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Using the Analog Devices Active Filter Design Tool
By Hank Zumbahlen

Table I. Chebyshev Cutoff Frequency to –3 dB Frequency

INTRODUCTION
The Analog Devices Active Filter Design Tool assists the 
engineer in designing all-pole active filters.

The filter design process consists of two steps. In Step 1, 
the response of the filter is determined, meaning the 
attenuation and/or phase response of the filter is defined. 
In Step 2, the topology of the filter—how it is built—is 
defined. This application note is intended to help in Step 1. 
Several different standard responses are discussed, and 
their attenuation, group delay, step response, and impulse 
response are presented. The filter tool is then employed 
to design the filter. An example is provided.

STANDARD RESPONSES
Many transfer functions may be used to satisfy the atten-
uation and/or phase requirements of a particular filter. The 
one that is selected will depend on the particular system. 
The importance of frequency domain response versus 
time domain response must be determined. Also, both 
of these might be traded off against filter complexity, and 
therefore cost.

BUTTERWORTH FILTER
The Butterworth filter is the best compromise between 
attenuation and phase response. It has no ripple in the 
pass band or the stop band; because of this, it is some-
times called a maximally flat filter. The Butterworth filter 
achieves its flatness at the expense of a relatively wide 
transition region from pass band to stop band, with aver-
age transient characteristics.

The values of the elements of the Butterworth filter are 
more practical and less critical than many other filter 

types. The frequency response, group delay, impulse 
response, and step response are shown in Figure 1. The 
pole locations and corresponding o and  terms are 
tabulated in Table II.

CHEBYSHEV FILTER
The Chebyshev (or Chevyshev, Tschebychev, Tsche-
byscheff, or Tchevysheff, depending on the translation 
from Russian) filter has a smaller transition region than 
the same-order Butterworth filter, at the expense of 
ripples in its pass band. This filter gets its name from 
the Chebyshev criterion, which minimizes the height of 
the maximum ripple.

Chebyshev filters have 0 dB relative attenuation at dc. 
Odd-order filters have an attenuation band that extends 
from 0 dB to the ripple value. Even-order filters have 
a gain equal to the pass-band ripple. The number of 
cycles of ripple in the pass band is equal to the order of 
the filter.

The Chebyshev filters are typically normalized so that the 
edge of the ripple band is at o = 1. 

The 3 dB bandwidth is given by

A
ndB3

11 1=






cosh–

ε  (1)

This is tabulated in Table I.

Figures 2 through 6 show the frequency response, group 
delay, impulse response, and step response for the various 
Chebyshev filters. The pole locations and corresponding 
o and  terms are tabulated in Tables III through VII.
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BESSEL FILTER
Butterworth filters have fairly good amplitude and transient 
behavior. The Chebyshev filters improve on the amplitude 
response at the expense of transient behavior. The Bessel 
filter is optimized to obtain better transient response due 
to a linear phase (i.e., constant delay) in the pass band. 
This means that there will be relatively poor frequency 
response (less amplitude discrimination).

The frequency response, group delay, impulse response, 
and step response for the Bessel filter are shown in 
Figure 7. The pole locations and corresponding o and  

terms are tabulated in Table VIII.

LINEAR PHASE WITH EQUIRIPPLE ERROR
The linear phase filter offers linear phase response in the 
pass band, over a wider range than the Bessel, and superior 
attenuation far from cutoff. This is accomplished by letting 
the phase response have ripples, similar to the amplitude 
ripples of the Chebyshev. As the ripple is increased, the 
region of constant delay extends further into the stop band. 
This will also cause the group delay to develop ripples, 
since it is the derivative of the phase response. The step 
response will show slightly more overshoot than the Bessel 
and the impulse response will show a bit more ringing.

The frequency response, group delay, impulse response, 
and step response for equiripple filters with error of 0.05° 
and 0.5° are shown in Figures 8 and 9, respectively. The pole 
locations and corresponding o and  terms are tabulated 
in Tables IX and X.

GUASSIAN-TO-6 dB AND GUASSIAN-TO-12 dB FILTER
Gaussian-to-6 dB and Gaussian-to-12 dB filters are a com-
promise between a Chebyshev filter and a Gaussian filter, 
which is similar to a Bessel filter. A transitional filter has 
nearly linear phase shift and smooth, monotonic roll-off 
in the pass band. Above the pass band and especially at 
higher values of n, there is a break point beyond which 
the attenuation increases dramatically compared to that 
of the Bessel.

The Gaussian-to-6 dB filter has better transient response in 
the pass band than does the Butterworth filter. Beyond the 
breakpoint, which occurs at o = 1.5, the roll-off is similar 
to that of the Butterworth filter.

The Gaussian-to-12 dB filter’s transient response in the pass 
band is much better than that of the Butterworth filter. Beyond 
the 12 dB breakpoint, which occurs at o = 2, the attenuation 
is less than that of the Butterworth filter.

The frequency response, group delay, impulse response, 
and step response for Gaussian-to-6 dB and Gaussian-
to-12 dB filters are shown in Figures 10 and 11, respectively. 
The pole locations and corresponding o and  terms are 
tabulated in Tables XI and XII.

USING THE PROTOTYPE RESPONSE CURVES
The response curves and design tables for several of the 
low-pass prototypes of the all-pole responses discussed 
previously are now cataloged. All of the curves are normal-
ized to a –3 dB cutoff frequency of 1 Hz. This allows direct 
comparison of the various responses. In all cases, the 
amplitude response for the 2- through 10-pole  cases for 
the frequency range of 0.1 Hz to 10 Hz will be shown. Then, 
a detail of the 0.1 Hz to 2 Hz pass band will be shown. 
The group delay from 0.1 Hz to 10 Hz, the impulse response, 
and the step response from 0 seconds to 5 seconds will 
also be shown.

Curves must be denormalized if they are to be used to 
determine the response of real life filters. In the case of 
the amplitude responses, this is accomplished by simply 
multiplying the frequency axis by the desired cutoff fre-
quency, FC. To denormalize the group delay curves, divide 
the delay axis by 2 FC and multiply the frequency axis by 
FC. Denormalize the step response by dividing the time axis 
by 2 FC. Denormalize the impulse response by dividing 
the time axis by 2 FC and multiplying the amplitude axis 
by 2 FC.

For a high-pass filter, simply invert the frequency axis 
for the amplitude response. In transforming a low-pass 
filter into a high-pass filter, the transient behavior is not 
preserved. Zverev provides a computational method for 
calculating these responses.

In transforming a low-pass into a narrow-band band-
pass, the 0 Hz axis is moved to the center frequency, F0. 
It stands to reason that the response of the band-pass 
case around the center frequency would then match the 
low-pass response around 0 Hz. The frequency response 
curve of a low-pass filter actually mirrors itself around 
0 Hz, although we generally do not concern ourselves 
with negative frequency. 

To denormalize the group delay curve for a band-pass 
filter, divide the delay axis by BW, where BW is the 
3 dB bandwidth in Hz. Then, multiply the frequency axis 
by BW/2. In general, the delay of the band-pass filter at F0 
will be twice the delay of the low-pass prototype with the 
same bandwidth at 0 Hz. This is due to the fact that the 
low-pass to band-pass transformation results in a filter 
with order 2n, even though it is typically referred to as 
having the same order as the low-pass filter we derive it 
from. This approximation holds for narrow-band filters. 
As the bandwidth of the filter is increased, some distortion 
of the curve occurs. The delay becomes less symmetrical, 
peaking below F0.

The envelope of the response of a band-pass filter 
resembles the step response of the low-pass prototype. 
More exactly, it is almost identical to the step response of 
a low-pass filter with half the bandwidth. To determine the 
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envelope response of the band-pass filter, divide the time 
axis of the low-pass prototype’s step response by BW, 
where BW is the 3 dB bandwidth. The previous discussions 
of overshoot, ringing, and so on can now be applied to 
the carrier envelope.

The envelope of the response of a narrow-band band-pass 
filter to a short burst (where the burst width is much less 
than the rise time of the band-pass filter’s denormalized step 
response) of carrier can be determined by denormalizing 

the impulse response of the low-pass prototype. To do this, 
multiply the amplitude axis and divide the time axis by 
BW, where BW is the 3 dB bandwidth. It is assumed that 
the carrier frequency is high enough so that many cycles 
occur during the burst interval.

While the group delay, step, and impulse curves cannot 
be used directly to predict the distortion to the waveform 
caused by the filter, they are a useful figure of merit when 
used to compare filters.
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Figure 1. Butterworth Response
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Figure 2. 0.01 dB Chebyshev Response
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Figure 3. 0.1 dB Chebyshev Response
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Figure 4. 0.25 dB Chebyshev Response
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Figure 5. 0.5 dB Chebyshev Response
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Figure 6. 1 dB Chebyshev Response
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Figure 7. Bessel Response
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Figure 8. Linear Phase with Equiripple Error of 0.05° Response

REV. 0 REV. 0



–12–

AN-649

–13–

AN-649

������� ��������

�
���� ���

�
�
�
�
��
�
�
�
��
�

���

���

�

����
� � � � �

���� ��������

�
���� ���

��������� ������������� ����

�
�
�
�
��
�
�
�
��
�

���

���

���

�
� � � � �

����

��������� �������� ����� �����

�
�
�
�
��
�
�
�
��
�
�

�
�
�
�
�
��
�

���

�

��� ��� ��� ��� ���

���

�
��� ��� ��� ��������

���������

��������� ����

���

���

�
�
�
�
��
�
�
�
��
�
�

�

��� ��� ��� ��� ������ ��� �����

Figure 9. Linear Phase with Equiripple Error of 0.5° Response
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Figure 10. Gaussian-to-12 dB Response
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Figure 11. Gaussian-to-6 dB Response
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Table II. Butterworth Design

�

Table III. 0.01 dB Chebyshev Design

�
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Table IV. 0.1 dB Chebyshev Design

�

Table V. 0.25 dB Chebyshev Design

�
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Table VI. 0.5 dB Chebyshev Design

�

Table VII. 1 dB Chebyshev Design

�
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Table VIII. Bessel Design

�

Table IX. Equiripple with 0.05° Error Design

�
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Table X. Equiripple with 0.5° Error Design

�

Table XI. Gaussian-to-12 dB Design
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Table XII. Gaussian-to-6 dB Design

�

COMPARING THE RESPONSES 
The responses of several all-pole filters, namely the Bessel, 
Butterworth, and Chebyshev (in this case of 0.5 dB ripple), 
will now be compared. An 8-pole filter is used as the basis 
for the comparison. The responses have been normal-
ized for a cutoff of 1 Hz. Comparing Figures 12 and 13, 
it is easy to see the tradeoffs in the various responses. 
Moving from Bessel through Butterworth to Chebyshev, 
one can see that the amplitude discrimination improves 
as the transient behavior gets progressively poorer.
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Figure 15. Step Response Comparison

FILTER TOPOLOGIES
Now that it has been decided what to build, it now must 
be decided how to build it. This means that it is necessary 
to decide which of the filter topologies to use. Filter design 
is a two-step process where it is determined what is to be 
built (the filter transfer function) and then how to build it 
(the topology used for the circuit). In general, filters are 
built out of 1-pole sections for real poles, and two pole 
sections for pole pairs. While one can build a filter out of 
3-pole or higher order sections, the interaction between 
the components in the sections increases and, therefore, 
so do component sensitivities. It is better to use buffers 
to isolate the various sections. Additionally, it is assumed 
that all filter sections are driven from a low impedance 
source. Any source impedance can be modeled as being 
in series with the filter input.

In all of the design equation figures, the following conven-
tion will be used:

   H  = circuit gain in the pass band or at resonance

   FC = cutoff or resonant frequency in Hz

   0 = cutoff or resonant frequency in radians/sec

   Q  = circuit “quality factor”; indicates circuit peaking

      = 1/Q = damping ratio

Unfortunately, the symbol  is used for damping ratio. 
It is not the same as the  used to denote pole locations 
( ± j). The same issue occurs for Q. It is used for the 
circuit quality factor as well as the component quality 
factor, which are not the same thing. The circuit Q is 
the amount of peaking in the circuit. This is a function 
of the angle of the pole to the origin in the s plane. The 
component Q is the number of losses in what should be 
lossless reactance. These losses are the parasitics of the 
components-dissipation factor, leakage resistance, ESR 
(equivalent series resistance), etc. in capacitors and series 
resistance and parasitic capacitances in inductors.

SALLEN-KEY FILTER
The Sallen-Key configuration, also known as a voltage 
control voltage source (VCVS), was first introduced in 1955 
by R.P. Sallen and E.L. Key of MIT’s Lincoln Labs. It is one 
of the most widely used filter topologies. One reason for 
this popularity is that this configuration shows the least 
dependence of filter performance on the performance of 
the op amp. This is due to the fact that instead of being 
configured as an integrator, the op amp is configured as 
an amplifier, which minimizes its gain-bandwidth require-
ments. This infers that since the op amp gain-bandwidth 
product will not limit the performance of the filter as it 
would if it were configured as an integrator, one can design 
a higher frequency filter than one can with other topolo-
gies. The signal phase through the filter is maintained 
(noninverting configuration). Another advantage of this 
configuration is that the ratio of the largest resistor value 
to the smallest resistor value and the ratio of the largest 
capacitor value to the smallest capacitor value (component 
spread) are low, which is good for manufacturability. The 
frequency and Q terms are somewhat independent, but 
they are very sensitive to the gain parameter. The Sallen-
Key is very Q sensitive to element values, especially for 
high Q sections. The design equations for the Sallen-Key 
low-pass filter are shown in Figure 16.
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Figure 16. Sallen-Key Low-Pass Design Equations
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There is a special case of the second-order Sallen-Key 
low-pass filter. If the gain is set to 2, the capacitor values, 
as well as the resistor values, will be the same. 

While the Sallen-Key filter is widely used, a serious draw-
back is that the filter is not easily tuned, due to interaction 
of the component values on F0 and Q. 

The design equations for the Sallen-Key high-pass filter 
are shown in Figure 17.
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Figure 17. Sallen-Key High-Pass Design Equations
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Figure 18. Sallen-Key Band-Pass Design Equations

The band-pass case of the Sallen-Key filter has a limitation. 
The value of Q will determine the gain of the filter, i.e., it 
cannot be set independent, as in the low-pass or high-pass 
cases. The design equations for the Sallen-Key band-pass 
are shown in Figure 18.

MULTIPLE FEEDBACK FILTER
The multiple feedback filter uses an op amp as an integra-
tor. Therefore, the dependence of the transfer function on 
the op amp parameters is greater than in the Sallen-Key 
realization. It is hard to generate high Q, high frequency 
sections due to the limitations of the open-loop gain of 
the op amp. The open-loop gain of the op amp should 
be at least 20 dB (10) above the amplitude response at 
the resonant (or cutoff) frequency, including the peaking 
caused by the Q of the filter. The peaking due to Q will 
cause an amplitude, A0:

A0 = H Q                                                                    (2)

where H is the gain of the circuit. The multiple feedback 
filter will invert the phase of the signal. This is equivalent 
to adding the resulting 180° phase shift to the phase shift 
of the filter itself.
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The maximum to minimum component value ratios are 
higher in the multiple feedback case than in the Sallen-Key 
realization. The design equations for the multiple feedback 
low-pass filter are given in Figure 19.
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Figure 19. Multiple Feedback Low-Pass Design Equations

The design equations for the multiple feedback high-pass 
filter are given in Figure 20.
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Figure 20. Multiple Feedback High-Pass Design Equations

The design equations for the multiple feedback band-pass 
case are given in Figure 21. This circuit is widely used in low 
Q (<20) applications. It allows some tuning of the resonant 
frequency, F0, by making R2 variable. Q can be adjusted 
(with R5) as well, but this will also change F0. Tuning of 
F0 can be accomplished by monitoring the output of the 
filter with the horizontal channel of an oscilloscope, with 
the input to the filter connected to the vertical channel. The 
display will be a Lissajous pattern consisting of an ellipse 
that will collapse into a straight line at resonance, since the 
phase shift will be 180°. One could also adjust the output 
for maximum output, which will also occur at resonance; 
this is usually not as precise, especially at lower values 
of Q, where there is a less pronounced peak.
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Figure 21. Multiple Feedback Band-Pass Design Equations

STATE VARIABLE FILTER
The state-variable realization offers the most precise imple-
mentation at the expense of many more circuit elements. All 
three major parameters (gain, Q, and 0) may be adjusted 
independently, and low-pass, high-pass, and band-pass 
outputs are available simultaneously. Note that the low-
pass and high-pass outputs are inverted in phase while the 
band-pass output maintains the phase. The gain of each of 
the outputs of the filter is also independently variable. 

Since all parameters of the state variable filter can be 
adjusted independently, component spread can be 
minimized. Also, variations due to temperature and 
component tolerances are minimized. The op amps used 
in the integrator sections will have the same limitations 
on op amp gain-bandwidth as described in the multiple 
feedback section.
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The design equations for the state variable filter are shown 
in Figure 22.
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Figure 22. State Variable Design Equations

Tuning the resonant frequency of a state variable filter is 
accomplished by varying R4 and R5. While both do not 
have to be tuned, it is generally preferable if varying over 
a wide range. Holding R1 constant, tuning R2 sets the low-
pass gain and tuning R3 sets the high-pass gain. Bandpass 
gain and Q are set by the ratio of R6 and R7.

Since the parameters of a state variable filter are indepen-
dent and tunable, it is easy to add electronic control of 
frequency, Q and 0. This adjustment is accomplished by 
using multiplying DACs (MDACs) or digital potentiometers. 
For the integrator sections, adding the MDAC effectively 
increases the time constant by dividing the voltage driving 
the resistor, which, in turn, provides the charging current 
for the integrator capacitor. In effect, this raises the resis-
tance and, in turn, the time constant. The Q and gain can 
be varied by changing the ratio of the various feedback 
paths. A digital potentiometer will accomplish the same 
feat in a more direct manner, by directly changing the 
resistance value. The resulting tunable filter offers a great 
deal of utility in measurement and control circuitry. 

BIQUADRATIC (BIQUAD) FILTER
A close cousin of the state variable filter is the biquad. 
The name of this circuit, first used by J. Tow in 1968 and 
later by L.C. Thomas in 1971, is derived from the fact that 
the transfer function is quadratic in both the numerator 
and the denominator. Therefore, the transfer function is a 
biquadratic function. This circuit is a slight rearrangement 
of the state variable circuit. One significant difference is 
that there is not a separate high-pass output. The band-
pass output inverts the phase. There are two low-pass 
outputs, one in phase and one out of phase. With the 
addition of a fourth amplifier section, a high-pass filter 
may be realized. The design equations for the biquad are 
given in Figure 23.
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Figure 23. Biquad Design Equations

Referring to Figure 23, the input, band-pass, and second 
low-pass outputs are summed for the high-pass output. 
In this case, the constraints are that R1 = R2 = R3 and 
R7 = R8 = R9. 

Like the state variable, the biquad filter is tunable. Adjusting 
R3 will adjust the Q. Adjusting R4 will set the resonant 
frequency. Adjusting R1 will set the gain. Frequency would 
generally be adjusted first, followed by Q and then gain. 
Setting the parameters in this manner minimizes the effects 
of component value interaction.
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OP AMP REQUIREMENTS
The curves that were generated for the prototype responses 
were done using an ideal op amp. In reality, the op amp 
is a single-pole low-pass filter. The amplifier’s dominant 
pole is the corner frequency of the filter. The op amp’s 
transfer function would be added to the filter response. 

In practice, this means that if the gain-bandwidth product 
of the op amp is not at least an order of magnitude greater 
than the cutoff frequency of the filter, there will be some 
interaction. If the gain-bandwidth product of the amplifier 
is more than an order of magnitude higher than the filter, 
the response of the op amp can generally be ignored. In 
any case, if there is concern, the filter SPICE deck can be 
downloaded and the SPICE model of the specific op amp 
that will be used can be simulated with SPICE.

A current feedback amplifier can only be used with 
Sallen-Key topology since this is the only topology in 
which the op amp is configured as an amplifier. In the 
other topologies, the op amp is used with capacitors 
in the feedback network, which is inappropriate for the 
current feedback amplifier.

Another choice is that of bipolar or FET input devices. In 
general, if the impedance level of the filter is less than 
1 k, a bipolar op amp is the appropriate choice. If the 
impedance is greater than 10 k, a FET input op amp 
is a better choice. This is entirely due to the FET amps 
having higher input impedance, which will be less of a 
load to the network.

A final word of caution: filters with high Q sections can 
cause the dynamic range of the op amp to be exceeded. 
This is due to peaking of the section. The peaking due to 
Q will cause an amplitude, A0:

       A0 = H Q

where H is the gain of the circuit.

Also remember: 

        
α = 1

Q

AN EXAMPLE
As an example, an antialiasing filter will now be 
designed.

The specifications for the filter are as follows:

1.  The cutoff frequency is 8 kHz. 

2. The stop-band attenuation is 72 dB. This corresponds 
to a 12-bit system.

3. The stop-band frequency is 42 kSPS. This assumes 
a 100 kSPS A/D converter. The Nyquist frequency is 
50 kHz. Subtracting 8 kHz, for the image of the pass 
band around the sample rate gives us 42 kHz.

4. The Butterworth filter response is chosen in order to 
give the best compromise between attenuation and 
phase response.

Taking the Butterworth curves (Figure 1), a horizontal line 
is drawn at 72 dB. A vertical line is drawn at 5.25 Hz. This 
is the ratio of FS/F0 (see Figure 24). This shows that a filter 
order of 5 is required. This information is then used for 
input to the filter tool.
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Figure 24. Determining Filter Order
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USING THE TOOL
First, the filter order must be determined. To do this, use the filter response curves as described in Figure 24.

This information is then used in the design tool. First, the filter response is entered. In this example, Lowpass is selected. 
The other options are shown.

Figure 25. Entering the Response Type

Next, the response shape is entered. Butterworth was chosen.

Figure 26. Filter Response

The filter order is then entered. The choices are 1 to 8. In 
this example, fifth-order is chosen. The cutoff (or center) 
frequency is also entered.

A fifth-order filter is made up of two second-order sec-
tions and a single-pole section. This is shown in the next 
row of boxes in the tool. For each of the second-order 
sections, the topology of the filter is entered. The active 
box is outlined. 

The sections can be configured in any order. Typically, 
the low Q sections are put first. This may help with the 
problem of exceeding the dynamic range of the filter by 
providing some attenuation before the peaking of the 
higher Q section.

The filter tool has entered the appropriate center fre-
quency and Q for each second-order section, and the 
center frequency for the single pole. Note that for custom 

filters, these values can be entered manually. The filter 
topology is then entered from the choices given. Each 
section is separate (Figure 27).

The details of the individual section are then entered. 
Since the actual component values are ratiometric, 
one value must be specified, and the rest will then be 
determined. Setting the capacitor was chosen since 
there is typically less freedom in selecting a value than 
for a resistor (Figure 28).

The gain is entered next. This typically requires the user to 
enter another component value. For the specific example 
of a unity gain Sallen-Key section, the value of feedback 
resistor can be specified as 0 . There is some error 
detection on the component entry. For the state variable 
and biquad section, other resistor values are entered.
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Figure 27. Filter Topology

Figure 28. Component Values (Exact)
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These values are the exact calculated values. The filter will typically be built with standard value components. The tool 
allows the user to specify the component tolerances. When this is done, the standard values are substituted in the boxes. 
Additionally, the percent error in F0 and Q caused by the change in value is calculated.

For custom filters, the values can be entered manually.

Figure 29. Component Values (Standard)
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Figure 30. Filter Response Change Due to Standard Values

Figure 30 shows the change in the filter response due to 
using standard values versus exact values. Whether this is 
acceptable is a decision that the designer must make.
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