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MAXQ Competitive Analysis Study
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Abstract: To demonstrate the abilities of the MAXQ microcontroller, we took benchmark code written for a
competitor's microcontroller and ran it on the MAXQ2000. The results show that the MAXQ is one of the best
16-bit microcontroller cores available. 

Introduction
The MAXQ's unique transfer-triggered architecture makes it a top performer in the 16-bit microcontroller
market. The MAXQ instruction set features single-clock and instruction-cycle operations for jumps, calls,
returns, loop control, and arithmetic operations. As a result the MAXQ enables applications to process more
data in less time than other microcontrollers. Designers can thus add more functionality in their applications
or reduce power consumption by completing required tasks quickly and spending more time in low-power
stop modes.

To demonstrate the MAXQ's capabilities for this competitive analysis, we took benchmark code written to
showcase the MSP430, ran it on the MAXQ, and monitored MAXQ performance. The competitor's code
initially made the MAXQ function comparatively slow and inefficiently. Later when Rowley's highly optimized
CrossWorks compiler for the MAXQ was released to the market, we reran the benchmark code. We found
that Rowley's compiler used MAXQ architectural features more effectively, and that the MAXQ outperformed
both the Texas Instruments (TI) MSP430 and the Atmel AVR. The MAXQ executed the same code in fewer
clock cycles. In addition, this accelerated performance did not penalize the user with extra code size—the
MAXQ's code size is within 2% of the competitors' code sizes.

This application note presents the details of our study of the MAXQ, Atmel AVR, and TI MSP430
architectures. This study is transparent—there are no tricks of compiler optimizations or specialized code
made to force one microcontroller to perform better than another. Project files and source code are provided
on the Maxim Web site so that the results can be duplicated. The results of this study (and other MAXQ
performance studies) can be found at MAXQBenchmark.

Notes About Methodology
Of the two compilers in this study, the IAR Embedded Workbench and the Rowley CrossWorks, we used
Rowley's compiler to generate the MAXQ's benchmark data because it made the best use of MAXQ
capabilities. Both the IAR and Rowley compiler results were used for the MSP430 and the AVR
microcontroller tests.

The data for execution time were gathered with the simulators that ship with IAR's Embedded Workbench
and Rowley's CrossWorks toolsets. The execution cycles counted did not include startup time; the count
started at the entry point into the main() function and ended with the main() function's return statement.
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Code sizes are in bytes and include both CONSTANT and CODE segments. This is because some tools
include application constants in the CODE segment, which would make a device's code density appear
incorrectly high. Combining the sizes of the CODE and CONSTANT segments ensures an equivalent
comparison.

In general, we configured the compilers to use their highest code-optimization levels for ALL devices. This
typically meant that all optimizations were enabled when targeting the smallest code size, and almost all
optimizations were enabled when targeting the fastest code (because some compiler optimizations sacrifice
speed for code size). In some instances, the high optimization settings caused problems—the code
generated failed to simulate properly, never reaching the return statement. Often, the code began to work
when the optimization level changed. We will indicate when such reductions of the optimization level were
required. The project files that accompany this application note contain the optimization settings used to
generate the benchmark data. 

TI Benchmark
This benchmark is a suite of tests published by Texas Instruments to showcase the MSP430. The suite
contains 10 individual benchmarks:

1. 8-bit math routines
2. 8-bit matrix (array) accesses
3. 8-bit switch statements
4. 16-bit math routines
5. 16-bit matrix (array) accesses
6. 16-bit switch statement
7. 32-bit math routines
8. Floating point math routines
9. Finite impulse response algorithm

10. Matrix multiplication

Following the TI test parameters, the MAXQ performed poorly. It generated code that was larger and slower
than most of the other microcontrollers. Naturally, the TI study showed the MSP430 the winner in the
comparisons. However, there were flaws in TI's methodology that demanded further analysis. Consequently,
we examined how the MAXQ performed with the Rowley CrossWorks compiler.

The TI application note, including the source code, is available for download. 

TI Results
The TI study provided results for execution speed (in clock cycles) and code density (in bytes), as shown in
Table 1 and Table 2. Note that some of the device names (taken directly from the TI application note) are
unclear. For instance, does 8051 refer to a 12-clock, 6-clock, 4-clock, or even 1-clock 8051 architecture?

Table 1. TI Study Results: Execution Speed (no. of cycles)

Application MSP430F135 ATmega8 PIC18F242 8051 H8/300L MC68HC11 MAXQ20 ARM7-TDMI
(Thumb)

8-bit math 299 157 318 112 680 387 421 185
8-bit matrix 2899 5300 20045 17744 9098 15412 31691 2227
8-bit switch 50 131 109 84 388 214 58 146
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16-bit math 343 319 625 426 802 508 815 259
16-bit matrix 5784 24426 27021 29468 15280 23164 60214 2998
16-bit switch 49 144 163 120 398 230 51 146
32-bit math 792 782 1818 2937 1756 1446 1034 115
Floating
point 1207 1601 1599 2487 2458 4664 1943 108

FIR filter 152193 164793 248655 206806 245588 567139 464558 43191
Matrix
multiply 6633 16027 36190 9454 26750 26874 66534 2918

TOTALS 170249 213680 336543 269638 303198 640038 627319 52293

Table 2. TI Study Results: Code Size (no. of bytes)

Application MSP430F135 ATmega8 PIC18F242 8051 H8/300L MC68HC11 MAXQ20 ARM7-TDMI
(Thumb)

8-bit math 172 116 386 141 354 285 352 660
8-bit matrix 118 364 676 615 356 380 378 408
8-bit switch 180 342 404 209 362 387 202 504
16-bit math 172 174 598 361 564 315 286 676
16-bit matrix 156 570 846 825 450 490 526 428
16-bit switch 178 388 572 326 404 405 188 504
32-bit math 250 316 960 723 876 962 338 620
Floating point 662 1042 1778 1420 1450 1429 1596 1556
FIR filter 668 1292 2146 1915 1588 1470 1828 1420
Matrix
multiply 252 510 936 345 462 499 494 432

TOTALS 2808 5114 9302 6880 6866 6622 6188 7208

From this data, the MSP430 produced the densest code—45% smaller than the Atmel AVR microcontroller.
The MSP430 also appeared to perform best, with the exception of the 32-bit ARM processor. These results
also showed the MAXQ to be comparatively slow and inefficient.

Flaws with the TI Benchmark Study
The manner in which TI produced its benchmarks raised some questions. 

The first problem is that TI did not use any optimizations in their study. TI argued against compiler
optimizations in order to remove the compiler from consideration and to make the microcontroller perform on
its own. The problem with this argument is that engineers still use a compiler to generate machine code. If a
compiler does not take advantage of the architectural features of a microcontroller when optimizations are not
enabled, then you do not get a realistic idea of the microcontroller's performance. In addition, benchmarks
are only valuable if they model real applications. An engineer is likely to enable optimizations for size or
speed in a real application, and these should thus be included as part of the benchmark study.

The second flaw in the TI benchmark study is that they only considered one compiler. Admittedly, the Rowley
compiler was not available to TI at that time. Now available, the Rowley compiler dramatically updates the
earlier TI results.
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Maxim's Approach
As explained above, our reevaluation of the TI benchmark focused on the MSP430, Atmel AVR, and MAXQ
architectures. We considered execution and code size data for both the IAR Embedded Workbench and the
Rowley CrossWorks toolsets. All results for execution speed were obtained through simulation.

The MAXQ device in this study was the MAXQ2000 microcontroller. In addition to an array of peripherals
including an LCD controller, the MAXQ2000 has 16 16-bit accumulators and a 16 x 16 hardware multiply
accelerator. For this study, we enabled the hardware multipliers on all three devices under test—we assumed
that if performance on mathematical computations (such as a FIR filter) was important, a designer would
choose a microcontroller with a multiply accelerator.

For the MSP430 device, we targeted the MSP430F149, a different device than TI targeted in their study (the
MSP430F135). We chose the F149 because it has a hardware multiply unit, making comparison to the
MAXQ2000 more equitable.

The ATmega8 was selected for study because the current IAR compiler could generate code using the
hardware multiplier for this microcontroller. The IAR compiler could not do so for the other AVR devices like
the ATmega64 or ATmega128. 

Gathering benchmark results from both toolsets was straightforward. In IAR, the code size data is found in a
map file (make sure it is generated under Project Options → Linker → List). Scroll down to the bottom of the
map file and the following three lines appear:

184 bytes of CODE memory
80 bytes of DATA memory
66 bytes of CONST memory

As mentioned earlier, we count both CODE and CONST memory sections in the total code size, because
compilers differ on where they place constant program data. For testing, the only legitimate way to compare
code size is to include the constant size.

To find execution cycles in IAR, select the Simulator as the Debug tool and begin debugging. Launch the
code profiler under View → Profiling. Click the Activate button and the Autorefresh button (see Figure 1).
The debugger should automatically run to the first line of the C code. Press the Run key, and (if no
breakpoints are set) the IAR debugger terminates at program exit. Look at the code profiler and report the
number of cycles under Accumulated Time for main()—this is the number of cycles spent in the main
routine and all subroutines called by main.

Figure 1. IAR Code Profiler: accumulated time (cycles) means the number of cycles spent in that routine and
all subroutines which it calls.
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Finding the generated code size in the Rowley toolset is also very easy. When the project builds, the Project
Explorer lists the code size with the project. Figure 2 shows that for the MSP430F149, the 16-bit math
benchmark code size is 238 bytes.

Figure 2. Rowley Project Explorer shows code size details for each project.

Determining the number of execution cycles in the Rowley tool is not quite as easy as with IAR—Rowley
does not automatically stop at the end of the program nor does it separate where the cycles are spent. You
must reset the cycle counter upon entry to the main program. To do this, first start debugging the program.
When the compiler stops at the entry point to main, reset the cycle counter by double clicking on it.

Figure 3. When the Rowley simulator stops at main(), reset the cycle counter (the picture with the hourglass)
by double-clicking on it.

Next, set a breakpoint at the end of the application. (Note that lines with the blue triangles in the margins
indicate where you can set breakpoints.) Run to the breakpoint and record the number of cycles reported.

There are other possible complications with using the Rowley simulator.
1. Depending on the optimizations, you may only be able to simulate at the assembly level, in which case

it is more difficult to find the end of the application. The best approach is to scan through the code and
find the next RETURN statement in the assembly code, set your breakpoint there, and run to it.

2. The simulator may not always stop at the main entry point. When this occurs, try pressing the Restart
Debugging button. You may also need to manually find the main entry point and set a breakpoint there.

Page 5 of 12



Compiler Settings
When using the IAR toolset, the compiler options window in the project options is configured for the highest
optimization level with all optimizations enabled (see Figure 4). To change between targeting smallest code
and fastest execution, switch the selected radio button from Size to Speed.

Figure 4. Options for the IAR compiler: all optimizations are enabled. The radio button switches the compiler
between optimizing for speed and for size.

Rowley's CrossWorks allows users to create build configurations in addition to the default Debug and
Release configurations. Therefore, the benchmark projects for this study also included the Fastest (see
Figure 5) and Smallest (Figure 6) configuration options. The Fastest configuration removes any optimization
that values code size at the expense of an instruction cycle.
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Figure 5. Project options used in Rowley's CrossWorks for the fastest configuration.

The settings for the smallest configuration appear in Figure 6. Options that favored code size at the expense
of cycles were enabled, and the overall optimization strategy was to minimize size.
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Figure 6. Project options used in Rowley's CrossWorks for the Smallest configuration.

The project and source files for each benchmark run by Maxim are available at
www.maximintegrated.com/products/microcontrollers/maxq/performance/competitive.cfm#compiler_detail_links.
The configurations in these project files are the same configurations used for the benchmarking. Links to trial
versions of the IAR and Rowley tools are available with other third-party tools on the Maxim website, so you
can easily reproduce these benchmark results.

MAXQ Benchmark Results
Tables 3 and 4 show the MAXQ benchmark results. Execution speed is again given as clock cycles and
code size is given in bytes.

Table 3. Results from Maxim's Study: Execution Speed (no. of cycles)

Application MSP430F149
IAR

MSP430F149
Rowley

ATmega8
IAR

ATmega8
Rowley

MAXQ2000
Rowley

Configuration Small Fast Small Fast Small Fast Small Fast Small Fast
8-bit math 243 243 276 272 110 110 279 278 278 245
8-bit matrix 1629 963 6243 2659 1508 1074 7348 3763 3461 2947
8-bit switch 31 31 24 24 84 36 45 45 39 39
16-bit math 219 219 250 250 275 266 348 330 194 191
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16-bit matrix 1906 899 6755 3171 1147 697 5251 5250 3205 2691
16-bit switch 30 30 24 24 111 44 50 50 39 39
32-bit math 575 575 790 716 746 731 995 885 545 521
Floating point 784 784 1097 921 1614 1565 1491 919 763 744
FIR filter 86042 82748 90812 82592 82779 82779 73598 66249 62280 59470
Matrix
multiply 4254 2761 6036 5436 7799 2396 11081 9231 3704 3027

TOTALS 95713 89253 112307 96065 96173 89698 100486 87000 74508 69914

Figure 7 graphs the data for execution speed. Only the fastest results are shown. Speed is measured in
execution cycles—a smaller bar means better performance.

Figure 7. Execution speed results for the fastest configuration setting. The smaller MAXQ2000 bar shows
better performance.

Table 4. Results from Maxim's Study: Code Size (no. of bytes)

Application MSP430F149
IAR

MSP430F149
Rowley

ATmega8
IAR

ATmega8
Rowley

MAXQ2000
Rowley

Configuration Small Fast Small Fast Small Fast Small Fast Small Fast
8-bit math 192 192 258 262 98 98 212 212 248 284
8-bit matrix 152 180 240 232 318 304 220 250 202 222
8-bit switch 180 180 230 230 312 164 202 200 152 152
16-bit math 140 140 220 220 162 154 222 238 162 164
16-bit matrix 240 240 312 312 398 374 294 350 260 378
16-bit switch 178 178 230 230 346 178 212 240 152 152
32-bit math 236 236 284 388 306 296 380 460 274 324
Floating point 1100 1100 966 1004 1026 1046 816 936 1018 1090
FIR filter 1178 1174 924 966 1258 1258 860 896 1024 1044
Matrix
multiply 266 250 312 316 476 324 294 348 254 264

TOTALS 3862 3870 4076 4160 4700 4196 3712 4130 3746 4074
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The following graph (Figure 8) shows the code size data for the smallest configuration results. Code size is
measured in number of bytes—a smaller bar means better code density.

Figure 8. Code size results for the smallest configuration setting. The MAXQ2000's smaller bar indicates
better code density.

Table 5. The Compiler Versions for This Study
Microcontroller Compiler Version
MAXQ2000 Rowley CrossWorks for MAXQ, Release 1.0, Build 2
MSP430F149 Rowley CrossWorks for MSP430, Release 1.3, Build 3
MSP430F149 IAR IAR C/C++ Compiler for MSP430, V3.30A/W32 (3.30.1.1)
ATmega8 Rowley CrossWorks for AVR, Release 1.1, Build 1
ATmega8 IAR IAR C/C++ Compiler for AVR, 4.10B/W32 (4.10.2.3)

Table 6. Issues Encountered When Running These Benchmarks
Device Tool Configuration Benchmark Issue

ATmega8 Rowley Smallest 16-bit matrix The simulation would not terminate unless the Code
Factoring optimization was set to NONE.

ATmega8 IAR Fastest 8-bit matrix,
16-bit matrix

The simulation would not terminate unless the optimization
level was set to medium instead of high.

ATmega8 IAR Smallest FIR filter
Simulation would not terminate even at lowest optimization
level. The numbers included in Table 3 and Table 4 are for
the FIR filter in the fastest configuration.

ATmega8 IAR Both Matrix
multiplication

The simulation would not terminate on the ATmega8,
ATmega16, or ATmega32 targets. The project was targeted
instead for the ATmega64.

Analysis and Summary
Across different compilers and with optimizations enabled, the above results show that the MSP430 is not the
best performing microcontroller, even when running TI's specially crafted benchmark code.

When considering the total number of execution cycles required to run the entire benchmark suite, the
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MAXQ2000 outperforms the MSP430F149 and the ATmega8. The MAXQ2000 runs in 69,914 cycles, while
the MSP430F149 (IAR) and ATmega8 (Rowley) take 89,253 and 87,000 cycles, respectively. When
considering the total size for the benchmark code, the best-case results for the three microcontrollers vary by
only 2%, making any difference in code size irrelevant.

Since code density is not a factor for this benchmark, we look deeper into the execution speed results. The
total execution-cycle results are heavily weighted by the FIR filter results, where the MAXQ2000 clearly
outperforms the competition. The MAXQ2000 is the best performer on the math benchmarks except for the
ATmega8 in the 8-bit math benchmark. The MAXQ2000's weakest performance is on the 8-bit and 16-bit
matrix benchmarks, which copy items from one multidimensional array to another.

To this point, we are only considering the performance of the test microcontrollers in terms of clock cycles.
We have not considered the speed at which a device can run. For the sake of absolute comparison, we use
benchmark iterations per second—the number of times that the entire TI benchmark suite can run in a
second. Table 7 shows that when all devices run at the same clock speed, the MAXQ2000 is 28% faster
than the MSP430F149 and 24% faster than the ATmega8. When the devices run at the maximum clock rate,
the MAXQ2000 is 56% faster than the ATmega8 and 218% faster than the MSP430F149.

Table 7. Results from Maxim's Study: Speed (Iterations per Second and at FMAX)
Device Cycles Fmax Iterations/s at 1MHz Iterations/s at Fmax

MSP430F149 89,253 8 11.20 89.60
ATmega8 87,000 16 11.49 183.84
MAXQ2000 69,914 20 14.30 286.00

Figure 9. Benchmark iterations per second when running at the maximum clock rate. The taller MAXQ2000
bar shows better performance.

How should we summarize the results of the Maxim benchmark study? At the very least, it counters the
results of the TI benchmark study, which showed the MAXQ microcontroller architecture as unremarkable.
This updated study shows that the MAXQ2000 is a code-efficient, fast microcontroller that should be
considered for any new designs and redesigns that will benefit from a higher performance microcontroller.

This study is part of an ongoing effort. Please visit the homepage for MAXQ benchmarking for additional and
updated studies. An evaluation kit is available for the MAXQ2000 microcontroller. For information on the EV
kit, links to demonstration code, software, and application information, go to Evaluate the MAXQ2000
Microcontroller with the MAXQ2000-KIT. 
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Related Parts

MAXQ2000 Low-Power LCD Microcontroller Free Samples  

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact 
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