
Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 3561

Keywords: MAX-IDE,MAXQ,MAXQ2000,MAXQ3210,MAXQ3212

APPLICATION NOTE 3561

Getting started with MAX-IDE
Jun 21, 2005

Abstract: MAX-IDE is a fully functional application development and debugging environment for the
MAXQ® family of microcontrollers. MAX-IDE is designed to work with all the standard MAXQ evaluation
kits to provide a project-based development environment, access to standard MAXQ debugging features,
an integrated macro assembler, and in-circuit application loading using the JTAG interface.

Overview
MAX-IDE is a fully functional, application development and debugging environment for the MAXQ family
of microcontrollers. It works with all the standard MAXQ evaluation kits and provides the following
features.

Project-based development environment for MAXQ assembly applications
Integrated MAXQ macro assembler, including standard header files for all MAXQ microcontrollers
In-circuit application loading using the JTAG/TAP interface and ROM bootloader (for MAXQ
microcontrollers with flash or EEPROM program memory)
In-circuit debug features available over the JTAG/TAP interface include breakpointing, step-by-step
program execution, and memory/register content viewing

References
For more details, see the MAXQ2000 Evaluation Kit data sheet which is included on your evaluation kit
CD or available online.

Installing MAX-IDE
System requirements

Operating system: Windows® 98, Windows NT, Windows 2000, Windows ME, or Windows XP®
At least one free serial COM port (required to communicate with MAXQ evaluation kits), or a USB-
to-serial adapter and a free USB port

Running the install program
1. The installation package for MAX-IDE is MAX-IDE.zip, available from the MAXQ web page.
2. Download this package, unzip it, and run setup.exe to install MAX-IDE to your hard drive.
3. In the InstallShield dialogs, select the Typical installation, which will install all files needed for

MAXQ application development with your evaluation kit.
4. Once the installation is complete, MAX-IDE may be launched from the Start menu.

Page 1 of 12

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/17/c/Microcontrollers#c17
http://www.maximintegrated.com/MAXQ2000-KIT
http://www.maximintegrated.com/MAXQ

MAX-IDE installed files
The main executable and help files for MAX-IDE are located in the MAX-IDE root directory, placed by
default at {Program Files}\MAX-IDE. Additional files are located in the following subdirectories.

The Compilers subdirectory contains executables and data files for all compilers and assemblers
installed with MAX-IDE. At a minimum, this will include the standard MAXQ assembler; other
assemblers and compilers may also be installed depending on the distribution you are using.
The Devices subdirectory contains libraries, drivers, and configuration files to target applications for,
and communicate with all MAXQ microcontrollers and evaluation kits.

The Examples subdirectory contains code samples (in <device directory>/xxx_Demo) and standard
include files and libraries (in <device directory>/api) for all MAXQ microcontrollers.

Setting up the JTAG Interface
Serial-to-JTAG adapter board
MAX-IDE interfaces to the bootloader and debug engine functionality of MAXQ microcontorlllers over a
dedicated JTAG Test Access Port (TAP) interface, which is compatible with the JTAG IEEE Standard
1149. This interface consists of the following signals, which are typically multiplexed with port pins: TMS
(Test Mode Select), TCK (Test Clock), TDI (Test Data In), and TDO (Test Data Out).

Figure 1 illustrates how the Serial-to-JTAG adapter included with all MAXQ microcontroller evaluation
kits provides an interface layer between the PC serial COM port and the JTAG interface of the MAXQ
microcontroller.

Figure 1. Serial-to-JTAG interface for MAXQ.

JTAG interface signals and cable
The Serial-to-JTAG adapter board connects to the MAXQ evaluation kit board through a 10-connector
ribbon cable with a 2 x 5 0.100" spaced socket on each end. The signals carried by this cable are listed
in Table 1 below.

Table 1. JTAG interface signals
Pin
number Signal type Signal

name Signal description

1 Input to
MAXQ TCK JTAG/TAP test clock

2 Ground GND Ground

Page 2 of 12

3 Output from
MAXQ TDO JTAG/TAP test data out

4 Reference VREF Supplied by MAXQ kit to set the reference level for JTAG signals
output by the Serial-to-JTAG board

5 Input to
MAXQ TMS JTAG/TAP test mode select

6 Input to
MAXQ nRST Open-drain drive, connected to MAXQ reset line

7 None KEY Keyed pin for JTAG cable alignment
8 Power VCC5 +5.0V (±5%) supply provided by JTAG board

9 Input to
MAXQ TDI JTAG/TAP test data in

10 Ground GND Ground

Connecting the evaluation kit
Depending on the type of evaluation kit being used, power supplies may be required by the Serial-to-
JTAG interface board, the evaluation kit board, or both. Abbreviated instructions for setting up both
boards are provided here (Table 2); refer to the evaluation kit data sheet for more detailed instructions.
Note that all supplies used by either the Serial-to-JTAG board or any MAXQ evaluation kit board are DC
only, center post positive.

Table 2. Evaluation kit setup
Evaluation
kit

JTAG power
supply

Kit power
supply Jumper settings JTAG

header

MAXQ2000 5V, ±5% None JTAG—Close JH1, JH2, JH3Kit—Close JU11; Close
1+2 on JU1, JU2, JU3 J4

To set up the MAXQ evaluation kit and Serial-to-JTAG board (Figure 2) for use with MAX-IDE:

1. Connect the power supply to the Serial-to-JTAG board as shown above.
2. Set any jumpers for the evaluation kit and Serial-to-JTAG board as shown above. Additional jumper

or DIP switch settings may need to be made on the evaluation kit board to access certain kit
features; refer to the evaluation kit data sheet for more details.

3. Connect the 2 x 5 10-connector ribbon cable from the P2 header on the Serial-to-JTAG board to
the appropriate header on the evaluation kit board. The connectors may be keyed to connect in one
orientation only; if they are not, verify that the red wire goes to the same pin on both headers.

4. Connect a straight-through serial cable from J1 on the Serial-to-JTAG Board to the PC COM port.
5. Turn all power supplies on.

Page 3 of 12

Figure 2. MAXQ2000 evaluation kit and Serial-to-JTAG board.

Working with projects in MAX-IDE
Creating a new MAXQ assembly project
To create a new MAXQ assembly language project in MAX-IDE, follow these steps.

1. From the MAX-IDE menu, select Device → MAXQ JTAG.
2. Select Project → New Project. An untitled project will be created.
3. Select Project → Save Project As. Select the location where you want to save your project (.prj

file).
4. To create a new assembly language file, select File → New File. After you have entered the

assembly code into the file, select File → Save As, and save the newly created .asm file in your
project directory. Next, select Project → Add Files, and select the newly created file to add to your
project.

5. To add an existing assembly language file to your project, simply select Project → Add Files, and
select the file to be added to the project.

6. Include files do not need to be formally added to the project, as they are read automatically during
the assembly process.

An example assembly file for the MAXQ2000 would be:

$include (..\api\maxQ2000.inc)

org 0000h

Page 4 of 12

main:
 jump $

end

The $include line above will vary depending on the location of the include file. For more details on the
$include and org directives, see the "Using the MAX-IDE Assembler" section of this document.

Notes on assembly and include files
The system registers common to all MAXQ microcontrollers (such as the accumulators, data
pointers, and loop control registers) are predefined in the MAX-IDE assembler. The peripheral
registers, which are different for each device, must be defined in an include file. Standard include
files are included with the MAX-IDE install for each MAXQ microcontroller; the include file shown in
the above example is for the MAXQ2000.
Preprocessor directives (such as equates, defines, and macros) do not carry over from file to file
within a project. If a MAX-IDE assembly project contains more than one assembly file, any
preprocessor directives or include file directives must be contained in each assembly file that uses
them.
Regardless of the number of assembly files in a project, an "end" statement must appear at the end
of each file.
Do not put "end" statements at the end of include files.
When multiple assembly files are included in a project, all identifiers in all files are effectively public;
that is, code in any assembly file may call routines or refer to labels defined in any other assembly
file in that project.

Opening an existing project
To open a previously created MAX-IDE project, simply select Project → Open Project from the menu
and select the .prj file of the project you wish to open. Note that opening a MAXQ JTAG project when
the Serial-to-JTAG board and evaluation kit board are not connected correctly and powered up, may
result in an error message.

Once a project has been created or opened, assembly code files included in the project will be listed in
the panel on the left. Double-clicking on a file name will open it for editing in MAX-IDE, as shown in
Figure 3 below.

Page 5 of 12

Figure 3. The MAX-IDE project environment.

Executing and debugging code
Compiling a project
To compile project files, select Debug → Make or Debug → Build All from the menu, click one of the
shortcut buttons for these commands on the toolbar, or press F7 (same as Make). The MAXQ assembler
will run; if there are no errors, the message "Compiling...Build Successful." will be displayed in the
Messages window. Any errors from the build will also be displayed in the Messages window.

Running a project
Once a project has been successfully compiled, it can be executed in the debugger using one of several
methods.

1. Selecting Debug → Run (F5) will load the compiled project code into the MAXQ microcontroller
over the JTAG interface and start execution. Program execution will continue until Debug → Stop
(Shift+F5) is selected, the Pause button is clicked, or a breakpoint is encountered.

2. Selecting Debug → Step Into (F11) will load the compiled program and halt execution at the first
source-code line.

3. Selecting Debug → Run to Cursor (Control+F10) will load the compiled program, start execution,
and run until the execution point reaches the line that the editing cursor occupies or until it reaches
a breakpoint, whichever occurs first. If the cursor is not on a source-code line, selecting this option
will result in an error.

Breakpoints, which halt program execution at a predetermined location, can be set or cleared by one of
three methods.

Page 6 of 12

Move the cursor to the line you wish to breakpoint and select Debug → Toggle Breakpoint.
Move the cursor to the line you wish to breakpoint and click the stoplight icon in the toolbar.
Click the line number of the line you wish to breakpoint in the editing window.

Note that a breakpoint can be placed on a nonsource code line, but this will have no effect. MAXQ
microcontrollers allow up to four breakpoints to be set at once; if Run to Cursor is selected, this uses up
a breakpoint, so only three may be set in this case.

Selecting Debug → Stop or clicking the Stop icon in the toolbar shuts down program execution
completely. However, when execution stops at the first line (Step Into), at the cursor line (Run to
Cursor), or at a line with a breakpoint set, the program may then be executed in step-by-step mode.
Step-by-step mode may also be entered by clicking the Pause button. In this mode, the current
execution point is marked with a green arrow, and the following commands may be used.

Debug → Step Into (F11), Debug → Step Over (F10), and Debug → Step Out (Shift+F10) all
have the same effect in assembly debug mode, which is to execute a single instruction and move
the execution point to the next instruction.
Debug → Run will run from the current execution point until the next breakpoint is reached, as
described above.
Debug → Run To Cursor will run from the current execution point until the cursor line is reached,
as described above.

Note that the High-Level Debug and Low-Level Debug settings in the Debug menu have no effect
when running in assembly-language debugging mode.

Displaying and editing processor registers
Once a program has been loaded and has executed at least one instruction, the MAXQ microcontroller's
registers may be viewed and edited using the debugger. Selecting Window → Show → Registers
brings up a display of the register set. These values will update as you step through code in the
debugger. Writeable registers may be edited by double-clicking in their value fields and entering new
values in hex, decimal, or binary.

MAXQ2000 kit note: If the LCD daughterboard is attached, do not edit the values of the registers
PO0, PD0, PO1, PD1, PO2, PD2, PO3, or PD3 manually. Setting these pin outputs to static values
with the LCD attached may damage the LCD display.

Displaying and Editing Processor Memory
Once a program has been loaded and has executed at least one instruction, the MAXQ microcontroller's
internal memories may be viewed and edited. Selecting Window → Show → Memory brings up a
display of internal memory. You can view code, data, or stack memory by selecting from the drop-down
list on the display. Memory is displayed in 16-bit width for code and stack space, and 8-bit width in data
space. Memory values in data or stack space may be edited by double-clicking on a memory location
and entering a new value.

Using the MAX-IDE assembler
MAX-IDE provides a multipass assembler which can be used to develop applications in MAXQ assembly
language. This assembler includes a single-pass preprocessor which provides the capability to use
include files, symbolic equates, conditional assembly, and macros. The assembler and preprocessor are
fully integrated with the MAX-IDE environment.

Page 7 of 12

For an example of how to use macros and other preprocessor directives, refer to the 'Macro' example
project.

General syntax
The MAXQ assembler and the preprocessor are both case insensitive. Assembly statements follow the
format:

[label:] [opcode [parameter [, parameter]]] [;comment]

as shown in the following example code:

main:
move Acc, A[2] ; copy A[2] to active accumulator

Identifiers, such as the 'main' label shown above, may include the characters [a-zA-Z_?$0-9], but they
may not begin with a 0-9 digit. They may be up to 127 characters in length.

Refer to the MAXQ Family User's Guide for a detailed description of the architecture, instruction set,
addressing modes, and core registers of the MAXQ microcontroller family.

Source files
All assembly source (.asm) files listed in the project window of MAX-IDE will be assembled when the
project is compiled, in the order in which they are shown in the window. No linker is provided, so
multiple files are assembled in the same manner as they would be if they were merged into a single file
and then assembled.

Source files may contain include directives, equates/defines, macros, conditional assembly blocks, and
statements. The last line of any source file must consist of the END directive:

end

Include files
Include (.inc) files do not need to be added explicitly to a project. Instead, they are read in and parsed
automatically by means of include directives, which cause the include file to be parsed as if all its text
had appeared in the source file in place of the include directive.

(source file): (equates.inc):
$include(equates.inc) ---> MASK1 equ 0FFh
 MASK2 equ 0FEh
(resume parsing in source <---
file)

Include files may contain include directives, equates, macros, and DB/DW data statements, but they may
not contain assembly routines. Include files do not need to end with the END directive.

MAX-IDE provides a standard include file for each MAXQ microcontroller which defines that
microcontroller's peripheral register set as well as addresses for functions provided by the utility ROM.
These include files are available for use in all assembly language projects; they are found in the
Examples subdirectory under the main MAX-IDE install directory.

Page 8 of 12

Constants
Constant numeric values for use as immediate values in statements or equate definitions can be written
in one of four formats.

Decimal (default)—ends with no character or with 'd'. Examples: 10, 07d
Binary—ends with 'b'. Examples: 01b, 1101101b
Hex—begins with a 0-9 digit and ends with 'h'. Examples: 10h, 09FFEh
Single character—converted to byte ASCII value. Example: 'A'

The following operators may also be used in constants and equate definitions only; evaluation of these
statements is performed in the preprocessing stage, before the constant value is parsed.

 move Acc, #(1+1) ; 2 : Addition
 move Acc, #(4-1) ; 3 : Subtraction
 move Acc, #(2*2) ; 4 : Multiplication
 move Acc, #(25/5) ; 5 : Division (truncated to integer)

 move Acc, #(MIN(6,7)) ; 6 : Minimum of two values
 move Acc, #(MAX(6, 7)) ; 7 : Maximum of two values
 move Acc, #'A' ; ASCII value of 'A'

 move Acc, #(550h | 055h) ; 555h : Logical OR
 move Acc, #(550h & 055h) ; 050h : Logical AND
 move Acc, #(550h ^ 055h) ; 505h : Logical XOR
 move Acc, HIGH(#1234h) ; 12h : Select high byte of word
 move Acc, LOW(#1234h) ; 34h : Select low byte of word
 move Acc, NOT(#0000h) ; FFFFh : Bitwise negation
 move Acc, #001h << 7 ; 080h : Shift left
 move Acc, #080h >> 7 ; 001h : Shift right

Equates
Equates, defined using the EQU directive, are used for numeric replacement in any place that a
constant value would normally be used. They may use all the formats and constant operators defined
above for constants. Labels are not recognized as constants.

ONE equ 01
TWO equ 02

 move Acc, #ONE
 move Acc, #(ONE+TWO)

Equates may also be used in the definitions of subsequent equates.

ONE equ 01
TWO equ ONE+ONE

Defines
Defines allow straight C-style text replacement with no additional processing, and are most commonly
used in include files to define peripheral registers. Replacement text is limited to a single line; there is no
recognized continuation character. C-style macros are not recognized.

#define PO[0] M0[0]

Page 9 of 12

move Acc, PO[0] ; Parses as 'move Acc, M0[0]'

Data keywords
The DB and DW directives can be used to insert raw bytes (including bytes from a string value) or words
into the hex file at the current location.

db 055h, 0AAh, 055h, 0AAh ; byte values
dw 0AAAAh, 05555h ; word values
db "MAX-IDE Environment " ; byte value for each char (padded to even
count)

Note that these data values will be inserted in code space. Consequently, if a DB statement occurs
between two sets of instruction statements, the number of bytes defined must be even to prevent a
word-alignment assembly error.

Conditional assembly
Conditional statements allow blocks of code to be assembled only if a certain boolean condition is met.
They have the following form.

IF (<boolean statement>)
 statements
 ...
ENDIF

Boolean statements are defined using constants, equates, and the following boolean operators: =, !=, <,
<=, >, and >=. Only code and include statements may be used within a conditional assembly block—no
macros or equates.

DEBUG equ 0
DOINC equ 1

IF (DEBUG != 0)
 call RoutineDbg
ENDIF

IF (DEBUG = 0)
 call Routine
ENDIF

IF (DOINC = 1)
$include(defines.inc)
ENDIF

Macros
Macros allow functions to be defined using blocks of code that are expanded inline and assembled each
time a function is called. They have the following form.

<identifier> MACRO [[PARAM <parm1>] [whitespace AND/OR comma] [<parm2>] ...]
[LOCAL <local1> [whitespace AND/OR comma] [<local2>] ...]
<macro assembly statements, local labels>
...
ENDM

The simplest type of macro does nothing more than insert its code each time it is referenced. Equates,
defines, and nested macro calls within the inserted code are all processed normally.

Page 10 of 12

ThreeNops MACRO
 nop
 nop
 nop
ENDM

ThreeNops --> nop
 nop
 nop

Macros may optionally define one or more parameters, which are values passed when the macro is
referenced. These values are pasted into the expanded code. The following macro uses a parameter to
provide an 'INC' function for any writeable register (except Acc) at the cost of one level of stack space.

Inc MACRO PARAM Register
 push Acc
 move Acc, Register
 add #1
 move Register, Acc
 pop Acc
ENDM

Inc LC[0] --> push Acc
 move Acc, LC[0]
 add #1
 move LC[0], Acc
 pop Acc

Macros may also contain local identifiers, which are renamed in the expanded code so that they are
unique in each reference of the macro.

LoopN MACRO PARAM Count
LOCAL L1
 move LC[0], Count
L1:
 djnz LC[0], L1
ENDM

In the macro above, the 'L1' label will be renamed to a different temporary value each time the macro is
referenced and its code inserted.

MAXQ is a registered trademark of Maxim Integrated Products, Inc.
Windows is a registered trademark and registered service mark of Microsoft Corporation.
Windows XP is a registered trademark and registered service mark of Microsoft Corporation.

Related Parts

MAXQ2000 Low-Power LCD Microcontroller Free Samples

MAXQ2000-KIT Evaluation Kit for the MAXQ2000

MAXQ3210 Microcontroller with Internal Voltage Regulator,
Piezoelectric Horn Driver, and Comparator

Page 11 of 12

http://www.maximintegrated.com/datasheet/index.mvp/id/4466
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAXQ2000
http://www.maximintegrated.com/datasheet/index.mvp/id/4478
http://www.maximintegrated.com/datasheet/index.mvp/id/4830

MAXQ3212 Microcontroller with Analog Comparator and LED Driver

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 3561: http://www.maximintegrated.com/an3561
APPLICATION NOTE 3561, AN3561, AN 3561, APP3561, Appnote3561, Appnote 3561
Copyright © by Maxim Integrated Products
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 12 of 12

http://www.maximintegrated.com/datasheet/index.mvp/id/4831
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an3561
http://www.maximintegrated.com/legal

	maxim-ic.com
	Getting started with MAX-IDE - Application Note - Maxim

