
AN-2033
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Calibrating the ADPD188BI Optical Smoke and Aerosol Detection Module

Rev. A | Page 1 of 9

INTRODUCTION
The ADPD188BI is a complete photometric system for smoke
detection using optical, dual-wavelength technology. The module
integrates a highly efficient photometric front end, blue and
infrared (IR) light emitting diodes (LEDs), and a photodiode,
housed in a custom package that prevents light going directly
from the LED to the photodiode without first entering the smoke
detection chamber. The ADPD188BI is used with an EVAL-
CHAMBER smoke chamber to create a complete, optical smoke
detection solution for implementation in residential and industrial
smoke detectors. The EVAL-CHAMBER is available for purchase
with an order of the EVAL-ADPD188BIZ-S2.

This application note describes the calibration of the ADPD188BI
using calibration coefficients that are programmed into the on-
chip, nonvolatile memory (NVM) to reduce device to device
variation to <+10%.

For specific LED drive settings and test/application environments,
the ADPD188BI exhibits device to device variability in LED
response. The LED response has a slope (gain) and intercept
(offset) that varies from device to device, which results in device
to device variation in response to a common environment and can
be calibrated with gain and offset calibration coefficients. The
primary application of this calibration is to allow more effective
comparison of multiple device outputs as they are instantiated
in the end application. This calibration significantly reduces
any device to device optical variation and allows simplified
observation of the variations specific to the application
environment.

http://www.analog.com/ADPD188BI?doc=AN-2033.pdf
https://www.analog.com/EVAL-ADPD188BIZ-S2?doc=AN-2033.pdf
https://www.analog.com/?doc=AN-2033.pdf

AN-2033 Application Note

Rev. A | Page 2 of 9

TABLE OF CONTENTS
Introduction .. 1
Revision History ... 2
Calibrating the ADPD188BI ... 3

Test Method .. 3
Reading eFuse Registers .. 3
Calculating Calibration Coefficients for Module ID 30 and
Module ID 31 .. 3
Calculating Calibration Coefficients for Module ID 33 4

Calibrating 32 kHz and 32 MHz Oscillators for Optimum
System Performance ...4
Applying the Correct Equation Based on the Module ID4
Applying Calibration Coefficients ..5
Effect of eFuse Contents on Normal Device Operation5
Using ECC to Detect and Correct Errors in eFuse Values5
Effect of Solder Reflow on Calibration Coefficients6
C Code for ECC ...7

REVISION HISTORY
2/2021—Rev. 0 to Rev. A
Changes to Introduction Section ... 1
Added Calibrating the ADPD188BI Section 3
Changes to Reading eFuse Registers Section and Table 1 3
Changed Calculating Calibration Coefficients to Calculating
Calibration Coefficients for Module ID 30 and Module ID31... 3
Added Calculating Calibration Coefficients for Module ID 33
Section, Calibrating 32 kHz and 32 MHz Oscillators for

Optimum System Performance Section, Applying the Correct
Equation Based on the Module ID Section, and Table 2;
Renumbered Sequentially .. 4
Changes to Figure 1 and Figure 2 ... 5
Changes to C Code for ECC Section .. 8

12/2019—Revision 0: Initial Version

Application Note AN-2033

Rev. A | Page 3 of 9

CALIBRATING THE ADPD188BI
TEST METHOD
Each LED/driver pair operates into a reflector at multiple LED
currents, and the reflector response is measured by the photo-
diode inside the ADPD188BI module. The slope of the response
is calculated for each LED/driver pair and the intercept is derived
from a linear regression. Calibration coefficients are then
calculated and stored in the on-chip NVM, otherwise known
as the eFuse registers, for later use in the final application.
The calibration coefficients are calculated based on a per pulse
measurement for a specific device and are normalized to the mean
of a large distribution of collected data from different devices. This
normalization ensures that device to device variability is
minimized in a population of devices.

READING eFuse REGISTERS
The offset and gain calibration coefficients are stored in on-chip,
eFuse registers. The gain calibration coefficients, LED1_GAIN_
COEFF and LED3_GAIN_COEFF, are stored in Register 0x71
and Register 0x72, respectively. The offset calibration coefficients,
LED1_INT_COEFF and LED3_INT_COEFF, are stored in
Register 0x73 and Register 0x74, respectively.

To access the eFuse registers, take the following steps:

1. Set Register 0x4B, Bit 7 = 1 to enable the 32 kHz oscillator.
2. Write 0x1 to Register 0x10 to force the device into

program (idle) mode.
3. Write 0x1 to Register 0x5F to enable the 32 MHz first in,

first out (FIFO) clock.
4. Write 0x7 to Register 0x57 to enable access to the eFuse

registers.
5. Read Register 0x67. When Register 0x67 = 0x04, the refresh

of the eFuse registers is complete, and they are ready to be
accessed for reading.

6. Apply the error correction code (ECC) function to the
eFuse data before applying the calibration coefficients (see
the Using ECC to Detect and Correct Errors in EFUSE
Values section).

7. Confirm that the contents of Register 0x70 are 0x1E,
0x1F, 0x21, or greater for Module ID 30, Module ID 31,
Module ID 33, or greater respectively.

8. Read gain and offset calibration coefficients for desired
LED/driver pair(s). The final gain calibration coefficients
must be calculated as defined in the Calculating Calibration
Coefficients section, using the contents of the eFuse register.
When the final gain calibration coefficients are calculated,
load them into a user-accessible memory for future use.

9. When reading of the eFuse registers is complete, disable
the eFuse registers as follows:
a. Write 0x0 to Register 0x57 to disable access to the

eFuse registers
b. Write 0x0 to Register 0x5F to disable the 32 MHz

FIFO clock.

CALCULATING CALIBRATION COEFFICIENTS FOR
MODULE ID 30 AND MODULE ID 31
The final calibration coefficients must be calculated using the
contents of Register 0x71 to Register 0x74, as shown in the
following equation:

GAIN_CAL_X = DEVICE_SCALAR/NOMINAL_SCALAR

where:
DEVICE_SCALAR = x_GAIN × LEDx + x_INTERCEPT.
x_GAIN is BLUE_GAIN for the blue LED channel and is
IR_GAIN for the IR LED channel.
BLUE_GAIN = (17/256)(LED1_GAIN_COEFF − 112) + 17.
IR_GAIN = (34/256)(LED3_GAIN_COEFF − 112) + 34.
LEDx is the LED drive current in milliamperes, for example, if
the drive current = 200 mA, enter 200. LEDx is LED1 for the
blue LED channel and is LED3 for the IR LED channel.
x_INTERCEPT is BLUE_INTERCEPT for the blue LED
channel and is IR_INTERCEPT for the IR LED channel.
BLUE_INTERCEPT = 8(LED1_INT_COEFF − 128).
IR_INTERCEPT = 5(LED3_INT_COEFF − 128).
NOMINAL_SCALAR = x_MEAN_GAIN × LEDx +
x_MEAN_INTERCEPT.
x_MEAN_GAIN is 17 for the blue LED channel and is 34 for
the IR LED channel.
x_MEAN_INTERCEPT is 622 for the blue LED channel and is
128 for the IR LED channel.

Table 1. Contents of eFuse Registers for Module ID 30 and ID 31
Address Name Bits Description
0x70 MODULE_ID [7:0] Module ID = 30 or 31
0x71 LED1_GAIN_COEFF [7:0] Blue LED gain coefficient
0x72 LED3_GAIN_COEFF [7:0] IR LED gain coefficient
0x73 LED1_INT_COEFF [7:0] Blue LED intercept coefficient
0x74 LED3_INT_COEFF [7:0] IR LED intercept coefficient
0x7E ECC [7:0] ECC

https://www.analog.com/ADPD188BI?doc=AN-2033.pdf

AN-2033 Application Note

Rev. A | Page 4 of 9

CALCULATING CALIBRATION COEFFICIENTS FOR
MODULE ID 33
To calculate the final calibration coefficients use the contents
of Register 0x71 to Register 0x74, as shown in the following
equation:

GAIN_CAL_X = DEVICE_SCALAR/NOMINAL_SCALAR

where:
DEVICE_SCALAR = x_GAIN × LEDx + x_INTERCEPT.
x_GAIN is BLUE_GAIN for the blue LED channel and is
IR_GAIN for the IR LED channel.
BLUE_GAIN = (21/256)(LED1_GAIN_COEFF − 112) + 21.
IR_GAIN = (42/256)(LED3_GAIN_COEFF − 112) + 42.
LEDx is the LED drive current in milliamperes, for example, if
the drive current = 200 mA, enter 200. LEDx is LED1 for the
blue LED channel and is LED3 for the IR LED channel.
x_INTERCEPT is BLUE_INTERCEPT for the blue LED
channel and is IR_INTERCEPT for the IR LED channel.
BLUE_INTERCEPT = 8(LED1_INT_COEFF − 80).
IR_INTERCEPT = 5(LED3_INT_COEFF − 80).
NOMINAL_SCALAR = x_MEAN_GAIN × LEDx +
x_MEAN_INTERCEPT.
x_MEAN_GAIN is 21 for the blue LED channel and is 42 for
the IR LED channel.
x_MEAN_INTERCEPT is 753 for the blue LED channel and is
156 for the IR LED channel.

CALIBRATING 32 KHz AND 32 MHz OSCILLATORS
FOR OPTIMUM SYSTEM PERFORMANCE
Calibrate the 32 kHz and 32 MHz on-chip oscillators for best
performance. The 32 kHz oscillator determines the overall
sampling rate of the ADPD188BI, and the 32 MHz oscillator
affects the overall gain of the ADPD188BI. For devices with
Module ID = 33, read the eFuse registers (Register 0x77 and

Register 0x78) and write those values into the device registers
(Register 0x4B and Register 0x4D, respectively. Alternatively,
users can determine the optimum settings manually by following
the procedures described in ADPD188BI data sheet for
calibrating the 32 kHz clock and calibrating the 32 MHz clock.

APPLYING THE CORRECT EQUATION BASED ON
THE MODULE ID
For best operation, read eFuse Register 0x70 to determine the
module ID and apply the appropriate equation. An example case
statement follows that can be a part of the software of the user.
// check module ID

Case (Module ID):

 // For IDs 30 & 31

 Case 30, 31:

 GAIN_CAL_BLUE = (use equations
shown in Calculating Calibration Coefficients
for Module ID 30 & Module ID 31)

 GAIN_CAL_IR = (use equations
shown in Calculating Calibration Coefficients
for Module ID 30 & Module ID 31)

 // For ID 33

 Case 33:

 GAIN_CAL_BLUE = (use equations
shown in Calculating Calibration
Coefficients for Module ID 33)

 GAIN_CAL_IR = (use equations
shown in Calculating Calibration
Coefficients for Module ID 33)

 Case TBD1: leave for future expansion

 Case TBD2: leave for future expansion

 Default: raise error

Table 2. Contents of eFuse Registers for Module ID 33
Address Name Bits Description
0x70 MODULE_ID [7:0] Module ID = 33
0x71 LED1_GAIN_COEFF [7:0] Blue LED gain coefficient
0x72 LED3_GAIN_COEFF [7:0] IR LED gain coefficient
0x73 LED1_INT_COEFF [7:0] Blue LED intercept coefficient
0x74 LED3_INT_COEFF [7:0] IR LED intercept coefficient
0x77 32kHz_OSC_OPT_ADJUST [7:0] 32 kHz oscillator optimum adjust setting
0x78 32MHz_OSC_OPT_ADJUST [7:0] 32 MHz oscillator optimum adjust setting
0x7E ECC [7:0] ECC

https://www.analog.com/ADPD188BI?doc=AN-2033.pdf

Application Note AN-2033

Rev. A | Page 5 of 9

APPLYING CALIBRATION COEFFICIENTS
To apply the calibration coefficients in the final application,
take the following steps:

1. Configure the ADPD188BI device as desired.
2. Write 0x2 to Address 0x10 to start normal sampling

operation.
3. Take a measurement at the desired LED level and perform

the following calculation:

Normalized Output (LSBs) = AFE_OUT/GAIN_CAL_x
where:
AFE_OUT = Raw output measurement with LED on.
GAIN_CAL_x = GAIN_CAL_BLUE for the blue LED channel
and is GAIN_CAL_IR for the IR LED channel.

Applying the calibration coefficients results in greatly reduced
device to device variation. Figure 1 and Figure 2 show histograms
from before and after calibration for the blue LED and IR LED.
Figure 1 and Figure 2 illustrate that in both cases, the distribution
of device to device variation is narrowed to <+10%.

1200

1000

0

FR
EQ

UE
NC

Y
(H

its
)

10
00

0

14
80

0

CODES

10
30

0

10
60

0

10
90

0

11
20

0

11
50

0

11
80

0

12
10

0

12
40

0

12
70

0

13
00

0

13
30

0

13
60

0

13
90

0

14
20

0

14
50

0

200

400

600

800

UNCALIBRATED DISTRIBUTION
CALIBRATED DISTRIBUTION

22
33

0-
00

1

Figure 1. Blue LED Response Before and After Calibration

900

0

17
00

0

22
00

0

BINS (Output Codes)

17
20

0
17

40
0

17
60

0
17

80
0

18
00

0
18

20
0

18
40

0
18

60
0

18
80

0
19

00
0

19
20

0
19

40
0

19
60

0
19

80
0

20
00

0
20

20
0

20
40

0
20

60
0

20
80

0
21

00
0

21
20

0
21

40
0

21
60

0
21

80
0

UNCALIBRATED DISTRIBUTION
CALIBRATED DISTRIBUTION

FR
EQ

UE
NC

Y
(H

its
)

100

200

300

400

500

600

700

800

22
33

0-
00

2

Figure 2. IR LED Response Before and After Calibration

EFFECT OF eFuse CONTENTS ON NORMAL DEVICE
OPERATION
The calibration coefficients that are written into the eFuse registers
of the ADPD188BI do not modify any device performance or
specification. All data sheet specifications and device performance
are inherently unaffected by the programming of the eFuse
registers.

The calibration coefficients are intended to be used in post-
processing of the sampled data in order to calibrate variations
in device to device optical characteristics. There is no difference
in the performance of the ADPD188BI whether the eFuse
registers are programmed or not. In situations where the eFuse
registers are programmed with calibration coefficents, the data
stored in the eFuse registers can only have an impact if a
postprocessing calibration routine is implemented on the
sampled data in software.

USING ECC TO DETECT AND CORRECT ERRORS IN
eFuse VALUES

The C code shown in the C Code for ECC section contains
routines to utilize Hamming codes to detect and correct errors
in stored eFuse register values. These functions use a traditional,
127,120 Hamming code, truncated to 119,112. An additional
global parity bit is added to provide single-bit correction with 2-bit
fail detection. The final form is 120,112 that adds an 8-bit parity
code to each 112-bit (14-byte) block.

This code detects and repairs 100% of single-bit errors in each
data block and detect 100% of 2-bit fails in each data block.

The methodology is as follows: read the eFuse data and parity
bytes into local memory. The user must read Register 0x70 to
Register 0x7E. Register 0x70 to Register 0x7D are associated
with input pointer, data, and must be read into a data array.
Register 0x7E is associated with input pointer, parity, and must
be read in as a parity value. Use the fix_hamm_parity command
to verify the block. This function repairs single broken bits in
place. If the fix_hamm_parity command returns an error, flag
the device as bad.

This process fixes all single-bit failures, detects all 2-bit failures
and about 6% of 3-bit failures, and detects most even number
failures.

https://www.analog.com/ADPD188BI?doc=AN-2033.pdf

AN-2033 Application Note

Rev. A | Page 6 of 9

EFFECT OF SOLDER REFLOW ON CALIBRATION
COEFFICIENTS
Solder reflow in a reflow oven, where the level of oxygen present is
uncontrolled, can result in a reduction in the photodiode response
to the blue LED. On average, the shift in photodiode response
to the blue LED is ~7% per reflow. Because the calibration
coefficients are programmed at final test, prior to any reflow
of the ADPD188BI, the blue coefficients are no longer accurate
when the ADPD188BI goes through solder reflow in an oven
with uncontrolled oxygen levels.

Figure 3 shows the raw and calibrated blue response following
reflow in an oven with uncontrolled oxygen levels. This group
of devices was reflowed three times. The data includes checkpoints
following each reflow. As seen in the data, there is a shift of ~7%
in the blue LED response following each reflow.

66
00

96
00

OUTPUT CODES (LSB)

25

0

FR
EQ

UE
NC

Y
(H

its
)

5

10

15

20

67
50

69
00

70
50

72
00

73
50

75
00

76
50

78
00

79
50

81
00

82
50

84
00

85
50

87
00

88
50

90
00

91
50

93
00

94
50

RAW BLUE RESPONSE
CALIBRATED BLUE RESPONSE

22
33

0-
00

3

Figure 3. Blue LED Response Shift with Uncontrolled Oxygen Levels During

Solder Reflow

To avoid the response shift, use a reflow oven that uses
nitrogen to reduce the levels of oxygen in the oven. When a
nitrogen controlled reflow oven is used to control the oxygen
level to <1000 ppm, there is no shift in the blue LED response.

The data shown in Figure 4 shows raw and calibrated blue LED
response values for devices that have been reflowed three times
in an oven where the oxygen level was reduced to <1000 ppm
using a nitrogen purge. The data includes checkpoints following
each reflow. As seen in Figure 4, there is no shift due to reflow
under these conditions.

The IR response is not affected by reflow regardless of whether
the oven has uncontrolled oxygen levels.

30

0

89
00

11
60

0

RAW BLUE RESPONSE
CALIBRATED
BLUE RESPONSE

FR
EQ

UE
NC

Y
(H

its
)

5

10

15

20

25

OUTPUT CODES (LSB)

90
00

91
00

92
00

93
00

94
00

95
00

96
00

97
00

98
00

99
00

10
00

0
10

10
0

10
20

0
10

30
0

10
40

0
10

50
0

10
60

0
10

70
0

10
80

0
10

90
0

11
00

0
11

10
0

11
20

0
11

30
0

11
40

0
11

50
0

22
33

0-
00

4

Figure 4. Blue LED Response Shift with a Nitrogen Purge to Control Oxygen

Levels During Solder Reflow

https://www.analog.com/ADPD188BI?doc=AN-2033.pdf

Application Note AN-2033

Rev. A | Page 7 of 9

C CODE FOR ECC
int generate_hamm_block_parity(data)

 int data[];

{

// Define parity mapping for parity byte generation/testing

// traditional hamming coding for 127,120 truncated to 120,112

// plus extra parity to make 120,112 code for SECDED.

//

// this table determines which parity bits are involved in each data bit.

// MSB is global "all data parity"

// this function does not include the parity bits in the global bit

// so it can be added differently in the generate_hamm_parity

// and generate_hamm_syndrome functions as needed

 const int paritymap[112]={

 131, 133, 134, 135, 137, 138, 139, 140, 141, 142,

 143, 145, 146, 147, 148, 149, 150, 151, 152, 153,

 154, 155, 156, 157, 158, 159, 161, 162, 163, 164,

 165, 166, 167, 168, 169, 170, 171, 172, 173, 174,

 175, 176, 177, 178, 179, 180, 181, 182, 183, 184,

 185, 186, 187, 188, 189, 190, 191, 193, 194, 195,

 196, 197, 198, 199, 200, 201, 202, 203, 204, 205,

 206, 207, 208, 209, 210, 211, 212, 213, 214, 215,

 216, 217, 218, 219, 220, 221, 222, 223, 224, 225,

 226, 227, 228, 229, 230, 231, 232, 233, 234, 235,

 236, 237, 238, 239, 240, 241, 242, 243, 244, 245,

 246, 247 };

 //

 int bit,byte; // pointers

 int h; // parity byte

 h=0; // init parity byte

 // calculate parity for the 112 data bits according to map

 for(byte=0; byte < 14; byte++) {

 for(bit=0x0; bit < 8 ; bit++) {

 if((data[byte] & (1<<bit))!=0){ h ^= paritymap[(byte<<3)+bit];

 }

 }

 }

 return(h); // return the parity byte for the 112bit block only

}

//

//

int generate_hamm_syndrome(data, parity_in)

 int data[],*parity_in;

{

 //

AN-2033 Application Note

Rev. A | Page 8 of 9

 // generate final hamm parity using two steps

 // - generate parity for 112 bit data block

 // - include input parity into global parity bit

 //

 int bit; // pointer

 int h; // parity byte

 h=generate_hamm_block_parity(data); // get parity byte for 112 bits

 // add the parity of the 7 input parity bits into the global

 for(bit=0;bit<6;bit++) {

 if ((*parity_in&(1<<bit))==(1<<bit)) h^=0x80;

 }

 return(h); // return the final parity

}

//

// This function checks the data and parity byte

// for consistency and corrects single bit problems

// Return Values:

// - 0 if the data/parity is correct. (NO REPAIR DONE)

// - 1 if there is a single bit error in the data region (REPAIRED)

// - 2 if there is a single bit error in the parity byte (REPAIRED)

// - 3 if there are multiple errors (NO REPAIR DONE)

//

int fix_hamm_parity (data, parity)

 int data[]; int *parity;

{

 int calculated_parity;

 int syn, glob;

 int bit, byte;

 calculated_parity=generate_hamm_syndrome(data,parity);

 syn=(*parity^calculated_parity)&0x7f;

 glob=(*parity^calculated_parity)&0x80;

 if(glob==0) {

 if (syn==0) return(0); // no errors (no fix needed)

 else return(3); // double error (can't fix)

 }

 else {

 if (syn>=120) return(3); //also double error

 switch (syn) { // error in lower parity (fix the bit)

 case 0: *parity=*parity ^ 0x80; return(2);

 case 1: *parity=*parity ^ 0x01; return(2);

 case 2: *parity=*parity ^ 0x02; return(2);

 case 4: *parity=*parity ^ 0x04; return(2);

 case 8: *parity=*parity ^ 0x08; return(2);

 case 16: *parity=*parity ^ 0x10; return(2);

Application Note AN-2033

Rev. A | Page 9 of 9

 case 32: *parity=*parity ^ 0x20; return(2);

 case 64: *parity=*parity ^ 0x40; return(2);

 default: // error in data block (fix it)

// if it gets here there is a single bit data error

// first adjust the address to account for the

// parity bits being outside the data region

 syn =

 (syn>64) ? syn - 8 :

 (syn>32) ? syn - 7 :

 (syn>16) ? syn - 6 :

 (syn>8) ? syn - 5 :

 (syn>4) ? syn - 4 : 0;

 byte = syn >> 3;

 bit = syn & 0x7;

 data[byte]=data[byte]^(1<<bit); // fix the data bit

 return(1); // single data error (fixed)

 }

 }

}

©2019–2021 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 AN22330-2/21(A)

https://www.analog.com/?doc=AN-2033.pdf

	INTRODUCTION
	TABLE OF CONTENTS
	REVISION HISTORY
	CALIBRATING THE ADPD188BI
	TEST METHOD
	READING eFuse REGISTERS
	CALCULATING CALIBRATION COEFFICIENTS FOR MODULE ID 30 AND MODULE ID 31
	CALCULATING CALIBRATION COEFFICIENTS FOR MODULE ID 33
	CALIBRATING 32 KHz AND 32 MHz OSCILLATORS FOR OPTIMUM SYSTEM PERFORMANCE
	APPLYING THE CORRECT EQUATION BASED ON THE MODULE ID
	APPLYING CALIBRATION COEFFICIENTS
	EFFECT OF eFuse CONTENTS ON NORMAL DEVICE OPERATION
	USING ECC TO DETECT AND CORRECT ERRORS IN eFuse VALUES
	EFFECT OF SOLDER REFLOW ON CALIBRATION COEFFICIENTS
	C CODE FOR ECC

