
APPLICATION NOTE

©2021 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany
Download newest version at: www.trinamic.com

AN061: TMCM-0960-MotionPy V21 with TMCL-Modules
Document Revision V1.10 • 2021-JUL-08
The TMCM-0960-MotionPy is a general purpose MicroPython platform for motion control applica-
tions. It comes with various interfaces onboard and is compatible with many Trinamic Modules,
making it the swiss-army-knife for engineers. This application note describes how to use the Mo-
tionPy together with TMCL-Modules and external TMCL-Masters.

Contents
1 Introduction 2

2 Getting Started 2
2.1 Wiring up the MotionPy with the TMCL-Module . 3
2.2 Preparing the MicroPython firmware . 3
2.3 Installing the libraries . 4
2.4 Connecting and first steps . 5

3 Structure 5

4 Modes of operation 5
4.1 TMCL-Master . 6
4.2 TMCL-Bridge . 6
4.3 TMCL-Slave . 7

5 Disclaimer 9

6 Revision History 9

http://www.trinamic.com

AN061: TMCM-0960-MotionPy V21 with TMCL-Modules • Application Note • Document Revision V1.10 • 2021-JUL-08 2 / 9

1 Introduction
The TMCM-0960-MotionPy is the swiss-army-knife for prototyping, testing and debugging motion control
applications. It serves as a MicroPython platform for user-scripts and comes equipped with all the re-
quired libraries and hardware peripherals onboard. This way, it is compatible with most TMCL-Modules
via RS232, RS485 and CAN bus systems.

It can serve in one of three operation modes within a TMCL system:

(a) MotionPy as TMCL-Master
(b) MotionPy as TMCL-Bridge

(c) MotionPy as TMCL-Slave

Figure 1: Modes of operation

When acting as a TMCL-Master, the MotionPy directly controls one or multiple TMCL-Modules, based on
user and sensor input.

When acting as a TMCL-Bridge, the MotionPy bridges between interfaces. By doing so, it will act invisibly
for TMCL-Masters and TMCL-Modules on the affected busses. This can be used to forward and analyze
TMCL-Commands sent over different bus systems.

When acting as a TMCL-Slave, theMotionPy itself can be controlled by external TMCL-Masters on one end,
hiding potentially complex application with multiple TMCL-Modules on the other end. This way, abstract
applications can be implemented on the TMCL-Master with the MotionPy handling the individual TMCL-
Modules.

2 Getting Started
This is a brief guide on how to get started using the MotionPy with a TMCL-Module.

First, check out the required hardware:

• TMCM-0960-MotionPy Board

• USB-C cable

• TMCL-Module of choice (e.g. TMCM-1270, as used in this application note)

• Cable harness for power and bus signals

©2021 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany
Terms of delivery and rights to technical change reserved.
Download newest version at www.trinamic.com

https://www.trinamic.com/products/modules/details/tmcm-0960-motionpy/
https://www.trinamic.com/products/modules/details/tmcm-1270/
https://www.trinamic.com

AN061: TMCM-0960-MotionPy V21 with TMCL-Modules • Application Note • Document Revision V1.10 • 2021-JUL-08 3 / 9

• (optional) SWD interface

Secondly, check out the required software on the workstation:

• Python 3

• Git

• Windows: PuTTY

• Linux: screen (installable via package manager)

2.1 Wiring up the MotionPy with the TMCL-Module
TMCL-Modules with various interfaces and the power lines are supposed to be connected on the onboard
8-pin JST-EH connector. It consists of the following pins:

• GND: Ground

• +VCC: Positive voltage up to +36V

• TX : TX signal for RS232

• RX : RX signal for RS232

• RS485+: Positive differential signal for RS485

• RS485-: Negative differential signal for RS485

• CANH: High CAN signal

• CANL: Low CAN signal

However, when using just a single bus interface, the connectors for the other interfaces can remain dis-
connected. For details, take a look into the hardwaremanual. For this application note, we are specificially
describing the setup with a TMCM-1270 via CAN interface. Figure 2 shows an example wiring for that case.
Note that the power supply is shared between the drivermodule and theMotionPy and should not exceed
50 V. For signal stability on the CAN bus, a termination resistor of 120 Ohm should be used.

2.2 Preparing the MicroPython firmware
If you already have a fully prepared MotionPy and do not want to build and flash the firmware on your
own, you can skip the following steps.

1. Build the PYBv11 STM32 firmware. The detailed guide is available in the MicroPython repository.

1 cd micropython
PYTHON=python make -C mpy -cross

3 cd ports/stm32
PYTHON=python make submodules

5 PYTHON=python make BOARD=PYBV11

Assuming python is the linked Python binary.

2. Connect your SWD interface as labeled on the PCB and flash the
micropython/ports/stm32/build/firmware.hex file.

3. Reset the board with a low signal on the NRST pin or power cycle.

©2021 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany
Terms of delivery and rights to technical change reserved.
Download newest version at www.trinamic.com

https://www.python.org/downloads/
https://git-scm.com/
https://www.putty.org/
https://www.trinamic.com/products/modules/details/tmcm-0960-motionpy/
https://github.com/micropython/micropython/blob/master/ports/stm32/README.md
https://www.trinamic.com

AN061: TMCM-0960-MotionPy V21 with TMCL-Modules • Application Note • Document Revision V1.10 • 2021-JUL-08 4 / 9

Motor

120R

GNDVCC

Figure 2: Example wiring with TMCM-1270

If you are developing on Windows, the following additional steps are required:

1. (Re-)attach the board to the PC, without the SD card inserted in it.

2. The boards internal flash should be mounted as mass storage device directly. Install the Serial Port
Drivers pybcdc.inf from the root of the attached storage to your system.

3. Insert the SD card in the board and reattach it.

2.3 Installing the libraries
1. Recursively clone the PyTrinamicMicro library.

git clone https :// github.com/trinamic/PyTrinamicMicro.git --recurse -
↪→ submodules

2. Invoke the installation script install.py. For full installation, run the command
python install.py D:\

assuming python is properly linked to your python binary and D is the mounted flash / SD card. As
installing incrementally is not supported at the moment, invoke
python install.py D:\ -c

if you have already an installation in that target directory.

3. Move the main.py and boot.py scripts for the MotionPy platform manually out of
PyTrinamicMicro/platforms/motionpy to the root of the mounted storage.

©2021 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany
Terms of delivery and rights to technical change reserved.
Download newest version at www.trinamic.com

https://www.trinamic.com

AN061: TMCM-0960-MotionPy V21 with TMCL-Modules • Application Note • Document Revision V1.10 • 2021-JUL-08 5 / 9

4. Soft-Reset MicroPython by restarting it, or hard-reset the microcontroller with a low signal on the
NRST pin, or power cycle.

2.4 Connecting and first steps
Connecting to an attached MotionPy on standard operating systems is simple.

1. Connect to the serial port of the attached MotionPy via terminal.
Windows: Connect to COMX (determine X in the Device Manager) via PuTTY→ Serial
Linux: Connect to /dev/ttyACMX (determine X in the mounted devices in /dev) via
chmod 777 /dev/ttyACMX

2 screen /dev/ttyACMX

2. Now, being in the Python shell, any MicroPython compatible statement can be interpreted. The
PyTrinamicMicro package can be used. By default, all example scripts can be executed via standard
commands, i.e.

1 exec(open("PyTrinamicMicro/platforms/motionpy/examples/io/blinky.py").
↪→ read())

Example scripts can also be linked manually by the user in the MotionPy configuration class, and
executed via shortcut, i.e.
exec(MP.script("blinky"))

3. Review the core configuration classes PyTrinamicMicro (for platform independent configuration)
and MotionPy (for platformdependent configuration) and change themhow you like. Various logging
and quality-of-life options are possible there.

3 Structure
The software used to work with TMCL-Modules on the MotionPy is structured in multiple open-source
libraries:

• MicroPython

• PyTrinamic

• PyTrinamicMicro

• MotionPy (part of PyTrinamicMicro)

PyTrinamic and PyTrinamicMicro for abstract motion control logic, MicroPython as the base platform and
MotionPy as the actual implementation for the specific board.

4 Modes of operation
As introduced in the introduction, the MotionPy is designed to be used in the three use cases depicted in
Figure 1.

©2021 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany
Terms of delivery and rights to technical change reserved.
Download newest version at www.trinamic.com

https://github.com/micropython/micropython
https://github.com/trinamic/PyTrinamic
https://github.com/trinamic/PyTrinamicMicro
https://www.trinamic.com

AN061: TMCM-0960-MotionPy V21 with TMCL-Modules • Application Note • Document Revision V1.10 • 2021-JUL-08 6 / 9

Figure 3: Libraries and its dependencies

4.1 TMCL-Master
The TMCL-Master functionality is already given by the PyTrinamic library via the central tmcl_interface,
handling all the requests and replies when communicating with TMCL-Slaves.

Additionally, the module definitions of PyTrinamic can be used as a wrapper when working with known
modules. That way, setting and getting axis parameters as well as rotating motors becomes a trivial task.
Just wire up the TMCL-Module with the required power and bus signal cables to theMotionPy, import and
initialize the required modules and feel free to control the module.

Listing 1: Rotate a TMCM-1270 via CAN
from PyTrinamic.modules.TMCM1270.TMCM_1270 import TMCM_1270

2 from PyTrinamicMicro.platforms.motionpy.connections.can_tmcl_interface
↪→ import can_tmcl_interface

4 con = can_tmcl_interface ()
module = TMCM_1270(con)

6

module.rotate(0, 1000)
8 time.sleep (5)
module.stop (0)

10

con.close ()

4.2 TMCL-Bridge
When using the MotionPy as a TMCL-Bridge, TMCL-Datagrams can be forwarded between different bus
systems, and even analyzed on the way. This makes the MotionPy applicable as USB-to-X adapter and
X-to-Y bus analyzer.

©2021 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany
Terms of delivery and rights to technical change reserved.
Download newest version at www.trinamic.com

https://www.trinamic.com

AN061: TMCM-0960-MotionPy V21 with TMCL-Modules • Application Note • Document Revision V1.10 • 2021-JUL-08 7 / 9

Listing 2: Forward TMCL-Datagrams from USB to CAN, analyze through callbacks
def request_callback(request):

2 global request_command
request_command = request.command

4 return request

6 def reply_callback(reply):
if(request_command != TMCL.COMMANDS["GET_FIRMWARE_VERSION"]):

8 reply.calculate_checksum ()
return reply

10

host = usb_vcp_tmcl_interface ()
12 module = can_tmcl_interface ()

bridge = TMCL_Bridge(host , [{"module":module , "request_callback":
↪→ request_callback , "reply_callback":reply_callback }])

14

while(not(bridge.process(request_callback=request_callback , reply_callback=
↪→ reply_callback))):

16 pass

Listing 2 shows a code snippet out of the USB-to-CAN example implementation. After initialization of the
single interface towards the external TMCL-Master and the probably multiple module interfaces (here it
is just one), bridge.process is called periodically, handling and forwarding newly fetched requests and
replies to the correct destinations. In the intermediate steps, e.g. when a new request comes in, additional
actions can be taken in the callback function defined in the main application (e.g. logging of the TMCL-
Datagram).

4.3 TMCL-Slave
As a third operational mode, the MotionPy can act as a single TMCL-Slave, making additional modules of
the next level transparent against external TMCL-Masters.

Listing 3: Act as TMCL-Slave via USB
1 con = usb_vcp_tmcl_interface ()
slave = TMCL_Slave_Bridge(MODULE_ADDRESS , HOST_ADDRESS , VERSION_STRING ,

↪→ BUILD_VERSION)
3

while(not(slave.status.stop)):
5 if(con.request_available ()):

request = con.receive_request ()
7 if(not(slave.filter(request))):

continue
9 reply = slave.handle_request(request)

con.send_reply(reply)

Listing 3 shows a code snippet out of the TMCL-Slave example implementation via USB. The general work-
flow of the TMCL request handling is as follows:

1. Initialization of the used interface, the instance of the slave implementation and the used hardware.

2. If a TMCL-Request is available: Handle it in the TMCL-Slave implementation and return the answer.
Parameters and status get updated during the procession in the TMCL-Slave.

3. Check the updated parameters and flags and take the corresponding actions.

4. Update all parameters from external sources.

©2021 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany
Terms of delivery and rights to technical change reserved.
Download newest version at www.trinamic.com

https://www.trinamic.com

AN061: TMCM-0960-MotionPy V21 with TMCL-Modules • Application Note • Document Revision V1.10 • 2021-JUL-08 8 / 9

5. Go to 2. Repeat until stop-flag is set.

6. Deinitialize used components and interfaces.

This loop and external module handling is supposed to be done in the main application. Take the
tmcl_slave_usb example script for reference. The actual parameter handling is done in the TMCL-Slave im-
plementation, which is generally a descendant of the TMCL_Slave class. Therefore, please use tmcl_slave_motionpy
as a reference.

©2021 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany
Terms of delivery and rights to technical change reserved.
Download newest version at www.trinamic.com

https://www.trinamic.com

AN061: TMCM-0960-MotionPy V21 with TMCL-Modules • Application Note • Document Revision V1.10 • 2021-JUL-08 9 / 9

5 Disclaimer
TRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life
support systems, without the specifc written consent of TRINAMIC Motion Control GmbH & Co. KG. Life
support systems are equipment intended to support or sustain life, and whose failure to perform, when
properly used in accordance with instructions provided, can be reasonably expected to result in personal
injury or death.

Information given in this application note is believed to be accurate and reliable. However, no responsi-
bility is assumed for the consequences of its use nor for any infringement of patents or other rights of
third parties that may result from its use.

Specifications are subject to change without notice. All trademarks used are property of their respective
owners.

6 Revision History

Version Date Author Description

V1.00 2021-MAY-07 LK Initial version.

V1.10 2021-JUL-09 SK Changes for V21 board version: +VCC changed to +36V max, board
image updated

Table 1: Document Revision

©2021 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany
Terms of delivery and rights to technical change reserved.
Download newest version at www.trinamic.com

https://www.trinamic.com

	1 Introduction
	2 Getting Started
	2.1 Wiring up the MotionPy with the TMCL-Module
	2.2 Preparing the MicroPython firmware
	2.3 Installing the libraries
	2.4 Connecting and first steps

	3 Structure
	4 Modes of operation
	4.1 TMCL-Master
	4.2 TMCL-Bridge
	4.3 TMCL-Slave

	5 Disclaimer
	6 Revision History

