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The MAX1464 is a fully digital, high-performance signal conditioner with multichannel inputs, analog and
digital outputs, and support for 4-20mA output applications. The MAX1464 can be programmed to correct the
nonlinearities and temperature dependent characteristics of sensors.

This document describes the procedures to compensate and calibrate a sensor signal that is applied to one of
the MAX1464's ADC channels. The algorithm provides offset and span correction over the specified tempera-
ture range. It is assumed that the MAX1464 VDD supply voltage does not change during the compensation
process and operation of the device.

The data presented in this document is real data acquired from a piezoresistive pressure sensor used to
demonstrate the compensation algorithm.

1. Input Parameters

The user must define some input parameters for the application. They are:

Tmin = minimum temperature, in degrees Celsius

Tintr = intermediate temperature, in degrees Celsius

Tmax = maximum temperature, in degrees Celsius

Pmin = minimum pressure

Pmax = maximum pressure

Vmin = desired MAX1464 output, at the minimum pressure, in volts

Vmax = desired MAX1464 output, at the maximum pressure, in volts

The next limits are application dependent, and can differ for other applications:
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Tmin = —-40 Pmin = O Vmin :

15 Vmax :

n
IS
Ul

Tintr = 25 Pmax :

Tmax = 125

For pressure nonlinearity correction, we define Pmed as the sensor excitation midpoint:

Pmax - Pmin )
Pmed := T + Pmin

Pmed = 7.5

For better performance and to maximize the range of the MAX1464's ADC converter, you must adjust the
appropriate coarse offset and PGA settings. Select the temperature for which the sensor sensitivity is the highest,
and apply minimum and maximum sensor excitation. The user should then select the PGA gain and coarse offset
settings that maximize the ADC output at these conditions.

The ADC acquired data must then be entered in the matrix below. Each row of data has the normalized ADC
reading for the minimum, medium, and maximum sensor excitation at the indicated temperature. Each row also
has the ADC reading for the MAX1464's internal temperature sensor, and the DAC output voltage (through
either the small or large op amp) for a fixed, normalized digital input of -0.5 (DACinM) and +0.5 (DACinP).
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temperature = 4 (column index of temperature data)
DACinM = - 0.5

DACinP = 0.5

The acquired data (ad) matrix is shown below, with the ADC results entered in hexadecimal, and the DAC
output voltage readings entered in decimal. Due to software limitations, hexadecimal values must be
entered with a leading zero (0).

0 Pmin Pmed Pmax Temperature DACinM DACinP

ad = Tmin OA836h 00741h 0659Fh OEOAFh 1.0040 3.9855
Tintr O0B148h O0OlEAh 0522%h OF8C7h 1.0047 3.9867

Tmax 0B6BOh OF6F5h 03713h 01C9Fh 1.0053 3.9885

To convert the two's complement hexadecimal values into decimal values (between -1 and +1), the following
function is defined:

S / 15 x — 2% x
h2d (x) = if x22 , — , ——
515 515

The decimal representation of the acquired data matrix is then defined as:

0 Pmin Pmed Pmax Temperature DACinM DACinP

Tmin h2d(ad, ,) h2d(ad, ,) h2d(ad; ;) h2d(ad, ,) ad, , ad ¢

98t 7 lrintr n2d(ad, ,) h2d(ad, ,) h2d(ad, ;) h2d(ad, ) ad, , ad,
Tmax h2d(ad; ;) h2d(ad, ,) h2d(ad; ;) h2d(ad, ,) ady , ad;

With the defined user values, the above matrix is shown as:

0 0 7.5 15 4 —0.5 0.5
data — —40 —0.68585205 0.05667114 0.79391479 —0.24465942 1.004 3.9855

25 ~0.61499023 0.01495361 0.64187622 —0.056427 1.0047 3.9867

125 -0.57275391 —0.07064819 0.43026733 0.22360229 1.0053 3.9885



Other parameters used throughout the document are defined as:

Tmax — Tmin

Tmed = > + Tmin
,  Tmax — Tmin ,
Tintl = 4———i§—————+—Tmln
, Tmax — Tmin
Tint2 = Tmax B e—

T = Tmin,Tmin + 1 .. Tmax

Pmax — Pmin

P = Pmin,Pmin + :
(Pmax — Pmin) -10
F2 (X) = X F3 (X) =
2
x
tmin = 1 pmin = 1 tom o=
tint = 2 pmed = 2 inp = 6
tmax = 3 pmax = 3
datatmin,pmin
Ptmin = dataumn,mmd Temp
data.tmin,pmalx
datatint,pmin
Ptint = datatnm,mmd DacM =
data.tint,pmalx
data ;
tmax ,pmin
Ptmax = dataumx,mmd DacP
data

tmax , pmax

. Pmax
X
-~ 2
5 F4(x) = | ¥
X3
3

4
L X
den:atmin,temperature

data

tint ,temperature

data

tmax ,temperature

data

tmin , inm

data

tint ,inm

data

tmax , inm

data

tmin, inp

datatint,inp

data

tmax , inp




2. Data Modeling

This section shows the mathematical data modeling of the sensor, temperature, and DAC data. The
derived functions for the sensor, temperature, and DAC will then be used as their model.

2.1. Sensor Data Modeling
We first model the sensor data at each individual temperature, and we then model the variation of the
coefficients over temperature.

The coefficients are found solving a linear system of equations, described as:

Ax=Db
x=A'lb

where "A" is a square matrix, and "x" and "b" are column vectors:

The inverse matrix, in this case, is defined as:

. .2\ 1
1 Pmin Pmin

Pinv = |1 Pmed Pmed?

1 Pmax Pmax2

For the minimum temperature, the second-order coefficients that model the variation of the ADC data over
pressure are given by:

a = Pinv-Ptmin

/*0.68585205
a = 0.09935506

\74.69292535-1075

The equation that models the ADC output over pressure at this temperature is given by:

L 2
PO (P) = a, ¥ a;"P + a, P

For the intermediate temperature, the second-order coefficients that model the variation of the ADC data
over pressure are given by:
b '= Pinv-Ptint
/*0.61499023
b = 0.08419393
\72.68554687-1075



The equation that models the ADC output over pressure at this temperature is given by:
P1(P) = by + b,-P + b,-P’

For the maximum temperature, the second-order coefficients that model the variation of the ADC data over
pressure are given by:

c = Pinv-Ptmax

/70.57275391
c = 0.06702677

~1.05794271+10 °

The equation that models the ADC output over pressure at this temperature is given by:

P2 (P) = cy + ¢y°P + c,°P
1
0.5 =
/’— — 7
,” ///
PO (P) ~ ~///—
——” /—/
PL(P) 0 =
- /‘Z/
p2(®) ="
//
—0.5 —//,4
-1
0 2.5 5 7.5 10 12.5 15

P (psi)
Figure 1. ADC output as a function of sensor excitation.

Now, we combine these equations to include the temperature dependency. Basically, we will find second-
order equations that model the coefficients' variation over temperature. The zero-, first-, and second-order
coefficients on PO(T), P1(T), and P2(T) are given by:



For the temperature modeling of the coefficients, we now need to define the following matrix:

. o2\ 1
1 Tmin Tmin

Tinv =

1 Tintr Tintr?

1 Tmax Tmax2

The zero-order coefficients' dependency over temperature can be found as follows:
d = Tinv-pO0

/*0.63819739
d = 0.00102947

~4.04738491+10 °
The zero-order coefficient function is given by:
. 2
CO(T) = dy + dy*T + d,-T

The first-order coefficients' dependency over temperature can be found as follows:

e = Tinv-pl
0.08965194
e = -2.2765032+10 °

3.73191804°+10 '

The first-order coefficient function is given by:
CL(T) = e, + e;*T + e,-T"

0

The second-order coefficients' dependency over temperature can be found as follows:

f = Tinv-p2
/*3.36909004'1075
f = 2.95548635+10 '

\78.85254792-10710

The second-order coefficient function is given by:

C2(T) 1= £, + £,-T + £,-T°



The ADC output, as a function of both temperature and pressure, is then given by:

Pdata (T ,P) = CO(T) + CL(T)-P + C2(T)-P?

To verify the validity of the above equation, we compare the data matrix with the values from the
Pdata function.

0 0 7.5 15 4 —0.5 0.5
data — —40 —-0.68585205 0.05667114 0.79391479 —0.24465942 1.004 3.9855

25 -0.61499023 0.01495361 0.64187622 —0.056427 1.0047 3.9867

125 -0.57275391 —0.07064819 0.43026733 0.22360229 1.0053 3.9885

Pdata (-40,0) = -0.68585205
Pdata (25,0) = -0.61499023
Pdata (125,0) = -0.57275391
Pdata (-40,7.5) = 0.05667114
Pdata (25,7.5) = 0.01495361
Pdata (125,7.5) = -0.07064819
Pdata (- 40,15) = 0.79391479
Pdata (25,15) = 0.64187622
Pdata (125,15) = 0.43026733

2.2. Temperature Sensor Data Modeling

The MAX1464's internal temperature sensor must also be modeled. The ADC temperature data was
previously defined, and is given below:

—0.24465942
Temp = —0.056427
0.22360229

The second-order temperature coefficients are then given by:
t = Tinv-Temp

/*0.12824475
£ = 0.00288719

-5.79336029+10 '



The ADC output, as a function of temperature (Figure 2) is then given by:

Tdata (T) = t, + t,-T + t,-T°

0.5

0.3

0.1 —
Tdata (T) /

0.1 —

/
—0.3
—0.5
—50 —25 0 25 50 75 100 125
T (°C)

Figure 2. ADC temperature output as a function of temperature.

For verification, the values below show the input temperature data, and the values obtained from the Tdata
function.

~0.24465942 Tdata (Tmin) = —0.24465942
Temp = —0.056427 Tdata (Tintr) = —0.056427
0.22360229 Tdata (Tmax) = 0.22360229

2.3. DAC Data Modeling

The MAX1464's DAC must also be modeled to properly adjust its input values to the variations over
temperature and process (gain, offset). The DAC data was already defined, and is given below for both the
minus input (-0.5) and the positive input (+0.5):

1.004 3.9855
DacM = 1.0047 DacP = 3.9867
1.0053 3.9885

The DAC gains for the input measured values are defined as:

DacPO — DacMO

DACinP - DACinM

2.9815
) DackP, - DacM, )
DacGain = DacGain = 2.982
DACinP - DACinM
n n 2.9832

DacP2 — DacM2

DACinP - DACinM




The DAC offsets for the input measured values are defined as:

DacP, — DacGainO -DACinP

2.49475
DacOffset '= | DacP, — DacGain, :-DACinP DacOffset = 2.4957
DacP, — DacGain,-DACinP 2.4969

The coefficients of the second-order function that represents the DAC gain over temperature are:

g = Tinv-DacGain
2.98178159
g = 8.08391608°+10 °

2.61072261+10 °

The DAC gain function is then given by:

dacgain (T) = g, + 9,-T + gz-”l."2

The coefficients of the second-order function that represents the DAC offset over temperature are:

h = Tinv-DacOffset

2.49535047

h = 1.43776224+10 °

-1.58508159+10 °

The DAC offset function is then given by:

dacoffset (T) = hy + h;*T + h,-T’
The final DAC characteristics (Figure 3) can then be represented by:
Vdac (T ,dacin) = dacgain (T) -dacin + dacoffset (T)

dacin = -0.8,-0.79..0.8

5

4

Vdac (Tmin , dacin)

Vdac (Tintr ,dacin)

Vdac (Tmax , dacin)

1
-1 —0.75 —0.5 —0.25 0 0.25 0.5 0.75 1

dacin

Figure 3. DAC output (V) as a function of normalized input.




For verification, the values below show the input DAC data, and the values obtained from the Vdac function.

1.004
DacM = 1.0047
1.0053
Vdac (Tmin ,DACinM) = 1.004
Vdac (Tintr ,DACinM) = 1.0047
Vdac (Tmax ,DACinM) = 1.0053

3.9855

DacP = 3.9867

3.9885
Vdac (Tmin ,DACinP) = 3.9855
Vdac (Tintr ,DACinP) = 3.9867
Vdac (Tmax ,DACinP) = 3.9885

3. Temperature-Sensor Offset and Nonlinearity Correction

To minimize the temperature-related coefficients, we arrange the temperature characteristics,
centering it at zero and then amplifying it.

To center the data points, the temperature data offset is defined as:

Tdata (Tmin) - Tdata (Tmax)

> — Tdata (Tmin)

Toff =

Toff = 0.01052856

The offset-corrected Tdata (Figure 4) is then given by:

OCTdata (T) = Tdata (T) + Toff

0.4

0.2 /
OCTdata (T) 0

—0.2

—0.4

—50 0 50 100 150
T(°C)

Figure 4. Offset-corrected temperature data.
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The next step is to expand this function so that its minimum and maximum values are -0.9 and +0.9 (90% of

the useful range). This is done to reduce the values of the temperature-related coefficients that will be
calculated in this algorithm. The temperature gain is given by:

0.9 — (-0.9)

rtgain = -
OCTdata (Tmax) - OCTdata (Tmin)

rtgain = 3.84400417

As rtgain is outside the -1 to +1 values, it needs to be scaled down by a power of 2.

ntgainshfts = gain¢— | rtgain|
ntempé—1
while gain> 1
gain

2
ntemp é—ntemp- 2

log (ntemp)
log (2)

gainé&—

ntgainshfts = 2

The final tgain is then:
rtgain
2ntgainshfts

tgain =

tgain = 0.96100104

After multiplying tgain by OCTdata, the result needs to be scaled back up, shifting the result to the left
(multiplying by powers of 2) by the same factor used in the downscaling process (ntgainshfts). The final
amplified, offset-corrected temperature data (Figure 5) is then given by:

AOCTdata (T) (= 2Pt9ainshfts o oin.0CTdata (T)

AOCTdata (T) 0

—0.25

—0.5

—0.75

—50 0 50 100 150

Figure 5. Amplified, offset-Corrected temperature data.
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where:
AOCTdata (Tmin) = —0.9 AOCTdata (Tmax) = 0.9

The next step is the temperature nonlinearity correction. The linear coefficient of AOCTdata, using its
endpoints, is calculated as:

AOCTdata (Tmax) — AOCTdata (Tmin)
Tmax — Tmin

mt =

mt = 0.01090909

And the nonlinear function (Figure 6) can be expressed as:

Tnonlinearity (T) = AOCTdata (T) — mt- (T - Tmed)

0.02

Tnonlinearity (T) 0.01

—50 0 50 100 150

Figure 6. Nonlinearity of temperature data.

Using the AOCTdata(T) as the independent variable, we need to implement a function that represents the
opposite of the nonlinearity function. As AOCTdata(T) is not linear, the best way is to use a fitting function
to a higher order polynomial function. In this case, a fourth-order polynomial function is chosen to minimize

the nonlinearity errors.

xdata, .., = AOCTdata (T)

ydata, = —Tnonlinearity (T)

Tmin :
The coefficients of the fourth-order polynomial function are given by:

tnl ‘= linfit (xdata,ydata ,F4)

12



—0.01515302

-5.67061548+10 *
tnl = | 0.0186809

6.9990991+10 *

3.2752246+10 °

The temperature nonlinearity correction function is given by:

Tnl (T) = tnlO + tnll-AOCTdata (T) + tan-AOCTdata (T) 2
+ tnl,-AOCTdata (T) ° + tnl,-AOCTdata (T)*

The offset-corrected and nonlinearity-corrected temperature data are now given by:
Tempdata (T) = AOCTdata (T) 4+ Tnl (T)

From now on, all the temperature-related coefficients will be calculated using Tempdata as the independent
variable, as it is normalized and linear (Figure 7).

Tempdata (T) 0

—50 0 50 100 150

Figure 7. Linearized temperature data.

The ideal temperature data is given by:

Ideal (T) = 0.9 - (70'.9) - (T — Tmed)
Tmax — Tmin

Deviation of Tempdata (T) from an ideal function, Ideal (T), is given in Figure 8.

13
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Deviation of Tempdata (T) from an ideal function, Ideal (T), is given in Figure 8.


1°10
5010 © \

Tempdata (T) — Ideal (T) /_\ /\

0.9 — (-0.9) 0 \/ \/
—5e10 © \
—-1°10 /
—50 0 50 100 150
T(°C)

Figure 8. Linearity error of Tempdata(T).

4. Sensor-Signal Data Offset, Gain, and Nonlinearity Correction

The sensor-signal characteristics are also dependent on temperature and the excitation source (pressure). The
objective here is to eliminate the temperature dependency and linearize the pressure-response characteristics.

As with the temperature signal, we will maximize the response to 90% of the total useful range, yielding -0.9
for minimum pressure and +0.9 for the maximum pressure.

The raw sensor data is depicted below in Figure 9, for four different temperatures:

1
0.5 ]
Pdata (Tmin, P) ~r - /:—/’
PP
Pdata (Tintl,P) -
--- 0 =
Pdata (Tint2,P) ===
_— et
Pdata (Tmax ,P) /
- ’ 0.5 ==
. r_f
-1
0 3.75 7.5 11.25 15
P (psi)

Figure 9. Raw sensor data measured over pressure.

The linear coefficients for these four curves, using the endpoint values, can be given by:

Pdata (T ,Pmax) - Pdata (T ,Pmin)
Pmax — Pmin

mp (T) =

14



0.08
mp (T) \

=50 0 50 100 150
T(°C)

Figure 10. Sensor sensitivity measured over temperature.

The pressure-nonlinearity and offset-correction function (Figure 11) can be expressed by:

pnl (T ,P) = Pdata(T,P) — mp(T) - (P — Pmed)
0.1
0.05
pnl (Tmin , P)
pnl(Tint1,p) |~~~ 1Tttt TTTTopETTTToTToT
-0 0
pnl (Tint2 ,P)
pnl (Tmax ,P)
- —0.05
0.1
0 3.75 7.5 11.25 15
P (psi)

Figure 11. Sensor offset and nonlinearity measured over pressure.

The objective now is to model the reciprocal of the pnl(T,P) function for four different temperatures, and
then model the variation of the coefficients over temperature.

3= 0..150
Pmax — Pmin

PP. = Pmin +
J 150

For the minimum temperature, the coefficients that approximate -pnl(Tmin,P) over a third-order function of
Pdata(Tmin,P) can be found by:

= '4 3
axdata; | Pdata\?mln,PPi>

aydata; 1= fpnl<?min,PPi>

acc = linfit (axdata,aydata,bF3)



/0.05665568

-5.46133588+10 *
\ 0.0048145

acc =

4.65054473+10 °

For the first intermediate temperature, the coefficients that approximate -pnl(Tint1,P) over a third-order
function of Pdata(Tint1,P) can be found by:

. Py
bxdata; Pdata\?lntl,PPi>

bydata, = fpnl<?lntl,PPi>

bcc = linfit (bxdata ,bydata ,F3)

/0.02208378

-1.76379526°10 *
\ 0.00399201

bcc =

3.19040552+10 °

For the second intermediate temperature, the coefficients that approximate -pnl(Tint2,P) over a third-order
function of Pdata(Tint2,P) can be found by:

. Py
cxdata, Pdata\?lntZ,PPi>

cydata, = fpnl<?int2,PPi>

ccc = linfit (cxdata,cydata ,F3)

/ 0.02035532

1.24568012+10 *
0.0030606

1.87200228+10 °

For the maximum temperature, the coefficients that approximate -pnl(Tmax,P) over a third-order function of
Pdata(Tmax,P) can be found by:

= /
dxdata; | Pdata\?max,PPi>

dydata; i= fpnl<?max,PPi>
dcc = linfit (dxdata,dydata,bF3)
0.07066001

3.34484394+10 *
0.00236844

dcc =

1.11963953+10 °
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The matrix of correction coefficients for the calculated temperatures is given below:

/0.05665568 ~5.46133588°10
~0.02208378 ~1.76379526°10

ccoef =

The variation of those coefficients over the temperature data can be modeled by third-order equations,

0.02035532
0.07066001

solving a linear system:

The correction coefficients are:

|
|

tcc =

1

) 1
Tinv2 =

1

1

—0.00184753

0.07073196
0.01092556

-1.25221931+10 °

Tempdata (Tmin)
Tempdata (Tintl)
Tempdata (Tint2)

Tempdata (Tmax)

acc, acc,
- bccO bccl
- cce, ccoy

dccO dcc1

tcc =

-1.59159026°10 °

5.03122682+10 °
-1.10998417+10 *
~1.71486526°10 °

acc
bcc
ccc

dcc

4

4

1.24568012+10 *
3.34484394+10 *

acc

bcc

Cccc

dcc

o O O o

Tempdata(Tmin)2
Tempdata(Tintl)2
Tempdata(TintZ)2

Tempdata(Tmax)2

.0048145

4
.00399201 3.
.0030606 1

1

.00236844

Tinv2-ccoef

0.00351816

—0.00157653

9.05029565+10 °
2.68656352+10 *

The zero-, first-, second-, and third-order coefficient functions are given by:

NLO (T)

NL1 (T)

NL2 (T)

NL3 (T)

tccO

tcco,o + tccllo-Tempdata(T)
tCCOJ,+ tcclﬁfTempdata(T)
tccol2 + tccllz-Tempdata(T)

3 T tcc1,3-Tempdata(T)

+—tccz(fTempdata(T)2
+ tcc, ;-Tempdata (T)
+ tcc, ,-Tempdata (T)

+—tch:fTempdata(T)2

Tempdata (Tmax)

.65054473+10 °

1904055210 °

Tempdata(Tmin)3
Tempdata(Tintl)3

Tempdata(TintZ)3

3

2.48696787°10

4.91511553+10 °
3.27395645+10 °

.87200228+10 °
.11963953+10 °

-1

—-2.22680466°10 °

+ tce, ,-Tempdata (T)

+ tcec, -Tempdata (T)

+ tcec, ,-Tempdata (T)

+ tcec, ;-Tempdata (T)
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The offset- and nonlinearity-correction function is then given by:

OLC(T,P) = NLO(T) 4+ NL1(T)-Pdata(T,P) + NLZ(T)~Pdata(T,P)2 + NL3 (T) -Pdata (T ,P) 3

The final offset- and nonlinearity-corrected sensor data is (Figure 12) now given by:

OLCPdata (T ,P) = Pdata(T,P) + OLC(T,P)
1
,’//
0.5 - =
i
Pt
. Sz -
OLCPdata (Tmin ,P) Z
(Pl
Fz -
OLCPdata (Tintl ,P) 7
- 0
OLCPdata (Tint2 ,P) 2
- _ =%
OLCPdata (Tmax ,P) ///?/’
- LT
— o
0.5 s
-1
0 3.75 7.5 11.25 15

P (psi)

Figure 12. Offset and nonlinearity-Corrected Sensor data.

The next step is to remove the temperature dependency of the sensor sensitivity.

The span function over temperature is given by:

span (T) = OLCPdata (T ,Pmax) - OLCPdata (T ,Pmin)

The sensitivity correction coefficients that approximate 1/span(T) over a fourth order function of Tempdata(T)
can be found by:

xdata, .., = Tempdata (T)
1

data N T

y T — Tmin span(T)

sc = linfit (xdata,ydata ,F4)

0.18253006

sc = 0.0088296
\0.00503055
—0.00135329

/ 0.83011994
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The sensitivity correction function (Figure 13) can then be described by:

SensCorrection (T) = sc, + sc,-Tempdata (T) +—sc2-Tempdata(T)2
+ sc3-Tempdata(T)3 + sc4-Tempdata(T)4

l /

SensCorrection (T) 0.8

=50 0 50 100 150
T(°C)

Figure 13. Sensitivity correction function measured over temperature. (°C)

The corrected Sensor data is then given by:

CPdata (T ,P) = SensCorrection (T) -OLCPdata (T ,P)

The final data will be normalized to -0.9 for the minimum pressure and +0.9 for the maximum pressure. The
normalization factor is given by:

0.9 — (-0.9)
CPdata (Tmed , Pmax) — CPdata (Tmed ,Pmin)

nfactor =

nfactor = 1.79999926

The final coefficients for the sensitivity-correction function are then given by:

nsc .= nfactor-sc

1.49421527

/ 0.32855396

nsc = 0.01589327
—0.00905498
—0.00243592

Where the normalized sensitivity-correction function is given by:



nSensC (T) '= nsc, + nsc,-Tempdata (T) +—nsc2-Tempdata(T)2

+ nsc3-Tempdata(T)3 + nsc4-Tempdata(T)4

The value of nSensC(T) must be between -1 and +1 for the whole temperature range. To ensure that
this is true, we have to find the power-of-two divisor that scales back nSensC(T).

nSensVector, ... = |nSensC(T) |
— min

max (nSensVector) = 1.79458807

nsgainshfts = gainé—max (nSensVector)
ntempé—1
while gain> 1
gainé——géiﬁ
2
ntemp é—ntemp- 2
log (ntemp)
log (2)

nsgainshfts = 1

The final set of sensitivity-correction coefficients is then given by:

nsc

fnsc = ————
2 nsgainshfts

0.16427698

fnsc = 0.00794664
—0.00452749
-0.00121796

/ 0.74710764

The final sensitivity-correction function is then given by:

+ fnsc,-Tempdata (T) + fnch-Tempdata(T)2

fnSensC (T) = fnsco
4

+ fnsc3-Tempdata(T)3 + fnsc,-Tempdata (T)

The final normalized-corrected sensor data (Figure 14) is then given by:

nCPdata (T ,P) = 2789ainshfts. ¢hgansc (T) -OLCPdata (T, P)
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nCPdata (Tmin, P) 0.2

nCPdata (Tmed,P) 0

nCPdata (Tmax ,P) —0.2

0 2.5 5 7.5 10 12.5 15
P (psi)

Figure 14. Normalized corrected sensor data measured against pressure.

At this point, the sensor data is normalized to -0.9 to +0.9 for the minimum and maximum,
respectively, sensor excitation. All the nonlinearities have been corrected and the temperature
dependency is removed. It is a very linear signal with respect to the excitation (pressure).

5. DAC Correction

When an analog output is required, this step corrects the nonlinearities and temperature dependency
associated with the MAX 1464 DACs. The minimum and maximum output voltages associated with
the minimum and maximum sensor excitation were already defined. They are given by:

Vmin = 0.5

Vmax = 4.5
The offset can then be defined as:

Vmax — Vmin ,
Offset = ————7;—————+—len

Offset = 2.5

But the target offset value has to compensate for the DAC offset variation over temperature, which is given
by:

Offset — dacoffset (T)

targetOffset (T) = -
dacgain (T)
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1000-targetOffset (T)

—50 0 50 100 150

Figure 15. Target DAC correction over temperature.

The DAC offset-correction coefficients that approximate targetOffset(T) over a second-order
function of Tempdata(T) can be found by:

xdata, Tempdata (T)

— Tmin '

ydata, targetOffset (T)

— Tmin '

doc = linfit (xdata,ydata,bF2)

0.00136381

doc = -4.00952681+10 *

4.46867159°10 °

The DAC offset-correction function can then be described by:

2

dacOffsetCorrection (T) = doc, + doc,-Tempdata (T) + doc,-Tempdata (T)

The DAC gain must also be corrected for temperature variations. The function that corrects the DAC gain
variations over temperature and adjusts the signals for the output span is given by (Figure 16):

Vmax — Vmin . 1
0.9 — (-0.9) dacgain (T)

targetGain (T) =
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0.7454

0.7453

0.7452

targetGain (T)

0.7451

0.745

0.7449
—50 0 50 100 150
T(°C)

Figure 16. DAC gain correction measured over temperature.

The DAC gain-correction coefficients that approximate targetGain(T) over a second-order function
of Tempdata(T) can be found by:

xdata, Tempdata (T)

— Tmin '

ydata, targetGain (T)

~ Tmin

dgc = linfit (xdata,ydata,bF2)
0.74516895

dgc = -2.35975563+10 °

~5.47382243°+10 °

And the DAC gain correction function can then be described by:

2

dacGainCorrection (T) = dgc, + dgc,-Tempdata (T) + dgc,-Tempdata (T)

0

The final DAC input, as a function of temperature and pressure, is then given by:

dacin (T ,P) ‘= dacGainCorrection (T) -nCPdata (T ,P) + dacOffsetCorrection (T)

The final DAC output over the sensor excitation (pressure) is shown below in Figure 17, for various
temperatures.



Vdac (Tmed , dacin (Tmed ,P)) 3

Vdac (Tmin ,dacin (Tmin ,P) )

Vdac (Tmax ,dacin (Tmax ,P)) 2

0 3.75 7.5 11.25 15
P (psi)

Figure 17. DAC output (V) over pressure.

6. Compensation Coefficients and Equations

This section summarizes the compensation coefficients and equations that need to be implemented in the
MAX1464. Note that the MAX 1464 does not calculate the coefficients; they need to be calculated using
the algorithm described in this document.

The temperature-sensor data is shown as Tdata(T), and is the result of the ADC conversion of the internal
MAX1464 temperature sensor. The sensor-signal data is shown as Pdata(T), and is the result of the ADC
conversion of the sensor signal.

The program needs both the temperature-sensor data, and the sensor-signal data. As the temperature rate of
change is much slower than the sensor-signal data, the user can perform an ADC temperature conversion
on a much slower rate than the sensor signal, typically once every few hundred sensor-signal conversions.

The following functions are defined to convert the calculated coefficients to a two’s complement
hexadecimal representation. Note that the digitized coefficients may differ from the calculated values due to
quantization on a 16-bit level.

sign(x) = if(x< 0,0,1)
ip (x) = if (| ceil (|x|) - |x]||> |floor(|x|) - |x|]|,floor(x) ,ceil(x)) if x> 0
if(|ceil (| x|) - |x]||> |floor(|x|) - |x|]|,ceil(x) ,floor(x)) if x< 0

dzhi (d) = if| |dl<1,Cip(2'%-a) - sign(d)-2'%) + 2%, ip(d) - sign(d)-2'° + 21°]
d2h (d) = if (d2hi(d) =65536,0,d2hi (d))
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6.1. Compensation Coefficients

Toff = 0.01052856 d2h (Toff) = 159
tgain = 0.96100104 d2h (tgain) = 7b02h
ntgainshfts = 2 d2h (ntgainshfts) = 2h
[-0.01515302 ] d2h<tnlo> = feOfh
~5.67061548°10 ° d2h(tnl ) = ffedh
tnl = | 0.0186809 dzh(tnl,) = 264h
4
6.9990991°10 d2h(tnl;) = 17h
-5
3.2752246°10 - _
, J d2h(tnl,) = 1h
/0.00184753 ~1.59159026+10 °  0.00351816 2.48696787°10 °
. 0.07073196 5.03122682°10 © —0.00157653 ~2.22680466°10 °
cc =
0.01092556 ~1.10998417+10 *  9.05029565°10 ° 4.91511553+10 °
~1.25221931+10 ° -1.71486526°10 ° 2.68656352+10 * 3.27395645°10 °
d2h(tce, ) = ffe3h  d2h(tccy ;) = ffffh d2h(tccy ,) = 73h d2h(tce, ;) = 1h
d2h(tce, ;) = 90eh d2h(tcc; ) = 10h d2h(tce, ,) = ffech  d2h(tcc, ;) = ffffh
d2h(tcc, ) = 166h d2h(tcc, ) = fffch d2h(tcc, ,) = 3h d2h(tcec, ;) = 0
d2h(tcey ) = 0 d2h(tce, ) = ffffh d2h(tcc, ,) = % d2h(tcey ;) = 0
0.74710764 d2h(fnsc,) = 5falh
0.16427698 d2h(fnsc;) = 1507h
= 0.00794664
fnse d2h(fnsc,) = 104h
—0.00452749 -
d2h(fnsc,) = ffdsh
e =
/ 0.00136381 d2h(doc,) = 2dh
= |- «10 ¢ e =
doc \ 4.00952681°10 d2h(doc,) = fff3h
10 ° - -
4.46867159°10 d2h(doc,) = 1h
e =
/ 0.74516895 d2h\§gcd> 5f62h
= |- «10 ¢ e =
dgc \ 2.35975563°10 d2h(dgc,) = fffsh
- <10 ° e =
5.47382243°10 d2h\§gcé> fffeh

nsgainshfts = 1
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6.2. Temperature-Loop Compensation Equations
The following set of equations corrects the MAX1464 temperature-Sensor data.

OCTdata (T) = Tdata (T) + Toff

= 9 ntgainshfts

AOCTdata (T) -tgain-0OCTdata (T)

Tnl (T) = tnlO + tnll-AOCTdata (T) + tan-AOCTdata (T) 2

3 4

+ tnl3-AOCTdata (T) ~ + tnl4-AOCTdata (T)

Tempdata (T) '= AOCTdata (T) + Tnl (T)

The next set of equations corrects the sensor-signal data.

NLO (T) = tee, 4 + tee, -Tempdata (T) + tcc, -Tempdata (T) 2 + tce, -Tempdata (T) 3
NL1 (T) ‘= tcc, ; + tcc, ;-Tempdata (T) + tcc, ,-Tempdata (T) 2 + tcec, -Tempdata (T) 3
NL2 (T) = tee, , + tec, ,-Tempdata (T) + tcc, ,-Tempdata (T) 2 + tcec, ,-Tempdata (T) 3
NL3 (T) = tee, 5 + tec, ;-Tempdata (T) + tcc, ,-Tempdata (T) 2 + tcec, ;-Tempdata (T) 3
fnSensC (T) ‘= fnsc, + fnsc,-Tempdata (T) + fnsc,-Tempdata (T) 2

+ fnsc,-Tempdata (T) 3 + fnsc,-Tempdata (T) 4

The next set of coefficients and equations provide correction on the MAX1464 DAC data.

dacOffsetCorrection (T) = doc, + doc,-Tempdata (T) + doc,-Tempdata (T) 2

2

dacGainCorrection (T) ‘= dgc, + dgc,-Tempdata (T) + dgc,-Tempdata (T)

0

6.3. Sensor Signal Loop Compensation Equations

The following set of equations corrects the MAX1464's pressure-Sensor data.

OLC (T ,P) = NLO(T) + NL1(T)-Pdata (T ,P) + NL2 (T)-Pdata (T ,P)* + NL3 (T) -Pdata (T ,P)
OLCPdata (T ,P) = Pdata(T,P) + OLC(T,P)

nCPdata (T ,P) = 2nsgainshfts

-fnSensC (T) -OLCPdata (T ,P)
dacin (T ,P) = dacGainCorrection (T) -nCPdata (T ,P) + dacOffsetCorrection (T)
At this point, just write the final result, dacin(T,P), to the DAC input to obtain the compensated output.

Return to the beginning of the sensor-signal loop. The user may implement a counter to track the
number of sensor-signal conversions, and do a temperature CONversion every so often.
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7. References

7.1. To view the MAX 1464 data sheet, visit: www.maxim-ic.com/MAX1464

7.2. See application note, "Understanding the MAX1464 On-Chip Temperature Sensor"

7.3. See application Note, "An Embedded Compensation Program for the MAX1463 High-Performance Signal
Conditioner"

7.4. For more information on Maxim's thermal management, sensors, and signal conditioners, visit:
www.maxim-ic.com/Sensors.cfm
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