
Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 958

Keywords: RAM, Internal memory, MCU, Microcontroller, microprocessor, uC, binary arithmetic, binary
math, booth's algorithm, multiply, divide, ASCII

APPLICATION NOTE 958

A Collection of Extended Math Subroutines for the
MAX7651
Jul 17, 2002

Abstract: This article gives assembly code examples for reserving internal memory, simple ASCII
conversion, 32-bit subtraction, 16x16 multiple and 32-bit divide using 8051-compatible microcontrollers
such as the MAX7651 and MAX7652.

The MAX7651 flash-programmable 12-bit integrated data acquisition system uses an 8-bit CPU core for
all operations. There are cases where 8-bits are not sufficient resolution for data manipulation. An
obvious example is when using the internal ADC, which has 12-bit resolution. Collecting several readings
and then finding the maximum value requires math subroutines beyond the 8-bits in the CPU registers.

The solution is to use internal RAM registers in a group, and use the MAX7651's CPU to perform the
math in 8-bit 'chunks'. Successive operations are performed until the desired result is obtained.

This application note presents several commonly used math subroutines that operate on data larger than
8-bits and is divided into four sections:

 A subroutine for reserving internal RAM to hold variables
 A simple 8-bit ASCII character conversion subroutine which includes leading zero blanking
 Extended ASCII character conversion, which includes subroutines for 32-bit subtraction, 16x16 bit

multiplication and 32-bit division
 An example illustrating use of the aforementioned subroutines

Reserving Internal Memory
The following code tells the assembler to reserve internal memory to hold the variables used by the math
subroutines. These memory locations can be anywhere in the memory map.

;
; Reserve internal RAM for use with the math subroutines
;
; A good starting memory location is at 30H, but the starting location
; can be anywhere in the memory map.
;

DIGIT2: DS 1 ; 100's digit for ASCII routines
DIGIT1: DS 1 ; 10's digit

Page 1 of 12

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/17/c/Microcontrollers#c17

DIGIT0: DS 1 ; 1's digit

DATAHI: DS 1 ; Upper byte of 16-bit register

DATALO: DS 1 ; Lower byte of 16-bit register

REMAIN: DS 1 ; Remainder

OP3: DS 1 ; OP3-OP0 are 4 8-bit registers. For 32-bit math
OP2: DS 1
OP1: DS 1
OP0: DS 1 ; Least-significant byte of 32-bit 'operator'

TEMP3: DS 1 ; TEMP3-TEMP0 comprise the 32-bit temp register
TEMP2: DS 1
TEMP1: DS 1
TEMP0: DS 1 ; Least-significant byte of temp register

Simple ASCII Conversion
In many MAX7651 applications, there is a requirement to use ASCII data for display purposes. The
display type may be a LCD, LED, vacuum fluorescent displays or other technology. The most commonly
used displays are one or two-line LCD modules. These accept ASCII characters, so the software
program must convert binary data into separate ASCII digits. ASCII (an acronym for American Standard
Code for Information Interchange) is a seven digit binary code used to represent letters, numbers and
symbols.

For example, let's assume you have data in a register that is a positive, 8-bit value from 00H to 0FFH.
This corresponds to the binary numerical values 0 to 255. If you want to have the LCD show '127' on the
screen, you need to send it three ASCII characters; one for each digit: the '100's digit[1], the '10's digit
[2] and the '1's digit [7].

Fortunately, the binary to ASCII conversion is straightforward. An ASCII numerical digit is simply the
binary number added to 30H. To generate the three digits, the following subroutine successively divides
the original binary data by 100, then subtracts this number from the original number (127/100 = 1 with a
remainder of 27). It then takes the remainder and divides by 10 and retains the remainder (27/10 = 2
with a remainder of 7). Each value is then added to 30H to obtain the ASCII values, which are then
stored.

In this subroutine, the 8-bit binary number to be converted is passed in the accumulator (register A).
Since the MAX7651 uses the accumulator for all of its math functions, the internal register R0 is used to
hold intermediate results. If your application needs to retain the value in R0, you simply use another
register.

The subroutine uses the MAX7651's multiply instruction (MUL AB) to generate the '100's and '10's digits
to be subtracted out, and the ADD instruction to form the final ASCII values. The subroutine also
performs 'leading zero blanking', so that if the number is 99 or less, the software will suppress any

Page 2 of 12

leading zeros and replace them with a blank space.

;
; Subroutine 2_ASCII
;
; Converts the 8-bit ACC into an ASCII digit
;
; ACC and RO are destroyed, previous value in DIGIT2-0 overwritten
;

2ASCII: MOV RO,A
 MOV B,#100 ; Get 100's digit
 MOV A,R0
 DIV AB ; A has quotient, B has remainder
 MOV DIGIT2,A ; Save 100's digit
 MOV B,#100
 MUL AB ; Need to subtract out 100's digit
 XCH A,R0
 CLR C
 SUBB A,RO
 MOV R0,A
 MOV B,#10 ; Get 10's digit
 DIV AB
 MOV DIGIT1,A
 MOV DIGIT0,B ; Remainder is the 1's digit
;
; Now convert to ASCII
;
 MOV A,DIGIT0 ; 1's digit
 ADD A,#'0' ; Offset from 30H
 MOV DIGIT0,A ; Write it back to memory
 MOV A,DIGIT1 ; 10's digit
 ADD A,#'0' ; Offset from 30H
 MOV DIGIT1,A ; Write it back
 MOV A,DIGIT2 ; 100's digit
 CJNE A,#0,NOTZ ; A non-zero value
 MOV DIGIT2,#' ' ; Blank it
;
; Blank again?
;
 MOV A,DIGIT1
 CJNE A,#'0',SKIPBL ; Non-zero abort

Page 3 of 12

 MOV DIGIT1,#' '
SKIPBL: RET
NOTZ: ADD A,#'0' ; Offset from 30H
 MOV DIGIT2,A ; Write it back
 RET

Extended ASCII Conversion
32-Bit Subtraction
The previous subroutine is only useful if the number to be converted is 255 or less. What if the
application is measuring temperature in a chemical process, and we want to display temperatures up to
999 degrees? This requires the use of a set of extended math subroutines that divide the data into
multiple 8-bit registers.

From the above example, the algorithm is to multiply by the 'digit place' (i.e., 100's, 10's), then subtract
out that digit from the original number. Therefore, we need to write an extended subtraction subroutine
and an extended multiply subroutine.

The subtraction subroutine is easy to do with the instruction SUBB, which automatically uses the borrow
flag. It may seem strange at first glance, because the subroutine does not subtract in 'digits' as we are
taught, but in blocks of 255 at a time (the full range of the accumulator). However, it does provide the
correct answer.

The subroutine as written subtracts a 32-bit number (TEMP3:TEMP2:TEMP1:TEMP0) from another 32-
bit number (OP3:OP2:OP1:OP0) and places the result back into OP. The accumulator is used to
successively subtract the 8-bit 'chunks' from the original number.

;
; Subroutine SUB_32
;
; OP < OP - TEMP
;
; This routine overwrites the ACC and the carry flag (here used as a borrow flag)
; Note that the 2 numbers DO NOT have to be 32-bits
;
;

SUB_32: CLR C
 MOV A,OP0
 SUBB A,TEMP0
 MOV OP0,A

 MOV A,OP1
 SUBB A,TEMP1
 MOV OP1,A

 MOV A,OP2
 SUBB A,TEMP2

Page 4 of 12

 MOV OP2,A

 MOV A,OP3
 SUBB A,TEMP3
 MOV OP3,A
 RET

16x16 Multiply
The next two subroutines are much more complicated. The first routine is a 16x16 multiply, with a 32-bit
result. The routine assumes both numbers are positive (0000H to 0FFFFH). The result is placed into
OP3:0.

The subroutine first generates the first 8-bit "digit" using the internal MUL AB instruction. But after that,
the routine must perform four separate operations for each "digit": two sets of a multiply/add instruction.
This is because we are using binary arithmetic, not decimal arithmetic.

;
; Subroutine MUL_16
;
; Multiplies 16-bit number DATAHI:DATALO by 16-bit number OP3:0 and places the result back into
OP3:0
; Uses the 32-bit TEMP3:0 registers as well
;
;

MUL_16: MOV TEMP3,#0
 MOV TEMP2,#0 ; Clear upper 16-bits
;
; Generate lower byte of result
;
 MOV B,OP0
 MOV A,DATALO
 MUL AB
 MOV TEMP0,A
 MOV TEMP1,B ; 1st result
;
; Byte 2 of result
;
 MOV B,OP1
 MOV A,DATALO
 MUL AB
 ADD A,TEMP1 ; Lower nibble result
 MOV TEMP1,A
 MOV A,B

Page 5 of 12

 ADCC A,TEMP2
 MOV TEMP2,A
 JNC MULOOP1
 INC TEMP3 ; propogate carry
MULOOP1: MOV B,OP0
 MOV A,DATAHI
 MUL AB
 ADD A,TEMP1
 MOV TEMP1,A
 MOV A,B
 ADDC A,TEMP2
 MOV TEMP2,A
 JNC MULOOP2
 INC TEMP3 ; byte 2 is done
;
; Byte 3
;
MULOOP2: MOV B,OP2
 MOV A,DATALO
 MUL AB
 ADD A,TEMP2
 MOV TEMP2,A
 MOV A,B
 ADDC A,TEMP3
 MOV TEMP3,A
;
; Next nibble
;
 MOV B,OP1
 MOV A,DATAHI
 MUL AB
 ADD A,TEMP2
 MOV TEMP2,A
 MOV A,B
 ADDC A,TEMP3
 MOV TEMP3,A
;
; Byte 4
;
 MOV B,OP3

Page 6 of 12

 MOV A,DATALO
 MUL AB
 ADD A,TEMP3
 MOV TEMP3,A
 MOV B,OP2
 MOV A,DATAHI
 MUL AB
 ADD A,TEMP3
;
; Save results
;
 MOV OP3,A
 MOV OP2,TEMP2
 MOV OP1,TEMP1
 MOV OP0,TEMP0
 RET

32-Bit Divide
Now that we can multiply two 16-bit numbers, we can also use this algorithm 'backwards' to divide.
However, it requires four intermediate registers (R7, R6, R1, R0) to hold partial quotients. Since we are
using binary arithmetic, we can divide by 2 with a simple shift right command. This can be extended by
clever "shift and subtraction" to divide by 10's digits. This is called "Booth's Algorithm". The loop is run 32
times (once for each bit-position, which in turn is a power of 2).

;
; Subroutine DIV_16
;
; Divides OP3:2:1:0 by DATAHI:DATALO and places results in OP3:0
;
;

DIV_16: MOV R7,#0
 MOV R6,#0 ; Zero partial remainder
 MOV TEMP0,#0
 MOV TEMP1,#0
 MOV TEMP2,#0
 MOV TEMP3,#0
 MOV R1,DATAHI ; Load the divisor
 MOV R0,DATALO ; Bit counter
 MOV R5,#32 ; Shift dividend and msb>carry
DIV_LOOP: CALL SHIFT_D
 MOV A,R6
 RLC A

Page 7 of 12

 MOV R6,A
 MOV A,R7
 RLC A
 MOV R7,A
;
; Now test to see if R7:R6 =>R1:R0
;
 CLR C
 MOV A,R7
 SUBB A,R1 ; see if R7 < R1
 JC CANT_SUB ; yes
;
; At this point R7>R1 or R7=R1
;
 JNZ CAN_SUB ; R7 is > R1
;
; If R7=R1, test for R6=>R0
;
 CLR C
 MOV A,R6
 SUBB A,R0 ; Carry set if R6 < R0
 JC CANT_SUB
CAN_SUB: CLR C
;
; Subtract divisor from partial remainder
;
 MOV A,R6
 SUBB A,R0
 MOV R6,A
 MOV A,R7
 SUBB A,R1 ; A=R7 - R1 - borrow bit
 MOV R7,A
 SETB C ; Shift 1 into quotient
 SJMP QUOT
CANT_SUB: CLR C ; Shift 0 into quotient
QUOT: CALL SHIFT_Q ; Shift carry into quotient
 DJNZ R5,DIV_LOOP ; Did it 32 times?
;
; All done!
;

Page 8 of 12

 MOV OP0,TEMP0
 MOV OP1,TEMP1
 MOV OP2,TEMP2
 MOV OP3,TEMP3
DIV_DONE: RET
;
; Shift the dividend one bit to the left and return msb in carry bit
;
SHIFT_D: CLR C
 MOV A,OP0
 RLC A
 MOV OP0,A
 MOV A,OP1
 RLC A
 MOV OP1,A
 MOV A,OP2
 RLC A
 MOV OP2,A
 MOV A,OP3
 RLC A
 MOV OP3,A
 RET
;
; Shift the quotient one bit to the left and shift carry bit into lsb
;
SHIFT_Q: MOV A,TEMP0
 RLC A
 MOV TEMP0,A
 MOV A,TEMP1
 RLC A
 MOV TEMP1,A
 MOV A,TEMP2
 RLC A
 MOV TEMP2,A
 MOV A,TEMP3
 RLC A
 MOV TEMP3,A
 RET

Putting It All Together

Page 9 of 12

Now we have all the subroutines needed for the extended ASCII conversion. The last routine converts a
number in the range 0 to 999 (stored in DATAHI:DATALO) into 3 ASCII digits. The algorithm is the same
as for the earlier, simple conversion routine, except now we use the three extended math routines to
operate on the 16-bit registers.

;
; Subroutine CONVERT3
;
; Converts a 16-bit value 000-999 in DATAHI:DATALO to ASCII
; Data stored into DIGIT2 - DIGIT0
;

CONVERT3: MOV OP0,DATALO
 MOV OP1,DATAHI
 MOV OP2,#00
 MOV OP3,#00
 MOV TEMP8,DATALO
 MOV TEMP9,DATAHI ; Save original for remainder
 MOV DATALO,#100
 MOV DATAHI,#00
 CALL DIV_16 ; Divide number by 100
 MOV A,OP0 ; Answer is 2-9 + remainder
 ADD A,#30H ; Convert to ASCII
 MOV DIGIT2,A ; Save it
 MOV DATALO,#100 ; Convert the remainder
 MOV DATAHI,#0
 CALL MUL_16
 MOV TEMP0,OP0
 MOV TEMP1,OP1
 MOV TEMP2,OP2
 MOV TEMP3,OP3
 MOV OP0,TEMP8
 MOV OP1,TEMP9
 CALL SUB_32 ; Subtract 100's digit
 MOV A,OP0
 MOV B,#10 ; 10's digit calculation
 DIV AB
 ADD A,#30H
 MOV DIGIT1,A ; Get the 10's digit
 MOV A,B
 ADD A,#30H
 MOV DIGIT0,A ; Get the 1's digit

Page 10 of 12

;
; Check for zero blanking
;
 MOV A,DIGIT2
 CJNE A,#'0',BK_DONE
;
; Blank 100's digit
;
 MOV DIGIT2,#' '
;
; Now check 10's digit
;
 MOV A,DIGIT1
 CJNE A,#'0',BK_DONE
;
; Blank 10's digit
;
 MOV DIGIT1,#' '
BK_DONE: RET

Conclusion
These routines expand the math capabilities of the MAX7651 to 16-bits. You can modify these
subroutines to handle 32-bit data as well. The MAX7651's four-clock cycle CPU greatly speeds up these
routines of standard 8051 processors.

Further Reading
"The Art of Computer Programming" by Donald Knuth contains detailed explanations of these algorithms
(not specific to any processor, but in general terms). This is a 3-volume set that is considered a classic
in numerical algorithms.

Related Parts

MAX7651 Flash Programmable 12-Bit Integrated Data-Acquisition
Systems

MAX7651EVKIT Evaluation Kit for the MAX7651

MAX7652 Flash Programmable 12-Bit Integrated Data-Acquisition
Systems

More Information
For Technical Support: http://www.maximintegrated.com/support

Page 11 of 12

http://www.maximintegrated.com/datasheet/index.mvp/id/3073
http://www.maximintegrated.com/datasheet/index.mvp/id/3879
http://www.maximintegrated.com/MAX7651
http://www.maximintegrated.com/datasheet/index.mvp/id/3073
http://www.maximintegrated.com/support

For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 958: http://www.maximintegrated.com/an958
APPLICATION NOTE 958, AN958, AN 958, APP958, Appnote958, Appnote 958
Copyright © by Maxim Integrated Products
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 12 of 12

http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an958
http://www.maximintegrated.com/legal

	maxim-ic.com
	A Collection of Extended Math Subroutines for the MAX7651 - Application Note - Maxim

