe to be called from multiple processes at the same time.

Parameters:
f handle handle to file we will try to get exclusive access to

Returns:
0 if the file was locked, non-zero if someone else has the lock

See also:
flockfile
funlockfile

4.19.4.28 void funlockfile (FILE ∗ f handle)

Release exclusive access on a file.

Releases exclusive access that was earlier acquired on this file usingflockfileor ftry-
lockfile . Note that locks cannot be nested. This function will release all locks that the
current thread/process have on the file.

This function is safe to be called from multiple processes at the same time.

Parameters:
f handle handle to file to release exclusive access for

See also:
flockfile
ftrylockfile

191



4.19.4.29 size t fwrite (const void ∗ ptr, size t size, size t num, FILE ∗ f handle)

Write a number of bytes to a file stream.

Writes a block of data to a file stream. This function allows you to writenumelements
of sizesize. However, note that this function always behaves as if it had been called
by:

fwrite(ptr, 1, size*num, f_handle);

This function is safe to be called from multiple processes at the same time.

Parameters:
ptr pointer to buffer of data to be written

size size of each element to be written

num number of elements to write

f handle handle to file to write to

Returns:
number of elements written

See also:
fputc
fread

4.19.4.30 unsigned int fwritebytes (void∗ buffer, int length, FILE ∗ stream)

Writes bytes to a file stream.

Writes the specified number of bytes to a file stream. This function is used byfwrite
as a helper function. It may safely be used from user applications, although it is not a
standard file writing function (is not part of an ANSI-C standard library).

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
buffer Location to write data from

length Number of bytes to write

stream File to write data to

Returns:
Number of bytes written, orEOFif an error occurred

192



See also:
fwrite
freadbytes

4.19.4.31 int getc (FILE ∗ f handle)

Gets the next unsigned character from the file stream.

Returns the next unsigned character (if available) from the file stream (converted to an
int), advancing the file position pointer. Note: This function is equivalent tofgetc.

This function is safe to be called from multiple processes at the same time.

Parameters:
f handle handle of the file we will read from

Returns:
The next character from the file, orEOFif the end of file has been reached

See also:
fgetc
feof
putc

4.19.4.32 char getchar (void)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

4.19.4.33 unsigned long getfreefsram ()

Gets the amount of free space in the file system.

Returns the number of bytes available to the file system. Note that this number is
completely independent of the amount of free RAM available from the ROM’s memory
manager. The TINI File System uses its own independent memory manager.

This function is safe to be called from multiple processes at the same time.

Returns:
Amount of free RAM available to the file system.

193



4.19.4.34 char∗ gets (char∗, int n)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

4.19.4.35 int mkdir (char ∗ dirname)

Creates a directory.

Creates a directory with the specified directory name.

This function is safe to be called from multiple processes at the same time.

Returns:
non-zero on success, 0 on failure

4.19.4.36 int printf (const char∗, ...)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

4.19.4.37 int putc (intvalue, FILE ∗ f handle)

Writes a character to a file stream.

Writes the specified character (converted from an int) to a file stream, advancing the
file position indicator. Note: This function is equivalent tofputc.

This function is safe to be called from multiple processes at the same time.

Parameters:
value character that will be written to the filef handle

f handle handle of the file we will write character to

Returns:
Character written if successful, elseEOF

See also:
getc
fputc

194



4.19.4.38 char putchar (char)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

4.19.4.39 int puts (const char∗)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

4.19.4.40 int remove (const char∗ filename)

Removes a file from the file system.

Deletes the file specified byfilename.

This function is safe to be called from multiple processes at the same time.

Parameters:
filename file name that will be deleted

Returns:
0 on success, non-zero on failure

See also:
rename

4.19.4.41 int rename (const char∗ oldname, const char∗ newname)

Renames a file.

Renames the file identified byoldnameto now be identified bynewname.

Warning:
This function is not multi-process safe. If two processes try to call this function at
the same time, its parameters may be destroyed, yielding unpredictable results.

Parameters:
oldname filename of the file that will change names

newnamenew name for the file calledoldname

Returns:
0 on success, non-zero on failure

See also:
remove

195



4.19.4.42 void rewind (FILE ∗ f handle)

Resets the file position indicator for a stream.

Sets the file position indicator for the stream to the beginning of the file. It also resets
the end of file condition. This is functionally equivalent to:

fseek(f_handle, 0, SEEK_SET);
clearerr(f_handle);

This function is safe to be called from multiple processes at the same time.

Parameters:
f handle handle to file that the streams will be reset to the beginning for

See also:
fseek
fsetpos

4.19.4.43 int scanf (const char∗, ...)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

4.19.4.44 int sprintf (char∗, const char∗, ...)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

4.19.4.45 int sscanf (char∗, const char∗, ...)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

4.19.4.46 char∗ tempnam (const char∗ dirname, const char∗ pfx)

Generates a path/filename that can be used for a temporary file.

Generates a path/filename that can be used to create a temporary file with. The pointer
that is returned is suitable to be freed usingmemfree. Make sure to use the Dal-
las Semiconductor memory management library (rom400mem.h) rather than the Keil
memory manager to free the memory.

196



This function is safe to be called from multiple processes at the same time.

Parameters:
dirname Directory for temporary file name to be created for. A default directory

will be used ifdirnameis null.

pfx Prefix to prepend to temporary file name

Returns:
Pointer to temporary file name. Use #Free to delete the memory.

See also:
tmpnam
tmpfile
#Free [in the memory manager library]

4.19.4.47 FILE ∗ tmpfile (void)

Generates a stream to a temporary file.

Generates a stream to a temporary file, opened for writing/update.

This function is safe to be called from multiple processes at the same time.

Returns:
File handle to a temporary file, orNULL on failure.

See also:
tempnam
tmpnam

4.19.4.48 char∗ tmpnam (char ∗ nametarget)

Generates a uniqe temporary filename.

Capable of generatingTMP MAX unique temporary filenames. This filename is suit-
able for using in a call tofopen. If the name is written to a static location, then this call
destroys the previous filename stored in that location.

This function is safe to be called from multiple processes at the same time.

Parameters:
nametargetStorage location for new temporary name. If NULL, the temporary

name will be copied to a static location.

Returns:
Location where temporary name is stored. This may be the same asnametarget.

197



See also:
tempnam
tmpfile

4.19.4.49 char ungetchar (char)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

4.19.4.50 int vprintf (const char∗, char ∗)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

4.19.4.51 int vsprintf (char∗, const char∗, char ∗)

Keil-provided function.

This is a Keil-provided function. Please see Keil’s documentation for information on
this function. It is exported by this header file so that we can overridestdio.h.

4.20 tini400 crypt.h File Reference

4.20.1 Detailed Description

SHA-1 and MD4 functions for the DS80C400.

This library contains functions that compute the SHA-1 hash and MD4 hash of a byte
array.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Defines

• #defineTINI400 CRYPT VERSION3

198

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Functions

• unsigned intcrypt version(void)

Returns the version number of this CRYPT library.

• void crypt sha1(short inLength, void∗inBuff, void ∗outBuff)

Computes a SHA-1 hash on the given message.

• void crypt md4(unsigned char∗out, unsigned char∗in, int n)

Computes a MD4 hash on the given message.

4.20.2 Define Documentation

4.20.2.1 #define TINI400CRYPT VERSION 3

Version number associated with this header file. Should be the same as the version
number returned by thecrypt versionfunction.

See also:
crypt version

4.20.3 Function Documentation

4.20.3.1 void cryptmd4 (unsigned char∗ out, unsigned char∗ in, int n)

Computes a MD4 hash on the given message.

See RFC 1320 for more information. WARNING! MD4 has known cryptographic
weaknesses. Where possible, SHA-1 should be used instead.

Parameters:
out holds the hash value on return (16 bytes)

in the message to hash

n length of the message to hash

4.20.3.2 void cryptsha1 (shortinLength, void ∗ inBuff , void ∗ outBuff)

Computes a SHA-1 hash on the given message.

See FIPS 180-1 for more information on SHA-1.

Parameters:
inLength length of the message to hash

inBuff the message to hash

outBuff holds the hash value on return (20 bytes minimum)

199



4.20.3.3 unsigned int cryptversion (void)

Returns the version number of this CRYPT library.

Returns:
Version number of this CRYPT library.

4.21 tini400 debugport.h File Reference

4.21.1 Detailed Description

Functions supporting the debug port on the TINIs400 module.

This library contains functions that write to the debug port on the TI-
NIs400. More information on the debug port can be found in the
application note 614, Diagnostic Port for the TINIs400 , found at
http://pdfserv.maxim-ic.com/en/an/app614.pdf .

For detailed information on the TINIs400 debug port please seeApplication
Note 614: Diagnostic Port for the TINIs400 .

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Defines

• #defineTINI400 DEBUGPORTVERSION1

Functions

• unsigned intdebugportversion(void)

Returns the version number of this DEBUGPORT library.

• void debugportinit (void)

Initializes the timing for the debug port.

• void debugportsendbyte(unsigned char ch)

Sends a character to the debug port.

• void debugportsendhex(unsigned char b)

Prints a hexadecimal value to the debug port.

200

http://pdfserv.maxim-ic.com/en/an/app614.pdf
http://pdfserv.maxim-ic.com/en/an/app614.pdf
http://pdfserv.maxim-ic.com/en/an/app614.pdf
http://pdfserv.maxim-ic.com/en/an/app614.pdf
http://pdfserv.maxim-ic.com/en/an/app614.pdf


• void debugportsendstring(unsigned char∗s)

Sends a string to the debug port.

4.21.2 Define Documentation

4.21.2.1 #define TINI400DEBUGPORT VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by thedebugportversionfunction.

See also:
debugportversion

4.21.3 Function Documentation

4.21.3.1 void debugportinit (void)

Initializes the timing for the debug port.

This function must be called after initrom before the debug port can be used. For
correct serial port timing, set the clock frequency usinginit setfrequency().

4.21.3.2 void debugportsendbyte (unsigned charch)

Sends a character to the debug port.

This function sends a character to the debug port at 115200 bps. Note: This function
disables interrupts while sending the character.

4.21.3.3 void debugportsendhex (unsigned charb)

Prints a hexadecimal value to the debug port.

This function converts a byte into hexadecimal and sends the result to the debug port
at 115200 bps. Note: This function disables interrupts while sending each character.

4.21.3.4 void debugportsendstring (unsigned char∗ s)

Sends a string to the debug port.

This function sends a zero-terminated string to the debug port at 115200 bps. Note:
This function disables interrupts while sending each character.

201



4.21.3.5 unsigned int debugportversion (void)

Returns the version number of this DEBUGPORT library.

Returns:
Version number of this DEBUGPORT library.

4.22 tini400 dns.h File Reference

4.22.1 Detailed Description

DNS Client functions for the DS80C400 ROM.

This libarary contains functions for resolving a host name to an IP address that is usable
by the silicon software for making socket function calls. Note that the functions in this
library are not safe to be called from multiple processes at the same time. The functions
in this library store their results in static memory locations, and must be retrieved and
stored in alternate locations before further DNS operations are performed.

Note that as of version 3, this library has been changed to use the system-wide DNS
server entries, which might be set by the DHCP client (from data recieved in a DHCP
response). Applications can make sure they have a valid server entry by making sure
the DNS server IP addresses are not all 0’s, since the ROM initialization functions clear
the DNS server entries.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.
The functions in this library use String functions such assprintf for data format-
ting, which are not multiprocess safe. Care must be taken that DNS functions do
not operate at the same time as other string formatting operations.

#include <stdlib.h >

Data Structures

• structhostent
• structmailhostent

Defines

• #defineTINI400 DNS VERSION5

202

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Functions

• hostent∗ gethostbyaddr(void ∗addr,size t len, int type)

Looks up information on a host given an IP address.

• hostent∗ gethostbyname(char∗name)

Looks up information on a host given a host name.

• void dns init (void)

Initializes the DNS client code.

• void dnssettimeout(unsigned long t)

Sets the socket timeout value used for DNS server communications.

• unsigned longdnsgettimeout(void)

Gets the socket timeout value used for DNS server communications.

• void dnsgetprimary(structsockaddr∗sa)

Gets the address of the primary DNS server.

• void dnssetprimary(structsockaddr∗sa)

Sets the address of the primary DNS server.

• void dnsgetsecondary(structsockaddr∗sa)

Gets the address of the secondary DNS server.

• void dnssetsecondary(structsockaddr∗sa)

Sets the address of the secondary DNS server.

• mailhostent∗ dnsgetmx(char∗name)

Performs a DNS MX record lookup.

• void dnsenableipv6queries(unsigned char enable)

Enables/disables attempts to make IPv6 DNS queries.

• unsigned intdnsversion()

Returns the version number of this DNS client library.

203



4.22.2 Define Documentation

4.22.2.1 #define TINI400DNS VERSION 5

Version number associated with this header file. Should be the same as the version
number returned by thednsversionfunction.

See also:
dnsversion

4.22.3 Function Documentation

4.22.3.1 void dnsenableipv6queries (unsigned charenable)

Enables/disables attempts to make IPv6 DNS queries.

Use anenablevalue of 0 to disable attempts to perform IPv6 queries. Diabling IPv6
queries can dramatically increase the speed of the library routines. Use anenablevalue
of non-zero to enable IPv6 DNS queries.

Parameters:
enable 0 to disable IPv6 DNS queries, non-zero to enable

4.22.3.2 structmailhostent∗ dns getmx (char∗ name)

Performs a DNS MX record lookup.

MX records are mail exchanger records. In order to send an email without using a mail
relay (mail host), you need to look up the MX record of the remote domain and then
open the SMTP connection to the address returned bydnsgetmx().

Parameters:
name domain to look up.

Returns:
DNS response(s) or NULL for failed lookup. If any valid data is returned, the first
invalid mailhostententry will haveNULL for a host name.

See also:
mailhostent

4.22.3.3 void dnsgetprimary (struct sockaddr∗ sa)

Gets the address of the primary DNS server.

204



Fills in an address structure with the IP of the secondary DNS server used by this DNS
client code. DNS operations first try to use a server designated as primary, and the use
a server designated as secondary if the primary fails to return results.

Note that this gets the system’s primary DNS server setting. This may have been set by
the DHCP client or by previous calls todnssetprimary. This function is equivalent to
dhcpgetprimarydns.

Parameters:
sa will be filled in with the address of the primary DNS server

See also:
dnssetprimary
dnssetsecondary
dnsgetsecondary
dhcpgetprimarydns

4.22.3.4 void dnsgetsecondary (structsockaddr∗ sa)

Gets the address of the secondary DNS server.

Fills in an address structure with the IP of the secondary DNS server used by this DNS
client code. DNS operations first try to use a server designated as primary, and the use
a server designated as secondary if the primary fails to return results.

Note that this gets the system’s secondary DNS server setting. This may have been
set by the DHCP client or by previous calls todnssetsecondary. This function is
equivalent todhcpgetsecondarydns.

Parameters:
sa will be filled in with the address of the secondary DNS server

See also:
dnssetprimary
dnsgetprimary
dnssetsecondary
dhcpgetsecondarydns

4.22.3.5 unsigned long dnsgettimeout (void)

Gets the socket timeout value used for DNS server communications.

Gets the timeout value applied to all sockets that communicate with the DNS server.
Call this function to verify the timeout used by DNS socket operations.

Returns:
Global timeout value for sockets use in DNS server communications

205



See also:
dnssettimeout

4.22.3.6 void dnsinit (void)

Initializes the DNS client code.

Performs initialization for the DNS client. This function need only be called once at
the start of the application.

4.22.3.7 void dnssetprimary (struct sockaddr∗ sa)

Sets the address of the primary DNS server.

Sets the address of the primary DNS server used by this DNS client code. DNS oper-
ations first try to use a server designated as primary, and the use a server designated as
secondary if the primary fails to return results.

Note that this sets the system’s primary DNS server setting. If the system’s primary
DNS server entry had been previously set by the DHCP client, that information will be
destroyed by this function.

Parameters:
sa address of primary DNS server

See also:
dnsgetprimary
dnssetsecondary
dnsgetsecondary

4.22.3.8 void dnssetsecondary (structsockaddr∗ sa)

Sets the address of the secondary DNS server.

Sets the address of the secondary DNS server used by this DNS client code. DNS
operations first try to use a server designated as primary, and the use a server designated
as secondary if the primary fails to return results.

Note that this sets the system’s secondary DNS server setting. If the system’s secondary
DNS server entry had been previously set by the DHCP client, that information will be
destroyed by this function.

Parameters:
sa address of secondary DNS server

See also:
dnsgetprimary

206



dnssetprimary
dnsgetsecondary

4.22.3.9 void dnssettimeout (unsigned longt)

Sets the socket timeout value used for DNS server communications.

Sets the timeout value applied to all sockets that communicate with the DNS server.
Call this function to make sure DNS operations fail after a reasonable waiting time.
All DNS operations are retried up to 4 times.

Parameters:
t Global timeout value for sockets use in DNS server communications

See also:
dnsgettimeout

4.22.3.10 unsigned int dnsversion ()

Returns the version number of this DNS client library.

Returns:
Version number of this DNS client library.

4.22.3.11 structhostent∗ gethostbyaddr (void∗ addr, size t len, int type)

Looks up information on a host given an IP address.

Contacts a DNS server and attempts to find known host names for the given IP address.

Parameters:
addr IP address structure, eitherin addror in6 addr

len The length of the input structure passed toaddr (4 or 16)

type AF INET or AF INET6

Returns:
Host structure with any names found, orNULL if the operation failed.

See also:
AF INET
AF INET6
in addr
in6 addr
gethostbyname
inet addr
hostent

207



4.22.3.12 structhostent∗ gethostbyname (char∗ name)

Looks up information on a host given a host name.

Contacts a DNS server and attempts to find known IP addresses given a host name.

Parameters:
name String representing the host name

Returns:
Host structure with any names found, orNULL if the operation failed.

See also:
gethostbyaddr
hostent

4.23 tini400 ftpclient.h File Reference

4.23.1 Detailed Description

FTP Client functions for DS80C400.

This library contains functions for FTP Client.

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

#include "rom400 sock.h"

#include "stdio.h"

#include "ftpcodes.h"

#include <string.h >

#include <ctype.h >

Defines

• #defineFTPCLIENT VERSION NUMBER 1
• #defineFTPCLIENT ASCII 0
• #defineFTPCLIENT BINARY 1
• #defineFTPCLIENT PORTNUMBER21

208

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• #defineFTPCLIENT ACTIVE MODE 1
• #defineFTPCLIENT PASSIVEMODE 0
• #defineFTPCLIENT DETAILED DIRLISTING 1
• #defineFTPCLIENT SHORTDIRLISTING 0
• #defineFTPCLIENT STATUS SUCCESS0
• #defineFTPCLIENT SOCKETERROR-1
• #defineFTPCLIENT FILE NOT FOUND-2
• #defineFTPCLIENT FILE IO ERROR-3
• #defineFTPCLIENT ALREADY LOGGEDIN-4
• #defineFTPCLIENT NOT CONNECTED-5

Functions

• unsigned intftpclient version(void)

Returns version number of ftpclient library.

• void ftpclient init (long milli seconds)

Initializes the ftpclient library.

• int ftpclient connect(structsockaddrin ∗sa, char∗user, char∗passwd)

Connects with FTP server.

• int ftpclient settransmissionmode(char flag)

Sets data transfer mode in FTP server.

• void ftpclient setdataconnectionmode(char flag)

Set data connection mode in ftpclient library.

• int ftpclient getfile(char∗filename, char∗storeasfilename)

Downloads file from FTP server.

• int ftpclient putfile (char∗filename, char∗storeasfilename)

Uploads tini file to FTP server.

• int ftpclient dir (char∗name, char∗dir str, int dir str len, char format)

Returns FTP server directory list.

• int ftpclient pwd (char∗pathstr, int pathstr len)

Returns current FTP server directory path.

• int ftpclient cd (char∗pathstr)

Changes server working directory.

209



• int ftpclient rawcmd(char∗input cmd)

Sends command to FTP server.

• int ftpclient dataconnection()

Configures for new data connection. exchange port number and ip address informa-
tion with FTP server for data connection.

• int ftpclient get dataconnectionhandler()

Establishes new data connection and returns socket handler.

• int ftpclient disconnect(void)

Terminates connection with FTP server.

• char∗ ftpclient getlaststatus(void)

Returns last FTP server response string.

4.23.2 Define Documentation

4.23.2.1 #define FTPCLIENTACTIVE MODE 1

Definition for active data connection mode

See also:
ftpclient setdataconnectionmode

4.23.2.2 #define FTPCLIENTALREADY LOGGEDIN -4

Error value indicates that client application is already logged-in

4.23.2.3 #define FTPCLIENTASCII 0

Definition for ASCII data transfer mode

See also:
ftpclient settransmissionmode

4.23.2.4 #define FTPCLIENTBINARY 1

Definition for BINARY data transfer mode

See also:
ftpclient settransmissionmode

210



4.23.2.5 #define FTPCLIENTDETAILED DIRLISTING 1

Definition for detailed directory listing

See also:
ftpclient dir

4.23.2.6 #define FTPCLIENTFILE IO ERROR -3

File operation error value

4.23.2.7 #define FTPCLIENTFILE NOT FOUND -2

File not found error value

4.23.2.8 #define FTPCLIENTNOT CONNECTED -5

Error value indicates that server is not connected

4.23.2.9 #define FTPCLIENTPASSIVE MODE 0

Definition for passive data connection mode

See also:
ftpclient setdataconnectionmode

4.23.2.10 #define FTPCLIENTPORTNUMBER 21

Definition for default FTP server port number

See also:
ftpclient connect

4.23.2.11 #define FTPCLIENTSHORT DIRLISTING 0

Definition for short directory listing

See also:
ftpclient dir

4.23.2.12 #define FTPCLIENTSOCKET ERROR -1

Socket error value

211



4.23.2.13 #define FTPCLIENTSTATUS SUCCESS 0

FTP Client Status Success value, this value is returned when operation is completed
successfully.

4.23.2.14 #define FTPCLIENTVERSION NUMBER 1

Version number associated with this header file. Should be the same as the version
number returned by theftpclient versionfunction.

See also:
ftpclient version

4.23.3 Function Documentation

4.23.3.1 int ftpclient cd (char ∗ path str)

Changes server working directory.

This function changes server working directory

Parameters:
path str Address of memory buffer that contains new working directory path

name

Returns:
• FTPCLIENTNOT CONNECTED- if connection is not established

• FTPCLIENTSOCKETERROR- if socket communication error happens
Otherwise, returns FTP server status code

4.23.3.2 int ftpclient connect (struct sockaddr in ∗ sa, char ∗ user, char ∗
passwd)

Connects with FTP server.

This function establishes connection with FTP server. Connection with FTP server
must be established before calling any other functions that interact with FTP server.

Parameters:
sa socket address contains server ip address and FTP server portnumberNOTE:

Passing zero value for portnumber enables ftpclient library to use default ftp
port number

user User name

passwdPassword

212



Returns:
One of the following values:

• FTPCLIENTALREADYLOGGEDIN- if ftpclient is already connected with
server

• FTPCLIENTSOCKETERROR- if there is any error in socket communica-
tion

Otherwise, FTP server status code will be returned for successful or failed authen-
tication

NOTE: In case of error, the server socket will be closed before returning from function

4.23.3.3 int ftpclient dataconnection ()

Configures for new data connection. exchange port number and ip address information
with FTP server for data connection.

This function configures for new data connection. For Active mode connection, sends
IP address and port number of ftp client to which the data connection have to be estab-
lished. For passive mode connection, it gets server IP address and port number for data
connection

Returns:
FTPCLIENTSOCKETERRORif socket communication error happens. Other-
wise, returns FTP server status code

4.23.3.4 int ftpclient dir (char ∗ name, char ∗ dir str, int dir str len, char format)

Returns FTP server directory list.

This function returns FTP server directory list in short format or detailed format. This
function can also be used to retrieve information about specific file.

Parameters:
name Name of the file to get file attributes information. If NULL, then informa-

tion about all entries of current directory will be returned.

dir str Address of memory buffer where directory information will be stored

dir str len Maximum amount of data to be stored indir str memory buffer

format Specifies the format of directory listing. The value for this parameter
should be eitherFTPCLIENTDETAILED DIRLISTINGor FTPCLIENT-
SHORTDIRLISTING

Returns:
• FTPCLIENTNOT CONNECTED- if connection is not established

213



• FTPCLIENTSOCKETERROR- if socket communication error happens
Otherwise, returns FTP server status code

4.23.3.5 int ftpclient disconnect (void)

Terminates connection with FTP server.

This function terminates connection with FTP server. the server socket will be closed
even if there is any socket error

Returns:
• FTPCLIENTSOCKETERROR- if socket communication error happens

• FTPCLIENTNOT CONNECTED- if connection is not established
Otherwise, returns FTP server status code

4.23.3.6 int ftpclient get dataconnectionhandler ()

Establishes new data connection and returns socket handler.

This function establishes new data connection and returns socket handler.

IMPORTANT NOTE: For Active mode connection, This function has to be called
after sending control command to server to initiate the data transfer as server will es-
tablish data connection after receiving control command. For passive mode connection,
this function has to be called before sending control command to server to initiate the
data transfer as server expects data connection to be made before responding for control
connection.

Returns:
FTPCLIENTSOCKETERRORif socket communication error happens. Other-
wise, returns FTP server status code

4.23.3.7 int ftpclient getfile (char∗ filename, char ∗ storeasfilename)

Downloads file from FTP server.

This function downloads file from FTP server and store it in tini file system.

Parameters:
filename Name of file to get from the FTP server

storeasfilename Name of file to store on TINI. If value for this parameter is
NULL, then the file will be stored under same name as it is on the FTP
server.

214



Returns:
• FTPCLIENTNOT CONNECTED- if connection is not established

• FTPCLIENTFILE IO ERROR- if error happens while storing file

• FTPCLIENTSOCKETERROR- if socket communication error happens
Otherwise, returns FTP server status code

4.23.3.8 char∗ ftpclient getlaststatus (void)

Returns last FTP server response string.

This function returns the FTP server’s response status string for the last control com-
mand sent to the server.

Returns:
Pointer to response status string

4.23.3.9 void ftpclient init (long milli seconds)

Initializes the ftpclient library.

This function initializes ftpclient library internal datastructure and configures the li-
brary with following default configuration

• ASCII file transfer mode

• Active data connection mode

Parameters:
milli secondssocket timeout value

4.23.3.10 int ftpclient putfile (char ∗ filename, char ∗ storeasfilename)

Uploads tini file to FTP server.

This function uploads tini file to FTP server.

Parameters:
filename Name of file on the TINI to send to the server

storeasfilename Name to give the file put on the FTP server. If NULL, then the
name for the file on TINI will be used.

Returns:
• FTPCLIENTNOT CONNECTED- if connection is not established

• FTPCLIENTFILE NOT FOUND - if the input tini file name is not there in
tini file system

• FTPCLIENTSOCKETERROR- if socket communication error happens
Otherwise, returns FTP server status code

215



4.23.3.11 int ftpclient pwd (char ∗ path str, int path str len)

Returns current FTP server directory path.

This function returns the current FTP server directory path name

Parameters:
path str Address of memory buffer where the current FTP server path name will

be stored

path str len Maximum amount of data can be stored in pathstr memory buffer

Returns:
• FTPCLIENTNOT CONNECTED- if connection is not established

• FTPCLIENTSOCKETERROR- if socket communication error happens
Otherwise, returns FTP server status code

4.23.3.12 int ftpclient rawcmd (char ∗ input cmd)

Sends command to FTP server.

This function sends command to FTP server through control connection and returns
FTP server status code. This function doesNOT check whether server is connected.

NOTE: To retrieve the response string of server for control command, call theftp-
client getlaststatusfunction

Parameters:
input cmd command to send to the FTP server

Returns:
FTPCLIENTSOCKETERRORif socket communication error happens. Other-
wise, returns FTP server status code

4.23.3.13 void ftpclientsetdataconnectionmode (charflag)

Set data connection mode in ftpclient library.

This function sets data connection mode in ftpclient library. All future data connections
will be made in the mode set by this function

Parameters:
flag should be eitherFTPCLIENTACTIVEMODE or FTPCLIENTPASSIVE-

MODE

Warning:
Invalid value for ”flag” yields unexpected behavior of ftpclient data transfer func-
tions

216



4.23.3.14 int ftpclient settransmissionmode (charflag)

Sets data transfer mode in FTP server.

This function sets data transfer mode in FTP server and ftpclient library

Parameters:
flag should be eitherFTPCLIENTASCIIor FTPCLIENTBINARY

NOTE: Invalid input forflagwill be interpreted asFTPCLIENTBINARY.

Returns:
returns FTP server status code

4.23.3.15 unsigned int ftpclientversion (void)

Returns version number of ftpclient library.

Returns:
Version number of ftpclient library

4.24 tini400 isr.h File Reference

4.24.1 Detailed Description

Interrupt Service Routine installation functions.

This library contains functions that allow processes to install their own ISR’s from C
programs. Normally, the Keil compiler would automatically install interrupts in their
proper locations. However, the act of initializing the ROM sets the entire interrupt
vector table, so any interrupt vector that the Keil compiler generates are destroyed.
These functions allow programs to restore or update their interrupt vector tables.

To use interrupts written in C with the Keil compiler, functions should be defined with
the interrupt keyword. Also, under the Project Target options dialog, under the C51
panel, uncheck the box labeledInterrupt Vectors at Address:. Then make sure to call
isr setinterruptvectorsometime afterinit romhas been called.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

The functions in this library are multi-process safe–that is, if you call the same method
from two different processes at the same time, the parameters to the function will not
be destroyed.

217

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Defines

• #defineTINI400 ISR VERSION2
• #defineISR EXTERNALINT0 0
• #defineISR TIMER0 1
• #defineISR EXTERNALINT1 2
• #defineISR TIMER1 3
• #defineISR SERIAL04
• #defineISR TIMER2 5
• #defineISR POWERFAIL6
• #defineISR SERIAL17
• #defineISR EXTERNALINT23458
• #defineISR TIMER3 9
• #defineISR SERIAL210
• #defineISR WRITEPROTECT11
• #defineISR WATCHDOG12
• #defineISR CAN0 13
• #defineISR ETHERNET14
• #defineISR ETHERNETPOWER15

Functions

• void isr setinterruptvector(int vectornumber, void∗function ptr)

Installs an interrupt vector.

• void ∗ isr getinterruptvector(int vectornumber)

Gets the current value of an interrupt vector.

• unsigned intisr version(void)

Returns the version number of this ISR library.

4.24.2 Define Documentation

4.24.2.1 #define ISRCAN0 13

Interrupt vector number for theCAN 0 interrupt.

See also:
isr setinterruptvector
isr getinterruptvector

218



4.24.2.2 #define ISRETHERNET 14

Interrupt vector number for theEthernet Activity interrupt.

See also:
isr setinterruptvector
isr getinterruptvector

4.24.2.3 #define ISRETHERNETPOWER 15

Interrupt vector number for theExternal Power Mode interrupt.

See also:
isr setinterruptvector
isr getinterruptvector

4.24.2.4 #define ISREXTERNALINT0 0

Interrupt vector number for theExternal Interrupt 0 interrupt.

See also:
isr setinterruptvector
isr getinterruptvector

4.24.2.5 #define ISREXTERNALINT1 2

Interrupt vector number for theExternal Interrupt 1 interrupt.

See also:
isr setinterruptvector
isr getinterruptvector

4.24.2.6 #define ISREXTERNALINT2345 8

Interrupt vector number for theExternal Interrupt 2/3/4/5 interrupt.

See also:
isr setinterruptvector
isr getinterruptvector

219



4.24.2.7 #define ISRPOWERFAIL 6

Interrupt vector number for thePower Fail interrupt.

See also:
isr setinterruptvector
isr getinterruptvector

4.24.2.8 #define ISRSERIAL0 4

Interrupt vector number for theSerial Port 0 interrupt.

See also:
isr setinterruptvector
isr getinterruptvector

4.24.2.9 #define ISRSERIAL1 7

Interrupt vector number for theSerial Port 1 interrupt.

See also:
isr setinterruptvector
isr getinterruptvector

4.24.2.10 #define ISRSERIAL2 10

Interrupt vector number for theSerial Port 2 interrupt.

See also:
isr setinterruptvector
isr getinterruptvector

4.24.2.11 #define ISRTIMER0 1

Interrupt vector number for theTimer 0 interrupt.

See also:
isr setinterruptvector
isr getinterruptvector

220



4.24.2.12 #define ISRTIMER1 3

Interrupt vector number for theTimer 1 interrupt.

See also:
isr setinterruptvector
isr getinterruptvector

4.24.2.13 #define ISRTIMER2 5

Interrupt vector number for theTimer 2 interrupt.

See also:
isr setinterruptvector
isr getinterruptvector

4.24.2.14 #define ISRTIMER3 9

Interrupt vector number for theTimer 3 interrupt.

See also:
isr setinterruptvector
isr getinterruptvector

4.24.2.15 #define ISRWATCHDOG 12

Interrupt vector number for theWatchdog Timer interrupt.

See also:
isr setinterruptvector
isr getinterruptvector

4.24.2.16 #define ISRWRITEPROTECT 11

Interrupt vector number for theWrite Protect interrupt.

See also:
isr setinterruptvector
isr getinterruptvector

221



4.24.2.17 #define TINI400ISR VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by theisr versionfunction.

See also:
isr version

4.24.3 Function Documentation

4.24.3.1 void∗ isr getinterruptvector (int vectornumber)

Gets the current value of an interrupt vector.

Returns a function pointer to the interrupt service routine for the interrupt defined by
vectornumber. Note thatvectornumberis NOT the address of the interrupt, but the
number corresponding to that interrupt as described in the Keil documentation. For
example, avectornumberof 1 corresponds to the interrupt at address0Bh , which is
the timer 0 overflow interrupt. Avectornumberof 4 corresponds to the interrupt at
address23h , which is the serial port 0 interrupt.

This file contains several defines for common interrupts that can be used for thevector -
numberparameter.

Parameters:
vectornumber ID of the interrupt to be installed. It is up to the user to make sure

this parameter is in range

Returns:
function pointer for the interrupt service routine. ReturnsNULL if the instruction
at the interrupt’s address is not anLJMP .

See also:
isr setinterruptvector

4.24.3.2 void isrsetinterruptvector (int vectornumber, void ∗ function ptr)

Installs an interrupt vector.

Installs the functionfunctionptr as the interrupt service routine for the interrupt defined
by vectornumber. Note thatvectornumberis NOT the address of the interrupt, but
the number corresponding to that interrupt as described in the Keil documentation. For
example, avectornumberof 1 corresponds to the interrupt at address0Bh , which is
the timer 0 overflow interrupt. Avectornumberof 4 corresponds to the interrupt at
address23h , which is the serial port 0 interrupt.

This file contains several defines for common interrupts that can be used for thevector -
numberparameter.

222



The functionfunctionptr should terminate with areti statement (functions declared
with the interruptkeyword in Keil automatically have this).

Parameters:
vectornumber ID of the interrupt to be installed. It is up to the user to make sure

this parameter is in range

function ptr function that will be the interrupt service routine

See also:
isr getinterruptvector

4.24.3.3 unsigned int isrversion (void)

Returns the version number of this ISR library.

Returns:
Version number of this ISR library.

4.25 tini400 mime.h File Reference

4.25.1 Detailed Description

MIME Library functions for DS80C400 processor.

This library contains functions for encoding and decoding mime messages

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

Defines

• #defineBASE641
• #defineQUOTED PRINTABLE 2
• #defineMIME VERSION1

Functions

• unsigned intmime version(void)

223

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Returns the version number of mime library.

• void mime init (void)

Initializes mime library.

• char∗ mime encode(unsigned char∗inbuf, int size, char encodeflag)

Encodes the given message to mime format.

• char∗ mime decode(char∗inbuf, char decodeflag)

Decodes the given mime message.

4.25.2 Define Documentation

4.25.2.1 #define BASE64 1

Definition for mime base64 encoding and decoding method

See also:
mime encode, mime decode

4.25.2.2 #define MIMEVERSION 1

Version number associated with this header file. Should be the same as the version
number returned by themimeversionfunction.

See also:
mime version

4.25.2.3 #define QUOTEDPRINTABLE 2

Definition for mime quoted printable encoding and decoding method

See also:
mime encode, mime decode

4.25.3 Function Documentation

4.25.3.1 char∗ mime decode (char∗ inbuf, char decodeflag)

Decodes the given mime message.

See RFC1521 for more information on MIME

224



Parameters:
inbuf - mime message to decode

decodeflag - decoding flag indicates what decoding method to be used, should
be eitherBASE64or QUOTED PRINTABLE

Returns:
address of decoded message buffer or NULL if function failed

4.25.3.2 char∗ mime encode (unsigned char∗ inbuf, int size, char encodeflag)

Encodes the given message to mime format.

See RFC1521 for more information on MIME

Parameters:
inbuf input buffer to encode

size length of the input buffer

encodeflag not used, reserved for future use

Returns:
address of encoded mime message buffer or NULL if function failed

4.25.3.3 void mimeinit (void)

Initializes mime library.

4.25.3.4 unsigned int mimeversion (void)

Returns the version number of mime library.

Returns:
Version number of mime library.

4.26 tini400 ntlm.h File Reference

4.26.1 Detailed Description

NTLM Library functions for DS80C400 processor.

This library contains functions for managing NeTwork Lan Manager(NTLM) authen-
tication protocol

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

225

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

Data Structures

• struct sbufhdr
• struct type1msg
• struct type1msghdr
• struct type2msg
• struct type2msghdr
• struct type3msg
• struct type3msghdr

Defines

• #defineMAX NTLM BUF 1024
• #defineNTLM SIGN”NTLMSSP\0”
• #defineNTLM TYPE1 MSG 1
• #defineNTLM TYPE3 MSG 3
• #defineNTLM FLAGS0x0000b207L

Typedefs

• typedef sbufhdrsbufhdr
• typedef type1msghdrtype1msghdr
• typedef type1msgtype1msg
• typedef type2msghdrtype2msghdr
• typedef type2msgtype2msg
• typedef type3msghdrtype3msghdr
• typedef type3msgtype3msg

Functions

• void generatetype1msg(type1msg∗t1 msg, char∗user)

Generates type1 NTLM message.

• void generatetype3msg (type2msg∗t2 msg, type3msg∗t3 msg, char∗user,
char∗pass)

Generates type3 NTLM message.

226



4.26.2 Define Documentation

4.26.2.1 #define MAXNTLM BUF 1024

definition for maximum ntlm security buffer length.

See also:
generatetype1msg, generatetype3msg

4.26.2.2 #define NTLMFLAGS 0x0000b207L

definition for NTLM flags

See also:
generatetype1msg, generatetype3msg

4.26.2.3 #define NTLMSIGN ”NTLMSSP \0”

definition for NTLM signature

See also:
generatetype1msg, generatetype3msg

4.26.2.4 #define NTLMTYPE1 MSG 1

definition for type 1 NTLM Message

See also:
generatetype1msg

4.26.2.5 #define NTLMTYPE3 MSG 3

definition for type 3 NTLM Message

See also:
generatetype3msg

4.26.3 Typedef Documentation

4.26.3.1 typedef struct sbufhdr sbufhdr

Structure for security buffer header

227



4.26.3.2 typedef struct type1msgtype1msg

Structure for type1 message

4.26.3.3 typedef struct type1msghdrtype1msghdr

Structure for type1 message header

4.26.3.4 typedef struct type2msgtype2msg

Structure for type2 message

4.26.3.5 typedef struct type2msghdrtype2msghdr

Structure for type2 message header

4.26.3.6 typedef struct type3msgtype3msg

Structure for type3 message

4.26.3.7 typedef struct type3msghdrtype3msghdr

Structure for type3 message header

4.26.4 Function Documentation

4.26.4.1 void generatetype1 msg (type1msg∗ t1 msg, char ∗ user)

Generates type1 NTLM message.

This function generates Type1 NTLM message that is sent to server to get type2 mes-
sage. For more information, See NTLM authentication protocol specification.

Parameters:
t1 msg the NTLM type 1 message

user the user name

See also:
generatetype3msg

4.26.4.2 void generatetype3 msg (type2msg∗ t2 msg, type3msg∗ t3 msg, char
∗ user, char ∗ pass)

Generates type3 NTLM message.

228



This function generates Type3 NTLM message that contains both LAN Manager and
NT LAN manager responses for server challenge.For more information, See NTLM
authentication protocol specification.

Parameters:
t2 msg the type 2 NTLM message

t3 msg the type 3 NTLM message

user user name

pass password

See also:
generatetype1msg

4.27 tini400 smtp.h File Reference

4.27.1 Detailed Description

SMTP Library functions for DS80C400 processor.

This library contains functions for sending mails to smtp mailhost server

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

Data Structures

• struct hostinfo
• struct mailheader
• struct userheader

Defines

• #defineMAX LINE SIZE1024
• #defineSMTP VERSION1
• #defineSMTP MAXATTACHMENTSIZE 5
• #defineSMTP MAXUSERHEADERSIZE20
• #defineSMTP INSUFFICIENT MEMORY -1
• #defineSMTP SENDMAIL ERROR-2

229

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• #defineSMTP MAILHOST NOT FOUND-3
• #defineSMTP FILE NOT FOUND-4
• #defineSMTP SOCKETERROR-7
• #defineSMTP MAIL QUEUED-8
• #defineSMTP INVALID MAILNODE ADDRESS-9
• #defineSMTP LIBRARY IS NOT CONFIGURED-11
• #defineSMTP STATUS SUCCESS0

Typedefs

• typedef hostinfohostinfo
• typedef mailheadermailheader
• typedef userheaderuserheader

Functions

• unsigned intsmtpversion(void)

Returns the version number of smtp library.

• void smtp init (void)

Initializes smtp library.

• void smtpsethostinfo(struct hostinfo∗phostinfo)

Sets the host information object with smtp library.

• void smtpsetdefaultheadervalue(struct mailheader∗pmhdr)

Sets the default value for standard mail headers.

• void smtpsetuserheaderlist(struct userheader∗pusrhdr)

Sets user defined mail header list.

• int smtpsendmail (struct mailheader mail header, char ∗msg, char
∗attachmentlist[SMTPMAXATTACHMENTSIZE], char queuemailflag,
unsigned long∗mailnodeaddress)

Sends mail to mail host.

• int smtp removemailfromqueue(unsigned long pmailnodeaddress)

Removes queued mail from mail queue list.

• int smtpgetqueuedmailstatus(unsigned long pmailnodeaddress)

Returns the status of queued mail.

230



4.27.2 Define Documentation

4.27.2.1 #define MAXLINE SIZE 1024

Definition for maximum size of mail header

4.27.2.2 #define SMTPFILE NOT FOUND -4

File not found error value

See also:
smtpsendmail
smtpgetqueuedmailstatus

4.27.2.3 #define SMTPINSUFFICIENT MEMORY -1

Insufficient memory error value

See also:
smtpsendmail

4.27.2.4 #define SMTPINVALID MAILNODE ADDRESS -9

Invalid mailnode address error value.

See also:
smtpgetqueuedmailstatus
smtp removemailfromqueue

4.27.2.5 #define SMTPLIBRARY IS NOT CONFIGURED -11

smtp library is not configured error value, this value will be returned if smtp host infor-
mation is not configured.

See also:
smtpsendmail

4.27.2.6 #define SMTPMAIL QUEUED -8

Mail is queued error value

See also:
smtpsendmail
smtpgetqueuedmailstatus

231



4.27.2.7 #define SMTPMAILHOST NOT FOUND -3

Mail host is not found error value

See also:
smtpsendmail
smtpgetqueuedmailstatus

4.27.2.8 #define SMTPMAXATTACHMENTSIZE 5

Definition for maximum number of attachments

See also:
smtpsendmail

4.27.2.9 #define SMTPMAXUSERHEADERSIZE 20

Definition for maximum number of user headers

See also:
smtpsendmail

4.27.2.10 #define SMTPSENDMAIL ERROR -2

Send mail error value

See also:
smtpsendmail

4.27.2.11 #define SMTPSOCKET ERROR -7

Socket error value

See also:
smtpsendmail

4.27.2.12 #define SMTPSTATUS SUCCESS 0

smtp Status success value, this value is returned when operation is completed success-
fully.

See also:
smtpsendmail

232



4.27.2.13 #define SMTPVERSION 1

Version number associated with this header file. Should be the same as the version
number returned by thesmtpversionfunction.

See also:
smtpversion

4.27.3 Typedef Documentation

4.27.3.1 typedef struct hostinfo hostinfo

Structure for host configuration information that has to be registered with smtp library

4.27.3.2 typedef struct mailheadermailheader

Structure for standard mail header holds standard mail header values

4.27.3.3 typedef struct userheaderuserheader

Structure for user defined mail header contains user header name list and user header
value list

4.27.4 Function Documentation

4.27.4.1 int smtpgetqueuedmailstatus (unsigned longpmailnodeaddress)

Returns the status of queued mail.

This function returns the status of mail which was queued bysmtpsendmail.

Parameters:
pmailnodeaddress- address of mailnode. this value should be same value re-

turned by smtpsendmail function when queueing mail.

Returns:
if mail is still in queue, returns the status of mail.SMTP INVALID MAILNODE -
ADDRESSif invalid mail node address is passed or mail has been already sent to
mailhost

See also:
smtp removemailfromqueue
smtpsendmail

233



4.27.4.2 void smtpinit (void)

Initializes smtp library.

This function initializes the internal data structures of smtp library. This function
should be called first before calling any other functions of smtp library.

NOTE: Other libraries don’t need to be initialized before smtp library initialization.

4.27.4.3 int smtpremovemailfromqueue (unsigned longpmailnodeaddress)

Removes queued mail from mail queue list.

This function removes the mail which was queued bysmtpsendmail.

Parameters:
pmailnodeaddress- address of mailnode to delete. this value should be same

value returned by smtpsendmail function when queueing mail.

Returns:
SMTP STATUS SUCCESSif mailnode was deleted successfully.SMTP -
INVALID MAILNODE ADDRESSif invalid mail node address is passed or mail
has been already sent to mailhost

See also:
smtpgetqueuedmailstatus
smtpsendmail

4.27.4.4 int smtpsendmail (struct mailheader mail header, char ∗ msg, char ∗
attachmentlist[SMTP MAXATTACHMENTSIZE], char queuemailflag, unsigned
long ∗ mailnodeaddress)

Sends mail to mail host.

This function sends mail to mailhost. if smtp host IP address is zero, this function uses
dns library to get IP address of target mailhost. if mail host is down and application
sets queuemailflag=1, Mail will be queued to resend later. this function uses base64
MIME encryption for sending attachments. it does not use any encryption for message

Parameters:
mail header standard mail header object. any uninitialized field name in this

structure should be set with NULL value. if default mail header value was
initialized and mailheader field value is NULL, the default mail header value
will be used.

msg pointer to mail message.

attachmentlist array of string holds attachment filelist. if attachment list is less
than SMTPMAXATTACHMENTSIZE, last element of list should be NULL
to indicate end of the list.

234



queuemailflag flag to indicate whether mail to be queued or not. if mail host is
down and application sets queuemailflag=1, mail will be queued.

mailnodeaddressaddress of mail which was queued to resend. this reference
value has to be passed to get status of queued mail or to delete it from queue.

Returns:
SMTP STATUS SUCCESSif the operation is completed successfully Otherwise,
one of the following error values

• SMTP LIBRARY IS NOT CONFIGURED

• SMTP INSUFFICIENT MEMORY

• SMTP MAILHOST NOT FOUND

• SMTP MAIL QUEUED

• SMTP SENDMAIL ERROR

See also:
smtp removemailfromqueue
smtpgetqueuedmailstatus

4.27.4.5 void smtpsetdefaultheadervalue (struct mailheader∗ pmhdr)

Sets the default value for standard mail headers.

This function stores address of mail header structure in smtp library global variable.
smtpsendmail function uses pmhdr value by default, user can override these values by
passing valid standard mail header value while calling smtpsendmail function.

NOTE: default mail header value isnot mandatory for sending mail. It is optional
feature.

Parameters:
pmhdr pointer to the mail header structure

See also:
smtpsendmail

4.27.4.6 void smtpsethostinfo (struct hostinfo ∗ phostinfo)

Sets the host information object with smtp library.

This function stores address of host configuration information structure in smtp library
global variable. Then, configures dns library by setting primary and secondary dns
server ip addresses. host configuration information is used to connect with SMTP
servers.

235



Parameters:
phostinfo - pointer to the host information structure

See also:
smtpsendmail

4.27.4.7 void smtpsetuserheaderlist (struct userheader∗ pusrhdr)

Sets user defined mail header list.

This function stores address of user mail header list structure in smtp library global
variable. user defined mail headers will be added while sending mail messages.

NOTE: user mail header list isnot mandatory for sending mail. It is optional feature.

Parameters:
pusrhdr pointer to the user mail header list. if user mail header name list is

lessthan SMTPMAXUSERHEADERSIZE,the last item of user mail header
namelist should be NULL.

See also:
smtpsendmail

4.27.4.8 unsigned int smtpversion (void)

Returns the version number of smtp library.

Returns:
Version number of smtp library.

4.28 tini400 spi.h File Reference

4.28.1 Detailed Description

SPI library for the TINIm400 module.

”Bit Bang” software SPI library for use with the TINIm400. This is a full featured
SPI library for sending and receiving data. It supports 4 SPICLK polarity and phase
modes, slave select with optional inversion and optional synching, 8 and 16 bit transfer
modes, bit reordering and SPICLK delays.

Port pins used by this SPI library can be specified in spimacros.inc.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

236

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. However, SPI pins are
a system resource and should not be shared among different processes.

Defines

• #defineTINI400 SPI VERSION1
• #defineSPI CKPOL MASK 0x01

CKPOL MASK.

• #defineSPI CKPHA MASK 0x02

CKPHA MASK.

• #defineSPI WORD MASK 0x04

Word mode MASK.

• #defineSPI SKEW MASK 0x08

No Skew MASK.

• #defineSPI USESSMASK 0x10

Use SS MASK.

• #defineSPI SYNCHSSMASK 0x20

Synch SS MASK.

• #defineSPI INVERTSSMASK 0x40

Invert SS MASK.

Functions

• void spi init (void)

Initalize the SPI library.

• int spi reverseBits(int length, int wordSize, unsigned char∗dataptr)

Reverse bits in buffer.

• void spi xmit (unsigned char∗dataptr, int length, unsigned char delay, unsigned
char options)

Transmit SPI data.

237



• unsigned intspi version(void)

Returns the version number of this SPI library.

4.28.2 Define Documentation

4.28.2.1 #define SPICKPHA MASK 0x02

CKPHA MASK.

See also:
SPI CKPOL MASK
spi xmit

4.28.2.2 #define SPICKPOL MASK 0x01

CKPOL MASK.

The four SPI clock (SPICLK) modes supported by this library are defined by CKPHA
and CKPOL. The CKPOL bit defines the idle state of the SPI clock, CKPOL = 0 forces
SPI CLK to idle low while CKPOL = 1 forces SPICLK to idle high. CKPHA changes
the edge used to signal transfer of data. When CKPHA = 0 the first edge of SPICLK
specifies when the slave and master should sample their input. With CKPHA = 1 the
second edge of SPICLK specifies when to sample. When CKPHA = 1, the master
and slave should present their data on their output during the first SPICLK edge, this
allows the data sufficent hold time. When CKPHA = 0, data should become valid when
the Slave Select (SS) line goes active. Note that most devices require the SS line to be
used when CKPHA = 0 to allow proper timing while SS may be optional when CKPHA
= 1.

See also:
SPI CKPHA MASK
spi xmit

4.28.2.3 #define SPIINVERTSS MASK 0x40

Invert SS MASK.

Most SPI devices expect the active state for SS to be low, but others require high as the
active state.

See also:
spi xmit

238



4.28.2.4 #define SPISKEW MASK 0x08

No Skew MASK.

To facilitate atomic transfers, interrupts may be disabled while transmiting.

See also:
spi xmit

4.28.2.5 #define SPISYNCHSSMASK 0x20

Synch SS MASK.

Some SPI devices expect the SS signal to go inactive after each word transfer in order
to synchronize.

See also:
spi xmit

4.28.2.6 #define SPIUSESSMASK 0x10

Use SS MASK.

The SS signal is optional as it may not be required for all SPI setups.

See also:
spi xmit

4.28.2.7 #define SPIWORD MASK 0x04

Word mode MASK.

Data is sent to the SPI library as a character array in data memory. When in 8 bit word
mode these bytes will be transferred one at a time. In 16 bit word mode 2 bytes will
be transferred but this operation will only consume 1 transfer of the number requested.
Note that in this library, ”word” may be 8 or 16 bits in length depending on the selected
mode. Using this mask activates 16 bit word mode

See also:
spi xmit

239



4.28.2.8 #define TINI400SPI VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by thespi versionfunction.

See also:
spi version

4.28.3 Function Documentation

4.28.3.1 void spiinit (void)

Initalize the SPI library.

4.28.3.2 int spireverseBits (int length, int wordSize, unsigned char∗ dataptr)

Reverse bits in buffer.

This function can be called to reverse the bits in the passed buffer. It reorders the based
on the word mode 8 bit words or 16 bit words. This can be used to convert data for
Least Significant Bit (LSB) transfers.

Parameters:
length Number of words to bit reverse. Note that for 16 bit words this must be a

even value, SPI library does not check this.

wordSizeSize of the word to reverse. Only 8 and 16 are valid.

dataptr Pointer to the data to be reversed, after calling this function the data in
this buffers will be bit reversed.

Returns:
int 1 for success, -1 if error occured

4.28.3.3 unsigned int spiversion (void)

Returns the version number of this SPI library.

Returns:
int Version number of this SPI library.

4.28.3.4 void spixmit (unsigned char ∗ dataptr, int length, unsigned chardelay,
unsigned charoptions)

Transmit SPI data.

Transmits the data passed in over the SPI port, reads and returns any data read back.

240



Parameters:
dataptr Pointer to the data to be transmited, received data is written over transmit

data during transfer,

length Amount of data to transfer

delay Amount of time to delay clock edges, in usec. In order to interface to slower
SPI slaves a SPICLK stretch can be used to increases the SPICLK period
by 1µsec per stretch.

options SPI configuration options defined as:

• bit 0 - CPOL - Set to 1 - SPICLK idles high

• bit 1 - CPHA - Set to 1 - Transfers on second edge

• bit 2 - wordMode - Set to 1 - 16 bit transfers

• bit 3 - noskew - Set to 1 - turn off interrupts during transfer

• bit 4 - useSS - Set to 1 - Use the SS line during transfers

• bit 5 - synchSS - Set to 1 - Takes SS to inactive after every word

• bit 6 - invertSS - Set to 1 - SS line is active high

4.29 tini400 time.h File Reference

4.29.1 Detailed Description

Date/Time utilities, tailored for the DS80C400 C Libraries.

This library contains functions that provide simple time utilities in conjunction with
the RTC C Library. The time base is variable for this library, meaning that the value
’0 seconds’ can be assigned to 12:00:00am of January 1st for a specific year. Note
that this library does not currently support daylight savings time computations or the
concept of time zones.

Note that this library will not return correct values for dates before the year 1901 or
after the year 2099.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. Consult each individual
funtion’s documentation for details on which functions are multi-process safe.

Data Structures

• structtm

241

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


Defines

• #defineTINI400 TIME VERSION2

Typedefs

• typedef unsigned longtime t

Functions

• unsigned inttime version(void)

Returns the version number of thisTIME library.

• void time settimebase(unsigned int year)

Sets the time base year for the RTC.

• time t mktime(structtm ∗timeptr)

mktime

• time t time (time t ∗timer)

time

• tm ∗ gmtime(time t ∗timer)

gmtime

4.29.2 Define Documentation

4.29.2.1 #define TINI400TIME VERSION 2

Version number associated with this header file. Should be the same as the version
number returned by thetime versionfunction.

See also:
time version

4.29.3 Typedef Documentation

4.29.3.1 typedef unsigned long timet

Type used for representing time. Our RTC is assumed to be 4 bytes of seconds.

See also:
time

242



4.29.4 Function Documentation

4.29.4.1 structtm∗ gmtime (time t ∗ timer)

gmtime

Converts the native time formatted input into a calendar representation.

Parameters:
timer Native represenation of the time to be converted to calendar format.

Returns:
Calendar format of the input time.

4.29.4.2 time t mktime (struct tm ∗ timeptr)

mktime

Converts atm structure (calendar time) into the native time representation oftime t .
The tiem is computed using the hour, minute, second, day of month, month, and year
fields of the input structure. The day of year, day of week, and daylight savings time
flag are ignored. No bounds checking is performed on the input data.

Parameters:
timeptr Calendar time to be converted to native time representation

Returns:
Native time representation of the calendar.

4.29.4.3 time t time (time t ∗ timer)

time

Gets the current time in its native representation format. Use the functiongmtimeto
get a calendar representation of this time.

Parameters:
timer If non-null, this is also filled in with the return value

Returns:
Native time representation of the current time.

243



4.29.4.4 void timesettimebase (unsigned intyear)

Sets the time base year for the RTC.

Sets the time base year for the real time clock. The recommended time base is the year
2000. The time base must be set before meaningful calculations can occur.

Parameters:
year base year which will be used for time computations

4.29.4.5 unsigned int timeversion (void)

Returns the version number of thisTIME library.

Returns:
Version number of thisTIME library.

4.30 tini400 xnetboot.h File Reference

4.30.1 Detailed Description

External NetBoot library for the DS80C400.

The External Netboot library contains netboot code that can be invoked independently
from the ROM. This library provides the latest NetBoot code that adds the following
features: Improves TBIN2 loading to work with files larger than 64KB, disables all
multicast traffic reception to improve reliability, supports the DS2502 and the DS1982
to hold a MAC ID (in addition to the DS2502-E48), supports setting the clock mul-
tiplier for improved performance, supports acquiring a DHCP IP from the Netgear
WGT624 router.

This library works with IPv4 only.

The External Netboot library cannot reprogram the same flash chip it is running from,
i.e. you need two separate flash memories.

You can use the library from assembly language - set r7 to the desired clock multiplier
and jump to theXNETBOOTsymbol.

EXTERN ECODE(XNETBOOT) mov r7, #2 ljmp XNETBOOT

Warning:
Note that debug symbols have to be turned off in order to avoid a linker error (the
linker cannot handle line numbers greater than 65534 and will return an ”L220”
error when debug symbols are enabled).

244



Defines

• #defineTINI400 XNETBOOT VERSION1

Functions

• unsigned intxnetbootversion(void)

Returns the version number of this XNETBOOT library.

• void xnetbootboot(unsigned char multiplier)

Starts NetBoot.

4.30.2 Define Documentation

4.30.2.1 #define TINI400XNETBOOT VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by thexnetbootversionfunction.

See also:
xnetbootversion

4.30.3 Function Documentation

4.30.3.1 void xnetbootboot (unsigned charmultiplier)

Starts NetBoot.

This function starts NetBoot and does not return to the caller.

Parameters:
multiplier The argumentmultiplier sets the clock multiplier (1, 2, or 4).

4.30.3.2 unsigned int xnetbootversion (void)

Returns the version number of this XNETBOOT library.

Returns:
Version number of this XNETBOOT library.

245



4.31 tini i2c.h File Reference

4.31.1 Detailed Description

I2C function library.

This library contains functions for communicating to I2C devices via user specified
port pins.

For detailed information on the DS80C400 please see theHigh-Speed
Microcontroller User’s Guide: DS80C400 Supplement .

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results. However, I2C pins are
a system resource and should not be shared among different processes.

Defines

• #defineTINI I2C VERSION1
• #defineI2C SDA P3 4
• #defineI2C SCLP3 5
• #defineI2C ENABLE SCL WAIT FOR SLOW SLAVES0
• #defineI2C MAXIMUM SCL WAITCOUNT 10000
• #defineI2C DELAY LOOP COUNT0

Functions

• int i2c version()

Return the library version.

• void i2c delay(void)

Delay function.

• void i2c start(void)

Performs an I2C start condition.

• void i2c bit (unsigned char singlebit)

Performs an I2C bit write.

• unsigned chari2c readbit(void)

Performs an I2C bit read.

246

http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf
http://pdfserv.maxim-ic.com/arpdf/Design/DS80C400UG.pdf


• void i2c stop(void)

Performs an I2C stop condition.

• unsigned chari2c readbyte(unsigned char doACK)

Performs an I2C byte read.

• unsigned chari2c writebyte(unsigned char singlebyte)

Performs an I2C byte write.

• unsigned chari2c select(unsigned char address)

Perform I2C start, address selection.

• unsigned chari2c writeblock (unsigned char address, unsigned char∗barr, int
length)

Perform I2C start, address selection, write specified bytes and I2C stop.

• unsigned chari2c readblock(unsigned char address, unsigned char∗barr, int
length)

Perform I2C start, address selection, read specified number of bytes and I2C stop.

• unsigned chari2c writereadblock(unsigned char address, unsigned char∗barr1,
int length1, unsigned char∗barr2, int length2)

Perform I2C start, address selection, write specified bytes, I2C start, address slection,
read bytes and I2C stop.

4.31.2 Define Documentation

4.31.2.1 #define I2CDELAY LOOP COUNT 0

Number of loops to wait between any host SCL and SDA transitions

4.31.2.2 #define I2CENABLE SCL WAIT FOR SLOW SLAVES 0

Enable communication with slow slave devices. Value of 1 enables SCL waiting/flow
control.

4.31.2.3 #define I2CMAXIMUM SCL WAITCOUNT 10000

Number of loops to wait for SCL to return high if SCL flow control is used.

4.31.2.4 #define I2CSCL P3 5

Define SCL (clock) line to talk to the DS1672 on the TINIm400

247



4.31.2.5 #define I2CSDA P3 4

Define SDA (data) line to talk to the DS1672 on the TINIm400

4.31.2.6 #define TINII2C VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by thei2c versionfunction.

See also:
i2c version

4.31.3 Function Documentation

4.31.3.1 void i2cbit (unsigned charsinglebit)

Performs an I2C bit write.

Parameters:
singlebit Bit to write on I2C bus

4.31.3.2 void i2cdelay (void)

Delay function.

4.31.3.3 unsigned char i2creadbit (void)

Performs an I2C bit read.

Returns:
Value of SDA line during read timeslot

4.31.3.4 unsigned char i2creadblock (unsigned charaddress, unsigned char∗
barr, int length)

Perform I2C start, address selection, read specified number of bytes and I2C stop.

Parameters:
addressAddress of device to select. Upper 7 bits are address, LSbit automatically

set to 1 by function.

barr Array destination for read bytes

length Number of bytes to read

Returns:
0 if device acknowledged address selection and data transfer

248



4.31.3.5 unsigned char i2creadbyte (unsigned chardoACK)

Performs an I2C byte read.

Parameters:
doACK Set to 1 to assert acknowledge after reading 8 bits, or 0 to not assert ACK.

Returns:
Value of SDA line during read timeslot

4.31.3.6 unsigned char i2cselect (unsigned charaddress)

Perform I2C start, address selection.

Parameters:
addressAddress of device to select. Upper 7 bits are address, LSbit denotes read

if 1 and write if 0.

Returns:
0 if device acknowledged address selection

4.31.3.7 void i2cstart (void)

Performs an I2C start condition.

4.31.3.8 void i2cstop (void)

Performs an I2C stop condition.

4.31.3.9 int i2cversion ()

Return the library version.

4.31.3.10 unsigned char i2cwriteblock (unsigned char address, unsigned char∗
barr, int length)

Perform I2C start, address selection, write specified bytes and I2C stop.

Parameters:
addressAddress of device to select. Upper 7 bits are address, LSbit automatically

set to 0 by function.

barr Array of bytes to write

length Number of bytes to write

Returns:
0 if device acknowledged address selection and data transfer

249



4.31.3.11 unsigned char i2cwritebyte (unsigned charsinglebyte)

Performs an I2C byte write.

Parameters:
singlebyteValue to write to bus.

Returns:
0 if byte was acknowledged

4.31.3.12 unsigned char i2cwritereadblock (unsigned char address, unsigned
char ∗ barr1, int length1, unsigned char∗ barr2, int length2)

Perform I2C start, address selection, write specified bytes, I2C start, address slection,
read bytes and I2C stop.

Parameters:
addressAddress of device to select. Upper 7 bits are address, LSbit automatically

set to 0 by function.

barr1 Array of bytes to write

length1 Number of bytes to write

barr2 Array destination for read bytes

length2 Number of bytes to read

Returns:
0 if device acknowledged address selection and data transfer

4.32 tini rtc.h File Reference

4.32.1 Detailed Description

RTC function library.

This library contains RTC functions for the DS1672U, the real time clock included in
the TINIm400 reference module.

For detailed information on the DS1672U, please see theLow-Voltage Serial
Timekeeping Chip .

Warning:
The functions in this library areNOT multi-process safe–that is, if you call the
same method from two different processes at the same time, the parameters to the
function may be destroyed, yielding unpredictable results.

250

http://pdfserv.maxim-ic.com/en/ds/DS1672.pdf
http://pdfserv.maxim-ic.com/en/ds/DS1672.pdf


Defines

• #defineDEVICE ADDRESS0xD0
• #defineCOUNTERADDRESS0x00
• #defineCONTROL ADDRESS0x04
• #defineTRICKLECHARGERADDRESS0x05
• #defineTRICKLECHARGERDISABLE 0xF0
• #defineSTART CLOCK 0x7F
• #defineSTOPCLOCK 0x80
• #defineNODIODE 250OHM0xA5
• #defineONEDIODE 250OHM0xA9
• #defineNODIODE 2KOHM 0xA6
• #defineONEDIODE 2KOHM 0xAA
• #defineNODIODE 4KOHM 0xA7
• #defineONEDIODE 4KOHM 0xAB
• #defineTINI RTC VERSION1

Functions

• int rtc version()

Return the library version.

• int rtc startclock()

Start oscillator to count clock by setting MSB of control register to 0.

• int rtc stopclock()

Stop oscillator to pause clock by setting MSB of control register to 1.

• int rtc setcontrolregister(unsigned char newvalue)

Write value to 8 bit control register.

• int rtc getcontrolregister(unsigned char∗)

Fetch value of 8 bit control register.

• int rtc disabletricklecharger()

Disable trickle charger register by setting 4 LSB’s to 0.

• int rtc enabletricklecharger0diode250ohm()

Set trickle charger register to work no diode and with 250ohm.

• int rtc enabletricklecharger1diode250ohm()

Set trickle charger register to work 1 diode and with 250ohm.

251



• int rtc enabletricklecharger0diode2kohm()

Set trickle charger register to work no diode and with 2Kohm.

• int rtc enabletricklecharger1diode2kohm()

Set trickle charger register to work 1 diode and with 2Kohm.

• int rtc enabletricklecharger0diode4kohm()

Set trickle charger register to work no diode and with 4Kohm.

• int rtc enabletricklecharger1diode4kohm()

Set trickle charger register to work 1 diode and with 4Kohm.

• int rtc settricklechargerregister(unsigned char newvalue)

Set trickle charger register new value.

• int rtc gettricklechargerregister(unsigned char∗)

Fetch 8 bit trickle charger register content.

• int rtc getclock(long∗)

Convert char array to long integer after fetch from 32 bit counter of RTC.

• int rtc setclock(long newvalue)

Convert long integer to char array and write to 32 bit counter of RTC.

4.32.2 Define Documentation

4.32.2.1 #define CONTROLADDRESS 0x04

Address of Control register.

See also:
rtc setcontrolregister
rtc getcontrolregister

4.32.2.2 #define COUNTERADDRESS 0x00

Starting address of 32 bits RTC counter.

See also:
rtc getclock
rtc setclock

252



4.32.2.3 #define DEVICEADDRESS 0xD0

Device address.

4.32.2.4 #define NODIODE250OHM 0xA5

Value of Trickle Charger register that connects Vcc & Vbackup via no diode and 250
ohm resistor when Trickle Charger is enabled .

See also:
rtc enabletricklecharger0diode250ohm

4.32.2.5 #define NODIODE2KOHM 0xA6

Value of Trickle Charger register that connects Vcc & Vbackup via no diode and 2K
ohm resistor when Trickle Charger is enabled .

See also:
rtc enabletricklecharger0diode2kohm

4.32.2.6 #define NODIODE4KOHM 0xA7

Value of Trickle Charger register that connects Vcc & Vbackup via no diode and 4K
ohm resistor when Trickle Charger is enabled .

See also:
rtc enabletricklecharger0diode4kohm

4.32.2.7 #define ONEDIODE250OHM 0xA9

Value of Trickle Charger register that connects Vcc & Vbackup via one diode and 250
ohm resistor when Trickle Charger is enabled .

See also:
rtc enabletricklecharger1diode250ohm

4.32.2.8 #define ONEDIODE2KOHM 0xAA

Value of Trickle Charger register that connects Vcc & Vbackup via one diode and 2K
ohm resistor when Trickle Charger is enabled .

See also:
rtc enabletricklecharger1diode2kohm

253



4.32.2.9 #define ONEDIODE4KOHM 0xAB

Value of Trickle Charger register that connects Vcc & Vbackup via one diode and 4K
ohm resistor when Trickle Charger is enabled .

See also:
rtc enabletricklecharger1diode4kohm

4.32.2.10 #define STARTCLOCK 0x7F

Value of Control register that will start oscillator.

See also:
rtc startclock

4.32.2.11 #define STOPCLOCK 0x80

Value of Control register that will stop oscillator.

See also:
rtc startclock

4.32.2.12 #define TINIRTC VERSION 1

Version number associated with this header file. Should be the same as the version
number returned by thertc versionfunction.

See also:
rtc version

4.32.2.13 #define TRICKLECHARGER ADDRESS 0x05

Address of Trickle Charger register.

See also:
rtc gettricklechargerregister
rtc settricklechargerregister

4.32.2.14 #define TRICKLECHARGER DISABLE 0xF0

Value of Trickle Charger register that will disable it.

See also:
rtc disabletricklecharger

254



4.32.3 Function Documentation

4.32.3.1 int rtc disabletricklecharger ()

Disable trickle charger register by setting 4 LSB’s to 0.

Returns:
0 if pass, -1 if fail

See also:
rtc enabletricklecharger0diode250ohm

4.32.3.2 int rtc enabletricklecharger0diode250ohm ()

Set trickle charger register to work no diode and with 250ohm.

Returns:
0 if pass, -1 if fail

See also:
rtc disabletricklecharger
rtc enabletricklecharger1diode250ohm

4.32.3.3 int rtc enabletricklecharger0diode2kohm ()

Set trickle charger register to work no diode and with 2Kohm.

Returns:
0 if pass, -1 if fail

See also:
rtc disabletricklecharger
rtc enabletricklecharger1diode2kohm

4.32.3.4 int rtc enabletricklecharger0diode4kohm ()

Set trickle charger register to work no diode and with 4Kohm.

Returns:
0 if pass, -1 if fail

See also:
rtc disabletricklecharger
rtc enabletricklecharger1diode4kohm

255



4.32.3.5 int rtc enabletricklecharger1diode250ohm ()

Set trickle charger register to work 1 diode and with 250ohm.

Returns:
0 if pass, -1 if fail

See also:
rtc disabletricklecharger
rtc enabletricklecharger0diode2kohm

4.32.3.6 int rtc enabletricklecharger1diode2kohm ()

Set trickle charger register to work 1 diode and with 2Kohm.

Returns:
0 if pass, -1 if fail

See also:
rtc disabletricklecharger
rtc enabletricklecharger0diode4kohm

4.32.3.7 int rtc enabletricklecharger1diode4kohm ()

Set trickle charger register to work 1 diode and with 4Kohm.

Returns:
0 if pass, -1 if fail

See also:
rtc disabletricklecharger
rtc enabletricklecharger0diode250ohm

4.32.3.8 int rtc getclock (long∗)

Convert char array to long integer after fetch from 32 bit counter of RTC.

Returns:
0 if pass, -1 if fail

See also:
rtc setclock

256



4.32.3.9 int rtc getcontrolregister (unsigned char∗)

Fetch value of 8 bit control register.

Returns:
0 if pass, -1 if fail

See also:
rtc setcontrolregister

4.32.3.10 int rtc gettricklechargerregister (unsigned char∗)

Fetch 8 bit trickle charger register content.

Returns:
0 if pass, -1 if fail

See also:
rtc settricklechargerregister

4.32.3.11 int rtc setclock (longnewvalue)

Convert long integer to char array and write to 32 bit counter of RTC.

Parameters:
newvalue Value in long integer.

Returns:
0 if pass, -1 if fail

See also:
rtc getclock

4.32.3.12 int rtc setcontrolregister (unsigned charnewvalue)

Write value to 8 bit control register.

Parameters:
newvalue Value to set.

Returns:
0 if pass, -1 if fail

See also:
rtc getcontrolregister

257



4.32.3.13 int rtc settricklechargerregister (unsigned charnewvalue)

Set trickle charger register new value.

Parameters:
newvalue Value to set

Returns:
0 if pass, -1 if fail

See also:
rtc gettricklechargerregister

4.32.3.14 int rtc startclock ()

Start oscillator to count clock by setting MSB of control register to 0.

Returns:
RTC version.

See also:
rtc stopclock

4.32.3.15 int rtc stopclock ()

Stop oscillator to pause clock by setting MSB of control register to 1.

Returns:
0 if pass, -1 if fail

See also:
rtc startclock

4.32.3.16 int rtc version ()

Return the library version.

See also:
rtc startclock

258



Index
getkey

stdio.h,120

accept
rom400sock.h,46

acceptqueue
rom400sock.h,62

AF INET
rom400sock.h,46

AF INET6
rom400sock.h,46

arp cacherequest
rom400sock.h,46

arp generaterequest
rom400sock.h,47

avail
rom400sock.h,47

bind
rom400sock.h,47

bogusptr
sockaddr,6
sockaddrin, 6

cleanup
rom400sock.h,48

clearparambuffers
rom400sock.h,62

clearerr
stdio.h,120

closesocket
rom400sock.h,48

connect
rom400sock.h,49

crypt sha1
tini400 crypt.h,140

crypt version
tini400 crypt.h,140

dhcp init
rom400dhcp.h,11

dhcp registernotify
rom400dhcp.h,11

dhcpstatus
rom400dhcp.h,12

DHCP STATUS BOUND
rom400dhcp.h,9

DHCP STATUS INIT
rom400dhcp.h,10

DHCP STATUS INITREBOOT
rom400dhcp.h,10

DHCP STATUS REBINDING
rom400dhcp.h,10

DHCP STATUS REBOOTING
rom400dhcp.h,10

DHCP STATUS RENEWING
rom400dhcp.h,10

DHCP STATUS REQUESTING
rom400dhcp.h,10

DHCP STATUS SELECTING
rom400dhcp.h,11

dhcpstop
rom400dhcp.h,12

dhcpversion
rom400dhcp.h,12

dnsenableipv6queries
tini400 dns.h,142

dnsgetmx
tini400 dns.h,142

dnsgetprimary
tini400 dns.h,143

dnsgetsecondary
tini400 dns.h,143

dnsgettimeout
tini400 dns.h,144

dns init
tini400 dns.h,144

dnssetprimary
tini400 dns.h,144

dnssetsecondary
tini400 dns.h,144

dnssettimeout
tini400 dns.h,145

dnsversion
tini400 dns.h,145

259



EOF
stdio.h,117

error
file structure,3

ETH STATUS LINK
rom400sock.h,49

fclose
stdio.h,121

fd
file structure,3

feof
stdio.h,121

ferror
stdio.h,121

fexists
stdio.h,122

fflush
stdio.h,122

fgetc
stdio.h,122

fgetpos
stdio.h,123

fgets
stdio.h,123

FILE
stdio.h,120

FILE FLAGS EOF
stdio.h,117

FILE FLAGS TEMP
stdio.h,118

file structure,2
error,3
fd, 3
flags,3
type,3

FILE TYPE TINIFS
stdio.h,118

FILENAME MAX
stdio.h,118

filesystemversion
stdio.h,124

finit
stdio.h,124

FLAG DHCP WAIT
rom400task.h,80

FLAG IO WAIT
rom400task.h,80

FLAG SLEEPING
rom400task.h,81

Flags
TCB, 7

flags
file structure,3

flasheraseblock
rom400flash.h,15

flashprogrambyte
rom400flash.h,15

flashversion
rom400flash.h,16

flockfile
stdio.h,125

fopen
stdio.h,125

fopen fd
stdio.h,126

FOPENMAX
stdio.h,118

fpos t
stdio.h,120

fputc
stdio.h,126

fputs
stdio.h,127

fread
stdio.h,127

freadbytes
stdio.h,128

freopen
stdio.h,128

FS VERSION
stdio.h,118

fseek
stdio.h,129

fseeko
stdio.h,129

fsetpos
stdio.h,130

ftell
stdio.h,130

ftello
stdio.h,131

260



ftrylockfile
stdio.h,131

funlockfile
stdio.h,132

fwrite
stdio.h,132

fwritebytes
stdio.h,133

getc
stdio.h,133

getchar
stdio.h,134

getethernetstatus
rom400sock.h,49

getfreefsram
stdio.h,134

gethostbyaddr
tini400 dns.h,145

gethostbyname
tini400 dns.h,146

getipv6params
rom400sock.h,50

getmacid
rom400sock.h,50

getnetworkparams
rom400sock.h,50

getpeername
rom400sock.h,51

gets
stdio.h,134

getsockname
rom400sock.h,51

getsockopt
rom400sock.h,52

gettftpserver
rom400sock.h,52

h addr list
hostent,4

h addrtype
hostent,3

h aliases
hostent,3

h length
hostent,4

h name
hostent,3
mailhostent,5

hostent,3
h addr list, 4
h addrtype,3
h aliases,3
h length,4
h name,3

htons
rom400sock.h,53

i2c bit
tini i2c.h,155

i2c delay
tini i2c.h,155

I2C DELAY LOOP COUNT
tini i2c.h,154

I2C ENABLE SCL WAIT FOR -
SLOW SLAVES

tini i2c.h,154
I2C MAXIMUM SCL -

WAITCOUNT
tini i2c.h,154

i2c readbit
tini i2c.h,155

i2c readblock
tini i2c.h,155

i2c readbyte
tini i2c.h,155

I2C SCL
tini i2c.h,154

I2C SDA
tini i2c.h,154

i2c select
tini i2c.h,155

i2c start
tini i2c.h,156

i2c stop
tini i2c.h,156

i2c version
tini i2c.h,156

i2c writeblock
tini i2c.h,156

i2c writebyte
tini i2c.h,156

261



i2c writereadblock
tini i2c.h,156

ID
TCB, 7

in6 addr,4
s6 addr,4

in addr,4
s addr,5

inet addr
rom400sock.h,63

inet ntop
rom400sock.h,63

inet pton
rom400sock.h,63

init clearSystemRAM
rom400init.h, 23

init clearXSEG
rom400init.h, 24

init copyivt
rom400init.h, 24

INIT CRYSTALFAIL RESET
rom400init.h, 19

INIT DIVISOR 10MHZ
rom400init.h, 19

INIT DIVISOR 112MHZ
rom400init.h, 19

INIT DIVISOR 128MHZ
rom400init.h, 19

INIT DIVISOR 12MHZ
rom400init.h, 19

INIT DIVISOR 14MHZ
rom400init.h, 20

INIT DIVISOR 16MHZ
rom400init.h, 20

INIT DIVISOR 20MHZ
rom400init.h, 20

INIT DIVISOR 24MHZ
rom400init.h, 20

INIT DIVISOR 28MHZ
rom400init.h, 20

INIT DIVISOR 32MHZ
rom400init.h, 20

INIT DIVISOR 3MHZ
rom400init.h, 21

INIT DIVISOR 40MHZ
rom400init.h, 21

INIT DIVISOR 48MHZ
rom400init.h, 21

INIT DIVISOR 4MHZ
rom400init.h, 21

INIT DIVISOR 56MHZ
rom400init.h, 21

INIT DIVISOR 5MHZ
rom400init.h, 21

INIT DIVISOR 64MHZ
rom400init.h, 22

INIT DIVISOR 6MHZ
rom400init.h, 22

INIT DIVISOR 7MHZ
rom400init.h, 22

INIT DIVISOR 80MHZ
rom400init.h, 22

INIT DIVISOR 8MHZ
rom400init.h, 22

INIT DIVISOR 96MHZ
rom400init.h, 22

init enableinterrupts
rom400init.h, 24

init eth
rom400init.h, 24

init getbootstate
rom400init.h, 24

init km
rom400init.h, 25

init mm
rom400init.h, 25

init netboot
rom400init.h, 25

init network
rom400init.h, 26

init ow
rom400init.h, 26

INIT POWERFAIL RESET
rom400init.h, 23

init redirect
rom400init.h, 27

init rom
rom400init.h, 27

init sockets
rom400init.h, 27

init tick
rom400init.h, 28

262



init usekeilmonitor
rom400init.h, 28

init version
rom400init.h, 28

INIT WATCHDOG RESET
rom400init.h, 23

IPPROTOUDP
rom400sock.h,53

ISR CAN0
tini400 isr.h,148

ISR ETHERNET
tini400 isr.h,148

ISR ETHERNETPOWER
tini400 isr.h,148

ISR EXTERNALINT0
tini400 isr.h,148

ISR EXTERNALINT1
tini400 isr.h,148

ISR EXTERNALINT2345
tini400 isr.h,148

isr getinterruptvector
tini400 isr.h,151

ISR POWERFAIL
tini400 isr.h,149

ISR SERIAL0
tini400 isr.h,149

ISR SERIAL1
tini400 isr.h,149

ISR SERIAL2
tini400 isr.h,149

isr setinterruptvector
tini400 isr.h,151

ISR TIMER0
tini400 isr.h,149

ISR TIMER1
tini400 isr.h,150

ISR TIMER2
tini400 isr.h,150

ISR TIMER3
tini400 isr.h,150

isr version
tini400 isr.h,152

ISR WATCHDOG
tini400 isr.h,150

ISR WRITEPROTECT
tini400 isr.h,150

join
rom400sock.h,53

kmeminit
rom400kmem.h,30

kmeminstall
rom400kmem.h,31

kmemversion
rom400kmem.h,32

L tmpnam
stdio.h,118

leave
rom400sock.h,54

listen
rom400sock.h,54

mailhostent,5
h name,5
preference,5

MAX PRIORITY
rom400task.h,81

memfree
rom400mem.h,33

memgetfreeram
rom400mem.h,33

memmalloc
rom400mem.h,34

memmallocdirty
rom400mem.h,34

memsizeof
rom400mem.h,35

memversion
rom400mem.h,35

millis
TIME, 8

MIN PRIORITY
rom400task.h,81

mkdir
stdio.h,134

msb
TIME, 8

Next
TCB, 7

NORM PRIORITY

263



rom400task.h,81
nstoh

rom400sock.h,55
NULL

stdio.h,119

off t
stdio.h,120

ow byte
rom400ow.h,38

ow first
rom400ow.h,38

ow getcurrentid
rom400ow.h,38

ow next
rom400ow.h,38

ow reset
rom400ow.h,39

OW RESETALARM
rom400ow.h,37

OW RESETNO PRESENCE
rom400ow.h,37

OW RESETPRESENCE
rom400ow.h,37

OW RESETSHORT
rom400ow.h,37

ow version
rom400ow.h,39

P tmpdir
stdio.h,119

PF INET
rom400sock.h,55

preference
mailhostent,5

printf
stdio.h,135

Priority
TCB, 7

putc
stdio.h,135

putchar
stdio.h,135

puts
stdio.h,135

recv

rom400sock.h,55
recvfrom

rom400sock.h,56
REDIRECT0

rom400util.h, 103
REDIRECTDHCPNOTIFY

rom400util.h, 103
REDIRECTFREE

rom400util.h, 103
REDIRECTGETFREERAM

rom400util.h, 103
REDIRECTGETTASKID

rom400util.h, 104
REDIRECTGETTHREADID

rom400util.h, 104
REDIRECTGETTIMEMILLIS

rom400util.h, 104
REDIRECTINFOSENDCHAR

rom400util.h, 104
REDIRECTIP -

COMPUTECHECKSUM-
SOFTWARE

rom400util.h, 104
REDIRECTKERNELFREE

rom400util.h, 105
REDIRECTKERNELMALLOC

rom400util.h, 105
REDIRECTMALLOC

rom400util.h, 105
REDIRECTMALLOCDIRTY

rom400util.h, 105
REDIRECTMM UNDEREF

rom400util.h, 105
REDIRECTOWIP READCONFIG

rom400util.h, 106
REDIRECTROM TASK CREATE

rom400util.h, 106
REDIRECTROM TASK DESTROY

rom400util.h, 106
REDIRECTROM TASK -

DUPLICATE
rom400util.h, 106

REDIRECTROM TASK SWITCH -
IN

rom400util.h, 106

264



REDIRECTROM TASK SWITCH -
OUT

rom400util.h, 107
REDIRECTSETMACID

rom400util.h, 107
REDIRECTSLEEP

rom400util.h, 107
REDIRECTTHREADIOSLEEP

rom400util.h, 107
REDIRECTTHREADIOSLEEPNC

rom400util.h, 107
REDIRECTTHREADRESTORE

rom400util.h, 108
REDIRECTTHREADRESUME

rom400util.h, 108
REDIRECTTHREADSAVE

rom400util.h, 108
REDIRECTTINIEXPORT MM -

DEREF
rom400util.h, 108

RELOAD 14 746
rom400task.h,81

RELOAD 18 432
rom400task.h,81

RELOAD 29 491
rom400task.h,82

RELOAD 36 864
rom400task.h,82

RELOAD 58 982
rom400task.h,82

RELOAD 73 728
rom400task.h,82

remove
stdio.h,136

rename
stdio.h,136

rewind
stdio.h,136

ROM400-
ARRAYINDEXOUTOFBOUNDSEXCEPTION

rom400err.h,13
ROM400BINDEXCEPTION

rom400err.h,13
ROM400CONNECTEXCEPTION

rom400err.h,13
rom400dhcp.h,8

dhcp init, 11
dhcp registernotify,11
dhcpstatus,12
DHCP STATUS BOUND, 9
DHCP STATUS INIT, 10
DHCP STATUS INITREBOOT,

10
DHCP STATUS REBINDING,

10
DHCP STATUS REBOOTING,

10
DHCP STATUS RENEWING,

10
DHCP STATUS REQUESTING,

10
DHCP STATUS SELECTING,

11
dhcpstop,12
dhcpversion,12
ROM400DHCP VERSION,11

ROM400DHCP VERSION
rom400dhcp.h,11

rom400err.h,13
ROM400-

ARRAYINDEXOUTOFBOUNDSEXCEPTION,
13

ROM400BINDEXCEPTION,
13

ROM400-
CONNECTEXCEPTION,
13

ROM400ERR VERSION,13
ROM400 INTERNALERROR,

13
ROM400-

INTERRUPTEDIOEXCEPTION,
14

ROM400 IOEXCEPTION,14
ROM400-

NULLPOINTEREXCEPTION,
14

ROM400-
OUTOFMEMORYERROR,
14

ROM400-
SOCKETEXCEPTION,

265



14
ROM400ERR VERSION

rom400err.h,13
rom400flash.h,14

flasheraseblock,15
flashprogrambyte,15
flashversion,16
ROM400FLASH VERSION,15

ROM400FLASH VERSION
rom400flash.h,15

rom400init.h, 16
init clearSystemRAM,23
init clearXSEG,24
init copyivt,24
INIT CRYSTALFAIL RESET,

19
INIT DIVISOR 10MHZ, 19
INIT DIVISOR 112MHZ,19
INIT DIVISOR 128MHZ,19
INIT DIVISOR 12MHZ, 19
INIT DIVISOR 14MHZ, 20
INIT DIVISOR 16MHZ, 20
INIT DIVISOR 20MHZ, 20
INIT DIVISOR 24MHZ, 20
INIT DIVISOR 28MHZ, 20
INIT DIVISOR 32MHZ, 20
INIT DIVISOR 3MHZ, 21
INIT DIVISOR 40MHZ, 21
INIT DIVISOR 48MHZ, 21
INIT DIVISOR 4MHZ, 21
INIT DIVISOR 56MHZ, 21
INIT DIVISOR 5MHZ, 21
INIT DIVISOR 64MHZ, 22
INIT DIVISOR 6MHZ, 22
INIT DIVISOR 7MHZ, 22
INIT DIVISOR 80MHZ, 22
INIT DIVISOR 8MHZ, 22
INIT DIVISOR 96MHZ, 22
init enableinterrupts,24
init eth,24
init getbootstate,24
init km, 25
init mm,25
init netboot,25
init network,26
init ow, 26

INIT POWERFAIL RESET,23
init redirect,27
init rom,27
init sockets,27
init tick, 28
init usekeilmonitor,28
init version,28
INIT WATCHDOG RESET,23
ROM400 INIT VERSION,23
USE KEIL MONITOR, 23

ROM400 INIT VERSION
rom400init.h, 23

ROM400 INTERNALERROR
rom400err.h,13

ROM400-
INTERRUPTEDIOEXCEPTION

rom400err.h,14
ROM400 IOEXCEPTION

rom400err.h,14
rom400kmem.h,29

kmeminit, 30
kmeminstall,31
kmemversion,32
ROM400KMEM MODEL -

LARGEST,30
ROM400KMEM MODEL -

SMALLEST, 30
ROM400KMEM VERSION,30

ROM400KMEM MODEL -
LARGEST

rom400kmem.h,30
ROM400KMEM MODEL -

SMALLEST
rom400kmem.h,30

ROM400KMEM VERSION
rom400kmem.h,30

rom400mem.h,32
memfree,33
memgetfreeram,33
memmalloc,34
memmallocdirty,34
memsizeof,35
memversion,35
ROM400MEM VERSION,33

ROM400MEM VERSION
rom400mem.h,33

266



ROM400-
NULLPOINTEREXCEPTION

rom400err.h,14
ROM400OUTOFMEMORYERROR

rom400err.h,14
rom400ow.h,36

ow byte,38
ow first, 38
ow getcurrentid,38
ow next,38
ow reset,39
OW RESETALARM, 37
OW RESETNO PRESENCE,

37
OW RESETPRESENCE,37
OW RESETSHORT,37
ow version,39
ROM400OW VERSION,37

ROM400OW VERSION
rom400ow.h,37

ROM400SCHEDVERSION
rom400task.h,78

rom400sock.h,39
accept,46
acceptqueue,62
AF INET, 46
AF INET6, 46
arp cacherequest,46
arp generaterequest,47
avail,47
bind,47
cleanup,48
clearparambuffers,62
closesocket,48
connect,49
ETH STATUS LINK, 49
getethernetstatus,49
getipv6params,50
getmacid,50
getnetworkparams,50
getpeername,51
getsockname,51
getsockopt,52
gettftpserver,52
htons,53
inet addr,63

inet ntop,63
inet pton,63
IPPROTOUDP,53
join, 53
leave,54
listen,54
nstoh,55
PF INET, 55
recv,55
recvfrom,56
ROM400SOCK SYNCH -

VERSION,56
ROM400SOCK VERSION,56
send,57
sendto,57
setmacid,58
setnetworkparams,58
setsockopt,59
settftpserver,59
SO BINDADDR, 60
SO LINGER, 60
SO TIMEOUT, 60
SOCK DGRAM, 60
SOCK STREAM,61
sockversion,61
socket,61
SOCKETTYPE DATAGRAM,

61
SOCKETTYPE STREAM,62
syn accept,64
syn arp cacherequest,64
syn arp generaterequest,65
syn avail,65
syn bind,65
syn cleanup,66
syn closesocket,66
syn connect,67
syn getethernetstatus,67
syn getipv6params,67
syn getmacid,68
syn getnetworkparams,68
syn getpeername,69
syn getsockname,69
syn getsockopt,69
syn gettftpserver,70
syn join, 70

267



syn leave,71
syn listen,71
syn recv,72
syn recvfrom,72
syn send,73
syn sendto,73
syn setDatagramAddress,74
syn setmacid,74
syn setnetworkparams,75
syn setsockopt,75
syn settftpserver,76
syn socket,76
syn version,77
TCP NODELAY, 62
udpavailable,77

ROM400SOCK SYNCH VERSION
rom400sock.h,56

ROM400SOCK VERSION
rom400sock.h,56

ROM400SOCKETEXCEPTION
rom400err.h,14

rom400task.h,77
FLAG DHCP WAIT, 80
FLAG IO WAIT, 80
FLAG SLEEPING,81
MAX PRIORITY,81
MIN PRIORITY,81
NORM PRIORITY,81
RELOAD 14 746,81
RELOAD 18 432,81
RELOAD 29 491,82
RELOAD 36 864,82
RELOAD 58 982,82
RELOAD 73 728,82
ROM400SCHEDVERSION,

78
ROM400TASK VERSION,82
ROM SAVESIZE,83
taskentercritsection,84
task fork, 84
taskgenesis,85
taskgetcurrent,85
taskgetpriority,85
taskgettaskid,86
taskgetthreadid,86
taskgettickreload,87

taskgettimemillis,87
taskkill, 87
task leavecritsection,88
tasksetpriority,88
tasksettickreload,89
tasksignal,89
tasksleep,83
tasksuspend,90
tasksynchsleep,90
tasksynchwait, 91
task threadiosleep,91
task threadiosleepnc,92
task threadrestore,92
task threadresume,93
task threadsave,93
taskversion,94
taskwait, 83

ROM400TASK VERSION
rom400task.h,82

rom400tftp.h,94
ROM400TFTP VERSION,95
tftp first, 96
tftp getdata,96
tftp init, 96
TFTP LAST SEGMENT,95
TFTP MORE DATA, 95
tftp next,97
tftp version,97

ROM400TFTP VERSION
rom400tftp.h,95

rom400useriopoll.h,97
ROM400USERIOPOLL-

VERSION,98
useriopollgetlistsize,99
useriopollgetpollroutine,99
useriopoll init, 99
useriopoll isinstalled,100
useriopollregisterpollroutine,

100
useriopollremovepollroutine,

100
useriopollversion,101

ROM400USERIOPOLLVERSION
rom400useriopoll.h,98

rom400util.h, 101
REDIRECT0, 103

268



REDIRECTDHCPNOTIFY,103
REDIRECTFREE,103
REDIRECTGETFREERAM,

103
REDIRECTGETTASKID, 104
REDIRECTGETTHREADID,

104
REDIRECTGETTIMEMILLIS,

104
REDIRECTINFOSENDCHAR,

104
REDIRECTIP -

COMPUTECHECKSUM-
SOFTWARE,104

REDIRECTKERNELFREE,
105

REDIRECT-
KERNELMALLOC, 105

REDIRECTMALLOC, 105
REDIRECTMALLOCDIRTY,

105
REDIRECTMM UNDEREF,

105
REDIRECTOWIP -

READCONFIG,106
REDIRECTROM TASK -

CREATE,106
REDIRECTROM TASK -

DESTROY,106
REDIRECTROM TASK -

DUPLICATE, 106
REDIRECTROM TASK -

SWITCH IN, 106
REDIRECTROM TASK -

SWITCH OUT, 107
REDIRECTSETMACID, 107
REDIRECTSLEEP,107
REDIRECT-

THREADIOSLEEP,107
REDIRECT-

THREADIOSLEEPNC,
107

REDIRECT-
THREADRESTORE,
108

REDIRECT-

THREADRESUME,108
REDIRECTTHREADSAVE,

108
REDIRECTTINIEXPORT -

MM DEREF,108
ROM400UTIL VERSION,108
util crc16,109
util getpseudorandom,109
util infosendchar,109
util installhook,109
util memclear,110
util memcompare,110
util memcopy,111
util setrandomseed,111
util version,111

ROM400UTIL VERSION
rom400util.h, 108

rom400xnetstack.h,112
ROM400XNETSTACK -

VERSION,112
xnetstackinstall,112
xnetstackversion,112

ROM400XNETSTACK VERSION
rom400xnetstack.h,112

ROM SAVESIZE
rom400task.h,83

s6 addr
in6 addr,4

s addr
in addr,5

scanf
stdio.h,137

SEEK CUR
stdio.h,119

SEEK END
stdio.h,119

SEEK SET
stdio.h,119

send
rom400sock.h,57

sendto
rom400sock.h,57

setmacid
rom400sock.h,58

setnetworkparams

269



rom400sock.h,58
setsockopt

rom400sock.h,59
settftpserver

rom400sock.h,59
sin addr

sockaddr,6
sockaddrin, 6

sin family
sockaddr,6
sockaddrin, 7

sin port
sockaddr,6
sockaddrin, 6

sin zero
sockaddrin, 6

size t
stdio.h,120

SO BINDADDR
rom400sock.h,60

SO LINGER
rom400sock.h,60

SO TIMEOUT
rom400sock.h,60

SOCK DGRAM
rom400sock.h,60

SOCK STREAM
rom400sock.h,61

sockversion
rom400sock.h,61

sockaddr,5
bogusptr, 6
sin addr,6
sin family, 6
sin port,6

sockaddrin, 6
bogusptr, 6
sin addr,6
sin family, 7
sin port,6
sin zero,6

socket
rom400sock.h,61

SOCKETTYPE DATAGRAM
rom400sock.h,61

SOCKETTYPE STREAM

rom400sock.h,62
sprintf

stdio.h,137
sscanf

stdio.h,137
StatePtr

TCB, 7
StateSize

TCB, 7
stdio.h,113

getkey,120
clearerr,120
EOF,117
fclose,121
feof, 121
ferror,121
fexists,122
fflush,122
fgetc,122
fgetpos,123
fgets,123
FILE, 120
FILE FLAGS EOF,117
FILE FLAGS TEMP,118
FILE TYPE TINIFS, 118
FILENAME MAX, 118
filesystemversion,124
finit, 124
flockfile, 125
fopen,125
fopen fd, 126
FOPENMAX, 118
fpos t, 120
fputc,126
fputs,127
fread,127
freadbytes,128
freopen,128
FS VERSION,118
fseek,129
fseeko,129
fsetpos,130
ftell, 130
ftello, 131
ftrylockfile, 131
funlockfile,132

270



fwrite, 132
fwritebytes,133
getc,133
getchar,134
getfreefsram,134
gets,134
L tmpnam,118
mkdir, 134
NULL, 119
off t, 120
P tmpdir,119
printf, 135
putc,135
putchar,135
puts,135
remove,136
rename,136
rewind,136
scanf,137
SEEK CUR,119
SEEK END, 119
SEEK SET,119
size t, 120
sprintf,137
sscanf,137
tempnam,137
TMP MAX, 120
tmpfile,138
tmpnam,138
ungetchar,139
vprintf, 139
vsprintf,139

syn accept
rom400sock.h,64

syn arp cacherequest
rom400sock.h,64

syn arp generaterequest
rom400sock.h,65

syn avail
rom400sock.h,65

syn bind
rom400sock.h,65

syn cleanup
rom400sock.h,66

syn closesocket
rom400sock.h,66

syn connect
rom400sock.h,67

syn getethernetstatus
rom400sock.h,67

syn getipv6params
rom400sock.h,67

syn getmacid
rom400sock.h,68

syn getnetworkparams
rom400sock.h,68

syn getpeername
rom400sock.h,69

syn getsockname
rom400sock.h,69

syn getsockopt
rom400sock.h,69

syn gettftpserver
rom400sock.h,70

syn join
rom400sock.h,70

syn leave
rom400sock.h,71

syn listen
rom400sock.h,71

syn recv
rom400sock.h,72

syn recvfrom
rom400sock.h,72

syn send
rom400sock.h,73

syn sendto
rom400sock.h,73

syn setDatagramAddress
rom400sock.h,74

syn setmacid
rom400sock.h,74

syn setnetworkparams
rom400sock.h,75

syn setsockopt
rom400sock.h,75

syn settftpserver
rom400sock.h,76

syn socket
rom400sock.h,76

syn version
rom400sock.h,77

271



taskentercritsection
rom400task.h,84

task fork
rom400task.h,84

taskgenesis
rom400task.h,85

taskgetcurrent
rom400task.h,85

taskgetpriority
rom400task.h,85

taskgettaskid
rom400task.h,86

taskgetthreadid
rom400task.h,86

taskgettickreload
rom400task.h,87

taskgettimemillis
rom400task.h,87

taskkill
rom400task.h,87

task leavecritsection
rom400task.h,88

tasksetpriority
rom400task.h,88

tasksettickreload
rom400task.h,89

tasksignal
rom400task.h,89

tasksleep
rom400task.h,83

tasksuspend
rom400task.h,90

tasksynchsleep
rom400task.h,90

tasksynchwait
rom400task.h,91

task threadiosleep
rom400task.h,91

task threadiosleepnc
rom400task.h,92

task threadrestore
rom400task.h,92

task threadresume
rom400task.h,93

task threadsave
rom400task.h,93

taskversion
rom400task.h,94

taskwait
rom400task.h,83

TCB, 7
Flags,7
ID, 7
Next,7
Priority, 7
StatePtr,7
StateSize,7
WakeupTime,7

TCP NODELAY
rom400sock.h,62

tempnam
stdio.h,137

tftp first
rom400tftp.h,96

tftp getdata
rom400tftp.h,96

tftp init
rom400tftp.h,96

TFTP LAST SEGMENT
rom400tftp.h,95

TFTP MORE DATA
rom400tftp.h,95

tftp next
rom400tftp.h,97

tftp version
rom400tftp.h,97

TIME, 8
millis, 8
msb,8

tini400 crypt.h,139
crypt sha1,140
crypt version,140
TINI400 CRYPT VERSION,

140
TINI400 CRYPT VERSION

tini400 crypt.h,140
tini400 dns.h,140

dnsenableipv6queries,142
dnsgetmx,142
dnsgetprimary,143
dnsgetsecondary,143
dnsgettimeout,144

272



dns init, 144
dnssetprimary,144
dnssetsecondary,144
dnssettimeout,145
dnsversion,145
gethostbyaddr,145
gethostbyname,146
TINI400 DNS VERSION,142

TINI400 DNS VERSION
tini400 dns.h,142

tini400 isr.h,146
ISR CAN0, 148
ISR ETHERNET,148
ISR ETHERNETPOWER,148
ISR EXTERNALINT0, 148
ISR EXTERNALINT1, 148
ISR EXTERNALINT2345,148
isr getinterruptvector,151
ISR POWERFAIL,149
ISR SERIAL0,149
ISR SERIAL1,149
ISR SERIAL2,149
isr setinterruptvector,151
ISR TIMER0, 149
ISR TIMER1, 150
ISR TIMER2, 150
ISR TIMER3, 150
isr version,152
ISR WATCHDOG,150
ISR WRITEPROTECT,150
TINI400 ISR VERSION,151

TINI400 ISR VERSION
tini400 isr.h,151

tini i2c.h,152
i2c bit, 155
i2c delay,155
I2C DELAY LOOP COUNT,

154
I2C ENABLE SCL WAIT -

FOR SLOW SLAVES,
154

I2C MAXIMUM SCL -
WAITCOUNT, 154

i2c readbit,155
i2c readblock,155
i2c readbyte,155

I2C SCL,154
I2C SDA, 154
i2c select,155
i2c start,156
i2c stop,156
i2c version,156
i2c writeblock,156
i2c writebyte,156
i2c writereadblock,156
TINI I2C VERSION,154

TINI I2C VERSION
tini i2c.h,154

TMP MAX
stdio.h,120

tmpfile
stdio.h,138

tmpnam
stdio.h,138

type
file structure,3

udpavailable
rom400sock.h,77

ungetchar
stdio.h,139

USE KEIL MONITOR
rom400init.h, 23

useriopollgetlistsize
rom400useriopoll.h,99

useriopollgetpollroutine
rom400useriopoll.h,99

useriopoll init
rom400useriopoll.h,99

useriopoll isinstalled
rom400useriopoll.h,100

useriopollregisterpollroutine
rom400useriopoll.h,100

useriopollremovepollroutine
rom400useriopoll.h,100

useriopollversion
rom400useriopoll.h,101

util crc16
rom400util.h, 109

util getpseudorandom
rom400util.h, 109

util infosendchar

273



rom400util.h, 109
util installhook

rom400util.h, 109
util memclear

rom400util.h, 110
util memcompare

rom400util.h, 110
util memcopy

rom400util.h, 111
util setrandomseed

rom400util.h, 111
util version

rom400util.h, 111

vprintf
stdio.h,139

vsprintf
stdio.h,139

WakeupTime
TCB, 7

xnetstackinstall
rom400xnetstack.h,112

xnetstackversion
rom400xnetstack.h,112

274


	DS80C400CLibraries Data Structure Index
	DS80C400CLibraries File Index
	DS80C400CLibraries Data Structure Documentation
	DS80C400CLibraries File Documentation

