
Rev 1; 7/23

Overview
The MAXREFDES9007 is a reference design that show-
cases the DS28E36 and demonstrates how to implement
a simple 1-Wire® host using only a microcontroller’s
GPIO pins. The reference design provides a GPIO-based
1-Wire library designed for an Arm® Cortex® M4 micro-
controller, such as the MAX32660, with example pro-
grams that run the main 1-Wire sequences and calculate
how much time it takes for each to run. This design also
provides the amount of memory required to store such
programs.

Features
	● ECC-256 Compute Engine
	● FIPS 186 ECDSA P256 Signature and Verification
	● ECDH Key Exchange with Authentication Prevents

Man-in-the-Middle Attacks
	● ECDSA Authenticated R/W of Configurable Memory
	● SHA-256 Compute Engine
	● FIPS 180 MAC for Secure Download/Boot

Operations
	● FIPS 198 HMAC for Bidirectional Authentication and

Optional GPIO Control
	● Two GPIO Pins with Optional Authentication Control
	● Open-Drain, 4mA/0.4V
	● Optional SHA-256 or ECDSA Authenticated On/Off

and State Read
	● Optional Set On/Off After Multiblock Hash for Secure

Boot/Download
	● RNG with NIST SP 800-90B Compliant Entropy

Source with Function to Read Out

	● Optional Chip-Generated Pr/Pu Key Pairs for ECC
Operations

	● 17-Bit One-Time Settable, Nonvolatile Decrement-
Only Counter with Authenticated Read

	● 8Kbits of EEPROM for User Data, Keys, and
Certificates

	● Unique and Unalterable Factory Programmed 64-Bit
Identification Number (ROM ID)

	● Optional Input Data Component to Crypto and Key
Operations

	● Single-Contact 1-Wire Interface Communication with
Host at 11.7kbps and 62.5kbps

	● Operating Range: 3.3V ±10%, -40°C to +85°C
	● 6-Pin TDFN-EP Package (3mm x 3mm)
	● Accessory and Peripheral Secure Authentication
	● IoT Peripheral Crypto-Protection
	● Secure Boot or Download of Firmware and/or System

Parameters
	● Secure Storage of Cryptographic Keys for a Host

Controller

Applications
	● IoT Peripheral Crypto-Protection
	● Accessory and Peripheral Secure Authentication
	● Secure Storage of Cryptographic Keys for a Host

Controller
	● Secure Boot or Download of Firmware and/or System

Parameters

Arm and Cortex are trademarks of Arm Limited.
1-Wire is a registered trademark of Maxim Integrated Products, Inc.

Arm Cortex-M4 I/O Implemented 1-Wire Secure
Authenticator Demo and Real Time Measurements

Analog Devices │  1

One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2023 Analog Devices, Inc. All rights reserved.

©  2023 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

MAXREFDES9007

https://www.maximintegrated.com/en/products/embedded-security/secure-authenticators/DS28E36.html
https://www.maximintegrated.com/en/products/microcontrollers/MAX32660.html

Introduction
A simple, cost-efficient, 1-Wire line using the DS28E36 is
demonstrated for a simple host/peripheral communication
system for the MAX32660 host microcontroller. This ref-
erence design includes the following major components:
a MAX32660, DS28E36, and a DS9121AQ+ socket

MAX32660

IO

GND

PIO_6
DS28E36

100kΩ

Q1

BIDIRECTIONAL
OPEN-DRAIN PORT

DMP2004K-71

GND

PIO_5

VCC

VCC

RPUP

1kΩ

1kΩ

Figure 1. MAXREFDES9008 Hardware.

board. This document describes the hardware shown in
Figure 1 as well as its supplementing software. It pro-
vides a detailed, systematic technical guide to set up and
understand the MAXREFDES9007 reference design. The
system has been built and tested, details of which follow
later in this document.

www.analog.com Analog Devices │  2

Quick Start Guide
The reference design is fully assembled and tested.
Follow these steps to set up the demo software:

Required Equipment:
	● PC with a Windows® 10, Windows 8, or Windows 7

operating system (64 bit or 32 bit), and a spare USB
2.0 or higher port

	● Micro USB 2.0 cable
	● Maxim Micros SDK (Windows)
	● MAXREFDES9007 C-Demo software

Figure 2. File Viewer with Toolchain.

Figure 3. Arm Cortex Toolchain Wizard.

Windows is a registered trademark of Microsoft Corporation.

	● Serial Console Application (such as PuTTY)
	● Saleae Logic 2 (optional)
	● DS28E36 + DS9121AQ+ (Or the DS28E36 Evalua-

tion System)
	● MAX32660-EVSYS

Procedure
1)	 Download the ARMCortexToolchain.exe file.
2)	 In a file viewer (Figure 2), double-click

MaximMicrosSDK.exe to begin the installation.
3)	 Follow the prompts on the setup wizard (Figure 3) to

finish the installation.

www.analog.com Analog Devices │  3

4)	 Click on the Windows icon on the bottom left-side of
the screen, search for the Maxim Integrated folder,
then run the Eclipse application (Figure 4).

Alternatively, navigate to the toolchain’s install direc-
tory, open the Eclipse folder, and run Eclipse.exe to
launch the Eclipse IDE (Figure 5).

Figure 5. Eclipse application Launch through File Explorer.

Figure 4. Eclipse application Launch through Windows Menu.

www.analog.com Analog Devices │  4

Figure 7. MAXREFDES9007 Extraction.

Figure 6. Eclipse Workspace Creation.

5)	 Create a workspace in the desired location (Figure 6).
6)	 Download and extract the MAXREFDES9007-V1.0.0.zip file to any location (Figure 7).

www.analog.com Analog Devices │  5

Figure 8. Selecting Eclipse Import Type.

7)	 In Eclipse, go to File->Import and select Existing Projects into Workspace under the General folder (Figure 8).
Click Next > and then Browse to open a directory browser. Navigate to the MAXREFDES9007 C-demo installa-
tion directory. Select the extracted folder containing the example programs and click OK. In the panel, check the
checkbox next to the MAXREFDES9007_HMAC and MAXREFDES9007_ECDSA projects to import. Check Copy
projects into workspace and click Finish (Figure 9).

www.analog.com Analog Devices │  6

Figure 9. Importing Eclipse Projects.

www.analog.com Analog Devices │  7

8)	 Open a serial console and connect it to the MAX32660’s corresponding serial COM port (Figure 10).

Figure 10. Serial Console Setup (PuTTY).

www.analog.com Analog Devices │  8

9)	 Select an example program to run under the dropdown menu located next to the green Run button (Figure 11). The
output is displayed on the serial console (Figure 12).

Figure 11. Running One of the MAXREFDES9007 Demos.

Figure 12. Console Output for MAXREFDES9007 HMAC C Demo.

www.analog.com Analog Devices │  9

Detailed Description
Detailed Description of Hardware
Figure 13 shows the main components and connec-
tions for the MAXREFDES9007 hardware. This refer-
ence design uses the MAX32660 microcontroller as the
1-Wire host. To drive the 1-Wire signal and strength, the
MAX32660 uses the GPIO pins, P0_5, and P0_6, respec-
tively. These pins are configured as open-drain outputs

MAX32660

IO

GND

PIO_6
DS28E36

100kΩ

Q1

BIDIRECTIONAL
OPEN-DRAIN PORT

DMP2004K-71

GND

PIO_5

VCC

VCC

RPUP

1kΩ

1kΩ

Figure 13. Console Output for MAXREFDES9007 ECDSA C Demo.

Figure 14. Typical MAXREFDES9007 Hardware Configuration.

to create compatibility with the DS28E36 as the 1-Wire
interface is an open-drain design. A low-impedance
P-channel MOSFET, Q1, is used to supply the 1-Wire
bus with more current when demanded by the DS28E36,
such as in an SPU event. The MAXREFDES9007 uses
evaluation boards for the MAX32660 and DS28E36 to
connect all the main components together. More details
for each board are found in the Design Resources tab of
the MAXREFDES9007 product page.

www.analog.com Analog Devices │  10

Detailed Description of Software
The MAXREFDES9007 software consists of example
code written in C used to interface with the hardware.
This C-Demo software provides a 1-Wire API developed
from bit-banging the MAX32660’s GPIO. See Table 1
for an overview of the 1-Wire API. This API allows the
MAX32660 to interface with multiple 1-Wire Peripheral
devices as it includes all the necessary functions to con-
trol host 1-Wire communication for speeds in both stan-
dard and overdrive modes. Since it uses a GPIO to drive
the 1-Wire line, the MAX32660 needs to operate its GPIO
pins accordingly with respect to typical 1-Wire timings.
The API does this by utilizing the MAX32660’s peripheral
timer, Timer1, to generate the precise timings. To set the
line high, the microcontroller simply disables the output
buffer of the pin corresponding to the 1-Wire bus (P0_5),
allowing the external pullup resistor to drive the line high.

Figure 15. Strong Pullup Assertion Process.

Similarly, setting the line low can be achieved by simply
enabling the output buffer in a low state . Additionally pin
6 (P0_6) is used to enable the P-channel MOSFET by
disabling the output buffer that masks that pin, creating a
negative voltage difference between the 1-Wire line and
the gate of the MOSFET. This allows the flow of current
through it, bypassing its parallel resistor and activating
the strong pullup. To better understand this concept,
see Figure 15. The C-Demo software also provides a
DS28E36 API for both the HMAC and ECDSA applica-
tions. This API makes it easy to exercise all the features
of the DS28E36. Two example programs are provided to
demonstrate the complete command sequences used in
HMAC and ECDSA applications and to show how much
time it takes for each sequence to run (including HMAC
and Signature calculations).

www.analog.com Analog Devices │  11

Both the HMAC and ECDSA demos work in a similar manner. When first run, both software welcome the user into an
initial menu which allows them to choose a device from the 1-Wire line as well as a Factory Setup’ on the selected device.
Once a device has been found, selected, and successfully set up, an extended menu is available with options to run
different commands and sequences of the DS28E36 secure authenticator.
The MAXREFDES9007 demos make use of the ‘TMR0’ multiple 32-bit, reloadable timer in ‘Capture mode to measure
the time between the beginning and end of an HMAC or ECDSA sequence. The timer increments from an initial value
until an edge transition occurs on the timer pin (pin 3 of port 0 in alternate function #3). This triggers the ‘capture’ event,
which copies the TMRn_CNT value to the TMRn_PWM.pwm register, resets TMRn_CNT to 0x0000 0001, and continues
incrementing.
The capture mode timer period is calculated using the following equation:

() () ()()INITIAL_VALUE INITIAL_VALUE

CNT_CLK

Capture elapsed time

TMR_PWM TMR_CNT # OF ROLLOVER EVENTS TMR_CMP TMR_CNT

f

− + × −
=

Since no rollover events happen, ‘# of rollover events = 0’.

()INITIAL_VALUE

CNT_CLK

TMR_PWM TMR_CNT
Capture elapsed time

f
−

=

This software also makes use of the linker-defined symbols such as ‘text’, ‘data’, and ‘bss’ to calculate the project’s size.
Where ‘text’ represents the size of the code and constant data that is stored in FLASH memory. ‘Data’ represents the
initialized data, which is stored both in FLASH and in RAM memory and is also added to the size of the FLASH memory
alongside the ‘text’ size. ‘Bss’ is short for ‘Block Started by Symbol’ and contains all the uninitialized data that is stored
in RAM memory. In summary for each of the projects included in the MAXREFDES9007 software package, the FLASH
memory can be calculated by adding the ‘text’ and ‘data’ sizes. To calculate their RAM is necessary by adding the ‘data’
and the ‘bss’ sizes.
The software is compatible with the ADI toolchain, found in the Design Resources tab of the MAX32660. This can be
directly imported into an Eclipse IDE workspace. See the Quick Start section for details on how to set up the C-Demo
software.

Table 1. 1-Wire API Overview
FUNCTION DESCRIPTION
OneWire_Init Sets up the MAX32660 as a 1-Wire host.

OneWire_ResetPulse Sends a 1-Wire reset pulse down the 1-Wire bus.
OneWire_WriteByte Sends a specified byte down the 1-Wire bus.

OneWire_WriteBytePower Sends a specified byte down the 1-Wire bus and immediately enables the
strong pullup (SPU).

OneWire_ReadByte Requests a byte from the 1-Wire peripheral.
OneWire_Search Discovers multiple 1-Wire slaves found on the bus.

OneWire_SetSpeed Sets the 1-Wire master speed between standard and overdrive.

www.analog.com Analog Devices │  12

Table 2. DS28E36 Sequences API Overview
FUNCTION DESCRIPTION
Initial Setup

find_and_select_device_call Sends a 1-Wire reset pulse down the 1-Wire bus.
factory_setup Sends a specified byte down the 1-Wire bus.

dlog_disable Sends a specified byte down the 1-Wire bus and immediately enables the strong pullup
(SPU).

print_size Requests a byte from the 1-Wire peripheral.
HMAC Sequences

compute_and_read_page_authentication_
Sequence

Collects and computes the necessary components to run the ‘compute and read page
authentication’ command.

authenticated_write_memory_Sequence Collects and computes the necessary components to run the ‘authenticated write
memory’ command.

encrypted_authenticated_write_memory_
Sequence

Collects and computes the necessary components to run the ‘encrypted
authenticated write memory’ command

encrypted_read_memory_Sequence Collects and computes the necessary components to run the ‘encrypted read memory’
command.

ECDSA Sequences
compute_and_read_page_authentication_

Sequence
Collects and computes the necessary components to run the ‘compute and read page
authentication’ command.

authenticated_write_memory_Sequence Collects and computes the necessary components to run the ‘authenticated write
memory’ command.

encrypetd_authenticated_write_
memory_Sequence

Collects and computes the necessary components to run the ‘encrypted
authenticated write memory’ command.

encrypted_read_memory_Sequence Collects and computes the necessary components to run the ‘encrypted read
memory’ command.

Supporting Sequences
write_buffer_command Collects and computes the necessary components to run the ‘write buffer’ command.
read_buffer_command Collects and computes the necessary components to run the ‘read buffer’ command.

write_memory_command Collects and computes the necessary components to run the ‘write memory’
command.

read_memory_command Collects and computes the necessary components to run the ‘read memory’
command.

read_page_protection_command Collects and computes the necessary components to run the ‘read page protection’
command.

set_page_protection_command Collects and computes the necessary components to run the ‘set page protection’ com-
mand.

decrement_counter_command Collects and computes the necessary components to run the ‘decrement counter’ com-
mand.

read_random_number_generator_
command

Collects and computes the necessary components to run the ‘read random number
generator’ command.

compute_and_lock_secret_command Collects and computes the necessary components to run the ‘compute and lock secret’
command.

generate_ecc256_key_pair_command Collects and computes the necessary components to run the ‘generate ECC256 key
pair’ command.

authenticate_ecdsa_public_key_command Collects and computes the necessary components to run the ‘authenticate ECDSA
public key’ command.

www.analog.com Analog Devices │  13

Table 2. DS28E36 Sequences API Overview (continued)
FUNCTION DESCRIPTION

Utility Methods
secrets_setup

hmac_message Collects the necessary data to generate an HMAC message for multiple purposes.

write_memory_message Collects the necessary data to generate an HMAC message for the write memory
sequences.

encrypted_read_memory_message Collects the necessary data to generate an HMAC message for the encrypted read
memory sequences.

hash_compare Compares hashes to validate HMACs.
select_validation

fill_data Fills page data buffers with requested data.
print_data Prints a specified number of data bytes.

ECDSA Utility Methods

cert_sig_message Collects the necessary data to generate a certificate signature message for multiple
purposes.

sw_verifyECDSASignature Collects the necessary data to validate an ECDSA signature for multiple purposes.
sw_computeECDSASignature Collects the necessary data to compute an ECDSA signature for multiple purposes.

sw_verifyECDSACert Collects the necessary data to Verify an ECDSA certificate for multiple purposes.
sw_computeECDHKey Collects the necessary data to compute an ECDH signature for multiple purposes.

Table 3. DS28E36 Low-Level API Overview
FUNCTION DESCRIPTION

rom_cmd_bundle Constructs the ROM-level command to be sent based on the selected ROM cmd.
write_memory Sends the ‘write memory’ command down the 1-Wire bus and calculates the CRCs.
read_memory Sends the ‘read memory’ command down the 1-Wire bus and calculates the CRCs.
write_buffer Sends the ‘write buffer’ command down the 1-Wire bus and calculates the CRCs.
read_buffer Sends the ‘read buffer’ command down the 1-Wire bus and calculates the CRCs.

read_page_protection Sends the ‘read_page_protection’ command down the 1-Wire bus and calculates the
CRCs.

set_page_protection Sends the set page protection’ command down the 1-Wire bus and calculates the
CRCs.

decrement_counter Sends the ‘decrement counter’ command down the 1-Wire bus and calculates the
CRCs.

read_rng Sends the ‘read random number generator’ command down the 1-Wire bus and
calculates the CRCs.

encrypted_read_memory Sends the ‘encrypted read memory’ command down the 1-Wire bus and calculates
the CRCs.

compute_and_read_page_authentication Sends the ‘compute and read page authentication’ command down the 1-Wire bus
and calculates the CRCs.

authenticated_sha_write_memory Sends the authenticated sha write memory’ command down the 1-Wire bus and
calculates the CRCs.

compute_and_lock_sha_secret Sends the compute and lock sha secret’ command down the 1-Wire bus and calcu-
lates the CRCs.

generate_ecc_key_pair Sends the ‘generate ECC key pair’ command down the 1-Wire bus and calculates the
CRCs.

www.analog.com Analog Devices │  14

Table 3. DS28E36 Low-Level API Overview (continued)
FUNCTION DESCRIPTION

authenticate_ecdsa_public_key Sends the ‘authenticate ECDSA public key’ command down the 1-Wire bus and
calculates the CRCs.

authenticated_ecdsa_write_memory Sends the ‘authenticated ECDSA write memory’ command down the 1-Wire bus and
calculates the CRCs.

find_device_list Creates a list of the available devices on the 1-Wire bus by running the 1-Wire
‘search’ and ‘next’ commands.

select_device Selects a device from the ‘find_device_list’ of found devices with which to
communicate.

print_devices_list Prints a list of the found devices by the ‘find_device_list’ command.
readcrc16 Reads two CRC bytes during the 1-Wire communication sequences.

calculateCrc16Byte Calculates a CRC16 byte at a time.
calculateCrc16Block Calculates a block of CRC16 bytes by calling the ‘calculateCrc16Byte’.

comp_CRC16 Compares the calculated CRC16 block with the received CRC16 block.
protection_validation Validates the selected protection by the user is valid in certain instances.

pageCheck Checks that the page number provided for the commands is setup with the correct
format.

dataCheck Checks that the page data provided for the commands is setup with the correct
format.

print_protect Gets the number of the associated protection passed on certain commands and
prints its alphanumeric equivalent (used for the user interface).

Example Program’s User Interface Overview
The following section walks through how to run the exam-
ple programs, their features, and outputs.
For both demos, the process for selecting and setting
up the device are exactly the same so their use will be
demonstrated using the HMAC demo. The first step is
to select Search and select a device on the 1-Wire line.
Next, a factory setup for the selected device is required
since it generates the necessary SHA2 secrets as well as
sets the required protections for the demos to work. After
these steps have been completed, an Extended Menu
unlocks in order for the user to run the cryptographic
command sequences of the DS28E36.

To start using the demos, the user must select option 1,
Find Device List in the Main menu (or starting menu)
and then select the desired device. Press 1 followed by
Enter to get into the Find device list submenu as shown
in Figure 16.
The Find device list submenu shows the number of
DS28E36 devices found on the 1-Wire line and displays
their ROM IDs as well. They are highlighted in green in
Figure 17. To select a device, enter the number of desired
devices based on a list of displayed devices (highlighted
in yellow in Figure 15) and click Enter. After these actions
are completed, the program returns to the Main menu.
Note 1: A different device can be selected at any
time but a Factory Setup must be run right after the
selection.

www.analog.com Analog Devices │  15

Figure 16. Selecting a Device in the HMAC Demo.

Figure 17. Find Device List Submenu in HMAC Demo.

www.analog.com Analog Devices │  16

Figure 18. HMAC Demo Factory Setup Selection.

After a device has been selected, a “Factory Setup” is required (Figure 18). This can be achieved by selecting the sec-
ond option on the main menu Factory Setup. By selecting this option, the software will issue the required commands to
generate the necessary Unique Secrets and Page Protections. This will also store any required user data in the device.

Note 2: Text logs of the HMAC Demo’s Factory Setup command, as well as for all the other HMAC and ECDSA commands, can be
found inside the MAXREFDES9007-V1.0.0.zip software package. The source code contains a directory with text logs of the outputs
from the MAXREFDES9007 HMAC Demo and the MAXREFDES9007 ECDSA Demo. It also contains a document describing the
data path in the system for each cryptographic command as well as other useful resources to better understand the hardware and
software elements of this reference design.

If the program is to setup incorrectly or the device has already different protections, the Factory Setup will return an error
and exit the program.

www.analog.com Analog Devices │  17

Once the device has been selected and successfully set up, an extended menu will appear right after the Factory Setup
has been completed as shown in Figure 19 (highlighted on green). Before discussing HMAC Sequences, it is important
to note the Data Log Enable/Disable mode or Debugging mode. The data log is enabled by default., By disabling it, this
allows the program to measure the real time it takes to run each of the sequences. Figure 20 shows the log when Data
Log Enable/Disable is selected.

Figure 19. HMAC Demo Extended Menu.

www.analog.com Analog Devices │  18

Figure 20. HMAC Demo Data Log Enable/Disable Log.

www.analog.com Analog Devices │  19

Additionally, we have the Firmware Code Size menu option. By selecting it, the program displays the amount of FLASH
and RAM memory used. See the Detailed Description of Software section of this document for more information on how
they are calculated. Figure 21 shows the log of option 4, Firmware Code Size.

Lastly, we demonstrate how one of the cryptographic commands from the “extended menu” works to measure its running
time with and without debugging data log.
Figure 22 shows the HMAC Encrypted Read Memory command sequence that is run when selecting menu option 9
of the Extended menu. Note that in debugging mode (with Data Log enabled), the Decryption HMAC as well as the
HMAC message ingredients are displayed. This SHOULD NOT BE THE CASE in real-life applications. In Figure 22 and
Figure 23, the real time measurement is highlighted in yellow. All sequences will display a success message after being
run successfully . This is highlighted in green inn Figure 22 and Figure 23. To get more information on the individual
HMAC and ECDSA command sequences and their Data Logs, see Note 2.

Figure 21. HMAC Demo Firmware Code Size Log.

www.analog.com Analog Devices │  20

Figure 22. HMAC Encrypted Read Memory with Data Log Enabled.

www.analog.com Analog Devices │  21

Figure 23. HMAC Encrypted Read Memory with Data Log Disabled.

www.analog.com Analog Devices │  22

Revision History
REVISION
NUMBER

REVISION
DATE DESCRIPTION PAGES

CHANGED

0 4/22 Initial release —

1 7/23
Updated Overview, Features, Applications, Introduction, and Detailed Description;
Updated Figure 2, Figure 6, Figure 7, Figure 9, Figure 17, Figure 18, and Figure
22; Table 1 and Table 2; Deleted Text Logs; Deleted Appendix A

1, 2, 3, 5, 7, 10, 11,
12, 13, 16-23, 24, 27,

29-99

w w w . a n a l o g . c o m Analog Devices │  23

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is
assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that
may result from its use.Specifications subject to change without notice. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the
property of their respective owners.

