

POWER SOLUTIONS FOR PRECISION TECHNOLOGY SIGNAL CHAINS

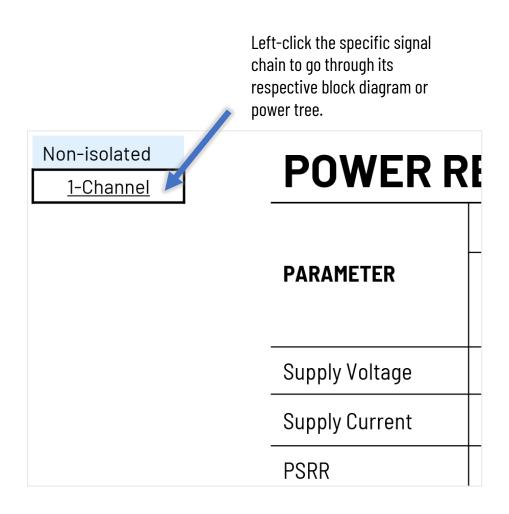
PRECISION MEDIUM BANDWIDTH Vibration Sensing Data Acquisition Module IEPE Bipolar Input

Rev. 0 | Aug. 2022

© 2022 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

This document is interactive. You can click on any underlined text to navigate through the document.

For the resources:

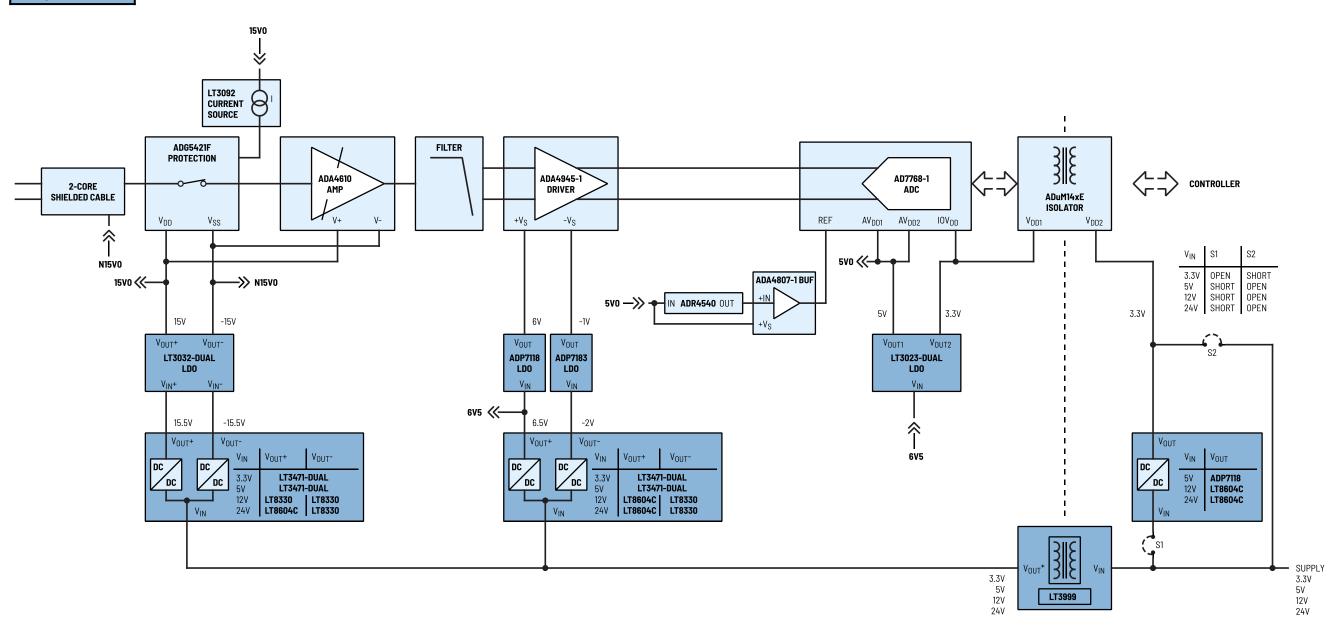

APPENDIX Power Requirements

Left-click the Parts Guide and Power Requirements to go through the list of power devices and other references.

The Power Components are listed on the Appendix, and you may click on the part to go through its product page online.

PART#		DESCRIPTION									
١	<u>LT3471</u>	Dual 1.3A, 1.2MHz Boost/Inverter in 3mm × 3mm DFN									
	LT8604	High Efficiency 42V/120mA Synchronous Buck									
	LT8570-1	Boost/SEPIC/Inverting DC/DC Converter with 65V Switch, Soft-Start and Sync.									

For the individual pages:


Precision Medium Bandwidth

Vibration Sensing Data Acquisition

IEPE Bipolar Input

APPENDIX Power Requirements USER GUIDE

Isolated
Single-channel

^{*}The actual output voltage of LT3999 isolated converter depends primarily on the turns ratio of the transformer used. See LT3999 datasheet for details.

Precision Medium Bandwidth

Vibration Sensing Data Acquisition

IEPE Bipolar Input

Isolated
Single-channel

PART #	DESCRIPTION								
<u>LT8604</u>	High Efficiency 42V/120mA Synchronous Buck								
<u>LT8330</u>	Low I _Q Boost/SEPIC/Inverting Converter with 1A, 60V Switch								
<u>LT3471</u>	Dual 1.3A, 1.2MHz Boost/Inverter in 3mm × 3mm DFN								
<u>LT3999</u>	Low Noise, 1A, 1MHz Push-Pull DC/DC Driver with Duty Cycle Control								
<u>ADP7118</u>	20V, 200mA, Low Noise, CMOS LDO Linear Regulator								
ADP7183	-300mA, Ultralow Noise, High PSRR, Low Dropout Linear Regulator								
<u>LT3032</u>	Dual 150mA Positive/Negative Low Noise Low Dropout Linear Regulator								
LT3023	Dual 100mA, Low Dropout, Low Noise, Micropower Regulator								

Precision Medium Bandwidth

Vibration Sensing Data Acquisition

IEPE Bipolar Input

Isolated

Single-channel

POWER REQUIREMENTS

	STAGES	Protection		Gain		CC Source	Filter	ADC Dr	iver	ADC			Reference	Ref B	uffer	Isolation	
PARAMETER	Part #	ADG5421F		ADA4610-1		LT3092	_	ADA4945-1		AD7768-1			<u>ADR4540</u>	ADA4807-1		ADuM14xE	
	Pin	V _{DD}	V _{SS}	V+	V-	IN		+V _S	-V _S	AV _{DD1}	AV _{DD2}	IOV _{DD}	IN	+V _S	-V _S	V _{DD1}	V _{DD2}
Supply Voltage	V	15	-15	15	-15	15	-	6	-1	5	5	3.3	5	5	-	3.3	3.3
Supply Current	mA	0.205	-0.205	27	-27	4.5	-	4.2	-4.2	26	6	11.5	1.0	6	-	17	10
PSRR	dB 90 (2MHz)		· 2MHz)	12 (2MHz)	16 (2MHz)	20 (1MHz)	-	98 (2MHz)	103 (2MHz)	110 (2MHz)		90 (2MHz)	65 (2MHz)		-		

Note 1: The supply currents indicated are the maximum quiescent current of the supply rails. For overall full load or short circuit current specifications, refer to the datasheets of the signal chain components.

Note 2: The supply voltages indicated are the values for typical applications.

Note 3: Consult the corresponding datasheets for details on: (1) power supply rejection ratio (PSRR) and (2) power dissipation.

Note 4: The actual supply current requirement shall be multiplied depending on the number of channels on the signal chain.